
UNIVERSITY OF TARTU

Faculty of Social Sciences

School of Economics and Business Administration

Mykola Herasymovych

Optimizing Acceptance Threshold in Credit Scoring using

Reinforcement Learning

Master’s thesis

Supervisors: Oliver Lukason (PhD), Karl Märka (MSc)

Tartu 2018

2

Name and signature of supervisor………………………………………………….

Allowed for defense on ………………………………………………….

 (date)

I have written this master's thesis independently. All viewpoints of other authors, literary

sources and data from elsewhere used for writing this paper have been referenced.

…………………………………..

(signature of author)

3

Acknowledgments

I would first like to thank the Quantitative Economics program coordinator Jaan Masso for

making it possible for me to study in the University of Tartu, being always supportive and

helpful in case I have any questions or issues with the studies. I would also like to thank staff

and professors of the University of Tartu and College of Charleston for all the kind help and

advice they have given and all the sacred knowledge they have shared with me during these 3

years of studies. I am greatly thankful to Estonian Ministry of Foreign Affairs Development

Cooperation and Humanitarian Aid fund for the financial support of my master studies in the

University of Tartu, and to the Harry & Reba Huge Foundation for funding my exchange

semester studies in the College of Charleston.

I am sincerely grateful to my supervisors who helped me to produce this thesis. I thank my

work supervisor Karl Märka for the chance to work on this topic, invaluable guidance in the

idea development and implementation, opportunities to present the project in public and useful

remarks on the paper. I also thank my employer Creditstar Group for providing the data and

facilities to conduct the research. An equal amount of thankfulness goes to my university

supervisor Oliver Lukason for consistent help with structuring the project, his priceless

scientific expertise and helpful advice and comments on the paper. I additionally thank my

referee Mark Kantšukov for the detailed review of the thesis and valuable suggestions on how

to improve it.

Last and foremost, I would like to express my eternal gratitude to my family for their moral

support, unconditional love and immutable belief in me. Special thanks go to Halyna Oros who

was always there to listen to and even trying to understand my nerdy talks, distract when it was

too much and motivate when it was time to get back to work. I also want to acknowledge my

friends and groupmates who made my studies an exciting and unforgettable experience full of

fun and positive emotions. Finally, I thank the people who are not explicitly mentioned in this

acknowledgment letter but who helped me along the way.

4

Abstract

The thesis investigates issues of credit scoring model acceptance threshold optimization in a

consumer credit company, such as model’s performance uncertainty, selection bias, population

drift and business objective misspecification. We show that traditional static approaches based

on cost-sensitive optimization do not ensure the optimality of the acceptance threshold, which

might lead to biased conclusions and significant losses to the firm. We develop a dynamic

reinforcement learning system that constantly adapts the threshold in response to the live data

feedback, maximizing company’s profits. The developed algorithm is shown to outperform the

traditional approach in terms of profits both in various simulated scenarios and on the real data

of an international consumer credit company.

Keywords: consumer credit, credits scoring, cutoff point, reinforcement learning, model

performance uncertainty, selection bias, population drift, profit scoring

5

Contents

Acknowledgments ... 3

Abstract ... 4

Contents ... 5

1. Introduction ... 6

2. Literature Review ... 8

2.1. Credit Scoring and its Major Challenges ... 8

2.2. The Essence of Reinforcement Learning ... 16

2.3. Finance and Business Applications of Reinforcement Learning................................... 19

3. Methods and Data ... 21

3.1. Problem Setup and Data Generating Process Description... 21

3.2. Reinforcement Learning Agent Specification ... 23

3.3. Experiment Structure ... 27

4. Results .. 30

4.1. Baseline Results and Reinforcement Learning Algorithm Convergence 30

4.2. Test Experiment Results .. 37

4.3. Results on the Real Data .. 43

5. Discussion of Results ... 46

6. Conclusions .. 49

References ... 51

Appendices .. 57

Appendix A... 57

Appendix B ... 62

Appendix C ... 65

6

1. Introduction

If one randomly picks a credit scoring article, there’s a 50% chance that its introduction starts

with mentioning the recent boom in the credit scoring literature caused by rapid increase in the

computational capacity. The latter is also the reason of why more than half of the papers on the

topic published during the last decade introduced a new credit rating approach (Louzada et al,

2016). However, due to data availability issues, most authors have access only to publicly

available loan applications datasets. They are thus limited to performing a rather abstract kind

of research without any ability to try their algorithms on the real data and face the issues of

practical implementation. One of those important problems, usually omitted by researchers, is

the problem of credit score acceptance threshold optimization that embodies the connection

between a theoretical credit scoring algorithm and practical decision-making in a credit business

process.

The sparse literature on the topic offers a traditional solution of picking an acceptance threshold

that minimizes the misclassification costs (Viaene and Dedene, 2005; Hand, 2009) or

maximizes the expected profit (Verbraken et al., 2014; Skarestad, 2017) based on an

independent dataset of loan applications. The approach, however, suffers from oversimplifying

theoretical assumptions that the misclassification costs are static and accurately known, while

the independent dataset is identical to the general population of loan applications. In practice,

the credit business environment has a dynamic nature and a high degree of uncertainty,

especially in case of consumer loan providers specializing on subprime credit. Thus, we propose

to solve the acceptance threshold optimization problem using a dynamic reinforcement learning

(RL) system that constantly adapts the cutoff point in response to the live data feedback,

maximizing company’s profits.

RL algorithms have been intensively developing during recent years, solving dynamic

optimization problems in various areas: from achieving superhuman performance level in board

and video games (Silver et al., 2016; Mnih et al., 2015) to training self-controlling robots

(Kober et al., 2013) to dynamically optimizing prices, marketing policies and loan portfolios

(Kim et al, 2016; Sato 2016; Strydom, 2017) successfully outperforming traditional methods.

The general nature of RL algorithms makes it relatively easy to adapt them to new problems.

To the best of our knowledge, however, they have not yet been applied in the credit scoring. In

our work, we explore if the application of RL approach could lead to a similar breakthrough in

consumer credit business.

7

Consequently, the research aim of the thesis is to build a dynamic system that can be effectively

used to optimize acceptance threshold in a credit scoring model in order to maximize credit

company’s profits. We achieve it with the following steps. First, we formulate the acceptance

threshold optimization problem as a reinforcement learning task. Second, we train a Q-learning

based reinforcement learning agent on a Monte Carlo simulation of a credit business process

up to the point where its performance is at the level of the traditional approach. Third, we test

the adaptive ability of the trained system in simulated scenarios of selection bias, population

drift, and credit scoring model’s performance uncertainty. Finally, to evaluate the developed

algorithm, we test it on the real data and compare the results to the performance of the traditional

approach.

The research contributes to the credit scoring literature by showing practical issues of a scoring

model implementation on the example of an actual credit company. In particular, it

demonstrates how model performance uncertainty, selection bias, and population drift problems

make traditional acceptance threshold optimization approach produce suboptimal policy. It then

contributes to both credit scoring and reinforcement learning literature by providing a proof of

concept of using a dynamic reinforcement learning system to solve these problems and

outperform the traditional approach. Finally, we conduct the research using real data of an

international consumer credit company Creditstar Group, which adds practical sense to the

work.

The results show that the traditional cutoff optimization approach does not ensure the optimality

of the acceptance threshold, which might lead to biased conclusions and significant losses. The

proposed dynamic reinforcement learning system manages to outperform the traditional method

both in a simulated and real credit business environment leading to significantly higher total

profits of the credit company. The main advantages of the developed approach are: 1) its

constant adaptation to and learning from actual data generating process, which removes the

need for theoretical simplifications and keeps the algorithm up to date; 2) flexible objective

function definition that makes it easy to accurately specify the decision-maker’s preferences

and adjust them on the go if needed; 3) ability to train and test it in a simulated environment

that lets the company avoid costly poor initial performance and stress-test various scenarios.

Overall, the developed algorithm can be immediately put into practice to accompany lender's

decisions and is currently used by the company as a decision support system.

The paper is structured as follows. The next section describes the background theory and the

literature on credit scoring and reinforcement learning. Section three explains the problem setup

and methodology used to solve it. The fourth section presents the results of the experiment.

8

Section five provides analysis of the results and limitations, accompanied by implications for

science and business practice. Finally, the last section concludes.

2. Literature Review

The following section provides the theoretical background for credit scoring and reinforcement

learning and reviews the relevant literature behind the two. It shows the research gap in credit

score acceptance threshold optimization and describes how the reinforcement learning

approach could fill it. Additionally, it discusses some examples of practical RL application in

related finance and business fields.

2.1. Credit Scoring and its Major Challenges

We start this section by explaining the essence of the consumer credit scoring. One of the main

aims of the credit business manager is to differentiate between good borrowers, which pay their

loans in time, and bad ones that default on their loan within given time. However, due to the

information asymmetry the manager does not know the type of a client beforehand and needs

to decide whether to give a loan based on a set of variables provided by the client themselves

(application data), third party data providers (credit agencies’ data) or historical behavior of the

customer (data on previously taken loans). Usually, the lender has a sample of loans that were

given to clients and matured, thus letting the manager observe characteristics of borrowers and

corresponding outcomes of the credit-granting decision. Thus, the problem can be described as

a simple classification task.

Let’s denote the vector of characteristics of a loan application as 𝒙 and the outcome as a binary

variable 𝑦, which is 1 if the loan is bad (goes overdue) and 0 if the loan is good (the payment

is made in time)1. Then a variety of classification algorithms (e.g. logistic regression, decision

trees) can be applied to predict the outcome variable or estimate the probability of the loan

being bad:

Pr{𝐵𝑎𝑑 | 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 𝒙} = 𝑝(𝑦 = 1|𝒙) = 𝑦̂ ∀ 𝒙 ∈ 𝑿 (1)

The estimated probability is transformed afterward, recalibrating to a more comprehensible

range (Thomas et al., 2017) and possibly adjusting for company’s policy objectives and rules

1 There exist various approaches to define the outcome binary variable ranging from considering a loan bad if it is

n number days overdue (usually n equals 60 or 90) to defining a bad loan as the one that has not been paid yet

(Thomas et al., 2017). Each definition has its pros and cons and highly depends on the country’s legislation and

firm’s business policy (Barisitz, 2013). In this work we consider a loan bad if it is 60 or more days overdue. The

developed algorithm, however, is not sensitive to the outcome variable definition.

9

resulting in a credit score2 𝑠𝐶𝑆 for a particular application. Finally, an acceptance threshold (or

cutoff point) 𝑡𝐴𝑇 for the credit score is chosen to make the decision, i.e. if 𝑠𝐶𝑆 ≥ 𝑡𝐴𝑇, then give

a loan, otherwise – reject the application. If the score works appropriately, then it is possible to

differentiate between the score’s probability density functions of actual good and bad clients

denoted 𝑓𝐺(𝑠𝐶𝑆) and 𝑓𝐵(𝑠𝐶𝑆) respectively, as depicted on the Figure 1 (Verbraken et al., 2014).

Figure 1. Example of credit score distributions and classification process.

Notes: Adapted from Crook et al. (2007), Hand (2009) and Verbraken et al. (2014). 𝑠𝐶𝑆(𝒙) –

application’s credit score estimated based on the application data 𝒙; 𝑓𝐺(𝑠𝐶𝑆) and 𝑓𝐵(𝑠𝐶𝑆) – credit score’s

probability density functions of actual good and bad applications respectively; 𝑡𝐴𝑇 – acceptance

threshold for the credit score; 𝐹𝐵(𝑡𝐴𝑇) – correctly classified bad applications; 1 − 𝐹𝐺(𝑡𝐴𝑇) – correctly

classified good applications; 1 − 𝐹𝐵(𝑡𝐴𝑇) – bad applications misclassified as good ones; 𝐹𝐺(𝑡𝐴𝑇) – good

applications misclassified as bad ones.

The predictive performance of the model is then assessed comparing predicted outcomes to

actual ones for a test dataset independent from the one the model was trained on. The variety

of performance metrics is described in detail in meta-studies like Crook et al. (2007) and

Louzada et al. (2016), but all of them in one or another way are related to the confusion matrix.

The latter sums up the four possible groups of post-classification outcomes (see Table 1):

2 A credit score is a numerical expression based on a level analysis of a loan application's characteristics, to

represent the creditworthiness of an applicant.

10

1. Bad applications for which 𝑠𝐶𝑆 < 𝑡𝐴𝑇 (area under 𝑓𝐵(𝑠𝐶𝑆) to the left of 𝑡𝐴𝑇) are

correctly classified and correspond to the value of cumulative density function of

𝑓𝐵(𝑠𝐶𝑆) up to threshold 𝑡𝐴𝑇 , 𝐹𝐵(𝑡𝐴𝑇). They are also known as true positives (𝑛𝐵𝐵 in

Table 1);

2. Good applications for which 𝑠𝐶𝑆 ≥ 𝑡𝐴𝑇 (area under 𝑓𝐺(𝑠𝐶𝑆) to the right of 𝑡𝐴𝑇) are

correctly classified and correspond to the value of cumulative density function of

𝑓𝐺(𝑠𝐶𝑆) over threshold 𝑡𝐴𝑇 , 1 − 𝐹𝐺(𝑡𝐴𝑇). They are also known as true negatives (𝑛𝐺𝐺 in

Table 1);

3. Bad applications for which 𝑠𝐶𝑆 ≥ 𝑡𝐴𝑇 (area under 𝑓𝐵(𝑠𝐶𝑆) to the right of 𝑡𝐴𝑇) are

misclassified as Good ones and correspond to the value of cumulative density function

of 𝑓𝐵(𝑠𝐶𝑆) over threshold 𝑡𝐴𝑇 , 1 − 𝐹𝐵(𝑡𝐴𝑇). They are also known as false negatives or

type II errors (𝑛𝐺𝐵 in Table 1);

4. Good applications for which 𝑠𝐶𝑆 < 𝑡𝐴𝑇 (area under 𝑓𝐺(𝑠𝐶𝑆) to the left of 𝑡𝐴𝑇) are

misclassified as Bad ones and correspond to the value of cumulative density function of

𝑓𝐺(𝑠𝐶𝑆) up to threshold 𝑡𝐴𝑇 , 𝐹𝐺(𝑡𝐴𝑇). They are also known as false positives or type I

errors (𝑛𝐵𝐺 in Table 1);

It is easy to see that frequencies of true negatives and false positives (the actual good clients)

depend on the prior probability of an application being good 𝜋𝐺
𝑃𝑃 and the cumulative

distribution density function of the score for good applications 𝐹𝐺(𝑡𝐴𝑇), while frequencies of

true positives and false negatives (the actual bad clients) depend on the prior probability of an

application being bad 𝜋𝐵
𝑃𝑃 and the cumulative density function of the score for bad applications

𝐹𝐵(𝑡𝐴𝑇). Consequently, all the values in the confusion matrix depend on the cutoff point value

𝑡𝐴𝑇, meaning that the latter defines the overall Type I and Type II error rates of classification3.

