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Abstract

This thesis considers application machine learning methods like multivari-

ate adaptive regression splines, enhanced adaptive regression through hinges,

group method of data handling, regression trees and random forests in order

to forecast US inflation. Performance of these methods in forecasting of in-

flation is poorly investigated. The benchmark model is AR(2). As a result,

random forests, group method of data handling multivariate and adaptive re-

gression splines prove to be methods which can be applied in order to forecast

US inflation. Experiments are done on two time series samples: stationary

and non-stationary. In addition, the results of feature selection were also an-

alyzed.

Keywords: Artificial neural networks, machine learning, statistical learning,

inflation, multivariate adaptive regression splines, regression trees, random

forests, group method of data handling, forecasting.

JEL classification: C32.
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1 Introduction

Inflation is one of the key indicators of the economic situation since it influences all

areas of economy and finance. It is important to know the future path of inflation to

make appropriate decisions in monetary policy. Therefore economists continuously

try to find robust models which would be able to forecast the future rates of inflation.

In recent decades machine learning algorithms became widespread and are already

being applied to any data which may be gathered and processed.

The main points uncovered in this thesis are the goodness of forecasting US

inflation done with the considered machine learning methods and the results of

an automated feature selection process. To the best of our knowledge, there are

few machine learning methods which are poorly investigated when dealing with

macroeconomic data. And so, this study is aiming to figure out if these methods

can do forecasting inflation. To do it the accuracy of U.S. inflation forecasts done

with machine learning and autoregressive models are compared. The hypotheses

that are tested in this study: multivariate adaptive regression splines outperform

AR(2) in forecasting US inflation; group method of data handling can construct

models which are outperforming AR(2) in forecasting US inflation; decision trees

based methods outperform AR(2) in forecasting US inflation.

Conventional approaches like time series analysis require the previous setting of

the model. The methods considered in this study do not need any previous precise

model setting and perform automated feature selection, only the general view of the

structure of the future model is known at the beginning, the complexity will change.

The novelty of the thesis is that it considers forecasting of the U.S. inflation

using methods of machine learning, such as multivariate adaptive regression splines,

group method of data handling, regression trees, and random forests. All these

methods construct non-linear models for predicting numerical variables but until

nowadays stay poorly investigated regarding application for inflation forecasting.

Doing this research may be necessary because these methods conduct automated

feature selection for constructing predictive models, which gives us an opportunity to

notice simultaneous changes of different macroeconomic indexes, which are occurring
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in reality.

In this study, the AR(2) model is used as the benchmark model and pseudo out-

of-sample forecasting approach. Model estimation is recursive. Forecasts are direct,

meaning that forecasted at the step h value of inflation at the period (t+h) defined

by values of variables known at the period t. Comparison of the models is made by

observing the values of mean squared forecasted error at the step h - MSFE(h).

The formula for MSFE(h) is

MSFE(h) =
1

m

N−h∑
t=T−m+h

(ŷ(x̄t)− yt)2 (1)

where h is a step of forecast, m is a number of observations on which the pseudo-

out-of-sample exercise is run. All the scripts for this work are developed using

programming language R.

The main results of this study are following: the mentioned machine learning

methods for constructing forecasting models can be used for forecasting US infla-

tion; multivariate adaptive regression splines outperform AR(2) when taking as in-

put non-stationary data and when having modifications from Friedman (1993) with

input stationary data as well as non-stationary; group method of data handling can

construct models which are outperforming AR(2) independently from stationarity of

the data; regression trees and random forests outperform AR(2) on stationary data;

the most often used predictors for CPI are lags of CPI, Wage and Salary Disburse-

ments, money stock M1, Real Personal Consumption Expenditures (Services), Unit

Labor Cost, Industrial Production Index Manufacturing, Real GNP/GDP and the

number of new residential construction projects that have begun during the quarter.

The overall structure of the study takes the form of six sections, including this

introductory Section 1. tehSection 2 provides an overview of research papers devoted

to forecasting inflation of US and other countries using as conventional as well as

non-conventional approaches. In the Section 3 the explanations for all the used

methods are presented: multivariate adaptive regression splines (MARS)∗, group

∗ Friedman (1991), implemented in package mda developed by Tibshirani (2016) and package
earth by Milborrow (2011) - more sophisticated version of MARS, based on Friedman (1993)

4



method of data handling (GMDH) †, regression trees‡ and random forests§. The

datasets description is provided in the Section 4; results and discussions are located

in the Sections 5, which are followed by the Section 6 with conclusions; illustrations

for produced forecasts are provided in appendix A.

2 Literature review

2.1 Forecasting Inflation

Forecasting American inflation was a point of interest since 1980’s. Fama and Gib-

bons (1984) compare interest rate models for forecasting inflation are with univariate

time series model. Bernanke and Woodford (1997) discuss the inflation forecasting

role in monetary authority policy making.

Banerjee and Marcellino (2006) compare factor models for forecasting US in-

flation (Stock and Watson (1999)) with models using automated feature selection

method PcGets developed by Hendry and Krolzig (1999).

A considerable contribution to forecasting US inflation was made by Mark W.

Watson. According to Stock and Watson (2008) the most common way to forecast

inflation is applying the instruments of times series analysis involving as predictors:

the lags of inflation (ARIMA univariate models); the unemployment rate, output

gap, output growth according to Phillips curve; forecasts of other variables; and

some other variables. The last approach is considered to be the least precise if

compared to aforementioned when time series analysis methods are used.

2.2 Application of neural networks for forecasting inflation

in different countries

Alongside with progress in computational capacity development, new methods for

data processing came under the spotlight. In the following lines, the papers devoted

†using package GMDH by Dag and Yozgatligil (2016) and code that was developed for this study
‡using package rpart by Therneau et al. (2017)
§using package randomForest by Liaw and Wiener (2002)
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to application these approaches for forecasting inflation of different countries and

comparison of their performance with traditional methodologies will be discussed.

