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Abstract. This paper presents an open-source tool that can be used to simulate turbulence
boxes constrained by measured data, which is useful for wind turbine model validation. The
tool, called PyConTurb for “Python Constrained Turbulence”, uses a novel algorithm based on
the Kaimal Spectrum with Exponential Coherence method, and the algorithm can efficiently
generate turbulence boxes under a wide variety of measurement constraints. The theoretical
background for the technique is presented along with a few notes on its implementation in
Python. The utility of PyConTurb is demonstrated using real data measured using three-
dimensional sonic anemometers at the Denmark Technical University Risø campus. The
presented results demonstrate that PyConTurb can successfully generate turbulence boxes from
real measured data, including recreating the desired spatial coherence relationships between the
simulated and measured time series. PyConTurb is shown to be a promising tool for investigating
new spatial coherence models and for future one-to-one wind turbine validation studies.

1. Introduction
The simulation of constrained turbulence boxes is an essential aspect of one-to-one wind turbine
validation. A large amount of time and effort can be expended on tuning a wind turbine model,
but if we are unable to adequately identify or model the turbulence entering the rotor, then it
will be impossible to determine whether simulation-measurement discrepancies arise from errors
in the wind turbine model or from the uncertainty in the wind field.

There are a few techniques previously proposed to address this issue in generating turbulence
for one-to-one model validation. First, a very simple solution is to use a standard stochastic
turbulence simulator (e.g., the Mann turbulence model [4] or the Kaimal Spectrum with
Exponential Coherence [5], hereafter abbreviated as KSEC) and to fit the necessary simulation
parameters to your measured time series as chosen. For example, we could use the recorded
mean wind speed and turbulence intensity but the default parameters from IEC 61400-1 [5] for
the other parameters. Alternatively, we could attempt to fit all necessary simulation parameters
to the measured time series. Neither of these methods, however, constrain the turbulence box
so that it follows the general trends in the measurements. Thus, any unique turbine response
caused by a specific phenomenon in the input will not necessarily be recreated in simulation,
which is a huge drawback for one-to-one validation applications.

The solution to this issue is to constrain the turbulence simulation in some way so that it
is similar to the measurements. Two main techniques have been proposed to accomplish this.
First, in the alpha version of TurbSim version 2.0—the open-source turbulence simulation from

http://creativecommons.org/licenses/by/3.0
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the National Renewable Energy Laboratory (NREL) that is based on the KSEC technique—
it is possible to provide a user-defined time series to simulate a turbulence box. TurbSim
then determines the spectral magnitudes via linear interpolation from the measurements and
it correlates the simulated phases to a user-selected reference time series. To the author’s
knowledge, no tests or verifications of the code have been made public, but it is likely a very
useful tool for single-point measurements.

Often, however, we have multiple measurements across a rotor plane. In this case, it
may be more appropriate to use the turbulence constraint technique based on the Mann
turbulence model [2, 3]. This method generates a random, unconstrained Gaussian field and
then superimposes a second Gaussian field that was generated such that the constrained points
take on the required values. Unfortunately, there are a few drawbacks to this technique. First,
it is computationally more complex than a method based on KSEC. Second, the generated field
can sometimes be subject to unrealistic speeds at the unconstrained points due to overfitting.
Lastly, there is no implementation of this tool that is publicly available for the wind energy
research community.

This paper presents an open-source tool to efficiently generate turbulence boxes constrained
by measurements at multiple points and in multiple directions. The tool uses a novel algorithm
based on the KSEC simulation technique, and it enforces spatial coherence relationships between
all measured and simulated points. The open-source tool, which is called “PyConTurb”
for “Python Constrained Turbulence”, is currently available in the following git repository:
https://gitlab.windenergy.dtu.dk/rink/pyconturb. The objective of this paper is to present the
theory behing the simulation algorithm and to demonstrate some of PyConTurb’s abilities via
a case study.

