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Prior Distributions for Objective Bayesian
Analysis

Guido Consonni∗, Dimitris Fouskakis†, Brunero Liseo‡, and Ioannis Ntzoufras§

Abstract. We provide a review of prior distributions for objective Bayesian anal-
ysis. We start by examining some foundational issues and then organize our ex-
position into priors for: i) estimation or prediction; ii) model selection; iii) high-
dimensional models. With regard to i), we present some basic notions, and then
move to more recent contributions on discrete parameter space, hierarchical mod-
els, nonparametric models, and penalizing complexity priors. Point ii) is the focus
of this paper: it discusses principles for objective Bayesian model comparison, and
singles out some major concepts for building priors, which are subsequently illus-
trated in some detail for the classic problem of variable selection in normal linear
models. We also present some recent contributions in the area of objective priors
on model space. With regard to point iii) we only provide a short summary of some
default priors for high-dimensional models, a rapidly growing area of research.
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1 Objective Bayes methods

In many situations a researcher is not able to express his/her prior opinion into a
prior distribution. This may happen, for example, in complex applications, where the
parameter space has large dimension and a genuine elicitation of the prior dependence
structure among the parameters can be out of reach. In other cases, a very limited
knowledge of the problem at hand is available, and one would like to encapsulate prior
ignorance into a probability distribution. In both cases, it would be helpful to use
a noninformative prior in order to make Bayes’ theorem work, without introducing
subjective inputs into the analysis. This has been, in the last decades, like a search of
the “philosopher’s stone” for the Bayesian community. However, using Savage’s words,
as reported in Kass and Wasserman (1995), . . . it has proved impossible to give a precise
definition of the tempting expression “know nothing.” The focus subsequently moved
to the search of priors with a minimal impact on the corresponding posterior analysis,
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an important motivation for scientific communication. These priors has been named in
many different, sometimes misleading, ways, from vague to objective, from default to
noninformative or reference. Each of these terms describes a different aspect of the same
problem, and Objective Bayes (OB, hereafter) has emerged as a broad term which tries
to include all these strands. It is therefore not surprising that Berger (2006) warns his
readers upfront that “there is no unanimity as to the definition of OB analysis, not even
on its goals”. We believe that after more than ten years this conclusion is still fair.

If we disregard goals, and rather focus on implementation issues, a commonly held
view is that an OB method should only use the information contained in the statisti-
cal model, and no other external information (Bayarri and Garćıa-Donato, 2007); see,
however, Leisen et al. (2017) for a radically different view. The above view of “objec-
tivity” presupposes that a model has a different theoretical status relative to the prior:
it is the latter which encapsulates the subjective uncertainty of the researcher, while
the model is less debatable, possibly because it can usually be tested through data.
Another justification is offered by the subjective-predictive approach to inference, as
explicated in de Finetti’s theory; see Bernardo and Smith (1994, Ch. 4) for an acces-
sible introduction. At first sight this might look surprising, because in the celebrated
representation theorem for exchangeable random variables both the model and the prior
originate from a unique (subjective) predictive distribution, so that they seem to stand
on an equal footing. Dawid (1982) however, in an insightful paper, clarifies how a philo-
sophical distinction between model and prior can be drawn, even within the subjective
paradigm, with the former representing a common “intersubjective” component, and
the latter being specific to each individual. As an illustration, consider a sequence of
0/1 random variables. While each subject may have a distinct predictive opinion on se-
quences of such random variables, the very fact that each predictive distribution satisfies
the condition of exchangeability implies that all subjects will share the same statistical
model (product of i.i.d. Bernoulli laws in this case), while their disagreement will be
confined to the distribution of the random probability of success, indexing the statisti-
cal model. Representation theorems for exchangeable processes beyond the 0/1 case are
of course available, with a similar pattern emerging, although some further structural
assumptions are needed to nail down a common intersubjective statistical model among
different subjects; see again Bernardo and Smith (1994, Ch. 4).

Even if we take for granted a given statistical model, the actual implementation of
any OB principle is likely to incorporate, besides the statistical model, some additional
context information. This happens for instance in the construction of reference priors
(Bernardo, 1979) for a parameter-vector, where the notion of inferential importance of
the component parameters is crucial for a correct application of the methodology; see
also Section 2. Another notable case is represented by the inferential “goal” of the anal-
ysis where the OB prior will be employed. We will argue below that a useful distinction
is between priors for estimation (including prediction) and for model selection; again
context matters.

In the end, our view of what constitutes an OB analysis is unavoidably pragmatic.
First of all, we firmly believe that OB and subjective Bayesian analysis should comple-
ment each other, the former being helpful in particular scenarios (prior elicitation is too
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hard, or time consuming, or for reference analysis in scientific reporting). Subjective
analysis is still a great resource, especially in applications where information about con-
text is available and can be meaningfully incorporated. Secondly, the quality of an OB
method should be judged both in terms of its theoretical foundations, and on the cor-
respondence it exhibits to actual Bayesian procedures; see Berger and Pericchi (2001).

A communication problem with the OB approach is that the word “objective” is
loaded with many interpretations and expectations. This has led Gelman and Hennig
(2017) to propose a radically different approach to the subjective versus objective de-
bate in Statistics, which actually transcends the Bayesian approach. They argue that
“the words ‘objectivity’ and ‘subjectivity’ in statistical discourses are used in a mostly
unhelpful way, and [. . . ] propose to replace each of them with broader collections of
attributes, with objectivity replaced by transparency, consensus, impartiality, and cor-
respondence to observable reality, and subjectivity replaced by awareness of multiple
perspectives and context dependence”. The advantage of their reformulation is that the
replacement terms do not oppose each other, but rather complement each other, not
just from a practical viewpoint, but also from a conceptual one.

We will distinguish between priors for estimation (and prediction) purposes within a
given model, and priors for model selection (or comparison), where a collection of models
is entertained. This distinction however is currently challenged in the analysis of high-
dimensional problems characterized by a huge number of parameters and models, where
sparsity inducing priors are devised for the dual purpose of selection and estimation. In
this review we will mostly focus on priors for model selection, and especially priors on the
parameter space of each entertained model. One reason for this choice is that research
on objective priors for estimation/prediction has a long tradition and, accordingly, it
has received considerable attention over the past years; see in particular the excellent
reviews by Kass and Wasserman (1995) and Ghosh (2011). On the other hand, the
OB methodology for priors tailored to model selection started more recently, and its
development and applications to various models have increased over the last few years,
so that they could not be included in previous reviews such as Berger and Pericchi
(1996), Berger and Pericchi (2001), and Pericchi (2005).

2 Prior distributions for estimation and prediction

“Noninformative prior” has been, for many years, the most common name for indi-
cating any kind of prior which was proposed in an attempt to prepare the Bayesian
omelette without breaking the Bayesian eggs (Savage, 1954); that is, to obtain prob-
abilistic likelihood-based inferences without relying on informative prior distributions.
For the sake of brevity, here we cannot review the long history of the selection of objec-
tive priors in Bayesian inference. The interested reader can refer to Kass and Wasserman
(1996) and Ghosh (2011). Here we limit ourselves to list the most well-known existing
methods and to discuss the most recent advances.

i. Uniform prior. Based on a somehow misinterpreted principle of indifference, one
can use a prior for a scalar (continuous) parameter which assigns equal probabilities
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to intervals having the same length. However a uniform prior is not invariant under
re-parametrization and in many real cases there is no natural parametrization for a
given model (Jaynes, 2003). In addition, a uniform prior on an unbounded param-
eter space is improper (i.e. its total mass is not finite). Then, there is no guarantee
that the posterior will be proper and a case by case check must be considered.

ii. Invariant prior. The lack of invariance of the uniform prior has led many researchers
to look for objective priors which are invariant under a certain class of transforma-
tions.

Let (P ,Θ) be a statistical model for the observation X, where P is the distribution
model (a family of distributions), and Θ is the parameter associated to it. Let
Y = s(X) be a transformation, and suppose that the distribution model for Y is
still P , and denote with Λ the parameter. Notice that P is unchanged, and therefore
we say that the model is invariant to the transformation s(·). If only P is allowed
to inform our choice of the prior, then one should require that the prior for θ, πθ,
and that for λ, πλ be such that Pπθ{θ ∈ A} = Pπλ{λ ∈ A}, for all sets A. This is
named context invariance in Dawid (2006), and represents a very strong requirement
because it means that it is only the structure of P that matters, irrespective of the
context in which it is applied.

To exemplify, consider a model whose density is

f(x;σ) =
1

σ
g(x/σ), σ > 0,

where g(·) is a density on R. The distribution model is scale invariant because
X ∼ f(x;σ) implies that Y = cX ∼ f(y; cσ), for all c > 0. We can imagine X
being the price of a commodity measured in $, and Y the corresponding price in
Japanese yen. The scale invariance requirement for a prior π on σ leads to∫

A

π(σ)dσ =

∫
c−1A

π(σ)dσ =

∫
A

π(c−1σ)c−1dσ, for all measurable sets A,

whence π(σ) = π(c−1σ)c−1 for all σ. Setting σ = c, and noting that the equality
must hold for all c > 0, one concludes that the only measure which satisfies the
requirement is π(σ) ∝ σ−1 which is improper, although not uniform. It is important
to note that this is the right Haar invariant measure on the group of scale transfor-
mations. A complete description of the uses of invariance in Bayesian analysis can
be found in Berger (1985), Dawid (2006) and Robert (2007).

iii. Matching prior. The rationale behind this approach is that a noninformative prior
should provide inferences which are similar to those obtained from a frequentist per-
spective, for example in terms of credible versus confidence intervals. In this perspec-
tive, a probability matching prior is a prior distribution under which the posterior
probabilities of certain regions coincide with their frequentist coverage probabilities,
either exactly or approximately; see Datta and Mukerjee (2004) for details.

iv. Maximum entropy prior (Jaynes, 2003). This approach selects the prior which max-
imizes the entropy over a class of priors satisfying some basic restrictions. In the
continuous case, the entropy of a distribution π(θ) is given by
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Ent(π) = −
∫
Θ

π(θ) log π(θ)dθ,

and can be considered a measure of un-informativeness of π(·) for θ.
The maximum entropy prior approach is based on the following two steps. First,
one chooses a large class Γ of potential prior distributions, characterized by a set
of k constraints, usually in the form of quantiles or moments; the generic set of
constraints can then be written as

E
(
gj(θ)

)
= μj , j = 1, · · · k,

for suitable functions gj(·). Next the maximum entropy prior is selected as any
element in Γ maximizing Ent(π).

v. Jeffreys and reference prior

In practical applications, however, at least before the advent of Markov Chains
Monte Carlo (MCMC) methods, the vast majority of researchers used Jeffreys’
prior (Jeffreys, 1961)

πJ(θ) ∝ det
(
I(θ)

)1/2
,

where I(θ) is the Fisher information matrix, whose generic element Iij(θ) – under
very general conditions – and assuming a continuous parameter space, is given by

Iij(θ) = −Eθ

(
∂2

∂θi∂θj
log f(Y |θ)

)
,

where Eθ denotes the expected value over the sampling space for a given value of
the parameter θ, and Y is an observable random variable.

Besides being parametrization invariant, Jeffreys’ prior enjoys many optimality
properties in the absence of nuisance parameters. It maximizes the asymptotic di-
vergence between the prior and the posterior for θ, under several different metrics. It
is also a second order matching prior (Datta and Mukerjee, 2004) when θ is a scalar.

Although the Jeffreys’ prior is probably still the most popular objective prior
method among practitioners, it has some potential drawbacks which is important
to discuss. The Jeffreys’ prior may be improper and there is no guarantee that
the resulting posterior distribution will be proper for all possible data sets: inter-
esting counterexamples may be found in Ye and Berger (1991) and Berger et al.
(2001). Jeffreys himself, in his original proposal, developed the method for the case
of a scalar parameter. In the multidimensional case, the use of πJ(θ) may lead to
incoherence and paradoxes (Dawid et al., 1973).

Jeffreys also suggested to separately deal with location parameters. If θ = (φ, λ),
where φ is a vector of location parameters, then the Jeffreys’ proposal is to use a
prior proportional to (det(λ))1/2, keeping φ fixed. This prior is called “non-location
Jeffreys’ prior” in Kass and Wasserman (1996). Another popular variant of the Jef-
freys’ method is the so-called “independent Jeffreys priors”, which are made of a
product of conditional Jeffreys’ priors, i.e., by computing the Jeffreys prior one pa-
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rameter at a time with all other parameters considered to be fixed (Robert, 2014).
This prior is not invariant with respect to parametrization.

