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Abstract. Previous studies have suggested the use of reduced-order models calibrated by
means of high-fidelity load simulations as means for computationally inexpensive wind turbine
load assessments; the so far best performing surrogate modelling approach in terms of balance
between accuracy and computational cost has been the polynomial chaos expansion (PCE).
Regarding the growing interest in advanced machine learning applications, the potential of
using Artificial Neural-Network (ANN) based surrogate models for improved simplified load
assessment is investigated in this study. Different ANN model architectures have been evaluated
and compared to other types of surrogate models (PCE and quadratic response surface). The
results show that a feedforward neural network with two hidden layers and 11 neurons per layer,
trained with the Levenberg Marquardt backpropagation algorithm is able to estimate blade root
flapwise damage-equivalent loads (DEL) more accurately and faster than a PCE trained on the
same data set. Further research will focus on further model improvements by applying different
training techniques, as well as expanding the work with more load components.

1. Introduction
Typically wind turbines are designed for specific wind conditions which are specified in site
classes by the IEC standards. When a turbine is placed at locations where a site-specific
parameter exceeds these design conditions, site-specific load assessments including simulations
over the whole design load base have to be carried out. As this procedure can become
computationally expensive, several methods and procedures have been developed for simplifying
load assessments based on statistical moments, multivariate regression models [1] and expansions
using orthogonal polynomial basis [2]. Previous investigations comparing different surrogate
models such as polynomial chaos expansion (PCE), universal kriging with polynomial chaos
basis function and quadratic response surface, have shown that the PCE results in the best
overall performance for the load estimation in terms of robustness, accuracy and computing
time [3].

Regarding the growing interest in advanced machine learning applications, the purpose of this
study is to evaluate the potential of using models based on Artificial Neural Networks (ANNs) as
a flexible and potentially better-performance alternative to the previously mentioned surrogate
models that have been developed already. Therefore, different ANN models are trained for

http://creativecommons.org/licenses/by/3.0
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estimating the loads of a wind turbine using a database with high-fidelity load simulations and
compared to the load estimations obtained from the aforementioned surrogate model approaches.
The previously developed surrogate models serving as a reference in this study are the PCE and
a rather simple quadratic response surface approach.

2. Data description
For training the surrogate models a database consisting of high-fidelity load simulations is used
based on the setup described in [3]. Six probabilistic parameters characterizing the wind field
(wind speed, wind field variance, vertical wind shear exponent, wind veer and turbulence length
scale and anisotropy factor defined by the Mann model [4]) are used as inputs for the models.
A 10000-point pseudo Monte Carlo sample is drawn from the joint distribution and pre-defined
ranges of the input variables (see Figure 1) [3]. All parameters, except the wind speed u, are
uniformly distributed. Since most parameters have wide ranges of variation at small u, the wind
speed is Beta-distributed in order to improve point spacing in the set used for training the ANN
model. However, this would not influence a load estimation using the resulting model, as in this
case the sampling can be done according to any target distribution of environmental conditions,
for example a site-specific Weibull-distributed wind speed.

Figure 1. Distributions of input variables: The wind speed is considered Beta-distributed while
the remaining input variables are uniformly distributed. The figure is reproduced from [3] with
the author’s permission.

Aeroelastic load simulations are carried out using the HAWC2 simulation tool with the
reference turbine DTU 10MW RWT to obtain the damage-equivalent loads (DEL) which serve



3

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 062027  doi :10.1088/1742-6596/1037/6/062027

as target for training the surrogate models (see Figure 2). This study focuses on estimating the
lifetime DEL exemplarily for the blade root flapwise bending moment.

Surrogate model
Lifetime damage-equivalent 

fatigue load

• Wind speed u

• Wind field variance σ

• Wind shear α

• Turbulence length scale L

• Anisotropy factor Γ

• Wind veer Δφ

Figure 2. Schematic illustration of site-specific load estimation using surrogate model.

3. Methods
In the following section the different approaches are briefly described and the choice for the
specific model setup is explained. Within each approach a 10-fold cross-validation is applied in
order to estimate the generalization error of the corresponding load estimations.

