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Humans are exposed to possibly thousands of chemical compounds through food 
alone, yet the nature or effect of these chemicals is often poorly understood. 
Food contact materials (FCM), designed to store, preserve, and protect the food 
are also one of the major sources of chemicals in food. Currently, focus on FCM-
borne chemicals is for a small number of high profile, well-studied chemical com-
pounds, yet little focus for a much larger group of unknown chemical compounds. 
We demonstrate the possibility to provide preliminary data on unknown chemical 
compounds with novel analytical strategies. These explorative strategies can be 
utilized in risk prioritization and act as one of the forefront tools to improve ma-
naging chemical safety in food, especially with regards to the many unknown and 
unaddressed compounds.  

Eelco Nicolaas Pieke 
May 2018  

Identification and risk prioritization of 
unknown contaminants migrating 
from paper and board food contact 
materials  
 
Ph.D. thesis  

 

Research Group for Analytical Food Chemistry  

National Food Institute 

Technical University of Denmark  

 

Kemitorvet 

Building 202 

DK-2800 Kgs. Lyngby, Denmark 

Tel. +45 35 88 70 00 

Fax +45 35 88 70 01 

 

http://www.food.dtu.dk/english 

ISBN 978-87-93565-17-3 

ISSN  

Identification &
 R

isk Prioritization of U
nknow

n Contam
inants from

 Paper &
 Board FCM

s 
E.N

. Pieke 



 
 

 

 

 

Identification and risk prioritization of 

unknown contaminants migrating from 

paper and board food contact materials 
 

PhD thesis 

Eelco Nicolaas Pieke 

 

 

 

 

 

 

 

 

  
1st Edition 

http://www.food.dtu.dk/english   May, 2018 
 





 

 

Title 
Identification and risk prioritization of unknown contaminants migrating 
from paper and board food contact materials 

Author Eelco Nicolaas Pieke 

Supervision 

 
Dr. Kit Granby 
Associate Professor, Technical University of Denmark 
 
Professor Jørn Smedsgaard 
Professor Analytical Chemistry, Technical University of Denmark 
 

Evaluation 
Committee 

 
Professor Anne Marie Vinggaard (Chair) 
Professor Molecular Toxicology, Technical University of Denmark 
 
Dr. Koni Grob 
Former head Official Food Control Authority of the Canton of Zurich, 
Switzerland 

 
Dr. Nikoline Juul Nielsen 
Assistant Professor Environmental Chemistry and Physics, Copenhagen 
University, Denmark 
 

Funding This project was funded by the Technical University of Denmark. 

Copyright 
Eelco N. Pieke;  
National Food Institute, Technical University of Denmark 

Cover Eelco N. Pieke 

ISBN 978-87-93565-17-3 

Availability 

 
This thesis is available at: 

 
National Food Institute 
Technical University of Denmark 

Kemitorvet Building 202 
2800 Kgs. Lyngby 
Denmark 

 

Web     

E-mail  

Tel nr.       
Fax nr.      

www.food.dtu.dk/english 

food@food.dtu.dk 

+45 35 88 70 00 

+45 35 88 70 01 

mailto:food@food.dtu.dk


 

II 

 

Preface 

This thesis disserts the primary results of three years research at the National Food 

Institute at the Technical University of Denmark as a PhD student in order to obtain the 

PhD degree. This research was performed at the Research Group for Analytical Food 

Chemistry, formerly the Division of Food Chemistry, in the National Food Institute at the 

Technical University of Denmark from 4 December 2014 until 31 January 2018. This 

research was funded internally by DTU. 

The project was carried out under supervision of Associate Professor Dr. Kit Granby and 

co-supervision by Researcher Dr. Xenia Trier from 4 December 2014 until 24 February 

2016. From March 2016 until January 2018, co-supervision responsibility was transferred 

to Professor Dr. Jørn Smedsgaard. Supervision during the external research stay was by 

Dr. Gilles Rivière, Deputy Head of Unit “Food safety risk assessment” and Dr. Bruno 

Teste, Scientific and Technical Project Manager, at the French Agency for Food, 

Environmental and Occupational Health & Safety (ANSES) in Maisons-Alfort, Paris region 

(Oct 2016 – Apr 2017). 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

We are supposed to learn from other’s mistakes. 

But what if there are no mistakes, what if we are the first? 

Then it is up to us to leave the right message … 

And up to us to make the mistakes others can learn from 
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Executive Summary 

The exposure of humans to possibly thousands of chemical compounds through food 

poses a health risk that is questioning our ability to ensure high standards for food safety. 

Food contact materials (FCM) are a major source of extraneous chemical compounds in 

food, yet not much knowledge is available on all compounds present due to FCM. The 

practicability of comprehensive studies, like risk assessment (RA), is questionable for an 

increasingly large number of chemical compounds. As a consequence, most research is 

focused on a small number of well-studied chemical compounds, but little is dedicated to 

the much larger number of unknown compounds. How are FCM safe for use if the greater 

part of it is unidentified, unassessed, and possibly completely unknown?  

Here, development is shown for two new analytical strategies: semi-quantification and 

tentative identification; along with possible application for FCM RA. Paper and board FCM 

were extracted for migratable content, followed by analysis by liquid chromatography (LC) 

high resolution quadrupole-time of flight (Q-TOF) mass spectrometry (MS). Compounds 

were semi-quantified by comparing to non-identical reference standards after dedicated 

system optimisation. For identification, Q-TOF MS/MS utilizing automated precursor 

selection was used to actively collect non-target fragmentation spectra of compounds in 

the chromatogram. A risk prioritization approach that classified chemical compounds 

according to expected risk was developed based on applied tentative data and subsequent 

data interpretation by expert assessors. 

Semi-quantification was demonstrated to work for almost any compound detected by LC-

QTOF-MS analysis (Manuscript A). The errors in the predicted concentrations were at 

maximum up to 3-fold error with average around up to 2-fold error. These errors were 

attainable after dedicated optimisation of the LC-MS system to produce uniform responses 

that favour improving response of weak-response compounds. Semi-quantification did not 
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require chemical identification or standard-matching. For a single sample, more than 300 

compounds were simultaneously quantified. Consequently, semi-quantification is a 

valuable strategy for prioritization based on concentration and for acquiring quantitative 

data without prior identification or available reference standards. 

The tentative identification of compounds was demonstrated by non-targeted structural 

data acquisition (Manuscript B). Fragmentation spectra collected by Q-TOF MS/MS were 

correlated with in silico generated spectra using chemical structure databases to find the 

best-matching chemical compound to the spectrum, thereby removing the need for a 

reference standard. A total of five structure databases were used, resulting in structure 

prediction for over 130 compounds discovered in a recycled paper and board pizza box. 

For most of the 130 compounds, structure predictions were successful with good 

correlation scores, resulting in an impression of the chemical structure. The tentative 

identity of some compounds was evaluated for possible risk based on concentration and 

existing hazard data. Tentative identification is a promising strategy used to obtain 

significant chemical information about compounds in complex samples. 

Tentative data was used to prioritize risk of identified compounds, differentiating between 

high-risk and low-risk compounds based on predicted exposure and predicted hazards 

(Manuscript C). This approach mimics RA procedures by converting tentative data to 

hazard- and exposure estimates, followed by a combined assessment based on expertise 

judgement. The expertise of several trained risk assessors was used to assign risk profiles 

to compounds in order to achieve a risk ranking. Although tentative data contains 

uncertainty, interpretation by experts produces a viable risk ranking of known and 

unknown chemical compounds by implementing a consensus model of expert 

interpretations. Risk prioritization is successful in classifying estimated risk based on 

predicted exposure and predicted hazard, and is valuable for to preliminary RA studies. 

The overarching strategy in this study shows that explorative techniques are valuable tools 

to help ensure food safety in the future. Tentative data and risk prioritization are key 

concepts that, when developed further in combination with predictive tools like structure-

activity modeling or migration modeling, could be at the forefront of identifying present and 

future risks. The need for these strategies is clear: tentative and explorative data is needed 

because the current alternative is often no data.  
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Dansk Resumé (Danish Summary) 

Menneskers eksponering for muligvis tusindvis af kemiske forbindelser via fødevarer 

udgør en sundhedsrisiko, der sætter spørgsmålstegn ved vores evne til at sikre høje 

standarder for fødevaresikkerhed. Fødevarekontaktmaterialer (FCM) er en kilde til kemisk 

forurening af fødevarer, og det til trods er der ikke meget viden tilgængelig om alle de 

forbindelser, der kan migrere over fra FCM. Det er tvivlsomt om der i praksis kan udføres 

omfattende studier, som risikovurdering, for et stadigt større antal kemiske forbindelser. 

Som en følge heraf er de fleste undersøgelser fokuseret på et lille antal velundersøgte 

kemiske forbindelser, mens kun få undersøgelser er dedikeret til det meget større antal 

ukendte forbindelser. Hvordan kan FCM være sikkert at bruge, hvis de indeholder mange 

uidentificerede stoffer, der ikke er risikovurderede og muligvis er helt ukendte?  

Her vises udvikling af to nye analytiske strategier: semikvantifikation og tentativ 

identifikation, med deres mulige anvendelser inden for risikovurdering af FCM. Papir og 

pap FCM blev ekstraheret for migrerbart indhold efterfulgt af analyse ved 

væskekromatografi (LC) med højt opløseligt ’quadrupole-time of flight’ (Q-TOF) 

massespektrometri (MS). De kemiske forbindelser blev efter dedikeret system optimering 

semikvantificeret ved at sammenligne respons med ikke-identiske referencestandarder. Til 

identifikation blev der anvendt Q-TOF MS/MS med automatisk precursor selektion, for 

aktivt at opsamle non-target fragmenteringsspektre af forbindelser i kromatogrammet. For 

at klassificerede kemiske forbindelser efter formodet risiko blev der udviklet en 

risikoprioriterings metode baseret på tentative data og datafortolkning ved hjælp af 

ekspertvurderinger.  

Det blev demonstreret at semikvantifikation kunne anvendes for næsten aller forbindelser 

detekteret ved LC-QTOF-MS (Manuskript A). Fejlene i de prædikterede koncentrationer 

var maksimalt en faktor tre, med et gennemsnit på en faktor to. Disse fejlestimater kunne 
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opnås efter dedikeret optimering af LC-MS-systemet til at producere ensartede respons, 

der favoriserer en forbedring af respons for forbindelser med et i forvejen svagt respons. 

Semikvantificering krævede ikke kemisk identifikation eller et match med standarder. Mere 

end 300 forbindelser blev kvantificeret i en enkelt prøve, dette gør semikvantifikation til en 

værdifuld strategi for prioritering baseret på koncentrationsindhold og til at få kvantitative 

data uden forudgående identifikation eller tilgængelighed af referencestandarder. 

Den tentative identifikation af forbindelser blev demonstreret ved ’non-targeted’ strukturel 

dataopsamling (Manuskript B). Fragmentationsspektre opsamlet på Q-TOF MS/MS blev 

korreleret med in silico genererede spektre fra kemiske strukturdatabaser, for at finde de 

bedst matchende kemiske forbindelser, hvorved man undgår behovet for  

referencestandarder. I alt fem strukturdatabaser blev anvendt, hvilket resulterede i struktur 

forudsigelser for over 130 forbindelser fundet i en pizzabakke af genbrugspap. 

For de fleste af de 130 forbindelser var strukturforudsigelserne vellykkede med gode 

korrelationsscorer, hvilket gav et indtryk af den kemiske struktur. Den tentative identitet af 

de kemiske forbindelser blev evalueret for mulig fødevaresikkerheds-risici baseret på 

koncentrationsdata og eksisterende toksikologisk viden. Tentativ identifikation er en 

lovende strategi, der kan bruges til at opnå væsentlig information om kemiske forbindelser 

i komplekse prøver. 

Tentative data blev brugt til at prioritere risici for identificerede forbindelser, ved 

differentiering mellem høj risiko og lav risiko baseret på prædiktiv eksponering og 

prædiktiv farlighed (Manuskript C). Denne fremgangsmåde efterligner risikovurderings-

procedurer ved at konvertere tentative data til fare- og eksponeringsestimater efterfulgt af 

en samlet vurdering baseret på ekspert skøn. Risikovurderingseksperter blev bedt om at 

vurdere risikoprofiler for de kemiske forbindelser for at skabe en risikoprioritering. Selvom 

tentative data indeholder en usikkerhed, kan man ved implementering af en 

konsensusmodel for ekspertvurderingerne få en brugbar risikoprioritering for kendte og 

ukendte kemiske forbindelser. Risikoprioritering er velegnet til klassificering af estimeret 

risiko baseret på prædikteret eksponering og prædikteret farlighed, og er værdifuld i 

indledende risikovurderinger.  

Den overordnede strategi i dette studie viser, at eksplorative teknikker er værdifulde 

værktøjer for at sikre fødevaresikkerheden i fremtiden. Tentative data og risikoprioritering 
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er nøglebegreber der, når de udvikles yderligere i kombination med prædiktive værktøjer 

som in silico strukturaktivitetsmodellering eller migrationsmodellering, kan være på forkant 

for at identificere nuværende og fremtidige risici. Behovet for disse strategier er evident: 

Der er behov for tentative og eksplorative data fordi det nuværende alternativ ofte er 

fravær af data. 
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1.1. Food contact materials and food safety: two different 

worlds? 

Chemical innovations are one of the man-made developments that changed daily life, 

driving other innovations in many industries by providing tailored solutions. However, a 

consequence of increased chemical compound usage is that these chemical compounds 

may end up in unintended and often undesirable situations. 

Food is a particularly undesirable location where chemical compounds may end; yet, the 

reality is that food contains a cocktail of chemical compounds including a large number of 

manmade compounds which were never intended for consumption. Some of these 

chemical compounds are present by nature, but a very large number originate from 

external influences, like contamination from processing, exposure to the environment, or 

migration from other sources into food (Figure 1). Most of the human exposure to these 

chemical compounds occurs at levels that are below thresholds to incur smell or off-

flavour, and thereby raise little awareness. Therefore, sensitive analytical equipment is 

needed to detect these chemical compounds. While the concentration of chemical 

contamination in food is rarely at doses where acute effects can be observed, it is known 

that chemical compounds can cause adverse health effects even at low doses providing 

the exposure is during sufficient time. Consequently, food currently presents an almost 

unavoidable risk to human health, while it is simultaneously critical to survival. 

While there is uncertainty on a fraction of the chemical compounds regarding identity or 

origin, it is certain that the number of chemical compounds present as contaminations in 

food is substantial (Koster et al. 2014; Summerfield & Cooper 2001). Tracing the origin of 

some chemical compounds is complex because the production chain of food is highly 

complex. For example, the process of transferring and processing food for consumers 

involves a great number of steps, e.g., applying production aids (pesticides, veterinary 

drugs, additives, etc.), transport, processing, preservation, and packaging. Each possible 

step involves the probability of introducing unwanted chemical agents into food, so the 

more food is processed and manipulated, the more likely chemical contamination 

becomes. The type, (geographic) location, and specifications of the process in each step 

of the production chain also influence which and how many chemical compounds may end 

up in the food, which makes it very hard to predict possible contaminations. 
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Figure 1: Food contains chemical compounds from a variety of sources. Numerous chemical compounds 

in food have the potential to induce adverse effects on humans. Many of these chemicals are man-made, 

but also some chemical compounds are natively present in the food. Man-made chemical compounds are 

not hazardous per definition, as many natural compounds are potent. However, man-made compounds 

are of particular interest since they may be avoided. 

The influence of food packaging materials, also named the Food Contact Materials (FCM) 

such as plastic, paper, and board, is both an interesting and alarming because the variety 

of chemical compounds present in food due to FCM is substantial. For example, a printing 

ink regulation was adopted by the Swiss government in 2005 for printing inks contained 

well over 5,000 authorized chemical compounds (Food Safety and Veterinary Affairs 

(FSVO) 2017). The actual number of chemical compounds is likely higher, since this list 

does not include the unknown by-products or contaminations. Solely from packaging 

material, a few examples of possible types of chemical compounds to find in food are 
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packaging chemicals, production chemicals, printing inks, and degradation or combination 

products of all the previous (Castle, Offen, et al. 1997; Castle, Damant, et al. 1997; Nerín 

& Asensio 2007; Triantafyllou et al. 2007; Zülch & Piringer 2010). In addition, multiple food 

types are packaged differently and even within the same food type the packaging can 

differ greatly. An interesting group of food packaging materials are paper and board, which 

along with wood constitutes the majority of the growing market of packaging materials 

(Eurostat 2017). Therefore, paper and board are expected to be used increasingly more in 

the future especially so for luxury foods (Smithers Pira 2014), but are currently non-

regulated on the harmonised European Union (EU) level. 

