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HIJIKATA–PIZER–SHEMANSKE CURVES AND

THE BIRCH AND SWINNERTON-DYER CONJECTURE

Matteo Longo, V́ıctor Rotger, and Carlos de Vera-Piquero

Abstract: We study Heegner points on elliptic curves, or more generally modular

abelian varieties, coming from uniformization by Shimura curves attached to a rather

general type of quaternionic orders. We address several questions arising from the
Birch and Swinnerton-Dyer (BSD) conjecture in this general context. In particular,

under mild technical conditions, we show the existence of non-torsion Heegner points

on elliptic curves in all situations in which the BSD conjecture predicts their existence.
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Introduction

Let E/Q be an elliptic curve of conductor N over the field of rational
numbers. Let K be an imaginary quadratic field of discriminant −D
and

χ : GK = Gal(K̄/K) −→ C×

be a character of finite order of the absolute Galois group of K. We
assume throughout that χ is anticyclotomic, meaning that χ(τστ−1) =
χ−1(σ) for any σ ∈ GK and τ ∈ GQ \GK .

The abelian extension cut out by χ is a ring class field associated
to some order Rc in K of conductor c = c(χ) ≥ 1. Let Hc denote
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the corresponding abelian extension, determined by the isomorphism
Gal(Hc/K) ' Pic(Rc) induced by the Artin map. Define the χ-isotypical
component of the Mordell–Weil group of E over Hc as

E(Hc)
χ := {x ∈ E(Hc)⊗ C : σ(x) = χ(σ)x, ∀σ ∈ Gal(Hc/K)},

and let L(E/K,χ, s) denote the Rankin L-series associated to the twist
of E/K by χ. Since χ is anticyclotomic, the motive associated to
L(E/K,χ, s) is Kummer self-dual and this implies that the global root
number ε(E/K,χ) of L(E/K,χ, s) is either +1 or −1. Assume for the
remainder of the article that

ε(E/K,χ) = −1,

hence in particular L(E/K,χ, s) vanishes at the central critical point s =
1.

In this situation, the Galois equivariant version of the Birch–Swinner-
ton-Dyer conjecture predicts that the implication

(1) L′(E/K,χ, 1) 6= 0
?

=⇒ dimCE(Hc)
χ = 1

holds true for all triplets (E,K, χ) as above.
The well-known strategy for proving this implication was established

by the pioneer works of Gross–Zagier [GZ] and Kolyvagin [Kol], and
consists in exploiting the Euler system of Heegner points on E aris-
ing from classical modular parametrisations. Since the breakthrough of
Gross, Zagier, and Kolyvagin in the late eighties, this method was gener-
alized by Zhang and his school ([Zha], [YZZ]) by extending the range of
modular parametrisations of the elliptic curve using Shimura curves as-
sociated to orders in quaternion algebras. As described in [Nek1], these
ideas have been turned into a machinery which allows one to prove (1) for
a given triplet (E,K, χ), subject to the existence of non-torsion Heegner
points in E(Hc).

Unfortunately, however, the existing literature does not make explicit
the Shimura uniformization in all scenarios in which (1) holds. Indeed,
this is established in the afore mentioned works under so-called Heegner
hypotheses which typically leave aside many cases in which there is a
prime p dividing both N and Dc. As pointed out, the reason may be
traced to the difficulty of proving the existence of non-torsion Heegner
points in the Mordell–Weil group of E over the abelian extension Hc

of K cut out by χ.
Recent and interesting progress has been recently made on such set-

tings by Kohen–Pacetti [KP1], [KP2] and Cai–Chen–Liu in [CCL],
where the modular parametrisation is afforded by a classical modular
curve attached to a Cartan level structure in the split matrix algebra.
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Nevertheless, there are still many cases of (1) in which a Shimura curve
uniformization is not made explicit by these works. The simplest sce-
nario not covered by previous works arises when E/Q is an elliptic curve
of conductor N = p2q, where p and q are two distinct odd primes such
that p is ramified and q is inert in K. In this setting it may perfectly be
the case that the sign of the functional equation satisfied by L(E/K, s)
be −1 (indeed, this holds under certain arithmetic conditions on the
local root numbers of the functional equation of L(E/K, s) at p and q
which are made precise below), and although [YZZ] proves the existence
of a Heegner system in some Shimura curve, the desired uniformization
is not made explicit. It is the purpose of this paper to describe explicitly
the optimal Shimura curve uniformization, hence this particularly simple
example can be thought as a motivation for this work.