Thus, the final stage of building a credit scoring model which is going to be investigated in this

thesis is the optimization of the acceptance threshold 𝑡𝐴𝑇. Traditionally, an optimal cutoff point

is either chosen to minimize classification error rate4 on the independent test dataset or derived

from a performance metric itself5. However, a lot of factors outside the basic classification

methodology have to be accounted for when setting the threshold, such as actual

3 Type I and Type II error rates of classification are calculated as

𝑛𝐺𝐵

(𝑛𝐺𝐵 + 𝑛𝐵𝐵)
= 1 − 𝐹𝐵(𝑡𝐴𝑇) and

𝑛𝐵𝐺

(𝑛𝐵𝐺 + 𝑛𝐵𝐵)
= 𝐹𝐺(𝑡𝐴𝑇) respectively.

4 The classification error rate is calculated as
𝑛𝐺𝐵+ 𝑛𝐵𝐺

(𝑛𝐺𝐵 + 𝑛𝐵𝐵+ 𝑛𝐵𝐺 + 𝑛𝐵𝐵)
.

5 See Fluss et al. (2005) for examples.

11

misclassification costs, utility function of the decision-maker, sample selection bias, business

cycle change and population drift.

Table 1. Confusion matrix with misclassification costs.

Predicted class
Actual class

Good Bad Predicted total

Good 𝑛𝐺𝐺 = 𝜋𝐺
𝑃𝑃(1 − 𝐹𝐺(𝑡𝐴𝑇)) 𝑛𝐺𝐵 = 𝜋𝐵

𝑃𝑃(1 − 𝐹𝐵(𝑡𝐴𝑇)) 𝑛𝐺𝐺 + 𝑛𝐺𝐵

 [𝑐(𝐺|𝐺) = 0] [𝑐(𝐺|𝐵) = 𝑐𝐵]

Bad 𝑛𝐵𝐺 = 𝜋𝐺
𝑃𝑃𝐹𝐺(𝑡𝐴𝑇) 𝑛𝐵𝐵 = 𝜋𝐵

𝑃𝑃𝐹𝐵(𝑡𝐴𝑇) 𝑛𝐵𝐺 + 𝑛𝐵𝐵

 [𝑐(𝐵|𝐺) = 𝑐𝐺] [𝑐(𝐵|𝐵) = 0]

Actual total 𝑛𝐺𝐺 + 𝑛𝐵𝐺 𝑛𝐺𝐵 + 𝑛𝐵𝐵
𝑛𝐺𝐺 + 𝑛𝐵𝐺

+ 𝑛𝐺𝐵 + 𝑛𝐵𝐵

Notes: Adapted from Crook et al. (2007), Hand (2009) and Verbraken et al. (2014). The calculations

extend the framework depicted on Fig. 1. For 𝑖 and 𝑗 being either 𝐺 – good or 𝐵 – bad: 𝑡𝐴𝑇 – acceptance

threshold for the credit score; 𝐹𝑖(𝑡𝐴𝑇) – value of the credit score cumulative distribution function for

applications of class 𝑖 at point 𝑡𝐴𝑇; 𝜋𝑖
𝑃𝑃 – prior probability of an application being of class 𝑖; 𝑛𝑖𝑗 –

number of applications of actual class 𝑖 classified as class 𝑗; 𝑐(𝑖|𝑗) – cost of classifying an application

of actual class 𝑗 as one of class 𝑖; in credit scoring the costs of correctly classifying an application are

usually assumed to be zero leading to 𝑐(𝐺|𝐺) = 𝑐(𝐵|𝐵) = 0.

Recent advances in computational power and machine learning algorithms have led to a boom

in the credit scoring literature. According to ScienceDirect search results, annual number of

articles with the “credit scoring” keyword more than doubled during the last decade reaching

207 in 2017 (see Figure 2). Even though it is impossible to cover all the related papers in the

literature review, meta-studies like Abdou and Pointon (2011), Crook et al. (2007), Lessmann

et al. (2015) and Louzada et al. (2016) help to get an overview of the topic and the main trends

of research in the credit scoring literature.

According to the systematic review in Louzada et al. (2016) which covers a representative

sample of credit scoring papers since 1992, around 50% of articles introduce some kind of new

method to rate credit applications and about 20% compare traditional techniques (see Figure

3). However, as was pointed out by various authors (Hand, 2006; Crook et al., 2007; Abdou

and Pointon, 2011) the actual improvement in predictive performance that more sophisticated

classification algorithms provide is only marginal and only observed for a particular dataset of

credit applications (the so-called illusion of progress or flat maximum effect6). Thus, in recent

6 See Hand (2006) for more information.

12

years it becomes more and more popular to discuss practical issues of a credit scoring model

implementation (see Table A-1 of Appendix A for the summary of studies on major credit

scoring practical issues).

Figure 2. Number of published articles with “credit scoring” keyword.

Note: Based on the search results from the ScienceDirect.

Figure 3. Percentage of papers published on the topic in 1992-2015.

Note: Adapted from Louzada et al. (2016).

While most credit scoring papers focus on the classification algorithm development, feature

selection techniques or performance measures (according to Louzada et al., 2016), the problem

of the acceptance threshold optimization for a credit scoring model has not received that much

attention yet. The latter, however, is an essential step in credit scoring since it connects the

classification algorithm itself, its predictive performance and economic outcome in the form of

credit volumes and resulting profits. A possible reason why the topic is usually omitted from

the discussion is the lack of access to real business data which is essential when choosing the

0

50

100

150

200

250

300

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

Articles by year

General trend

0%

10%

20%

30%

40%

50%

60%

New
classification

algorithm

Comparison
with

traditional
classifiers

Conceptual
discussion

Variable
selection

Literature
review

Performance
measures

Other issues

13

optimal cutoff point (Lessmann et al., 2015). On the other hand, most of the practical issues

that appear when one tries to implement a credit scoring model in practice are closely related

to the acceptance threshold optimization problem.

One of the most discussed conceptual issues in the credit scoring literature is the error

minimizing nature of standard credit scoring models rather than optimization of real business

objectives. Originally, the training objective of classification models and cutoff point

determination is to minimize the misclassification error treating costs of type I and type II errors

as equal (𝑐𝐵 = 𝑐𝐺 in Table 1). However, it is a well-known fact that in credit industry an

accepted bad borrower costs much more than a rejected good client (Lessmann, 2015). There

is a set of papers (Viaene and Dedene, 2005; Hand, 2009; Verbraken et al., 2014) that

investigate this issue and propose a solution in the form of cost-sensitive optimization that aims

to maximize expected profit (so called profit scoring).

As a baseline approach to cost-sensitive cutoff point optimization we consider a method applied

by most reviewed papers in profit scoring. The general framework starts by defining the average

misclassification cost per loan application as follows (the following derivations are adapted

from Viaene and Dedene, 2005; Hand, 2009; Oreski et al., 2012; Lessmann et al., 2015):

𝑀𝐶(𝑡𝐴𝑇; 𝑐𝐵, 𝑐𝐺) = 𝑐𝐵𝜋𝐵
𝑃𝑃(1 − 𝐹𝐵(𝑡𝐴𝑇)) + 𝑐𝐺𝜋𝐺

𝑃𝑃𝐹𝐺(𝑡𝐴𝑇), (2)

where 𝑡𝐴𝑇 – acceptance threshold, 𝑐𝐵 – average cost per misclassified bad application reflecting

the Type I error cost, 𝑐𝐺 – average cost per misclassified good application reflecting the Type

II error cost, 𝜋𝐺
𝑃𝑃 and 𝜋𝐵

𝑃𝑃– prior probabilities of being a good and a bad application respectively

and 𝐹𝐺(𝑡𝐴𝑇) and 𝐹𝐵(𝑡𝐴𝑇) – cumulative density of the scores up to cutoff score 𝑡𝐴𝑇 for good and

bad applications respectively. Next, we minimize the expected misclassification cost per

borrower with respect to cutoff value:

min
𝑡

𝑀𝐶(𝑡𝐴𝑇; 𝑐𝐵, 𝑐𝐺) = 𝑀𝐶(𝑇𝐴𝑇; 𝑐𝐵, 𝑐𝐺), (3)

with 𝑇𝐴𝑇 being the optimal acceptance threshold defined as follows:

𝑇𝐴𝑇 = argmin
𝑡

𝑀𝐶(𝑡𝐴𝑇; 𝑐𝐵, 𝑐𝐺) (4)

The optimal cutoff point satisfies the first order condition:

𝑓𝐵(𝑇𝐴𝑇)

𝑓𝐺(𝑇𝐴𝑇)
=

𝜋𝐺
𝑃𝑃

𝜋𝐵
𝑃𝑃

𝑐𝐺

𝑐𝐵
 (5)

14

Thus, the optimal threshold is derived from prior probabilities of the classes, their score density

functions and estimated average misclassification costs or their inverse, average expected profit

(see an illustration of the traditional cost-sensitive cutoff optimization in Figure 4).

Figure 4. Traditional cost-sensitive acceptance threshold optimization.

Notes: 𝑠𝐶𝑆(𝒙) – application’s credit score estimated based on the application data 𝒙; 𝑓𝐺(𝑠𝐶𝑆) and

𝑓𝐵(𝑠𝐶𝑆) – credit score’s probability density functions of actual good and bad applications respectively;

𝑡𝐴𝑇 – acceptance threshold for the credit score; 𝐹𝐵(𝑡𝐴𝑇) – correctly classified bad applications;

1 − 𝐹𝐺(𝑡𝐴𝑇) – correctly classified good applications; 1 − 𝐹𝐵(𝑡𝐴𝑇) – bad applications misclassified as

good ones; 𝐹𝐺(𝑡𝐴𝑇) – good applications misclassified as bad ones; blue line is the estimated potential

profit (in thousands of euros for illustration purposes); grey dotted lines show alternative acceptance

thresholds 𝑡𝑖
𝐴𝑇 and corresponding levels of potential profit; vertical red dotted line is the estimated

optimal acceptance threshold 𝑇𝐴𝑇, while horizontal red dotted lines show the corresponding potential

profit and shares of correctly classified and misclassified good and bad applications.

As far as we know, most of the more advanced approaches to choosing the acceptance threshold

(Verbraken et al., 2014; Skarestad, 2017) are built on top of this general framework, which

however has some significant flaws. Although it might solve the problem of profit

maximization for a particular application dataset, the assumption that the misclassification costs

are accurately known and depend on the class only rather than on an individual example is

unrealistic in the real world of consumer credit (Hernandez-Orallo et al., 2011; Sousa et al.,

2013). Besides, in practice, the lender’s utility function usually depends not only on profit but

on other factors as well, such as credit volumes (Oliver and Thomas, 2009; Dey, 2010). Last

but not least, this kind of optimization assumes that the dataset the model was trained on and

15

the cutoff was optimized for is going to be identical to the real (live) data generation process of

loan applications, which is not the case in credit scoring due to selection bias and population

drift.

This brings the discussion to the issue of the sample selection bias (Eisenbeis, 1978; Hand,

2006; PAKDD, 2009). A credit scoring model is usually built using a pre-filtered set of data on

accepted loan applications and their outcomes. This kind of sample is a biased representation

of a general population since it excludes loan applications that were rejected by the lender and

for which the outcome cannot be known. Thus, any model trained on as well as any cutoff point

optimized for the sample of accepted applications will be biased7 (see illustration on the Figure

A-1 of Appendix A). Thomas et al. (2017) present a set of solutions most widely used in credit

scoring to cope with sample selection bias that includes extrapolation and augmentation

methods to account for the rejected cases (so-called reject inference). Banasik et al. (2003)

apply Heckman selection approach widely used in econometrics and compare models trained

on accepted sample only, accepted sample accounting for selection bias and the whole sample

of accepted and ‘would’ve been’ rejected clients. In both papers, however, authors conclude

that reject inference only slightly improves the accuracy of the model meaning that the cutoff

point optimized on the existing data would still be suboptimal for the live data. Moreover, as

was stressed by Wu and Hand (2007) and later by Dey (2010), the bias increases when the ratio

of rejected to accepted clients rises, which is the case for consumer credit industry that targets

subprime high-risk customers.

Another important issue that influences a credit scoring model’s performance in practice is

so-called population drift. As noted by Nikolaidis (2017), most scoring models assume the

relationship between the estimated probability of default and the subsequent performance of a

customer to be the same as it was for the data the model was trained on. However, the actual

data generation process has a dynamic nature and depends on the changes in the general

population, economic environment or market conditions. Thus, another branch of credit scoring

7 A selection bias example from the company’s practice is loan applications of unemployed people. The firm’s

rules state that unemployed people’s applications can be accepted only if they are considered low-risk according

to other characteristics, such as client’s positive credit history with the company, healthy bank account history, no

debts according to credit bureaus etc. It means that only unemployed clients’ applications with the lowest default

risk level will be accepted and most of them will pay in time. If a credit scoring model is then trained on a dataset

of accepted applications, it might learn that unemployed clients’ applications have relatively low risk to go overdue

and will assign them a higher credit score than others. In the general population of (both accepted and rejected)

loan applications, however, unemployed clients have much higher probability to go overdue on their loans,

meaning that the trained model would be biased. The same issue applies to any kind of policy rules used by the

lender (rejection of clients with any amount of debt, with no credit history, with gambling transactions) and it is

hard to account for every one of them when building a credit scoring model. Thus, all those biases add up distorting

the scoring model’s performance and shifting the optimal credit score acceptance threshold for the live data.

16

research is aimed at the inclusion of economic dynamics into the credit scoring model (Crook

et al., 1992; Bellotti and Crook, 2013). Since the population drift is usually assumed to affect

the whole population of clients rather than some particular groups (Sousa et al., 2013; Bellotti

and Crook, 2013), it does not bias the classification function itself, but it shifts the overall

default rate and as a result, the optimal acceptance threshold of the model (see illustration on

the Figure A-2 of Appendix A). This is evidenced by Sousa et al. (2013) who find that adjusting

scores for systemic risk change in the form of central tendency of default is the best

improvement for their scoring model. Finally, Thomas (2010) makes an important point that in

consumer credit business, the score needs to have dynamic nature and ability to quickly respond

to changes in economic and market behavior and to immediate changes in borrower behavior

and circumstances.