Another serious drawback of the Jeffreys’ method for selecting objective priors
is that there is no guarantee of a “satisfactory” behavior when the parameter of
interest is a low dimensional function ψ(θ) of the entire parameter vector θ. Here
“satisfactory” means that, in repeated sampling, the use of the Jeffreys’ prior should
produce statistical procedures with good a frequentist performance; for an interest-
ing and well-known counterexample, see for example, Robert (2007), pag.133. This
point is important because it suggests a deeper conclusion: a “good” objective prior
for a vector θ may have an unsatisfactory performance with regard to a function of
the parameter which is of interest. The problem of selecting an objective prior for
a specific parameter of interest ψ(θ) in the presence of other nuisance parameters
has been one of the main motivations for the development of the so-called reference
prior method (Bernardo, 1979; Berger and Bernardo, 1992). The goal of the refer-
ence prior approach, introduced by Bernardo (1979), is to find a prior distribution
which maximizes – over the sample space – a limiting version of the average di-
vergence between the prior and the corresponding posterior for a specific quantity
of interest ψ = ψ(θ). The method has been refined and improved in a series of
papers (Berger et al., 1989; Berger and Bernardo, 1989; Berger et al., 2012, 2015).
The reference prior method has introduced two main innovations in OB thinking: i)
the explicit use of the notion of information contained in a statistical experiment,
measured in terms of the Shannon–Lindley relative entropy; ii) the necessity of
declaring in advance an ordering of inferential importance among the parameters
of the model. In fact, for a given statistical model, the reference prior for the param-
eter vector θ may well depend on that ordering (Berger and Bernardo, 1992). This
reinforces the point that OB methods are, in general, context-dependent. Berger
et al. (2015) deeply discuss this issue, and argue that there are many situations
where having a single, overall objective prior would be desirable. They also propose
two methods for achieving this goal.

In the scalar case, under general conditions, the reference prior coincides with Jef-
freys’ prior, at least when the latter can be calculated. Reference priors show, in gen-
eral, very good frequentist properties in terms of coverage probability of a Bayesian
credible interval. Further details on the methods for constructing priors discussed
so far may be found in Kass and Wasserman (1996) or Berger (2006).

The remaining part of this section is devoted to some more recent developments.

Discrete parameter space

When the support of some of the parameters is discrete, traditional OB methods, like
Jeffreys’ or reference priors, cannot be directly used since they are based on the Fisher
information matrix which assumes differentiability with respect to the parameters. It
is important to stress that here we are not considering the case when the parameter
is a model index, as for instance when it identifies a subset of covariates in a variable
selection problem: see Section 3 for more details. We rather consider cases where the
parameter is discrete due to the structure of the statistical model. Important examples
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include the number of degrees of freedom ν in a Student-t sampling model, the unknown
population size N in a capture-recapture model, and change-point problems.

Berger et al. (2012) discuss in detail several methods to tackle the problem. In
particular they propose to embed the discrete parameter into a continuous parameter
space and then apply the usual reference methodology. However it is not always clear
how to practically perform the embedding. Under particular circumstances, one could
add a hierarchical level to the model depending on a continuous hyperparameter, say θ,
then find a reference prior for θ and use it to indirectly derive the prior for the discrete
parameter.

Example. The Hypergeometric model (Berger et al., 2012). Write the sampling distri-
bution for the observation R as

P (R = r|n,N,M) =

(
M
r

)(
N−M
n−r

)
(
N
n

) , r = 0, 1, . . . ,M,

where M ∈ {0, 1, . . . , N} is the unknown parameter. If we assume that, given p, M ∼
Bin(N, p), it is easy to see that the marginal model is given by

Pr (R = r|n,N, p) =

(
n

r

)
pr(1− p)n−r.

The natural objective prior for p would be the Jeffreys prior, that is a Beta(0.5, 0.5);
the prior for M would then be given by

π(M |N) =

∫ 1

0

(
N

M

)
pM (1− p)N−M 1

π
p−0.5(1− p)−0.5dp

=
1

π

Γ(M + 0.5)

Γ(M + 1)

Γ(N −M + 0.5)

Γ(N −M + 1)
.

However, the above situation is not so common and other approaches are discussed
in Berger et al. (2012), mainly based on asymptotic arguments.

A radically different approach is discussed in a series of papers by Villa and Walker
(2014b, 2015b, 2015a), where the authors propose a general method for producing objec-
tive priors starting from the so called “self-information” loss combined with the notion
of the Kullback–Leibler divergence between models. A measure of the information loss
associated to an event E having probability π(E) is called self-information loss. The
most natural one is given by: I(E) = log(1/π(E)) = − log π(E). Then, they state a
version of Bayes’ theorem in terms of losses. In this framework, the formal derivation of
the prior distribution for θ can be expressed as follows. Consider a discrete collection
of models indexed by {θ, f(·|θ)}. The worth associated to a particular value of θ is
represented by the Kullback–Leibler divergence between the model indexed by θ and
its nearest neighbor. That is,

u(θ) = min
θ∗ �=θ

DKL

(
f(·|θ)

∣∣∣∣f(·|θ∗)
)
,
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where DKL(fj ||fk) =
∫
fj(y) log(fj(y)/fk(y))dy. Then, the above quantity represents

the negative of the information loss in keeping the value θ in the parameter space. At θ,
the information loss can be also measured in terms of self-information loss. By equating
the two expressions, one can derive the objective prior for θ as

π(θ) ∝ exp

{
min

θ∗ �=θ∈Θ
DKL

(
f(·|θ)

∣∣∣∣f(·|θ∗)
)}

− 1.

More specialized topics related to estimation in discrete parameter spaces are: change-
point problems (Girón et al., 2007), exponential families restricted to a lattice (Choirat
and Seri, 2012), the degrees of freedom ν of a Student t distribution (Villa and Walker,
2014b) where the new prior is compared with two versions of the Jeffreys’ prior pro-
posed in Fonseca et al. (2008), the estimation of the number of trials in binomial and
capture-recapture experiments (Villa and Walker, 2014a), and for assessing objective
prior probabilities in a model selection scenario (Villa and Walker, 2015b).

Hierarchical Normal Model

The hierarchical normal model is still a very useful and routinely applied model
because of its flexibility and modularity. However the formal derivation of objective
priors has proven to be highly challenging. The most basic situation, which we now
discuss, has been considered by Berger and several co-authors in a series of papers
(Berger and Strawderman, 1996; Berger et al., 2005; Sun et al., 2001).

Consider
Yi = Biθi + εi, i = 1, . . . ,m, (1)

with the εi’s mutually independent with a Nk(0,Σi) distribution, with Σi known; for
simplicity assume Bi = Ik, for all i’s. Also, assume that

θi = ziβ + τi, i = 1, . . . ,m, (2)

with τi ∼ Nk(0,V ). Here the issue is to find objective priors for (β,V ) with reasonably
good properties. This common situation is hardly manageable both from a classical and
Empirical Bayes perspectives: even when k = 1 the marginal likelihood may provide
estimates of V equal to zero! On the other hand, the usual Jeffreys’ prior π(V ) ∝ V −1

would give an improper posterior, and the problem is only hidden, not solved, if one
uses a vague proper inverse gamma prior on V with very small values of the shape
and the scale parameters. This issue is discussed in detail in Berger and Strawderman
(1996). In general, when an improper prior produces an improper posterior, the use of
a vague proper prior does not solve the problem and the posterior distribution will pile
up at the boundary of the parameter space, with a dramatic dependence on the values
of the hyperparameters.

The problem of finding robust objective priors for this model has been tackled from
a different perspective. Given that a formal reference prior cannot be derived, the idea
is to leverage the notion of admissibility. Proper priors always provide admissible esti-
mators for β; also, improper priors may be seen as the limit of appropriate sequences
of proper priors. As a consequence, they are at the ‘boundary of admissibility’. So, if
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a given improper prior results in an admissible estimator, it can be considered a valid
candidate prior for an objective analysis. For the above situation, Berger et al. (2005)
have proposed the following prior with independent components

π(β,V ) ∝ 1

(1 + ||β||2)(d−1)/2
|V |1/(2k)−1

⎛
⎝∏

i<j

(λi − λj)

⎞
⎠

−1

, (3)

where the λ’s are the eigenvalues of V , and d is the dimension of β. The admissibility of
this prior has been recently proved by Berger et al. (2005). The above result, although
very important, is not easy to extend outside the Gaussian set,-up, where a useful
characterization of admissibility actually exists (Brown, 1971). An important exception
can be found in Spitzner (2005). For the broad class of generalized linear models, two
new classes of priors are proposed from an Empirical Bayes perspective. These classes of
priors ‘correct’ the Jeffreys’ prior, produce a shrinkage effect on the maximum likelihood
estimator and achieve a risk reduction.

Nonparameteric models

While this review is focused on objective Bayesian methods for parametric models,
it has theoretically some relevance also for Bayesian nonparametric (BNP) methods, be-
cause BNP could be more fittingly defined as “massively parametric Bayes” (Müller and
Mitra, 2013). In practice however objective BNP methods are far less developed, and
one can find a few reasons for this. In principle, one could argue that BNP methods are
intrinsically objective in the sense that they use models with very large, if not full, sup-
port. In this context, trying to be “objective” also in the choice of the hyperparameters
would seem like a daring enterprise. In the BNP literature, the Dirichlet process and its
generalizations represents the staple approach to inference. Along this line of research
Bush et al. (2010) and Lee et al. (2014) have proposed a minimally informative version
of the mixture of Dirichlet process model, in which the size M and the base measure F0

are selected using the concept of local mass. In a broader perspective, one can interpret
the extensions of the Dirichlet process, such us the normalized generalized gamma pro-
cess (De Blasi et al., 2015), as an impulse towards objectivity, or at least towards the
construction of more flexible and robust priors, which allow different tail behaviors for
some specific functionals of interest. Another link between objective inference and BNP
can be found in the search of those prior processes which attain a minimax (adaptive)
posterior concentration rates (Rivoirard and Rousseau, 2012; Hoffmann et al., 2015).

High-dimensional models

As already hinted in Section 1, current research is progressively developing objective
methods which produce proper priors that can be used both in estimation and testing
scenarios. One reason is the sheer complexity and dimensionality of the problems in-
volved that make the derivation of a formal objective prior too hard or even impossible.

A second motivation is that objective improper priors for estimation may not guar-
antee proper posterior when the number of parameters exceeds the sample size. Actually
the difficulty is more acute because even proper objective priors may lead to posterior
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distributions which are not satisfactory from several perspectives. To illustrate this
point, let us consider the following example.

Example. Sparse Multinomial Model (Berger et al., 2015). Assume a multinomial
experiment with many, say m = 1000 cells. In the absence of specific quantities of
interest, the Jeffreys’ and reference priors are both the proper Dirichlet(1/2, . . . , 1/2)
prior. However, this prior is not recommended in the presence of sparsity and small
sample size n. For example, with n = 3, assume we observe x111 = 2, x976 = 1 and all
the other xj = 0. The posterior means would be E(θi|x) = (xi + 0.5)/(n+ 0.5 m) so
that E(θ111|x) = 2.5/503, E(θ976|x) = 1.5/503 and all other parameters have a posterior
mean equal to 0.5/503. Then, cells 111 and 976 only have total posterior probability
of 0.008 even though all 3 observations are in these cells. Here the problem is that the
prior mass, far from being noninformative, overwhelms the role of the data. We discuss
in more detail these issues in Section 4.

Further contributions

A recent and promising approach has been developed in Simpson et al. (2017) where
the main goal is not to derive formal objective priors for a specific model. Rather the
authors aim at identifying those parts of a complex model which require a (hopefully
minimal) subjective input to be elicited in a principled way. Suppose one has a base
model M0, characterized by some parameter value ξ0, say f0(·|ξ0). Then, a richer and
more flexible model can be denoted by f(·|ξ). In order to characterize the complexity
of f compared to f0, one can build a so called penalizing complexity prior on ξ, which
depends on a function of the Kullback–Leibler divergence between the base model and
the alternative models indexed by ξ, d(ξ). The authors propose to derive the prior based
on a principle of constant rate penalization which automatically implies an exponential
prior on d(ξ). Details and discussion about advantages, disadvantages, and its debatable
status of objectivity can be found in Simpson et al. (2017).