The main goal we set ourselves for this project is covering this gap in
the literature by providing a result proving (1) for all triplets (E,K, χ),
with no additional hypothesis, and proving the existence of non-trivial
Heegner points on the field cut out by χ. As the reader will realize,
we fall short at achieving this goal, but we prove a fairly general theo-
rem encompassing all previously known results and covering all possible
scenarios allowed by (1) but for a few parasitic ones.

We do that by considering Jacobians Jac(XU ) of Shimura curves XU

associated to a rather general collection of non-maximal compact open
subgroups U ⊆ B̂× = (B ⊗ Ẑ)× in indefinite quaternion algebras B/Q;
these correspond to orders defined by local conditions of Eichler or Car-
tan type when the quaternion algebra is split, and to orders introduced
by Pizer [Piz2] and Hijikata–Pizer–Shemanske [HPS1] in the non-split
case.

Let us state our theorem more precisely and describe the structure of
this paper. Section 1 is devoted to introduce an explicit family of special
orders R in B which shall play a central role in our work. These orders
are determined by local data at the primes of bad reduction of the elliptic
curve E, following classical work of Hijikata, Pizer, and Shemanske that
apparently did not receive the attention it justly deserved. As a piece
of notation, for any order R of B we let XR denote the Shimura curve
associated to U = R̂× = (R ⊗ Ẑ)×. Also, to emphasize the role of B,
we will sometimes write XB,R for XR.

In Section 2 we study the Shimura curves XR associated to the above
mentioned Hijikata–Pizer–Shemanske orders and work out explicitly the
Jacquet–Langlands correspondence for these curves, which allows us
to dispose of a rich source of modular parametrizations of the elliptic
curve E. For any integer c, there is a (possibly empty) collection of
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distinguished points on XR, called Heegner points of conductor c. The
set of Heegner points of conductor c on XR is in natural correspondence
with the set of conjugacy classes of optimal embeddings of the quadratic
order Rc in the quaternion order R, and we denote it Heeg(R,K, c). We
say that a point in E(Hc) is a Heegner point of conductor c associated
to the order R if it is the image of a Heegner point of conductor c in XR
for some uniformization map

πE : Jac(XR) −→ E

defined over Q. The corresponding set of Heegner points is denoted
HeegE(R,K, c).

In Section 3 we perform a careful and detailed analysis of the rather
delicate and involved theory of optimal embeddings of quadratic orders
into Hijikata–Pizer–Shemanske orders. Combining all together this al-
lows to prove the main result of this article. A slightly simplified version
of this result is the following. The main virtue of the statement below
with respect to previous results available in the literature is that it is
both general (removing nearly all unnecessary hypothesis on divisibility
and congruence relations among N , D, and c) and precise (pointing out
to a completely explicit Shimura curve).

Theorem A. Let E/Q be an elliptic curve of conductor N not divisible
neither by 23 nor by 33, and suppose that the newform f ∈ S2(Γ0(N))
attached to E by modularity is primitive. Let K be an imaginary qua-
dratic field of discriminant −D and χ be an arbitrary anticyclotomic
character of conductor c ≥ 1. Assume that ε(E/K,χ) = −1. Then

(1) There exists an explicit Hijikata–Pizer–Shemanske order R =
R(E,K, χ) for which the set of Heegner points HeegE(R,K, c)
in E(Hc) is non-empty.

(2) If L′(E/K,χ, 1) 6= 0 and E does not acquire CM over any imagi-
nary quadratic field contained in Hc, then dimC(E(Hc)⊗C)χ = 1.