Ajoy K. Palit (2005) indicates that models which are constructed using neural

networks have such distinguished features as:

• general nonlinear mapping between a subset of the past time series values and

the future time series values;

• the capability of capturing essential functional relationships among the data,

which is valuable when they are not a priori known or are very difficult to

describe mathematically and/or when the collected observation data are cor-

rupted by noise;

• universal function approximation capability that enables modeling of arbitrary

nonlinear continuous functions to any degree of accuracy;

• the capability of learning and generalization from examples using the data-

driven self-adaptive approach.

There is a set of papers considering the comparison of the performance of artificial

neural networks and traditional methods used for time series forecasting.

First to mention, a work by Aiken (1999) where a general neural network for

forecasting US inflation was applied. Here predictive variables were: Producer Price

Index (PPI), crude materials; PPI, intermediate materials; PPI, capital equipment;

PPI, finished consumer goods; PPI, finished goods; PPI, finished goods less food

and energy; change in sensitive materials prices; change in money supply M1, and

change in money supply M2.

Moshiri and Cameron (2000), in which the performance of Back Propagation Ar-

tificial Neural Network models was compared with the traditional econometric ap-

proaches (structural reduced-form model, an ARIMA model, a vector autoregressive

model, and a Bayesian vector autoregression model) for out-of-sample forecasting

the inflation rate of Canada. The results show the hybrid BPN models can forecast

as well as all the traditional econometric methods and outperform them in some

cases.
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Another paper of Kock and Teräsvirta (2016) analyzes using artificial neural

networks for inflation forecasting for Finland. Here Finnish inflation rate is being

forecasted by using linear autoregressive and nonlinear neural network models. An-

other example is a work of Nakamura (2005), where neural networks outperform

traditional approaches. And another example of paper was a comparison of artifi-

cial neural networks and AR(1) is Choudhary and Haider (2012). Here forecasts are

estimated for 28 countries of OECD, in 45% artificial neural networks could predict

inflation better than AR(1). Besides, a similar exercise was done by Haider and

Hanif (2009). Here feed-forward neural network with back-propagation training al-

gorithm is outperforming AR(1) and ARIMA. The conclusion is done after analysis

of RMSE.

In the technical report Szafranek (2017) considers single hidden-layer feed-forward

artificial neural networks. The forecast combination of bagged single hidden-layer

artificial neural networks outperforms many competing models. Here the competing

models are: RW - the pure random walk model for the seasonally adjusted monthly

headline inflation, AO - the random walk model for the monthly headline inflation

closely related to the Atkeson and Ohanian (2001) specification, the unobserved-

component stochastic volatility model (UCS) à la Stock and Watson (2007), the re-

cursive autoregressive process of order one (AR1), the autoregressive process of order

twelve (AR12), the seasonal autoregressive moving average model (BS), the factor

augmented vector autoregression (FAV), the judgment forecast (JD), the dynamic

factor model (DFM), the Bayesian vector autoregressive model with the Sims-Zha

priors (SZ), the Bayesian vector autoregressive model with the Villani steady-state

prior (VI), the forecast combination of the bagged single hidden-layer feed-forward

artificial neural networks described in this paper (ANN), the combination of the two

best performing models (CB1), the convolution of the two best performing models

(in terms of the RMSFE) and the ANN model (CB2).

2.3 Machine learning for forecasting macroeconomic data

In recent years, there has been an increasing amount of literature on the usage of

neural networks for forecasting macroeconomic data.
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Lin et al. (2008) introduces a hybrid causal model for predicting the occurrence

of currency crises by using the combination of learning ability of neural networks

with the inference mechanism of fuzzy logic. The empirical results show that the

proposed neuro-fuzzy model leads to a better prediction of crisis.

A large-scale comparison study for the major machine learning models for time

series forecasting is done by Ahmed et al. (2010). The models which were studied are

multilayer perceptron, Bayesian neural networks, radial basis functions, generalized

regression neural networks, K-nearest neighbor regression, CART regression trees,

support vector regression and Gaussian process. These models were applied on the

monthly M3 time series competition data (including 731 time series of macroeco-

nomic data). The best two models turned out to be multilayer perceptron and the

Gaussian process regression.

Garcia et al. (2017) apply for forecasting Brazilian inflation in real time such

models as LASSO, adaptive-LASSO, Random Forest, Complete Subset Regression

with Targeted Predictors. Here forecast mean absolute errors and root mean squared

errors for out-of-sample forecast were taken into consideration while comparing dif-

ferent models. For h = 1, the LASSO and FOCUS (expert) forecasts deliver the

best predictions. For the second horizon, the adaptive LASSO is superior to all

other models considered. For the remaining horizons, the complete subset regres-

sion dominates all other alternatives. The model that had the smallest errors in

most horizons of the forecast was the complete subset regression.

Many papers are investigating using multivariate adaptive regression splines in

various fields, as this method was applied in Rounaghi et al. (2015) for stock price

forecasting. A similar situation is with group method of data handling for construct-

ing artificial neural networks.

As a conclusion, there are very few papers discussing the application of machine

learning methods for forecasting US inflation. To the best of our knowledge, no

previous study has investigated the performance of multivariate adaptive regression

splines on macroeconomic data, and no previous research has examined the perfor-

mance of random forests and GMDH on US inflation. To fill the research gap, a

motivation for this study is to apply these machine learning methods and compare
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their performance with other methods.

After all, there were not many papers studying the performance of forecasting

models created with the help of the machine or statistical learning models using

data about US inflation.

3 Methods used for forecasting

Suppose there is a connection between the values of inflation which are denoted

as yt and a set of other variables at current and previous periods of time x̄t =

(x1,t, ..., xn,t)
T . Here xi,t may be lagged value of yt or lagged value of some other

variable taking part in forecasting, index t denotes correspondence to the value

of yt in period t. The task is to approximate the relation as a function of these

variables - that is to model the dependence between response variable yt and data

x̄t = (x1,t, ..., xn,t)
T , while having realizations {yt, x1,t, ..., xn,t}Tt=1 where T is the

total number of periods when the observations were available:

yt = f(x1,t, x2,t, ..., xn,t) + εt (2)

The additive stochastic component εt, whose expected value is defined to be zero,

usually reflects the dependence of yt on quantities other than x̄t = (x1,t, ..., xn,t)
T

that are neither controlled or observed.