The derivation of an objective prior, whatever method is considered, is strictly de-
pendent on the statistical model under investigation. A list, inevitably incomplete, of
priors tailored to specific models that have been proposed in the recent past includes:
bivariate copula models (Guillotte and Perron, 2012), skew-symmetric models (Branco
et al., 2013; Rubio and Liseo, 2014; Dette et al., 2017), small area models (Datta and
Rao, 2010; Arima et al., 2012), capture-recapture models (Xu et al., 2014), autore-
gressive time series (Liseo and Macaro, 2013; Sorbye and Rue, 2017), survival models
(Vallejos and Steel, 2015), Dallal model for bilateral data (M’lan and Chen, 2015), and
generalized marginal mixed models (Bodnar et al., 2016).

3 Objective Bayes model comparison

3.1 Some general issues

It is common practice to regard a statistical model as a family of distributions for the
observable random variables, and we follow suit. Model selection involves the compu-
tation of the posterior distribution on a collection of statistical models; we may then
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summarize the latter distribution in order to single out a unique representative, which
is the typical goal of model selection.

To fix notation for the rest of the paper let y = (y1, . . . , yn)
T denote the available

observations and suppose we wish to compare the following two models:

model M0 : f(y|θ0,M0), θ0 ∈ Θ0,

model M� : f(y|θ�,M�), θ� ∈ Θ�, (4)

where θ0 and θ� are unknown, model specific, parameters of size d0 and d� respectively.
If M0 is nested in M�, so that d0 < d�, we will henceforth assume that θ� = (θT

0 ,θ
T
�\0)

T ,
so that θ0 is a parameter ‘common’ between the two models, whereas θ�\0 is model
specific. The use of a ‘common’ parameter θ0 in nested model comparison is often made
to justify the employment of the same, potentially improper, prior on θ0 across models.
This usage is becoming standard, but is not always appropriate, in particular when
the intrinsic prior methodology is adopted; see e.g. Casella and Moreno (2006). We
will return briefly to this issue below. Let π(θ0|M0) be the prior under the null model
M0, and without loss of generality let the prior under model M�, have the following
hierarchical form:

π(θ0,θ�\0|M�) = π(θ0|M�)π(θ�\0|θ0,M�). (5)

To illustrate various approaches to the construction of priors on parameters, we
will use the variable selection problem in normal linear regression models as a running
important example. In this case, model M� is specified by

Y |X�,β�, σ
2,M� ∼ Nn(X� β� , σ

2In), (6)

where Y = (Y1, . . . , Yn)
T is the vector of responses, X� is a known n× (p� + 1) design

matrix (p� covariates plus the intercept), In is the n×n identity matrix, β� is a (p�+1)-
vector of regression coefficients, and σ2 is the error variance, common to all models.
Therefore each model M� has parameters θ� = (β� , σ

2) of size d� = p� + 2. With M0

we denote the null model having the intercept only, with parameters θ0 = (β0 , σ
2), and

withMF the full model with all p covariates under consideration. For modelM� we write
β� = (β0,β

T
�\0)

T and X� = [X0,X�\0], where X0 is the n-dimensional unit vector. All
matrices X� are assumed to be of full rank. Moreover, in the case of variable selection,
it is common to substitute the model indicator M� by a vector of binary indicators
γ = (γ1, . . . , γp) that identify which covariates are included in the model (George and
McCulloch, 1993).

3.2 Posterior measures of evidence

A natural tool for comparing model M0 versus M� is the posterior odds (Jeffreys, 1961)
defined by

PO0� =
π(M0|y)
π(M�|y)

=
m0(y)

m�(y)
× π(M0)

π(M�)
, (7)

where π(Mk) is the prior probability of model Mk, k ∈ {0, �}, while mk(y) is the
“marginal” likelihood (also called Bayesian “evidence”) of Mk given by mk(y) =
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∫
Θk

f(y|θk,Mk)π(θk|Mk)dθk, with π(θk|Mk) denoting the prior distribution of θk under

model Mk, k ∈ {0, �}. The ratio of the marginal likelihoods of the two models is called
the Bayes factor (BF)

B0� =
m0(y)

m�(y)
. (8)

From (7) it appears that the BF is the multiplicative term, or factor, which updates the
prior odds π(M0)/π(M�) to the posterior odds PO0�. The terminology is due to Good
(1958), and the initial use of the BF can be attributed both to Jeffreys and Turing who
introduced it independently around the same time (Kass and Raftery, 1995). Notice that
if equal prior model probabilities are assumed (prior indifference between models), the
posterior odds reduce to the Bayes factor. The BF does not depend on the prior model
probabilities; however it depends on the prior densities π(θk|Mk), which in general must
be proper. Notice that in some cases improper priors are allowed. For instance, Berger
et al. (1998) proved a remarkable result which states that, in situations characterized by
a group structure leading to invariance considerations, right Haar priors are perfectly
legitimate to be used for computing BFs. Additionally, use of improper priors is common
in nested scenarios, dating back to Jeffreys (1961); see also Kass and Raftery (1995).
Improper priors may be used, although not in a direct way, for computing BFs; see
Subsection 3.4 for more details.

Posterior model odds (and BFs) are directly related to posterior model probabilities
π(M�|y) because

π(M�|y) =
m�(y)π(M�)∑

Mk∈M
mk(y)π(Mk)

=
PO�0∑

Mk∈M
POk0

, (9)

for any modelM�,M0 ∈ M. IfM�,M0 ∈ M are the only two models under consideration
and they have the same prior probabilities, then π(M�|y) = 1/(1 +B0�). The posterior
model probability (9) is often interpreted as the probability that M� is the “true” data
generating model. Notice however that this interpretation is meaningful only under
the M-closed view, wherein it is assumed that the true model is included in the set
of models under consideration, and provided that the induced Bayesian procedure is
consistent (see Section 3.3 for details). In most real life problems, the M-closed view is
unrealistic. Nevertheless, measures of Bayesian model comparison support models (in
M) that are close in Kullback–Leibler divergence to the true generating mechanism; see
for details Walker et al. (2004), Clyde and Iversen (2013), Chib and Kuffner (2016). A
disadvantage of using π(M�|y), as opposed to posterior odds or BFs, is the “dilution”
of the posterior probability over the space of models (George, 1999), which becomes
spread out over many similar models. Dilution increases as more models are considered,
so that posterior model probabilities, even for the maximum a-posteriori (MAP) model,
decrease. For this reason it is advised to report, besides the posterior probability of each
model, also its posterior odds or BF against the MAP model.

For the variable selection problem, we may further calculate the posterior inclusion
probabilities for each covariate Xj given by
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π(γj = 1|y) =
∑

Mξ ∈Mj

π(Mξ|y) =

∑
Mξ∈Mj

POξ0∑
Mk∈M

POk0
,

where Mj = {M ∈ M : γj = 1} ⊂ M is the set of all models in M with variable Xj

included in the model formulation. Posterior inclusion probabilities (George and McCul-
loch, 1993) represent an accumulated measure of evidence in favor of a covariate being
present in a model structure, and have been used as an informal, empirical measure
of evidence for many years. Their usefulness was highlighted in the work by Barbieri
and Berger (2004) where it was proved that the median probability (MP) model, de-
fined as that model containing only covariates whose posterior inclusion probabilities
exceeds the value 0.5, has better predictive properties than the MAP model in specific
cases. Posterior inclusion probabilities do not generally suffer from the phenomenon of
posterior dilution because they can be written as

π(γj = 1|y) = 1/(1 +Oj) with Oj =

∑
Mξ∈Mj

POξ0∑
Mk∈Mj

POk0
,

where Mj = {M ∈ M : γj = 0} ⊂ M is the complementary set of Mj . In the
above expression, the numerator and the denominator of Oj are sums of 2p−1 elements
making this quantity robust when we decide to increase the number of covariates under
evaluation. Similarly, when using any tool of model exploration in large model spaces,
posterior inclusion probabilities are more reliably and quickly estimated than individual
posterior model probabilities due to the large number of models with small but non-zero
probability involved in the denominator of (9).

There is a growing interest in applying posterior measures of evidence in empirical
research. For instance the Journal of Mathematical Psychology recently devoted a whole
issue to this topic; see the introductory editorial page by Mulder and Wagenmakers
(2016). One reason might be the acute dissatisfaction with current frequentist testing
methods, also related to lack of reproducibility in scientific investigations; see Johnson
(2013) and the recent statement by the American Statistical Association (Wasserstein
and Lazar, 2016). Benjamin et al. (2017) is the outcome of a concerted effort by a
large group of statisticians and scientists to define more stringent statistical standards
of evidence for claiming new discoveries in many fields of science.

We close this subsection by presenting a variety of viewpoints on the issue of Bayesian
model comparison from an objective standpoint. First of all it is worth pointing out
that the use of the BF is not undisputed even within the OB community. Bernardo
and Rueda (2002) consider testing a null model nested into a larger one. They argue
that a testing problem should be regarded as a formal decision problem on whether
or not to use the null model. Accordingly a loss function should be specified to take
into account the amount of information which would be lost if the null model were
used. Objectivity comes into the picture through the use of a reference prior on the
parameter space. Dawid and Musio (2015) address the problem of the indeterminacy
of the marginal likelihood of a model in the presence of an improper prior, and solve
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it by replacing the marginal log-likelihood with a homogeneous proper scoring rule,
which is insensitive to the arbitrary scaling constant of the prior. They also show that,
when suitably applied, their proposal will typically enable consistent selection of the
true model. Kamary et al. (2014) propose to view the model selection enterprise as a
problem in mixture modeling. Specifically the models under investigation are viewed
as components of a mixture model, so that the original testing problem is transformed
into an estimation problem, and accordingly the posterior probability of a model or an
hypothesis is evaluated through the posterior distribution of the weights of a mixture
of the models under comparison. Again improper priors can be used, although some
care must be exercised. In order to perform OB methods for testing or selection, other
authors rely on an unconventional use of the BF. Johnson (2005) proposes a test-based
BF (TBF) for two nested models which is defined through a test statistic, rather than
individual observations. The main idea is that the distribution of a test statistic does not
depend on unknown model parameters under the null, so that some of the subjectivity
that is normally associated with the definition of Bayes factors is eliminated. It remains
to compute the marginal likelihood under the alternative model: this can be obtained
through a prior or using a marginal maximum likelihood estimate. Further aspects are
examined in Hu and Johnson (2009), while Held et al. (2015) relate BF’s based on
g-priors (discussed in Section 3.4) to TBF’s. Finally Johnson (2013) introduces the
concept of a uniformly most powerful Bayesian test (UMPBT) for testing a null model
nested in a larger alternative one. A UMPBT is such that the prior under the alternative
hypothesis is determined so as to maximize the probability that a Bayes factor against
the null exceeds a specified threshold for each possible value of the true parameter
belonging to the alternative set.

3.3 Principles for objective model comparison

Criteria for objective Bayesian model choice

Bayarri et al. (2012) developed criteria (desiderata) to be satisfied by objective prior
distributions for Bayesian model choice. A number of these criteria are applicable only
in nested model comparisons. Notice that this represents a distinctive innovation rela-
tive to previous attempts in the literature which typically proposed, based on intuition
or otherwise, reasonable priors which were subsequently evaluated in terms of their
properties. Here the paradigm is turned upside down: first criteria meaningful for pri-
ors tailored to objective model selection are set out, and then priors satisfying them
are derived. These criteria are grouped into four classes: basic, consistency, predictive
matching and invariance. The basic criterion (C1) states that the prior of each model
specific parameter, conditionally on the common ones, π(θ�\0|θ0,M�) should be proper,
so that Bayes factors do not contain different arbitrary normalizing constants across
distinct models.

Model selection consistency (C2) has been widely used as a crucial criterion for ob-
jective model selection priors. The criterion implies that if data have been generated
by M�, then the posterior probability of M� should converge to one as the sample size
diverges. Although consistency is an important requirement, it might not be enough to
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differentiate between several priors, all satisfying (C2). Hence the need to better inves-
tigate the rate of convergence to the true model. Current research in high-dimensional
models, on which we report in Section 4, is precisely devoted to this issue; see in par-
ticular Castillo and Misner (2018) and Ročková and George (2018). An additional con-
sistency criterion is information consistency (C3): if there exists a sequence of datasets
with the same sample size n such that the likelihood ratio between M� and M0 goes
to infinity, then the corresponding sequence of Bayes factors should also go to infinity.
Information inconsistency was first discovered by Berger and Pericchi (2001) in the case
of conjugate priors for location when the scale is unknown and was further studied by
Liang et al. (2008). It represents a severe lack of robustness to highly specific sample
information. When some aspects of the model, sample size and, to some extent, also of
the observations, affect model selection priors, it is desirable that such features should
disappear as n grows, leading to a limiting proper prior. This requirement is named
intrinsic consistency criterion (C4).