The condition that f is primitive means here that f is not a twist
of a modular form of level M < N (cf. Definition 4.18). Theorem A is
proved in the last section of the article, where we also provide a more
general but more involved statement (see Theorem 4.16), in which we
discuss the cases when 23 or 33 divide N , and show also that the primi-
tivity assumption is only needed locally at some primes dividing N . We
also prove a similar but weaker result for modular abelian varieties in
Theorem 4.5, and we close the paper with a conjecture on the existence
of Heegner points on modular abelian varieties.
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Statement (2) in the above theorem follows from (1) and well-known
Kolyvagin type arguments which are spelled out in detail in [Nek1].
Namely, given

• a parametrization of the elliptic curve E by a Shimura curve XB,U ,

• a Heegner point x in XB,U (Kab), rational over a subfield K(x) ⊆
Kab, and

• a character χ factoring through Gal(K(x)/K),

Nekovář shows that if the special value of the derivative of the complex
L-function at s = 1 is nonzero, then the dimension of the C-vector space
(E(K(x))⊗C)χ is equal to 1, provided that E does not acquire CM over
any imaginary quadratic field contained in K(x)ker(χ).

In some sense, our Theorem A reverses the logical order of the result
in [Nek1], starting with a character of a given conductor and asking for
a Heegner point rational over the subextension of Kab cut out by that
character. Therefore, the whole focus of our work is on statement (1)
of the above theorem. More precisely, this work grows out from a sys-
tematic study of existence conditions for Heegner points in all scenarios
in which the BSD conjecture predicts the existence of a non-zero ele-
ment in (E(Hc) ⊗ C)χ. To understand the flavour of this work, it is
therefore important to stress that we do not require any condition on
the triplet (N,D, c), besides the above restrictions at 2 and 3 (cf. also
Assumption 4.9). Quite surprisingly, the interplay between local root
numbers, non-vanishing of the first derivative of the L-function and the
theory of optimal embeddings shows that these conditions match per-
fectly and, in all relevant cases, Heegner points do exist.

One of the main motivations that led us to work on this project is
that these curves can be p-adically uniformized by the p-adic rigid ana-
lytic space corresponding to the first (abelian) covering of the Drinfel’d
tower over the p-adic upper half plane Hp. This rigid analytic space
has an explicit description (see [Tei]) which can be used to study p-adic
aspects of Heegner points, including their connection to Iwasawa theory
and p-adic L-functions, as in the case where the elliptic curve has multi-
plicative reduction and can be uniformized by Drinfel’d upper half plane
(cf. [BD1], [BD2], [BD3]).

It would also be highly interesting to extend the theory of Stark–Heeg-
ner points in this context (starting with the foundational paper [Dar],
and developed in several subsequent works). Such a generalization is
however not straight-forward, essentially because the Jacobian varieties
of the Shimura curves referred to above have additive reduction at p (as
opposed to having toric reduction, which is a crucial feature in the above
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approaches). We regard this as an exciting obstacle to overcome rather
than a forbidding difficulty, and this note aims to settle the first step
towards this program that we hope to pursue in the near future.

Acknowledgements. We thank the anonymous referee for very valu-
able comments and suggestions that have helped to improve the exposi-
tion of this paper.

1. Shimura curves

Let Ẑ denote the profinite completion of Z, and write R̂ := R⊗Z Ẑ for
every Z-algebra R. Fix an integer ∆ > 1, which is assumed to be square-
free and the product of an even number of primes, and let B be the
indefinite rational quaternion algebra of reduced discriminant ∆. Write
B̂ = B⊗QQ̂ for the finite adelization of B. We also fix a maximal orderO
in B; recall that such an order is unique up to conjugation by an element
in B×. Finally, we shall fix an isomorphism B∞ := B ⊗Q R → M2(R),
under which B× might be seen as a subgroup of GL2(R).

1.1. Shimura curves. Let H± = C−R = P1(C)−P1(R) be the union
of the upper and lower complex half planes, which might be identified
with the set of R-algebra homomorphisms Hom(C,M2(R)). The action
of B× by linear fractional transformations on H± corresponds under this
identification to the action of B× by conjugation on Hom(C,M2(R)).

For any pact open subgroup U of Ô×, one can consider the topological
space of double cosets

(2) XU =
(
U\B̂× ×Hom(C,M2(R))

)
/B×,

where notice that U acts naturally on B̂× by multiplication on the left
and B× acts both on B̂× (diagonally) and on Hom(C,M2(R)). By the
work of Shimura and Deligne (cf., e.g. [Shi], [Del1]), XU admits the
structure of an algebraic curve over Q and a canonical model, which we
shall still denote by XU/Q. This will be referred to as the Shimura curve
associated with U .

