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Abstract. 

Electron transfer (ET) is broadly described by Marcus-type theories, and plays a central role in 

many materials and catalytic systems and in biomolecules such as cytochromes. Classic ET 

processes are the self-exchange reactions between hydrated transition metal ions such as Fe2+(aq) 

+ Fe3+(aq) → Fe3+(aq) + Fe2+(aq). A well-known anomaly of Marcus theory is Co2+/Co3+ 

exchange, which proceeds ~105 times faster than predicted. Co3+(aq) is a complex and reactive 

system widely thought to feature low-spin Co3+. We studied the self-exchange process 

systematically for Cr2+/Cr3+, V2+/V3+, Fe2+/Fe3+, Co2+/Co3+ using six distinct density functionals. 

We identify directly the ~105 anomaly of Co2+/Co3+ from the electronic reorganization energies 

without use of empirical cross relations. Furthermore, when modeling Co3+ as high-spin, the 

anomaly disappears, bringing all four processes on a linear trend within the uncertainty of 

experiment and theory. We studied both the acid-independent [Co(H2O)6]
3+ species that 

dominates at low pH, and the acid-dependent [Co(OH)(H2O)5]
2+ species that becomes important 

at higher pH, and use two distinct explicit second-sphere hydration models and models of 

perchlorate anion association. The high-spin state with weaker Co-O bonds is stabilized by 

vibrational energy and entropy by ~11 and ~12 kJ/mol, correcting gap estimates from absorption 

spectroscopy. High-spin Co3+(aq) explains the full experimental data series of the M(aq) 
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2 

 

systems. Low-spin Co3+ and high-spin Co2+ involves changes in eg occupation upon electron 

transfer, with associated M-O bond changes and increased reorganization energy. In contrast, 

with high-spin Co3+(aq) the redox-active electrons shuffle between t2g orbitals to minimize 

structural changes, producing a relative rate in excellent agreement with experiment. This eg 

occupation effect explains most of the experimental differences in rate constants, with the 

remaining part explained by second-sphere hydration and anion effects. Our results consistently 

suggest that some high-spin Co3+(aq) is active during the experiments. 

Keywords: Electron transfer, DFT, reorganization energy, Marcus theory, metal complexes, 

cobalt 
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3 

 

Introduction. 

Electron transfer is the most fundamental process of chemistry and plays a central role in broad 

areas of catalysis and materials science and in the two fundamental life processes respiration and 

photosynthesis; these processes are broadly described by the semi-classical theory inspired by 

Libby1 and developed by Marcus and others2–7. A central equation of this theory is the 

relationship between the reorganization energy and the overall rate of electron transfer2, 

simplified as: 

 ��� = �	��	 
�(�

��)�

���� �       (1) 

where E
0 is the redox potential of the reaction and λ is the reorganization energy. The pre-

exponential factor A includes all the electronic and vibrational coupling of the donor and 

acceptor states and the normal terms describing the diffusion-controlled collision of reactants. 

Another central equation is the Marcus cross relation that predicts the rate of an ET process from 

the constituent self-exchange rates of each redox couple2,8: 

 ��� = �������������        (2) 

where k12 is the cross ET between two different systems, K12, is the equilibrium constant of the 

cross reaction, k11 and k22 are the corresponding self-exchange rate constants for each system, 

and f12 relates the other terms to the total pre-exponential factor2,9. Marcus theory has commonly 

been tested by exploring the validity of equation (2). 

 A particularly classic electron transfer process is the self-exchange between hydrated 

transition metal ions such as Fe2+(aq) + Fe3+(aq) → Fe3+(aq) + Fe2+(aq) that figure already in the 

early work by Libby1 and have implications for many electrocatalytic processes2,9–11. These self-

exchange reactions challenge the theory by apparently not all following the “pure” outer-sphere 
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4 

 

mechanism: A particular well-known anomaly is the self-exchange of the Co2+/Co3+ pair (kET ~5 

M-1s-1)12, which is much faster than predicted13 from equation (2) using Marcus theory2. Two 

explanations have been given for this anomaly, one by Winkler et al.14 involving a high-spin 

state rather than the commonly assumed and observed low-spin state of hydrated Co3+, a 

hypothesis also discussed by Sutin15, and the other involving a deviation from the outer-sphere 

mechanism by ligand bridging between the two cobalt centers as suggested by Endicott et al.13 

The question of the spin state of hydrated Co3+ is of substantial interest on its own: Water 

being a relatively weak-field ligand induces high-spin in all other hexaqua ions of the first row of 

the d-block, yet the +3 charge and maximal ligand field stabilization energy of the t2g
6 

configuration causes Co3+ to have the largest low-spin propensity among these systems16. Fe2+ 

also has maximal ligand field stabilization energy in low-spin but only +2 charge and thus has 

larger propensity to be high-spin than Co3+.16 The opposed effects of the metal ion and ligand 

bring Co3+(aq) conspicuously close to spin crossover (SCO), as argued already by Taube et al.17, 

and evident from comparison of metal-ligand combinations using spin-state-balanced density 

functional theory (DFT)16. In fact, since [CoF6]
3− is high-spin and [Co(H2O)6]

3+ is broadly 

thought to be low-spin, there is some ligand field strength between F− and H2O in the 

spectrochemical series that produces SCO for Co3+; these two ligands are close in the series 

indicating by itself that high-spin is not very high in energy in Co3+(aq).  