Predictive matching (C5) is viewed as the most crucial aspect for objective model
selection priors. Informally, with a minimal sample size, one should not be able to
discriminate between two models, so that the BF should be close to one, for all samples
of minimal size. In particular, exact predictive matching occurs if the BF equals one.
The minimal sample size n∗ is defined as the smallest sample size with a finite nonzero
marginal density for the combination of models and priors; i.e. 0 < m(y∗|M�) < ∞ for
all observations y∗ of size n∗, and for all models M� under the prior π(θ�|M�). Bayarri
et al. (2012) elaborate further on the notion of predictive matching, but we omit details
for the sake of conciseness.

The last two criteria are in terms of invariance arguments. Measurement invariance
(C6) broadly states that answers should not be affected by changes of measurement
units. A special type of invariance arises when the families of sampling distributions of
models under consideration are such that the model structures are invariant to group
transformations. The group invariance criterion (C7) states that if models M� and
M0 are invariant under a group of transformations G0, then the conditional priors
π(θ�\0|θ0,M�) should be chosen in such a way that the conditional marginal distri-
bution f(y|θ0,M�) is also invariant under G0. This means that if models exhibit an
invariance structure, this should be preserved after marginalization. Note that G0 is a
group of transformations relevant to the null model M0, and therefore the group invari-
ance criterion can be understood as a formalization of the Jeffreys’ requirement that
the prior for a non-null parameter should be “centered at the simplest model.” Another
use of invariance is to find priors on common parameters.

Remarkably, Bayarri et al. (2012) accomplished the goal of finding a prior satisfying
all their desiderata within the framework of normal linear regression models, which they
called robust prior. Under model M�, as in (6), the prior takes the form

πR(β�\0,β0, σ|M�) ∝ σ−1

∫ +∞

0

Np�−p0(β�\0|0, gΣ�\0)π
R(g)dg, (10)

where Σ�\0 = σ2(V T
�\0V�\0)

−1, V�\0 = (In −X0(X
T
0 X0)

−1XT
0 )X�\0, and

πR(g) = a [ρ�(b+ n)]
a
(g + b)−(a+1)1{g>ρ�(b+n)−b}, a, b > 0 and ρ� ≥

b

b+ n
.
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While the result holds for a general matrix of common predictors X0, note that, if
X0 = 1 (i.e. when M0 contains only the intercept), then V�\0 = Z�\0, with Z�\0
denoting the column-wise centered version of X�\0.

Regarding the hyperparameters of the above prior distribution, the default values
recommended by Bayarri et al. (2012) are a = 1/2, b = 1 and ρ−1

� = p� + 1. Under
the robust prior, the resulting Bayes factors have closed form expressions in terms of
the hypergeometric function. Finally, the hyper-g-prior (Liang et al., 2008), discussed
in Section 3.4, using the recommended value of 3 for its hyperparameter, is a particular
case of the robust prior with a = 1/2, b = 1 and ρ−1

� = n+ 1; similarly, the hyper-g/n-
prior (Liang et al., 2008), using the recommended value of 3 for its hyperparameter,
may be obtained from the robust prior by setting a = 1/2, b = n and ρ−1

� = 2.

Compatibility of priors

When dealing with model choice, a prior on the parameter space under each model
should incorporate not only uncertainty but also features which are germane to the
comparison setting. One important feature is compatibility of priors across models; see
Dawid and Lauritzen (2011) and Consonni and Veronese (2008). Informally this means
that priors should be related across models, although in principle they need not be, each
being conditional on a given model. Compatibility is usually applied to nested models,
with parameter spaces having different dimensions, but it can be extended to more
general setups whenever we can identify a benchmark model (often the null model),
which is nested into every other model under consideration (encompassing from below),
so that compatibility is realized between each model and the benchmark, and thus
indirectly between any pair of models. Compatibility was initially proposed to lessen the
sensitivity of model comparison to prior specifications, and also to facilitate the task of
multiple prior elicitations when several models are entertained. However it also underlies
some approaches to the construction of objective priors for Bayesian testing, e.g. the
expected posterior prior (Pérez, 1998) (see Section 3.4), wherein the prior under each
model is anchored to a common base measure. Another version of prior compatibility
across models, named matching, was examined at the beginning of Section 3.3 within a
more general theoretical setup.

Validation of Bayesian approaches

The desiderata of Bayarri et al. (2012) refer to the desirable properties of prior distri-
butions and the induced model selection procedures. Nevertheless, when more general
methods with Bayesian motivation are used (e.g. the intrinsic and the fractional Bayes
factors; see Section 3.4) then an additional important property should be satisfied. Ac-
cording to Principle 1 of Berger and Pericchi (1996), “methods that correspond to use
of plausible default (proper) priors are preferable to those that do not correspond to
any possible actual Bayesian analysis”. Thus an acceptable Bayesian procedure should
correspond, at least asymptotically, to a prior which makes sense in the context where
it is applied.
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Methods with good frequentist properties

A popular alternative to the standard objective Bayes techniques is to use prior distri-
butions that lead to good frequentist performances. This trend is especially notable in
high-dimensional settings as we discuss in Section 4. For instance, priors are selected
based on the coverage of posterior intervals and false discovery rates (FDR). The former
focuses on estimation (Castillo and van der Vaart, 2012; van der Pas et al., 2017), and
is further discussed in Section 4, while the control of FDR is tailored to multiple com-
parisons and prior model probability specification (Tansey et al., 2018); see Section 3.6.

3.4 Methods for constructing objective prior distributions

Unit information principle

The unit information principle has its origin in the work of Kass and Wasserman (1995)
who investigated the use of the Schwarz (1978) criterion (or BIC) as an approxima-
tion of the Bayes factor. Informally, a unit information prior (UIP) has an information
content equivalent to a sample of size one. For a dataset of size n, the observed Fisher
information matrix under model M� divided by n can be interpreted as an estimate of
the average amount of information in one data point. If θ� ∈ R

d� one way to construct
a UIP is as follows

θ�|M� ∼ Nd�

(
μθ� , n

[
J n
�

(
μθ�

)]−1
)
, (11)

where J n
� (·) is the negative of the Hessian matrix of the log-likelihood. Under this prior

the logarithm of the BF is asymptotically equivalent to the Schwarz criterion (BIC).
In this way the unit information prior provides a Bayesian interpretation for the BIC
model selection procedure.

There exist specifications of UIPs alternative to (11); for instance one could replace
μθ� with the maximum-likelihood estimate. In the same spirit, Ntzoufras (2009) pro-
posed a simplified version by considering independent prior distributions with means
and variances equal to the corresponding posterior means and the variances (multiplied
by n) obtained using a flat improper prior. The posterior model probabilities under this
approach can be used as an initial yardstick for comparisons with other objective Bayes
approaches.

The unit information principle can be easily combined with the power-prior ap-
proach described shortly below. Under this setting, the prior mean μθ� can be specified
by “prior”, or “imaginary”, data. A sensible choice, for nested model comparisons, is to
generate the latter under the null model. Examples of priors based on the unit infor-
mation principle can be found in Ntzoufras et al. (2003) for binary response models, in
Overstall and Forster (2010) for generalized linear mixed models, in Sabanés Bové and
Held (2011) for generalized linear models, and in Ntzoufras and Tarantola (2008) for
contingency tables.

The unit information principle rests on the notion of sample size which is straight-
forward for i.i.d. observations, but requires careful considerations in other settings, such
as non-i.i.d. observations or in hierarchical models. In Bayarri et al. (2014) the concept



644 Prior Distributions for Objective Bayesian Analysis

of effective sample size is analyzed in detail, and applied to the construction of priors
for model selection in a variety of statistical setups.

Training samples

This subsection by itself does not represent a direct method for constructing priors: its
goal is rather to motivate the use of intrinsic priors which are described in the subsequent
paragraph.

The difficulties in computing the Bayes factor under improper priors, mentioned
in Section 3.2, have generated a few proposals that try to address them. One line of
research rests on the use of training samples and led to the intrinsic Bayes factor (IBF)
proposed by Berger and Pericchi (1996). The IBF employs a subset of the data, of size
n∗ (the training sample) to convert the improper baseline prior to a proper posterior,
and then uses the remaining data to calculate the Bayes factor. Next, a summary, e.g.
median, arithmetic or geometric mean, of the Bayes factors over the set of all possible
sub-samples of size n∗ can be reported, resulting in the median, arithmetic or geometric
intrinsic Bayes factors respectively. Under the IBF approach, minimal training samples
are often employed in order to minimize the loss of data utilized for building the prior
distribution. These samples are defined such that their size is “as small as possible,
subject to yielding proper posteriors” (Berger and Pericchi, 1996). The IBF has the
disadvantage that in principle one should consider all possible sub-samples having a
minimal sample size, and then take averages. This can be computationally costly. A
way to overcome this difficulty is to resort to intrinsic priors which we describe below.

A related method is the fractional Bayes factor (FBF) proposed by O’Hagan (1995),
which however does not require training samples. In order to compute the marginal
likelihood of a given model using an improper prior, the prior is “trained” using a
fraction of the full sample likelihood, that is raising the full likelihood to a power. Next
the calculation of the marginal likelihood is implemented using the complementary
fraction of the likelihood together with the newly trained prior. The FBF is appealing
because of its simplicity, and has been used to address challenging statistical problems
involving model comparison. In particular, we mention here two areas: multivariate
time series models (Corander and Villani, 2004, 2006; Villani, 2001), and graphical
models (Carvalho and Scott, 2009; Consonni and La Rocca, 2012; Altomare et al., 2013;
Leppä-aho et al., 2016; Consonni et al., 2017). Recent theoretical work on Bayesian
fractional posteriors (Bhattacharya et al., 2016), while not directly motivated by OB
methodologies and having a much broader scope, may provide useful results for further
investigation into properties of FBF.

Intrinsic priors Intrinsic prior distributions were originally introduced by Berger and
Pericchi (1996) in order to provide a proper Bayesian interpretation for intrinsic Bayes
factors, according to the principle that a good Bayesian procedure should correspond
to the use (at least asymptotically) of a sensible prior; see Section 3.3.

The intrinsic prior can be obtained by equating the limit (as n → ∞) of the arith-
metic intrinsic Bayes factor with the corresponding Bayes factor obtained by using the
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intrinsic prior resulting in two intrinsic equations for every pair of models under com-
parison. For any two nested models under comparison M� and M0, the two equations
coincide. Although the intrinsic prior distributions always exist for nested model com-
parisons (Sansó et al., 1996), the intrinsic equations do not collapse into a single equation
in non-nested cases. Therefore, the existence of the intrinsic priors is not ensured, and
when they exist, we obtain a class of intrinsic prior distributions rather than a single
solution (Moreno, 2005). Berger and Pericchi (1996) prove that in nested situations, the
arithmetic, but not the geometric, IBF corresponds to a proper prior under the “alter-
native” when the “null” is simple, or when the baseline prior under the “null” is proper.

Consider the comparison of a “null” modelM0 = {f(·|θ0,M0), π
N (θ0|M0)} nested in

modelM� = {f(·|θ�,M�), π
N (θ�|M�)}. The baseline priors in each model are assumed to

be objective, typically improper, and the superscript “N” stands for “noninformative.”
In this part of the paper only, we depart somewhat from the notation employed in
Section 3.1 because both θ0 and θ� are meant to be model specific parameters without
assuming that θ0 is a ‘common’ parameter. If we assume that the intrinsic priors are
limit of proper intrinsic priors then it can be shown (Moreno et al., 1998) that the pair

πI(θ0|M0) = πN (θ0|M0),

πI(θ�|M�) = πN (θ�|M�)EY (l)|θ�,M�

[
BN

0�(Y (l))
]
, (12)

are the unique limit of proper intrinsic priors, whereBN
0�(y(l)) =

mN (y(l)|M0)
mN (y(l)|M�)

is the Bayes

factor of modelM0 versusM� evaluated at the training sample y(l), andmN (y(l)|M�) =∫
f(y(l)|θ�,M�)π

N (θ�|M�)dθ�, with a similar expression holding for mN (y(l)|M0).
Hence, the intrinsic prior under model M� is the baseline prior πN (θ�|M�) adjusted
by the expected Bayes factor of M0 against M� with respect to the distribution of Y (l)
under model M�.