The discussion above highlights a significant research gap in the cutoff point optimization

methodology in credit scoring. There is a clear need for a system that could dynamically adjust

the acceptance threshold in response to the changes in the live data generation process

maximizing a set of business objectives. To the best of our knowledge8, no research has been

done yet to develop an adaptive system like this. In this paper, we propose a novel approach to

the problem developing a dynamic decision support system based on the reinforcement learning

algorithm.

2.2. The Essence of Reinforcement Learning

The reinforcement learning is a rather recent but intensively developing branch of machine

learning theory. For the basics of RL discussed from now on we would refer to a textbook by

its founding fathers, Sutton and Barto (2017). RL algorithms (or RL agents) are designed to

optimize decision-maker’s actions in the environment that could be described as a Markov

Decision Process (MDP). The learning and optimization could be thought of as a natural

learning process of a person (see Figure 5). Let’s assume that the agent is designed to optimize

acceptance threshold of a credit company. Then it operates in a credit business environment

that generates a state (or observation) for a particular point in time, 𝑆𝑡, which describes current

characteristics of the credit portfolio, market conditions, economy, assumed to be reflected in

the loan applications acceptance rate. The state characteristics are transformed into a set of

features (or variables) that could be understood by the agent. Based on the current state

8 According to the search in Google Scholar and Science Direct databases with various combinations of keywords:

‘credit scoring’, ‘dynamic’, ‘adaptive’, ‘threshold’, ‘cutoff’, ‘optimization’, ‘adaptation’, there are no papers

investigating a similar problem as we do.

17

description, current policy9 and some prior knowledge (if available) the agent takes an action,

𝐴𝑡, i.e. adjusts the cutoff point of the credit scoring model. In the next point in time, based on

this action (and previous actions) the environment generates a new state, 𝑆𝑡+1 = 𝑆(𝑆𝑡, 𝐴𝑡).

Additionally, it generates a reward, 𝑅𝑡
10, (e.g. firm’s profit in the current period), which works

like a feedback mechanism for the agent. From the reward, the agent learns how good were its

previous actions and adjusts its actions trying to make them more rewarding or more optimal.

Figure 5. General reinforcement learning algorithm.

Notes: The figure shows the scheme of the interaction loop between the environment and reinforcement

learning agent. The loop reflects state – action – reward exchange between the two.

The essential entity that the agent needs to learn from the interaction with the environment is

thus the link between the state characteristics and the most appropriate action in this kind of

state. This link is called the value function. State value function describes an expected

discounted reward of being in a state 𝑠 and following a policy 𝜋 (also known as the Bellman

equation):

𝑉𝜋(𝑠) = 𝔼𝜋[𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + ⋯ |𝑆𝑡 = 𝑠], (6)

where 𝛾 is a discount rate. Similarly, one can define the action value function (also called Q-

function) that describes an expected discounted reward of taking action 𝑎 in a state 𝑠 and

following a policy 𝜋 thereafter as follows:

9 Policy is a function mapping from state to action which could be defined as deterministic: 𝑎 = 𝜋(𝑠), or

stochastic: 𝜋(𝑎 | 𝑠) = ℙ[𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠].
10 Even though the reward is generated in period 𝑡 + 1, there is a convention to denote it as 𝑅𝑡, since it reflects the

reward for the action taken in period 𝑡.

18

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + ⋯ |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎,] (7)

In case the Q-function can be accurately approximated by the agent, the optimal policy then

simply becomes:

𝜋∗(𝑠) = argmax
𝑎

𝑄𝜋(𝑠, 𝑎) (8)

RL algorithms that aim to learn the action value function are called Q-learning techniques.

Basically, all the agent needs to do to learn the true value function is to correct its learned value

function in each period according to the following update rule:

𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡 + 𝛾max𝑎𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)], (9)

where 𝛼 is the learning rate parameter. Watkins (1989) proves that Q-learning converges to an

optimal policy if all the state-action pairs are visited an infinite number of times. Sutton and

Barto (2017) note that in some cases the convergence could be achieved surprisingly fast in just

a couple of iterations. Besides, there exist a number of improvements to the original Q-learning,

like Speedy Q-learning by Azar et al. (2011) or Zap Q-learning by Devraj and Meyn (2017)

that help to speed up the convergence of the algorithm.

It is important to note, however, some of the flaws in Q-learning. One well-known problem in

RL applications is so-called curse of dimensionality due to Bellman (1957). The problem is that

in case of discrete state spaces11, the computational requirements grow exponentially with the

number of state variables meaning that the implementation could be feasible only for small state

spaces. The widespread solution is to consider continuous state spaces together with a more

sophisticated value function approximation method. For instance, in the survey of

reinforcement learning Kaelbling et al. (1996) describe different function approximation

techniques that use simple stochastic gradient descent12, decision tree, or artificial neural

networks13. Some outstanding examples of using advanced value function approximators are

shown in the Table A-2 of Appendix A.

Another drawback is the tendency of Q-learning algorithms to overestimate Q-values coming

from the nature of the update rule that is based on the maximum Q-value (so-called

11 A state space is the set of all possible configurations within the environment. A discrete state space can be

described by discrete variables. For instance, in chess the state space could be described by (64
32

) binary variables

(where 64 is the number of chess board positions and 32 is the number of chess pieces).
12 Gradient descent is a first-order iterative optimization algorithm used to find optimal parameters of a model that

minimizes its approximation error. Gradient descent methods are called stochastic when the optimization update

is done on only a single example per iteration, which might have been selected stochastically. For a more detailed

explanation refer to Kaelbling et al. (1996), Sutton and Barto (2017).
13 An artificial neural network is a computational model based on the structure and functions of biological neural

networks used for non-linear function approximation. For a more detailed explanation refer to Kaelbling et al.

(1996), Sutton and Barto (2017).

19

maximization bias14). This issue was investigated carefully by Sutton and Barto (2017) and van

Hasselt et al. (2016) and an alternative approach of double Q-learning was proposed15. Last but

not least, using continuous action space16 adds computational and mathematical complexity,

that’s why discrete action spaces are preferred in RL applications. On the other hand, discrete

action space removes the link between similar actions making the agent lose significant

information about the process. This problem was studied by Wang et al. (2015) and a solution

in the form of dueling deep Q-networks was developed17.

2.3. Finance and Business Applications of Reinforcement Learning

Modeling credit process as an MDP is far from new, however it has been mainly used to

optimize credit limits (So, 2009; So and Thomas, 2017), credit prices (Trench et al., 2003),

collection policies (Briat, 2006) or as a credit scoring system itself (Malik and Thomas, 2010;

Regis and Artes, 2015). Nevertheless, to the best of our knowledge, there has been no attempt

to neither use MDP to optimize acceptance threshold nor use RL algorithms in consumer credit

business yet. Moreover, MDPs were always used by big financial institutions with a

well-established scoring system and amount of behavioral data sufficient to accurately estimate

transition probabilities, while in our case the MDP and optimal policy are going to be learned

online.

A financial area where RL algorithms were adopted for quite some time is portfolio

optimization (Neuneier, 1996; Gao and Chan, 2000; Lee, 2001; Moody and Saffell, 2001). We

consider it to be close to the cutoff optimization task since the latter can be thought of as a

portfolio optimization of different risk groups of loan applications. More examples of rather

new RL applications come from the business management field. Some of these studies are

briefly described in the Table A-3 of Appendix A. The main ideas from the RL applications

review can be summarized in the following way:

• RL methodology was found effective in portfolio optimization problems (Neuneier,

1996, Du et al., 2016, Strydom, 2017);

14 In Q-learning algorithms a maximum over estimated values is used implicitly as an estimate of the maximum

value, which can lead to a significant positive bias in Q-values. See Sutton and Barto (2017) for detailed

explanation.
15 Double Q-learning RL algorithm uses one action value function to determine a maximizing action and a different

one to estimate its value. It was proven to solve the problem of double maximization and assure unbiased Q-values.

See Sutton and Barto (2017) and van Hasselt et al. (2016) for more information.
16 An action space is the set of all possible actions in a decision-making problem.
17 Dueling deep Q-network RL algorithm uses one neural network to estimate state value function and another

network for the state-dependent action advantage function. It lets the agent generalize learning across actions

without imposing any change to the underlying RL algorithm. See Wang et al. (2015) for more information.

20

• RL algorithms are able to solve optimization problems with little or no prior information

available about the environment (Tesauro et al., 2006; Kim et al., 2016);

• It is possible to avoid suffering potential costly poor performance in live online training

by letting the RL agent learn offline, following safe expert-defined policy or train in a

simulated environment (Tesauro et al., 2006; Aihe and Gonzalez, 2015);

• The RL agent learning from the real-time data optimizes more accurately and efficiently

than traditional approaches based on theoretical modeling (Rana and Oliveira, 2015;

Strydom, 2017);

• A reinforcement learning system is able to satisfy contradictive performance goals

outperforming reasonable heuristic or hand-coded approaches (Huang et al., 2010;

Varela et al., 2016);

• RL mechanisms outperform other intelligent systems in their ability to dynamically

adjust the policy over the learning period adapting to environmental changes (Abe et

al., 2010; Rana and Oliveira, 2015, Strydom, 2017);

• Using artificial neural networks in the value function approximation for RL solves the

curse of dimensionality and provides faster learning (Moody and Saffell, 2001; Darian

and Moradi, 2016).

Finally, it is worth noting that lots of papers employ a Monte Carlo simulation to train and test

the RL agent (Huang et al., 2010; Darian and Moradi, 2016; Sato, 2016; Strydom, 2017). The

main reasons are to avoid costly learning errors in the real environment, perform stress-testing

and compare algorithm performance to the one produced by traditional policies. It is important

to remember, however, that in this case, the actual performance of optimal policy is highly

dependent on the accuracy of the simulation. While the simulation is just a simplified

approximation of reality, the adaptive nature of the RL agent lets it correct for the bias and

inaccuracies when operating in the real environment.

Summing up the discussion above, the main benefits of RL compared to classic dynamic

programming and traditional optimization techniques are that the former does not need the exact

knowledge of the MDP structure and that it has a dynamic nature, i.e. is able to adapt to changes

in the environment. The objective function that the RL agent aims to maximize or minimize is

designed to reflect the preferences of the decision-maker. Thus, in case of the acceptance

threshold optimization for credit scoring, this kind of system can adapt to the changes in the

population dealing with selection bias and population drift starting with little prior information

(e.g. results from the test dataset) and it can be customized to optimize the accurately specified

objective function of the lender.

21

3. Methods and Data

The following section describes the methodology and the data used to build the reinforcement

learning system. In particular, it formulates the acceptance threshold optimization problem as

a reinforcement learning task, describes the components of the constructed RL algorithm and

the interrelation between them, explains the mathematical modeling details behind the

algorithm, discusses the nature of the data used to train the system and lays out the structure of

the training and evaluation experiments.

3.1. Problem Setup and Data Generating Process Description

The scheme of the RL algorithm is shown in Figure 6. As was explained before, the RL

algorithm consists of two major entities: the environment and the agent, which interact with

each other by exchanging state, action and reward objects (see the outer loop in Figure 6). The

environment was created using a Monte Carlo simulation (from now on referred to as the

simulation) built based on the historical data of an international consumer credit company

Creditstar Group for one of its target markets. The firm specializes in consumer loans of sums

in a range of 24-1200 EUR for durations in a range of 5-90 days with no collateral. We further

explain the general idea behind the simulation so that it is sufficient for the reader to follow,

how the aim of the thesis is reached. Due to confidentiality reasons, we do not disclose all the

details and parameters of the simulation.

The simulation generates weekly data based on the historical period of 24.05.2015 till

09.07.2017 (112 observations). In each simulated week (from now on week or iteration)18 it

starts by generating the numbers of new and repeat customers’ loan applications received. Next,

for each application, it generates loan sum and duration, potential profit, whether the loan is

going to go overdue and whether it is going to pay back after the collection procedure in this

case. Based on these variables the event dates are calculated (maturation date, overdue date,

delinquent repayment date). Finally, for each loan application, the company’s credit scoring

model prediction is generated19.

Next part of the simulation marks the accepted applications based on the company’s acceptance

threshold for the application credit score (see an example of a weekly generated dataset in Table

B-1 of Appendix B). This data is used to calculate major loan portfolio characteristics, such as

18 Simulated ‘week’ and ’iteration’ terms are used interchangably.
19 The credit scoring model is an ensemble of binary and clustering classifiers trained on historical loan application

data using more than 300 uncorrelated variables. It outputs an inverse of the loan default probability adjusted for

firm’s policy rules (referred to as the credit score).

22

application volumes, new-to-repeat application ratios, acceptance rates, default rates, profits

(see an example of generated time series in Figure B-1 of Appendix B).

Figure 6. The scheme of reinforcement learning algorithm for a credit scoring

acceptance threshold optimization in a consumer credit company.

Notes: The figure shows the scheme of the interaction loop between the environment (the simulation)

and reinforcement learning agent. The outer loop reflects state – action – reward exchange between the

two. The inner loop shows the state – action evaluation and learning from reward by the RL agent. 𝑆 –

state or weekly acceptance rate, 𝐴 – action or acceptance threshold, 𝑄 – action-state value prediction, 𝑅

– reward or profits, 𝛼 – learning rate, 𝛾 – discount parameter, 𝑆′ - following state.

We define the decision process state as weekly application acceptance rate variable20 (𝑆(𝐴) in

Figure 6). After experimenting with various sets of variables as state definition it was concluded

that using solely acceptance rate variable is the best for the current problem. First, keeping the

state dimensionality as small as possible lets the algorithm converge faster and more accurately,

makes results more interpretable and easier to debug, thus making it a better choice for the

initial version of the model. Second, compared to all the other loan portfolio characteristics

acceptance rate has a direct connection with the others. For instance, it defines the contingency

matrix values (as well as derived from it type I and type II errors) together with corresponding

20 ‘State’ and ‘acceptance rate’ are used interchangeably.

23

credit volumes and thus, embodies a direct link between the acceptance threshold and the

resulting overall profit. Third, since acceptance rate is defined by the acceptance threshold it

will be easier for the RL agent to plan and interpolate its policy to other states once again letting

the algorithm to converge faster and more confidently. Finally, the acceptance rate is stationary

and lies between 0 and 1 as opposed to profits or accepted applications number variables, which

makes it more suitable for the MDP state definition.

The action space of the decision process is defined with the acceptance threshold variable21

(𝐴(𝑆) in Figure 6). Because of the reasons discussed in the literature review part of the work, we

use discrete action space rather than continuous one. The agent has a choice of 20 binary actions

reflecting credit score acceptance thresholds from 5 to 100 evenly spaced by 5. The reward is

defined as the weekly profit value22 (𝑅(𝑆, 𝐴) in Figure 6). The reward variable thus accounts for

the actual distribution of the misclassification costs without drawing any simplifying

assumptions. Since we use aggregate profit rather than profit per loan, the reward also takes

into account credit volumes.

