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8 ABSTRACT: We herein present a broadly useful method for
9 the chemoselective modification of a wide range of
10 tryptophan-containing peptides. Exposing a tryptophan-
11 containing peptide to 2,3-dichloro-5,6-dicyano-1,4-benzoqui-
12 none (DDQ) resulted in a selective cyclodehydration between
13 the peptide backbone and the indole side chain of tryptophan
14 to form a fully conjugated indolyl-oxazole moiety. The modified peptides show a characteristic and significant emission maximum
15 at 425 nm, thus making the method a useful strategy for fluorescence labeling.
16 KEYWORDS: solid-phase peptide synthesis, fluorescent labeling, tryptophan, site-selective protein modification

17 ■ INTRODUCTION
18 Fluorescence labeling of proteins and peptides is fundamental
19 for the study of biological systems, as it can provide detailed
20 visualization of complex cellular processes.1 The visualization of
21 biological processes has been crucial for our understanding of
22 molecular dynamics and the development of new potent drugs.
23 Nowadays, the most common approach to fluorescence
24 labeling of proteins comprises the introduction of fluorescent
25 small molecules to the nucleophilic side chain of lysine, serine,
26 threonine, or cysteine residues in a peptide or protein of
27 interest.2 However, such strategies often suffer from poor site
28 selectivity, where multiple residues are modified. Though less
29 established, chemoselective functionalization of other residues,
30 such as methionine,3 glutamine,4 arginine,5 N-terminal serine/
31 threonine,6 tyrosine,7 and tryptophan,8 has been described.
32 Among these residues, tryptophan is particularly interesting
33 because of its scarce abundance in proteins. With a natural
34 abundance of only 1.09%,9 many proteins of interest will
35 contain only a single or few tryptophan residues accessible for
36 functionalization, thus enabling high control of the position for
37 modification. Furthermore, the relative large size of organic
38 dyes, including undesired physiochemical properties may give
39 rise to several challenges, that compromise the biologically
40 activity of the labeled target. Therefore, labeling strategies that
41 introduce minimal structural perturbation to the peptide of
42 interest is of high importance.
43 Herein, we describe our efforts toward the oxidative
44 modification of small peptides containing tryptophan. The
45 conjugated nature of the generated indolyl-oxazole moiety
46 emits blue-fluorescence,10 which may advantageously be
47 utilized for spectroscopic studies of biological systems. For
48 instance, the indolyl-oxazole moiety of diazonamide A
49 derivatives has been utilized as intrinsic fluorophores for in
50 vitro cellular uptake studies.11 In addition, the indolyl-oxazole

51scaffold is present in a variety of naturally occurring biologically
52 f1active compounds including those shown in Figure 1,12−15 as
53well as cyclic derivatives such as the diazonamides.11

54■ RESULTS AND DISCUSSION

55Using standard reagents for solid-phase peptide synthesis, the
56HMBA linker was easily immobilized and synthetically
57elaborated on an amino-functionalized ChemMatrix resin
58 t1(Table 1). Initially, a range of conditions for the oxidative
59 s1cyclodehydration of model compound 6 (Scheme 1) was
60examined.16 Oxidation of the α-carbon of indoles has been
61performed with the dehydrogenating agent DDQ to form the
62keto-indole derivative.16 Therefore, it was expected that DDQ
63could be a suitable reagent for the oxidative cyclodehydration of
64tryptophan. Furthermore, cyclodehydration of keto-indoles has
65been carried out with a mixture of triphenylphosphine, metallic
66iodine, and triethylamine in CH2Cl2, to form a conjugated
67indolyl-oxazole moiety.17 Various solvents were screened
68(entries A−G), and it was disclosed that exposure of a
69tryptophan-containing oligopeptide to DDQ (4 equiv) in
70MeCN led to near-quantitative conversion into the desired
71indolyl-oxazole product 9 (Scheme 1). Interestingly, the
72peptide was fully converted to the desired indolyl-oxazole
73derivative with only two equivalents of DDQ (entry J). The
74reaction most likely occurs via the α,β-unsaturated imine 7
75(Scheme 1). However, in reactions where partial formation of
76the ketone product 8 was initially observed, it was noted that
77prolonged reaction times resulted in full conversion to the
78desired cyclo-dehydrated product 9.
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79 The sequence tolerance of the site-selective tryptophan
80 oxidation protocol was investigated through the synthesis of a

81combinatorial library of natural amino acids and common
82protective groups (entry L-AO). Gratifyingly, the developed

Figure 1. Biologically active indolyl-oxazole natural products.