Taube et al. found low-spin Co3+(aq) in their magnetic measurements17. Absorption 

spectroscopy puts the high-spin state ~0-37 kJ/mol above low-spin14, whereas NMR 

paramagnetic shifts were used by Navon to suggest > 23 kJ/mol18. Taube and co-workers17 and 

Winkler, Rice, and Gray14 suggested high-spin to be at +17 kJ/mol once correcting the vertical 

excitation data by Johnson and Sharpe19 for the high-spin excited state geometric relaxation.  
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5 

 

These reports have been used to argue against a high-spin mechanism of self-exchange 

ET10. A cobalt cluster was synthesized with a fixed coordination-number, preventing inner-

sphere reaction, and a presumably higher propensity to be high-spin than Co3+(aq) viz. its 

oxygen-donor ligand field; this cluster still displayed low-spin Co3+ and a slow exchange rate, in 

support of an inner-sphere mechanism of Co3+(aq) as it is then apparently not high-spin10. The 

interpretation has implications for the rationalization of other processes, e.g. the self-repair 

function of cobalt-based oxygen-evolving complexes, which relies on fast cobalt electron 

transfer10.  

A major problem in all experimental reports on Co3+(aq) is its complexity and reactivity 

in solution: The solution may contain dimeric species and standard protocols invoke strong acid 

to study the system20, and only a few crystal structures have been obtained that include the 

hexaquacobalt(III) first coordination sphere21. Thus, the interest is not in a complete account of 

all species present under various conditions, but an account of the species that must be 

chemically active to explain the experimental data. 

In this work, we obtain directly from DFT-derived electronic reorganization energies the 

Co2+/Co3+ anomaly of Marcus theory. Using equation (1) and because E0 for these self-exchange 

processes is zero, if these are all outer-sphere reactions we expect a linear fit of the type: 

 ��	��� = ��
���+ ���	         (3) 

Thus, if Marcus outer-sphere theory is valid and the reactions otherwise behave similarly, we 

should have the strong linear requirement:  

��	��� ∝ 	−"          (4) 
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6 

 

If the experimental data correlate with electronic reorganization energies, outer-sphere Marcus 

theory is valid for the systems and process observed. Any deviation from a straight line on the 

other hand indicates that the systems of interest are not explained by Marcus theory, or the errors 

in the computed or experimental data are too large to show such a linear relationship.  

We discuss the involvement and accessibility of the high-spin state of Co3+(aq), and we 

reinterpret previous reports14,17,18,22. It is well-known that vibrational zero-point and entropy 

differences both favor the more loosely bonded (due to occupation of the eg orbitals) high-spin 

states of mononuclear coordination complexes by 10−15 and 10−30 kJ/mol, respectively23–25.  

The M3+(aq) complexes have pKa ~ 2−426,27 and are thus deprotonated in their first 

hydration sphere unless in strong acid. The Brønsted acidity26 affects the electronic structure and 

self-exchange by producing two contributions to the overall observed rate; one due to the 

protonated species (k1) that dominates completely at low pH, and one due to the deprotonated 

species that builds up at higher pH (k2)
12: 

 #$%� = 	���&'(()))*&'(())))* = 
�� + +�
&,-*� &'(()))*&'(())))*   (5) 

 We show below that the cobalt anomaly disappears to within the uncertainty in 

experimental and theoretical methods with high-spin Co3+(aq); the result is robust against 

structural model, choice of experimental data, and theoretical method. The rate differences are 

almost completely described by structural changes caused by eg orbital occupation. We argue 

that the anomaly has arisen from use of rate constants in cross reactions based on low-spin Co3+, 

which produce slower ET with reduced redox partners that have eg partially occupied, whereas 

high-spin Co3+ is fast.  
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8 

 

Computational Methods. 

We studied the hexaqua complexes and larger second-sphere hydrated models of the transition 

metal ions Co2+ and Co3+ and also of several related systems Cr2+/Cr3+, V2+/V3+, and Fe2+/Fe3+, 

for which experimental self-exchange rate constants have been reliably produced by several 

groups9,11,28–31. Mn2+/Mn3+ has received less attention due to experimental issues, and results 

vary by 5 orders of magnitude15, which is not reliable enough to infer any specific mechanism; 

thus they were not included in the lists by Chou et al.28, Newton and Sutin9, and in this work. 

 All computations were performed using the Turbomole software, version 7.032. All 

densities and energies were converged to 10−6 a.u., and the resolution of identify approximation 

was used to speed up all calculations33,34. To enable correct computation of the reorganization 

energies at their exact positions on the potential energy surfaces, we computed both the energies 

and the fully optimized geometries using the fully polarized def2-TZVPP basis set35, with 

polarization functions also on hydrogen to account for the polarization effects of the many water 

protons during geometry relaxation upon electron transfer.  

 Six  density functionals were investigated to understand how such methods perform: PBE 

and PBE036 as representative non-empirical GGA and hybrid functionals, B-LYP and B3-LYP37–

39 as representative non-hybrid and hybrid functionals using the LYP correlation functional, and 

TPSS and TPSSh40,41 as representative non-hybrid and hybrid meta functionals. PBE0 and B3-

LYP include 25 and 20% HF exchange, whereas TPSSh includes 10% HF exchange.  