The RL agent is designed as an entity separate from the environment. The only links it has with

the environment are: 1) it uses environment’s state object (acceptance rate value) as input to

decide on the action; 2) it outputs the action (acceptance threshold value) to be used by the

environment to calculate loan portfolio characteristics; 3) it uses environment’s reward object

(profit value) to learn the value function; 4) it uses state history to calculate ‘would be’ rewards

from alternative actions (to be discussed later). Thus, its information set is included in and, in

fact, is significantly smaller than the actual decision maker’s information set.

3.2. Reinforcement Learning Agent Specification

To perform the optimization task the agent uses a value function model and a set of policies

(see the inner loop in Figure 6 and Figure 7). These are defined as was discussed in the literature

review section. After experimenting with various function approximation models, such as

simple stochastic gradient descent (SGD), polynomial SGD, simple artificial neural networks

(one to three fully connected layers), it was decided to use a set of Gaussian Radial Basis

Functions (RBFs)23 as a value function approximator. The latter represents a compromise

21 ‘Action’ and ‘acceptance threshold’ are used interchangeably.
22 ‘Reward’ and ‘profit’ are used interchangeably.
23 A radial basis function is a real-valued function whose value depends only on the distance from the origin or

some other point 𝑐, called a center, so that 𝜑(𝑥, 𝑐) = 𝜑(‖𝑥 − 𝑐‖). Sums of radial basis functions are typically

used as function approximators. A Gaussian radial basis function is 𝜑(𝑟) = 𝑒−(𝜀𝑟)2
 where 𝑟 = ‖𝑥 − 𝑥𝑖‖. The

intuition behind the transformation is actually quite simple. Similar to creating a polynomial transform, when one

takes nth power of input variables resulting in additional polynomial features in order to account for non-linear

form of the relation in a linear regression model, Gaussian RBFs produce features that reflect the non-linear form

24

between simplicity and flexibility needed for the problem. Compared to simpler gradient

descent algorithms, RBFs provide a more flexible shape of the approximated function and fit

the expectation that the value function is bell-shaped both in states and actions. As opposed to

complex artificial neural network models, RBFs converge faster, are much easier to set up and

work with and are computationally cheaper. Finally, RBFs have been found to perform well in

small state spaces (Lane et al., 1992).

We use the RBFs transformation function as implemented in the Python library Scikit-learn

based on Rahimi and Recht (2008). It can be summed up in a transformation of type:

𝑥 =
√2

√𝑘
cos(𝑤𝑅𝐵𝐹𝑠 + 𝑐𝑅𝐵𝐹) , 𝑤𝑅𝐵𝐹 ~ 𝑁(0, √2𝛾𝑅𝐵𝐹), 𝑐𝑅𝐵𝐹 ~ 𝑈(0, 2𝜋), (10)

where 𝑥 is the resulting transformed feature vector, 𝑠 is the input state variable, 𝑘 is the number

of Monte Carlo samples per original feature, 𝑤𝑅𝐵𝐹 is a 𝑘-element vector of randomly generated

RBF weights, 𝑐𝑅𝐵𝐹 is a 𝑘-element vector of randomly generated RBF offset values and 𝛾𝑅𝐵𝐹 is

the variance parameter of a normal distribution. We employ four Gaussian RBFs with 𝛾𝑅𝐵𝐹

parameters equal to 5, 2, 1, 0.5 and numbers of components 𝑘 equal to 500 each.

Thus, transforming a state variable with RBFs generates 2000 features that are later normalized

and used in Stochastic Gradient Descent models. The latter can be thought of as a simple linear

regression model of the form:

𝑄(𝑤𝑎, 𝑠) = 𝑤𝑎𝑅𝐵𝐹(𝑠) = 𝑤𝑎𝑥, (11)

where 𝑤𝑎 is a vector of regression weights for action 𝑎, 𝑠 is the state variable, 𝑅𝐵𝐹 is the RBFs

transformation function, 𝑥 is the resulting vector of features and 𝑄 is the value of action 𝑎 in

state 𝑠 corresponding to the feature vector 𝑥.

There are 20 SGD models, one for each action. Each model takes the generated vector of

features as input and outputs a value of the corresponding action (𝑄(𝑆) in Figure 6), which leaves

the agent with 20 action values for the current state. At this point, the application of the value

function model is finalized and the agent can choose an action based on the current policy (𝐴(𝑄)

in Figure 6). The policy differs depending on the agent’s regime. In the test regime the agent just

exploits the value function model it learned so far by taking the most rewarding action (so called

‘greedy’ policy):

𝜋𝐺𝑟𝑒𝑒𝑑𝑦(𝑠) = argmax
𝑎

𝑄(𝑠, 𝑎) (12)

of the Normal distribution. Using several RBFs with various scaling parameters lets the approximation function

have more flexible non-linear form. For more information refer to Buhmann (2003).

25

Figure 7. Value function model and policy architecture of the reinforcement learning

agent.

Notes: The figure shows the steps of state (acceptance rate) transformation into action (acceptance

threshold) using value function model and a policy. Radial basis functions (RBFs) transform the initial

state value into 2000 normally distributed features. Those are used as input to 20 stochastic gradient

descent (SGD) models. The latter generate a Q-value for each of the 20 actions. Values are then used

according to the policy (greedy or Boltzmann-Q) to choose the final action (acceptance threshold).

In the training regime the agent needs to explore the environment, for which we use the

Boltzmann-Q policy defined as follows:

𝜋𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛(𝑎|𝑠) = ℙ[𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠] =
𝑒

𝑄(𝑠,𝑎)
𝜏

∑ 𝑒
𝑄(𝑠,𝑎′)

𝜏𝑎′∈𝒜

, (13)

where 𝒜 is the set of all actions, 𝑎′ is any action except action 𝑎 and 𝜏 is the temperature

parameter of the Boltzmann distribution. As 𝜏 goes to infinity, the probability of taking any

action becomes the same:

ℙ[𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠] =
1

𝒜
 ∀ 𝑎 ∈ 𝒜, (14)

26

while as 𝜏 approaches zero, the probability of taking the most rewarding action increases up to

1, turning it into a ‘greedy’ policy (see illustration in Figure B-2 of Appendix B). Thus, 𝜏

regulates the explorative behavior of the agent. The goal is to set 𝜏 in a way that at first, the

agent explores the environment learning the value function model, but as the latter starts

converging to the optimum, the agent takes more rewarding actions and visits more rewarding

states with a higher probability, exploring mainly near-optimal states and actions.

While the feedforward mechanism of the agent is quite simple, the feedback part where the

learning happens is more complicated. Once agent chooses an action and sets the acceptance

threshold for the following week, the applications with the credit score higher than the chosen

cutoff are considered accepted by the environment. However, the reward for the action taken is

revealed only when a corresponding loan pays back or defaults, which might happen months

after the loan issue. Since loans vary in duration, not only the reward is delayed, but also

distributed among various weeks. To keep the learning process smooth, we do the following:

in each week we calculate weekly profit and divide it between the (week – action – state) tuples

it corresponds to based on the loans that generated it. The segmented reward is then passed to

the agent and a separate value function update is performed for each (state – action – reward –

following state) tuple (value update target in Figure 6).

Another peculiarity of our problem is that once the acceptance threshold was applied, the

decision-maker can easily calculate profit for higher cutoffs since outcomes of applications with

higher scores are revealed. Similarly, the state that follows any threshold can be accurately

predicted based on the applications number and score distribution in the previous week and

acceptance threshold of interest. Thus, the (state – action – reward – following state) tuple can

be generated for any action higher than the actual one and additional value function updates can

be done.

The value target is defined as in equation (9). Thus, the approximation error24 is:

𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡) (15)

To adjust the SGD model weights in the direction of the steepest error descent we use the

following update rule:

𝑤𝑎 ← 𝑤𝑎 + 𝛼[𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]
𝜕𝑄(𝑠,𝑎)

𝜕𝑤𝑎
, (16)

24 Also known as Bellman residual.

27

which under the assumption that 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎) does not depend on 𝑤𝑎
25 simplifies to the

general SGD update rule:

𝑤𝑎 ← 𝑤𝑎 + 𝛼[𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]𝑆𝑡, (17)

where 𝑄(𝑆𝑡, 𝐴𝑡) can be thought of as current model prediction, 𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎) – the

target and 𝑆𝑡 – the gradient of the weights.

Given that the agent visits different states and uses various actions, and that the learning rate is

decreasing26, with every update, the value function model is expected to produce a better

approximation than before meaning that the estimated value function will converge to the true

value function of the problem (Sutton and Barto, 2017).

3.3. Experiment Structure

The structure of the training experiment is the following. We define an episode as a full

simulation run. The historical data for the first 52 weeks corresponds to the company’s entrance

to a new market and has some irregular properties (such as intense marketing campaigns and

operation interruptions) that we would not want the agent to learn. That’s why we drop those

from the learning phase. Thus, one episode consists of 60 weeks (simulated 420 days) and

generates 60 states in response to the agent’s actions. A training episode scheme is described

in Figure 8.

The training algorithm of the RL agent follows the scheme in Figure 6. The loop shown in the

figure repeats each simulated week, 82 times per episode. The algorithm can be described in

the following way. Starting from the first week:

1. A state (weekly acceptance rate) is generated by the environment and passed to the

agent.

2. Based on the passed state the Q-values of actions (acceptance thresholds) are predicted

using the value function model.

3. An action (acceptance threshold for the following week) is chosen based on the

predicted Q-values and the training (Boltzmann-Q) policy and passed to the

environment.

25 So called direct update rule. See Baird (1999) for more detail.
26 To implement the decreasing learning rate we use the inverse scaling learning rate that follows the formula:

𝛼𝑡 =
𝛼0

𝑡𝑝𝑜𝑤𝑒𝑟_𝑡, where 𝛼𝑡 is a learning rate parameter at time 𝑡, 𝛼0 is the initial learning rate and 𝑝𝑜𝑤𝑒𝑟_𝑡 is the

inverse scaling paramter of the learning rate.

28

4. Next state (acceptance rate for the following week) is generated by the environment

based on the chosen action. Rewards (profits) for all the previous weeks are generated

by the environment. State and rewards are passed to the agent.

5. The value function model is updated based on revealed rewards, state, and action history

and predicted (state – action – reward – following state) tuples.

6. Return to the point 2 and continue the loop until the end of the episode.

Figure 8. Training episode structure of the reinforcement learning system.

Notes: The figure shows the structure of a training episode. Out of 112 weeks generated by the

simulation the first 52 are used as a warm-up with no interaction or learning. During the next 60 weeks,

every week environment generates a state (weekly acceptance rate) and reward (realized profit), while

agent responds by taking an action (acceptance threshold for the following week) and learning from the

actual reward. During the last 22 weeks, the environment only generates delayed rewards for the loans

issued during the interaction phase, and the agent learns by adjusting the value function model according

to the realized rewards.

After the 60th week the environment no longer generates states, but still outputs delayed rewards

for the agent to learn up until the 82nd week when outcomes of all the accepted loans are known

and the episode rewards are completely defined.

The training experiment consists of 100 training episodes where the agent learns the value

function model using training Boltzmann-Q policy. Every 5 training episodes a set of 5 test

episodes is run where the agent uses greedy policy to track the performance improvement of

the optimized policy. The parameters for the training experiment were optimized using grid

29

search for the highest test episode rewards, the fastest convergence to the optimal policy and

the most intuitive value function model shape (see sample grid search results for the learning

rate optimization in Figures C-1 to C-3 of Appendix C). The resulting parameters are

summarized in Table 2.

Table 2. Reinforcement learning agent parameterization for the training experiment.

Parameter Notation Value

Q-learning update rule discount rate 𝛾 0.95

SGD initial learning rate 𝛼0 0.0001

SGD inverse scaling parameter 𝑝𝑜𝑤𝑒𝑟_𝑡 0.25

Boltzmann-Q policy temperature parameter 𝜏 1

In order to account for the dynamic nature of the real environment compared to the simulation

and for potential inaccuracies of the latter we perform the test experiment. We adjust the

simulation parameters to add distortions to the environment27, such as score distribution or prior

default probabilities shifts reflecting credit scoring model’s performance uncertainty,

population drift, and selection bias issues.

The test experiment consists of 100 episodes for each type of distorted environment. In each

episode, the agent starts with the value function model learned in the training experiment and

adapts to the distorted environment by interacting with it. Since in the test experiment the agent

needs to be more responsive to be able to reshape the estimated value function consistently and

less explorative to avoid extra costs, we adjust the RL parameters as denoted in Table 3.

Table 3. Reinforcement learning agent parameterization for the test experiment.

Parameter Notation Value

Q-learning update rule discount rate 𝛾 0.5

SGD initial learning rate 𝛼0 0.001

SGD inverse scaling parameter 𝑝𝑜𝑤𝑒𝑟_𝑡 0

Boltzmann-Q policy temperature parameter 𝜏 0.5

Finally, to assess the agent’s performance on the real data it has never seen before we let it

operate with the real loan applications received since 10.07.2017 to 25.12.2017 (24 weeks) and

scored with the credit scoring model used in the simulation28. To cope with the selection bias

issue present in the data, low-scored application sampling was performed during this period,

meaning that a percentage of low-scored applications were accepted in order to gather

information on low-quality applications that would normally be rejected by the model. Based

on outcomes of those applications we estimate the prior default rates for applications in

low-score bins. Based on those we extrapolate the outcomes for all the rejected applications,

27 Referred to as a ‘distorted episode’ from now on.
28 We refer to this experiment as the ‘real episode’.

30

getting a stream of data of the same structure as in the simulation but coming from the real

environment.

We compare the results of the acceptance threshold optimization using the RL algorithm to the

results of the traditional cost-sensitive cutoff optimization. The latter is implemented as

described in the literature review section following the methodology used in Verbraken et al.

(2014) and Skarestad (2017). We simply calculate the optimal threshold value using

equation (5) based on the test dataset credit score distribution. From now on we refer to the

traditional approach as the baseline29.

4. Results

The following section presents the results of the experiment. It starts with showing the baseline

results of the traditional approach to acceptance threshold optimization. It then describes the

training process of the constructed reinforcement learning system. Next, it evaluates the RL

algorithm’s adaptive ability on various simulated scenarios and on the real recent data of the

company and compares the results to the baseline.