3.1 Multivariate adaptive regression splines (MARS)

The first method which is applied in this study is multivariate adaptive regression

splines, developed by Friedman (1991). This method has an automates feature

selection and deals with many numerical variables as input and numerical responses.

The main reason why MARS is chosen for applying is its advantage to deal with

low as well as high dimensional settings.

There are two approaches to function approximation in high dimensional settings:

parametric and non-parametric. Here the main historical steps in the development

of non-parametric function approximation are provided.
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In parametric approximation the principal approach has been to fit known func-

tion g(x̄t|{aj}pj=1) to the data most often by least squares. In general case:


f̂(x̄t) = g(x̄t|{âj}pj=1)

{âj}pj=1 = argmin
{aj}pj=1

∑T
i=1[yi − g(x̄i|{aj}pj=1)]

2
(3)

where {aj}pj=1 is a set of p parameters, j = 1, ..., p. In low dimensional settings

(n ≤ 2), global parametric modeling was generalized using piecewise and local

parametric fitting and roughness penalty methods. The most popular piecewise

polynomial fitting procedures are based on splines where parametric functions are

taken to be polynomials of degree q and derivatives to order (q − 1) are required

to be continuous. Procedure is implemented by contracting a set of (globally de-

fined) basis functions that span the space of qth order spline approximations and

fitting the coefficients of the basis function expansion to the data by ordinary least

squares. Direct extension of piecewise parametric modeling to higher dimensions

(n > 2) is straightforward in principle but difficult in practice (Friedman (1991)).

Local parametric approximations take the form: f̂(x̄t) = g(x̄t|{â(x̄t)j}pj=1) but the

set of parameters is different at each evaluation point x̄t and is obtained by locally

weighted least squares fitting: {âj(x̄t)}pj=1 = argmin
{aj}p1

T∑
i=1

ω(x̄t, x̄i)[yi−g(x̄i|{aj}pj=1)]
2

where ω(x̄, x̄′) is a weighting function which is chosen to put the dominant mass on

points x̄′ close to x̄.

The roughness penalty approximations are defined by:

f̂(x̄t) = argmin
g(·)

{
T∑
i=1

[yi − g(x̄i)]
2 + λR(g)} (4)

where R(g) is a functional that increases with increasing roughness of the func-

tion g(x̄). The parameter λ regulates the trade off between the roughness of g(·)

and its fidelity to the data. Non-parametric approximations take the form of low
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dimensional expansions:

f̂(x̄t) =
J∑
j=1

ĝj(z̄j,t), (5)

where each z̄j,t is a preselected subset of {x1,t, ..., xn,t}, such that z̄j,t 6= z̄i,t ⇐⇒

i 6= j,∀i, j ∈ {1, ..., J}, J is a total number of z̄j,t. Dimension of each subset z̄j,t has

to be ≤ 2. After selecting the variable subsets {z̄j,t}Jj=1 the corresponding functions

are obtained, for example, using least squares:

{ĝj(z̄j,t)}Jj=1 = argmin
gj

T∑
i=1

[yi −
J∑
k=1

gk(z̄k,i)]
2 (6)

Projection pursuit computation uses approximation of the form:

f̂(x) =
M∑
m=1

fm(
n∑
i=1

ai,mxi) (7)

where M is a number of functions f(·) sum of which is sufficient for approximation.

Recursive partitioning regression model takes the form:

x̄t ∈ Rm =⇒ f̂(x̄t) = gm(x̄t|{aj}pj=1) (8)

where {Rm}M1 is a set of disjoint subregions representing a partition of domain for

function f(x̄). Most commonly used are constant functions (Breiman et al. (1984)):

gm(x̄t|am) = am. The partitioning is accomplished through the recursive splitting of

previous subregions. The starting region is entire domain of f(x̄). At each stage of

the partitioning, all existing subregions are each optimally split into two subregions,

which are separated by some point b̄ using goodness-of-fit criterion on the resulting

approximation (8). The recursive partitioning is continued until a large number

of subregions is generated. The subregions are then recombined reversely until an

optimal set is reached, based on a criterion that penalizes both for lack-of-fit and

increasing number of regions.

Recursive partitioning regression model is more viewed as geometrical procedure
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and Friedman (1991) casted this approximation with arithmetic notions of adding

and multiplying:

f̂(x̄t) =
M∑
m=1

amBm(x̄t) (9)

where M is the number of subregions. Basis function takes form: Bm(x) = I[x ∈

Rm], where I[· · · ] is an indicator function such that it takes value 1 if x ∈ Rm and

0 otherwise.

Coefficients {am}Mm=1 are jointly adjusted to give the best fit to the data. {Rm}Mm=1

are the same as in (8). Here the aim of recursive partitioning is not only to adjust

the coefficient values to fit the data best, but also to derive a good set of basis

functions.

MARS is conducted in two stages:

• Forward stepwise algorithm. At this point basis functions are produced but

corresponding regions are not disjoint but overlap.

• Backward stepwise algorithm. At this point basis functions which do not

improve the fit are eliminated.

As a result, approximation made by MARS takes a form:

f̂(x̄t) = a0 +
∑
Km=1
i∈V (m)

amBm(xi,t) +
∑
Km=2

(i,j)∈V (m)

amBm(xi,t, xj,t) +
∑
Km=3

(i,j,k)∈V (m)

amBm(xi,t, xj,t, xk,t) + ...

(10)

where V (m) = {v(k,m)}Km
k=1 - is a (predictive) variable set, associated with the mth

basis function Bm(·), Km is number of variables which take part in a spline

Bm(xv(1,m), ..., xv(Km,m)) =
Km∏
k=1

[sk,m · (xv(k,m) − bk,m)]+ (11)

where sk,m = ±1, bk,m is a point which separates subregions - knot, [x]+ is a function

which takes value x if x > 0 and otherwise 0. After first stage backwards deletion

process is applied. The terms whose removal causes the smallest increase in the
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residual squared error are deleted. New model is denoted as f̂λ where λ is the number

of terms in the model estimation. As the criterion, generalized cross-validation is

used:

GCV (λ) =

∑T
t=1(yt − f̂λ(x̄t))2

(1−M(λ)/T )2
(12)

where M(λ) is the effective number of parameters in the model. Both numbers of

terms in the model and number of parameters used in selecting the optimal positions

of the knots are accounted. If there are r linearly independent basis functions

in the model and K knots were selected at the forward process, the formula is

M(λ) = r + cK, where c = 3 according to Hastie et al. (2001)

In this study the packages which implement MARS in R developed by Tibshirani

(2016) and Milborrow (2011) are used. The last is based on Friedman (1993) and is

enhanced version of traditional MARS. In the later version, the computational costs

are reduced due to using the parameter of the priority queue search depth and the

frequency with which the optimization over input variables is performed. In this

thesis, the key development is in introducing memory into MARS so that results

from earlier iterations are encountered while doing optimization for the later ones.