1.2. Understanding the risk of unintended food chemicals 

The risk posed by known or unknown chemical compounds migrating from FCM to food 

requires specific data to be identified. Risk can be split into two components (Figure 2): the 

average intake of the chemical, also known as human exposure, and the hazardous dose-

effects relationship. The assessment of human exposure requires information on the 

concentration in the packaging materials and extent of migration from FCM into food. The 

combination of this information results in the estimated concentration of a chemical 

compound in food, although the concentration can also be measured directly. Comparing 

the concentration in food with the average human consumption of that particular food gives 

an indication of the actual human exposure. Hazards and adverse effects require 

extensive studies with a purified version of the chemical. These studies can either be 

performed by animal testing (in vivo) following extrapolation to possible human health 

effects, or can be obtained by testing the chemical in microbiological or human cellular 

essays (in vitro) and extrapolating the results to human health. More recent, the 

assessment of chemical hazards by computer-based structure assessment models (in 

silico) has become available, but this has not yet gained widespread acceptance as 

substitute for in vivo or in vitro testing. 

However, it becomes clear that the strict requirement on information prior to assessing the 

risk greatly limits the number of compounds that can be assessed. The hazard of chemical 

compounds is difficult to study: the exposure occurs at levels that are insufficient to cause 

acute adverse effects, but chemical compounds can exert adverse effects on humans at 
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low doses and continuous exposure over longer time (Goodson et al. 2015; Lee et al. 

2016). The major problem associated with this chronic, low dose exposure is that the 

visible effects, e.g., disease or health deterioration, are not instantly correlated to chemical 

exposure as there may be a relatively long time between cause and effect. In addition, the 

concurrent presence of other chemical compounds the correlation between the 

responsible chemical and the effect can be extremely difficult to assess. In addition, in vivo 

testing is subject to ethical considerations due to the need for animal tests, while it is costly 

for a large number of chemical compounds as many animals and tests will be required 

(Scholz et al. 2013). 

 

Figure 2: Risk can be represented as the combination of a hazard character and human exposure, which 

originate from toxicity testing, likelihood of human contact or likelihood of human effect, and the total 

amount that may be present in food. If for one of these parameters data is not available, then assessing 

risk is more complex and requires estimates. 

The exposure to chemical compounds is equally difficult to monitor. Analytical 

methodologies that can determine the concentration of chemical compounds in foodstuffs 

are often highly specific to a certain chemical or a group of chemical compounds. When 

faced with a very large number of chemical compounds possibly present in food, the 

workload for determining the concentration of all chemical compounds is large. The 
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analytical challenges are discussed in more detail in 1.3.1. A further problem in exposure 

determination is consumption statistics, which may not be available for a specific type or 

food or for the population of interest. In addition, it may not be known how much the 

contact area is between food and packaging, or how large the migration potential of a 

chemical is given certain circumstances. Due to large number of unknown variables, 

assumptions are often used. However, the validity of assumptions can always be 

questioned and may not be applicable to specific cases. Hence, these assumptions are 

often constructed conservatively to ensure safety. 

Perhaps the largest bottleneck in data demand of both hazard and exposure assessment 

is that the large number of possible chemical compounds demands a tremendous 

workload for all possible known and unknown compounds in food. For most of the 

unknown chemical compounds there is very little information available, and often the 

compound has neither been identified nor quantified, or has never been detected. Hence, 

without any available data or methods to obtain data, food safety control ends up in a 

deadlock (Grob 2014). The major question is: how is it possible to understand or assess 

the risk of a chemical compound that is unknown? As it turns out, the deficiency in 

information can be self-sustaining: the capacity to obtain information on unknown chemical 

compounds is limited by a deficit in knowledge on the chemical compound. 

1.3. Limitations in ensuring safety in food contact materials 

1.3.1. Analytical methods and principles are too specific 

The way that analytical methods are designed is part of the reason that the lack of 

information is self-sustaining. Targeted methodology is common, so the compounds of 

interest are selected before the analysis and the method is optimized in a very limited 

scope. These selective methods offer the advantage of being sensitive, specific, and 

standardized; however, targeted methods are often specifically optimized, therefore unable 

to determine chemical compounds different than the selected targeted compounds. As a 

result, for every different group of chemical compounds different targeted methods are 

required. Furthermore, a wide range of chemical compounds cannot be simultaneously 

analysed because each chemical compound may have different optimal analysis settings, 
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which can be conflicting. While targeted methodology has been the backbone to safeguard 

food against a very large number of chemical compounds and are largely responsible for 

establishing safe food, they currently fail to discover new problems in an ever increasing 

problem in a rapid changing global market. 

The limitations of targeted methodology do not just apply to existing analytical methods, 

but also to some fundamental analytical principles. As an example, quantification is 

inherently a targeted technique, because it is performed by comparing a measured signal 

in the sample to the measured signal of a known amount of the compound. Consequently, 

a compound needs to be known before it can be quantified, and the actual quantification is 

subject to availability or attainability of a reference standard. If the exact structure of the 

chemical compound is not known, quantification is usually not possible. Similarly, the 

identification of an unknown compound can be time-consuming and require skilled 

analysts if there is no prior information. In general, identification is rapid and relatively 

straightforward if the recorded experimental data can be compared to a library of existing 

data. When this is not possible, by mass spectrometry (MS) and/or nuclear magnetic 

resonance (NMR) spectroscopy it is possible to manually reconstruct a part of the 

molecular structure, but this is a time- and labour-intensive process that requires skilled 

analysts. Hence, if no recorded data exists for a chemical compound then reconstructing 

the molecular structure is an intensive task, especially when a large number of chemical 

compounds have to be analysed. In addition, the confirmation of the proposed molecular 

structure requires a reference standard to compare against. 

The combination of highly-specific analytical methods and limitations of analytical 

principles to properly deal with unknowns causes a stalemate in analytical science. 

However, there has been an increase in analytical methods that deviate from the 

conventional strategy using non-target or untargeted approaches. These developments 

are needed, as they permit a much wider scope of selected compounds to be dealt with 

simultaneously, thereby increasing the coverage of analytical methods and reducing the 

workload. However, these methods eventually are limited by the fact that the discovered 

analytes can hardly be quantified or identified without reference standards and help of 

databases. In practice these methods are unable to substitute the targeted methodology 

as they do not generate the accurate and unambiguous data needed to draw final 
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conclusions. Hence, non-targeted methods are often only used as screening methods. In 

essence, the lack of information around unknown analytes can exist for longer periods 

because there are few methods or practices able to break this stalemate. Consequently, a 

significant portion of scientific work is dedicated to a small number of high profile, well-

studied chemical compounds whereas a very small portion is directed towards the much 

larger group of unknown compounds. 

1.3.2. Risk Assessment and Risk Management is reactive 

There is a clear difference in the data that Risk Assessment (RA) requires and the data 

which can realistically be generated on large-scale by the existing analytical methods and 

hazard-assessment methods. In order for RA to be meaningful, a good exposure estimate 

and a proper hazard character is needed beforehand. Yet, as discussed, a requirement for 

the exposure and hazard data to be available is that there is information already available 

on the chemical compound: the chemical structure and methods to identify and quantify 

the compound. The challenge to estimate the real exposure and real hazard of a range of 

chemical compounds significantly hampers the ability to perform RA on chemical 

compounds. A priori knowledge is almost always required to perform a proper 

assessment, but there is a great shortage of methods capable of acquiring this 

information. 

If these methods are absent — as is the case for unknown chemical compounds — then 

providing data is often a slow and labour-intensive process, if possible at all. 

Consequently, RA most often focuses on existing problems, rather than being proactive 

against emerging problems. Because of this, new “problem” chemical compounds are 

difficult to regulate or mitigate, as they require knowledge that is often only present at the 

stage where the problem is well-known and research has been carried out. In the current 

world with fast-paced changes and global trade, a reactive tool like the current RA is too 

slow and complex to completely ensure the food safety. 
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1.4. Hypotheses 

It is possible to develop analytical strategies that combine elements of quantification, 

chemical identification, and risk prioritization that can be used to minimize the knowledge 

gap of unknown chemical compounds potentially migrating from food contact materials. 

Ultimately, this assessment strategy can be used in scientific risk assessment and 

prioritization. 

I. The relative or absolute response factor (RF) for mass spectrometry (MS) can be 

optimized by carefully choosing the MS source parameters and liquid 

chromatography (LC) parameters for simultaneous analysis and semi-quantification 

of numerous unknown compounds. The normalized response factor can 

consequently be used in a semi-quantitative way based on: 

a. Suggested chemical structure based on standards with similar properties; 

b. Retention time; 

c. Some of the molecular properties. 

II. Concentration estimates, with error margins, can be made through semi-

quantitative determination based on comparison to non-ideal standards. Through 

careful selected assumptions, these estimates can be converted to a possible 

exposure and thereby be useful for risk assessment. The determinations can give 

concentration estimates of either: 

a. Groups of compounds defined by similar molecular properties of relevance;  

b. Individual detected molecules. 

III. For an unknown compound eluting from a chromatographic separation it is possible 

to obtain a partial of full elucidated chemical structure based on accurate mass, 

isotopic information, and fragmentation analysis by Time of Flight (TOF) mass 

spectrometric analysis. 

IV. Unknown compounds can be elucidated by strategies and accompanying methods 

proposed in I – III, and can subsequently be used in risk assessment via risk 

prioritization. By using risk prioritization with tentative data, an early exploration tool 

for discovering potentially high-risk compounds is attained.  
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2.1. Food Contact Materials 

2.1.1. The role of paper and board packaging 

The most commonly used packaging materials are paper and paperboard, plastics, glass, 

and metals. Of these four main packaging categories, the two most commonly used are 

plastic and paper/paperboard, accounting for somewhat over 70% of all food packaging 

(ALL4PACK 2016). Applications of packaging include food packaging materials and other 

types of food contact materials. Within each material group, there are large variations in 

types of packaging. For example, many different varieties of paper and paperboard exist, 

from carton boxes to cupcake cups. Similarly the material groups of plastics, glass, and 

metals also have numerous types and varieties, so the overall denominator of “food 

packaging” is very broad. Each specific application of packaging has different properties, 

which can consequently vary between the same packaging materials in a different 

application.  

One of the reasons packaging is used frequently and extensively for food products is 

because if offers a multitude of advantages, and some are highlighted in Figure 3. Firstly, 

packaging will increase shelf-life and protect the product quality, and this is arguably one 

of the most influential effects of food packaging (Robertson 2010). By packaging the 

product, it is protected from environmental effects such as oxygen, microorganisms, light, 

and heat. Secondly, packing positively affects product hygiene (Dallyn & Shorten 1988). 

Thirdly, packaging permits for branding, handling, and consumer information. Companies 

use packaging as a way to brand and share information about their product, of which the 

latter is mandatory in the EU (European Parliament and Council of the European Union 

2011b). Finally, packaging can provide physical protection of the products. Fragile 

products, such as eggs, could break easily if not closely surrounded by shock-absorbing 

pulp carton.  

However, packaging is not exclusively advantageous. There are a number of 

considerations to take into account for packaging, see Figure 3. Firstly, product costs 

increase significant as a result of the added costs due to packaging. In 1997, the costs of 

packaging were estimated around 8.5% (USDA 1997), but more recent estimates range up 

from 25% to 40% extra costs (Robertson 2010; KnowThis.com 2017). The increase in cost 
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may also reduce the accessibility to food. Secondly, packaging has large detrimental 

environmental impact, most notably plastics ending up in the ocean (Ellen MacArthur 

Foundation 2016), or groundwater contamination by leaching from landfill of packaging 

waste (Renou et al. 2008). The continued use of disposable packaging products will 

increase the burden of waste and cause pollution globally (Derraik 2002). Thirdly, food 

packaging can alter flavour perception (Sajilata et al. 2007). The presence of contaminants 

even at low concentrations can contribute to significant off-flavours in food. Finally, food 

packaging will introduce chemical contaminants to the food, which in turn may be of risk 

(Suciu et al. 2013; Seltenrich 2015). The safety of food products should be improved by 

packaging, because packaging protects food against external influences and 

contaminants; however, the added protection may be mitigated if there are potentially 

hazardous chemical compounds migrating from the packaging to the food.  

 

Figure 3: The use of food packaging has considerable advantages and disadvantages. Among these, 

improving shelf-life is considered a major benefit, whereas effects on the environment are considered a 

major drawback. Chemical safety, although not widely known as a problem, is discussed extensively in 

this thesis, whereas other factors are only discussed briefly. 
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Finally, there is the matter of food waste (Figure 3). Improving the shelf-life of food, either 

via protective atmosphere, improved hygiene, or protection will mitigate food waste at both 

retail and consumers (Halloran et al. 2014; Coma 2008; Robertson 2010). However, 

packaging materials can also contribute to food waste: the predetermined portion size 

leads consumers to choose more of the product than needed, which can result in thrown-

away food, but waste can also occur when the packaging can be too difficult to empty 

completely (Williams et al. 2012; Silvenius et al. 2014). Hence, whether packaging reduces 

or increases food waste is subject to discussion, and depends strongly on the application. 

2.1.2. Use and problems of paper packaging materials 

The total use of food packaging materials has been steadily increasing over the years, but 

paper and wood constitutes the majority of the growing market of food-related packaging 

materials (Eurostat 2017). Hence, advancements in paper and wood materials provide 

interesting opportunities and challenges for the food market. In addition, by weight paper 

constitutes the largest waste contribution of all the packaging materials at 41%, whereas 

plastic contributes only 19% (Eurostat 2017). Paper is especially interesting for food 

packaging, and it is being increasingly used from 2012 onward while plastic use is 

stagnating; therefore, it is expected that a larger share of packaging will be paper as 

opposed to plastic in the coming decade, and especially so for luxury foods (Smithers Pira 

2014). Therefore, it makes sense to take a closer look at paper and board products with 

regards to food safety, also because there is already significant research and knowledge 

specifically targeted at plastic packaging products.  

While paper is a product from a natural resource, a large number of modifications are 

needed before paper has desirable packaging properties. The expanding and widened 

usage of paper requires more and different modification to improve the natural properties 

of paper, and also require controlled and consistent properties from batch-to-batch. For 

example, paper is not water or oil-repellent, is difficult to print upon, and has very 

inconsistent quality regarding tensile strength and density (Roberts 1996). Chemical 

compounds are added at various stages in the production process to overcome some of 

these limitations e.g., fillers, wet-strength additives, sizing agents, dyes, and brightening 

agents, or to assist in the production, e.g., retention aids, biocides, dispersing agents, and 
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defoamers. A part of the chemical compounds added in the production process are 

intended to remain within the paper to ensure permanent properties, while others are 

production aids and should not remain in paper. Aside from the chemical modifications in 

the paper production process, paper for food contact material is often made fit for 

application through printing, gluing, coating, whitening, or other modifications that 

introduce more chemical compounds into the material. Here, the details on the paper 

production process and subsequent modifications are not discussed, but the reader is 

invited to relevant work by Roberts (1996) and Biermann (1996). 

Paper is often praised as sustainable packaging because it is biodegradable and easily 

recyclable. Paper is constructed predominantly from wood or plant fibres and is poorly 

resistant to environmental factors such as water, micro-organisms or mechanical force, 

which breaks up paper and board almost completely and makes it rapidly biodegradable 

(Venelampi et al. 2003; Yabannavar & Bartha 1993; Pivnenko et al. 2015). Once subjected 

to the environment, paper degrades into modified wood or plant fibres. Paper products are 

therefore especially suitable for recycling, as these fibres can be reused in recycling 

processes to turn old paper fibres into new paper products or as fuel (Hubbe et al. 2007). 