4.1. Baseline Results and Reinforcement Learning Algorithm Convergence

We start with describing the results for the baseline threshold optimization approach (see Figure

9). If we consider the same action set as for the reinforcement learning problem (cutoffs from

5 to 100 by 5) and compute the potential profits for each action based on the test dataset for the

current credit scoring model, we can see that actions below 60 lead to a large negative profit,

while actions over 80 lead to near-zero profit. The potential profit function is hump-shaped with

an optimal cutoff point of 65 (corresponding to the baseline action). One can notice that being

too liberal is much more harmful than being too strict, as it usually happens in the credit

industry30 (Thomas et al., 2017; Lessmann, et al., 2015). The optimal acceptance rate calculated

based on the test set is around 15%.

Turning to the RL optimization results, we first describe the value function model convergence

dynamics during the training experiment. The timing details of the experiment are shown in

Table C-1 of Appendix C. Since the learning rate of the RL agent has a decreasing schedule,

29 An action chosen according to the baseline policy is referred to as the ‘baseline action’ or ‘baseline acceptance

threshold’ and reward received performing the baseline action is referred to as the ‘baseline reward’ or ‘baseline

profit’. The difference between another action and the baseline action is referred to as the ‘action difference’ or

‘acceptance threshold difference’ and the difference between another reward and the baseline reward is referred

to as the ‘reward difference’ or ‘profit difference’.
30 In credit scoring the cost of misclassifying a bad application is usually more than 5 times higher than the cost of

misclassifying a good one, which becomes even more severe in case of consumer loan providers.

31

the major part of learning happens during the first episode of training (see Figure 10). The actual

actions taken by the agent during the first episode and the action that the agent considers optimal

according to the value function model together with received rewards for each simulated week

are shown in Figures 11 and 12.

Figure 9. Baseline threshold optimization results: potential profit and corresponding

acceptance rate for every acceptance threshold based on the test dataset

Note: Profit is measured in thousands of euros.

The agent starts without any knowledge about the environment (flat value function model

shape) and performs random actions to explore it. Once it gets its first rewards for the actions

taken, it starts adjusting the model making the value predictions more accurate. As the

difference between values for various actions grows, the exploration rate decreases, and the

agent’s action range slowly converges towards the optimum predicted by the value function

model. In most cases the RL agent finishes the first episode with a relatively well-approximated

value function model, meaning that the latter predicts optimal action to be no more than 10

points away from the baseline action. Expectedly, the rewards received are consistently lower

than or around the baseline rewards due to the initial exploration of the environment.

Consequently, the agent finishes its first training episode with a total profit significantly lower

than in the baseline case.

32

Figure 10. Value function model convergence during the first training episode

Note: State denotes the application acceptance rate during the previous week, action denotes the

acceptance threshold for the following week, value is the prediction of the value function model for a

particular state-action pair, optimum shows the state-action pair that corresponds to the highest value in

the state-action space.

33

Figure 11. The dynamics of the action difference between the actual action taken and the

baseline action, value function-optimized action and the baseline action during the first

training episode

Note: the figure shows the difference between action variables and the baseline action during interaction

and delayed learning phases. Baseline denotes the acceptance threshold optimized using the traditional

approach, actual denotes the one used by the RL agent, value function-optimal denotes the one optimal

according to the value function model.

Figure 12. The dynamics of the (cumulative) reward difference between the actual

reward received and the baseline reward during the first training episode

Note: the figure shows the difference between reward variables and the baseline reward during

interaction phase. Baseline denotes the profits received with the acceptance threshold optimized using

the traditional approach, actual and cumulative denote profits received by the RL agent. For easier

perception rewards are calculated for the week the corresponding loans were issued in (for instance, the

reward for week 0 shows profits generated by loan applications issued in week 0). Profit is measured in

thousands of euros.

While most learning happens during the first couple of episodes, all the following episodes help

the agent to make the value function model smooth and well-defined (see Figure 13). The final

model shape is displayed in Figure 14. One can notice that low acceptance thresholds and high

34

acceptance rates have the lowest values31, meaning that accepting most of the applications is

the least profitable (and in fact, very detrimental) business policy. On the other hand, high

acceptance cutoffs and low acceptance rates have relatively higher but still suboptimal values,

meaning that rejecting all the applications is better than accepting too many but it is a zero-profit

business policy. As expected, the value function is bell-shaped and there is an optimal

state-action pair in between two extremes, which is setting the acceptance threshold to 65 and

operating at an acceptance rate of approximately 5%.

Comparing current results to the baseline case one can notice a lot of resemblance. The

RL-optimized acceptance threshold has converged to the baseline action, while the shape of the

learned value function model both in actions and states is very similar to the shape of the

potential profit function in Figure 9. The only difference is the optimal acceptance rate which

is 10% lower in case of the RL approach. It can be explained by the selection bias issue. Since

the test dataset consists only of accepted applications (that are better than the ones that were

rejected), its score distribution is shifted towards higher scores compared to the one of the whole

population. This means that if we include all the rejected applications into the test dataset, the

average score will decrease, thus decreasing the acceptance rate for the optimal acceptance

threshold32.

The action and reward dynamics through 100 training episodes is shown in Figures 15 and 16.

In the beginning, the agent’s exploration range covers the whole action set while narrowing

down as the agent becomes more and more confident that the baseline action is optimal. The

agent converges to the baseline action fairly quickly after the 6th episode. After the 10th episode,

the average actual action rises up to 5 points over the baseline action showing that the

exploration range shifts upwards. It reflects the fact that lower suboptimal acceptance

thresholds are considered much less rewarding than higher suboptimal ones, that’s why the

latter are preferred following the Boltzmann-Q policy.

During the learning phase, the total profit per episode increases until the 6th episode when the

value function model has converged to some extent and stays significantly below the baseline

episode profit for the rest of the experiment. The gap can be explained by the constant

exploration of suboptimal state-action pairs by the agent while in the training regime, which

leads to stable suboptimal profits. However, if one looks at rewards during test episodes, the

31 As was discussed in previous Sections, a value of a state-action pair reflects how good it is to perform a particular

action in a particular state and follow an optimal policy afterwards. Since the optimal policy leads to positive

reward, all the values are positive even though some state-action pairs actually lead to negative rewards.
32 For instance, for the current test dataset an acceptance rate of 15% for previously accepted applications

corresponds to the acceptance rate of around 7% for all the previously received applications.

35

profit difference gets close to zero already after the 5th episode and oscillates around it for the

rest of the experiment.

Figure 13. Value function model convergence during the training experiment

Note: State denotes the application acceptance rate during the previous week, action denotes the

acceptance threshold for the following week, value is the prediction of the value function model for a

particular state-action pair, optimum shows the state-action pair that corresponds to the highest value in

the state-action space.

36

Figure 14. Final value function model shape

Note: State denotes the application acceptance rate during the previous week, action denotes the

acceptance threshold for the following week, value is the prediction of the value function model for a

particular state-action pair, optimum shows the state-action pair that corresponds to the highest value in

the state-action space.

Figure 15. The dynamics of the action difference between the actual action taken and the

baseline action, value function-optimized action and the baseline action during the

training experiment

Note: the figure shows the difference between action variables and the baseline action during interaction

and delayed learning phases. Baseline denotes the acceptance threshold optimized using the traditional

approach, actual denotes the one used by the RL agent, value function-optimal denotes the one optimal

according to the value function model.

37

Figure 16. The dynamics of the episode reward difference between the actual episode

reward received and the baseline episode reward during the training experiment for

training and test episodes

Note: the figure shows the difference between reward variables and the baseline reward during

interaction phase. Baseline denotes the profits received with the acceptance threshold optimized using

the traditional approach, train policy and test policy denote profits received by the RL agent following

training and test policy respectively. Profit is measured in thousands of euros.

To sum up, during the training experiment the RL agent finds optimal baseline acceptance

threshold and is able to receive baseline profit relatively quickly, after just a couple of training

episodes. Up to 50 episodes are needed to sufficiently approximate the value function model

for the whole state-action space. One obvious drawback is the tendency of the value function

model predictions (or Q-values) to grow indefinitely, meaning that it cannot converge without

decreasing learning rate, as was discussed in the methodological section. Thus, for various sets

of parameters (learning rate, discount rate, learning rate’s inverse scaling parameter) the final

state-action values predicted are going to be different and there is no way to determine the best

parameter set. Consequently, predicted values cannot be interpreted concretely.

4.2. Test Experiment Results

In the test experiment, we let the RL agent compete with the traditional approach in distorted

environments, created using the simulation with adjusted parameters. The first kind of distorted

environment simulates a credit business process where the score distribution of new

applications is shifted by approximately 20 points down and the score distribution of repeat

applications is shifted by around 10 points down (around 15 points downward shift in the

general score distribution). This kind of distortion reflects the inaccuracy in the credit scoring

model assessment and/or population drift. Compared to the test dataset, the optimal acceptance

38

threshold shifts down making traditionally optimized cutoff policy too strict for the distorted

environment.

We first briefly describe the convergence of the value function model in a sample distorted

episode (see Figures 17-19). The agent starts the episode with the shape of the model it has

learned so far. Lower Boltzmann-Q policy temperature parameter 𝜏 lets the agent explore only

most promising neighboring state-action pairs. Lower discount rate and higher learning rate let

the agent adjust the value function model parameters faster than during the training experiment.

Once the agent gets enough positive reinforcement about a neighboring action, the model’s

optimum shifts and the agent starts exploring around the new optimal action. The process

continues until alternative actions stop outperforming current optimum.

The episode starts with reward difference being close to or below zero due to exploration.

However, as the agent shifts to a new optimum, the average reward difference becomes positive

and grows until the end of the episode allowing for rare low rewards due to exploration. The

agent starts outperforming the traditional approach in terms of accumulated profit already after

20 weeks of adjustments, meaning that it responds to the first wave of matured (overdue) loans

right away, and the reward difference keeps growing afterward.

The results of the test experiment are shown in Figure 20, Scenario 1. The RL agent outperforms

the traditional approach in all episodes and the average episode profit received by the agent is

significantly larger than the baseline. The distribution of profit differences is significantly

higher than zero according to the one-tailed t-test (see Table 4). Thus, in case of the credit score

distribution being significantly lower than what is estimated based on the test dataset, a dynamic

RL system would successfully adapt to real environment outperforming the traditional

approach.

Similar test experiments were performed for the following types of distorted environment:

upwards shift in the score distribution of new and repeat applications by approximately 20 and

10 points respectively (or by around 15 points overall); an increase in default rates by 10%; a

decrease in prior default rates by 10%. In case of the score distribution being significantly

higher than what is estimated based on the test dataset, a dynamic RL system would successfully

adapt to the distorted environment outperforming the traditional approach (see results in Figure

20, Scenario 2).

39

Figure 17. Value function model convergence during a sample distorted episode

Note: State denotes the application acceptance rate during the previous week, action denotes the

acceptance threshold for the following week, value is the prediction of the value function model for a

particular state-action pair, optimum shows the state-action pair that corresponds to the highest value in

the state-action space.

40

Figure 18. The dynamics of the action difference between the actual action taken and the

baseline action, value function-optimized action and the baseline action during a sample

distorted episode

Note: the figure shows the difference between action variables and the baseline action during interaction

and delayed learning phases. Baseline denotes the acceptance threshold optimized using the traditional

approach, actual denotes the one used by the RL agent, value function-optimal denotes the one optimal

according to the value function model.

Figure 19. The dynamics of the (cumulative) reward difference between the actual

reward received and the baseline reward during a sample distorted episode

Note: the figure shows the difference between reward variables and the baseline reward during

interaction phase. Baseline denotes the profits received with the acceptance threshold optimized using

the traditional approach, actual and cumulative denote profits received by the RL agent. For easier

perception rewards are calculated for the week the corresponding loans were issued in (for instance, the

reward for week 0 shows profits generated by loan applications issued in week 0). Profit is measured in

thousands of euros.

In case of environments with distorted prior default rates, however, the RL agent significantly

underperforms the traditional static policy when using the same parameterization as for

previous experiments. The reasoning is that these environments have different reward structure

from the one the value function model was trained for. Since the value function updates

41

asymmetrically (higher actions are updated much more frequently than lower ones), learning

from different reward structure might create discontinuities in the shape of the value function

model. Thus, trying to adapt in some cases distorts the shape of the latter to a degree, where it

diverges from the optimum.

The effectiveness of the optimization could be improved using a different set of parameters,

most suitable for the problem at hand. Particularly, the agent successfully outperforms the

traditional approach in a distorted environment with lower prior default rates (Figure 20,

Scenario 3) if using higher learning rate and lower discount rate (being more sensitive), while

in a distorted environment with higher prior default rates (Figure 20, Scenario 3) – if using

lower learning rate and higher discount rate (being less sensitive). Such a contradiction makes

the RL approach less able to generalize and require careful maintenance when operating in the

real environment.

It is important to note that consistent exploration and adaptation of the RL agent has its cost.

Consequently, the dynamic nature of the algorithm lets it outperform the traditional static

approach in a highly dynamic environment, but it also might make the agent less profitable in

a rather stable environment even if the agent’s policy successfully converges.

Table 4. Result of the t-test for various distortion scenarios

Scenario t-statistic p-value

Scenario 1: downwards shift in score distribution 29.56631 1.55E-51

Scenario 2: upwards shift in score distribution 42.72066 2.45E-66

Scenario 3: downwards shift in default rates 5.172688 5.95E-07

Scenario 4: upwards shift in default rates 4.600158 6.20E-06

Note: the t-test null hypothesis is that the mean difference between the episode reward received by the

RL agent and the episode reward received using the traditional approach throughout 100 episodes is

equal to or lower than zero.

42

Figure 20. Test experiment results

Note: the figure shows the difference between reward variables and the baseline reward during

interaction phase. Baseline denotes the profits received with the acceptance threshold optimized using

the traditional approach. The upper figures for each scenario show cumulative profits for each out of

100 simulated episodes and their mean. For easier perception rewards are calculated for the week the

corresponding loans were issued in (for instance, the reward for week 0 shows profits generated by loan

applications issued in week 0). The lower figures show the distribution of episode profits for each out

of 100 simulated episodes and their mean. Profit is measured in thousands of euros.

43

4.3. Results on the Real Data

Finally, we present the results of the RL agent operating on the real data. The value function

model convergence, action and reward dynamics during the real episode are shown in

Figures 21-23. Like in a distorted episode, the agent adjusts the value function model relatively

fast. After 12 weeks of exploration, it decides that it is more rewarding to be stricter in the

current environment ending up with optimal acceptance threshold of 75 and optimal acceptance

rate of 10%. The average action-state value increases considerably, adapting to the reward

structure of the environment.