Table 1. Chemical Data for the Indolyl-oxazoles 10A−AQ

entry AA conditions solvent
puritya
(%)

yieldb
(%) entry AA conditions solvent

puritya
(%)

yieldb
(%)

A Ala DDQ (4 equiv) toluene 20 W Asp(OBzl) DDQ
(2 equiv)

CH3CN 48

B Ala DDQ (4 equiv) THF 40 X Asp(OtBu) DDQ
(2 equiv)

CH3CN 81 30

C Ala DDQ (4 equiv) CH2Cl2 60 Y Glu DDQ
(2 equiv)

CH3CN 64 23

D Ala DDQ (4 equiv) DMF 5 Z Glu(OtBu) DDQ
(2 equiv)

CH3CN 14

E Ala DDQ (4 equiv) CH3CN 90 AA Cys(tBu) DDQ
(2 equiv)

CH3CN 66 17

F Ala DDQ (4 equiv) H2O 0 AB Cys(StBu) DDQ
(2 equiv)

CH3CN 34

G Ala DDQ (4 equiv) MeOH 5 AC Ser DDQ
(2 equiv)

CH3CN 81 15

H Ala tetrachloro-1,4-
benzoquinone
(4 equiv)

CH3CN 0 AD Ser(OBn) DDQ
(2 equiv)

CH3CN 77 19

I Ala DDQ (3 equiv) CH3CN 89 AE Gln DDQ
(2 equiv)

CH3CN 91 12

J Ala DDQ (2 equiv) CH3CN 88 25 AF Gln(Trt) DDQ
(2 equiv)

CH3CN >95

K Ala DDQ (1 equiiv) CH3CN 65 AG Lys DDQ
(2 equiv)

CH3CN 0

L Gly DDQ (2 equiv) CH3CN 86 31 AH Lys(Boc) DDQ
(2 equiv)

CH3CN >95 13

M Val DDQ (2 equiv) CH3CN 75 15 AI His DDQ
(2 equiv)

CH3CN 80 10

N Leu DDQ (2 equiv) CH3CN 77 20 AJ His(Boc) DDQ
(2 equiv)

CH3CN 53

O Ile DDQ (2 equiv) CH3CN 75 17 AK Thr DDQ
(2 equiv)

CH3CN 62 12

P Pro DDQ (2 equiv) CH3CN 77 31 AL Thr(OtBu DDQ
(2 equiv)

CH3CN 69 13

Q Phe DDQ (2 equiv) CH3CN 63 24 AM Asn DDQ
(2 equiv)

CH3CN >95

R Met DDQ (2 equiv) CH3CN 76 40 AN Asn(Trt) DDQ
(2 equiv)

CH3CN 62 25

S Tyr DDQ (2 equiv) CH3CN 81 25 AO Arg(Pmc) DDQ
(2 equiv)

CH3CN 62 18

T Tyr(All) DDQ (2 equiv) CH3CN 38 16 AP Ala-Trp-Gly-Pro-Trp-Leu DDQ
(2 equiv)

CH3CN 82

U Tyr(OMe) DDQ (2 equiv) CH3CN 92 18 AQ Ala-Trp-Val-Trp-Ile-Trp-Phe DDQ
(3 equiv)

CH3CN 75

V Asp DDQ (2 equiv) CH3CN 45 15
aCrude purities. bAll compounds were purified by prepHPLC before yield determination and NMR analysis.
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83 protocol showed compatibility with a wide range of peptides
84 and generally only the desired product was observed by UP-
85 LCMS (see Supporting Information). Unfortunately, non-
86 protected lysine residues were not tolerated (entry AG). Here a
87 range of byproducts was observed by UPLC, including a
88 nucleophilic addition of the lysine side-chain amino group to
89 the conjugated imine (7) as well as a Michael reaction between
90 the amino group and DDQ.
91 The isolated yields of indolyl oxazole peptides are in the
92 range typically observed for solid-phase synthesis followed by
93 preparative HPLC purification. From our results, we cannot
94 identify a correlation between purity and isolated yields neither
95 is there apparent structure-yield correlation.
96 Furthermore, the methodology was investigated for peptides
97 containing more than one tryptophan residue (entry AP−AQ).
98 Using two and three equivalents of DDQ, respectively, peptides
99 containing two or three indolyl-oxazole moieties were obtained
100 (see Supporting Information).
101 In order to investigate the potential of the technique for
102 fluorescent labeling, the fluorescence properties of the indolyl-
103 oxazole containing peptide 10(J,L-AO) was measured and
104 compared to the emission spectrum of the corresponding

s2 105 nonoxidized peptides 11(J,L-AO), Scheme 2.
f2 106 As shown in Figure 2, the indolyl-oxazole containing peptides