3.1. Neural Network approach
Originally, ANNs were invented as mathematical models of the information processing by
neurons [5]. There are clear differences between ANNs and biological neurons, nevertheless the
basic structure exhibits some similarity. ANNs consist of a net of various connected information
processing units, so-called artificial neurons. The neurons are organized in layers so that the
information is processed sequentially in the network (see Figure 3).

Figure 3. A 3-layer neural network with three inputs, two hidden layers consisting of four
neurons each and one output layer [6].

An ANN with a linear transfer function can be written in the form of a linear regression
model to predict the output [7]:

f(xxxx, wwww) =
M∑
i=1

xiwi + w0 (1)

The input vector xxxx = (x1, ..., xM ) containing M attributes is fed into the input layer where
neuron i is given an activation equal to xi. The parameter wi is referred to as weights and
w0 as biases. The activation is propagated through the hidden layers and finally to the output
layer. The number of neurons in the output layer corresponds to the dimension of the output
vector that is aimed to be predicted. This procedure is called forward pass which is used for the



4

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 062027  doi :10.1088/1742-6596/1037/6/062027

simplest form of ANNs, the so-called feedforward networks.

With

x̃̃x̃x̃x = [1 x1 x2 ... xM ]T (2)

we get the more condensed form

f(xxxx, wwww) = x̃̃x̃x̃xTwwww (3)

Having a nonlinear activation h and a number of H hidden neurons, the activation of the kth
output neuron can simply be written as

fk(xxxx, wwww) = h(2)(
H∑
j=1

W
(2)
kj h

(1)(x̃̃x̃x̃xTwwww
(1)
j )) (4)

with the weight matrix W
(2)
kj containing weight terms for the jth hidden neuron and kth

output neuron. Different functions can be used as the activation function h such as for instance
hyperbolic tangent, logistic sigmoid or rectified linear unit.

In this work a feedforward neural network (FNN) is used. Inside the 10-fold cross-validation
the data are divided into a 70 % training, a 20 % validation and a 10 % test set for each iteration.
Since the sample set used in this study is considerably big, the data division is less crucial for
the model performance. Another approach for splitting the data would be to follow the scaling
law for the validation-set training-set size ratio as described in [8]. After dividing the data, the
model is trained using back-propagation with the Levenberg-Marquardt algorithm [9] based on
the training data set, and using the validation set to prevent overfitting. Finally, the performance
of the FNN is tested on the test set.

For selecting the optimal network architecture an inner loop is added to the 10-fold cross-
validation. Inside the loop networks with one to two hidden layers with one to twenty neurons
in each layer respectively are trained and the generalization error is estimated for each model
in the outer cross-validation loop. The final optimal network architecture is selected based on
achieving a balance between high accuracy (achieved with a high number of neurons) and low
computational time (low number of neurons) for the DEL estimation.

3.2. Polynomial chaos expansion approach
The polynomial chaos expansion, introduced by Norbert Wiener [10] and further developed into
computational tools for stochastic modeling such as in [11] and [12] is a method to approximate a
stochastic function S(XXXX ) of multiple random variables XXXX = [X1, X2, ..., XM ] using an orthogonal
basis φj [3]:

S =
∞∑
j=0

Sjφj(X1, ..., XM ) (5)

where φj is a Hilbertian basis of the Hilbertian space containing the response [3]. Since
the input random variables in this study are non-Gaussian distributed a generalized PCE [13]
using Legendre polynomials is applied. The stochastic function S = g(XXXX ) can be expressed
as a truncated sequence S̃(XXXX ) + ε with the zero-mean residual ε. A least-squares regression
approach is then used for determining the coefficients of SSSS which requires setting up a design of
experiments with a so-called design matrix ΨΨΨΨ [3]. Assuming that the residuals are approximately
normally distributed the closed-form solution is
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(ΨΨΨΨT ΨΨΨΨ)−1 · ΨΨΨΨT · yyyy (6)

with yyyy being a vector with the realizations obtained from the design experiment [3].
Before calibrating the PCE, the data samples are divided into a 90 % training and a 10 % test

set in order to use the same amount of data for training the model as in the ANN methodology.
The design matrix ΨΨΨΨ is calculated and the PCE is calibrated using the training set. The obtained
coefficients of the PCE are then used for load predictions using the input variables from the test
samples.

