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Abstract: We report an approach of using an interlayer of single layer graphene (SLG) for 
electroluminescence (EL) enhancement of an InGaN/GaN-based near-ultraviolet (NUV) 
light-emitting diode (LED) with an aluminum-doped zinc oxide (AZO)-based current 
spreading layer (CSL). AZO-based CSLs with and without a SLG interlayer were fabricated 
on the NUV LED epi-wafers. The current-voltage (I-V) characteristic and the EL intensity 
were measured and compared. We find that the LED without the SLG interlayer can possess a 
40% larger series resistance. Furthermore, a 95% EL enhancement was achieved by the 
employment of the SLG interlayer. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (230.0230) Optical devices; (230.3670) Light-emitting diodes. 
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1. Introduction

Near-ultraviolet (NUV) light-emitting diodes (LEDs) have attracted significant research 
interest due to their applications in various fields including white LED light sources, detection 
systems of biochemical agents, non-line-of-sight communication, water purification and so on 
[1–3]. However, their performances are still limited due to the challenge of finding a highly 
conductive current spreading layer (CSL) to the NUV-LED with high NUV transparency. 
This issue comes from the difficulty in growing a highly Mg-doped p-GaN because of its high 
activation energy and the formation of Mg-H complexes [4, 5]. In addition, for GaN-based 
LEDs, it is difficult to find an appropriate CSL material having a sufficiently high work 
function for p-GaN, thus leading to a large Schottky barrier height (SBH) at the p-GaN/CSL 
interface [5–8]. The conventional Ni/Au CSL has a good electrical performance on p-GaN, 
but the low transparency in the NUV range hinders its use in NUV LEDs [8–10]. Today, 
indium tin oxide (ITO) with superior conductivity and transparency has been widely used as a 
CSL material in NUV LEDs [11–13]. However, the cost of ITO can grow high in the future 
due to the scarceness of indium while its thermal stability is not satisfactory [14, 15]. 
Aluminum-doped zinc oxide (AZO) is an alternative indium-free material, which has similar 
electrical and optical properties. It is also low-cost, nontoxic and more stable at high 
temperatures, that offers substantial attractions in NUV LEDs [16, 17]. Electrical 
characteristics could also be significantly improved by insertion of a Ni-based interlayer 
between the AZO film and the p-GaN layer [18–20]. This is due to the formation of Ga 
vacancies near the surface of p-GaN leading to a decreased contact resistivity. Here, we 
propose an approach to further improve the performance of AZO-based CSLs in NUV LED 
applications. 

Single layer Graphene (SLG) is a two-dimensional carbon material consisting of a 
hexagonal array of carbon atoms, which is known for possessing outstanding properties 
including high carrier mobility, good thermal conductivity and mechanical stability [21–23]. 
Moreover, the high transparency in a wide spectral range including NUV makes it a 
promising transparent CSL material in NUV LED applications [24, 25]. Furthermore, in 
terms of the work function, graphene is more superior when compared to the reported work 
function of AZO [26–30]. This indicates a potential of being an effective interlayer to 
improve the performance of AZO by modifying the SBH. The SBH depends on the work 
function of the CSL material in contact and the sum of the electron affinity (4.1 eV) and the 
bandgap (3.4 eV) of the p-GaN (7.5 eV in total) [31–34]. In order to maximize the drive 
current and minimize the leakage current under a certain voltage, the work function of the 
CSL material is desired to be greater than 7.5 eV for p-GaN. Due to the difficulties of finding 
a conductive material with a work function larger than 7.5 eV, another option is to reduce the 
SBH by decreasing the difference through the employment of a material with a sufficiently 
high work function [31–34]. The reduction of the SBH can result in a lower contact resistance 
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on the top of a NUV epi-wafer with a transferred 6× 6 mm2 SLG sheet. Afterwards, the Ni 
layer was treated by rapid thermal annealing using Jipelec JETFIRST (SEMCO Technologies, 
Montpellier, France) in air at 525 °C  for 5 minutes to increase its transparency. Subsequently, 
a layer of 250 nm AZO with a sheet resistance of 70 Ω/sq was deposited by a sputtering 
cathode TORUS (Kurt Lesker, Clairton, USA), using a ZnO target containing 2% Al2O3 [38]. 
Identical fabrication steps were also applied on the NUV epi-wafer without the SLG and also 
on sapphire samples with and without a SLG. Consequently, two types of CSLs were 
fabricated on both the NUV epi-wafers and the sapphire samples. In the end, for the NUV 
epi-wafer with the CSL A (sample A) and for the NUV epi-wafer with the CSL B (sample B), 
a diamond pen was used to expose the n-GaN layer and indium spheres were added to their p-
GaN and n-GaN surfaces for current injection, respectively, as shown in Fig. 1. In addition, 
silicon (Si) samples with the surface partially covered by gold (Au) and partially covered by 
SLG, AZO or Ni were fabricated assisted with standard photolithography and lift-off 
processes for work function measurements. 