107 show a remarkably change in fluorescence with a distinct band
108 now appearing at 425 nm. Importantly, this absorption is not
109 affected by the presence of aromatic side chain functionalities in
110 naturally occurring amino acids.
111 Having identified conditions allowing for oxidative cyclo-
112 dehydration of tryptophan in various peptides, we sought to
113 demonstrate the use of this methodology in the labeling of
114 biological relevant peptides. GLP-1 is a 30 amino acid-

115containing peptide hormone that possesses several pharmaco-
116logical properties, making it a subject of intensive investigation.
117Gratifyingly, when exposing GLP-1(12), to the DDQ
118conditions the desired fluorescence labeled indolyl-oxazole
119analog 13 was formed (Figure 2) with a satisfactory conversion
120 f3of 85%, as confirmed by HPLC.
121Currently, the methodology has only been demonstrated for
122immobilized peptides that tolerate acetonitrile. It would be
123desirable to adapt this chemistry to aqueous conditions, thereby
124allowing indolyl-oxazole formation in proteins. This would

Scheme 1. Synthesis of Indolyl-oxazole-Functionalized Peptide 9

Scheme 2. Synthesis of Peptides 11(J,L-AO)

Figure 2. Fluorescence measurement of compound 10J,L-AO and
11J,L-AO.

ACS Combinatorial Science Research Article

DOI: 10.1021/acscombsci.8b00014
ACS Comb. Sci. XXXX, XXX, XXX−XXX

C



125 require the development of a more stable dehydrogenation
126 reagent, which resists hydrolysis in aqueous solutions.

127 ■ CONCLUSIONS
128 In summary, we report a method that allows for the
129 chemoselective labeling of tryptophan-containing peptide
130 residues. DDQ-mediated oxidative cyclization leads to the
131 installation of an indolyl-oxazole moiety with unique
132 fluorescence properties. We further demonstrate that the
133 indolyl-oxazole moiety selectively may be installed in a
134 pharmaceutically relevant peptide, thereby emphasizing the
135 important potential of the methodology to illuminate biological
136 mechanism of relevance to drug discovery.

137 ■ EXPERIMENTAL SECTION
138 General Methods. All reagents and materials used were
139 purchased from ordinary chemical suppliers and were used
140 without purification. The solvents used were of standard HPLC
141 grade. Solid-phase synthesis was carried out using plastic-
142 syringe techniques. Flat-bottomed PE-syringes were fitted with
143 PP-filters and situated in Teflon valves equipped with Teflon
144 tubing allowing for a moderate vacuum to be applied to the
145 syringes.
146 Yields of solid-phase synthesis protocols are corrected for salt
147 contents and given as percentage of product mass recovery to
148 the theoretical product loading mass, calculated from the resin
149 loading (4 mmol/g) as specified by the supplier.
150 Products were analyzed on a Waters Alliance reverse-phase
151 HPLC system consisting of a Waters 2695 Separations Module
152 equipped with a Symmetry C18 column (3.5 μm, 4.6 × 75 mm,
153 column temp 25 °C, flow rate 1 mL/min) and a Waters
154 Photodiode Array Detector (detecting at 215 nm). Elution was
155 carried out in a linear reversed phase gradient fashion (gradient
156 A: 0% organic for 0.2 min, 0% organic to 100% organic in 10