The remainder of the paper is organized as follows. the theoretical background and
computational implementation is discussed in Sec. 2. A case study is presented in Sec. 3 that
uses meteorological mast (“met mast”) data from the Denmark Technical University (DTU) Risø
campus to generate constrained turbulence boxes. Discussion on the flexibility and utility of
PyConTurb and future key developments are presented in Sec. 4. Lastly, the paper is concluded
in Sec. 5.

2. Methodology
This section contains the theoretical background of the proposed constrained KSEC technique
as well as a few notes on its computational implementation in PyConTurb. Both items
are discussed in respective subsections below. Further details on PyConTurb, the source
code, and examples of how to use the tool can be found at the following GitLab repository:
https://gitlab.windenergy.dtu.dk/rink/pyconturb.

2.1. Theoretical background
As mentioned in Sec. 1, the proposed constrained simulation methodology is based on the KSEC
method, which is one of the two turbulence simulation techniques in the third edition of the wind
turbine design standard IEC 61400-1. In the KSEC method, the turbulence generation occurs
in the Fourier domain, where the Fourier magnitudes are deterministic and specified according
to a provided Kaimal power spectrum. The phases are randomly sampled, and then the phases
corresponding to the longitudinal (i.e., along-wind) turbulence component are correlated using
the Cholesky decomposition of the coherence matrix, whose entries are calculated from the
exponential coherence function provided in the standard.

The KSEC method is computationally fast and does not suffer from the memory problems
associated with the Mann turbulence model, which has lent itself to implementation into open-
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source tools such as TurbSim.1 However, it does not follow the conservation of mass, as the
Mann model does; moreover, the standard KSEC model defined in IEC 61400-1 does not feature
coherence in the lateral and vertical turbulence components and its lack of cross-component
coherence could affect resulting load calculations. This issue with the standard KSEC model is
not directly addressed in this paper, but the authors acknowledge its importance and further
discussion is given to the topic in Sec. 4.

The simulation procedure for the proposed constrained KSEC method is given as follows.
Consider a set of given, measured turbulence time series

C = {xc1(xc1, t), . . . , xcnc(xcnc , t)}, (1)

where xci is a measured time series for a particular spatial location xc1 and turbulent component,
t is time, and nc is the total number of constraining time series. Note that nc encompasses both
spatial locations and which turbulent component to which the time series corresponds. For
example, if the constraining data comes from a met mast with five three-dimensional (3D) sonic
anemometers, the number of constraining time series is nc = 5× 3 = 15.

Let us assume that we would like to simulate a series of time series

S = {ys1(xs1, t), . . . , ysnc(xsns , t)}, (2)

where ysi is a simulated time series for a particular turbulent component and spatial location
xs1 and ns is the number of points to simulate. Just as in the unconstrained KSEC method, we
begin the turbulence simulation in the Fourier domain.

Assemble the Fourier components for all spatial points, both constrained and simulated, as
follows:

Z(fk) = [Xc1(fk), . . . , Xcnc(fk), Ys1(fk), . . . , Ysns(fk)], (3)

where a capital letter indicates a component in the Fourier domain and fk is a particular
frequency. For notational convenience, we will denote the vectors in Eq. (3) as

Z(fk) = [X(fk), Y (fk)]. (4)

The values of X are known a priori, as these are simply the Fourier transforms of the
constraining measured time series. We seek to calculate the values of Y , but it must be done
such that the correct coherence relationships with the constraining time series are maintained.
Consider, then, the following equation:

Z(fk) =



...
Xci(fk)

...
Ysi(fk)

...

 = [L(fk)]



...
Cci(fk)

...
Usi(fk)

...