2.3 Characterization 

The transmittance of the CSLs on the sapphire substrates was measured using an OL 700-71 
6-inch diameter integrating sphere system (Gooch & Housego, Ilminster, UK) assisted with a
Xenon lamp and a CAS 140 B optical spectrometer (Instrument Systems, Munich, Germany).
The thickness of the transferred SLG sheet was characterized by Raman spectroscopy, using a
DXRxi Raman imaging microscope (Thermo Scientific, Waltham, Massachusetts, USA). The
Raman spectrum of the graphene was recorded with an integration time of 25 seconds, using a
633 nm laser with a power of 8 mW. The electroluminescence (EL) spectra were obtained
using a fiber-coupled optical spectrometer. The current-voltage (I-V) data from the LEDs
were obtained using a Model 2450 Interactive SourceMeter instrument system (Keithley,
Solon, Ohio, USA). The work function measurements were carried out using PeakForce
Kelvin probe force microscopy of a Dimension Icon atomic force microscope (AFM)
(Bruker, Billerica, Massachusetts, USA).

3. Results and discussion

The transmittance for the two types of CSLs deposited on sapphire samples was measured in 
the wavelength range of 380-430 nm, as shown in Fig. 2. For the CSL B on sapphire, the 
transmittance is 66% at 386 nm while the CSL A on sapphire only suffers a small 
transmittance loss at 386 nm by adding the SLG interlayer and confirming the high 
transparency of SLG in the NUV range. 
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Fig. 2. Optical transmittance spectra of a SLG/Ni/AZO CSL (CSL A) and a Ni/AZO CSL 
(CLS B) on sapphire samples in a wavelength range of 380-430 nm. 

Fig. 3. Raman spectrum of the transferred SLG on sample A collected using a 633 nm laser 
with a power of 8 mW. 

Figure 3 shows the Raman spectrum obtained by measuring the SLG transferred onto 
sample A. There are two dominant peaks which are the G peak at ~1580 cm−1 and the 2D 
peak at ~2700 cm−1 in the Raman spectrum of the SLG confirming the existence of the 
transferred SLG. The G to 2D peak intensity ratio identifies the thickness of the graphene 
layer. In our case, the value of IG/I2D is smaller than one (IG/I2D = 0.67) and 2D-band has a full 
width at half maximum of ~60 cm−1 indicating the graphene layer is a SLG [39, 40]. 
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Fig. 5. Work functions of SLG, AZO and Ni (left region) in comparison with that of Au (right 
region). 

To study the physics behind the EL enhancement by applying the SLG interlayer, work 
function measurements were carried out and the results are shown in Fig. 5. As indicated in 
the graph, SLG (4.85 eV) has a higher work function than Ni (4.48 eV) and AZO (4.74 eV). 
The Ni layer deposited for work function measurement was also treated by rapid thermal 
annealing in air at 525 ℃ for 5 minutes. The higher work function of SLG than that of Ni or 
AZO causes a reduction of the SBH at the interface of the contacting layer and the p-GaN 
consequently allowing an easier carrier injection process through the p-GaN layer [5–8]. A 
simplified performance comparison as a contact layer on p-GaN between SLG and AZO can 
be made. According to the reported curve in [6] demonstrating the relationship between work 
functions and contact resistances, the work function difference of 0.11 eV between AZO and 
SLG leads to a 1.5 times larger contact resistance of AZO on p-GaN. This can be estimated 
that, in contrast with AZO, the current through the SLG interlayer can be increased by 50% 
under an identical voltage when the other relevant resistances are kept identical. This 
estimated result is comparable to the 40% increase for the current measured on sample A at 8 
V shown in Fig. 4(d). The comparison was made to AZO instead of Ni because in this work 
the employed 2 nm thin thickness and the 525 ℃ annealing temperature for Ni can lead to 
self-organization of Ni into nanoscale islands hence letting AZO in contact with p-GaN [41, 
42]. 

4. Summary 

In summary, two types of CSLs which are SLG/Ni/AZO and Ni/AZO were successfully 
fabricated. This was done by using a standard graphene transfer process followed by 
deposition of Ni and AZO on both the p-GaN layer of the InGaN/GaN-based NUV-LED epi-
wafers and sapphire substrates. The transmittance of the CSLs was measured and SLG shows 
a low transmittance reduction at a wavelength of 386 nm indicating its high transparency in 
NUV range. In addition, the graphene sheet was identified by micro-Raman spectroscopy 
confirming its type of SLG. In I-V characterization, it is shown that the LED without the SLG 
interlayer can possess a 40% larger series resistance. Furthermore, a 95% EL enhancement 
was achieved for the epi-wafer with the SLG interlayer. The improvement of EL and I-V 
performance can be explained by the high work function of SLG. Based on the optical and 
electrical characterizations, we conclude that SLG interlayers can improve the performance of 
NUV LEDs with AZO-based CSLs. 
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