Currently, more than 71% of paper and board is being recycled in Europe, whereas the 

target for 2020 is set at 74% (European Paper Recycling Council 2017). On average, a 

cellulose fibre can be recycled approximate five to seven times before it becoming too 

short for any use (U.S. Environmental Protection Agency 2016). For plastic, only a limited 

number of types are recyclable, and often it is not economically feasible, as the costs of 

recycling may exceed that of using raw materials (O’Leary & Manavalan 2015), which is 

currently the case with relatively low oil prices. For glass, recycling is possible and often 

employed, but it requires significant energy to regain glass from recycled materials, albeit 

less than producing it from raw materials (Gaines et al. 1994; Vellini & Savioli 2009). 

Recycling of paper and board to be used as food packaging material (FCM) has a 

profound negative impact on food safety due to the chemical compounds that are not 

sufficiently removed in the recycling process. Because paper and board are treated 

extensively with chemical compounds, these have a probability of re-entering the paper 

during the recycling process. Normally, care is taken to ensure chemical compounds are 

not present on the contact surface of virgin materials, but this is not the case with recycled 
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fibres. It has been discovered that large portions of the ink curatives and additives occur 

due to recycling rather than from migrating from the printed side through the paper (Castle, 

Damant, et al. 1997). The more recent case of presence off mineral oil also seems to be 

predominantly caused by recycling of printed board (Biedermann et al. 2011). Phthalates 

can also be traced back to recycling practices (Gärtner et al. 2009), and a number of other 

chemical compounds in paper and board can also be strongly related to recycling 

(Rosenmai et al. 2017; Bengtström 2014; Pivnenko et al. 2015). Consequently, while 

recycling is potentially valuable for a sustainable economy, the use of recycled materials 

for food packaging requires critical review. 

2.1.3. Migration from paper and board materials into food 

The ability of packaging to contribute a range of extraneous chemical compounds to the 

food has a profound research interest. In the public perception, packaging is seen as 

something inert: it protects the food from anything coming in and prevents anything going 

out. However, from a physical-chemical point of view the exact opposite happens: 

chemical compounds in food and chemical compounds in packaging are exchanged. The 

physical displacement of chemical compounds by migration is especially impactful if 

chemical compounds from the packaging transfer to food, whereas the opposite might 

instigate a mostly economic risk. Migration of chemical compounds from the packaging to 

food poses a serious concern. After all, the food is consumed and the packaging is waste, 

so which chemical compounds are migrating to the food and how can these impact human 

health once consumed? The presence of chemical compounds as a result of the 

production process and recycling is already discussed, but the process of migration into 

food has not been discussed. 

Whether a chemical compound is capable to migrate to food is not immediately apparent, 

and depends on a number of molecular parameters and environmental parameters. The 

presence of a chemical compound in a FCM does not present a risk if it is not capable to 

migrate into food. Small molecules are for example much more likely to migrate to food 

than larger molecules (Jickells et al. 2005). There are many factors that affect the 

migration of a chemical compound, e.g., the total surface area, contact time, and contact 

temperature (Triantafyllou et al. 2007; Poças et al. 2011; Boccacci Mariani et al. 1999). 
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While some parameters are relatively easy to determine, some more intricate parameters 

like diffusion constants often require migration experiments (Triantafyllou et al. 2007). 

Overall, migration is a very complex process that involves a large number of parameters 

and it is difficult to predict accurately. In the end, a combination of all these parameters 

decides whether and how much a chemical can migrate to the food.  

When considering the migration from FCM to food, there are significant differences 

between the different types of FCM. Different physical-chemical properties and production 

processes create very different migration profiles consisting of different chemical 

compounds, so each case needs to be individually treated. Besides, the chemical profile of 

potential contaminants in a material, the material itself plays a critical role in the type of 

chemical compounds observed in migration. Here, we distinguish between three different 

main groups of materials: impermeable, permeable, and porous, see Figure 4. In general, 

the more solid a material is, the lower the diffusivity and thereby a lower migration is 

expected (Castle 2006). In addition, solid materials typically only have surface migration, 

whereas more porous materials can have migration from the non-surface areas of the 

material. Hence, impermeable materials like metals and glass, have a lower migration than 

permeable materials, like plastics and rubbers, whereas the migration is highest for porous 

materials like paper and board (Poças et al. 2011). 

 

 

Figure 4: Migration within and from different porosity materials types. Impermeable materials, like glass 

and metals, permit migration only from the direct surface. Permeable materials, like plastics or rubbers, 

permit migration from surface and from layers close to the surface. Porous materials, like paper and 

board, permit migration from the surface, from the internal layers, and from the outer layers given the right 

circumstances. 
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The migration from a FCM into food follows to a great extent the laws of diffusion. The 

transfer of chemical compounds from a plastic FCM into a food is often well-described by 

Fick’s laws of diffusion (Brandsch et al. 2002; Arvanitoyannis & Bosnea 2004). This has 

allowed for development of modelling tools for plastic materials which can be used to 

estimate the migration of chemical compounds to food in given circumstances, thereby 

reducing the need for time-consuming and expensive migration testing (Brandsch et al. 

2002; Piringer 2007; Poças et al. 2011). However, for porous or multilayer plastic or paper 

materials, migration modelling becomes increasingly complex and no longer strictly follows 

Fick’s Laws on diffusion, therefore requiring more detailed parameters and descriptions 

(Nerín & Asensio 2007; Barnkob & Petersen 2013; Zülch & Piringer 2010). Consequently, 

paper and board materials are notoriously complex to model accurate, and predicting the 

migration from these materials is not always possible, although there have been significant 

advances in these tools (Zülch & Piringer 2010; Hauder et al. 2013). 

As paper and board materials are porous, the amount and diversity of migration chemical 

compounds can expected to be higher. The porosity of the paper and board structure 

enables displacement of chemical compounds within the packaging material towards the 

contact area. As a result, chemical compounds in areas not in contact with the food can 

migrate internally towards the food contact area, increasing the number of chemical 

capable of direct migration. Moreover, diffusion may also involve chemical compounds 

deeper inside the paper, or from the non-contact side containing printing, towards the 

contact surface (Castle, Offen, et al. 1997; M. Biedermann et al. 2013). This means that 

chemical compounds normally not expected to migrate, e.g., printing or adhesive chemical 

compounds on the non-contact side, are in fact capable of migration to food through paper 

and board (Bengtström 2014). Consequently, paper and board materials are often poor 

barriers for chemical migration. 

2.1.4. Migration via direct contact by liquid or solid material 

Direct migration occurs only when there is a contact area between the food and the 

packaging material, sometimes called “touching”. In contact migration as shown in Figure 

5, chemical compounds diffuse from an initial point of high concentration (i.e., the 

packaging material) to a point that has initial low concentration (i.e., the food) through 
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direct surface contact. Direct migration involves the direct transfer of a molecule from the 

packaging material contact area into the food, which confines the migrating chemical 

compounds to the contact area in case the FCM is not porous (Castle 2006; Gärtner et al. 

2009). Contact between food and packaging can be either solid or liquid, and the contact 

area is often largest for liquids, followed by fine dispersed small solids (e.g., flour), and 

least for large solids (e.g., rice) (Eicher et al. 2015). Apart from a larger contact area, liquid 

contact also causes a faster migration due to fluid dynamics which permit higher 

concentrations of chemical compounds to be transferred to the food (Han et al. 2016).  

 

 

Figure 5: Migration by direct contact occurs either from liquid or from solid at the surface contact area. 

Migration into liquids is faster than that for solids, whereas finely dispersed solids have an effective larger 

area than large particles. The porosity affects the migration from larger depths of the material. 

It has been shown that migration from direct contact is not negligible for paper and board: 

migration can occur even for non-volatile compounds (Triantafyllou et al. 2007; 

Biedermann-Brem et al. 2012). In addition, there are examples of food contact by 

paperboard that question the assumption of exclusively dry indirect migration, e.g., pizza 

boxes, snacks, fast food, or fruits (Binderup et al. 2002; Bradley 2006). Paper and board 

pose an interesting scenario in direct contact migration. Because paper is porous and 

permits internal displacement of especially small molecular compounds, the migration is 

a) Liquid

b) Solid
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not confined to solely the contact area. As a consequence, a large range of chemical 

compounds that are not expected at the contact side of food have been found to migrate to 

food, e.g., photoinitiators or curing chemical compounds used in printing inks, recycled 

cardboard retained chemical compounds, and adhesives (Anderson & Castle 2003; 

Castle, Offen, et al. 1997; Aurela et al. 1999; Triantafyllou et al. 2007; Lago & Ackerman 

2016).  

The porosity of paper also permits liquid contact, for example from a fatty surface of food, 

to penetrate the paper material. The migration in these cases is better characterized by 

active extraction, which means chemical compounds migrate faster and at higher levels 

than diffusion would permit (Triantafyllou et al. 2007). In addition, the speed and depth of 

penetration into the packaging material will alter the type of chemical compounds extracted 

as the inside of the paper material is considered as a different phase, containing different 

chemical compounds than the surface of the paper (Zülch & Piringer 2010). Ultimately, 

penetration of liquid into the fibres of paper will weaken the cohesion between the fibres, 

which may release chemical compounds that were previously tightly-bound into the fibre 

network. For all of these reasons, uncoated paper and board is seldom used for packaging 

with direct contact with liquids. 

2.1.5. Migration via indirect contact 

Indirect migration can refer to migration from a secondary layer of packaging (e.g., the 

carton box around a plastic bag) (Jickells 2007), or as shown in Figure 6 by a phase 

transfer to the gas phase prior to migration into the food (Boccacci Mariani et al. 1999; 

Jickells et al. 2005). Since gas is abundantly present in almost all packaging designs — 

and definitely in those of paper and board — indirect migration is very common in all types 

of packaging and foods, but the magnitude of migration varies greatly. Migration via the 

gas phase occurs when chemical compounds in the packaging volatilize into the gas 

phase inside the packaging, after which they can migrate into the food. This does not 

require a contact surface, so migration can occur from any place in the packaging. 

Migration from a secondary packaging can occur in multiple ways, like rolled-up sheets of 

paper can off-set external printing inks to internal contact layers (Lago & Ackerman 2016; 

Bentayeb et al. 2013), or due to insufficient barrier properties of the primary packaging (M. 
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Biedermann et al. 2013; Fiselier & Grob 2012; Johns et al. 2000). Indirect migration is 

often suggested as the primary route of migration for paper and board materials because 

of frequent use for packaging of dry foods, e.g., rice, pasta, which have a relatively large 

particle size implying small surface contact with paper (Eicher et al. 2015; Bouma et al. 

2003).  

 

 

Figure 6: Migration by indirect contact occurs irrespective of the contact at the surface. Chemical 

compounds require a phase change from the material into the gas phase, after which they can diffuse 

and further distribute within the food. 

Indirect migration via the gas phase requires that chemical compounds in the packaging 

are able to volatilize prior to migrating into the food. Because of gas-phase dependency, 

the process is strongly limited to chemical compounds able to enter into the gas phase 

with relative ease (i.e., volatile compounds) which excludes a great deal of possible 

compounds. The cut-off has been reported as a boiling point at around 400°C, meanwhile 

stating vapour pressure is likely to be more important (Jickells et al. 2005). In addition, the 

transfer rate to the food may also vary significantly with temperature and fat content 

(Triantafyllou et al. 2007), as the chemical compounds are required to adsorb to the food 

surface in order to enter the food. Lastly, the environment at which the food is stored 

greatly affects the type and level of compounds that are capable of migrating (Tehrany & 

Desobry 2004; Barnkob & Petersen 2013). 
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2.1.6. Compounds in paper and board: intentional and non-intentional 

We can classify the chemical compounds in paper and board into two major groups as 

shown in Figure 7: the Intentionally Added Substances (IAS) and the Non-Intentionally 

Added Substances (NIAS). The latter has also been referred to as Oligomers, Reaction 

Products, and Impurities (ORPI) (Grob 2014), which covers the actual composition of this 

group better. Irrespective of the name, the differentiation between IAS and NIAS is 

predominantly due to available knowledge. Compounds that are added in the production 

process, are used as starting materials, or are added to the material to improve certain 

properties are generally considered as IAS. These compounds are known to be present, 

known to be (in)capable of migration, generally well-studied, have existing testing 

methodology, and are nowadays rarely a problem except in recycled materials (Binderup 

et al. 2002), where they may have become NIAS. Compounds that do not classify as IAS 

are then NIAS as long as they do not exceed 1000 Daltons (Da) (Silano et al. 2008). NIAS 

are reaction by-products of existing chemical compounds, impurities, contaminations 

within the process, or otherwise chemical contaminations not added (Koster et al. 2010; 

Wagner 2014). However, the difference between IAS and NIAS is not always clear from 

onset (Koster et al. 2010), and a chemical compound may be an IAS or NIAS depending 

on where it is discovered. 

An important statement on the differentiation between IAS and NIAS is that the 

classification is not necessarily based on perceived safety. An IAS is not necessarily 

classified as safe, and NIAS are not necessarily a risk. For example, benzophenone is a 

widely used chemical in printing inks, and is considered an IAS for its use in printing inks 

(Koster et al. 2010). However, studies in paper and board have shown it migrates to food 

in significant amounts (Anderson & Castle 2003) and this may be a cause for health 

concerns (Snedeker 2014). Consequently, chemical compounds marked as IAS are only 

considered acceptable if these remain below the defined concentration thresholds 

(Specific Migration Limit: SML) set out for these compounds. The problem for NIAS is that 

few defined limits exist, like an SML or a quantum satis (as much as needed, but not 

more), because most NIAS are completely unknown. Instead, NIAS are covered under the 

Overall Migration Limit (OML), which is a maximum total migration of 10 mg dm−2 for 

plastic packaging material, or 60 mg kg−1 food for infants and young children. The OML is 
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relatively high considering some NIAS are possibly chemical compounds with high 

potency, or perhaps show carcinogenic properties. Yet, sometimes the relatively high OML 

can be exceeded through contact materials (S. Biedermann et al. 2013). The OML as 

safety margin for NIAS is highly questionable, and it is likely not an adequate safety 

approach for chemical compounds that have unknown toxicological effects and/or those 

that are relatively potent. 

 

 

Figure 7: Differentiation between IAS and NIAS. The number of chemical compounds that are defined as 

NIAS is much larger than the number of IAS, and there are different levels of knowledge on the NIAS. 

Especially the unknown NIAS are of high concern, as no adequate safety assessment is available. Note 

that the differentiation between IAS and NIAS is not based on safety but mostly on origin and knowledge. 

Because of the difference in knowledge between IAS and NIAS, it can be stated that risk 

associated with IAS is often understood and easier to control, whereas the risk attributed 

to NIAS may not be known or is not monitored, therefore has the possibility to be a high 

risk. Therefore, when problematic chemical compounds from food contact materials are 

discussed, the discussion almost exclusively deals with NIAS. The term NIAS is non-

descriptive for the scale of the problem: this is a large and diverse group of chemical 

compounds where estimates in numbers go from tens- to hundreds of thousands (Grob et 

al. 2006). Due to the size of this group, finding and identifying each individual chemical 

compound is not feasible and perhaps impossible (Biedermann & Grob 2013), and here 
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we will highlight only a few sources of NIAS with some examples in paper and board 

materials that could be expected, but this is by great length not an exhaustive list. Because 

these are known NIAS, there are often well-investigated, whereas the unknown NIAS are 

poorly covered. Some examples: 

I. phthalates due to recycled paper fibres (Pivnenko et al. 2015; Gärtner et al. 2009); 

II. biocides used in production or recycling (Castle, Offen, et al. 1997; Lin et al. 2011); 

III. printing inks or photoinitiators as a result of set-off migration, e.g., stacked or rolled 

FCM (Bentayeb et al. 2013), direct use on the material (Snedeker 2014), or 

recycling of materials (Boccacci Mariani et al. 1999; Anderson & Castle 2003); 

IV. mineral oils from recycling (M. Biedermann et al. 2013; Biedermann et al. 2011). 

 

2.2. The Atmospheric Pressure Ionisation process: 

Electrospray Ionisation 

In mass spectrometry, analysis requires that chemical compounds are present as or are 

converted to gaseous ions. These ions can then be separated according to mass to 

charge (m/z) using electric or magnetic fields by a mass spectrometer. In practice, only a 

limited fraction of chemical compound is actually detected due to transmission losses in 

the mass spectrometer (Figure 8). A significant part of transmission loss can be attributed 

to ionisation and ion focus: only a small fraction of the analyte molecules are transmitted to 

the mass analyser (Hawkridge 2014; Leito et al. 2008). The transfer of compounds from 

the liquid or dissolved phase into gaseous ions requires an ion source capable of 

controlled phase transfer. The most well-known liquid sources are the electrospray 

ionisation (ESI), atmospheric pressure chemical ionisation (APCI), and atmospheric 

pressure photoionisation (APPI). The by far most common ionisation used in LC-MS is 

electrospray ionisation (ESI) illustrated simplified in Figure 8, and in more detail in Figure 

9. The advantage of ESI is that it is simple to operate, generates ions from a wide range of 

compounds, has relatively high efficacy, is capable of dealing with large molecules, and is 

a soft ionisation technique that retains the original structure of many chemical compounds 

(Wilm 2011). 
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Figure 8: Ion loss within a mass spectrometry system. The magnitude of the loss depends on many 

factors including cleanliness, optimisation, and mass analysis. In practice, only a small fraction of the 

originally present molecules are detected as ions. 