If the prior πN (θ�|M�) is improper, so that its expression is unique up to a constant
c�, an important feature of the intrinsic prior is that it is free from c�. Indeed πI(θ�|M�)
only depends on the constant c0 of the (improper) prior πN (θ0|M0) under the null model
M0. However, if the latter is nested into every M�, meaning that M0 can be taken as a
null, or baseline, model in all pairwise comparisons, c0 will appear as a multiplicative
constant in the intrinsic prior distribution of each model M�, and therefore will cancel
out in the ensuing Bayes factors, causing no indeterminacy problem in the resulting
model comparison procedure based on intrinsic priors.

As in Berger and Pericchi (1996), also in Moreno et al. (1998) it has been proved
that in nested model comparisons, if the baseline prior for the reference model M0

is proper, then πI(θ�|M�) is also proper and unique under mild conditions. However,
additionally, Moreno et al. (1998) constructed a limiting intrinsic procedure for the
case where πN (θ0|M0) is not proper. General theory for intrinsic tests and comparisons
between nested models or hypotheses can be found in Moreno (1997) while for non-
nested comparisons results are available in Berger and Mortera (1999) and in Cano
et al. (2004). Cano and Salmerón (2013) generalized the intrinsic prior formulae, for
non-nested situations, by iteration.
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Objective model comparison and hypothesis testing based on intrinsic priors have
been implemented in a variety of problems. Here we can only list a subset of them which
have appeared in the more recent years: analysis of variance models with heteroscedastic
errors (Bertolino and Racugno, 2000), survival analysis models (Kim and Sun, 2000),
tests for the selection of the number of mixture components (Moreno and Liseo, 2003),
one-sided hypothesis tests (Moreno, 2005), test for the equality of regression coefficients
with heteroscedastic errors (Moreno et al., 2005), changepoint problems (Girón et al.,
2007), one-way random effects models (Garcia-Donato and Sun, 2007), the equality of
two correlated proportions (Consonni and La Rocca, 2008), two-way contingency ta-
bles (Casella and Moreno, 2009), comparisons in multivariate normal regression models
(Torres-Ruiz et al., 2011), Hardy Weinberg equilibrium models (Consonni et al., 2011),
and comparison of constrained ANOVA models (Consonni and Paroli, 2017). Finally in
Pérez et al. (2017) a sensible prior to substitute the inverted gamma prior for scales
is found as an intrinsic prior, and shown to generate by marginalization the horseshoe
prior described in Section 4.

Moreover, intrinsic priors have been successfully used for variable selection in normal
regression (Casella and Moreno, 2006), multivariate regression (Torres-Ruiz et al., 2011)
and probit models (Leon-Novelo et al., 2012). For normal regression models with a finite
number of predictors, a variety of priors, including the intrinsic, leads to a consistent
variable selection procedure (Casella et al., 2009). For models whose dimension grows
with the sample size n, Moreno et al. (2010) show that the Bayes factor for nested models
under the intrinsic prior is consistent when the size of the model grows as O(nb) for b < 1,
and this holds also for the BIC selection procedure. When b = 1, the Bayes factor under
the intrinsic prior is still consistent, except for a small set of alternative larger models
which they characterize. Finally consistency of intrinsic posterior distributions both
under model selection and model averaging is studied in Womack et al. (2014). Moreno
and Girón (2008) provide a comparison between two different types of encompassing in
each pairwise model comparison: “from below”, so that the null model is nested into each
of the remaining ones and acts as the baseline model, and “from above”, considering each
model as baseline when compared to the full one; only the former however guarantees
the rather obvious coherency requirement that B0�((y)/B0k(y) = Bk�(y). For a concise
review of the intrinsic prior methodology we refer the readers to the recent publication
of Moreno and Pericchi (2014).

Intrinsic priors, as virtually all commonly used priors for testing, result in pairwise
model comparison procedures with unbalanced learning rates under the two rival hy-
potheses/models. Specifically, ifM0 is nested withinM�, the BF in favor ofM0 decreases
as a power of n if M� holds; on the other hand, the BF in favor of M� decreases ex-
ponentially fast in the sample size when M0 holds; see Dawid (2011). To alleviate this
imbalance, one can resort to non-local priors (Johnson and Rossell, 2010), which we
briefly discuss at the end of this subsection. An intrinsic version of non-local priors was
implemented for the first time in Consonni et al. (2013) with an application to the com-
parison of nested models for discrete observations. Alternatively, as one referee pointed
out, the imbalance in the learning rate can be also managed by considering “objective”
losses that naturally arise in specific problems; see Goutis and Robert (1998), Plummer
(2008) and Dawid and Musio (2015) for examples.
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Similarly to intrinsic priors, fractional priors have been introduced in the objective
Bayes community by Moreno (1997) in order to identify a Bayesian procedure that
approximates the results obtained by the FBF. De-Santis and Spezzaferri (1997) derived
formulae for the calculation of intrinsic priors of the FBF.

Imaginary observations

One of the main approaches used to construct prior distributions for objective Bayes
methods is the concept of imaginary observations. The basic idea (whose origin can
be traced back to the work of Good, 1950) is to consider a thought experiment with
an appropriate dataset that will be used to specify the normalizing constants involved
in the Bayes factors when using improper priors (Spiegelhalter and Smith, 1982). The
main pathway here was to adopt the “local” principle, where the imaginary dataset fully
supports the null hypothesis in nested model comparisons. In order to make the induced
methods minimally informative, the notions of minimal training sample and the UIP
principles were used in several occasions. A “non-local” alternative has been introduced
by Spitzner (2011) who used the notion of “neutral” imaginary samples which result in
posterior model odds that do not support either of the two hypotheses; see also Section
3.2 of Spitzner (2011) for details concerning the connection of this approach with the
“non-local” priors for a simple hypothesis test. We further distinguish between fixed
and random imaginary observations.

Fixed imaginary data

In this subsection, we will focus on three main approaches. We start with the description
of power priors, because of their wider scope. We then continue with g priors, and
mixture thereof, which are very popular choices in variable selection problems.

Power priors Ibrahim and Chen (2000) and Chen et al. (2000) introduced power priors
as a resourceful probabilistic procedure for the elicitation of prior information in the form
of additional prior data whose importance is weighted by a power parameter. Although
the primary use of the power priors was in subjective Bayes approaches, using historical
data to build the prior, they can be used (in combination with the notions of unit
information priors) also to build meaningful prior distributions for objective Bayesian
analysis through the device of “fixed imaginary data” (Spiegelhalter and Smith, 1980).

Consider model M� in (4), and let πN
� (θ�|M�) be an objective noninformative prior

typically used for estimation purposes. Then for a set of imaginary data y∗ = (y∗1 , y
∗
2 , . . . ,

y∗n∗)T of size n∗, a sensible prior for the model parameters can be obtained by the
following expression

π(θ�|y∗, a0,M�) ∝ f(y∗|θ�,M�)
a0πN (θ�|M�) . (13)

The parameter 0 ≤ a0 ≤ 1 controls the weight that the imaginary data contribute to
the final posterior distribution of θ�, since
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π(θ�|y,y∗, a0,M�) ∝ f(y|θ�,M�)f(y
∗|θ�,M�)

a0πN (θ�|M�) .

For a0 = 1, the prior (13) is exactly equal to the posterior distribution of θ� after
observing the imaginary data y∗. Usually, when limited prior information is available,
we let a0 = 1/n∗ inducing contribution of the imaginary data to the overall posterior
which is equivalent to one data point; i.e. the prior has a unit information interpreta-
tion. Moreover, the imaginary data can be generated from the simplest model (when
available) under comparison in order to a priori support more parsimonious models.
This specification can serve as a sensible default choice to conduct Bayesian analysis in
a minimally informative way.

g-priors Zellner’s (1986) g-prior is one of the standard choices of prior distributions
for variable selection in the normal linear regression models. It has been widely used
due to its computational convenience, direct interpretation and its connection to the
widely used BIC. Its original formulation is given by

β�|σ2,M� ∼ Np�+1

(
μβ�

, g(XT
� X�)

−1σ2
)

and π
(
σ2

∣∣M�

)
∝ 1/σ2 , (14)

suppressing dependence on X�. Up to the term g the prior variance-covariance matrix of
β� coincides with that of the maximum likelihood estimator of β̂�. Formula (14) reports
the original specification, wherein the improper prior for σ2 is meant to provide no
information about the error variance; however some researchers extend the term g-prior
to more informative settings with σ2 having a normal-inverse gamma distribution. An
alternative version of g-prior has been widely used in literature, see for example Liang
et al. (2008). In this approach, after centering all covariates, the intercept is treated as
a “common” parameter, and the g-prior takes the form

β�\0
∣∣β0, σ

2,M� ∼ Np�

(
0, g

(
ZT

�\0Z�\0
)−1

σ2
)

and π(β0, σ
2|M�) ∝ 1/σ2 , (15)

with β�\0 denoting the sub-vector of β� without the common parameter β0 and Z�\0
denoting the column-wise centered version of X�\0.

The g-prior in (14), with μβ�
= 0, can be interpreted as a power prior with fixed

imaginary data y∗ = 0 of size n and imaginary design matrix X� (same as the sample
design matrix), power parameter equal to a0 = 1/g, and a flat baseline prior distribution
for β� conditionally on σ2. Similarly, the conditional distribution β�\0|β0, σ

2,M� in (15)
can be interpreted as a power prior with all imaginary data set equal to a pre-specified
value.

The g-prior has been widely used in practice for several reasons, among which: (a)
analytical tractability for posterior inference; (b) connection to readily available variable
selectors such as BIC; (c) ease of prior elicitation, because there is only one unspecified
prior hyperparameter, namely g. With regard to (c), notice that g has an interpretation
similar to the inverse of the power parameter a0 in the power prior setup. Therefore it
determines the amount of prior information relative to the empirical or imaginary data.
The information introduced by the prior can be measured by the ratio n/g and can be
considered in terms of the effective sample size of the prior. Hence for the default choice



G. Consonni, D. Fouskakis, B. Liseo, and I. Ntzoufras 649

g = n, the prior information will be equivalent to adding one observation in our analysis,
while for g = 1, the prior information will be equivalent to adding n observations in
our analysis. The prior mean of β� is usually set equal to zero, also to favor shrinkage
of parameter values towards to zero, especially for those components which are not
especially relevant. Alternative choices of g have been proposed in the literature; see
for example Foster and George (1994) and Fernández et al. (2001). Empirical Bayes
approaches have been also proposed for the specification of g; see for example George and
Foster (2000), Hansen and Yu (2001) and Liang et al. (2008). Both versions (14) and (15)
of g-priors with g = n asymptotically lead to a BIC based variable selection procedure.

Zellner’s g-prior leads to a consistent variable selection method; however it suffers
from an “information paradox” (Liang et al., 2008). In response to this criticism, Zellner
(2008) argued that a Bayesian procedure which places a high posterior model probability
(but not equal to one), even on a limiting perfectly fitted model, is a reasonable answer,
in line with the philosophy of Box (“all models are wrong”), and with Jeffreys (1961)
who claimed that there is always an infinite number of models that can perfectly fit the
data. Finally, the posterior model probability eventually converges to one as the sample
size increases, which again is a plausible behavior because uncertainty progressively
reduces as data information is accumulated.

Using power prior setups, extensions of g-priors have been introduced for binary
response models (Ntzoufras et al., 2003; Fouskakis et al., 2009), for generalized linear
models (Sabanés Bové and Held, 2011) and, more recently, for zero-inflated Poisson
models (Malesios et al., 2017).

Mixtures of g-priors A natural extension of g-priors can be obtained by considering
a hyper-prior π(g) in order to “let the data decide” about the value of g. Although
Zellner (1986) had already suggested such an extension, no solid scientific arguments
existed before the work of Liang et al. (2008), which justified theoretically the use of
hyper-priors. Since g is nothing but the power parameter as described in the previous
paragraph, any mixture of g-priors can be considered as a power-prior with fixed imagi-
nary data and a hyper-prior placed on a0, that controls the amount of prior information
which is fed into the posterior.