 The self-exchange inner-sphere reorganization energies were computed as42: 

 λ = Eel(M
2+(M3+)) − Eel(M

2+(M2+)) + Eel(M
3+(M2+)) − Eel(M

3+(M3+))  (6) 

where Eel(M
2+(M3+)) is the electronic energy evaluated as the converged single-point energy of 

species M2+ on the optimized geometry of species M3+. To ensure accurate reorganization 
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9 

 

energies, all energies were computed using the exact same method and basis set for all six 

functionals, i.e. the geometries of all models were optimized separately using all six functionals. 

All the optimized structures are in supplementary xyz-files and the electronic energies are 

reported for easy reproducibility in the Supporting Information, Tables S1−S24. 

 To account for solvation effects the dielectric continuum model COSMO was used 

consistently for both geometry optimizations and single-point energies43,44. The electrostatic 

screening improves the vertical ionization energies and electron affinities used to compute λ45,46. 

To describe the electrostatic screening of water, ε = 80 was used for all computations. As the 

effective radius of solvation, the default optimized radii were used for all atoms, except for the 

metal ions which were modeled using a radius of 2.0 Å, as usually applied23 (this has little effect 

on coordination-saturated complexes but may affect unsaturated complexes where the solvent 

probe approaches the metal ion47–49. Varying the radius from 1.4−2.7 Å changed Cosmo 

solvation energies by maximally ~6 kJ/mol48).  

 Long range dispersion interactions were accounted for using the D3 dispersion 

correction50, applied to all calculations, both geometry optimizations and single-point energies, 

because the reorganization energies in principle require the energies to be evaluated at the exact 

minima of the potential energy surfaces, i.e. obtained using the same method. We know from 

previous work16 that the dispersion forces favor the more compact M3+ states and in the case of 

the Co3+, the low-spin state more than the high-spin state, and these dispersion effects are non-

negligible. 

 The effect of spin state was investigated by performing geometry optimization of 

Co2+(aq) and Co3+(aq) in both spin states. Tables S25-S27 provide numerical information on the 

gap between high-spin and low-spin. Co2+(aq) was only studied for comparative purposes at it is 
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10 

 

clearly high-spin. The geometry-optimized Co3+(aq) structures in both spin states were used to 

compute the reorganization energy as in the other M(aq) systems. 

 Because the pKa values of the M3+(aq) complexes vary between 2−451,52, two species are 

relevant, one acid-independent species [M(H2O)6]
3+ that controls k1, and one M(H2O)5OH]2+ that 

controls k2 of Equation (5); the importance of the latter increases with pH. We thus also 

investigated models with a deprotonated water in the first hydration sphere. Models with a 

second hydration sphere were also consistently studied for all complexes such that the 

compensating second-sphere hydrogen bonding effects on structural reorganization were 

accounted for. To estimate the absolute potentials, the electronic energies of the deprotonated 

M3+ systems were reported with the proton affinity of water added, i.e. .,/0- − .,�0, calculated 

following the same procedure as other molecules (see Supporting information, Table S29). 

Standard half potentials E½
0 were computed from the fully geometry-relaxed ground states by 

correcting for the absolute potentials of the hydrogen electrode (4.42 V). As we study relative 

potentials and reorganization energies, these terms cancel out and thus have no influence on the 

reported trends that form the basis of our conclusions. 

 The rates of self-exchange have been measured by several groups, and thus we validate 

our conclusions against the sensitivity to the experimental variability. The experimental rate 

constants are compiled in Table S30, and the effect on the linear correlations are compiled in 

Tables S31-S43. These data include the squared correlation coefficient R
2, the slope, and 

intercept of the linear regression plots of experimental vs. calculated reorganization energies, viz. 

equation (4). 

 To account for both limits of symmetric and asymmetric second-sphere hydration, two 

models were consistently studied that arose during the optimization: Structure A was 
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11 

 

asymmetric, whereas structure B was spherical, both representing distinct local minima upon 

geometry optimization that could be obtained for all complexes to ensure consistent comparison. 

The final geometry optimized metal-oxygen bond lengths of all models are provided in 

Supporting Information, Tables S44-S57. 

 

 

Figure 1. Examples of structural models studied in this work: a) [V(H2O)6]
2+; b) [Cr(H2O)6]

2+; 

c) Second-sphere model A (extended) of [V(H2O)6]
2+; d) Second-sphere model B (spherical) of 

[V(H2O)6]
2+; e) Second-sphere model B of [V(H2O)6]

3+ with one perchlorate; f) Second-sphere 

model A of [V(H2O)6]
3+ with two perchlorates. 
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Results and Discussion. 

 Equilibrium structures and self-exchange reorganization energies. The studied self-

exchange processes display similar negative entropies of activation, which indicate similar 

behavior, (one might expect an inner-sphere reaction to have a smaller entropy of activation). 

Below we show that this similarity is probably not coincidental. Weaver and Yee11 estimated the 

activation entropies as −15 kJ/mol for Co3+/Co2+ and −19 kJ/mol for the other three exchange 

processes at 298 K; the difference of 4 kJ/mol in favor of Co3+/Co2+ does not explain the 

anomaly. Most of the exponential rate dependence is therefore most likely due to variations in 

the inner-sphere reorganization energy where the metal-oxygen bond lengths contract upon 

oxidation and expand upon reduction16. The energy costs of these changes may be quite distinct 

for the four systems, and may also be affected by the second hydration shell although probably to 

a much smaller and similar extend, although this needs investigation. Beyond the second 

hydration shell, bulk water is expected to behave similarly as the same charge changes occur 

within the hydration spheres.  