2.2.1. Mechanism of ion formation 

In practice, ESI is achieved by applying a high voltage (typically ±2–5 kV) to the tip of a 

metal capillary outlet containing a liquid, which could come from a liquid chromatography 

instrument. A strong electric field (typically E ≈ 106 Vm−1) is created on the solution, which 

induces a charge separation at the surface of the liquid at the tip. In a positive electric field 

the negatively charged ions are drawn to the tip whereas the positively charged ions are 

repelled. If the field strength is sufficiently high, a Taylor cone will form at the tip that 

becomes unstable (Blades et al. 1991), releasing a jet of droplets from the tip that is 

similar in composition to the surface, i.e., has an excess charge (De La Mora 1992). Due 

to evaporation of liquid from the droplets, they are shrunk and the excess charge 

increases. At a certain point, the repelling Coulombic forces between excess ions will 

exceed the surface tension of the solvent: the Rayleigh limit is reached (Rayleigh 1882). 

When the Rayleigh limit is reached, the internal Coulombic forces cause fission of the 

droplet. The droplet deforms into a tail or cone, and a jet of offspring microdroplets are 

ejected parallel to the flow (Gomez & Tang 1994). Offspring droplets contain only a minor 

fraction of the mass of the parent droplet, a parent mass loss of 1.0 to 2.3%, while 10 to 

18% of the charge is lost from the parent (Taflin et al. 1989). Because the offspring 
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droplets quickly reach the Rayleigh limit, the process is repeated until the nth generation 

contains only nano-sized droplets (Kebarle 2000).  

The exact mechanism of ion formation by ESI is complex and will not be considered here. 

Instead, some of the fundamental principles are discussed briefly, which are also shown in 

Figure 9. The formation of gas-phase ions is understood to occur through two 

simultaneous, yet competitive, mechanisms: the Charge Residue Model (CRM), as 

originally proposed by Dole et al. (1968); and, the Ion Evaporation Model (IEM) as 

proposed by Iribarne (1976). The CRM is not limited by the mass of the ion, so larger 

molecular ionise predominantly through CRM (Wilm 2011). In the IEM, however, formation 

of ions happens prior to the CRM through field evaporation via a solvated state 

(Loscertales & Fernández de la Mora 1995). IEM is most prone to happen at low ion 

concentrations (<10−4 M) and exclusively for smaller, singly charged ions (Iribarne 1976; 

Iribarne et al. 1983). 

2.2.2. Consequences of ion formation mechanisms 

The ionisation processes depends on surface-chemistry in the droplets and of the 

compounds. Factors that influence the surface, compound concentration on the surface, or 

desorption from the surface will affect the total ion response. The surface of droplets can 

become saturated with ions when ion concentrations are too large, making ESI a 

concentration-sensitive technique. (Kebarle & Tang 1993; Tang & Kebarle 1991; Bruins 

1998) The highest concentration or highest surface-affinity ions will be most likely to be 

found in offspring droplets, hence have the highest number of ions formed. Furthermore, 

the ionisation is surface associated: for any given set of molecules, those that have 

highest surface affinity will be those that are most likely to be found in offspring droplets 

(Cech & Enke 2000; Osaka & Takayama 2014; Chalcraft et al. 2009; Enke 1997; Iribarne 

et al. 1983; Iribarne 1976). In addition, Gas-phase Proton Transfer (GPT) happens when 

proton affinities between two gaseous molecules are sufficiently large that a proton can be 

abstracted, which causes two ionized species to compete for charge past the liquid stage 

(Amad et al. 2000).  
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Figure 9: Schematic and simplistic visualization of the ESI process. A) The Ion Evaporation Model (IEM) 

forms solvated ion-clusters expelled from the primary droplet, which evaporate remaining solvent to become 

free ions. B) The Charge Residue Model (CRM) occurs after repeated process of fission and shrinking up to 

nano-sized droplets, where only a single ion is present in a droplet. C) Gas-phase Proton Transfer (GPT) 

happens as tertiary process, where charge is transferred from one gas-phase ion to another with different 

proton affinities. 
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The primary consequence of surface association is that when concentrations and 

differences in concentration, surfactancy, and proton affinity between ions become large 

enough, ESI becomes a competitive process (Bonfiglio et al. 1999). Effectively, this implies 

that the measured response factor (RF) of an analyte does not only depend on the 

concentration in the sample, but is also affected by competitive processes. Therefore, the 

RF is strongly related to how well a compound ionizes and is capable to compete in the 

LC-MS interface, and this may possibly be at the cost of RF of co-eluting ions. 

The competitive and complex ionisation mechanisms observed in ESI affect the way 

quantification and identification are performed. Firstly, ESI is capable of producing several 

types of adducts with available salts, like solvents, water, formate, or sodium clusters. Ions 

will not predominantly ionize as the protonated adducts if other adducts are favourable in 

energy, e.g., ammonium ions or sodium ions. Hence, when employing targeted methods 

on ESI ions, the intensity of the protonated adduct may be lower than expected. Different 

adducts of the same ion behave differently, have different m/z, different stability, and have 

different fragmentation patterns. For the quantification of unknown compounds, the 

interface between LC and MS should ideally not discriminate between chemical 

compounds. However, it has been frequently reported that the nature of the analyte is 

strongly determinant of the response obtained (Bonfiglio et al. 1999; Cech et al. 2001; 

Cech & Enke 2000; P. J R Sjöberg et al. 2001; Leito et al. 2008; Kruve et al. 2014) 

2.3. Detection and quantification of unknown chemical 

compounds 

2.3.1. The current state of analytical methodology 

The investigation of migration from paper and board FCM is often by adsorption to 

poly(2,6-diphenyl-p-phenylene oxide) — TENAX — from the gas phase (van Den Houwe 

et al. 2017). The TENAX is then desorbed (thermally or by solvent) and analysed by gas 

chromatography (GC) analysis, because the main route of migration are expected to be 

via the gas phase. Hence, the use of GC-MS has many advantages. Firstly, the ionisation 

technique most used in GC-MS, electron impact (EI), causes extensive molecular 

fragmentation, where the fragments can be used to deconvolve overlapping peaks, and 
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the fragments can contain useful information on the molecule structure. Secondly, 

identification of unknown compounds from GC-MS is simplified due to the reproducible 

and descriptive spectral qualities of EI, which permit database compilation and subsequent 

searching in these structure-spectrum databases. Moreover, the chromatographic 

resolving power of GC is high, and method optimisation is relatively simple, so the 

chromatograms are easy to interpret as the main chromatographic driving force is boiling 

point difference. 

However, it is questionable to almost exclusively use GC-MS methods for analysis of 

paper and board FCM. Migration from direct contact is not negligible and can occur even 

for non-volatile compounds (Triantafyllou et al. 2007; Biedermann-Brem et al. 2012), like 

food contact by paperboard with non-dry indirect migration, e.g., pizza boxes, snacks, fast 

food, or fruits (Binderup et al. 2002; Bradley 2006). Finally, paper is a hydrophilic medium 

due to the presence of negative charges and carbohydrate-based fibres, so the retention 

of hydrophilic compounds is large. As gas chromatography and adsorption by TENAX 

requires compounds to be volatile, these methods deal poorly with highly polar chemical 

compounds, and are inherently limited in the analysis of potential migrants that occur via 

direct contact which do not need to be volatile. Hence, while gas chromatography is 

suitable for the well-studied migrants like diisopropylnaphthalenes or benzophenones, it 

may not be suitable for other chemical compounds in paper and board FCM. 

As a supplement to GC, it may be valuable to equally investigate paper and board 

samples by liquid chromatography (LC). Many of LC applications in food safety are purely 

targeted methods designed to determine specific compounds like pesticides (Malik et al. 

2010). However, there is an increase in LC-based screening approaches, as they are 

proving to be highly valuable to investigate the compounds not suitable to GC analysis. As 

an example, it has been shown that LC-MS is capable of covering a wide range of 

pesticide screening using an untargeted approach (García-Reyes, Hernando, Ferrer, et al. 

2007). Recent work has also shown LC-MS is useful for screening for non-volatile 

contaminants from adhesives (Vera et al. 2013). In addition, surface analysis of food 

contact materials by LC-MS techniques are useful for rapid identification of unknowns, 

possibly for detecting previously unassessed substances (Ackerman et al. 2009). These 

advances illustrate that LC-MS is becoming an important screening methodology for food 
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samples, perhaps in a way similar to how environmental or metabolomics samples are 

screened (Viant & Sommer 2013; Krauss et al. 2010). However, LC-MS is still limited by a 

number of factors, for example the lack of existing spectra databases like GC-MS, the use 

of primarily soft ionisation techniques that require dedicated fragmentation, lack of 

compound-specific fragmentation, and ionisation that is strongly influenced by source 

parameters.  

2.3.2. The role of chromatographic separation 

Chromatography is the tool of choice when faced with mixtures, as it has high separation 

power for complex mixtures; however, optimising the separation is often a time-consuming 

process. In recent decades, chromatographic requirements have become less strict 

because of developments in selective, high-resolution, and multi-trace detectors like mass 

spectrometers. Multi-trace detectors are able to record several traces within a single 

chromatogram, which allows separation in two dimension (time * channel), whereas single-

trace detectors only have a single dimension (time) available for separation. The added 

separation information of a multi-trace detector is needed for complex samples with many 

chemical substances, because adequate peak separation (resolution ≥ 1.5) cannot be 

obtained by chromatography alone. The large number of chromatographic peak resulting 

from complex samples imply that the retention window of the chromatogram needs to be 

sufficiently large or the peaks extremely narrow. As optimization of chromatographic 

separation is challenging and time-consuming, the availability of detectors like mass 

spectrometers that can separate chromatographically overlapping peaks by selectivity of 

the detector facilitate much faster method development. 

The advantage of using selective multi-trace detectors in chromatography is schematically 

shown in Figure 10. In cases where the chromatographic resolution is sufficient, a 

selective multi-trace detector offers more detailed information per peak, but does not 

provide a significant chromatographic benefit. When the resolution is lower, multiple traces 

allow the deconvolution of two chromatographic peaks, whereas this is more complicated 

for a single-trace detector. If the resolution drops to unacceptable levels a single-trace 

detector is unable to differentiate between two peaks, appearing as a single peak, and in 

these cases the need for a multi-trace detector is obvious. 
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Figure 10: Resolution is less important with specific multi-trace detectors like mass spectrometers. In 

cases where the resolution is insufficient (C and F), detector specificity is crucial. For higher resolutions 

(A–E), the difference is less impactful, but specific detectors can provide additional information. 

Despite the common availability of multi-trace detectors, the need to perform 

chromatography is present still. Too many simultaneously eluting analytes can cause 

suppression and interference effects in the detector, which can eliminate analyte signals or 

make these indistinguishable from others, and this is especially a problem in low resolution 

LC-MS (Furey et al. 2013; Berendsen et al. 2013). Chromatography also offers an 

important clean-up of relevant analytes versus a background signal. In addition, one 

should not underestimate the importance of chromatography in providing substantial 

information about the analyte., since the partitioning in chromatography is directly related 

to physical-chemical properties in the analyte, which in turn are related to chemical 

structure and this can be utilized for prediction of a number of useful properties, e.g., by 

Bökman et al. (2006) or Cech et al. (2001). Finally, by spacing out analytes over a time 

dimension the detector can use a larger amount of time collecting data per analyte peak, 

which can improve the quality or quantity or information gathered, and avoids that analyte 

peaks are missed due to co-elution with a much larger chromatographic peak. 
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2.3.3. Quantitative analysis 

The primary objective of quantitative analysis is to obtain data on the occurrence of a 

specific chemical compound in a sample. Concentration data is valuable in prioritization: 

compounds in higher concentrations are likely to be of higher importance than those in 

lower concentrations given unknown toxicity. To estimate the concentration of an analyte 

of interest (AOI) in a given sample, the relationship between concentration and detector 

response should be known, the response factor (RF), which can vary greatly between 

different chemical compounds (Figure 11).  

 

 

Figure 11: An idealized detector has a linear and unified signal to response factor (RF). In practice and as 

portrayed, almost all detectors behave non-ideal and show significant differences in response ratios. 

Hence, the ratios between signals may not be indicative of the relative concentrations in the original 

sample. Consequently, an observed signal cannot easily be converted to an actual concentration. 

However, predicting the RF is not straightforward especially in LC-MS where differences in 

RF are large (Espinosa et al. 2015). The RF is predominantly determined experimentally 

by the analysis of a known concentration of the AOI under the same conditions as the 

regular analysis. Yet, experimental determination of RF is complicated and unrealistic for 

complex samples which may contain thousands of chemical compounds. In addition, the 

chemical structure of some compounds may be unknown, so obtaining a relevant standard 

for these compounds is impossible without further identification studies. The requirement 

for quantification to have accessible reference standards is severely limiting the application 

range and the practicality of quantification on complex samples (Chalcraft et al. 2009; 

Pieke, Granby, et al. 2017). 
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Despite the necessity to perform quantification in many cases it requires considerable 

resources to do it properly, therefore limiting the number of compounds that can included 

in analysis. The main reason reference standards are needed is because RF values are 

very variable for different compounds, mass spectrometry instruments, and analysis 

conditions. The measured response depends on a large number of variables like the 

molecular structure, matrix effects, sample purity, ion generation methods, ion optics, 

mass analyser type, and even detectors (Straub & Voyksner 1993; Per J R Sjöberg et al. 

2001; Raji & Schug 2009; Tang et al. 2004). Additionally, there are a large number of 

environmental factors that affect the RF, which may influence day-to-day variation, e.g., 

instrument condition and maintenance, sampling performance, and temperature. 

Electrospray Ionisation is an important source of RF variation, which is the cause that LC-

MS is often considered difficult as quantitative method (Taylor 2005). 

When faced with complex samples containing many unknown chemical compounds, 

alternative quantification methods may be needed. One of these alternative strategies is to 

perform semi-quantification which relies on estimation of the concentration of an unknown 

chemical compounds by using a different compound. In a way semi-quantification is similar 

to the procedure of the additional of an internal standard to a sample to correct for errors, 

but in semi-quantification the internal standard acts as the quantification endpoint. Semi-

quantification is a potentially interest technique because of its potential to avoid the more 

common quantification methods that require reference standards, which can be costly or 

impossible to acquire. The concept of applying semi-quantification has seen increased 

scientific attention in recent years, e.g., by Zou et al. (2017), Broecker et al. (2011), and Bu 

et al. (Bu et al. 2014). The implementation of semi-quantitative procedures is substantially 

more straightforward if all of the AOI are chemically similar, so that the variation in RF is 

minimal (Kovalchik et al. 2017). However, the application of semi-quantification in routine 

analytical methodology is a novel field, and still requires considerable research. 
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The premise of semi-quantification strongly contrasts the concept of traditional 

quantification, where the response of the investigated analyte (the AOI) and the 

quantification analyte (the QM) are often dissimilar. Especially LC-MS, where the response 

factor (RF) variance is large due to the mechanisms of ESI, seems to lend itself poorly to 

comparisons involving different chemical compounds. In order for semi-quantification to be 

viable in these applications, one of the key aspects is to ensure that the RF across the 

entire measurement range shows minimal variation. In those conditions, the worst-case 

quantification comparison will still give a controlled prediction error. That implies that even 

in the case where the RF between QM and AOI show a large difference, semi-

quantification will give an indication range of the concentration. Despite semi-quantification 

being relatively novel field, it has been shown that there is merit in performing semi-

quantification on complex samples and thereby avoiding the need for authentic standards, 

while also allowing prioritization (Pieke, Smedsgaard, et al. 2017; Bu et al. 2014). 