Within the normal linear regression model formulation, Cui and George (2008) and
Liang et al. (2008) introduce in (15) the hyper-g prior which places a beta prior on the
shrinkage parameter g/(g + 1) with hyperparameters 1 and a/2− 1, leading to a mean
equal to 2/a. The induced hyperprior for g has density function π(g) = a−2

2 (1+ g)−a/2,
for g > 0. Liang et al. (2008) suggested the value of a = 4 (uniform prior), or a = 3
with prior mean shrinkage equal to 2/3. Another sensible choice is a = 2(1 + 1/n),
so that E[g/(g + 1)] = n/(n + 1), which corresponds to the shrinkage of the unit-
information setup of the g-prior (i.e. for g = n). Generally, any choice 2 < a ≤ 4 leads
to robust answers (Dellaportas et al., 2012) except for choices extremely close to 2 which
eventually activate the Jeffreys–Lindley–Bartlett paradox. A practical disadvantage of
the hyper-g variable selection method is that, for non-important covariates, it results in
posterior covariate inclusion probabilities which are inflated towards 1/2 in comparison
with other methods; for examples and discussion see Dellaportas et al. (2012).



650 Prior Distributions for Objective Bayesian Analysis

Under the hyper-g prior, the induced variable selection method is consistent in terms

of prediction, model selection (C2 ) for any true model except the null, and information

consistent (C3 ). Model selection consistency under the null is achieved under the hyper-

g/n prior, whose density is π(g) = a−2
2n (1 + g/n)−a/2, for g > 0. Alternatively, one can

consider the reparametrization g = ng∗ and place a hyper-g prior on g∗. The reciprocal

of the variance multiplier 1/g∗ = n/g measures the units of information in data points

added in the analysis via the prior. Under this parametrization, a Beta(1, a/2−1) prior is

assigned to the factor g∗/(g∗+1) = g/(g+n). In a similar manner, Ley and Steel (2012)

use a Beta distribution with hyperparameters b and c on g/(g+n) (they also use a more

specific horseshoe type of prior for the same shrinkage factor). Computations in normal

linear regression models are relatively straightforward because the marginal likelihoods

involved in all model comparisons require the computation of one-dimensional integrals.

Mixtures of g-priors include the Cauchy prior of Zellner and Siow (1980) which

can be re-expressed as a mixture of g-priors with an inverse gamma hyper-prior with

parameters 1/2 and n/2 (Liang et al., 2008), the approaches by Maruyama and George

(2011) and George and Maruyama (2014), and the robust prior of Bayarri et al. (2012).

Maruyama and George (2011) propose to use a Beta-prime distribution for g under

which g/(1 + g) has a Beta prior with hyperparameters b and c and proposed values

c = 1/4 and b = (n− p�− 1)/2− (1− c) for model M� when the number of covariates p�
is lower than n− 1. Therefore, this prior uses model specific hyperparameters: a feature

that was not adopted in the original formulation of Liang et al. (2008).

Extensions to generalized linear models have been introduced by Sabanés Bové and

Held (2011), Li (2013) and by Li and Clyde (2016), where calculations of the posterior

probabilities can be based on Laplace approximations or on trans-dimensional MCMC

methods. Additional articles related to mixtures of g-priors include the work of Malesios

et al. (2017) in which hyper-g variable selection is implemented for zero-inflated Poisson

epidemic models for sheep-pox incidences, and the work of Sabanés Bové et al. (2015)

where they implement hyper-g priors in generalized additive models with penalized

splines. Mukhopadhyay and Minerva (2017) propose a mixture of g-priors for variable

selection when the number of regressors increases with the sample size. Som et al. (2015)

introduce the block hyper-g priors in order to avoid undesirable behaviors appearing

when one coefficient is much larger than the rest. Wetzels et al. (2012) apply the hyper-g

priors in ANOVA designs while Wang (2017) study the behavior of hyper-g priors on

ANOVA models when the number of parameters is growing with the sample size.

Building on the seminal ideas of Jeffreys (1961) and with the goal to generalize the

priors developed by Zellner and Siow (1980), Bayarri and Garćıa-Donato (2008) propose

divergence based (DB) priors for general testing purposes in an objective framework.

A DB prior for the comparison of two models is a function of a unitary symmetrized

Kullback–Leibler divergence between the two models. This function is chosen so that the

resulting prior has a desirable tail behavior. They apply their methodology in challenging

scenarios such as irregular models and mixture models, showing that DB priors are well

defined and enjoy appealing properties.
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Random imaginary data

We proceed with the more recent introduction of prior distributions that treat imaginary
data as stochastic components. The idea was independently introduced by Pérez and
Berger (2002) and Neal (2001), while the power version of this prior was later introduced
by Fouskakis et al. (2015) in order to alleviate the amount of information introduced
by the size of the training dataset.

Expected posterior priors Pérez and Berger (2002) have developed priors for Bayesian
hypothesis testing, through the utilization of the device of “imaginary training samples”
(Good, 1950; Spiegelhalter and Smith, 1980; Iwaki, 1997). The expected posterior prior
(EPP) for the parameter under a given model is the expectation of the posterior distri-
bution given imaginary observations y∗ of size n∗, where the expectation is taken with
respect to a suitable probability measure m∗(y∗|M∗) under a reference model M∗, while
the posterior distribution is computed via Bayes’s theorem starting from a baseline, typ-
ically improper, prior. Specifically, consider model M� with distribution f(·|θ�,M�) and
baseline prior πN (θ�|M�). The EPP is given by

πEPP (θ�|M�) =

∫
πN (θ�|y∗,M�)m

∗(y∗|M∗)dy
∗, (16)

where πN (θ�|y∗,M�) ∝ f(y∗|θ�,M�)π
N (θ�|M�) is the posterior distribution of θ� under

modelM� conditionally on the imaginary data y∗ for the given baseline prior πN (θ�|M�).
Consider now the comparison of several models having the same structure. There will
typically exist a model M0 which is nested into each of the remaining models (the
simplest model). In this case setting M∗ to M0 is a reasonable choice, under the “local”
principle described previously in this section. Accordingly m∗(y∗|M∗) will be the prior-
predictive distribution under M0, namely

m∗(y∗|M∗) = mN (y∗|M0) =

∫
f(y∗|θ0,M0)π

N (θ0|M0)dθ0, (17)

where f(·|θ0,M0) is the distribution under model M0, with model specific parameter
θ0 and πN (θ0|M0) is the baseline prior under M0. Notice that m∗(y∗|M∗) may be
improper; this will occur in (17) whenever πN (θ0|M0) is improper. If M∗ = M0, then it
is straightforward to show that the EPP for the parameter θ� reduces to the intrinsic
prior for nested model comparison because

πEPP (θ�|M�) = πN (θ�|M�)

∫
mN (y∗|M0)

mN (y∗|M�)
f(y∗|θ�,M�)dy

∗

= πN (θ�|M�)EY ∗|θ�,M�

[
mN (Y ∗|M0)

mN (Y ∗|M�)

]
= πI(θ�|M�).

Additionally, it is immediate to verify that πEPP (θ0|M0) = πN (θ0|M0), so the EPP
and the intrinsic prior for θ0 also coincide. Pérez and Berger (2002, Eq. 2.1) provide
conditions for the existence of the EPP; namely that πN (θ�|y∗,M�) is proper and that
the expectation in (16) is positive and finite.
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EPPs offer the same advantages of intrinsic priors, among which: i) impropriety of
baseline priors causes no indeterminacy in the resulting Bayes factor; ii) an effective way
of establishing compatibility of priors across models, as already mentioned in Section 3.3,
because all priors are anchored to the same baseline measure m∗(·). On the downside,
EPPs rely on features of the imaginary training sample, such as the size n∗, or, in
variable selection problems, the choice of the imaginary design matrices X∗

� for each
competing model. The selection of a minimal training sample size n∗ has been proposed
(Berger and Pericchi, 2004), to make the information content of the prior as small as
possible, and this is an appealing idea. But even under this setup, the resulting prior
can be influential when the sample size n is not much larger than the total number
of parameters under the full model; see Fouskakis et al. (2015) for a discussion of the
difficulties associated with the implementation of the EPP with particular reference to
variable selection.

Under the variable selection problem in normal linear regression models, Womack
et al. (2014) and Fouskakis et al. (2017a) show that the EPP prior, using M0 as the
reference model, minimal training sample of size n∗ = p�+2 and default baseline priors,
can be expressed as a mixture of g-priors

πEPP (β�\0,β0, σ
∣∣M�) ∝ σ−1

∫ 1

0

Np�−p0

(
0, 1

tΣ
∗
�\0

)
Beta

(
t
∣∣ 1
2 ,

1
2

)
dt, (18)

where Beta(t|a, b) denotes the density of the Beta distribution with parameters a and b

evaluated at t, Σ∗
�\0 = σ2(V ∗T

�\0V
∗
�\0)

−1, V ∗
�\0 = (In −X∗

0 (X
∗T

0 X∗
0 )

−1X∗T

0 )X∗
�\0, X

∗
0 is

an (p� + 2)× (p0 + 1) imaginary design matrix under model M0 and X∗
� = [X∗

0 ,X
∗
�\0]

is an (p� + 2) × (p� + 1) imaginary design matrix under model M�. Imaginary design
matrices are formed by suitably subsetting the original full imaginary design matrix.

Power expected posterior priors Fouskakis et al. (2015) and Fouskakis and Ntzoufras
(2016b) introduced the power-expected-posterior (PEP) prior and the power-conditional-
expected-posterior (PCEP) prior respectively, as generalized versions of the EPPs by
combining ideas from the power prior method of Ibrahim and Chen (2000) and the unit
information prior approach of Kass and Wasserman (1995). The goal is to produce a
minimally informative prior, and at the same time to diminish the effect of training
samples within the EPP methodology. In practice, the PEP methodology is sufficiently
insensitive to the size n∗ of the training sample, because PEPs are constructed using
unit information ideas, so that one may even take n∗ = n.

Under the PEP methodology, as a first step, the likelihoods involved in the EPP
distribution are raised to the power 1

δ (δ ≥ 1) and then they are density-normalized.
The power parameter δ could be set equal to n∗, to represent information equal to one
data point. For δ = 1 the PEP prior is equivalent to the EPP. Regarding the size n∗ of
the training sample, Fouskakis et al. (2015) set it equal to n; this choice gives rise to
significant advantages, for example for the variable selection problem it leads to setting
the imaginary design matrix equal to the observed one, and therefore the selection of
a training sample of covariates and its effects on the posterior model comparison is
avoided, while still holding the prior information content equivalent to one data point.
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Here is an outline of the PEP method. Suppose we wish to compare model M0

and M� with M0 nested in M�. Assuming M∗ = M0, the PEP prior is defined by the
following equation

πPEP (θ�|δ,M�) =

∫
πN (θ�|y∗, δ,M�)m

N (y∗|δ,M0)dy
∗, (19)

with

πN (θ�|y∗, δ,M�) ∝ f(y∗|θ�, δ,M�)π
N (θ�|M�),

f(y∗|θ�, δ,M�) =
f(y∗|θ�,M�)

1/δ∫
f(y∗|θ�,M�)1/δdy∗ ,

mN (y∗|δ,M0) =

∫
f(y∗|θ0, δ,M0)π

N (θ0|M0)dθ0 .

When the density normalized power likelihood is not a distribution of a known form,
one can resort to a suitable extension of the above method, as illustrated in Fouskakis
et al. (2017b).

Under the variable selection problem in normal linear regression models Fouskakis
et al. (2017a) show that the PEP prior, using M0 as the reference model, a training
sample size equal to n, the default baseline priors and δ = n, can be expressed as a
mixture of g-priors

πPEP (β�\0,β0, σ
∣∣M�) ∝ σ−1

∫ 1

0

Np�−p0

(
0, n

t Σ�\0
)
Beta

(
t
∣∣ n−p�−1

2 , n−p�−1
2

)
dt , (20)

where Σ�\0 is defined in analogy with Σ∗
�\0 in (18) based on the sample design matrix.

Empirical Bayes approaches

Empirical Bayes (EB) approaches have been traditionally used to alleviate prior elici-
tation in multi-parameter setups (e.g. hierarchical models) by settings some prior hy-
perparameters equal to the corresponding sample estimates. The main criticism against
EB is the obvious double use of the data which violates a basic principle of Bayesian
theory. This can however be mitigated by combining EB with other ideas described in
the previous section, such as the unit information principle, in order to minimize the
re-use of the data especially in cases when the sample size is not large.