 To test these assumptions, we studied models with both the first hydration sphere (Figure 

1a and 1b) and with a second hydration sphere of 18 water molecules described by two types of 

geometries: An elongated asymmetric second shell structure (Geometry A, Figure 1c), and a 

more spherical second shell structure (Geometry B, Figure 1d). Geometry A and B represent 

distinct cases of asymmetric and symmetric second-sphere hydration that provide a test of the 

sensitivity of our results to variations in the second-shell hydration structure. This difference in 

second-sphere hydration does not affect the trend, nor the cobalt anomaly and its removal; 

however, the difference does affect the magnitude of the reorganization energies, vide infra. We 

also study both the acid-dependent and independent species, including the effect in strong acid of 

the perchlorate interactions with one or two anions, Figure 1e and Figure 1f. Our results show 
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13 

 

systematic behavior due to second-shell structure, and show that the two geometries are distinct 

local minima that can be obtained for all systems. 

 The M-O bond lengths of all models have been collected for easy overview in Tables 

S44-S57. The most notable observations from the geometry optimized models are that i) all six 

functionals produce very similar structures for the three types of models; ii) the Jahn-Teller 

distorted d4 configuration is very pronounced in Cr2+(aq) in all three models; the other metal ions 

are generally symmetric. The tetragonal distortion of Cr2+(aq) is seen in Figure 1b compared to 

the corresponding vanadium(II)complex in Figure 1a. The water ligands in the hexaqua models 

are not very bent indicating that the repulsion of the hydrogens partly compensates the 

tetrahedral requirements of the water lone pairs. In the large models (Figures 1c-1f), the water 

ligands bend to accommodate the hydrogen bond requirements of second-sphere water 

molecules; this is the most important structural effect of second-shell hydration. 
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Figure 2. Sensitivity of computed reorganization energies (λ) to changes in the second hydration 

sphere represented by Geometry A (black) and Geometry B (red) models. a) the weakly distorted 

(in the trivalent state) V2+/V3+ redox pair; b) the strongly Jahn-Teller distorted (in the divalent 

state) Cr2+/Cr3+ redox pair; c) the weakly distorted (in both oxidation states) Co2+/Co3+ high-spin 

redox pair; d) the Co2+/Co3+ redox pair with low-spin Co3+; e) the weakly distorted Fe2+/Fe3+ 

redox pair. 

 

 The computed reorganization energies for all the second-shell systems in Figure 2 reveal 

substantial differences of the order of 1−2 eV in λ. The total magnitudes are similar to the 

experimental estimates by Delahay and Dziedzic in the range 2-4 eV53. Second, the two types of 

hydration spheres produce distinct reorganization, with the elongated asymmetric second-shell 

hydration structure, Geometry A (black) producing larger λ than the spherical second-shell 

hydration structure, Geometry B (red) by up to 0.5 eV. Geometry B has more direct hydrogen 

bond interactions that dampen the water reorientation. This observation is fairly general (3 

exceptions out of 30 comparisons) across all studied systems and density functionals. Third and 
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more importantly, the differences in λ can be directly explained from the changes in d-electron 

configuration of the involved metal ions: Thus, the Co3+/Co2+ redox pair with Co3+ in the 

dominating low-spin state behaves similar to the strongly Jahn-Teller distorted (in the Cr2+ state) 

Cr3+/Cr2+ self-exchange process, with all reorganization energies > 3.4 eV (3.4−5.2 eV). In 

contrast, a hypothetical high-spin-high-spin Co3+/Co2+ redox pair behaves very similarly to the 

other weakly distorted systems V3+/V2+ and Fe3+/Fe2+ redox pairs (all reorganization energies < 

3.4 eV, 2.4−3.4 eV). This observation turns out to be important, because it implies that low-spin 

Co
3+

 will produce rates of self-exchange similar to that of the Cr
3+

/Cr
2+ 

pair if the processes are 

outer-sphere reactions. This is, interestingly, similar to the five order of magnitude anomaly of 

the Co3+/Co2+ system10, with experimental rates of Cr3+/Cr2+ and Co3+/Co2+ of 10−5 and 5 M−1s−1.  

 The large reorganization energies are consistently seen when the process changes the eg 

occupation, causing a major structural reorganization of the M-O bonds, which specifically 

happens for Cr3+/Cr2+ and for Co3+/Co2+ if Co3+ is low-spin, but not if it is high-spin. In contrast, 

the redox-active electrons of the V3+/V2+ and Fe3+/Fe2+ pairs shuffle between t2g orbitals which 

exert little effect on the M-O bond lengths and thus on the structural rearrangement and λ.  

  

 Reorganization energies of low-spin Co
3+

(aq) reproduce the cobalt anomaly. Some 

heterogeneity is seen in the data reported in the literature, exemplified by the compilations of 

Chou et al. and Weaver and Yee11,28 (Supporting Information, Table S30). To account for this, 

we first studied the self-exchange rate constants compiled by Chou et al.28 but then investigated 

the sensitivity of the correlations to the choice of other experimental estimates (Tables S31-S37). 