The process of optimising for a minimal RF variance across the chromatogram is called 

normalisation, whereas conventional optimisation is regularly maximisation (Figure 12). 

Normalisation is applied to ensure that even a suboptimal combination of AOI and QM will 

result in a manageable measurement error. Traditionally, the system optimisation in LC-

MS is performed in targeted analysis, i.e., response maximisation of a limited number of 

AOI to improves detection limits, e.g., as demonstrated by Gros et al. (2006). Maximisation 

of signals for specific compounds is not suitable for semi-quantification, as it is likely to 

increase the variation in response by optimising for a limited number of targeted analytes. 

Since maximisation favours specific signal increase, it may actually penalize the response 

of analytes with low responses. While those analytes may currently not be of interest to the 

particular method, they may become relevant in the near future. Hence, the optimisation in 

untargeted methods must ensure acceptable response for the low-RF compounds. In 

essence, since low-response analytes are already difficult to detect, they should have 

improved responses. Thus, response optimisation for the purpose of untargeted evaluation 

should consider the possibility of normalising responses and avoid penalising the difficult 

to detect analytes. 
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Figure 12: Method optimisation often is directed towards maximisation of a limited number of analyte 

signals. Since the responses of non-relevant analytes are ignored, the differences between signals can 

greatly increase as a result. In normalisation, all analytes and the ratio between analytes are considered 

as optimisation parameters, so that it favours increasing low-response analytes possibly at the cost of 

high-response analytes. 

A further consideration is to select pairs of QM and AOI. Here, a limitation is that in semi-

quantification of the AOI may be completely unknown which is opposed to an often known 

AOI in normal quantification. Because little information may be available on the AOI, 

selecting a proper QM can be challenging. Ideally, the QM and AOI can be selected on a 

large structural similarity so that the responses are possibly similar. However, to select 

AOI-QM based on structural similarity, the structure of AOI must be known. Instead, the 

selection of AOI-QM should be based on information that is sufficient for proper selection 

but also readily available. For example, the analyte retention time and the analyte mass 

could be used, since these are available from the MS measurements and do not require 

any knowledge of the structure. If this is possible the identification and quantification are 

completely decoupled, and would provide a major advancement to better understand 

unknown compounds. 
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2.4. Identification of unknown chemical compounds 

2.4.1. Chemical identification 

The objective of chemical identification (structure elucidation or compound identification) is 

to obtain as much structural information as possible of a given chemical compound. 

Chemical identification can be performed on different levels that result in basic information 

about the chemical compound, e.g., the elements present in a molecule, up to specific 

chemical structural information, e.g., the whole molecular structure. In general, when 

detailed information is required about a chemical compound, for example to do risk 

assessment and to mitigate risk, more detailed experiments are needed. These may 

require state of the art instruments, complex data processing and comparing to reference 

standards. The process of chemical identification can be visualized as a pyramid in Figure 

13, where each layer implies that preceding layers are known or can be known from the 

current layer. Because the effort needed to reach the higher layers in the pyramid, there 

are fewer molecules for which detailed structural information is known. Essentially, the 

purpose of identification is attaining a level within the pyramid that is possible with current 

knowledge and resources, or otherwise sufficient for the current purpose. Consequently, 

many unknown NIAS will be only be identified to the base level of the pyramid or simply 

absent from it, whereas IAS generally are identified to a higher level. 

The first three base levels of the pyramid contain fairly non-specific information about the 

structure of the chemical in question, but the information is not without relevance. First, the 

presence (or absence) of certain elements can prove to be valuable information. For 

example, isotope-based screening methods can be used to identify the presence of 

halogenated chemical compounds (Cincinelli et al. 2012), e.g., polychlorinated compounds 

(Focant et al. 2004), brominated flame retardants by looking for bromine ions (Stapleton et 

al. 2011), or chloride-containing pesticides (García-Reyes, Hernando, Molina-Díaz, et al. 

2007). Similarly, indicate aliphatic or aromatic structures can be specifically detected and 

quantified by some detectors (Driscoll et al. 1978). Second, the elemental composition of a 

molecule can reveal the exact number of atoms, as well as the molecular weight and 

sometimes structural features. Often, one of the first steps in identification is to obtain the 

elemental composition. The use of high resolution mass spectrometry to obtain exact 
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mass and isotope patterns can be used to find the chemical composition of a compound, 

e.g., as shown by Schymanski et al. (2014) or Jaeger et al. (2017). Finally, functional 

groups are the first level that begins to reveal how the chemical structure is arranged and 

bonded. Examples of functional groups are alcohols (C-OH), ketones or aldehydes (C=O), 

aromatic rings, acids, bases, and so forth. Functional groups often reveal very practical 

information about the molecule, and methods can be optimized towards specific functional 

groups (Eberlin 2006).  

 

Figure 13: The identification of a chemical structure shows several levels of information. Generally, the 

higher in the pyramid the required knowledge, the more research is required, and often the requirements 

for instruments are higher. The highest level, confirmation, requires references to an authentic standard. 

The top levels of the pyramid are significantly more informative about the exact 

configuration of the molecule, but are also far more difficult to achieve. More complex 
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techniques, like MS and Nuclear Magnetic Resonance (NMR) spectroscopy play a 

dominant role compared to simpler techniques like ultraviolet detection (UV) or flame 

ionisation detection (FID) analysis, and require more expertise. Firstly, the chemical class 

provides information on the arrangement of functional groups within a molecule, e.g., 

phthalates, or the functionality of a molecule, e.g., pesticides. The chemical class level is 

the first level where highly specific techniques are developed to discover and characterize 

different variations, e.g., bisphenols (Rosenmai et al. 2014) or phthalates (Heudorf et al. 

2007; Aurela et al. 1999). Because similar structures can imply similar effects knowing the 

class of a chemical compound is highly informative on subsequent analysis or 

identification techniques. The following level of the pyramid, elucidation, is where 

information about the structure is becoming abundant and requires selective evaluation of 

data in order to avoid false positive results (Schymanski et al. 2015). Confirmation is often 

achieved by comparing the measurement results with that of a known standard, which will 

not be discussed here. 

2.4.2. Dual-stage mass spectrometry: MS/MS 

The retention of intact ions inside the mass spectrometer, especially in liquid 

chromatography ‒ mass spectrometry, allows for more detailed investigation of ions. The 

detected m/z of an ion can be used to determine the molecular mass, isotopes, accurate 

mass (if sufficient resolution), and possibly a molecular formulation. However, the m/z of 

the molecule contains little to no information about the chemical structure of the molecule. 

Consequently, while high resolution greatly increases the specificity in molecular 

formulations that can be assigned to a detected ion, it is alone not sufficient for more in-

depth analysis of molecular structure (Kind & Fiehn 2006). In order to obtain more 

chemical structural information on intact ions from a soft ionisation source, the ions can be 

collided with inert molecules under controlled conditions, which cause the original ion to 

break up into two or more fragments (Figure 15). Bond-breaking and the resulting 

fragments can be used to elucidate (part of) the molecular structure. 

The combination of controlled in-source fragmentation and using multiple mass analysers 

(MS/MS) provides controlled fragmentation and thereby structural information, which can 

be used for structural elucidation. The first mass analyser selects ions of a specific m/z, 
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called the precursor, which is fragmented using different collision energies followed by 

determination of precursor and fragment ions by a second mass analyser, see Figure 14. 

Fragmentation data is valuable because all fragments are related to the precursor ion, and 

fragmentation happens in a systematic and somewhat predictable way (Hill & Mortishire-

Smith 2005). Hence, fragments contain information about the original molecule structure 

much like a fingerprint, and certain fragments are indicative for a certain group of 

compounds. Identification via fragmentation becomes especially interesting if the second 

mass analyser is capable of accurate mass determination, as this improves the prediction 

accuracy (Gallart-Ayala et al. 2011). This means that fragmentation spectra can be used to 

predict the molecular structure, e.g., (Zhu et al. 2014; Jaeger et al. 2016; Bilbao et al. 

2015), much like a puzzle being put together. 

 

Figure 14: Simple schematic of a typical dual stage MS/MS setup. MS
1
 often acts as ion filter for 

precursor selection, q is used to fragment the precursor ion, and MS
2
 separates the resulting fragments 

either by selective mass analyser, like quadrupole, or a non-selective analyser, like TOF. 

We can differentiate between three levels of identification by MS/MS in order of difficulty: 

1. Confirming by available authentic standard; 

Requires the compound its reference standard to be available or obtainable. 

2. Comparing to existing databases of spectra; 

Requires high-quality spectra, and the compound spectra must be available in the database. 

3. By manual and/or automatic spectral interpretation.  

Requires high-quality spectra, a trained MS analyst, and possibly additional data. 

 

Most identification studies are performed by the first two levels: using standards and/or 

databases. For example, Lago & Ackerman (2016) have recently demonstrated 
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identification by standard-matching and database searches of contaminants in food 

packaging using accurate mass and standard matching in LC-MS and GC-MS. A well-

known problem with LC-MS is that the second option is rarely viable: no sizable database 

of spectra exists for compounds. This is in contrast to the availability of databases for GC-

MS, for example the NIST database (NIST Mass Spectrometry Data Center 2017). As a 

result, LC-MS is often performed with available standards or, more rarely, by interpretation 

for spectra. For example, Ibáñez et al. (2005) showed third-level identification of unknown 

chemical compounds using mass spectra, but also indicated the need for mass 

spectrometric expertise and that it is time-consuming for even a small set of compounds. 

Often, identification on the third level is possible only when MS is assisted by other 

methods, e.g., as demonstrated by Blok-Tip et al. (2004) or Reepmeyer & Woodruff 

(2006).  

 

Figure 15: Fragmentation contains information about the molecular structure of a chemical compound. A 

molecular ion [AB]
+
 consisting of groups A and B can fragment into each group. A complete fragmentation 

of [AB]
+
 results that the molecular ion is not detected in the spectrum. In reality, fragmentation is more 

complex, and further chemical reactions or fragmentation can lead to unpredictable fragments. 

While MS/MS proves to be a useful tool to tentatively identify chemical structures, it is 

often not sufficient to confirm the structure of a compound. The information obtained from 

the fragments in (high resolution) mass spectrometry experiments is rarely sufficient for a 

stand-alone identification (Krauss et al. 2010). First, the information from the fragments 

may be limited: it can be the result of a too high collision energy resulting in small, less 

informative fragments, or due to the formation of adducts that fragment poorly (Pieke, 

Smedsgaard, et al. 2017). Furthermore, the mass spectra obtained from MS/MS are not 
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sufficiently information-dense or predictable to elucidate the structure without additional 

information, like comparing to an existing database, so there is a greater dependency on 

the quality and actualisation of available information (van der Hooft et al. 2013; Kind & 

Fiehn 2010; Krauss et al. 2010). Finally, there is the potential for false-positive results 

because mass spectra are not always unique or sufficiently informative (van der Hooft et 

al. 2013; Kind & Fiehn 2006; Pieke, Smedsgaard, et al. 2017). 

2.4.3. Non-targeted data acquisition in MS/MS 

Multi-stage mass spectrometry (MS/MS), e.g., triple quadrupole QqQ, Q-TOF, or ion traps, 

are often associated with targeted analyses: the m/z of AOI is preselected, and 

fragmentation spectra are collected only for preselected fragments. Therefore, MS/MS 

generally requires compound-specific knowledge. Targeted MS/MS analysis is suitable 

when prior information is available on AOI: certain analytes can be expected and/or 

measured consistently. Due to the selective nature, targeted MS and MS/MS methods 

excel with a very low detection limit, and are highly specific, which minimises the 

probability of false-positive results. Because the methodology is standardized, results are 

comparable across instruments and across labs, These specific methods are based on 

information like the retention time, expected mass, and impurities, and specific 

fragmentation of chemical compounds. Because of prior information it is also possible to 

look for specific fragmentation patterns in MS/MS of closely retarded compounds. Hence, 

the identity of a chemical compound and closely related compounds can often be 

confirmed with high reliability by means of a reference standard or by existing spectra. 

However, targeted methods can be subject to discussion in fields that do not have 

sufficient prior information, and thus require non-targeted approaches. For most samples, 

targeted methods are blind to chemical compounds that may be of interest but which are 

not expected or are unknown to be present, e.g., the presence of plasticizers in paper 

packaging or unknown NIAS. Food scandals, notably the melamine case (Chen 2009; 

Handford et al. 2016), have clearly delivered the message that exclusively using 

methodology with greatly limited scope is not sufficient to ensure food safety, and a similar 

message applies to food contact materials. Non-targeted analyses strategies can be used 

in cases where targeted analysis strategies are insufficient. The method design in non-
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targeted analysis is different: instead of specific optimisation, these methods are 

developed to include as many analytes as possible. Hence, non-target methods consider 

all detected traces instead of a limited number of selected traces. However, non-targeted 

strategies are capable to include various levels of targeting, e.g., inquiry of a chemical 

database of suspected compounds. Generally, the sensitivity and specificity of non-

targeted analysis is substantially lower; therefore, performing quantification and 

confirmation is often not directly possible in non-targeted methods.  

 

Figure 16: Different types of acquisition modes in MS/MS will result in different parts of the chromatogram 

covered. Targeted analysis (top) only covers the preselected ion in the method. Data-dependent 

acquisition (DDA, bottom) dynamically selects ions of interest, but deals poorly with overlapping ions with 

different intensities. A combination of DDA and targeting (middle) provides an in-between method capable 

of analysing both target and non-target compounds, but requires some prior knowledge on the sample. 
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The targeted nature of MS/MS appears incompatible with the non-targeted approach 

needed for samples containing unknown chemical compounds. Ideally, to use MS/MS in 

non-targeted analysis, the way precursor ions are selected needs a revision to be more 

dynamic. An alternative data acquisition method is data-dependent acquisition (DDA) 

(Thomas et al. 2012; Schwudke et al. 2007). In DDA, real-time MS data is evaluated for 

relevant precursor ions, and an algorithm selects precursors for fragmentation, see Figure 

16. This permits the investigation of unknown analytes, as no prior definition is needed. 

DDA results in a repeating cycle of MS analysis, ion selection, and MS/MS analysis to 

collect fragmentation spectra. Due to the limited time spent in MS analysis, quantification 

is rarely possible when operating in DDA, as this is optimal on the MS signal. Another 

limitation associated with DDA is that complex samples may contain many unknown 

compounds which may not all be selected by DDA (Hopfgartner et al. 2012). The number 

of precursor ions to be analysed by fragmentation is limited by time required per scan 

cycle, so only a limited number of precursors can be included within a given time range 

(Zhu et al. 2014), and in these cases a type of precursor priority system may be needed. 

2.4.4. Hazard identification after structure prediction 

The reconstruction of a chemical image from a mass spectrum will often contain gaps of 

knowledge, as the reconstructed chemical structure may not be definite or could be only 

partly elucidated. This gap of knowledge can also be defined by stating the reconstruction 

provides a tentative identification. However, an important consequence of tentative 

identification is that subsequent acquisition of hazard data is hindered because this 

requires a chemically pure reference standard to test with, which can be complicated to 

obtain when the identified chemical structure has uncertainties. Similarly, literature studies 

on the chemical compound can take considerable more time if there is no clearly defined 

chemical structure, as several possibilities will need to be explored. Hence, while a 

tentative identification provides information on unknown chemical compounds, the extent 

of this information may be not sufficient to test or find hazard data on the actual chemical 

compound, which may differ from the predicted structure. Consequently, the well-

established methods for hazard identification of a chemical compound are ultimately 

unsuitable for predicted structures. 
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Instead of acquiring hazard identification via traditional means, e.g., animal testing, 

advancements in alternative predictive toxicology might provide an outcome (Scholz et al. 

2013). One of these is the modelling processes of structure-to-hazard, commonly referred 

to as Quantitative Structure-Activity Relationship (QSAR) modelling. Briefly, QSAR 

establishes a correlation between an endpoint, e.g., a hazardous effect, and properties of 

the chemical compound based on the chemical structure. The basis for this modelling is 

made on the assumption that if two molecules have similar properties and features, the 

effects they can exert on the human body are also likely similar. Like most modelling tools, 

the outcome usually contains a larger uncertainty than testing by experiments. Instead of 

elaborating upon the deeper and complex characteristics of QSAR, primarily the possible 

application for hazard identification for predicted structures is discussed here. Recent work 

on QSAR, e.g., Cherkasov et al. (2014) or Rosenberg (2017) provides a better insight into 

the mechanisms and fundaments of QSAR.  