Although XU is connected over Q, it might not be in general geomet-
rically connected. Indeed, the set of geometric connected components
of XU (that is, the set of connected components of X̄U := XU ×Q Q̄) is

identified with the finite set of double cosets U\B̂×/B×. Such compo-
nents are defined over an abelian extension of Q, and via the reciprocity
map from class field theory the action of Gal(Qab/Q) ' Ẑ× on them is
compatible under the isomorphism

U\B̂×/B× '−→ n(U)\Q̂×/Q× = n(U)\Ẑ×
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induced by the reduced norm n on B̂× (by strong approximation) with

the natural action of Ẑ× on n(U)\Ẑ×.
From the very definition in (2), one can naturally define a group

of automorphisms of XU , which are often called modular. Namely, if
N(U) denotes the normalizer of U in B̂×, then left multiplication by an
element b ∈ N(U) induces an automorphism λ(b) : XU → XU , given on
points by the rule

λ(b) : [g, f ] 7−→ [bg, f ].

Here, [g, f ] denotes the point on XU corresponding to a pair (g, f) ∈
B̂× × Hom(C,M2(R)). It is immediate to check that λ(b) defines the

identity on XU if and only if b ∈ UQ×. The group Autmod(XU ) of
modular automorphisms on XU is then defined to be the group of all the
automorphisms obtained in this way, so that

Autmod(XU ) := UQ×\N(U).

If U = Ŝ× is the group of units in the profinite completion of some
order S ⊆ O, then we shall write XS := XŜ×/Q for the Shimura curve
associated with the order S. In this case, the set of geometric connected
components of XS is identified with the class group Pic(S) of S.

Remark 1.1. The most common setting in the literature is when S =
SN+ is an Eichler order of level N+ in O, where N+ ≥ 1 is an integer
prime to N− :=∆(B). In this case, the Shimura curve XN+,N− := XS/Q
associated with S is not only connected but also geometrically connected,
and its group Autmod(XN+,N−) of modular automorphisms is the group
of Atkin–Lehner involutions, which are indexed by the positive divisors
of N+N−. Further, XN+,N−/Q is the coarse moduli space classifying
abelian surfaces with quaternionic multiplication by O and N+-level
structure.

When N− = 1 (so that B is the split quaternion algebra M2(Q)), a
case which we exclude in this paper, the Shimura curve XN+,1/Q is the
affine modular curve Y0(N+) obtained as a quotient of the upper half
plane by the congruence subgroup Γ0(N+), whose compactification by
adding finitely many cusps is the usual modular curve X0(N+)/Q.

In this article, we will be working with Shimura curves associated
with certain suborders of O which are not Eichler orders, but rather
with more general orders that for example might have non-trivial level
at primes dividing ∆(B). The special class of quaternion order we shall
be dealing with is described in the next section.
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1.2. Choice of quaternion orders. Let p be a rational prime and
let Bp be a quaternion algebra over Qp. The object of this section is
introducing several families of local quaternion orders in Bp which in
turn will give rise to a fauna of Shimura curves that will serve as the
appropriate host of the Heegner systems we aim to construct.

Assume first that Bp = Dp is the unique (up to isomorphism) quater-
nion division algebra over Qp and let Op be the unique maximal order
in Dp. If Lp is a quadratic extension of Qp and ν ≥ 1 is an integer, one
can define the (local) quaternion order

Rν(Lp) = OLp +$ν−1
p Op,

where OLp denotes the ring of integers of Lp and $p is a uniformizer
element in Op. Such local orders are studied in detail by Hijikata, Pizer,
and Shemanske in [HPS1]. Notice that R1(Lp) coincides with the max-
imal order Op, regardless of the choice of Lp. Further, if L′p is another
quadratic extension of Qp with Lp ' L′p, then Rν(Lp) and Rν(L′p) are

conjugated by an element in D×p . For ν ≥ 2, the order Rν(Lp) is charac-

terized as the unique order in Dp containing OLp and $ν−1
p Op but not

containing $ν−2
p Op.