3.2 Group method of data handling (GMDH)

The second method to be applied in this study is a group method of data handling.

According to Kartal Koc and Bozdogan (2015) underlying idea of MARS is similar

to group method of data handling introduced by Ivakhnenko (1966). This algorithm

is designed to model the functional relationship between the response and predictor

variables which is settled directly from self-organization of the data as well.

In GMDH approximation is made in a form of high order Kolmogorov-Gabor

polynomial:

yt = a0 +
m∑
i=1

ai · xi,t +
m∑
i=1

m∑
j=1

aij · xi,t · xj,t +
m∑
i=1

m∑
j=1

m∑
k=1

aijk · xi,t · xj,t · xk,t + ...

(13)
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where yt is a value of the dependent variable at the moment t, x̄t = (x1,t, ..., xn,t)
T is

the vector of predicting variables, ā is a set of coefficients or weights. This function is

linear in parameters ā and non-linear in x̄t. GMDH algorithm considers all pairwise

polynomial combinations of external inputs:

y = a0 + a1 · xi + a2 · xj + a3 · xi · xj. (14)

In this algorithm polynomial-type neurons are organized in such neural network

architecture: GMDH yields a model consisting of nested polynomials. In terms

xt
1

xt
2

xt
3

xt
4

Layer 1Input layer Layer 2 Layer 3

yt

Selected outputs Unselected outputs

z11
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Figure 1: Example of neural network with 3 hidden layers produced by GMDH
algorithm

of artificial neural networks each neuron is a polynomial pairwise combination of

inputs, which at the Layer 1 is an input vector, but at further layers inputs are

results of these polynomial combinations of previous layers. At each iteration of the

GMDH algorithm, the outputs of each neuron of a new layer are compared with

values of predicted variable yt. The data, available for model estimation is divided

into two parts - training and testing set in proportion 70 : 30. All the coefficients are

estimated using the training set. Those outputs yielding the smallest mean squared

error compared to values from the testing set are considered as inputs for the next

layer. At some iteration, the minimum difference between the neuron output and
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Figure 2: Example of neural network with 3 hidden layers produced by RGMDH
algorithm

the predicted variable starts to increase, and algorithm selects the model which

gave the smallest mean squared error compared to data from the testing set on the

previous layer. The number of surviving neurons is chosen by the developer. For

this study, a script with GMDH that takes many variables as inputs and has one

layer to avoid overfitting was developed. As a result, GMDH yields a neural network

of feedforward type.

In this study the package GMDH by Dag and Yozgatligil (2016) which has a func-

tion of short-term forecasting fcast for univariate time series up to 5 steps ahead

is used. Here GMDH-type algorithms which build neural networks involve sigmoid

z = 1
1+e−y , radial basis function z = e−y

2
, polynomial z = y that simply forwarding

the polynomial for the next layer and tangent function z = tan(y) as activation

function. Activation functions are computations which are made on the activation

(Lopes and Ribeiro (2014)). Activation of a neuron is a function which takes a

vector as input and produces scalar value as output. In case of GMDH algorithm

activation is y = f(x1, x2) = a+b ·x1+c ·x2+d ·x1 ·x2. There are no quadratic terms

since algorithm produces a model of nested polynomials so that in case of need they

appear on later iterations. Fcast gives an opportunity to choose a type of activation
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function or apply all of them and select the best fit. In addition, recursive GMDH

(RGMDH) is available in the package as well. The last one considers individual

effects of inputs on the result. In RGMDH there are two types of neurons. First

type of neurons is the same as in conventional GMDH, in the second type activation

functions take the form y = a+
r∑
i=1

bi · xi. Here r ≤ n is the number of inputs in a

neuron of the second type. This package can work only with univariate time series

and so a decision to create a script which utilizes conventional GMDH which was

described earlier was made.

3.3 Decision making trees

3.3.1 Regression trees

Regression trees are based on the principle of recursive partitioning which may

be described as well as MARS, in basis functions. Likewise, regression trees use

recursive partitioning in order to create a subset of predicting data so that values of

responsive variables in each subset are as similar as possible. The main advantage of

regression trees is easy interoperability of the output. In this thesis the R package

rpart by Therneau et al. (2017) is applied. According to Berk (2008) the key

difference between MARS and regression trees lies in the nature of basis functions

used. Unlike in (11), basis functions for regression trees are indicator functions and

overall the approximation model takes the form:

f̂(x̄t) =
M∑
m=1

amI(x̄t ∈ Rm) (15)

Having as a criterion minimization of
T∑
t=1

(yt− f̂(x̄t))
2, in regression trees best am is

defined as:

am =
1

T

T∑
t=1

(yt|x̄t ∈ Rm) (16)

That is, for each observation x̄t can be assigned to some set Rm which is defining

terminal node m. The value of dependent variable y ia assigned to that x̄t as a mean
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of that node. ”The collection of means for all of the terminal nodes are, therefore,

fitted values analogous to the fitted values from conventional parametric regression.

They represent how the numerical response is related to the predictors.”Berk (2008).