Like in a distorted episode, weekly profit received by the agent happens to be below the baseline

one during the first weeks due to the exploration. After a couple of weeks, however, the agent

learns that acceptance thresholds below 65 are much less rewarding than the higher ones and

stops exploring those. From then on, weekly profit difference consistently stays above or equal

to zero leading to a significantly higher cumulative profit at the end of the real episode. The

optimal acceptance rate starts at 5% going up to 10% during the adaptation phase and stays at

that level until the end of the episode. This behavior clearly shows that the real environment

score distribution is shifted upwards and using the baseline acceptance threshold leads to a

higher acceptance rate than the one estimated on the historical data. Thus, an upward shift in

the acceptance threshold is necessary to adjust for this bias. Positive change in the optimal

acceptance rate value shows that real default rates are lower than those estimated on the

historical data reflecting a slight selection bias of the dataset. Nevertheless, the verification

period is still too small to draw final conclusions.

To sum up, the results show that the RL agent learns optimal policy relatively fast: the value

function model correctly predicts the optimal state-action pair after 6 training episodes. The

agent successfully adapts its policy in environments with distorted score distributions and prior

default rates. The main drawback of the current system is that the value function model is

updated asymmetrically due to the application selection issue, which might lead to the

divergence of the model in an alien environment. The secondary drawback is the constant

exploration cost, which makes dynamic RL system perform worse than the static traditional

approach in a stable environment. Finally, the agent successfully identifies an upward score

distribution shift in the real environment and significantly outperforms the traditional approach

by following a stricter policy.

44

Figure 21. Value function model convergence during the real episode

Note: State denotes the application acceptance rate during the previous week, action denotes the

acceptance threshold for the following week, value is the prediction of the value function model for a

particular state-action pair, optimum shows the state-action pair that corresponds to the highest value in

the state-action space.

45

Figure 22. The dynamics of the action difference between the actual action taken and the

baseline action, value function-optimized action and the baseline action during the real

episode

Note: the figure shows the difference between action variables and the baseline action during interaction

and delayed learning phases. Baseline denotes the acceptance threshold optimized using the traditional

approach, actual denotes the one used by the RL agent, value function-optimal denotes the one optimal

according to the value function model.

Figure 23. The dynamics of the (cumulative) reward difference between the actual

reward received and the baseline reward during the real episode

Note: the figure shows the difference between reward variables and the baseline reward during

interaction phase. Baseline denotes the profits received with the acceptance threshold optimized using

the traditional approach, actual and cumulative denote profits received by the RL agent. For easier

perception rewards are calculated for the week the corresponding loans were issued in (for instance, the

reward for week 0 shows profits generated by loan applications issued in week 0). Profit is measured in

thousands of euros.

46

5. Discussion of Results

The following section performs the analysis of the experiment results pointing out benefits and

limitations of the proposed approach in comparison to the previous literature. It further

summarizes the scientific and practical implications of the conducted work and draws directions

for further improvements and research.

The results above show that an adaptive reinforcement learning system can be effectively used

to optimize credit scoring acceptance threshold in a dynamic consumer credit environment,

outperforming traditional static approaches, such as cost-sensitive optimization used in

Verbraken et al. (2014) and Skarestad (2017). The RL algorithm presented in this work lets

decision-maker adapt their credit scoring model to the real environment solving problems of

the uncertainty of the credit scoring model’s performance on the live data (discussed in Thomas

et al., 2017), selection bias (investigated in Banasik et al., 2003; Wu and Hand, 2007) and

population drift (studied in Thomas, 2010; Nikolaidis, 2017). Since the RL agent adapts its

actions in response to actual data, the optimized policy accounts for the real misclassification

costs and profit distributions rather than approximated ones as in the traditional method, solving

the problem outlined in Thomas et al. (2005), Hand (2006) and Hernandez-Orallo et al. (2011).

The experiment provides more evidence of the ability of RL algorithms to outperform

traditional approaches in portfolio optimization problems, as in Du et al. (2016) and Strydom

(2017). It further finds the approach to perform efficient optimization given limited prior

information, in line with Tesauro et al. (2006) and Kim et al. (2016), and contradicting

objectives, confirming results in Huang et al. (2010) and Varela et al. (2016). Finally, the

experiment shows that the RL method successfully uses simulation training to avoid initial

costly poor performance in real environment, similar to findings in Tesauro et al. (2006) and

Aihe and Gonzalez (2015).

On the downside, since the project is rather a proof of concept, it still has some flaws. First,

since the RL agent is trained and verified on a simulation, its performance in the real

environment directly depends on the goodness of fit of the simulation. In case the latter is

oversimplified or biased, the deployment of the RL system might bring additional costs until it

adapts to the real environment and corrects for the flawed knowledge (Aihe and Gonzalez,

2015). Thus, it is essential to develop a well-approximated simulation to make the transition of

the RL agent between the training and real environments as smooth as possible.

Another drawback concerns the optimization algorithm used. Q-learning is relatively simple to

understand, implement and provide the intuition on, but it comes at its cost. Since Q-values

47

approximated by the value function model converge only in case of decreasing learning rate,

eventually the model either diverges with a fixed learning rate, gradually loses its adaptive

ability with a decreasing learning rate or needs constant maintenance of a human expert to

control the learning rate and convergence dynamics (confirming observations made by Sutton

and Barto, 2017; Baird, 1995). This disadvantage could be cured by using alternative classes of

reinforcement learning algorithms, such as temporal difference (Sutton and Barto, 2017), policy

gradient (Williams, 1992) and residual algorithms (Baird, 1995).

Furthermore, Q-learning was initially designed for discrete action spaces, that’s why the

developed RL algorithm had to use separate value function models for various actions. The

disadvantage of this approach is that the system ignores the relation between similar actions

and does not generalize throughout the action space (as was previously noted by Kaelbling et

al., 1996). Ideally, one would use a continuous action space instead together with action-wise

generalization, which could be achieved by using more advanced RL algorithms such as

Asynchronous Advantage Actor-Critic (Mnih et al., 2016).

One of the drawbacks inherent to most machine learning algorithms is the parameterization

problem (outlined in Farahmand and Szepesvári, 2011; Sutton and Barto, 2017). The current

relatively simple system already needed a lot of experimentation to choose optimal value

function model, discount rate, learning rate, exploration policy etc. Each combination of

parameters provides different Q-values and convergence properties and there is no fixed rule

on which combination is the best. It leads to the lack of generality and interpretability of the

approach compared to the traditional methodology. The flaw can be solved with more complex

RL model selection techniques (Farahmand and Szepesvári, 2011).

One of the significant flaws of the current system is the asymmetric update of the value function

model caused by the application selection bias, which is new for the RL literature to the best of

our knowledge. As was shown in the test experiment, although it lets the agent learn much

quicker, it might sometimes cause the model to diverge in an alien environment leading to

significant losses. The problem can be overcome by randomly accepting a small percentage of

low-scored applications, estimating the default rates of corresponding score bins and

extrapolating the outcomes for the rejected applications. This way the agent symmetrically

updates the model using extrapolated outcomes covering the whole action space. Thus, the

adaptation to a new reward structure will not create discontinuities in the value function model

shape.

Finally, since the RL algorithm uses exploration to adapt to an environment, it has constant

costs for taking suboptimal actions. It makes it underperform the static traditional approach in

48

relatively stable conditions (the curse of online learning as discussed in Sutton and Barto, 2017).

This weakness can be solved with the random low-scored application sampling. As was

explained before, the latter lets the agent get an estimate of default rates in high-risk application

bins, extrapolate the outcomes for rejected applications and learn from resulting estimated

rewards. Thus, this approach eliminates the necessity of action exploration in the sense that it

was defined before and offers much lower exploration costs and greater benefits in the form of

high-risk groups default rate estimates. The low-scored application sampling is also important

to make the scoring model less vulnerable to the selection bias after retraining it on the new

data. That is why the related costs could be thought of as indispensable for credit scoring model

building itself.

Consequently, further steps in the RL algorithm development, first of all, include the

introduction of the random low-scored application sampling and experimentation with

alternative RL approaches to fix the existing flaws described above. Next, the extension of the

current setup is planned. The action set of the RL agent is planned to be made more detailed by

differentiating between new and repeat client application acceptance thresholds, as these groups

are known to have different repayment behaviors. The state space of the environment is planned

to be extended with new-to-repeat loan application ratios. The next step in this direction would

be a similar extension in terms of short and long-term loan applications. Finally, the reward

function is planned to be extended to account for policy rules for credit volumes and

new-to-repeat loans ratio.

Although the current setup of the developed RL agent is still too simple to perform the decision

making independently, it is ready to be used as a decision support system by human experts.

As an example, it could be utilized to optimize the acceptance threshold level based on the real

environment feedback after a credit scoring model is deployed on the new market or after

significant changes to the existing credit scoring model are made. As was shown in the previous

section, using the agent right after the deployment of the current credit scoring model would

lead to a significant increase in profit.

Additionally, the algorithm can be used together with the Monte Carlo simulation to test various

what-if scenarios and perform the stress-testing as was demonstrated in the test experiment in

the previous section. As international financial regulation becomes stricter demanding credit

businesses to plan ahead and be ready to potential economic disturbances (Thomas, 2010), a

framework developed in the thesis would help the company to correspond to regulators’

requirements.

49

From the scientific point of view, the work offers a real example of problems when

implementing credit scoring modeling in practice that are usually omitted in the literature on

the topic. In particular, the acceptance threshold optimized on the test dataset following the

traditional cost-sensitive optimization approach is shown to suffer from a significant credit

score distribution bias most likely related to the uncertainty of the model’s performance on the

live data and selection bias. The developed solution to the problem contributes to existing

literature on practical issues in credit scoring listed in Table A-1 in Appendix A.

As a contribution to the reinforcement learning literature, current work shows a successful proof

of concept of using reinforcement learning algorithms in credit scoring for consumer credit

business complementing the list of novel RL application papers in Table A-3 in Appendix A.

As the problem setup considerably differs from more usual practical RL applications, a set of

useful discoveries was made in terms of environment, RL algorithm and reward specification,

such as using asymmetric reward learning to boost the value function model approximation

process and using random low-scored application sampling as an alternative exploration policy.

6. Conclusions

To sum up, the thesis addresses some common issues of the practical implementation of credit

scoring, such as scoring model’s performance uncertainty, selection bias, population drift and

the specification of business objectives. As opposed to numerous papers on the topic, we focus

on credit score acceptance threshold optimization rather than the scoring model itself. We

discuss and empirically show significant drawbacks of the traditional approach to cost-sensitive

cutoff point optimization, which are mainly caused by its static nature. Instead, we propose a

dynamic reinforcement learning framework that can correct for the flawed prior knowledge and

adapt to the real environment based on the live feedback rather than oversimplifying theoretical

assumptions. To the best of our knowledge, it is the first attempt of applying reinforcement

learning to the problem of credit scoring in consumer credit business. Additionally, we conduct

the research using real data of an international consumer loans provider, which adds practical

sense to the work.

The results show that the traditional cutoff optimization approach does not ensure the optimality

of the acceptance threshold, which might lead to biased conclusions and significant losses. The

proposed dynamic reinforcement learning system manages to outperform the traditional method

both in a simulated and real credit business environment leading to significantly higher total

profits of the credit company. Consequently, the main scientific contribution of the current work

50

is the proof of concept of applying a reinforcement learning algorithm in credit scoring for

consumer credit business. Additionally, a set of useful discoveries was made in terms of the

environment, RL algorithm and reward specification in the credit scoring context, such as using

asymmetric reward learning to boost the value function model approximation process and using

random low-scored application sampling as an alternative exploration policy. Finally, a

complete programming package was developed to implement the designed RL system33.

The current system could be improved by experimenting with the random low-scored

application sampling and alternative RL algorithms such as temporal difference, residual

algorithms and policy gradient (such as Asynchronous Advantage Actor-Critic). Next, the

extension of the current setup is planned. The state-action space of the RL problem can be

extended to account for the applications heterogeneity. For instance, due to the difference

between new and repeat client loan application groups the optimization of distinct acceptance

thresholds for those could certainly improve the agent’s performance. The corresponding

extension of the state space of the environment would be new-to-repeat application and loan

ratios variables. Another differentiation could be done by the duration of the loan applied for,

i.e. into short-term and long-term loan applications. Finally, the reward function is planned to

be extended to account for policy rules for credit volumes and new-to-repeat loans ratio.

Overall, due to the novelty of the approach application and intensive research in the field, there

is a lot of room for experimentation and improvement. However, it is important to remember

that with massive machine learning systems like reinforcement learning agents a ‘step-by-step’

rather than ‘all-at-once’ improvement strategy should be preferred in order to go through the

experimentation process as smoothly and quickly as possible.

33 The project repository can be found by following the link:

https://github.com/MykolaGerasymovych/Optimizing-Acceptance-Threshold-in-Credit-Scoring-using-
Reinforcement-Learning.git

https://github.com/MykolaGerasymovych/Optimizing-Acceptance-Threshold-in-Credit-Scoring-using-Reinforcement-Learning.git
https://github.com/MykolaGerasymovych/Optimizing-Acceptance-Threshold-in-Credit-Scoring-using-Reinforcement-Learning.git

51

References

1. Abdou, H.A. and Pointon, J., 2011. Credit scoring, statistical techniques and evaluation

criteria: A review of the literature. Intelligent Systems in Accounting, Finance and

Management, 18(2-3), pp.59-88.

2. Abe, N., Melville, P., Pendus, C., Reddy, C.K., Jensen, D.L., Thomas, V.P., Bennett, J.J.,

Anderson, G.F., Cooley, B.R., Kowalczyk, M. and Domick, M., 2010, July. Optimizing

debt collections using constrained reinforcement learning. In Proceedings of the 16th

ACM SIGKDD international conference on Knowledge discovery and data mining (pp.

75-84). ACM.

3. Aihe, D.O. and Gonzalez, A.J., 2015. Correcting flawed expert knowledge through

reinforcement learning. Expert Systems with Applications, 42(17-18), pp.6457-6471.

4. Azar, M.G., Munos, R., Ghavamzadeh, M. and Kappen, H., 2011. Reinforcement learning

with a near optimal rate of convergence.

5. Baird, L.C., 1999. Reinforcement learning through gradient descent. Robotics Institute,

p.227.

6. Banasik, J., Crook, J. and Thomas, L., 2003. Sample selection bias in credit scoring

models. Journal of the Operational Research Society, 54(8), pp.822-832.

7. Barisitz, S., 2013. Nonperforming Loans in CESEE–An Even Deeper Definitional

Comparison. Focus on European Economic Integration Q, 3, pp.64-81.

8. Beling, P., Covaliu, Z. and Oliver, R.M., 2005. Optimal scoring cutoff policies and

efficient frontiers. Journal of the Operational Research Society, 56(9), pp.1016-1029.