QSAR has seen significant advances for FCM in the recent decade and is considered one 

of the key methods for future hazard identification (Mays et al. 2012). The acceptance of 

QSAR models instead of regular testing is increasing, as QSAR is currently included as 

alternative method in EU regulation (European Parliament and Council of the European 

Union 2006). QSAR may also be used, among other things, to fill data gaps for hazard and 

risk assessment, as well as in priority setting (European Chemicals Agency 2008). Hence, 

the use of QSAR on explorative data fits well and is compatible with current regulation 

standards. Recent work by van Bossuyt et al. (2017) clearly demonstrated the added value 

QSAR can have in early-stage identification of hazards.  

Consequently, QSAR is extremely useful when combined with tentative identification, as 

the input requirements of QSAR are molecular structures, so conveniently similar to the 

output of tentative identification. However, tentative identification provides the best-

matching structure which may not be similar to the definite chemical structure. As a result, 

the QSAR prediction output may be based on a different molecule than truly present, so 

the result can deviate. However, because the assumption in QSAR is based on the 

hypothesis that similar molecules have similar activities the predicted activity may be 

adequately descriptive if the predicted chemical structure is similar to the true chemical 

structure. 
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2.5. The role of tentative data in risk studies 

2.5.1. Existing regulation on food contact materials 

Food contact materials as a source of chemical compounds in food are not necessarily a 

new phenomenon. There are regulations that, although expressed in general terms, seek 

to reduce and control the amount of chemical compounds that can be present in food as 

result of migration from packaging. Currently, the most important non-specific regulation in 

the European Union (EU) to ensure consumer health is the General Food Law EC 

directive 178/2002 (European Parliament and Council of the European Union 2002). The 

General Food Law prohibits food being placed on the market if it is unsafe: injurious to 

health or unfit for consumption (see Figure 17). The Food Law is there to ensure consumer 

health protection, but the definition of unsafe is ambiguous. For example, it is not clear 

what the food safety requirements of packaging are in the General Food Law. 

Controversially, the WHO recently reported that red meat and processed meat are 

probably carcinogenic to humans (World Health Organization 2015), so it could be argued 

that this may conflict with the General Food Law principle. Hence, to ensure that the food 

is safe all possible risks to human health need to be identified. 

In light of those shortcomings, frameworks exist that permit specific regulations for FCM. 

The most important framework regulation is the Regulation EC 1935/2004 on materials 

and articles intended to come into contact with food (European Parliament and Council of 

the European Union 2004). This regulation defines that food packaging used under normal 

conditions must not transfer constituents that can endanger human health or adversely 

affect the quality of the food (see Figure 17). It includes all packaging materials that are 

intended to be brought into contact with food, are already in contact with food and were 

intended for that purpose, or can reasonably be expected to be brought into contact with 

food. One of the critical points in this regulation is that it paves the way for specific 

regulations for selected contact materials, which may include lists of permitted or banned 

compounds, migration limits for chemical compounds, additional rules, or analytical testing 

methods to ensure compliance. Essentially, this regulation permits further specific 

regulations that can ensure the safety of selected materials and thereby facilitates the 

acquisition of knowledge needed to build new regulations. 
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Figure 17: The progression of regulation is becoming specific for certain FCM materials. Currently, only 4 

out of 17 materials are harmonized on EU levels, whereas the remaining 13 materials are regulated on 

national level or are unregulated. Paper and board, as well as printing inks and adhesives commonly 

used therein, are currently not harmonized. 

The most important specific harmonised regulation on FCM as a result of the call for 

specific regulations by (EC) 1935/2004 is Commission Regulation (EU) No 10/2011 on 

plastic food contact materials (European Parliament and Council of the European Union 

2011a). Regulation (EC) 10/2011 defines a positive list of chemical compounds permitted 

to be exclusively used in production of plastic materials, and these are often IAS. As a 

result, substances found in the material not present on the positive list will need to be 

authorized for use beforehand. For some of the listed substances, a migration limit into 

food simulants is defined by an SML. Secondly, the regulation dictates that the use of 

modelling tools is permitted to substitute migration testing given that these are at least as 

severe as the migration testing, and this paves the way for in silico models and exploration 

methods. Thirdly, the regulation defines a set of migration tests and food simulants to be 

used for testing, which can provide the basis for specific regulation of other materials. 
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Here, the Regulation (EC) 10/2011 that harmonises the specifications of plastic contact 

materials across the EU Member States will not be discussed extensively; an in-depth 

report as guidance through the document is published by the European Commission’s 

Directorate General for Health and Consumers (DG Sanco 2014). However, a few 

interesting points of concern can be identified from Regulation (EC) 10/2011: 

I. printing inks, adhesives and coatings do not have to comply with the compositional 

requirements of the Plastics Regulation; 

II. NIAS are not subject to authorisation and listing in the Union list, but have to be 

absent of risk for human health; 

III. FCM not covered by this legislation (non-harmonised, e.g., paper/board, rubbers, 

glass, etc.) are subject to, at best, national legislation. 

 

These points demonstrate that risk assessment of FCM is a very complex issue. A recent 

report by the EFSA Scientific Cooperation lists 2800 entries used in the manufacturing on 

non-harmonised materials (not covered by EU legislation) like paper and board, printing 

inks, coatings, rubber, colorants, wood and cork (European Food Safety Authority 2012). 

Non-harmonised materials are more common than harmonised materials representing 13 

out of 17 defined materials (see Figure 17). These materials are — in the best case — 

covered by national legislation; however, not every EU member state has national 

legislation in place for all materials, see Simoneau et al. (2016, especially Table 4). The 

question is: “How to ensure that chemical compounds in food do not cause adverse effects 

on health, as required by law, when their structure, concentration, and hazards are 

completely unknown?” In other words: when dealing with a non-harmonised material that 

can contains possibly harmful chemicals, e.g., NIAS, printing inks, adhesives, how are 

producers supposed to demonstrate safety for use in the EU? The capacity to demonstrate 

either safety or non-safety is greatly limited by the fact that NIAS are not known or 

regulated and a number of compounds are exempted from regulation.  
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2.5.2. Risk assessment as tool for safety 

Risk Assessment (RA) of chemical compounds plays a very important role in food safety, 

and is the tool of choice to control and reduce the adverse effects of chemical compounds 

on humans. The risk a chemical may pose is estimated by combining the exposure to the 

chemical, i.e., exposure assessment, and the adverse effects of the chemical, i.e., hazard 

characterization (WHO/IPCS 2009). Here, exposure is the intake of compounds over a 

certain amount of time through consumption of food. Exposure levels are related to the 

consumption pattern of individuals and the concentrations of chemical compounds in the 

product, and should be made available from a diet study or from modelling (Fryer et al. 

2006). Hazard is the potentially adverse effect a chemical may cause on human health, 

which can range from minor to fatal effects often determined from assays or animal studies 

(O’Brien et al. 2006).  

In combination, exposure and hazard dose-response relationship provide a quantitative 

basis to assess possible risk which is the result of a RA. The availability of this data is 

critical in to ensure adequate risk characterization to manage the risk. The need to reach a 

consensus decision between experts, based on appropriate data, is one of the reasons RA 

is a time-consuming and resource-intensive process. Despite the historical use of RA, a 

recent study initiated by the Food Packaging Forum (FPF) concluded that current 

procedures of RA are ineffective at protecting public health by relying strongly on self-

regulation by industry and availability of standards (Muncke et al. 2017), similar to previous 

conclusions on the topic (Grob 2009). Consequently, RA is often reactive to existing 

problematic chemical compounds in food rather than proactive in identifying risk of new 

hazards, and it is questionable that a reactive approach by RA is suitable to ensure 

continued food safety.  

There is a larger awareness nowadays of the risk imposed by NIAS, which have directed 

the development of tools capable of understanding those compounds. In this light, the use 

of the Threshold of Toxicological Concern (TTC) concept is getting increased attention due 

to its capacity to deal with unknowns much more easily than traditional risk assessment 

(EFSA & WHO 2016; Kroes et al. 2004). However, the TTC approach still requires an 

assessment of exposure and also some chemical structure information, which may not be 

easily attained for unknown chemical compounds. For gathering exposure data, screening 
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strategies are suggested (de Fátima Poças & Hogg 2007), but these still rely strongly on 

available quantification methods. Koster et al. (2014) have shown that a TTC-like 

approach (named CoMSAS) including preliminary risk assessment is possible using a 

combination of analytical methods. This approach is promising as it assumes a worst-case 

TTC scenario; thereby it doesn’t directly need initial identification. However, the approach 

is unsuitable for testing chemical compounds incompatible with gas chromatography (GC), 

cannot ensure there are no genotoxic effects, and assumes that the internal standard is 

worst-case. In addition, the approach contributes little to overall knowledge in NIAS, as it 

excludes many NIAS without identification or suitable quantification and is limited to 

predominantly GC-compatible chemical compounds and general purpose LC-compatible 

compounds. 

However, risk assessment and even the TTC strongly rely on available data, but do not 

provide strategies for obtaining data. The fundamental idea of Koster et al. (2014) is to 

obtain more knowledge on NIAS, and this is badly needed judging from the current status 

quo. Approaches similar to CoMSAS can be valuable tools in the discovery of new 

chemical compounds and new risks. More knowledge on available NIAS supports making 

better decisions, so acquisition of knowledge should be the priority of analytical 

methodology, rather than continuously screening for the same well-known compounds 

(Grob 2009). With improved knowledge, compounds can be prioritized according to 

expected risk, which results in a better allocation of (limited) resources. Here, a stepwise 

and knowledge-based approach allows the prioritization of known compounds, but also 

allows the acquisition of new data needed for prioritization of less-known compounds. 

Essentially, the goal of knowledge-building analytical strategies should not be to replace 

existing RA methodology, but to improve the quality of choices that occur before RA. 

2.5.3. Tentative data: the value of more knowledge 

In order to start a systematic investigation of NIAS, there is need for much more 

knowledge on this group of compounds. Knowledge can include occurrence of chemical 

compounds in FCM (identity), at what concentration level they are expected in either FCM 

or in food (quantity), and what possible harmful effects the chemical compounds can 

potentially have (hazard). As discussed, currently all three of these information pillars are 
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equally important in risk assessment (also see Figure 2 on page 5) and rely strongly on 

targeted methods (e.g., quantification by standards or assay testing), or are depending on 

each other (like identification is needed prior to quantification). Recent studies appear to 

better capable to decouple these dependencies and thereby study risk more efficiently, for 

example by Bengtström et al. (2016) and Rosenmai et al. (2017). Here, an approach that 

evaluates the entire FCM for activity on gene assays, and subsequently identifies some of 

the chemical compounds responsible for this activity. This hazard-based approach 

provides valuable information on the hazard-related activity of the entire FCM or fractions 

thereof, and can be used for prioritization. However, the testing and identification of 

chemical compounds is still somewhat limited due to the need for reference standards.  

Because even novel investigative methods with high potential, e.g., Bengtström et al. 

(2016) and Rosenmai et al. (2017), are limited by targeted analysis it may be viable to 

investigate chemical compounds in FCM directly by tentative data obtained via untargeted 

analysis. Tentative data is often the result of estimates, contains uncertainty, and thereby 

differs from confirmed data. In previous sections some examples of tentative data have 

been discussed, e.g., semi-quantitative concentration estimates (2.3.3), chemical 

structural elucidation (2.4.2), and computer-based hazard prediction (2.4.4). There are 

similar characteristics to these methods: the acquisition is less resource-intensive, 

methods are non-specific and are largely designed to minimize labour, and ideally should 

be a fair representation of the actual data. Generally, the quality of tentative data is a 

compromise: the less uncertainty tentative data has, usually more resources are required, 

more specific methods are needed, and/or there is more manual labour. 

The inherent uncertainty of tentative data makes its use in RA a complicated matter, 

because RA relies on accurate and representative data that is not easily disputed. As a 

result, the use of tentative data in risk assessment is uncommon, and there is a strong 

dependency on specific data. However, tentative data may be able to aid RA in various 

ways. Firstly, the tentative data can be used in chemical risk prioritization (Figure 18), 

which is especially valuable for unassessed and undiscovered NIAS. Secondly, tentative 

data can be used for establishing databases of discovered chemical compounds which 

can aid future investigations, and also in generating a “chemical fingerprint” of typical 

samples. Finally, the acquisition of fundamental knowledge on a chemical compound is 
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valuable as future developments may discover new hazards associated to known chemical 

compounds, in which case the already established presence of chemical compounds in 

FCM will aid RA. In this thesis, the use of tentative data in risk prioritization is primarily 

discussed, but the use for knowledge-building may be even more important. 

 

 

Figure 18: Simplified work scheme for exploration of FCM compounds. First, data on compounds is 

acquired via untargeted methods like semi-quantification and tentative identification. This data is 

converted to figures relevant to risk assessment, after which risk prioritization can be performed. 

The collection of tentative data, whether for prioritization or knowledge-building, needs to 

occur in a comprehensive way that excludes as few substances as possible. The migration 

from paper and board is not due to a single migration mechanism and can therefore vary 

per application and food type. Hence, it is better to broadly screen the FCM itself for all 

possible migration chemical compounds and then analyse for all possible types of 

compounds, e.g., via GC-MS and LC-MS. This provides a broad concept of chemical 

compounds that can possibly migrate from the FCM to food, but is not necessarily true 

migration. Consequently, the emphasis of tentative data is to identify chemical compounds 

in FCM with potential for migration and that may be of risk (Figure 18), rather than to 

provide an accurate and final figure of risk as a result of predefined migration routes. 
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This chapter briefly summarizes the outcome of the research performed in the course of 

this project. The main results from the scientific work are shown as supplemented in two 

published manuscripts and one manuscript in preparation for submission. 

3.1. An analytical strategy for risk prioritization 

Closing the knowledge gap between occurrence of unknown chemical compounds in FCM 

and safe usage of packaging materials is a complex undertaking with no simple solution. 

Due to the size and complexity of the problem: many and diverse materials, rapid 

changes, complex chemistry, many stakeholders, there is not one method that can resolve 

the complete picture of risk assessment of unknown compounds known to occur. 

Consequently, because of the scale of this problem very few public inventories exist of 

what chemical compounds may be found in the packaging since constructing these would 

require considerable effort, so it is questionable that it can match the value, but the 

absence of this knowledge can make regulation and research difficult. 

In general both research and regulations are retrospective, first we find a problem, then 

study it, and finally legislate as a preventive measure. This retrospective nature is 

problematic because the chemical puzzle represented by FCM is not static: the chemical 

composition of food contact materials will shift in time as a result of innovation, 

globalisation, and other changes in the manufacturing process. Since there is not a good 

overview of what we currently find in FCM, changes in the chemical composition will go 

unnoticed until they show up as a specific chemical threat. This strong focuses on specific 

compounds that may be harmful challenges the general understanding of the chemical risk 

of food packaging including combination effects.  

As an alternative to the targeted approach investigating specific compounds in food 

packaging materials, we propose an untargeted screening strategy. This approach is not 

designed to monitor compliance with legislation, but to build knowledge on chemical risks 

from FCMs first-hand. It is much more viable to have a greater understanding of FCM prior 

to designing a comprehensive legislation and efficient to monitor compliance. In the 

experimental work two essential parts of knowledge-building are considered: first to 

explore the sample for chemical compounds (Exploration – qualitative and semi-
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quantitative), and second to rank chemical compounds based on tentative risk derived 

from exploration and predictive hazard tools, like toxicological modelling (Risk 

Prioritization). 

The first step of exploration is collecting fundamental chemical knowledge on chemical 

compounds that are present, e.g., in a sample. FCM exploration consists of a series of 

methodologies that allow collection of basic but fundamental information on concentration 

and chemical structure of the chemical compounds found in FCM. Yet, the principle of 

exploration is that the resulting data does not have a predefined use, so it can be used in a 

number of further applications. By decoupling exploration from an outcome use, it 

becomes a valuable tool for screening for unknown chemical compounds that is not 

necessarily related to a certain field or a certain purpose. 