3.3. Response surface approach
Another reduced-order model is the quadratic-polynomial response surface (RS) which has found
its application also for wind turbine load predictions [1]. In this method a quadratic polynomial
regression is fit to the design points from the Monte Carlo simulations. A single response surface
is not able to fully represent the turbine response with respect to the mean wind speed due to
the low-order of the response surface [3]. Therefore, multiple response surfaces are calibrated
for wind speeds from 4 m/s to 20 m/s in 1 m/s steps. Using the closed-form solution from the
least-squares regression noted in Equation 6 the polynomial coefficients of the response surface
are calculated.

As for the PCE the data samples are divided into a 90 % training and 10 % test set. For each
wind speed bin of the training samples the design matrix ΨΨΨΨ is created and the corresponding
coefficients of the quadratic regression function are calculated. The RS model is then validated
using these coefficients on the test set.

4. Results
4.1. Performance evaluation: Neural Network
In the following section the results of the DEL prediction of the blade root flapwise bending
moment using an ANN are presented.

As mentioned before, the optimum network architecture is selected based on achieving a
high accuracy at low computational time. Figure 4 to Figure 7 illustrate the coefficient of
determination and the test evaluation time of the load estimations using an ANN with one
hidden layer (left side) and two hidden layers (right side) as a function of the number of hidden
neurons per layer. The red dashed lines refer to the finally chosen architectures.
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Figure 4. R2 of load estimations using
ANN with one hidden layer as a function
of number of neurons per layer.
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ANN with two hidden layers as a function
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Figure 6. Test evaluation time of load
estimations using ANN with one hidden
layer as a function of number of neurons
per layer.
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Figure 7. Test evaluation time of load
estimations using ANN with two hidden
layers as a function of number of neurons
per layer.

A 1-layer ANN with 16 neurons per layer and a 2-layer ANN with 11 neurons per layer
are selected as most suitable network architectures in this study. The performance of the two
networks is presented separately for the training, validation and testing set in Table 1.

Table 1. Performance evaluation of ANN for training, validation and testing.

Criteria ANN [16] ANN [11 11]

Number of coefficients 129 222
Training evaluation time [s] 2.462 3.520
Testing evaluation time [s] 0.010 0.010

Training R2 0.991 0.992
Validation R2 0.990 0.991

Testing R2 0.990 0.991

The test error distribution of the load estimations is illustrated for both networks in Figure 8
and Figure 9. The ANN with one layer predicts the DEL on the test set with a mean error
of µ = 36.17 Nm and a standard deviation of σ = 633.21 Nm. The ANN with two layers
predicts the DEL on the test set with a mean error of µ = 33.12 Nm and a standard deviation
of σ = 609.98 Nm.
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Figure 8. Error distribution of load
estimation for testing using an ANN with
one hidden layer with 16 hidden neurons.
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Figure 9. Error distribution of load
estimation for testing using an ANN with
two hidden layers with 11 neurons per
layer.

4.2. Comparison with PCE and Response surface
The performance of the load estimations using neural networks is compared to the load
estimations obtained from a PCE and a truncated PCE which retains 99.5 % of the model
variance and a quadratic RS in Table 2.

Table 2. Performance comparison of load estimation using RS, PCE and ANN.

Criteria PCE(1*) PCE(0.995*) RS ANN [16] ANN [11 11]

Number of coefficients 924 54 336** 129 222
Training evaluation time [s] 179.365 9.765 0.021 2.462 3.520
Testing evaluation time [s] 17.778 1.051 0.008 0.010 0.010
Training R2 0.993 0.988 0.974 0.991 0.992
Validation R2 - - - 0.990 0.991
Testing R2 0.989 0.988 0.972 0.990 0.991

* Proportion of model variance retained
** 21 coefficients per wind speed bin for 4 m/s to 20 m/s

The scatter plots of the estimated blade root bending moment against the simulated loads
from the high-fidelity database are shown in Figure 10 to Figure 12 for the truncated PCE, the
quadratic response surface and the ANN with two hidden layers.
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Figure 10. Scatter plot of blade root
flapwise bending moment estimated by
PCE against database.
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Figure 11. Scatter plot of blade root
flapwise bending moment estimated by RS
against database.
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Figure 12. Scatter plot of blade root
flapwise bending moment estimated by
ANN against database.
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Figure 13. Convergence of ANN, PCE
and response surface with respect to the
number of samples used for training the
model.