Remark 1.2. If p is odd and Lp is the unique unramified quadratic exten-
sion, then R2r+1(Lp) = R2r+2(Lp) for every r ≥ 0, thus one can think
of the orders Rν(Lp) as being indexed by odd positive integers. These
orders were studied in [Piz1], where they are called orders of level p2r+1.
When p = 2 or Lp is ramified, then Rν+1(Lp) ( Rν(Lp) for every ν ≥ 1,
and the order Rν(Lp) depends in general on the choice of Lp. However,
R2(Lp) is independent of Lp, and therefore one can speak of the unique
order of level p2 in Dp (cf. [Piz2]).

Assume now that Bp=M2(Qp) is the split quaternion algebra over Qp.
In this algebra the order M2(Zp) is maximal and it is the only one
up to conjugation by elements in GL2(Qp). Below we introduce, for
each positive integer, two different GL2(Zp)-conjugacy classes of subor-
ders in M2(Zp), which therefore define two different GL2(Qp)-conjugacy
classes of orders in M2(Qp). Let ν ≥ 1 be an integer.

• The subring of M2(Zp) consisting of those matrices
(
a b
c d

)
in M2(Zp)

such that pν | c is commonly referred to as the standard Eichler
order of level pν in M2(Zp). An Eichler order of level pν is then any
order in M2(Qp) which is conjugated to the standard one. We shall
denote any of them by REic

ν , whenever only its conjugacy class is
relevant in the discussion.
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• Let Qp2 denote the unique unramified quadratic extension of Qp,
and O = Zp2 be its valuation ring. Then O/pνO is a finite, free,
commutative (Z/pνZ)-algebra of rank 2 with unit discriminant. In
particular, the choice of a basis for O/pνO gives an embedding
of (O/pνO)× into GL2(Z/pνZ). Its image Cns(p

ν) is then well-
defined up to conjugation. The inverse image of Cns(p

ν)∪
{(

0 0
0 0

)}
under the reduction modulo pν map M2(Zp) → M2(Z/pνZ) is an
order of M2(Zp), commonly referred to as a non-split Cartan order
of level pν . We shall denote any of the orders arising in this way
simply by RCar

ν , at any time that it is only the conjugacy class that
matters in the discussion.

Now let B/Q be an indefinite quaternion algebra of discriminant ∆ =
∆(B) as before.

Definition 1.3. Let NEic≥ 1 and NCar≥ 1 be such that (NEic, NCar)=1
and (NEic ·NCar,∆) = 1. For each prime p | NEic ·NCar, set νp to be
the p-adic valuation of NEic ·NCar. For each prime p | ∆, choose an
integer νp≥1 and a quadratic extension Lp of Qp.

An order R in B is said to be of type T = (NEic;NCar; {(Lp, νp)}p|∆)
if the following conditions are satisfied:

(1) If p - NEicNCar∆, then R⊗Z Zp is a maximal order in B ⊗Q Qp '
M2(Qp).

(2) If p | NEic, thenR⊗ZZp is conjugate to REic
νp in B⊗QQp ' M2(Qp).

(3) If p | NCar, thenR⊗ZZp is conjugate toRCar
νp inB⊗QQp ' M2(Qp).

(4) For every p | ∆, R⊗Z Zp ' Rνp(Lp) in B ⊗Q Qp ' Dp.

Remark 1.4. The way in which we have defined the above orders associ-
ated to the data NEic, NCar, ∆, and {(Lp, νp)}p|∆ is standard (cf. [Gro]),
and the reason to consider such orders will become clearer later in the
article. For a nice relation between the theory of local quaternion orders
and the theory of ternary quadratic forms, the interested reader might
consult [Lem].

Fix for the rest of this section an orderR inB of type T = (NEic;NCar;
{(Lp, νp)}p|∆) as in Definition 1.3. Define the level of R to be the integer

NR := NEic · N2
Car · N∆, where we put N∆ :=

∏
p|∆ pνp . If νp = 1 for

every p | ∆, we will sometimes refer to R as a Cartan–Eichler order of
type (NEic;NCar) (and level NEic ·N2