A parallel approach rather than a serial approach is essential for general usable 

exploration data. The parallel approach requires that the dependency between data is 

sufficiently reduced so that each experiment can be considered independent. For example, 

quantification requires knowledge about chemical identity, as quantification is usually 

performed by comparing the measured signal to a known amount of reference standard. 

This implies that if structural information is unavailable, there are few to no viable methods 

for quantification: quantification is dependent on identification. This is discussed in greater 

detail in Manuscript A and B, see section 3.4 and 3.5. This dependency means part of 

exploration is simplifying the acquisition of data of undiscovered chemical compounds by 

eliminating dependencies between different types of data. 

The second step is to do a risk prioritization using the information gained from exploration, 

a setting which is ultimately useful for risk assessment (RA). Here, a number of 

assumptions is required that may not be valid in all practical applications, but are needed 

to facilitate a conversion of limited chemical analytical results to provide usable risk 

predictions. Hence, the risk prioritization that may result from such data is not a definitive 

assessment of risk, but rather a ranking of possible and perceived chemical risks based on 

the limited but broad-scope data. In addition, risk prioritization helps to translate the 

somewhat abstract analytical results of concentration and structure into a tangible format 

of expected exposure and expected hazards. 



Chapter 3: Scientific research  
 

56 

Because risk prioritization as discussed here relies on the data of exploration, it inherits 

the uncertainties from the data exploration. Hence, the challenge here is to interpret the 

data: what is perception of risk, given all assumptions and uncertainties? Moreover, these 

uncertainties imply even further that a risk study based on explorative result is not a 

definitive answer to a question of RA. Instead, risk prioritization in essence making sense 

of explorative data in a RA setting, where the resulting answers will provide a preliminary 

estimate of risk. 

3.2. Exploration of unknown chemical compounds 

3.2.1. Semi-quantification of unknown compounds 

In order to quantify unknown compounds, we need to address the core nature of 

quantification: the relative nature that requires comparing to authentic standards. The 

prime challenge is that quantification requires the chemical compound to be structurally 

identified we need authentic standards. Yet, the process of identifying an unknown 

chemical structure is extremely labour-intensive, subject to availability of chemically pure 

standards, and requires comprehensive chemical data from several domains. Dealing with 

a large number of chemical compounds as those extracted from FCM is nearly impossible. 

This is discussed more in Manuscript B, section 3.5. 

The alternative to classical quantification that may work for unknown chemical compounds 

is a semi-quantifications strategy that exploits a different chemical as surrogate for an 

authentic standard. Naturally, this requires the measured response factor (RF) of the 

surrogate chemical to be similar to the quantified chemical in order to obtain reasonable 

estimations, which would require some compound-dependent data. These surrogate 

standards, quantification markers (QM), should not be tailored to match the selected 

analytes of interest (AOI) because this would require some sort of identification of the AOI. 

Hence, a method was required that could generate AOI and QM matches that were similar 

in RF without having detailed knowledge about the AOI. 

LC-ESI-MS is well known to show significant variation in the RF of different analytes 

(Espinosa et al. 2015), therefore it is not straightforward to quantify a selected AOI using a 
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specific QM. A part of RF variation is observed in the typical optimisation studies that are 

used in LC-MS; here, one selected AOI is typically optimised for maximum response, while 

this may result in lowered response of other possible analytes. In untargeted screening all 

analytes have to be considered as possible AOI. Therefore, the responses cannot be 

maximised for each, but rather using normalised optimisation across the chromatogram. 

The objective of this optimization is to minimize the impact of different responses between 

QM and AOI. To achieve a suitable normalisation, careful study of the effects of each 

instrumental parameter is required. Considering extractable compounds from paper and 

cardboard materials it was possible to optimise the source conditions to achieve a wide 

maximisation (compound-wise), and where low-response analytes were favoured over 

high-response analytes. 

Optimising the selection of AOI and QM pairs needs to be based on readily available 

information from the experiment to ensure it is not limited to AOI that have been identified, 

but can also be applied to AOI that are not identified. Studies have shown that retention 

time may be an adequate predictor for response since it is correlated to chemical 

properties like polarity and hydrophobicity (Cech et al. 2001), while it is also readily 

available from chromatographic experiments. In addition, the molecular volume may also 

be an important parameter for ESI (Chalcraft et al. 2009), which is related to the molecular 

mass for most relevant compounds. We demonstrated that the retention time was a better 

parameter than accurate mass in AOI and QM pairing, resulting in lower prediction errors 

and better overall predictions. 

By exploiting these concepts, semi-quantification was made possible on almost any 

detected analyte in FCM extracts as seen the chromatogram from LC-QTOF-MS 

datamining (Pieke, Granby, et al. 2017). The errors of the predicted concentration were at 

maximum up to 3-fold error with average around up to 2-fold error. While this is much 

larger than the errors in traditional quantification used to check compliance, it does not 

require authentic standards, and all analytes could be quantified in bulk (see Figure 19). 

Hence, the method provides an estimated concentration in untargeted screening even for 

a possibly unknown chemical compound. The trade-off for working both untargeted and 

beyond the traditional methodology is a lower precision and lower accuracy in the 

concentration estimate. 
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Figure 19: Semi-quantitative results for over 500 compounds originating from a single sample. The 

concentration of each compound is shown as a bar with lower and upper bound estimation errors set at 

the maximum observed error of 3-fold from relevant research (Pieke, Granby, et al. 2017). 

3.2.2. Chemical identification of unknown compounds 

Chemical identification for an unknown compound is often a laborious process that 

requires well-trained analysts and multiple sources of data, e.g., NMR spectroscopy or 

mass spectrometry. As the complexity of the molecular structure increases, so does the 

amount of effort needed to elucidate these. An elucidation of the chemical structure often 

involves the acquisition of fragmentation spectra from MS/MS experiments, which are 

relatively easy to obtain when coupled with chromatography. However, MS/MS 

fragmentation spectra for a chemical compound do not directly provide the chemical 

structure of the compound. In fact, it is seldom possible to generate a chemical structure 
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from purely MS/MS because the possible number of structures is much larger than what 

can be easily derived from an MS/MS spectrum. Hence, reference standards or recorded 

spectra are often required, which can be problematic to obtain for novel compounds or for 

large number of compounds. Consequently, there is need for fast and practical analytical 

strategies that can identify potentially unknown compounds without the need for reference 

standards. 

To translate MS/MS fragmentation data into a structural assessment without comparison 

to standards is often a human task that requires the expertise of a skilled analyst. Because 

the number of spectra can quickly exceed what is feasible to assess manually, the expert-

based evaluation of each spectrum is impractical, and instead automation of chemical 

structure elucidation is highly desirable. For this, spectrum interpretation by correlation 

between measured MS/MS spectra and known or generated fragmentation spectra e.g., 

by in silico procedures, may be useful. By correlating MS/MS spectra on bond breaking, 

isotopic patterns and spacing, fragmentation, and accurate mass to existing or generated 

spectra of existing chemical compounds, it may be possible to find the best-matching 

chemical compound structure to the MS/MS data from a pool of spectra. Here, software 

that automatically correlates fragmentation patterns to in silico bond breaking data for a 

database of compounds can be used (Hill & Mortishire-Smith 2005). 

In order to ensure that chemical identification is applicable to non-target compounds, e.g., 

those that are not initially expected to be present, the commonly targeted nature of MS/MS 

strategies needs to be altered. In preference to targeted MS/MS methodology, where the 

goal of the analysis is defined before the analysis, the use of modern quadrupole time-of-

flight (Q-TOF) mass spectrometry equipment to automatically select precursor ions is 

promising. Here, continuous switching between MS mode to determine the most relevant 

ion and subsequent MS/MS for obtaining fragmentation spectra of the ion is used in a 

process called Data-Dependant Acquisition (DDA). The real-time TOF signal of analytes 

eluting from LC are passed through a DDA algorithm that evaluates each detected m/z 

value for its relevance, i.e., a newly emerging m/z or a high-intensity m/z are considered 

relevant. If a certain m/z is considered relevant, MS/MS fragmentation spectra are 

collected. By configuring the DDA, it effectively turns Q-TOF into a semi-targeted analyser 

that collects MS/MS spectra from emerging chemical compounds separated by the LC.  
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Correlations and subsequent prediction of molecular structure are better when the mass 

spectra contain high-quality information. The requirement for high spectral quality is 

somewhat problematic when combined with DDA, as the most abundant ions commonly 

selected by DDA do not always produce the highest-quality spectrum. Generally, more and 

larger fragments improve the quality of the spectrum, whereas fewer and smaller 

fragments contribute less to quality. The most abundant ions are primarily selected by 

DDA, but there may be lower-intensity ions, e.g., different salt adducts of the same 

compounds that produce better-quality spectra. To negate some of these limitations 

imposed by untargeted screening, it is possible to incorporate a basic level of targeting in 

algorithm, in the form of a preference list, to aim for better-quality spectra. However, this 

approach requires prior knowledge about the presence of possible ions and their spectral 

quality, which can partly be obtained by performing an analysis in MS-only mode and 

investigating the ion traces.  

We studied the concept of using DDA with automatic structure correlation as an 

untargeted screening method to discover the chemical identify of compounds in FCM 

(Manuscript C). The method provides an untargeted approach to chemical identification 

without requiring standards or deep pre-existing knowledge, so it is ultimately suited for 

chemical discovery. However, the approach is in most cases unable to provide an 

accurate structure prediction; instead, it provides a likely structure which could differ from 

the actual structure. As a source of chemicals structures for structure correlation, a 

combination of seven different data sources (DS) were combined into five databases (DB). 

The requirements for DS are relatively simple: only a chemical structure is needed. This is 

a novelty compared to common MS/MS databases, which need existing mass 

spectrometric information that is expensive to obtain for a large number of chemical 

compounds. By performing the same correlation on different DB, correlative matching can 

be based on a large pool of expected and unexpected chemical compounds. In summary, 

the untargeted identification strategy does not produce a comprehensive identification of 

chemical compounds, but is instead very well-suited for screening new chemical 

compounds, obtaining predicted chemical structures, exploration analysis, and generating 

new data on the chemical profile of a sample.  
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3.3. Risk Prioritization 

Exploration provides invaluable data estimates, which makes it a promising tool for 

discovery of new compounds. However, it is not obvious how explorative data can be 

utilized for risk assessment (RA). For RA, an exposure assessment and a hazard 

characterization are needed; yet, the predicted concentration by semi-quantification does 

not directly relate to human exposure, and the prediction of the chemical structure is not 

equivalent for a hazard assessment. Consequently, explorative data requires conversion 

before it can be utilized in risk assessment. 

3.3.1. Exposure assessment for risk prioritization 

Conversion of semi-quantitative data into exposure requires a number of steps. First, the 

usage of FCM for food needs to be estimated. These need to be corresponding to what is 

realistically anticipated contact with food, but in actuality this can vary widely depending on 

food and FCM used. EFSA proposes the standard to be for an average adult consuming 1 

kg of food in contact with 6 dm2 of plastic food packaging each day, but this has been 

suggested as being an underestimation and is only used for plastic materials (Bouma et al. 

2003). However, the estimates by Bouma et al. for contact of a broad range of packaging, 

10–30 dm2 day−1, and the actual fraction of paper and board in packaging, 10 to 20% (FDA 

2007; Duffy et al. 2007), can be used to estimate a paper and board usage. As a result, 

the calculated exposure based on 10–30 dm2 day−1 paper and board with 10–20% usage 

is 1–6 dm2 day−1, which is not substantially different from the 6 dm2 day−1 standard used 

by EFSA. Second, the measured amount of compound needs to correspond to migration. 

Essentially, the extraction procedure prior to semi-quantification must be related with 

anticipated migration. The applied semi-quantitative extraction procedure (full immersion; 

24 hr at 40°C) seem similar to the methods used by the U.S. Food and Drug 

Administration (FDA) for testing uncoated paper (FDA 2007), and also the European Food 

Safety Authority (EFSA) standard for testing plastic materials in contact with water/oil 

emulsions (European Parliament and Council of the European Union 2011a). 

Consequently, the semi-quantified amount in the extract is considered overestimated for 

compounds with the potential to migrate, but is not as severe as a full chemical extraction 

of the material. 
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The exposure estimate can be found by converting the semi-quantified concentration to an 

intake by including the assumptions presented before: the FCM contact is 6 dm2 person−1 

day−1 and observed concentrations resulting from the extraction procedure are 

conceivable, but overestimated. To obtain the intake 𝐼 in μg person−1 day−1, equations 

(3.1) to (3.3) can be used. In these Equations, 𝐶   is the semi-quantified concentration of 

analyte 𝑖  in the extract in μmol liter−1, 𝑀   is the molecular mass or accurate mass of 

molecule 𝑖 in μg μmol−1, 𝑉   is the total volume used for extraction in liter, 𝐴𝑃𝐵  the surface 

area of the tested sample in dm2, and 𝐸𝑆  the average contact exposure in dm2 person−1 

day−1. (3.1) is the single formula for calculating estimated daily intake from a semi-

quantitative experiment. (3.2) is the unit-based formula representation of (3.1). Finally, 

(3.3) is yielded from simplification of (3.2), showing that estimated intake is the product of 

the amount of compound per dm2 contact multiplied by the estimated exposure of contact. 
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3.3.1. Hazard character for risk prioritization 

Obtaining a hazard characterization requires conversion or interpretation of the predicted 

structures. However, manual lookup of hazards, e.g., in literature, for every predicted 

structure is extremely onerous. Promising tools for generating toxicity information in novel 

hazard assessments are Quantitative Structure-Activity Relationship (QSAR) models that 

use statistical tools to relate observed hazards to chemical structural features. Because 

QSAR models require only an input molecule, they are highly compatible with tentative 

data available from exploration. QSAR has recently been applied to FCM chemicals in 

order to prioritize based on hazard, so the application is promising (van Bossuyt et al. 

2017). However, QSAR results can vary greatly on the quality, scope, and application of 

the model. In addition, QSAR models are not available for every possible endpoint and 

may not provide a dose-dependent relationship. Consequently, the use of QSAR in 

explorative analysis is well-suited towards highlighting active compounds, but cannot be 

directly used as a tool to confirm safety. 

Here, all predictions obtained for a single compound are entered into a number of QSAR 

models in order to obtain as much information as possible prior to deciding the possible 

activity of the molecule. The process is currently limited to three well-investigated 

endpoints: Carcinogenicity, Mutagenicity, and Reproductive toxicity (known as CMR). In 

addition, a number of models are used per endpoint to minimize the effect of model 

outliers and to use consensus evaluation on the average prediction result. The result is a 

complex data matrix of n endpoint predictions by m models on p molecules, which may 

ultimately be too difficult to use in light of a hazard characterization. However, the matrix 

can be simplified by reducing dimensions applying a consensus model on the m variant of 

models. Here, the largest vector of prediction outcome plus prediction strength can be 

used as an average predictor across the models, which simplifies the hazard 

characterization. Consequently, the final result is a table of activity probabilities per 

molecule per endpoint. 
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3.3.2. Applying risk prioritization based on explorative data 

The conversion of semi-quantification to exposure and identification to hazards provides 

an early setup for a possible risk prioritization, but since the data is explorative (i.e., 

contains uncertainties) it should be applied with caution. The propagation of uncertainties, 

possibly low-quality predictions of structures, and strong disagreements between structure 

predictions or QSAR predictions invalidates the data for direct use in automated 

processes. Risk prioritization could be considered similar to risk assessment: an expert 

decision reached by consensus after evaluating all available data. Therefore, while all 

steps leading up to risk prioritization have been focused strongly on using automated 

processes, the risk prioritization itself should be mainly a human-based decision. There is 

insufficient scientific support to perform risk prioritization or otherwise risk assessment by 

an inflexible systematic approach rather than expert-based. 

Despite the inability to automate risk prioritization, decision thresholds for exposure and 

hazard are still required. The intake and hazard of a chemical compound need to be 

compared to what constitutes as acceptable or non-acceptable. A concept of considerable 

merit and possibly applicable to explorative data is the Threshold of Toxicological Concern 

(TTC) approach (Kroes et al. 2004; EFSA & WHO 2016). This approach is based on the 

notion that for a newly discovered chemical it is possible to define an exposure limit based 

on chemical structure, below which there is no foreseeable harm given that the compound 

is not carcinogenic, mutagenic, bio accumulative, or otherwise a potent toxicant. Hence, 

the TTC includes both an exposure assessment and a hazard assessment, without 

providing a definitive conclusion on risk, which makes it suitable to be applied on 

explorative data.  