The whole procedure starts with considering the whole domain as one set, which

is partitioned afterwards. Suppose a predictive variable j is considered and a split

point b, a pair of half-planes is defined:

R1(j, b) = {x̄t|xj,t ≤ b}, R2(j, b) = {x̄t|xj,t > b} (17)

After division a pair (j, b) that solves a problem

min
j,b

[min
a1

∑
xt∈R2(j,b)

(yt − a1)2 +min
a2

∑
xt∈R1(j,b)

(yt − a2)2]. (18)

Similarly, the inner minimization problems are solved by
a1 = 1

T

T∑
t=1

(yt|x̄t ∈ R1(j, b))

a2 = 1
T

T∑
t=1

(yt|x̄t ∈ R2(j, b))

(19)

After finding the best split, the process is continued on each partition. Tree size

belongs to tuning parameters and has to be chosen depending on the data to deal

with. There is a strategy first to grow a tree K, stopping the growing process after

some specific node size is reached. After that a procedure of cost-complexity pruning

has to be implemented. Cost complexity criterion:

Cα(K) =

|K|∑
m=1

∑
xi∈Rm

(yi −
1

Nm

∑
xi∈Rm

yi)
2 + α · |K| (20)

where Nm is the number of elements in {xi ∈ Rm}, |K| is a number of terminal nodes

in a tree K. The main idea is to find such α that minimizes the cost complexity

criterion.

Regression trees answer a question: what is the average value of a given target

for all the examples for which a given set of conditions on the input attributes is
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true? This causes problems when dealing with non-stationary data since the mean

value is continuously changing.

3.3.2 Random forests

The last method used in this study is random forests. Random forests were devel-

oped by Breiman (2001). It is a substantial modification of bagging that builds a

large collection of de-correlated trees and then averages them. According to Hastie

et al. (2001) bagging or bootstrap aggregation is a technique for reducing the vari-

ance of an estimated prediction function. In this study the R package randomForest

by Liaw and Wiener (2002) used.

The essential idea in bagging is to average many noisy but approximately unbi-

ased models, and hence reduce the variance. The bootstrap approach here means

that there are randomly drawn datasets with replacement from the training data,

each sample having the same size as the original training set. And so, B different

training datasets are created. But, when the random forests are applied, according

to Berk (2008), at each node split construction, a new sample of predicting vari-

ables without replacement is considered. The tree construction is finished when the

needed tree size is reached. Afterward, the newly constructed tree is applied to the

testing data, which was not present in the training set and the assignment value of

output is stored along with values on the nodes. The tree construction is repeated

many times which yields a set of trees {Kb}Bb=1. For an observation x̄t out of testing

sample or a newcomer observation and estimation model takes the form:

f̂(x̄t) =
1

B

B∑
b=1

Kb(x̄t) (21)

Since the main construction unit for Random Forests is a decision tree, this algorithm

does not work well with non-stationary data.

18



4 Data

As it was mentioned before, the data used in this study was taken from Korobilis

(2017). As an alternative, this study could be conducted using the dataset by Mc-

Cracken and Ng (2016) which contains observations of 134 monthly macroeconomic

U.S. indicators.

Table 1: Data description
Mnemonic Description Tcode Source Range
CPI Consumer Price Index, Quarterly Vintages 1 Philly 1947Q1-2015Q3
IPM Industrial Production Index, Manufacturing 1 Philly 1947Q1-2015Q3
HSTARTS Housing Starts 2 Philly 1947Q1-2015Q3
CUM Capacity Utilization Rate, Manufacturing 1 Philly 1948Q1-2015Q3
M1 M1 Money Stock 1 Philly 1947Q1-2015Q3
RCOND Real Personal Consumption Expenditures, Durables 1 Philly 1947Q1-2015Q3
RCONS Real Personal Consumption Expenditures, Services 1 Philly 1947Q1-2015Q3
RG Real Government Consumption & Gross Investment, Total 1 Philly 1947Q1-2015Q3
RINVBF Real Gross Private Domestic Investment, Nonresidential 1 Philly 1947Q1-2015Q3
ROUTPUT Real GNP/GDP 1 Philly 1947Q1-2015Q3
RUC Unemployment Rate 3 Philly 1948Q1-2015Q3
ULC Unit Labor Costs 1 Philly 1947Q1-2015Q3
WSD Wage and Salary Disbursements 1 Philly 1947Q1-2015Q3
DYS Default yield spread (Moody’s BAA - AAA) 4 St Louis 1947Q1-2015Q3
NAPM Purchasing Manager’s Index 4 St Louis 1947Q1-2015Q3
NAPMII Inventories Index 4 St Louis 1947Q1-2015Q3
NAPMNOI New Orders Index 4 St Louis 1947Q1-2015Q3

Tcode: 1 - first difference of log-transformed data, 2 - log transformation, 3 - first difference, 4 - no transforma-
tion. Source: Philly - Philadelphia Fed; St. Louis - FRED

Table 2: Dataset with 1 lag of all variables, untransformed.
CPI(t) IPM(t) HSTARTS(t) · · · NAPMII(t) NAPMNOI(t) CPI(t+1)

1948:Q2 23.63 13.90 1321.33 · · · 44.60 49.40 24.00
1948:Q3 24.00 14.00 1464.00 · · · 49.30 51.30 24.40
1948:Q4 24.40 14.10 1350.33 · · · 47.60 45.70 24.20

· · · · · · · · · · · · · · · · · · · · · · · ·
2015:Q1 237.07 104.90 1055.33 · · · 49.80 61.00 235.20
2015:Q2 235.20 104.73 978.00 · · · 51.70 52.40 236.93
2015:Q3 236.93 105.13 1157.67 · · · 51.30 55.10 237.87

In this study dataset by Korobilis (2017) is used because it is a shrunk subset

of McCracken and Ng (2016). And so, applying the considered algorithms on the

second dataset would require more computational recourses like computing time and

memory space. As a result, it is more convenient to deal with the small dataset by

Korobilis (2017). McCracken and Ng (2016) dataset exploration is left for future

research.
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Table 3: Dataset with 1 lag of all variables, transformed.
CPI(t) IPM(t) HSTARTS(t) NAPMII(t) · · · NAPMNOI(t) CPI(t+1)

1948:Q3 6.16 2.87 29.16 49.30 · · · 51.30 6.61
1948:Q4 6.61 2.85 28.83 47.60 · · · 45.70 -3.29
1949:Q1 -3.29 -4.76 28.36 41.70 · · · 43.30 -4.43