9. Bellman, R., 2013. Dynamic programming. Courier Corporation.

10. Bellotti, T. and Crook, J., 2013. Forecasting and stress testing credit card default using

dynamic models. International Journal of Forecasting, 29(4), pp.563-574.

11. Blöchlinger, A. and Leippold, M., 2006. Economic benefit of powerful credit

scoring. Journal of Banking & Finance, 30(3), pp.851-873.

12. BRIAT, P., 2006. A Markovian approach to the analysis and optimization of a portfolio

of credit card accounts (Doctoral dissertation).

13. Buhmann, M.D., 2003. Radial basis functions: theory and implementations (Vol. 12).

Cambridge university press.

52

14. Crook, J. and Banasik, J., 2004. Does reject inference really improve the performance of

application scoring models?. Journal of Banking & Finance, 28(4), pp.857-874.

15. Crook, J.N., Edelman, D.B. and Thomas, L.C., 2007. Recent developments in consumer

credit risk assessment. European Journal of Operational Research, 183(3),

pp.1447-1465.

16. Crook, J.N., Thomas, L.C. and Hamilton, R., 1992. The degradation of the scorecard over

the business cycle. IMA Journal of Management Mathematics, 4(1), pp.111-123.

17. Dariane, A.B. and Moradi, A.M., 2016. Comparative analysis of evolving artificial neural

network and reinforcement learning in stochastic optimization of multireservoir

systems. Hydrological Sciences Journal, 61(6), pp.1141-1156.

18. Deep Think Team, "Report for the PAKDD 2009 Data Mining Competition,"

http://sede.neurotech.com.br/PAKDD2009/files/47.PDF, 2009

19. Devraj, A.M. and Meyn, S., 2017. Zap Q-Learning. In Advances in Neural Information

Processing Systems (pp. 2232-2241).

20. Dey, S., 2010, June. Credit limit management using action-effect models. In Financial

Theory and Engineering (ICFTE), 2010 International Conference on (pp. 112-115).

IEEE.

21. Dey, S., 2010. Modeling the Combined Effects of Credit Limit Management and Pricing

Actions on Profitability of Credit Card Operations. International Journal of Business and

Management, 5(4), p.168.

22. Du, X., Zhai, J. and Lv, K., 2016. Algorithm Trading using Q-Learning and Recurrent

Reinforcement Learning. positions, 1, p.1.

23. Eisenbeis, R.A., 1978. Problems in applying discriminant analysis in credit scoring

models. Journal of Banking & Finance, 2(3), pp.205-219.

24. Farahmand, Amir-massoud, and Csaba Szepesvári. "Model selection in reinforcement

learning." Machine learning 85.3 (2011): 299-332.

25. Finlay, S., 2010. Credit scoring for profitability objectives. European Journal of

Operational Research, 202(2), pp.528-537.

26. Fluss, R., Faraggi, D. and Reiser, B., 2005. Estimation of the Youden Index and its

associated cutoff point. Biometrical journal, 47(4), pp.458-472.

http://sede.neurotech.com.br/PAKDD2009/files/47.PDF

53

27. Gao, X. and Chan, L., 2000. An algorithm for trading and portfolio management using

Q-learning and sharpe ratio maximization. In Proceedings of the international conference

on neural information processing (pp. 832-837).

28. Hand, D.J., 2006. Classifier technology and the illusion of progress. Statistical science,

pp.1-14.

29. Hand, D.J., 2009. Measuring classifier performance: a coherent alternative to the area

under the ROC curve. Machine learning, 77(1), pp.103-123.

30. Hernández-Orallo, J., Flach, P.A. and Ramirez, C.F., 2011, June. Brier Curves: a New

Cost-Based Visualisation of Classifier Performance. In ICML (pp. 585-592).

31. Huang, Z., van der Aalst, W.M., Lu, X. and Duan, H., 2010. An adaptive work

distribution mechanism based on reinforcement learning. Expert Systems with

Applications, 37(12), pp.7533-7541.

32. Kaelbling, L.P., Littman, M.L. and Moore, A.W., 1996. Reinforcement learning: A

survey. Journal of artificial intelligence research, 4, pp.237-285.

33. Kim, B.G., Zhang, Y., van der Schaar, M. and Lee, J.W., 2016. Dynamic pricing and

energy consumption scheduling with reinforcement learning. IEEE Transactions on

Smart Grid, 7(5), pp.2187-2198.

34. Kober, J., Bagnell, J.A. and Peters, J., 2013. Reinforcement learning in robotics: A

survey. The International Journal of Robotics Research, 32(11), pp.1238-1274.

35. Lane, S.H., Handelman, D.A. and Gelfand, J.J., 1992. Theory and development of

higher-order CMAC neural networks. IEEE Control Systems, 12(2), pp.23-30.

36. Lee, J.W., 2001. Stock price prediction using reinforcement learning. In Industrial

Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on (Vol. 1,

pp. 690-695). IEEE.

37. Lessmann, S., Baesens, B., Seow, H.V. and Thomas, L.C., 2015. Benchmarking

state-of-the-art classification algorithms for credit scoring: An update of

research. European Journal of Operational Research, 247(1), pp.124-136.

38. Louzada, F., Ara, A. and Fernandes, G.B., 2016. Classification methods applied to credit

scoring: Systematic review and overall comparison. Surveys in Operations Research and

Management Science, 21(2), pp.117-134.

54

39. Malik, M. and Thomas, L.C., 2012. Transition matrix models of consumer credit

ratings. International Journal of Forecasting, 28(1), pp.261-272.

40. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. and

Kavukcuoglu, K., 2016, June. Asynchronous methods for deep reinforcement learning.

In International Conference on Machine Learning (pp. 1928-1937).

41. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,

A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level

control through deep reinforcement learning. Nature, 518(7540), p.529.

42. Moody, J. and Saffell, M., 2001. Learning to trade via direct reinforcement. IEEE

transactions on neural Networks, 12(4), pp.875-889.

43. Moody, J. and Saffell, M., 2001. Learning to trade via direct reinforcement. IEEE

transactions on neural Networks, 12(4), pp.875-889.

44. Neuneier, R., 1996. Optimal asset allocation using adaptive dynamic programming.

In Advances in Neural Information Processing Systems (pp. 952-958).

45. Nikolaidis, D., Doumpos, M. and Zopounidis, C., 2017. Exploring Population Drift on

Consumer Credit Behavioral Scoring. In Operational Research in Business and

Economics(pp. 145-165). Springer, Cham.

46. Oliver, R.M. and Thomas, L.C., 2009. Optimal score cutoffs and pricing in regulatory

capital in retail credit portfolios.

47. Oliver, R.M. and Wells, E., 2001. Efficient frontier cutoff policies in credit

portfolios. Journal of the Operational Research Society, 52(9), pp.1025-1033.

48. OpenAI. OpenAI Dota 2 1v1 bot, 2017. URL https://openai.com/the-international/

49. Oreski, S., Oreski, D. and Oreski, G., 2012. Hybrid system with genetic algorithm and

artificial neural networks and its application to retail credit risk assessment. Expert

systems with applications, 39(16), pp.12605-12617.

50. Rahimi, A. and Recht, B., 2008. Random features for large-scale kernel machines.

In Advances in neural information processing systems (pp. 1177-1184).

51. Rana, R. and Oliveira, F.S., 2015. Dynamic pricing policies for interdependent perishable

products or services using reinforcement learning. Expert Systems with

Applications, 42(1), pp.426-436.

https://openai.com/the-international/

55

52. Régis, D.E. and Artes, R., 2016. Using multi-state markov models to identify credit card

risk. Production, 26(2), pp.330-344.

53. Sato, M., 2016. Quantitative Realization of Behavioral Economic Heuristics by Cognitive

Category: Consumer Behavior Marketing with Reinforcement Learning.

54. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. and Dieleman, S.,

2016. Mastering the game of Go with deep neural networks and tree

search. nature, 529(7587), pp.484-489.

55. Skarestad, H., 2017. A Novel Profit Scoring Method for Classifying Credit Card

Applications (Master's thesis, NTNU).

56. So, M.C., 2009. Optimizing credit limit policy by Markov Decision Process

Models (Doctoral dissertation, University of Southampton).

57. So, M.M. and Thomas, L.C., 2011. Modelling the profitability of credit cards by Markov

decision processes. European Journal of Operational Research, 212(1), pp.123-130.

58. Sousa, M.R., Gama, J. and Brandão, E., 2013. Introducing time-changing economics into

credit scoring. Universidade do Porto, Faculdade de Economia do Porto.

59. Strydom, P., 2017. Funding optimization for a bank integrating credit and liquidity

risk. Journal of Applied Finance and Banking, 7(2), p.1.

60. Sutton, R.S. and Barto, A.G., 2017. Reinforcement learning: An introduction.

Cambridge: MIT press.

61. Tesauro, G., 1995. Temporal difference learning and TD-Gammon. Communications of

the ACM, 38(3), pp.58-68.

62. Tesauro, G., Gondek, D.C., Lenchner, J., Fan, J. and Prager, J.M., 2013. Analysis of

watson's strategies for playing Jeopardy!. Journal of Artificial Intelligence Research.

63. Tesauro, G., Jong, N.K., Das, R. and Bennani, M.N., 2006, June. A hybrid reinforcement

learning approach to autonomic resource allocation. In Autonomic Computing, 2006.

ICAC'06. IEEE International Conference on (pp. 65-73). IEEE.

64. Thomas, L., Crook, J. and Edelman, D., 2017. Credit scoring and its applications (Vol.

2). Siam.

56

65. Thomas, L.C., 2010. Consumer finance: Challenges for operational research. Journal of

the Operational Research Society, 61(1), pp.41-52.

66. Thomas, L.C., Oliver, R.W. and Hand, D.J., 2005. A survey of the issues in consumer

credit modelling research. Journal of the Operational Research Society, 56(9),

pp.1006-1015.

67. Trench, M.S., Pederson, S.P., Lau, E.T., Ma, L., Wang, H. and Nair, S.K., 2003.

Managing credit lines and prices for bank one credit cards. Interfaces, 33(5), pp.4-21.

68. Van Hasselt, H., Guez, A. and Silver, D., 2016, February. Deep Reinforcement Learning

with Double Q-Learning. In AAAI (Vol. 16, pp. 2094-2100).

69. Vanhulsel, M., Janssens, D., Wets, G. and Vanhoof, K., 2009. Simulation of sequential

data: An enhanced reinforcement learning approach. Expert Systems with

Applications, 36(4), pp.8032-8039.

70. Varela, M., Viera, O. and Robledo, F., 2016. A q-learning approach for investment

decisions. In Trends in Mathematical Economics (pp. 347-368). Springer, Cham.

71. Verbraken, T., Verbeke, W. and Baesens, B., 2013. A novel profit maximizing metric for

measuring classification performance of customer churn prediction models. IEEE

Transactions on Knowledge and Data Engineering, 25(5), pp.961-973.

72. Viaene, S. and Dedene, G., 2005. Cost-sensitive learning and decision making

revisited. European journal of operational research, 166(1), pp.212-220.

73. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M. and De Freitas, N., 2015.

Dueling network architectures for deep reinforcement learning. arXiv preprint

arXiv:1511.06581.

74. Watkins, C.J.C.H., 1989. Learning from delayed rewards(Doctoral dissertation, King's

College, Cambridge).

75. Williams, R.J., 1992. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. In Reinforcement Learning (pp. 5-32). Springer, Boston, MA.

76. Wu, I.D. and Hand, D.J., 2007. Handling selection bias when choosing actions in retail

credit applications. European journal of operational research, 183(3), pp.1560-1568.

57

Appendices

Appendix A

Figure A-1. Selection bias in credit scoring.

Notes: 𝑠𝐶𝑆(𝒙) – application’s credit score estimated based on the application data 𝒙; red dotted line is

the estimated optimal acceptance threshold 𝑇𝐴𝑇. The latter is optimized for the dataset of accepted loan

applications. However, they make only a part of the overall loan applications set. Another part is the

rejected applications that usually have on average lower credit score than the accepted ones. As long as

the credit score distributions of accepted and rejected applications are not perfectly aligned, the

traditionally optimized acceptance threshold would be suboptimal for the overall loan applications

dataset.

Figure A-2. Population drift in credit scoring.

Notes: 𝑠𝐶𝑆(𝒙) – application’s credit score estimated based on the application data 𝒙; red dotted line is

the estimated optimal acceptance threshold 𝑇𝐴𝑇. The latter is optimized for the dataset of historical

accepted loan applications. However, new loan applications might have a different distribution due to

changes in business policy, legal rules, market conditions or macroeconomic environment. As long as

the credit score distributions of historically accepted and new applications are not perfectly aligned, the

traditionally optimized acceptance threshold would be suboptimal for the incoming loan applications.

58

Table A-1. Practical issues in credit scoring.

Paper Issue Main conclusions

PS PD SB BO

Eisenbeis

(1978) X X
Selection bias significantly affects estimates of the group means and

dispersions, the true cutoff point, and true error rates. Reclassification and

augmentation reject inference do not solve the issue.

Oliver and

Wells (2001) X X

The optimal cutoff policy significantly depends on the nature of business

objectives. Those should at least include risk, volume and profit tradeoffs apart

from the tradeoffs between expected losses and expected profit.

Banasik et al.

(2003) X

Training credit scoring model on high-risk application dataset leads to high

selection bias and model’s performance uncertainty. These issues cannot be

fully solved with traditional probit model with selection technique.

Crook and

Banasik (2004) X
Selection bias significantly affects loan application datasets where a large

proportion of cases are rejected. Extrapolation techniques are useless and

harmless for the model’s performance.

Thomas et al.

(2005)
X X X

The critical issue in credit scoring research is to develop a system that can:

cope with selection bias; produce profit-based scoring; accurately reflect

business objectives; relate scoring of individual applications to risk at the

portfolio and macro levels.

Blochlinger

and Leippold

(2005)

X X
Competitors' policies and quality of scoring models produce lead to population

drift in the company's customer base affecting the performance of the firm’s

credit scoring model.

Viaene and

Dedene (2005)
X

Cost-sensitive learning and cutoff optimization assumes that the probability

classifiers’ estimates are unbiased and well-calibrated. This is not true for

many error-based learners like decision trees, ensemble methods or

transformed scores.

Beling et al.

(2005) X X

Credit scoring models should account for multiple business objectives

including profit, market share, and loss. The traditional approach is limited to

satisfying only two objectives at a time.

Oliver and

Thomas (2009)
X X

The credit scoring cutoff policies’ objective should account for constraints of

regulatory capital requirements, such as those of the Basel Capital Accord.

Hand (2006)

X X X

The traditional assumptions of credit scoring are oversimplifying.