To facilitate risk prioritization on explorative compound data, a TTC-like decision approach 

was combined with manual expert assessment (Manuscript C). The classification 

approach follows a stepwise evaluation of all available information from exploration, like 

semi-quantification and tentative identification, but the final risk profile is decided by an 

expert assessor. First, the predictions of chemical structures are evaluated for the number 

and quality of relevant predictions, which predictions make sense chemically, and how 

each prediction compares to other predictions in order to establish a chemical picture of 

the most likely chemical structure. When the structure predictions are considered 
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sufficiently informative, the corresponding QSAR predictions are evaluated for any 

possible CMR alerts that indicate hazard and which may exempt the compound from 

exposure assessment, similar to the TTC approach. Following no alerts, the calculated 

intake is compared to thresholds assigned for each respective Cramer class, gained from 

a structure assessment.  

 

 

Figure 20: Schematic displaying the workflow from explorative data towards risk ranking, which is used in 

risk prioritization. Figure is adapted from Manuscript C. 

The risk prioritization strategy presented groups the discovered compounds according to 

the estimated risk based on tentative data. The grouping process classifies chemical 

compounds, based on both data-driven decisions and expertise-based decisions, into 

three risk profiles: compounds of direct concern, compounds of lesser concern, and 

compounds that lack sufficient data (Figure 20). The classification is broad by using only 

three classes; yet, from a RA point of view this less desirable, most notably by omitting an 

“in-between” option. However, a broad classification is unavoidable because the 

uncertainties in the data do not allow for sharp boundaries between the categories. 

Consequently, the presented risk prioritization approach identifies high-priority and lower-

priority chemical compounds without assigning a quantitative risk. 
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3.4. Manuscript A: Exploration - Semi-quantification 

 

Title: A framework to estimate concentrations of potentially unknown 

substances by semi-quantification in liquid chromatography 

electrospray ionisation mass spectrometry 

Journal: Analytica Chimica Acta, Volume 975, 2017, Pages 30-41, ISSN 

0003-2670, https://doi.org/10.1016/j.aca.2017.03.054 

Author(s): Eelco N. Pieke, Kit Granby, Xenia Trier, Jørn Smedsgaard 

Keywords: semi-quantification; untargeted analysis; liquid chromatography-

mass spectrometry; electrospray ionisation; method optimisation; 

screening 

Contact: Eelco N. Pieke: enpi@food.dtu.dk, eelco.pieke@gmail.com 

Contributions: Design of the experimental design, experimental work, data 

analysis, and writing of the manuscript was done by EP. The 

overall concept of the study was developed collaboratively by XT 

and EP. Revision and correction of manuscript proofs was 

performed by EP, KG, JS, and XT. 

Supplement: Supplementary text and visual material to this manuscript is 

available in the Appendix, starting at page 147. 

Supplementary non-text files can be downloaded from: 

https://doi.org/10.1016/j.aca.2017.03.054 
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3.5. Manuscript B: Exploration - Tentative Identification 

 

Title: Exploring the chemistry of complex samples by tentative 

identification and semi-quantification: a food contact material case 

Journal: Journal of Mass Spectrometry, Volume xxx, 2018, Pages xx-xx, 

ISSN 1096-9888, http://dx.doi.org/10.1002/jms.4052 

Author(s): Eelco N. Pieke, Jørn Smedsgaard, Kit Granby 

Keywords: structure assessment; mass spectrometry; semi-quantification; 

exploration; food contact materials 

Contact: Eelco N. Pieke: enpi@food.dtu.dk, eelco.pieke@gmail.com 

Contributions: Design of the experimental design, experimental work, data 

analysis, and writing of the manuscript was done by EP. The 

overall concept of the study was developed by EP with input from 

JS and KG. Revision and correction of manuscript proofs was 

performed by EP, KG, and JS. 

Supplement: Supplementary text and visual material to this manuscript are 

available in the Appendix, starting at page 166. 
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3.6. Manuscript C: Risk prioritization strategies 

 

Title: Prioritization before Risk Assessment: the viability of uncertain data 

on food contact materials 

Journal: Manuscript submitted to Regulatory Toxicology and Pharmacology. 
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Rivière 
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downloaded electronically from a dedicated Google Drive link. 
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4.1. Non-targeted analytical strategies for exploration 

4.1.1. Semi-quantification 

Semi-quantification allows quantification of any detected substance without needing 

reference standards, instead using a predefined mixture of markers as quantification 

endpoints. This eliminates the need for quantification to obtain a reference standard for 

every chemical compound. Hence, semi-quantitative methods are interesting to estimate 

concentration of compounds in a number of fields, in particular when dealing with unknown 

compounds as the procedure does not require identification of chemical compounds. This 

is for example not the case using response factor (RF) prediction in ESI (Caetano et al. 

2005; Kruve et al. 2014), where the structure must be known before the response can be 

predicted. Ensuring sufficiently reliable semi-quantification requires the use of 

representative quantification markers (QMs) and a thorough optimization of ESI source 

parameters to minimize the differences in response factors. However, semi-quantification 

requires some technical expertise in mass spectrometry and some pre-existing knowledge 

about the sample. Consequently, semi-quantification can be optimized for the sample of 

interest where it provides an untargeted and simplified concept for quantitative 

experiments on unknown substances that require minimal prior knowledge on the chemical 

compounds. 

Before semi-quantification can be considered as a suitable alternative to traditional 

quantification, there are a number of aspects that need to be investigated. The 

fundamental limitation of semi-quantification is that the prediction error in concentration is 

still relatively large. To reduce this error, the role of QMs needs to be better studied, 

especially in regards to what makes a QM suitable or unsuitable, and on which properties 

the QM should be preferred. Secondly, the prediction error may be reduced by improving 

chromatography by the use of hydrophobic Interaction chromatography (HILIC), or 

perhaps by further ESI source optimization, like the using nano-ESI to improve responses 

and reduce the effects of suppression (Moreno-González et al. 2017). Finally, a correction 

for suppression effects in the LC-MS for the AOI and QM may also be used, e.g., like 

Kaufmann & Butcher (2005), as this can improve the quantification results. 
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4.1.2. Tentative identification 

Identification of chemical compounds via mostly untargeted screening approach is a viable 

strategy to obtain more information on the chemical composition of a sample. For most of 

the chemical compounds selected by dynamic targeting, the interpretation of mass spectra 

provided an appreciable level of information on the chemical structure. For a number of 

compounds, it was possible to obtain a chemical structure with very high certainties. Most 

of the predicted structures contained some uncertainty, which is expected using a limited 

amount of information; however, the predicted structures provided an overall impression of 

the chemical “picture”, which is significantly better than having no structural information. 

Due to the use of different databases with chemical compounds, the tentative identification 

was capable of identifying both well-known and unexpected compounds. As the 

requirements used in tentative identification are fairly low, e.g., not using a reference 

standard or isolating the compound for structure confirmation, it provides a substantial gain 

in speed and capacity while information on an unknown compound is not comprehensive. 

While tentative identification provides valuable data, there are still a number of 

improvements needed. The automated interpretation of mass spectra by fragment 

correlation can especially limit the range and quality of the results. First, the interpretation 

relies on a number of existing databases; therefore, the quality of prediction is inherently 

restricted by the quality and appropriateness of the databases. However, databases for 

tentative identification are considerably easier to develop than those needed for targeted 

analysis. Secondly, correlation is a simplified approach for a complex concept like 

fragmentation, and this requires manual confirmation to confirm the absence of overfitting 

mass spectra on a chemically unlikely substance. The use of advanced data interpretation 

based on artificial intelligence, like neural networks, could greatly improve automatic 

interpretation of mass spectra, since these systems can be designed to interpret a 

spectrum like a human would. This could eliminate the need for existing databases since 

the system can be taught to create chemical structures based on likeliness, thereby also 

reducing the possibility of overfitting. 
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4.2. The role of exploration: now and in the future 

The development of explorative strategies (exploration) in risk assessment is 

characterized by minimizing prerequisite information and avoiding time and resource 

constraints imposed by compound-specific or targeted methods. Exploration as a high-

throughput untargeted method fills a critical analytical gap in research fields that call for 

rapid identification and characterization of chemical compounds in complex or poorly-

studied samples without the availability of reference standards. The primary goal of 

exploration is to discover chemical compounds that may be of high relevant but where little 

prior information is available for, or we do not have specific analysis methods for, rather 

than continue investigating already well-known chemical compounds. One application for 

exploration included in this study is the discovery of chemical compounds that have 

potential to migrate to food and pose a certain food safety risk. Other examples of 

research fields that would benefit from exploration are environmental analysis or 

metabolomics used to unravel biochemical pathways. The exact implementation of the 

exploration results depend strongly on the field of research and the applicable goal of the 

study. Here, the results are applied to risk prioritization, but in metabolomics they could be 

used for generating a biochemical fingerprint.  

An important aspect of exploration studies is the capacity to build a continuous and 

profound knowledge of the samples investigated even when no direct application of the 

data is defined. The chemical untargeted nature of exploration makes the strategy well-

suited to discover and record new chemical compounds and provide new insights on 

concentration and identification. Even though the data from exploration has inherent 

uncertainty, the increase in knowledge from having no information to a predicted chemical 

structure and/or concentration estimate is invaluable. Moreover, the knowledge-building 

function of exploration can be used in development of databases. These databases of 

discovered chemical compounds can be used in a non-target screening approach on new 

or similar samples for these discovered compounds, or for newly validated QSAR models 

to test for any new hazards. Consequently, generation of chemical databases can also be 

used to make future screening faster, and even to identify new hazards. 

It is likely that explorative studies will play a much greater role in FCM analysis in the 

future, because they are complimentary to tools like QSAR and migration modelling. One 
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of the major challenges in FCM analysis is the need for automated and high-throughput 

methods to cope with the huge diversity and rapid changes in the field of new materials. 

An example is the availability of a migration model that works for multiple FCMs that might 

make specific migration tests redundant, which makes the most critically needed 

information is what chemical compounds are present and in which concentration in the 

food contact material. In addition, the development of QSAR models for an increased 

number of available toxicity endpoints with more reliable results combined with improved 

tentative identifications enable better identification of hazards from a wide range of 

chemical compounds without the need for individual testing.  

4.3. The application of risk prioritization based on tentative data 

The need for a risk prioritization framework that permits early hazard identification for 

possible chemical exposure is because comprehensive risk assessment of chemical 

substances is slow and costly, therefore unrealistic for a large number of chemical 

substances. By performing an early-stage prioritization of chemical risk based on tentative 

data from exploration experiments, it is possible to rank chemical compounds on their 

tentative risk profile. In this study a risk prioritization tool has been developed in the form of 

a decision tree that is demonstrated in combination with expert decisions. The results 

show that the decision tree approach including expert decisions by an assessor is suitable 

for classifying compounds discovered by exploration, but that differences in risk profiles 

occur due to different data interpretations by assessors, or due to differences in 

confidence on uncertainty in data.  

Risk prioritization as demonstrated requires expert assessment in most of the steps, and is 

thus difficult to implement on a very large number of compounds. As each decision in the 

approach must be evaluated by an expert, evaluating of a large number of compounds can 

be limited by time, or by disagreement in the assigned risk profile between experts. 

Nevertheless, expert disagreements are not necessarily unique to risk prioritization, as 

may similarly occur in RA. Hence, disagreements are not necessarily as a disadvantage or 

limitation of the approach, as they permit dialogue on risk-related decisions. Yet, in order 

to improve capacity of the approach for more compounds, the possibility of automated 

decisions within the tool has been discussed extensively with risk assessors. One of the 
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key learnings was that most risk assessors are uncomfortable with having too little control 

in the decision process. While it may be possible to automate a substantial part of the risk 

profile decision, this would also limit the expert influence and thereby reduce the experts’ 

trust in the final decision.  

Aside from a reduction in expert trust upon automation of the decision tree, it is also 

complicated to implement automation when uncertainties have to be included. For 

example, the recorded exposure to a chemical compound with no significant 

Carcinogenicity, Mutagenicity, or Reproductive Toxicity (CMR) alerts can exceed the given 

TTC limit, e.g., at 150% of the limit. However, this excess still falls within the error margin 

of semi-quantification. In those cases, it would be difficult to automatically assign a risk 

profile since the prediction results fall within the uncertainty of the methods. Consequently, 

all other sources of data will need to be collectively studied for a risk profile decision. 

These other sources include the non-significant predictions by QSAR, quality of the 

chemical structure prediction, evaluation of assigned TTC class, and experience with 

similar substances. Including these parameters in a decision is not readily achieved by a 

simple decision model, and some of the parameters are for human evaluation. Hence, 

while simplification of the decision tree by automating improves the speed of decisions, it 

is difficult to implement. The use of more advanced machine learning — like neural 

networks — may provide an outcome in this respect similarly as for the identification. 

The tool as demonstrated here provides a valuable framework for the development of 

newer generations of risk prioritization approaches. While the implementation of risk 

prioritization based on tentative data can be challenged, there is need for a strategy like 

this. Improving the data quality obtained by exploration will assist in reducing the 

disagreements in especially human evaluated risk profile decisions, therefore the 

prioritization should be available more rapidly (see also discussion in Manuscript A (3.4), 

Manuscript B (0), and discussion of results (4.1)). However, all chemical compounds will 

still need to be assessed comprehensively as required by the current principles of RA, but 

the order in which to do so can be based on available risk profiles obtained from 

prioritization studies. Consequently, risk prioritization based on tentative data does not 

eliminate the need for comprehensive chemical RA, but instead ensures that RA of high-

risk substances is done with a higher priority.  
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4.4. Final remarks 

The outcome of this thesis is for a large part the result of many scientific discussions and 

presentations on the current status of risk assessment, and how to move forward. There 

has been significant discussion on the technical aspects of what moving forward will 

constitute of and what it will require, but perhaps less on a visualization of the problem at 

hand. An image that leads to considerable discussion on this topic is the crude 

representation of choices as illustrated in Figure 21: “the choice to do nothing should be 

deliberate.” This reflects the current situation of NIAS where most of the unknown NIAS 

are forced down the “do nothing” path as there is simply insufficient information to do 

something. This is — of course — undesirable for numerous reasons which have been the 

driving force behind this research, and the reasons are repeatedly highlighted throughout 

this thesis. Yet, even though the current situation with unknown chemicals is unacceptable 

in a number of ways, it is actually common. In order to truly ensure safety, each decision, 

“do something” or “do nothing”, should be motivated by adequate information rather than a 

lack of information. 

 

Figure 21: For chemical contamination in food, the choice can be greatly simplified to taking no action or 

taking action, regardless of whether this decision is deliberate or not.  
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Analytical strategies and perhaps research in general tend to favour the “easy” approach 

by focusing primarily on a limited number of well-studied compounds. When a chemical 

compound or group of compounds are identified as a risk, this leads to a significant 

increase in research on that particular risk. Some examples of this system are bisphenol 

A, benzophenone, acrylamide, and currently mineral oils. Because resources are devoted 

to these “high value” topics, substantially less research is being performed on the huge 

number of unknown chemical compounds, e.g., in FCM. Essentially, this behaviour 

observed in food safety follows a hype profile, and in fact it is harmful to establishing a 

broader concept of food safety that includes all possible chemical interactions. Clearly, 

specific and in-depth research on hazardous chemicals for a proper risk assessment is 

needed, but the possible very high risk of a large amount of non-identified chemical 

compounds should not be neglected in the process.  

Trusting food is paramount to our society, and safety is a critical component of this trust. 

To ensure the current and future food safety, we need to change our mind-set on 

analytical strategies, but also in the way of thinking about risk assessment and mitigating 

risk. The core idea of the work presented here is to present how a change in mind-set may 

look like: a paradigm shift in the conceptualization of data and how data-driven 

approaches can be utilized to fill the information gaps in risk assessment for mitigation and 

control. How these shifts are to be practically realised is of course a matter of debate even 

at the completion of this study, but the need for this change should be obvious: tentative 

and explorative data is needed because the current alternative is no data. 
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