The experimental data shown in the figures below are thus lnkET(Fe3+/Fe2+) = 1.39,  

lnkET(Co3+/Co2+) = 1.61,  lnkET(Cr3+/Cr2+) = −11.51,  and lnkET(V3+/V2+) = −3.9128. The variation 

in experimentally reported lnkET is largest for V3+/V2+ (~2), whereas other variations are 
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substantially smaller. Regardless of the differences, it is well established that Fe3+/Fe2+ and 

Co3+/Co2+ are of similar rate, V3+/V2+ is substantially slower, and Cr3+/Cr2+ is again much slower 

than any of these. Accordingly, the experimental errors are numerically substantially smaller 

than the trend range and the Co3+/Co2+ anomaly, as seen from the discussion below and in the 

Supporting Information, Tables S31−S37.  

 

Figure 3. The experimentally measured M2+/M3+(aq) self-exchange rate constants vs. computed 

reorganization energies using low-spin Co3+(aq) and the second-sphere models: a) non-hybrid 

GGA functionals and Geometry A; b) hybrid functionals and Geometry A; c) non-hybrid GGA 

functionals and the spherical Geometry B; d) hybrid functionals and Geometry B. 
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 Figure 3 shows computed λ vs. experimental lnkET when assuming that Co3+ is low-spin, 

using the second-sphere models and divided into the three non-hybrid (Figure 3a, 3c) and hybrid 

functionals (Figure 3b, 3d). Cobalt is clearly an outlier from the linear trend in both plots. 

Regardless of the used method, this anomaly amounts to lnkET ~13, corresponding to ~5·105, 

very close to the experimentally established anomaly. The computed reorganization energies of 

Co3+/Co2+ and Cr3+/Cr2+ are similar, as are their experimental rates. Thus, Co3+ cannot be low-

spin and follow an outer-sphere mechanism at the same time, i.e. if the high-spin state is not 

accessible, a distinct mechanism needs to be invoked for Co3+/Co2+. These results used the 

[M(H2O)5(OH)]2+ species, which is responsible for the acid-dependent self-exchange process that 

becomes more important in weaker acid and neutral pH12. Below, we perform a similar analysis 

using the more elaborate model with perchlorate anions included in the fully protonated species 

that govern the acid-independent pathway. 

 Analysis of High-Spin Co
3+

(aq). We now explore the hypothesis that the high-spin state 

of Co3+
 is active via an outer-sphere process. Water is a weak-field ligand that induces high-spin 

in all other hexaqua complexes of the first row of the d-block. However, the low-spin tendency 

of Co3+ is very high16 due to its maximal ligand field stabilization energy in the t2g
6 configuration 

and a +3 charge. According to spin state propensities computed from DFT, all halide ligands 

produce high-spin in Co3+ complexes and water produces a modest gap between the spin states16. 

[CoF6]
3- is known to be high-spin as the other aqua complexes. For these various reasons, 

Co3+(aq) is an exception, and we expect the high-spin state to be close in energy. Indeed, the 

energy gap has been spectroscopically estimated to be ~0-37 kJ/mol with low-spin being 

lowest14; NMR studies suggest that the gap is > 23 kJ/mol18. Taube and co-workers17 and 

Winkler, Rice, and Gray14 suggested that the high-spin state is probably at +17 kJ/mol by 
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correcting the vertical excitation energy with estimates of the geometric relaxation of the high-

spin state.  

 From comparison of the optimized energies of the low-spin and high-spin Co3+ states, the 

six functionals give energy splittings similar to the experimental estimate, with a range from -7 

kJ/mol (PBE0) favoring high-spin to +57 kJ/mol (TPSS), favoring low-spin. TPSSh, which has 

previously been shown to predict SCO of cobalt complexes well54, gives a value of 37 kJ/mol in 

favor of low-spin. The good agreement with experiment was expected, based on results from 

prior functional benchmarking24,54.  

 The zero-point energy and vibrational entropy both favor the high-spin state with its 

longer and weaker metal-ligand bonds, and these effects are important to any reaction involving 

multiple spin states23. For Co3+(aq), the estimated corrections are ~11.3 kJ/mol (for ZPE) and 

~11.8 kJ/mol (for T∆S at 298.15 K) both in favor of high-spin (Supporting Information, Table 

S28), based on the computed vibrational state functions of both geometry optimized spin states 

of the hexaquacobalt(III) complex16. These numbers are comfortably within the expected range 

of such corrections in favor of the high-spin23,24. Accordingly, the computed 11.8 kJ/mol entropy 

in favor of high-spin is also quite similar to the thermodynamic estimate given by Johnson and 

Nelson (~8 kJ/mol at 298 K)22. As pointed out, Winkler and Gray’s relaxation of the electronic 

excitation data relies on a too small Co-O symmetric stretch (357 cm-1), which, when updated 

brings Co3+(aq) into effective SCO even without the entropy term included.  

 Johnson and Nelson also calculated22 their own estimate of the contribution of high-spin 

excited state geometric relaxation using a harmonic valence force field approximation and found 

it to be smaller (24 kJ/mol) than even the first reported number by Winkler et al. (43 kJ/mol)14. 