· · · · · · · · · · · · · · · · · · · · · · · ·
2015:Q1 -0.79 3.19 27.85 49.80 · · · 61.00 -3.16
2015:Q2 -3.16 -0.64 27.54 51.70 · · · 52.40 2.94
2015:Q3 2.94 1.52 28.22 51.30 · · · 55.10 1.57

Table 4: Dataset with 4 lags of all variables, not transformed.
CPI(t-3) IPM(t-3) · · · CPI(t-2) IPM(t-2) · · · CPI(t-1) IPM(t-1) · · · CPI(t+1)

1949:Q1 23.63 13.90 · · · 24.00 14.00 · · · 24.40 14.10 · · · 23.93
1949:Q2 24.00 14.00 · · · 24.40 14.10 · · · 24.20 13.93 · · · 23.90
1949:Q3 24.40 14.10 · · · 24.20 13.93 · · · 23.93 13.50 · · · 23.73

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
2015:Q1 235.43 101.60 · · · 236.83 103.10 · · · 237.53 104.07 · · · 235.20
2015:Q2 236.83 103.10 · · · 237.53 104.07 · · · 237.07 104.90 · · · 236.93
2015:Q3 237.53 104.07 · · · 237.07 104.90 · · · 235.20 104.73 · · · 237.87

Table 1 shows the list of variables used, their sources, the dates when the obser-

vations were available, and transformations should be applied. Here the annualized

transformation of CPI was considered. The annualization was made with multiply-

ing transformed to stationary data by 4. As a result, obtained a time series which

is interpreted as an annual increase if all the conditions stay the same is obtained.

According to the results of Dickey-Fuller test forecasted variable CPI is not

stationary while benchmark model AR(2) has a stationarity requirement. For that

reason, stationarity transformations should be applied. The results of models esti-

mated both on transformed and untransformed data are taken into consideration as

if they are outcomes of models built on two different datasets. All the variables in

the dataset containing stationary times series of inflation CPI are transformed as

well. These transformations are done according to transformation data provided by

Korobilis (2017).

All the mentioned methods for estimating forecasting models are applied on four

sets of observations: two datasets contain first lags of all the predictors available

including the CPI with corresponding original value of {yt+h}8h=1 - formed from

stationary and non-stationary data and two datasets contain lagged up to four step

values of all the predicting variables: X = {x̄t−4, x̄t−3, x̄t−2, x̄t−1}. All the models
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Table 5: Dataset with 4 lags of all variables, transformed.
CPI(t-3) IPM(t-3) · · · CPI(t-2) IPM(t-2) · · · CPI(t-1) IPM(t-1) · · · CPI(t+1)

1949:Q2 6.16 2.87 · · · 6.61 2.85 · · · -3.29 -4.76 · · · -0.56
1949:Q3 6.61 2.85 · · · -3.29 -4.76 · · · -4.43 -12.64 · · · -2.80
1949:Q4 -3.29 -4.76 · · · -4.43 -12.64 · · · -0.56 -14.07 · · · -1.13

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
2015:Q1 2.10 0.66 · · · 2.37 5.86 · · · 1.18 3.73 · · · -3.16
2015:Q2 2.37 5.86 · · · 1.18 3.73 · · · -0.79 3.19 · · · 2.94
2015:Q3 1.18 3.73 · · · -0.79 3.19 · · · -3.16 -0.64 · · · 1.57

are constructed so that they forecast the CPI values at future periods {t + h}h+8
h=1.

The validation is conducted using the testing subset of the sample available. The

forecast is direct, i.e. knowing the values of predictive variable at the time period t

the models forecasting yt+1, yt+2, . . . , yt+8 are being constructed by machine learning

methods. Structure of datasets used in this study is provided in Tables 2, 3, 4 and

5. When constructing a forecasting model on each of them, CPI(t+1) is dependent

variable. In the mentioned tables h = 1 estimating models for forecasting h steps

ahead is realized by shifting the variable CPI(t+h) relatively to the rest of present

variables.

According to mentioned features of the package GMDH, which was possible to

apply only to univariate time series. Results of applying this package are denoted

in Tables 7, 6 as ”GMDH, n lagged CPI”. Other GMDH results were obtained

after applying the script with GMDH, which takes many variables as input and was

developed for this study.

5 Results and discussions

5.1 Best methods

Table 6 and Table 7 present the results of this study. The first line in both tables is

an array of values of the MSFE(h) for forecasting CPI for each quarter starting from

the next quarter up to eight quarters (two years) ahead done with AR(2) models.

In similar investigations Korobilis (2017) uses as benchmark model AR(2), Stock

and Watson (2007) use AR(AIC), where the order of the lags is defined according

to the Akaike Information Criterion. For this thesis a decision to use AR(2) was
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Table 6: Results for the stationary data

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 Total
5∑
i=1

AR(2) 4.777 6.049 6.303 7.042 7.471 7.892 8.737 9.354 -
RGMDH,3
lagged CPI

0.913** 0.919 0.89 0.871 0.914 - - - 4.51

GMDH, 4 lagged
CPI

0.963 0.912 0.896 0.907 0.93 - - - 4.61

MARS, 1 lag of
all

2.387 1.414 1.535 1.117 1.187 0.982 0.997 1.202 7.64

EARTH, 1 lag of
all

1.123 1.265 0.925 0.989 1.053 1.126 1.152 1.083 5.35

MARS, lagged
values

1.986 2.339 1.981 1.439 1.789 1.588 1.692 1.499 9.53

EARTH, lagged
values

1.015*** 1.072** 0.962 1.015 1.301 1.214 1.042 1.012 5.37

GMDH, lagged
values

1.055** 0.951 0.96 0.975 1.097 1.042 0.964 0.888 5.04

RT, 1 lag of all 1.238 1.231 1.292 1.189 1.239 0.834 0.892 1.252 6.19
RT, lagged val-
ues

1.485 1.129 0.977 0.912 1.334 1.464 1.254 1.195 5.84

Random forest,
1 lag of all

1.028 0.885 0.925 0.841 0.822 0.692 0.72 0.727 4.5

Random forest,
lagged values

1.007** 0.839** 0.837** 0.74** 0.756** 0.743 0.722 0.7 4.18

GMDH, 1 lag of
all

0.991 1.088 0.885 0.931 1.066 0.945 1.082 0.99 4.96

Asterisks next to the relative MSFEs provide the level of statistical significance with which the compared
model gives more precise forecast than AR(2), according to the Diebold-Mariano test: 1%(∗∗∗),5%(∗∗),
and 10%(∗); see Diebold and Mariano (1995).

made, taking into consideration insignificant difference of the performance of these

two methods on the dataset considered. Coefficients for AR(2) were estimated by

ar.ols from the package stats. Forecasted values were obtained using a function

predict from the same package.