 (5)

[
X(fk)
Y (fk)

]
= [L(fk)]

[
C(fk)
U(fk)

]
. (6)

This equation corresponds to the phase-correlation step in the unconstrained KSEC method.
Here, [L(fk)] is the lower-triangular Cholesky decomposition of the covariance matrix [Σ(fk)],
which is defined such that

Σij(fk) = |Zi(fk)| |Zj(fk)|Cohij(fk), (7)

1 It should be noted that TurbSim features several other models in addition to the standard KSEC model.
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where Cohij(fk) is the theoretical complex coherence between component/location i and
component/location j for frequency fk and | · | represents taking the magnitude. Note that,
in the standard KSEC model, Cohij(fk) = 0 unless i and j are both longitudinal turbulent
components.

The theoretical magnitudes for the simulation points can be specified in any way. In this
paper, we consider two simple techniques: 1) generating them according to the Kaimal spectrum
or 2) linearly interpolating them by height from the measured time series. Each technique
has its benefits and drawbacks. The first technique is not affected by the potential sparsity of
measurements that could negatively affect the second technique. For example, if for some reason
the measured spectra at the measurement point are very wrong, the entire turbulence box would
be affected and could produce inaccurate validation results when used as turbulent inflow to a
wind turbine model. However, the second technique guarantees that a simulated time series will
converge to a measured time series as the simulation point approaches the measurement point.

Consider, for example, the plots shown in Fig. 1. Both plots were generating by simulating
10 realizations of turbulent time series at spatial locations that were various distances away
from the measurement point. The spatial locations converged towards the measurement points
in three different manners: laterally (i.e., the simulation point started at the same height but
with some horizontal offset), vertically (i.e., the simulation point began a certain distance above
the measurement point and converged downward), and from a random direction. For each in-
plane separation distance and turbulent realization, two turbulent time series were simulated:
one with magnitudes generated from the Kaimal spectrum and one with magnitudes that were
linearly interpolated from the measured magnitudes. The resulting average absolute error was
calculated as follows

AAE = |usim − umeas| (8)

and the results for the Kaimal and data magnitudes are shown in the upper and lower plots,
respectively.

As expected, there is a bias in the turbulent simulations generated with Kaimal magnitudes
that prevents the error from ever converging. In fact, once the simulation and measurement
points are within 0.1 m of one another, there is no further decrease in error. This is in
sharp contrast with the error for the turbulent simulations generated from the interpolated
data magnitudes, which show a consistent decrease in error for all tested in-plane separation
distances. The trend is approximately linear in the log-log axes, as indicated by the red line.
This consistent decrease in error for the magnitudes interpolated from data, and the lack thereof
for the magnitudes generated from the Kaimal spectrum, highlights the importance of picking
a model for the simulation magnitudes that converge to the measurement magnitudes as the
distance to the measurement point decreases.

The key novel aspect of the constrained KSEC technique proposed in this paper is the creation
of the rightmost vector in Eq. (6). In the traditional KSEC method, this vector is generated
such that Usi(fk) = exp(j2πU), where U is a uniformly distributed random variable on [0, 1).
This is fine for U(fk) in the constrained KSEC method, but the elements of C(fk) cannot be
generated in this manner or the correct values of X(fk) will not be recovered. To address this
issue, we separate [L(fk)] into blocks as follows:[

X(fk)
Y (fk)

]
=

[
L1(fk) 0
A(fk) L2(fk)

] [
C(fk)
U(fk)

]
, (9)

where [L1(fk)] and [L2(fk)] are lower-triangular matrices, [0] is a matrix of zeros, and [A(fk)] is
a fully-populated matrix. Matrix [L(fk)] is invertible because it is a positive-definite covariance
matrix by nature, in which case [L1(fk)] is also invertible due to the nature of lower-triangular
matrices. Therefore,

C(fk) = [L1(fk)]−1X(fk), (10)
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Figure 1. Average absolute error between a simulated time series and a measured time series
as the simulation location converges to the measurement location laterally, vertically, and from
a random direction. The top plot used turbulence generated with magnitudes from the Kaimal
spectrum, and the bottom plot used magnitudes lineraly interpolated from the measurement
data. Ten realizations were generated for each separation distance and are overlaid in the plots.

in which case
Y (fk) = [A(fk)][L1(fk)]−1X(fk) + [L2(fk)]U(fk). (11)

The proposed constrained turbulence simulation algorithm is summarized in Alg. 1.