157min, hold for 1 min, 100% organic to 0% organic in 0.3 min,
158hold for 1.5 min, gradient B: 0% organic for 0.2 min, 0%
159organic to 40% organic in 10 min, 40% organic to 100% organic
160in 0.8 min, hold for 1 min, 100% organic to 0% organic in 0.3
161min, hold for 1.5 min) combining water and acetonitrile
162(buffered with 0.1% (v/v) TFA).
163Preparative RP-HPLC was carried out on a Waters Alliance
164reverse-phase HPLC system consisting of a Waters 2545 Binary
165Gradient Module equipped with an xBridge TM.
166Prep BEH130 C18 column OBDTM (5 μm, 19 × 100 mm,
167column temp 25 °C, flow rate 20 mL/min), a Waters
168Photodiode Array Detector (detecting at 210−600 nm), a
169Waters UV Fraction Manager and a Waters 2767 Sample
170Manager. Elution was carried out in a linear reversed phase
171gradient fashion combining water and acetonitrile (buffered
172with 0.2% (v/v) TFA).
1731D and 2D NMR spectra were recorded using a Varian Unity
174Inova-500 MHz, a Varian Mercury-300 MHz instrument, a
175Bruker Ascend-400 MHz instrument equipped with a 5 mm
176Prodigy cryoprobe or a Bruker Avance-800 MHz instrument,
177equipped with a 5 mm cryoprobe TCI, in DMSO-d6 or CDCl3
178using the residual DMSO or CHCl3 solvent peaks, respectively,
179as the internal standard. All 13C NMR spectra were proton
180decoupled. DQF-COSY, HSQC, HMBC, and 2D NOESY
181spectra were acquired using standard pulse sequences.
182LC-DAD-HRMS was performed on an Agilent 1100 LC
183system equipped with a Agilent Technologies Diode Array
184Detector and a Luna C18 column (3 μm, 50 mm × 2 mm,
185column temp 40 °C, flow rate 400 μL/min). Separation was
186achieved using a linear reversed phase gradient (20% to 100%
187organic in 8 min, hold for 2 min, 100% to 20% organic in 1 min,
188hold for 4 min) again combining water and acetonitrile
189(buffered with 20 mM HCO2H). The LC was coupled to a
190Micromass LCT orthogonal time-of-flight mass spectrometer,

Figure 3. Fluorescent labeling of GLP-1.
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191 equipped with Lock Mass probe and operated in positive
192 electrospray mode.
193 General Solid-Phase Procedures. The commercial
194 available amino functionalized ChemMatrix (0.4 mmol/g)
195 was washed with DMF. Coupling of the first amino acid
196 building block to the resin was carried out as follows. Dry resin
197 was weighed in a syringe, equipped with a PP-filter. The amino
198 acid (3 equiv) was weighed, dissolved in DMF (0.02 mL/mg
199 resin) and N-ethylmorpholine (4 equiv) was added using a
200 microliter pipet. N-[(1H-Benzotriazol-1-yl)(dimethylamino)-
201 methylene]-N-methylmethanaminium tetrafluoroborate N-
202 oxide (TBTU, 2.9 equiv) was weighed and likewise added.
203 The solution was transferred to the resin, the swelled resin
204 stirred gently with a spatula and allowed to react for 2 h. The
205 resin was filtered, washed with DMF (×6) and CH2Cl2 (×6)
206 and lyophilized. The Fmoc-group was removed by swelling the
207 resin in a solution of piperidine (20% v/v) in DMF for 2 min,
208 filtering and then swelling the resin again in a fresh solution of
209 piperidine (20% v/v) in DMF for 18 min. The resin was
210 washed with DMF (×6) and CH2Cl2 (×6) and lyophilized.
211 The oxidatively modified peptides were liberated from the
212 HMBA-functionalized ChemMatrix resin by addition of 4 mL
213 of 0.1 N aqueous NaOH. The syringes were left overnight
214 under vigorous shaking followed by neutralization with 0.1 N
215 HCl (aq). The aqueous solutions containing the peptides were
216 collected by filtration and the resins were washed with water
217 (×5) and MeCN (×5). The purity of the crude reaction
218 mixture was monitored by UPLC-MS. The MeCN and water
219 was removed by evaporation and freeze-drying. The residue was
220 redissolved in 3 mL of DMF, filtrated and purified by
221 preparative RP-HPLC. The solvent was removed from the
222 product-containing fractions by evaporation and freeze-drying
223 before NMR data collection and measurement of the
224 fluorescence properties using a Tecan microplate reader.
225 Evaluation of Spectroscopic Properties. The fluores-
226 cence experiments were conducted by soluting each of the
227 peptides in methanol. The fluorescence of the peptides was
228 monitored using a Tecan microplate reader, which first records
229 the absorbance properties to identify the required wavelength
230 for excitation of the compound. The fluorescence was then
231 measured in the arbitrary unit ‘Relative Fluorescence Units’
232 (RFU) and plotted against their respective wavelengths. The
233 measurements were acquired setting the gain to 70.
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