With DFT, we can compute this geometric relaxation by subtracting the vertical excited single 

point energy of the high-spin on the low-spin geometry from the relaxed high-spin energy; we 
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obtain a value of 104 kJ/mol for TPSSh-D3 (102 kJ/mol for B3-LYP* which is also known to be 

accurate for spin state gaps)24; much larger than previously estimated from valence force field 

considerations22. Because this energy is subject to high-spin low-spin error cancellation the 

number is more accurate than spin gaps and in this case within 2 kJ/mol with two different 

functionals. This relaxation energy should be subtracted from the vertical excitation energy of 

Johnson and Sharpe (60−85 kJ/mol) to estimate the real energy difference of the two states, 

which then also from this consideration comes close to SCO. 

 The Brønsted acidity of the M3+(aq) complexes with pKa values from 2-4 also contribute 

to the acid-dependent process.12 We estimate that the deprotonation increases high-spin 

propensity by 21−23 kJ/mol (based on comparison of the computed high-spin low-spin gaps with 

and without deprotonation in Geometry A, PBE0-D3 and TPSSh-D3 methods, Supporting 

Information). This number is insensitive to the employed method (2 kJ/mol). It follows the 

spectrochemical series where OH− is a weaker ligand than H2O. Thus, the deprotonated species 

[Co(OH)(H2O)5]
2+ that controls the acid-dependent path (k2) has larger tendency towards high-

spin than the [Co(H2O)6]
3+ species that contributes to the acid-independent path (k1). The total 

driving force in favor of high-spin [Co(OH)(H2O)5]
2+ is ~33−35 kJ/mol. This correction ignores 

the differential zero-point energies that also favor high-spin (our estimate: 11 kJ/mol). This 

brings Co3+(aq) into the SCO regime, once the energies from spectroscopy are properly 

corrected.  

 The NMR relaxation data in strong acid were used to argue that high-spin is at +23 

kJ/mol18; however this is very similar to the energy estimate from spectroscopy and both cannot 

be true, since one reflects energy and the other free energy. Indeed, the NMR data show 

anomalous relaxation behavior that could also, as mentioned by Navon, be explained by high-

spin involvement, or by [Co(OH)(H2O)5]
2+; the ruling out of high-spin primarily relied on the 
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assumption that the low-spin to high-spin conversion is much faster than the paramagnetic 

relaxation rate; the basis of this calculation is not clear but it was estimated using data for iron 

and chromium and gave a very large rate of 1010 s-1; even with this uncertainty, the NMR data 

did show very anomalous curvature compared to the straight lines obtained for the relaxation 

rates of definite low-spin cobalt complexes18. 

 High-Spin Co
3+

 Removes the Experimental Anomaly. Figure 4 shows the 

experimental lnkET plotted against the computed λ when using the high-spin state of Co3+(aq) for 

the acid-dependent process, [Co(H2O)5OH]2+. The plots become very linear now and the cobalt 

anomaly almost disappears. The linearity shows that almost all the differential reorganization 

effects arise from the first coordination sphere, whereas the contribution from longer range is 

similar for all +3 ions and for all +2 ions, such that these reorganization energies explain ~90% 

of the variation in experimental rate constants. The cobalt anomaly is reduced by approximately 

90% when using the high-spin state.  

 The relevant data of Equation (3) are collected in the Supporting information, Tables 

S31−S37. Assuming low-spin Co3+ gives very divergent results that are not easily interpreted 

(Table S31). The average intercept with Co3+ in high-spin (Table S32) is ~ 6.5 ·1010 M−1s−1 (2.2 

·1012 M−1s−1 for Geometry A and 1.9 ·109 M−1s−1 for Geometry B), which is close to the expected 

diffusion limit55. The average value of the slope for Geometry A with Co3+ in high-spin gives a 

value of −9.2 +/−1.9, which corresponds well to the theoretically expected value (4RT)−1 ~ 9.7 

eV−1. Because the outer-sphere contribution is constant as seen from the linear relationship, the 

crossing point with the vertical axis is lnA – λo/4RT. A value of 0.1 is reasonable for the latter 

contribution, corresponding to an outer reorganization energy of ~1 eV, and thus it does not 

significantly affect the preexponential factor56.  
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 The resolution of the cobalt anomaly partially occurs for systems having only the first 

hydration sphere (Figure S1) but becomes more complete when second hydration is included. 

Thus, the conclusions of this work are robust against the type of the hydration model, which also 

relates to the constancy of the bulk contributions. The reorganization energies are uniformly 

larger when using the hybrid functionals but the range remains the same, about 1.5 eV from the 

fastest (iron) complex to the slowest (chromium) complex. It is also notable that the strong Jahn-

Teller effect of Cr2+, which is fully accounted for by the DFT computations, does not cause a 

deviation from the linear trend: The real rate of the electron transfer processes is thus dominated 

by the direct effect of the change in eg orbital occupation on the M-O bond lengths. 
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Figure 4. Same as in Figure 4, but using reorganization energies for cobalt complexes on the 

high-spin surface: a) non-hybrid GGA functionals and Geometry A; b) hybrid functionals and 

Geometry A; c) non-hybrid GGA functionals and Geometry B; d) hybrid functionals and 

Geometry B. 