Car).
Associated withR, we have the Shimura curveXR/Q defined as in the

previous paragraph. The Shimura curve XR is projective and smooth
over Q, but in general it is not geometrically connected. The reduced
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norm onR× is locally surjective onto Z×` at every prime ` - ∆ (both Eich-
ler and Cartan orders in indefinite rational quaternion algebras have class
number one), but however the reduced norm on the local orders Rνp(Lp)
is not necessarily surjective onto Z×p when restricted to the invertible el-

ements. Despite of this, it is easy to see that [Z×p : n(Rνp(Lp)
×)] is

either 1 or 2. Thus if we set

(3) C := {p | ∆ prime: n(Rνp(Lp)
×) 6= Z×p },

then the number of connected components of XR ×Q Q̄ is 2|C|. If ∆
is odd, or if ν2 ≤ 1 in case that ∆ is even, it follows from [HPS1,
Theorem 3.11] that

C = {p | ∆ prime: νp > 1, Lp ramified}.

The behaviour at p = 2 is a bit more involved, but one still has a char-
acterization of whether n(Rν2(L2)×) has index 1 or 2 in Z×2 (see [HPS1,
Theorem 3.11, 3) and 4)] for details). Furthermore, if ∆ is odd, the
connected components of XR×Q Q̄ are defined over a polyquadratic ex-
tension: the number field obtained as the compositum of the quadratic
extensions Q(

√
p∗) for p ∈ C, where p∗ = (−1

p )p.

Example 1.5. Suppose ∆ = pq with p and q distinct odd primes, and
let Lp be a quadratic ramified extension of Qp. Consider an order R
of type (M ; 1; {(Lp, 2), (Lq, 1)}) and level N = Mp2q. As noticed in
the above remark, this order does not depend on the choice of Lp. The
Shimura curve XR/Q has two geometric connected components defined
over the quadratic field Q(

√
p∗), and they are conjugated by the Ga-

lois action (in particular, they are isomorphic over Q(
√
p∗)). There is

a unique Eichler order S containing R, and the morphism of Shimura
curves XR → XS induced by the inclusion R̂× ⊆ Ŝ× is cyclic of de-
gree p+ 1. Modular cusp forms in S2(Γ0(N)) which are N/M -new and
not principal series at p lift via the Jacquet–Langlands correspondence
to quaternionic modular forms on the Shimura curve XR (see below).

2. Modular forms and the Jacquet–Langlands
correspondence

We fix throughout this section an indefinite quaternion algebra B of
discriminant ∆ and an orderR ofB of type T =(NEic;NCar;{(Lp, νp)}p|∆)

and level NR = NEicN
2
CarN∆.

2.1. Cusp forms with respect to R. We identify the Lie algebra
of left invariant differential operators on B×∞ := (B ⊗Q R)×' GL2(R)
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with M2(C), and define the differential operators

X∞=

(
1
√
−1√

−1 −1

)
, X̄∞=

(
1 −

√
−1

−
√
−1 −1

)
, W∞=

1

2

(
0 −

√
−1√

−1 0

)
.

For each prime p | ∆, write R1
p = 1 + $

νp−1
p Op for the subgroup of

units in R×p congruent to 1 modulo $
νp−1
p , where recall that Op denotes

the maximal order in the quaternion algebra Bp and $p is a uniformizer

element. Then write R̂1 for the subgroup of R̂× which is locally equal
to R̂× everywhere away from ∆, and equals R1

p at each prime p | ∆.

Definition 2.1. Let k be an integer. A cusp form of weight k with
respect to R̂1 is a function

f : (B ⊗Q AQ)× = B̂× ×GL2(R) −→ C
satisfying the following properties:

(1) if g ∈ (B ⊗Q AQ)×, then the function GL2(R) → C given by x 7→
f(xg) is of C∞-class and satisfies W∞f = (k/2)f , X̄∞f = 0;

(2) for every γ ∈ B× and every u ∈ R̂1 × R>0, f(ugγ) = f(g).

The C-vector space of all cusp forms of weight k with respect to R̂1 will
be denoted Sk(R1).

The product
∏
p|∆B×p acts on the space Sk(R1) by left translation,

and through this action one can decompose Sk(R1) into the direct sum
of subspaces on which

∏
p|∆B×p acts through some admissible represen-

tation, and for the purposes of this paper we are interested in those with
trivial character. More precisely, suppose that for each p | ∆ we are
given an irreducible admissible representation ρp of B×p whose restric-

tion to R×p is trivial, i.e. R×p ⊆ ker(ρp). Define ρ := ⊗p|∆ρp, regarded

as a representation of
∏
p|∆B×p . Since the representations ρp are finite-

dimensional, the integer dρ := dim(ρ) =
∏
p|∆ dim(ρp) is well-defined.