All the lines starting from the second contain normalized values of the MSFE(h)

for all the rest of applied models. Normalization is conducted in the following way:

ai,h =
MSFEi(h)

MSFEAR(2)(h)
(22)

where i belongs to the set of applied methods, MSFEAR(2)(h) is a MSFE for the

model AR(2) performing the forecast for a step h. That is, the table shows the results

of division MSFE(h) for certain method by MSFE(h) for AR(2). Those methods

having values in the tables less than one indicate better performance to construct

forecasting models comparing to AR(2). The MSFE(h) is calculated according to the
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Table 7: Results for the raw data

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 Total
5∑
i=1

AR(2) 3.05 4.054 5.556 7.129 9.19 12.396 16.563 21.974 -
RGMDH,3
lagged CPI

1.212 1.274 1.397 4.684 23.709 - - - 32.28

GMDH, 4
lagged CPI

1.147 1.256 1.447 1.775 2.269 - - - 7.89

MARS, 1 lag
of all

0.335*** 0.882 0.831 0.641*** 0.443*** 0.386*** 0.259*** 0.207*** 3.13

EARTH, 1
lag of all

0.337*** 0.697** 0.805 0.871 0.887 0.748 0.718 0.71 3.6

MARS,
lagged values

0.316*** 1.06 0.842 0.784** 0.443*** 0.495*** 0.306*** 0.207*** 3.44

EARTH,
lagged values

0.311*** 0.625** 0.721** 0.853 0.891 0.916 0.802 0.761 3.4

GMDH,
lagged values

0.323*** 0.616*** 1.046 0.761 0.896 0.67** 0.652** 0.682 3.64

RT, 1 lag of
all

32.709 24.7 18.114 14.188 11.059 8.241 6.2 4.809 100.77

RT, lagged
values

32.201 24.316 17.831 13.967 11.133 8.311 6.11 4.633 99.45

Random for-
est, 1 lag of
all

5.804 4.33 3.266 2.612 2.047 1.539 1.187 0.878 18.06

Random for-
est, lagged
values

6.621 5.111 3.767 3 2.305 1.742 1.255 0.943 20.8

GMDH, 1 lag
of all

0.294*** 0.59*** 0.777** 0.832 0.817 0.71 0.597** 0.506** 3.31

Asterisks next to the relative MSFEs provide the level of statistical significance with which the compared model
gives more precise forecast than AR(2), according to the Diebold-Mariano test: 1%(∗ ∗ ∗),5%(∗∗), and 10%(∗); see
Diebold and Mariano (1995).

Formula 1. In order to examine the accuracy of forecasts, the Diebold-Mariano(DM)

test (Diebold and Mariano (1995)) was used as well.

For one-step-ahead forecasting, when dealing with stationary data, the best per-

formance was demonstrated by models constructed with recursive group method

of data handling from the package GMDH by Dag and Yozgatligil (2016) taking as

input three lagged values of CPI. Results of DM test show that forecasts made by

models constructed with this method are more accurate than forecasts made using

AR(2) with statistical significance. MSFE(h) for this method is the lowest as well.

The hypothesis that group method of data handling can construct models which

are outperforming AR(2) independently from stationarity of the data is supported.

The possible reason why it performed better than AR(2) might be such that this

method yields non-linear models with lags of CPI as predictors and that the linear

model is not enough for the description of the inflation growth. Good results were
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demonstrated by GMDH taking as inputs lagged values of CPI. Overall, as for the

first step forecasting, dealing with stationary data, all the applied methods proved

to be able to construct forecasting models which are not significantly worse than

the ones yielded by AR(2).

Random forests yielded models which provided statistically significantly accord-

ing to DM test and MSFE(h) the best forecasts for two, three, four and five steps

ahead. It may be happening due to the principle of averaging results of many trees,

which helps to find the closest to the real description of the model. In this study,

these criteria in forecast assessment were taken into account as they had been justi-

fied in Diebold (2015). Here those methods yielding the smallest MSFE and being

statistically significantly more accurate than forecasts produced by AR(2), according

to results of DM test as the best forecasts, are considered as the best.

The worst performance was demonstrated by multivariate adaptive regression

splines for the package mda by Tibshirani (2016). But the version with modification

by Friedman (1993) called ”Fast MARS” which is enhanced version of traditional

MARS. The reason why it happened this way may that MARS produces overfitting

models due to possible loss of accuracy in the enhanced version of MARS Friedman

(1993). If raw data is considered, multivariate adaptive regression splines and group

method of data handling using many predictors as an input show outstanding results

in producing forecasting models, considering statistical significance provided by DM

test and smaller values of MSFE(h). In addition, in case of non-stationary data

regression trees cannot help. As it was said before, these methods work well when

the range of response values is limited. Random forests fail the task not so strong but

nevertheless cannot be considered as methods which can construct good models for

forecasting non-stationary data. Overall, multivariate adaptive regression splines do

not outperform AR(2) when taking as input stationary data, but outperform when

taking as non-stationary input data and when having modifications from Friedman

(1993). Regression trees and random forests outperform AR(2) on stationary data.

It is worth to mention, that in case of forecasting CPI when having raw data, the

best results were shown by models taking not only CPI and its lags as predictors.

This may happen because of losing some information due to transformations applied
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to the data. Another possible reason may be such that non-linear interactions of

other macroeconomic indexes can more precisely describe the level of inflation. In

addition, it is crucial to remember autoregressive models cannot perform well on

non-stationary data (Mann and Wald (1943)) as well as regression trees and random

forests. Multivariate adaptive regression splines and GMDH so not have a similar

restriction.