In order to assess the convergence of the surrogate models the normalized root-mean-square
(NRMS) error between the simulated loads from the high-fidelity database and the surrogate
model predictions is plotted as a function of the number of samples used for training the surrogate
model (see Figure 13).

The NRMS is calculated using Equation 7 with the set of observations (i.e. DEL from high-
fidelity simulation base) yyyy = g(XXXX (i)), i = 1...N and the prediction set from the surrogate models
ỹi = S̃(XXXX (i)), i = 1...N , over the same set of N sample points XXXX (i) :

εNRMS =
1

E[yyyy]

√∑N
i=1(ỹi − yi)2

N
(7)

with the expected value of the observation variable E[yyyy].
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5. Discussion
For selecting the optimal network architecture the model performance of a 1-layer and 2-layer
ANN is analysed in dependency of the number of hidden neurons in Section 4.1. While the
accuracy of the load predictions increases with the number of hidden neurons (see Figure 4
and Figure 5), it was expected that the test evaluation time would increase as well. However,
Figure 7 shows an unexpected high value in the test evaluation time for a 2-layer ANN with one
hidden neuron per layer. This might be caused by an overhead effect during the first iteration
of the program.

The load prediction performances of the ANN with one hidden layer and 16 hidden neurons
and the ANN with two hidden layers and 11 neurons per layer are compared in Section 4.1.
Both networks are able to give fast and accurate load estimations. As it can be seen in Figure 8
and Figure 9, the ANN with two layers predicts the DELs with a smaller mean and standard
deviation of the test error while performing with the same test evaluation time. This is also
represented in the higher coefficient of determination of R2 = 0.991.

The time needed for training the 2-layer ANN is about 1.06 s longer. However, the surrogate
model only has to be trained once using the high-fidelity data base from the pseudo-Monte Carlo
simulations and can then be applied to specific sites using the site-specific wind measurements.
Therefore, the test evaluation time is a more significant criteria of the model performance.

The comparison between the three surrogate models in Section 4.2 shows that the fastest
site-specific load assessment can be achieved using a quadratic RS, however at the cost of the
model accuracy. The so far best performing PCE results in a smaller prediction error with a
coefficient of determination of R2 = 0.988 and a test evaluation time of 1.051 s. Comparing these
results with the 2-layer ANN shows that the ANN performs approximately 100 times faster than
the PCE with an even slightly smaller prediction error.

Evaluating the convergence of the three approaches in Figure 13 has shown that, all three
models converge for approximately the same number of training samples (4000). However, it
can be seen that the NRMS error of the load predictions using the PCE is significantly higher
when using a small training sample set.

It should be noted that the approach presented in this study is only valid for site-specific
load assessments for single turbines. Further research is needed to extend the surrogate model
for wind farms where the wake effect plays an important role for the load predictions. A method
for representing wake-induced loads with surrogate models is currently being considered in [14].

6. Conclusions and future work
This study has presented a neural network approach for predicting the blade root bending
damage-equivalent moments for site-specific load assessments. The optimal network architecture
achieving low prediction errors with a small test evaluation time is an ANN with two hidden
layers and 11 neurons per layer. The comparison with the PCE model shows that the ANN
performs better with a slightly lower performance error and faster evaluation time. Compared
to the fast but less accurate quadratic RS it performs with significantly smaller prediction error
at a slightly higher test evaluation time.

All in all, the results of this study confirm the hypothesis that ANNs are a flexible and better-
performance alternative to the other types of surrogate models tested in [3]. The investigations
show that the ANN model is robust and sufficiently accurate in predicting the DEL of the blade
root flapwise bending moment. The sensitivity study of the NRMS error of the load predictions
has shown that the ANN performs better than the PCE even when only a small sampling set is
available for training the surrogate model.

Further research should focus on assessing the prediction performance of the ANN using
small sample sets. Additionally, in order to generalize the findings of this study future
work should focus on evaluating the model performance of load estimations on other turbine
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types/ratings and components as well as extending the surrogate model to enable wake-induced
load predictions in a wind farm.
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