 

 To make sure that the electronic energy calculations are fully consistent in their 

description of the ET processes, we also computed the relative standard half potentials (E½
0, in 

V) from the obtained equilibrium states of the M3+(aq) and M2+(aq) systems, after correcting for 

the absolute potential of the hydrogen electrode at standard conditions (4.42 V – this term does 

not affect the trend). Experimental numbers used were +1.92 V for Co3+/Co2+, +0.77 V for 
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Fe3+/Fe2+, -0.25 V for V3+/V2+,  and -0.41 V for Cr3+/Cr2+. The corresponding 12 plots of 

experimental vs. computed E½
0 are shown in Supporting Information, Figure S2 (six with high-

spin Co3+ and six with low-spin). Importantly, an impaired trend is seen for the low-spin 

Co3+(aq), whereas when we use high-spin Co3+(aq), all data fall on the same line, as they should 

if the states are correctly described. Notice that this observation is again independent of method 

and strongly imply that the experimentally observed standard half potentials of the Co3+/Co2+ 

redox pair are measured for high-spin Co3+(aq). We also predict that the hypothetical low-spin 

Co3+(aq), which may be measured at low to moderate temperature and strong acid, should have 

had a half potential that is larger (probably by 0.1-0.4 V) than the standard value +1.92 V due to 

the change to low-spin Co3+(aq). 
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Figure 5. Plot of experimental rate constants vs. computed reorganization energies for systems 

with one or two perchlorate anions included in the second hydration shell as in Figure 1e/1f 

(Geometry A, PBE functional). A) With low-spin Co(III) and one perchlorate; B) with high-spin 

Co(III) and one perchlorate; C) with low-spin Co(III) and two perchlorates; D) with high-spin 

Co(III) and two perchlorates. Complete data can be found in the Supporting Information, Tables 

S17-S24. 

 

 Anion effects and the acid-dependent vs. independent processes. The experimental 

protocol generally involves the use of strong acid, HClO4, to prevent Co(III) hydrolysis. 

Although it is well-known that the anions contribute little (up to 5-fold)12 to the total rate, 
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consistent again with an outer-sphere mechanism where eg occupation controls relative rates, it is 

of some interest to include the anion effect for completeness. Figure 5 shows the experimental 

rates vs. computed reorganization energies for the large water models where one or two 

perchlorate anions have been added to the models in the second hydration sphere and all waters 

retain their protons (36 geometry optimizations, PBE functional, using both low-spin and high-

spin Co(III) and both geometries A and B). Figure 5 shows only geometry A, as geometry B 

gives very similar results (Supporting Information, Tables S17-S24). Perchlorate is known to be 

unlikely to form direct complexes12 so the second-sphere association is the most prevalent 

perturbation that could be encountered in the real systems.  

 The plots in Figure 5 show that the cobalt anomaly is still well recovered when using the 

strong HClO4 system. In fact, the inclusion of one and in particular two anions slightly improves 

the correlation to make the anomaly completely disappear. Thus, the remaining 10% of the 

anomaly can plausibly be explained by second-sphere anion interactions. We also note that the 

reorganization energies for Co3+/Co2+ are ~1 eV smaller in strong acid, indicating that the acid-

independent rate constant (k1), which is dominated by the [Co(H2O)6]
3+ species, is larger than the 

acid-independent rate constant (k2), which is dominated by the [Co(OH)(H2O)5]
2+ species; this is 

in agreement with and explains the behavior observed by Habib and Hunt12. 

 While Co3+/Co2+(aq) proceeds 5 orders of magnitude faster than “expected”, the cluster 

synthesized by Ullman and Nocera to argue against high-spin Co3+(aq) turned out to proceed 6 

orders of magnitude slower than predicted from the calculations and much slower than 

Co3+/Co2+(aq). They argued that this is due to the presence of bridging inner-sphere reaction in  

Co3+/Co2+(aq) that is unavailable in the cluster, and the cluster Co3+ was presumed to have more 

high-spin propensity than Co3+(aq), ruling out the spin state explanation. However, it is notable 

that the structure features low-spin Co3+, which would almost exactly cause the slow rate 
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observed (as estimated from Figure 2). The crystal structures feature average Co-O bond lengths 

for the redox-active central Co3+ of 1.918 Å and is less paramagnetic than the Co2+ analogue, 

which has average Co-O bond lengths of 2.092 Å. DFT-BP86 calculations produce typical 

average errors of maximally 0.02-0.03 Å for such bond lengths (individual errors can be 

larger)57; when applied to the hexaquacobalt(III) and heaxaquacobalt(II) systems it gives average 

Co−O bond lengths of 2.09 Å for Co2+ high-spin, identical to that seen in the reported cluster and 

1.91 Å for low-spin Co3+, 0.008 Å from the value reported in the structure, whereas for high-spin 

Co3+ the length is 2.00 Å.16  

 However, assumptions based on harmonic frequencies estimated from spectra and bond 

distances to estimate the reorganization energies were used to argue that the slow ET rate of the 

cluster is due to anion effects10. Notably, the anomaly of the cluster is very similar in magnitude 

to the anomaly discussed above. An anion is unlikely to have a 105−106 effect on the rate 

constant because the outersphere ET is dominated by the structural reorganization associated 

with changing eg orbital occupation during redox reaction and not secondary electrostatic effects 

(Figures 2-4 where the second-shell hydration effects have modest effect on the trends). Indeed, 

experimental data for anion effects (sulfates, fluoride, perchlorate e.g.) show contributions of 

only up to five-fold on the rates12, i.e. the anion effect is real but has a magnitude similar to the 

experimental uncertainty and thus does not contribute much to the five orders of magnitude 

variation in absolute rates. Notice that a similar magnitude was obtained for the cluster10. A 

much simpler explanation that is quantitatively consistent with all data is that slow ET arises 

from the large reorganization energy of low-spin Co3+/Co2+ due to eg occupation. The argument 

that the cluster should induce high-spin to a larger extend than water is not valid because the 

cluster ligand field is very distinct from hydrated metal ions and the effects of the bridging 
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ligands on the ligand field strength are not trivial, and additionally comes the effect of water 

deprotonation not seen in the cluster.  