Graphs illustrating forecasts for h = 1, 4, 8 for both stationary and raw data are

provided in appendix A. The worst forecasting performance for stationary data was

demonstrated by multivariate regressive adaptive splines (Friedman (1991)) from

the package mda developed by Tibshirani (2016). The worst results for the raw data

were delivered by Regression trees from the package rpart by Therneau et al. (2017)

and Random forests from the package randomForest by Liaw and Wiener (2002).

5.2 Selected predictors

As it was mentioned previously, machine learning algorithms possess automated

feature selection. After applying the methods, the selected predicting variables were

retrieved, and the total number of occurrences was counted.

Illustrations showing frequencies are provided in Figures 3, 4, 5, 6 for data re-

trieved from EARTH, in Figures 7, 8, 9, 10 for data retrieved from GMDH, in

Figures 11, 12 for data retrieved from random forest. Title for each figure indicates

which model was applied to which dataset. All the following conclusions are based

on the visual analysis of provided figures.

Paying attention to approaches which show a good performance according to

MSFE(h) and results of DM test, it is worth to highlight the frequency results

for such methods: GMDH and EARTH using one lag of all (Figures 3, 7) data

and GMDH using many lags for all variables (Figure 9) on raw data and random

forest only on lagged values of stationary data (Figure 11). And so, the most often

used predictors for CPI are lags of CPI, Wage and Salary Disbursements WSD,

money stock M1, Real Personal Consumption Expenditures (Services) RCONS, Unit

Labor Cost ULC, Industrial Production Index Manufacturing IPM, Real GNP/GDP

ROUTPUT and HSTARTS - the number of new residential construction projects
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Figure 4: Frequencies retrieved from EARTH

that have begun during the quarter.

The presence of lagged values of CPI in results for both stationary and untrans-
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Figure 5: Frequencies retrieved from EARTH
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Figure 6: Frequencies retrieved from EARTH

formed data is not surprising as well, it does not disagree with the theory, according

to Stock and Watson (2008). Using ARIMA type univariate models for forecasting
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Figure 7: Frequencies retrieved from GMDH
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Figure 8: Frequencies retrieved from GMDH

CPI was mentioned first among conventional approaches. The connection between

inflation and Wage and Salary Disbursements and Unit Labor Cost as well as num-
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Figure 9: Frequencies retrieved from GMDH
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Figure 10: Frequencies retrieved from GMDH

ber of houses started to be constructed Real Personal Consumption Expenditures

(Services) and Industrial Production Index Manufacturing, and Real GNP/GDP
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Figure 11: Frequencies retrieved from random forest
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Figure 12: Frequencies retrieved from random forest

possibly can be explained by demand shock. Regarding money stock M1 similar re-

sults were obtained by a researcher of Central Bank of Canada Atta-Mensah (1996)
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when modifying a model P ∗ proposed by Hallman et al. (1989). The presence of

HSTARTS is not surprising since housing is among eight groups of consumer goods

which are taken into consideration while calculating CPI. However, when looking

into reports of Bureau of Labor Statistics (BLS (2017)) housing as a component

in CPI is represented by ”Rent of shelter” having relative importance in July 2017

of 33.374 and ”Owners’ equivalent rent of residence” having relative importance

24.529 according to News Release Consumer Price Index for July 2017 from Bureau

of Labor Statistics.

All the rest of figures - 4, 5, 6, 8, 10, 12 provide frequencies of features for the

rest of methods, where these values could be retrieved. On these figures predicting

variables are: lags of CPI, HSTARTS, Default yield spread, WSD, M1, ULC.

6 Conclusion

The aim of this study was to figure out if the machine learning methods like multi-

variate adaptive regression splines, group method of data handling, regression trees,

random forests can do forecasting inflation. In order to do it the accuracy of U.S.

inflation forecasts done with these machine learning methods and autoregressive

models of the second order were compared.

As a result, these methods can construct forecasting models for CPI. Multi-

variate adaptive regression splines do not outperform AR(2) when taking as input

stationary data, but outperform when taking as input non-stationary data and when

having modifications; group method of data handling can construct models which

are outperforming AR(2) independently from stationarity of the data; regression

trees and random forests outperform AR(2) on stationary data. It is crucial to re-

member AR(2) cannot perform well on non-stationary data. Regression trees and

random forests have the similar restriction. Group method of data handling and

multivariate adaptive regression splines do not have such restrictions and show ex-

cellent performance when dealing with raw data.

Methods belonging to machine learning approaches possess automated feature

selection which is used to identify best predictors. The most often used predictors
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for CPI are lags of CPI, Wage and Salary Disbursements WSD, money stock M1,

Real Personal Consumption Expenditures (Services) RCONS, Unit Labor Cost ULC,

Industrial Production Index Manufacturing IPM, Real GNP/GDP ROUTPUT and

HSTARTS - the number of new residential construction projects that have begun

during the quarter. These results do not contradict economic theory and common

sense.
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A Forecasting illustrations

Here are the graphs illustrating forecasts for h = 1, 4, 8 for both stationary and raw

data.Title of each figure contains the information which method yielded the smallest

MSFE(h) for certain step.
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Figure 13: Forecasting stationary series of CPI 1 step ahead
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Figure 14: Forecasting stationary series of CPI 4 steps ahead
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Figure 15: Forecasting stationary series of CPI 8 steps ahead
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Figure 16: Forecasting raw series of CPI 1 step ahead
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Figure 17: Forecasting raw series of CPI 4 steps ahead
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Figure 18: Forecasting raw series of CPI 8 steps ahead
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2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-

lectual property rights or rights arising from the Personal Data Protection

Act.

Tartu, 24.05.2018


	Introduction
	Literature review
	Forecasting Inflation
	Application of neural networks for forecasting inflation in different countries
	Machine learning for forecasting macroeconomic data

	Methods used for forecasting
	Multivariate adaptive regression splines (MARS)
	Group method of data handling (GMDH)
	Decision making trees
	Regression trees
	Random forests


	Data
	Results and discussions
	Best methods
	Selected predictors

	Conclusion
	Forecasting illustrations
	References