1. Misclassification costs are dynamic and not accurately known.

2. Selectivity bias significantly affects classifier’s performance on the live

data.

3. Changes in economic and market environment, marketing, and advertising

practices cause population drift.

These false assumptions make credit scoring biased and traditionally

optimized cutoff point suboptimal.

Wu and Hand

(2007) X
Selection bias severely affects credit scoring model’s performance. When most

previous customers received the same action, Heckman’s method does not

help.

PAKDD

(2009) X X
In real credit scoring selection bias strongly affects the training dataset, while

changes in the economy and the market significantly affect the performance of

the scoring model through population drift.

Thomas (2010)

 X

Payday and short-term loans with extremely high interest rates are strongly

affected by population drift reflected in changes in economic and market

environment, borrower behavior, and circumstances. The credit model needs

to be able to quickly adapt to those.

Finlay (2010)

X
In consumer credit scoring accurate specification of business objectives using

bad debt, revenue and profits rather than more general loss functions like sum

of squared errors, improves scoring model’s performance.

Note: PS - Profit Scoring, PD - Population Drift, SB - Selection Bias, BO - Business Objectives; main

conclusions are summarized by the author.

59

Table A-1 Continued.

Paper Issue Main conclusions

PS PD SB BO

Dey (2010)

X X X

Selection bias strongly affects credit scoring models. Additionally, the

objective function of a model has to be extended with various business

constraints like resource limits, growth targets, bad debt limits, and legal

constraints like APR caps.

Sousa et al.

(2013) X
A dynamic credit scoring model that accounts for time-changing economic

factors using the central tendency of default adjustment is found to outperform

the traditional static approach.

Bellotti and

Crook (2013) X

Dynamic credit scoring models that include behavioral data and

macroeconomic variables significantly outperform static models.

Macroeconomic variables affect all predicted default probabilities, rather than

at the individual account level.

Verbraken et

al. (2014) X
Profit-based acceptance optimization technique that accounts for

misclassification costs distribution outperforms alternative cost-sensitive

approaches in terms of both accuracy and monetary value.

Thomas et al.

(2017)

X X X

There are still major problems in incorporating business objectives into credit

scoring models. Those should account for economic and market conditions,

individual consumer’s characteristics, attrition rates. Reject inference cannot

be valid if the assumptions about accepted and rejected populations are

incorrect.

Nikolaidis

(2017) X

Credit scoring environment has a dynamic nature, while scoring models are

usually static. Authors show that severe deterioration in the macroeconomic

environment does not affect the separation ability of credit scoring models but

significantly changes client portfolio and population odds.

Skarestad

(2017)

X

The credit scoring model approach aimed to balance the risk and the expected

profits of an applicant outperforms conventional methods in terms of

profitability. The profit-based cutoff selection procedure can also outperform

conventional methods in terms of profitability as it utilizes the distribution of

losses and average gain.

Note: PS - Profit Scoring, PD - Population Drift, SB - Selection Bias, BO - Business Objectives; main

conclusions are summarized by the author.

Table A-2. Major reinforcement learning achievements in learning playing games.

Year Authors Game Achievement

1995 Tesauro et al. Backgammon RL agent TD-Gammon could learn from

playing backgammon against itself up to a

grandmaster level

2013 Tesauro et al. “Jeopardy!” RL agent IBM Watson won the first prize in a

TV quiz show “Jeopardy!” in an exhibition

match against human champions

2015 DeepMind (Mnih et al.) Atari 2600 video games RL agents could learn to play Atari 2600 games

better than human experts

2016 DeepMind (Silver et al.) Go RL agent AlphaGo managed to outperform an

18-time world champion player in a board

game of Go considered the most complicated to

master for an artificial intelligence machine

2017 OpenAI Dota 2 (1 vs 1) RL agent learned the game from scratch by

self-play and outperformed top Dota 2 players.

Note: summarized by the author.

60

Table A-3. Reinforcement learning in finance and business management.

Paper Problem Main conclusions

Neuneier (1996) Forex and stock exchange

trading

A neural network-based Q-learning agent is trained and

tested on the artificially simulated exchange rate and then

on German stock index DAX. The agent is found to

outperform the baseline index and the neural network

model for stock price prediction.

Gao and Chan

(2000)

Forex trading. An RL algorithm with neural network value function

approximator and Boltzmann policy is applied to trade

USD/DM currency. The agent is found to make

significantly higher profits than traditional approaches

based on forecasts and labelled data.

Lee (2001) Korean stock market trading. An RL agent with value function approximation by an

artificial neural network is trained to trade stocks on the

Korean stock market. The agent is found to make positive

profits.

Moody and Saffell

(2001)

Forex, stocks and securities

trading

Trading algorithms based on Q-learning and recurrent

reinforcement learning (RRL) are trained on a simulated

stock, USD/GBP exchange rate and S&P 500/T-Bill.

Algorithms are found to outperform heuristic benchmarks,

and RRL is found to perform better than Q-learning.

Tesauro et al.

(2006)

Resource allocation in a

multi-application prototype

Data Center scenario.

An RL agent is found to learn high-quality management

policies with little or no built-in system specific knowledge.

By training offline it is possible to avoid initial poor

performance costs. RL is found to deal effectively with both

transients and switching delays.

Vanhulsel et al.

(2009)

Simulation of sequential data in

activity-based travel demand.

RL algorithm is shown to successfully simulate sequential

data. Using a regression tree function approximator

produces a more optimal solution much faster than

traditional Q-learning approach.

Abe et al. (2010) Tax and debt collection

optimization.

An RL agent is found to effectively optimize debt collection

policies. Basing the deployed system on data modeling lets

it adapt to environment changes without significant extra

labor or costs.

Huang et al.

(2010)

Work distribution in business

process management.

An adaptive work distribution mechanism based on

reinforcement learning is shown to learn and reason suitable

work distribution policies within the change of process

conditions. A test learning-based simulation experiment

shows that the mechanism outperforms reasonable heuristic

or hand-coded approaches.

Aihe and

Gonzalez (2015)

Improvement in the proficiency

of software agents performing a

tactical task.

An RL agent is tested to perform optimization given

incorrect, incomplete or outdated prior knowledge about the

system. It is found to successfully improve a flawed tactical

agent by revising its knowledge through practice in a

simulated version of its operational environment.

Rana and Oliveira

(2015)

Pricing optimization of

perishable interdependent

products when demand is

stochastic and its functional

form unknown.

An RL model is shown to learns the relationship between

price and demand without any prior knowledge or

assumptions through the observation of realized demand to

derive an optimal dynamic pricing policy. It is shown to

faster learn and better approximate the optimal policy

compared to traditional dynamic pricing models.

Darian and

Moradi (2016)

Optimization of multireservoir

systems.

An RL algorithm based on an artificial neural net is

developed and tested using the simulation method. The

neural network-based agent is shown to outperform

Q-learning based algorithm.

Note: main conclusions are summarized by the author.

61

Table A-3 Continued.

Paper Problem Main conclusions

Kim et al. (2016) Dynamic pricing and energy

consumption scheduling

problem in the microgrid.

An RL-based dynamic pricing algorithm is shown to

effectively work without a priori information about the

system dynamics. The proposed energy consumption

scheduling algorithm further reduces the system cost thanks

to the learning capability of each customer. The algorithm

is shown to perform better than a myopic optimization

approach that considers only the immediate reward.

Sato (2016) Categorization in consumer

behavior marketing.

An RL algorithm is applied to categorize consumers using

a simulation model of the marketing process. The algorithm

is found to effectively optimize the categorization process.

Varela et al.

(2016)

Investment decision support

system.

A Q-learning based RL system is found to allow continuous

learning based on decisions proposed by the system itself.

This technique has several advantages, like the capability

of decision-making independently of the learning stage, the

capacity of adaptation to the application domain, and a

goal-oriented logic.

Strydom (2017) Bank portfolio optimization

given uncertainty in both credit

and liquidity risk.

A recursive learning method is developed to provide the

bank with a trading signal to dynamically adjust the

wholesale funding mix as the macroeconomic environment

changes. A simulation is used to train and test the algorithm.

The RRL method is found to dynamically adjust the trading

strategy over the projection period and provide a higher

average return compared to more traditional stochastic

linear programming method.

Note: main conclusions are summarized by the author.

62

Appendix B

Figure B-1. Examples of historical and correspondent time series samples generated by

the simulation.

Notes: the horizontal axis shows the number of the week; the vertical axis shows the number of credit

applications; the tick marks of the vertical axis were removed because of confidentiality reasons.

Table B-1. Example of data generated every week of the simulation.

id repeat week mature_at debt bad bad_at late_payment late_payment_at sum duration profit score accept

new_45_1 FALSE 45 57 0 FALSE NA FALSE NA 214 12 69.26 53.02 TRUE

new_45_2 FALSE 45 57 0 FALSE NA FALSE NA 354 12 117.62 27.89 FALSE

new_45_3 FALSE 45 49 0 TRUE 58 FALSE NA 76 4 18.16 9.25 FALSE

new_45_4 FALSE 45 57 1200 FALSE NA FALSE NA 214 12 69.26 41.32 FALSE

new_45_5 FALSE 45 57 0 TRUE 66 FALSE NA 354 12 117.62 15.67 FALSE

new_45_6 FALSE 45 57 0 FALSE NA FALSE NA 354 12 117.62 50.42 TRUE

new_45_7 FALSE 45 57 0 TRUE 66 FALSE NA 354 12 117.62 65.53 TRUE

new_45_8 FALSE 45 49 1200 TRUE 58 FALSE NA 76 4 18.16 39.38 FALSE

new_45_9 FALSE 45 49 0 TRUE 58 FALSE NA 351 4 85.94 5.31 FAE

new_45_10 FALSE 45 57 0 TRUE 66 FALSE NA 354 12 117.62 4.04 FALSE

new_45_11 FALSE 45 49 1200 FALSE NA FALSE NA 351 4 85.94 -4.26 FALSE

new_45_12 FALSE 45 56 0 TRUE 65 FALSE NA 87 11 30.10 -1.34 FALSE

new_45_13 FALSE 45 49 360 TRUE 58 FALSE NA 351 4 85.94 43.75 FALSE

new_45_14 FALSE 45 49 252 FALSE NA FALSE NA 76 4 18.16 41.18 FALSE

new_45_15 FALSE 45 49 1200 TRUE 58 FALSE NA 351 4 85.94 13.24 FALSE

new_45_16 FALSE 45 57 0 FALSE NA FALSE NA 354 12 117.62 56.01 TRUE

new_45_17 FALSE 45 57 144 TRUE 66 FALSE NA 214 12 69.26 36.77 FALSE

new_45_18 FALSE 45 49 0 FALSE NA FALSE NA 76 4 18.16 41.02 FALSE

repeat_45_1 TRUE 45 58 0 FALSE NA FALSE NA 564 12 188.39 18.79 FALSE

repeat_45_2 TRUE 45 47 1200 FALSE NA FALSE NA 92 2 18.68 13.18 FALSE

repeat_45_3 TRUE 45 49 720 TRUE 58 FALSE NA 216 4 56.59 36.94 FALSE

repeat_45_4 TRUE 45 49 0 TRUE 58 TRUE 61 78 4 20.09 39.26 FALSE

repeat_45_5 TRUE 45 54 132 TRUE 63 FALSE NA 346 13 117.31 39.66 FALSE

repeat_45_6 TRUE 45 54 720 TRUE 63 TRUE 72 346 13 117.31 54.70 TRUE

repeat_45_7 TRUE 45 48 0 FALSE NA FALSE NA 75 3 19.28 48.06 FALSE

repeat_45_8 TRUE 45 58 48 FALSE NA FALSE NA 1179 13 389.37 28.16 FALSE

Note: The acceptance threshold for the current example is 50. Variables week, mature_at, bad_at, late_payment_at mean the week (iteration) number

of the event in the simulation, while the duration variable is defined in days. Profit measurements are not disclosed due to confidentiality issues.

Figure B-2. Boltzmann-Q policy

Notes: the figure illustrates the Boltzmann-Q policy. The upper plot shows a Q-value function for a

sample state (acceptance rate) 𝑠 for every action (acceptance threshold) 𝑎. Those are used in

equation (13) to generate a Boltzmann probability distribution based on a temperature parameter 𝜏. The

lower plot shows the generated probability distributions for a range of temperature parameters. One can

see that low 𝜏 leads to a greedy policy: choosing the action with the highest value with probability 1,

while high 𝜏 leads to a random policy: choosing any action with a probability of approximately 0.05.

Parameter values in between lead to choosing actions with higher Q-values with higher probability

compared to actions with lower Q-values.

65

Appendix C

Figure C-1. Average training episode reward difference for various learning rate

parameters

Notes: the graph shows the training reward difference (displayed on the vertical axis) – difference

between episode profits received by the RL agent using train policy after training for 𝑛 episodes (𝑛

displayed on the horizontal axis) using various learning rates (denoted by ‘lr’) and the baseline profits

received using traditionally optimized policy. Profit is measured in thousands of euros. The reward

difference is averaged across 5 runs of 50 episodes per each.

Figure C-2. Average test episode reward difference for various learning rate parameters

Notes: the graph shows the test reward difference (displayed on the vertical axis) – difference between

episode profits received by the RL agent using test policy after training for 𝑛 episodes (𝑛 displayed on

the horizontal axis) using various learning rates (denoted by ‘lr’) and the baseline profits received using

traditionally optimized policy. Profit is measured in thousands of euros. The reward difference is

averaged across 5 runs of 50 episodes per each.

66

Figure C-3. Sample value function models after 50 episodes of training for various

learning rate parameters

Note: State denotes the application acceptance rate during the previous week, action denotes the

acceptance threshold for the following week, value is the prediction of the value function model for a

particular state-action pair, optimum shows the state-action pair that corresponds to the highest value in

the state-action space.

67

Table C-1. Reinforcement learning experiment timing

Computational chunk Duration (hours:minutes:seconds)

Average week length 00:00:02.70

Average train episode length 00:05:26.25

Average test episode length 00:04:24.20

Average distorted episode length 00:06:05.13

Sample train experiment length 18:39:04.71

Sample test experiment length 11:13:35.94

Real episode length 02:36:08.50

68

Non-exclusive license to reproduce thesis and make thesis public

I, Mykola Herasymovych (date of birth: 16.10.1994),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including

for addition to the DSpace digital archives until expiry of the term of validity of the copyright,

and

1.2. make available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives until expiry of the term of validity of the copyright,

Optimizing Acceptance Threshold in Credit Scoring using Reinforcement

Learning

supervised by Oliver Lukason and Karl Märka,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 24.05.2018