Algorithm 1 Pseudocode for proposed constrained KSEC algorithm

for each Fourier frequency fk do
compute covariance matrix [Σ(fk)]
apply Cholesky decomposition to generate [L(fk)]
compute C(fk) according to Eq. (10)
sample U(fk) randomly
compute Y (fk) according to Eq. (11)

end for

2.2. Computational implementation
The proposed constrained turbulence methodology has been implemented in an open-source
Python package called PyConTurb, which stands for “Python Constrained Turbulence”. The
package is hosted on GitLab (https://gitlab.windenergy.dtu.dk/rink/pyconturb), and the source
code, installation instructions, and code documentation can be found at the link. The algorithm
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Figure 2. Snapshots of a turbulence box generated from the five measured time series shown
in the bottom subplot. The measured time series are from a met mast installed at DTU Risø
campus. The dotted lines in the bottom subplot indicate the timepoints at which the four
snapshots were taken, and the red x’s in the snapshot plots indicate the measurement locations.
The wind speed units are m/s.

was modified slightly to improve performance, and notes on those modifications are also in the
linked repository.

3. Case study: generating turbulence boxes from met mast data
In this section, PyConTurb is used in conjunction with met mast data recorded at DTU Risø
campus to demonstrate its utility with real measurements. The data were recorded using five 3D
sonic anemometers at different heights (18 m, 31 m, 44 m, 57 m, and 70 m). Only the longitudinal
turbulence components were used to constrain the simulations because the standard exponential
coherence model has no spatial coherence for the lateral and vertical turbulence components.
The generated turbulent grid was a 32 × 32 square grid that was 53 m wide/tall and centered
at 44 m. The simulation time step was 1/35 s, which matched the measurements.

A comparison of snapshots from the simulated constrained turbulence box is shown in Fig. 2.
The measured time series are plotted in the bottom axes, and the black dotted lines indicate
the times at which the snapshots were taken. The red x’s on the upper snapshot plots indicate
the measurement points. The longitudinal wind speed values in all plots are colored according
to the colorbar at the top of the figure. The snapshots were chosen specifically to highlight the
largest increases/decreases in the measured turbulent time series.

As expected, the snapshots display coherent increases/decreases in the turbulent field near
the corresponding measurement point featuring the increase/decrease. For example, Snapshot 3
was chosen to highlight the significant increase in wind speed at the 18-m measurement, and
there is a corresponding area of increased wind speeds near that measurement point in the
corresponding snapshot. Similarly, Snapshot 4 was chosen to highlight the decreased wind
speeds for all measurement points at that time stamp, and a similar decrease in wind speed is
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Figure 3. Comparison of measured met mast time series (18 m) to two simulated time series
taken from a turbulence box generated from the met mast data. The orange simulated series is
spatially close to a measurement point (0.99 m in-plane separation), whereas the green simulated
time series is further away (58.81 m in-plane separation).

clearly reflected in the corresponding snapshot.
The simulated turbulence’s ability to “track” the measured time series is further demonstrated

in Fig 3. Three turbulent time series are overlaid in the plot: the measured time series at 18 m
(blue), a simulated time series 0.99 m away (orange), and a simulated time series 58.81 m away
(green). It is apparent that, as expected, the distant simulated time series shown in green does
not follow the same trends as the measured time series. On the other hand, the close simulated
time series shown in orange has very similar trends to the measured time series, including the
sudden peak in wind speed near 65 s. This tracking ability is essential for one-to-one wind
turbine validation, when the largest fatigue loads can be caused by single peaks in a measured
wind record.