Definition 2.2. Let k be an integer, and ρ be a representation as above.
A cusp form of weight k with respect to (R, ρ) is a function

f : (B ⊗Q AQ)× = B̂× ×GL2(R) −→ Cdρ

satisfying the following conditions, for every g ∈ (B ⊗Q AQ)×:

(1) for every γ ∈ B×, f(gγ) = f(g);
(2) for every b ∈

∏
p|∆B×p , f(bg) = ρ(b)f(g);

(3) for every prime ` - ∆ and u ∈ R×` , f(ug) = f(g);

(4) the function GL2(R) → Cdρ given by x 7→ f(xg) is of C∞-class
and satisfies W∞f = (k/2)f , X̄∞f = 0;

(5) for every z ∈ Q̂× × R×, f(gz) = f(g).
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We write Sk(R, ρ) for the C-vector space of cusp forms of weight k with
respect to (R, ρ).

The C-vector spaces Sk(R, ρ) enjoy the following multiplicity one
property:

Proposition 2.3 (cf. Proposition 2.14 in [Hid]). If two forms in Sk(R, ρ)
are common eigenforms of the Hecke operators T` for all primes ` - N
with same eigenvalues, then they differ only by a constant factor.

The subspace of Sk(R1) on which
∏
p|∆B×p acts through an admissible

representation ρ as above is isomorphic to Sk(R, ρ)dρ , and we define
Sk(R) to be the subspace of Sk(R1) given by

(4) Sk(R) =
⊕
ρ

Sk(R, ρ)dρ ,

where ρ ranges over the representations ρ = ⊗p|∆ρp as above, satisfying

R×p ⊆ ker(ρp).

Remark 2.4. The automorphic approach sketched before is related to
the more classical point of view as follows. Let h = h(R) denote the

class number of R and choose elements ai ∈ B̂×, i = 1, . . . , h, such that

B̂× =

h∐
i=1

R̂×aiB×.

Consider the discrete subgroups of SL2(R) defined by

Γi := B×+ ∩ a−1
i R̂

×ai (i = 1, . . . , h),

where B×+ is the subgroup of units of positive reduced norm (we may

write B×+ = B×∩GL+
2 (R) using our identification of B⊗QR with M2(R)).

If we denote by Sk(Γi) the C-vector space of cusp forms of weight k with
respect to the group Γi, then there is an isomorphism of complex vector
spaces:

h∐
i=1

Sk(Γi)
'−→ Sk(R).

2.2. Jacquet–Langlands. The space Sk(R1) can be equipped with a
standard action of Hecke operators and Atkin–Lehner involutions, de-
scribed for example in [Hid]. We have the following version of the
Jacquet–Langlands correspondence:
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Theorem 2.5 (cf. Proposition 2.12 in [Hid]). There is a Hecke equi-
variant injection of C-vector spaces

Sk(R, ρ) ↪−→ Sk(Γ0(NEicN
2
CarNρ)),

where Nρ is the conductor of ρ.

Combining Theorem 2.5 with (4) we can embed the space Sk(R) into
a space of classical modular cusp forms

(5) JL: Sk(R) ↪−→
⊕
ρ

Sk(NEicN
2
CarNρ)

dρ .

The multiplicities dρ can be described explicitly: cf. [Car, §5].

Example 2.6. Suppose p | ∆ is an odd prime. The quaternion algebra
Bp = B ⊗Q Qp is equipped with a natural decreasing filtration O×p (i)
defined by setting

O×p (0) = O×p and O×p (i) = 1 +$i
pOp,

where Op is the unique maximal order in Bp and $p is a local uni-
formizer. If ρp is an admissible irreducible representation of B×p , then

its conductor is by definition pn+1, where n ≥ 0 is the smallest integer
such that O×p (n) lies in the kernel of ρp. In particular, observe that the

conductor is at least p. Thus, if p2 - NR then R×p = O×p is precisely
the group of units in the local maximal order at p, thus the admissible
irreducible representations ρp we are concerned with all have conduc-
tor p. If p2 | NR and p3 - NR, we have O×p (1) ⊆ R×p ⊆ O×p , and
therefore the conductor of the admissible irreducible representations ρp
might be either p or p2. For each prime p | ∆, the dimension of ρp is
determined by its minimal conductor, which by definition is the smallest
conductor of the representations ρp ⊗ χ, as χ ranges over the characters
of Q×p . By [Car, §5], if the minimal conductor of ρp is pa, with a∈{1, 2},
then dρp =a.