EB methods in model selection usually focus on the specification of the prior for a
small number of parameters, typically those causing the sensitivity of the Bayes factor.
Estimates of hyperparameters are obtained either by maximizing a suitable integrated
likelihood, see for example George and Foster (2000), or by controlling the false discovery
rates (Tansey et al., 2018). With regard to the variable selection problem, EB methods
have been used to specify (a) the parameter g in the g-prior (George and Foster, 2000;
Liang et al., 2008); (b) the prior inclusion probability (George and Foster, 2000; Scott
and Berger, 2010; Castillo and Misner, 2018); (c) the shrinkage parameter under the
lasso setting (Yuan and Lin, 2005).
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Finally we note that empirical versions of EPP and PEP can be produced by using
the empirical distribution of the actual data to specify the predictive measure under
the reference model, see for example Pérez and Berger (2002).

Non-local priors

Recall that criterion C7 described in Section 3.3 can be understood as a formalization of
Jeffreys’ criterion for comparing nested models. This says that the prior for the specific
parameter of the larger model (the alternative hypothesis) should be “centered at the
simplest model”. In practice this has been implemented by assigning a continuous prior
having mode at the parameter value specified by the null model. These type of priors
are called local priors. On the other hand, Johnson and Rossell (2010) proposed the
use of non-local priors in order to improve convergence rates in favor of the true null
hypothesis. Such priors have densities which vanish on the null subspace. Example of
such priors are the moment prior and the inverse moment prior; see for details Johnson
and Rossell (2010). In a discussion of Consonni and La Rocca (2011), Rousseau and
Robert suggest to cast the testing problem in a decision-theoretic setup and use the
well-known duality between prior and loss function (Rubin, 1987) to replace non-local
priors with suitable loss functions that take into account the distance from the null.

3.5 Comparison of priors for Bayesian variable selection in normal
linear models

For the variable selection problem in normal linear regression models, most of the priors
discussed in the previous sections can be expressed as mixtures of g-priors. Table 1
provides a summary. Save for the first three, all the remaining priors are mixtures of
g-priors. Moreover, with the exception of the EPP and Maruyama and George prior,
they can be written in the general form of the robust prior (10) with πR(g) replaced by a
specific distribution as detailed in Table 1. The robust prior fulfills all the desiderata of
Bayarri et al. (2012). Regarding the rest of the priors in Table 1, we have the following
results with respect to the seven criteria.

• All priors satisfy the basic criterion (C1 ).

• All priors lead to consistent model selection procedures (criterion C2 ); for the
g-prior see Fernández et al. (2001); for the Cauchy, the hyper-g and hyper-g/n
see Liang et al. (2008) (with the hyper-g only to suffer from model selection
inconsistency when the true model is the null model); for the Maruyama and
George prior see Maruyama and George (2011); for the EPP see Casella et al.
(2009) and finally for the PEP prior see Fouskakis et al. (2015) and Fouskakis and
Ntzoufras (2016a).

• Liang et al. (2008) showed that the g-prior suffers from information inconsistency;
while the Cauchy, the hyper-g and hyper-g/n priors satisfy the criterion C3 of in-
formation consistency. Finally, Fouskakis and Ntzoufras (2017) proved that model
selection under PEP is free from information inconsistency.
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Prior distribution (reference) Value of g

Unit Information g-Prior n

(Zellner, 1986; Kass and Wasserman,
1995)
Risk Inflation Criterion Prior (Foster
and George, 1994)

p2

Benchmark Prior (Fernández et al.,
2001)

max{n, p2}

Prior distribution (reference) Prior πR(g) ∝

Cauchy Prior (Zellner and Siow, 1980) g−3/2e−n/2g

Hyper-g-Prior (Liang et al., 2008) (1 + g)−a/2, a > 2, g > 0

Hyper-g/n-Prior (Liang et al., 2008) (1 + g/n)−a/2, a > 2, g > 0

Maruyama and George Prior
(Maruyama and George, 2011)

gb(1 + g)−(a+b+2), a > 1, b > −1, g > 0

Robust Prior (Bayarri et al., 2012) (b + g)−(a+1), a, b > 0, g >
(b+n)

ρ
−1
�

− b, ρ� ≥ b
b+n

EPP (n∗ = p� + 1) (Pérez and Berger,
2002)

g−1(g − 1)−1/2, g > 1

PEP-Prior (n∗ = n = δ) (Fouskakis
et al., 2015)

g−(n−p�−1)

×(g − n)(n−p�−1)/2−1 , g > n

Table 1: Different mixtures of g-priors.

• All priors in Table 1 belong to a more general class of conditional priors

π(β0,β�\0, σ|M�) ∝ σ−1−(p�−p0)h
(β�\0

σ

∣∣M�

)
, (21)

where h(·|M�) is a proper density with support Rp�−p0 . Bayarri et al. (2012) prove
that the predictive matching criterion (C5 ) and the group invariance criterion
(C7 ) hold if the priors are of the form (21) with h(·|M�) symmetric around zero.
Further results on matching properties apply by specializing (21).

3.6 Objective priors on model space

Within the M-closed view of model selection (i.e. the true model is included in M), the
default choice to express ignorance or indifference between two or more models under
comparison was, for many years, the uniform distribution on the model space M, that is
π(M�) = 1/|M| for all M� ∈ M, where |M| denotes the cardinality of M. For variable
selection problems, letting p denote the potential number of predictors beyond those
which must be present in all models, the uniform prior distribution π(M�) = 2−p is
obtained by assuming that each predictor enters the model independently with inclu-
sion probability 1/2. In recent years, this choice has become progressively less popular,
because it does not account for structural features, notably sparsity, dimensionality, and
collinearity of predictors. In particular Chipman et al. (2001) and George (2010) discuss
how to construct dilution priors which are uniform over neighborhoods of models which
are regarded to be similar according to some criterion. Scott and Berger (2010) argue
that prior model probabilities should take into consideration multiplicity issues inherent
in model comparisons. When applied to variable selection problems, this principle can
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be implemented by assuming that, conditionally on a random probability of inclusion
ω, each predictor can enter a model independently, so that π(M�|ω) = ωp�(1− ω)n−p� .
Next, a hyper-prior is assigned to ω; in particular if ω ∼ Beta(aω, bω), the resulting
prior becomes

π(M�) =
B(aω + p�, bω + p− p�)

B(aω, bω)
, (22)

which is commonly known as the beta-binomial prior on model space. The default choice
aω = bω = 1 results in a uniform distribution for ω. Under this specification, (22) reduces
to

π(M�) =
1

p+ 1

(
p

p�

)−1

, (23)

which induces a uniform prior on model size:

π
(
{M� ∈ M : p� = d}

)
= 1/(p+ 1) for d = 0, 1, . . . , p.

The choice of a uniform prior on ω provides more support to individual models having
either low or high dimensionality and does not penalize for complexity. Wilson et al.
(2010) propose aω = 1 and bω = λp, where λ is a positive constant, resulting in a prior
on model-dimension having expectation 1/λ, and a behavior similar to a geometric dis-
tribution for low values of the dimension. This prior also corresponds to an approximate
penalization equal to log(λ+1) in log-odds scale for each additional covariate added to
the model.

Castillo et al. (2015) investigate high-dimensional linear regression models under
sparsity constraints. Conditionally on the size of the set of predictors, the prior on the
regression parameter is a mixture of point masses at zero and continuous distributions.
Assuming the prior and the design matrix satisfy some conditions, they show a variety
of contraction properties for the posterior distribution; including the correct selection of
at least the coefficients that are significantly different from zero. Further results of their
approach are reported in Section 4. Womack et al. (2015) take a geometric approach, and
argue, using isometry considerations on model space, that the appropriate distribution
on model size is a truncated Poisson, while the prior probability of models having the
same size is uniform. This provides a consistent model selection procedure. Another
usual way to specify Bayesian procedures which account for multiple testing is via the
control of false discovery rate (FDR); see for example in Storey (2003).

We close this section with two alternative treatments of the specification of the
prior on the model space. The first approach, introduced by Dellaportas et al. (2012),
argues that we should jointly specify the prior on the model parameters and the model
space; see Robert (1993) for related ideas. The key point is that, by relating the two
aspects, sensitivity of posterior model probabilities to the prior variance of the model
coefficients can be avoided by suitable specification of prior model probabilities π(M�),
M� ∈ M. For example in the g-prior setup it is straightforward to see that setting
π(M�) ∝ g(p�+1)/2 in (14) or π(M�) ∝ gp�/2 in (15) will eliminate any dependence of the
posterior model probability π(M�|y) on the prior variance multiplier g. To illustrate the
method, consider the modified g-prior specification (15), conditional on the intercept
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and error variance. Dellaportas et al. (2012) propose to use prior model probabilities
with the structure

π(M�) ∝ p(M�)
( g

n

)p�

2
M� ∈ M,

where p(M�) is some baseline model weight, and should reflect prior features of the model
not related to the prior distribution on the model parameters, such as model dimension
or complexity, or sparsity preferences. They note that setting p(M�) ∝ 1 will result
in posterior model probabilities “which are asymptotically equivalent to those implied
by BIC”. Alternative choices of p(M�) can be obtained by matching the log-posterior
model probabilities to suitable information criteria, although p(M�) should not change
according to the sample size. The approach based on the joint specification on model and
parameter spaces not only avoids the sensitivity of the posterior model probabilities to
the prior uncertainty of model parameters, but also produces Bayesian model averaging
estimators which do not suffer from the Jeffreys-Lindleys-Bartlett paradox.

The second approach to the specification of prior model probabilities is proposed by
Villa and Walker (2015b) and it is strictly related to the method for obtaining objective
prior in models with discrete parameter space, already discussed in Section 2. The basic
idea is that each model M� has a worth, which only depends on how “close” in KL-
divergence M� is to its nearest neighbor in the collection of models under consideration
(the smaller the divergence, the smaller the worth, because it means that M� can be
excluded with a small loss). Since the worth depends on no other considerations, the
method can claim to fall within the objective methodology. This leads to the following
specification

π(M�) ∝ exp
(
Eθ�|M�

{
inf

θk, k �=�
DKL(f(y|θ�,M�) || f(y|θk,Mk))

})
, (24)

where DKL is the KL-divergence, see Section 2. This approach has been illustrated in
a variety of simple model comparisons (nested and non-nested) in Villa and Walker
(2015b), and in Villa and Walker (2017) for the testing setup described in Lindley
(1957). Villa and Lee (2015) have extended the method for variable selection in normal
linear regression models. In such problems, (24) is proportional to one, for all models,
which induces the uniform prior on model space. To resolve this issue, Villa and Lee
(2015) introduced an additional loss function based on the dimensionality/complexity
of the model.

Finally, Spitzner (2011) introduced the idea of “neutral” data which support neither
of the two hypothesis/models under consideration. This idea can be naturally accom-
modated for the construction of “objective” priors on the model space.

4 High-dimensional models

Current applications of statistical methods often deal with high-dimensional models,
wherein the derivation of an objective prior, defined according to a well established
formal rule, like Jeffreys’ or reference prior, is virtually impossible; see also Section 2.
In regression settings, common default priors such as the g-prior and its extensions to
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random g, are not defined when the number of predictors p is larger than the sample size
n, save for the generalized g-prior of Maruyama and George (2011). The “robust” prior
of Bayarri et al. (2012) suffers from the same problem because it requires the existence
of the maximum likelihood estimator for each model under consideration. Similarly the
intrinsic, or more generally the Expected Posterior prior (EPP), methodology would
require a training sample size n∗ bigger than n. This means that the training design
matrix X∗ should be taller than the observed X matrix, with extra rows that would
need to be fixed exogenously. This raises inevitable concerns for the OB approach,
although they could be mitigated through a suitable discounting factor within the PEP
methodology. More generally, high-dimensional problems pose new challenges that need
be addressed through novel methodologies.

1. Sparsity. Consider the sparse normal means problem, that is

yi|θi, σ ind∼ N(θi, σ
2), i = 1, . . . , n, (25)

where n is typically very large. Let θ0 = (θ01, . . . , θ0n) be the true mean value.
Under sparsity, in the near-black sense, the number pn of θ0i’s different from zero
(signals) is allowed to grow with n but at a slower rate, so that pn = o(n). The
goal is estimating θ = (θ1, . . . , θn), distinguishing signal from noise.