The fact that the simulated turbulence mimics the measured turbulence in the time domain is
a direct result of the spatial coherence between the two points. We also verified that the turbulent
time series generated using PyConTurb have the desired spatial coherence relationships with the
measured time series using 100 turbulence realizations 1 m away from the measured time series.
The results for the spatial coherence estimated from the 100 realizations are shown in Fig. 4.
For the smaller coherence values, there are some deviations between the theoretical coherence
(blue line) and estimated coherence (orange circles) due to the small number of turbulent
realizations used to calculate the coherence. For the larger coherence values, however, there
is excellent agreement between the theoretical and estimated coherence. Thus, PyConTurb can
easily simulate turbulence boxes from real data measured using 3D sonic anemometers on a met
mast and maintain the correct spatial coherence relationships with the measured data.

4. Discussion
While we have clearly demonstrated PyConTurb’s ability to simulate turbulence boxes that are
constrained by real measurements, there are a few points of interest that merit further discussion.

First, as mentioned above, for this paper we simply linearly interpolate the Fourier
magnitudes according by height above the ground to obtain the simulation magnitudes. The
rationalization for using this technique is that the standard Kaimal spectrum is also a function
of height. However, this technique is perhaps not very reflective of the conditions found in
real atmospheric turbulence. Moreover, it makes the entire simulated turbulence box very
sensitive to the measured data if only one or two measurements points are used. Other, more
sophisticated techniques to generate the simulation magnitudes from the measured magnitudes
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Figure 4. Theoretical and estimated spatial coherence between the 44-m met mast measurement
and a simulation point 1 m away

will be investigated in the future and implemented into PyConTurb.
Second, for the time being, PyConTurb utilizes the standard exponential coherence model

specified in IEC 61400-1 Ed. 3. As noted in Sec. 2.1, this is an inaccurate model due to its
exclusion of spatial coherence in the lateral and vertical turbulent components. In light of
this, PyConTurb was intentionally given a modular structure to allow the specification and
easy investigation and comparison of new, improved spatial coherence models for wind energy
applications. Thus, although the utilization here of the standard exponential coherence could be
considered a drawback of the paper, it is important to note that this paper is only intended to
present PyConTurb and its abilities. Future work is already underway to improve the coherence
model in order to produce better one-to-one wind turbine validation results.

Third and last, it is important to emphasize the flexibility of the constraining data. We have
here demonstrated PyConTurb’s abilities using met mast data, but this is by no means the only
data that can be used to generated turbulence boxes. For example, even a single measurement
from one cup anemometer could be used to simulate a turbulence box. Alternatively, a spatial
field of longitudinal turbulence measured with a spinner lidar could be used to generate the
lateral and vertical turbulence components. Thus, PyConTurb is an extremely flexible tool that
can be used to simulate constrained turbulence for a wide variety of data sources.

5. Conclusions
This paper presents 1) a novel method to simulate turbulence that is constrained by measured
time series for one-to-one wind turbine validation and 2) the open-source tool into which the
method it has been implemented, called “PyConTurb”. The method is based on the same
technique used in the KSEC model in wind turbine design standard IEC 61400-1 Ed. 3, but it
includes the measured time series in the spatial correlation step to ensure that the simulated
turbulence box follows the same trends as nearby measurement points. If a simulation point and
measurement point are collocated, the simulated time series perfectly recreates the measured
time series.

The presented technique was implemented in Python, and the PyConTurb package is readily
available on GitLab for installation. The utility of PyConTurb for real-measurement applications
was demonstrated using time series measured from 3D sonic aneometers on a met mast at DTU
Risø campus. Snapshots and time series of the generated turbulence box were compared with
the measured time series. As desired, close simulation points “tracked” the measured data
well. Additionally, the desired spatial coherence between a simulation point and a measurement
point was also recovered. Thus, PyConTurb was shown to effectively simulate turbulence boxes
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that are constrained by measured data, which is extremely useful in one-to-one wind turbine
validation studies. More importantly, PyConTurb can be used for a very wide variety of input
data (3D sonic anemometers, cup anemometers, spinner lidars, etc.) for future wind turbine
validation activities.
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