 Thus the available data from both NMR, electronic absorption, and cluster exchange 

studies by Ullman and Nocera are all explainable by very simple electronic structure effects 

related to orbital occupation, and the involvement of the high-spin state in Co3+(aq).  

 

 

Conclusions. 

The hexaquacobalt(III) complex is not only a much faster electron transfer agent than expected 

from Marcus cross-relations, it is also a substantially more labile than one would expect from its 

t2g
6 configuration and +3 charge17. Winkler, Rice and Gray discussed this anomaly as possibly 

due to the involvement of the high-spin state, and estimated it from relaxation of spectroscopic 

energy terms to be ~17 kJ/mol above the low-spin state14. NMR studies in strong acid solution 

have argued that the high-spin state is >23 kJ/mol above low-spin18. Magnetic susceptibility 

studies by Taube et al. arguing for low-spin Co3+(aq) were also carried out in strong acid17. 

Using these three reports, most researchers and text books have settled on the notion that 

Co3+(aq) is low-spin. The Co3+(aq) system is heterogeneous (including e.g. dimer species) and 

not very stable, preventing study at standard conditions.  

 In this work we used DFT computations to understand the physics of the relative self-

exchange rates. We obtain very consistent results for various functionals, water- and anion 

models. All data are explained well by simple eg occupation effects during redox reaction, as 

evidenced in Figure 2. Because these correlate so well with experimental relative rates, they 

explain most of the ET process. The probability that these linear trends are coincidental is very 
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small, and it is robust against chemical model and density functional method. Accordingly, most 

of the electronic reorganization affecting the otherwise similar aqua ions occur in the first 

hydration sphere viz. comparison to a second hydration shell.  

 The reason why Marcus theory has been claimed to fail can thus be traced to a use of 

cross relations that involve low-spin Co3+ for other systems, whereas we show that involvement 

of transient high-spin Co3+(aq) produces close to perfect trending with the other data (Figure 4). 

We conclude that Marcus theory remains valid if one uses cross relationships only for the same 

types of orbital-occupied systems.  

 Specifically, we conclude that: i) The ~105 cobalt anomaly is directly obtained by using 

low-spin Co3+ in a linear regression against other metal ions.; ii) The anomaly is removed to 90% 

(within the experimental uncertainty) when using instead high-spin Co3+ for the deprotonated 

species, and to essentially 100% when modeling the strong acid system with perchlorate anions 

(Figure 5); these two species control the acid-dependent and –independent processes, 

respectively. iii) The acid-dependent reorganization energy of [Co(H2O)(OH)]2+ is larger than 

the acid-independent reorganization energy, explaining the larger rate constant of the acid-

independent process12. Thus, even if high-spin represents a minor fraction in solution, we 

conclude that it completely explains the experimental data. The complexity and instability of 

aqueous Co3+ solutions have so far made these insights difficult in the lab, but should be possible 

to confirm in the future by studying Co3+(aq) mimicking solution and solid-state systems. iv) 

High-spin Co3+(aq) also explains the standard redox half potential better (Supporting 

Information, Figure S2); v) the trends in experimental data are well described simply by eg 

orbital occupation effects because the first coordination sphere dominates the chemistry of these 

species; vi) As a side consequence, the mechanism of some cobalt-based redox systems that 

involve processes where similar effects on eg occupation occur10 may have to be revisited.  
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 It would, in retrospect, be unusual if the Co3+/Co2+ exchange should behave by a distinct 

mechanism, considering that its activation entropy is similar within 5 kJ/mol of that of the other 

high-spin M3+/2+(aq) outer-sphere processes11 and considering the overall similarity of these 

metal ions in aqueous solution. It would also, in retrospect, be unusual that Co3+(aq) shows 

anomalies both in half standard redox potential, water ligand substitution lability (being more 

labile than expected for a low-spin Co3+ complex), and self-exchange ET that would require 

three distinct explanations, when, as we show here, high-spin explains them all: The much higher 

lability than expected of Co3+(aq) during ligand substitution in water directly follows from high-

spin having substantially longer and weaker Co-O bonds (see Supporting Information, Tables 

S44-S57); these various well-known anomalies are consistent with our results and 

interpretations. As a final remark, also in retrospect, there is indeed previous evidence for 6-O 

Co(III) complexes having high-spin involvement, notably those produced by Kläui and co-

workers58,59 and very recently by Cummins and co-workers60.  
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electronic energies, calculated corrections, sensitivity tests that use different experimental data, 
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coordinates. 
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Synopsis. 

We studied the classic self-exchange ET processes of hydrated transition metal ions. We identify 

directly the ~105 anomaly of Co2+/Co3+(aq) from the electronic reorganization energies. We 

show that with high-spin Co3+, the anomaly disappears, and that the high-spin state is more 

important than previously thought after correcting experimental data by DFT-derived data. We 

conclude that high-spin Co3+(aq) is chemically active and that Co3+(aq) is close to spin crossover. 
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