2. Shrinkage. Bayesian methods are ideally suited for creating suitable shrinkage in
many dimensions, as has been recognized for many decades, starting from the
seminal work of Stein (1956). Indeed sparsity and shrinkage, though distinct, are
closely related as we look for priors that do shrink strongly on noise components.
On the other hand, strong signals should be clearly picked-up, and model estimates
of the corresponding parameters should undergo negligible shrinkage. Priors which
achieve this goal are often named, in this context, robust.

3. p >> n situations. High-dimensionality often means that the number of param-
eters p exceeds the sample size n, a situation which is routinely found today in
many applications. Improper priors cannot deal with these cases, and accordingly
suitable proper priors need be developed.

A large body of research has been deployed to develop default proper priors for high
dimensional models. Typically the performance of these priors is assessed in relation to:
1) computational efficiency; 2) frequentist assessment, especially in terms of the speed
of concentration of the posterior parameter distribution, or functionals thereof, to the
true value, and in terms of coverage of credible sets; 3) ease of interpretation, so that
tuning hyperparameters (when present) can be readily set in specific applications.

The number of papers dealing with the above topics has literally mushroomed in the
last decade, and we cannot even try to provide a reasonably exhaustive review of the var-
ious contributions. Accordingly, we shall merely present a highly selective account in or-
der to provide the interested reader with some useful signposts. A general point to make
is that, in these situations, the typical use of proper priors makes the distinction between
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objective priors for estimation and testing redundant. Most of the proposals can be col-
lected under two broad categories: 1) spike-and-slab priors and 2) global-local priors.

The spike-and-slab prior (George and McCulloch, 1993) for θi is a two-point mixture
of distributions, one being absolutely continuous and heavy-tailed (the slab), and the
other a Dirac measure at zero. More formally, conditionally on a latent binary random
vector γ = (γ1, . . . , γn)

T , one has

p(θi|γi, λ1) = (1− γi)δ0(θi) + γiψ(θi|λ1), (26)

where δ0(·) is the Dirac delta function while ψ(·|λ1) is the slab distribution possibly
depending on a fixed hyperparameter λ1. The latent vector γ in turn is assigned a dis-
tribution π(γ|ν). Castillo and van der Vaart (2012) show that, under the prior (26) and
a suitably chosen value for ν, or a suitable beta-prior π(ν), the whole posterior distri-
bution concentrates on the true value at the minimax rate. The same result holds for
several posterior estimators, under a convex loss, targeted to both location and spread
parameters. Castillo et al. (2015) provide contraction results in a Gaussian regression
setup under a family of joint distributions for the size of the active covariates (signals)
and the regression parameter which includes the spike-and-slab prior. A remarkable
result is that the product of Laplace priors for the individual regression coefficients,
whose mode is the popular lasso estimator, produces a posterior distribution which fails
to contract at the same speed as the mode.

Several elaborations of (26) have been considered, with special emphasis on con-
tinuous relaxations, that is replacing δ0(·) with a peaked continuous density (George
and McCulloch, 1993; Ishwaran and Rao, 2005). The motivation is twofold: to enhance
flexibility and to make the ensuing Bayesian analysis amenable to fast deterministic
computation (Ročková and George, 2014). In particular, Ročková and George (2018)
introduce the spike-and-slab lasso (SS-LASSO) prior where both components of the
mixture are Laplace distributions, so that the resulting prior can be viewed as a com-
promise between the theoretical benchmark (26) and the (computationally convenient)
single Laplace prior. A thorough theoretical evaluation of the SS-LASSO priors is under-
taken in Ročková (2018), where connections with current penalized likelihood methods
are established in order to enhance interpretation, and risk results are proved for esti-
mators not only of functionals of the posterior distribution of θi (especially the mode)
but, importantly, for the whole posterior distribution. Castillo and Misner (2018) pro-
vide convergence results of the posterior distribution associated to a variety of spike and
slab prior distributions when the key sparsity hyperparameter is calibrated via marginal
maximum likelihood empirical Bayes.

An alternative approach, which is easy to implement using generic sampling tools,
and is typically fully automatic, is represented by continuous scale mixture priors.
Among the many existing proposals, and limiting ourselves to the general set-up ex-
hibited in (25), we mention the normal-exponential-gamma prior (Griffin and Brown,
2010), and the very popular horseshoe prior (Carvalho et al., 2010; Polson and Scott,
2012b) which is hierarchically specified as

θi|λi, τ
ind∼ N(0, σ2τ2λ2

i ), λi|τ, iid∼ Cauchy+(0, τ), τ ∼ g(τ), i = 1, . . . , n; (27)
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that is the θi’s are conditionally independent given the local parameters λi’s, which in
turn are conditionally i.i.d. given the global parameter τ . An interesting representation
of the above priors is obtained by considering κi = (1+ τ2λ2

i )
−1, i = 1, . . . , n. Then the

marginal posterior mean of θi, conditionally on τ , is

E (θi|yi, τ) = yi − E (κi|yi, τ) yi. (28)

Thus κi ∈ [0, 1] operates as a local shrinkage factor for the i-th component of the model.
On the other hand τ acts as a global parameter. The horseshoe prior is thus a global-local
shrinkage prior because it is able to combine robustness control on the tails as well as
sparsity. The resulting conditional prior for κi has a U-shape, depending on τ , whence
the name horseshoe given to the entire prior structure.

The horseshoe prior approach has to be completed with the choice of a prior on
τ . This is the most sensitive issue and no clear default choices exist, although the
common proposal is to adopt a half-Cauchy prior (Polson and Scott, 2012a). This issue
is deeply discussed in Piironen and Vehtari (2017a, 2017b), who propose an intuitive
way of formulating the prior for τ based on prior assumptions on the effective number
of nonzero parameters. Further elaborations on horseshoe priors are provided in Polson
and Scott (2012a), Polson and Scott (2012b) and Bhadra et al. (2016).

The frequentist properties of the horseshoe priors have been analyzed in a series of
papers; see for instance Datta and Ghosh (2013) who consider the asymptotic proper-
ties of the multiple testing rule induced by the estimator (28), and van der Pas et al.
(2017) who consider the frequentist coverage of posterior intervals of the location pa-
rameters, and discuss the irreconcilability between adaptivity and honesty when the
level of sparsity is unknown.

In a manner similar to the horseshoe prior, but with the aim of studying the posterior
asymptotic behavior (in particular contraction rates) of the joint vector (θ1, . . . , θn),
Bhattacharya et al. (2015) have proposed a novel class of global-local shrinkage priors,
named Dirichlet-Laplace, defined as

θi|ϕi, τ
ind∼ Double Expon(τϕi), (ϕ1, . . . ϕn) ∼ Dirichlet(a, . . . a),

τ ∼ g(τ), i = 1, . . . , n.
(29)

Compared with (27) with σ = 1, the Dirichlet-Laplace prior models independently the
global parameter τ and the local parameters ϕi’s.

An alternative way to modeling, with proper priors, the scale parameters in a hier-
archical setting, is given in Pérez et al. (2017). Instead of assuming the usual conjugate
inverse Gamma or the half-Cauchy (Gelman, 2006), the authors suggest to consider
a Gamma mixture of Gamma densities, which is named Scaled Beta2 (SB2). It was
previously derived in Girón et al. (2006) as an intrinsic prior for the scale parameter
in a linear model. The two parameters of the mixing Gamma determine the behavior
of the marginal density around zero and for large values, respectively, and make the
SB2 family quite appealing for its flexibility. Additionally, the Cauchy-Scaled Beta2 is
shown to represent an explicit horseshoe distribution.
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Finally non-local priors can also be represented as mixtures; in this case the mixing
parameter is a latent truncation. Rossell and Telesca (2017) thoroughly investigate their
behavior in high-dimensional settings showing their good performance both in terms of
model selection and estimation.

5 Discussion

Objective Bayesian analysis is here to stay, and so is the search for priors that allow its
efficient implementation in a great variety of situations. Although we presented many
such priors, we also tried to highlight principles and methods behind them. Paraphrasing
a Reviewer of our paper: there is a galaxy of stars (priors) out there, but fortunately
we also have categories to study, evaluate and organize them into meaningful systems.

Below we report on a few of outstanding issues which are worth of further consider-
ation.

• OB priors for estimation and model selection. This distinction was posited
at the very beginning of our review, because the conceptual framework underlying
the construction of priors for estimation is different from that leading to priors
for model selection, with the latter largely influenced by the approach initiated
by Jeffreys (1961); see for instance the desiderata illustrated in Section 3.3.

Consider however a setting where prediction under model uncertainty is the goal,
so that model averaging (Hoeting et al., 1996) techniques are employed. In this
case one is potentially confronted with two separate priors on the parameter space
of the same model: one to determine the model posterior probability, and another
one to compute predictions (conditionally on a given model). This dichotomy
is however hardly discussed explicitly. Typically the prior employed for model
selection is also used to carry out estimation/prediction; see for instance Pérez and
Berger (2002, Sect. 6) with regard to expected posterior priors, but the motivation
is mostly pragmatic and confined to a specific data analysis. Interestingly, in the
area of Bayesian experimental design, it is not uncommon to entertain two distinct
priors for the same parameter of a given model, because one distinguishes between
a prior for design and a prior for inference; see Han and Chaloner (2004) and earlier
references therein.

• Priors for high-dimensional models. Our account of this body of research, in
this article, is clearly too limited, especially with regard to important technical
results on: i) sparsity conditions; ii) assumptions on the priors and features of the
underlying model; iii) posterior contraction rates for several notions of recovery
of the true model; iv) new computational tools, also alternative to traditional
MCMC algorithms. We believe that a review paper devoted to default priors in
high-dimensional settings will be a useful gift to the Bayesian community.

In this connection, a point we would like to raise concerns methods for evaluating
the performance of priors in high-dimensions. Currently this is measured in terms
of rates of contraction of the posterior distribution (or functionals thereof) to the
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underlying true values. Among the desiderata that we laid out in Section 3.3, it
seems that only properness of the prior and model selection consistency are taken
into account. Actually consistency becomes a rather weak property to evaluate
priors, while rates with which such consistency is achieved become more crucial.
However, as one Reviewer pointed out, insistence only on frequentist properties
is open to criticism, as one would like to embrace a “more Bayesian” perspective,
possibly along the lines of newly formulated desiderata.

• Computational aspects. Computation aspects are becoming increasingly im-
portant for evaluating any statistical methodology. This is of course the case in
high-dimensional settings where scalability of a procedure is an obvious concern.
From this perspective, Section 4 does not even come close to providing a rea-
sonably complete account of current technology and trends, although some of the
papers we reference contain substantial material on computation; see e.g. Ročková
and George (2014) on leveraging the EM algorithm for variable selection. As al-
ready hinted above we expect that a full treatment of this topic is better left to a
specific review paper.

On a related point, we note that complex models pose challenges even with regard
to traditional objective priors, such as the reference, and often the Jeffreys, priors,
which are hard to obtain in a closed form. On the other hand, it is also true
that often the exact knowledge of the functional form of the prior is not strictly
necessary. Nowadays, the vast majority of applications of Bayesian methods rely
on the use of MonteCarlo, or other simulation methods, where the evaluation of
the prior, rather than its form, is important. Also, it is often the case that, from a
mathematical perspective, the hard step in computing the prior is the evaluation
of an expected value. In this context, it is reasonable to include the algorithm for
evaluating the prior within the general simulation method. This approach has been
discussed in Lafferty and Wasserman (2013), and only sporadically mentioned in
other papers (Berger and Sun, 2008; Berger et al., 2009).

• Priors for model selection based on the desiderata of Bayarri et al. (2012).
The general methodology was illustrated in Section 3.3, and in our opinion it rep-
resents a major conceptual innovation which deserves to be carefully considered.
We still see some outstanding difficulties:

i) Non-nested models. The method is currently predicated on the comparison
between two nested models. This of course is not a major drawback if one
can find a null model which is nested into every other model under con-
sideration, as we mentioned in Section 3.3. However, when this is not the
case, the problem remains open, unless some other forms of encompassing
are implemented. Notice that the comparison of non-nested models is also
problematic for other more specific approaches, such as the intrinsic, or the
EP, prior.

ii) Scope. The implementation of the methodology within normal linear regres-
sion models represents a major accomplishment; yet it remains to be seen
whether the general idea can be extended to other substantive statistical
settings.
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