The above arguments give us a Hecke equivariant inclusion of Sk(R)
into a direct sum of spaces of classical modular cusp forms. In order to
circumvent the problem of explicitly determining the multiplicities dρ,
we use Proposition 2.8 below, which benefits from an explicit version of
Eichler trace formula due to Hijikata, Pizer, and Shemanske.

For the reader’s convenience, we recall the classification of Jacquet–
Langlands lifts given in [HPS2], and from now on we focus on the
weight 2 case. So let f ∈ S2(Γ0(Nf )) be a weight 2 modular cusp form,
and assume that Nf = psM for some prime p and integers s,M ≥ 1,
with p - M . If p = 2 and s > 3, we assume that s is odd. Suppose
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that φ is a Jacquet–Langlands lift of f which is realized on the definite
quaternion algebra B(p) of discriminant p. We want to determine the
level of φ, by which we mean the local p-type of the order R of B(p) used
to define its level structure. Such local order is of the form Rn(L), for
some positive integer n and quadratic extension L/Qp, and it is deter-
mined as follows:

(1) If p is odd:

(a) s odd: L is unramified and n = s [HPS2, Theorem 8.5].

(b) s even: L is ramified (any of the two ramified extensions) and
n = s [HPS2, Proposition 8.8, Case D].

(2) If p = 2:

(a) s = 1: L is the unramified quadratic extension of Q2 and n = 1
[HPS2, Proposition 8.8, Case C].

(b) s odd, s≥3: L is unramified and n=s [HPS2, Theorem 8.5].

(c) s=2: L=Q2(
√

3) or L=Q2(
√

7) and n = 2 [HPS2, Proposi-
tion 8.8, Case F, Eq. (8.17)].

Remark 2.7. If p = 2 and s ≥ 4 is even, [HPS2, Theorem 3.9] asserts
that f is a twist by a non-trivial character of conductor 2s/2 of one of
the cases considered above. However, as pointed out to us by the referee,
there are known counterexamples which show that such statement is not
true in general.

Proposition 2.8. Let f ∈ S2(Γ0(Nf )) be a newform and fix a set Σ of
even cardinality consisting of primes p | Nf such that the local admis-
sible representation πf,p of GL2(Q`) attached to f is square-integrable.
If 2 ∈ Σ and 23 | Nf , assume that val2(N) is odd. Let B/Q be the
indefinite quaternion algebra of discriminant ∆ =

∏
p∈Σ p, write N∆ =∏

p∈Σ p
valp(Nf ). Let NEic, NCar be positive integers so that (NEic, NCar)=

1 and NEicN
2
CarN∆ = Nf . Then, for any order Rmin ⊂ B of type

Tmin = (NEic;NCar; {(Lp, valp(Nf ))}p|∆), f lifts to a quaternionic mod-
ular form on S2(Rmin) having the same Hecke eigenvalues for the Hecke
operators T` at primes ` - Nf .

The subscript ‘min’ in Rmin refers to the minimal level for primes
dividing ∆, determined by the classification explained above. For such
primes, we note that if valp(Nf ) is odd then Lp is unramified, and if
valp(Nf ) is even then Lp is ramified.

Proof: Since π is square integrable at all primes in Σ, [Gel, Theo-
rem 10.2] implies the existence of an automorphic form π′ on the alge-
braic group of invertible elements of the indefinite quaternion algebra B
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as in the statement such that π′` ' π` for all primes `. To specify the
order R we need to describe π′` at every prime `. For primes ` - NCar∆

the assertion is obvious. Fix a prime p | ∆ and let B(p) be the defi-
nite quaternion algebra of discriminant p. Then Eichler’s trace formula
in [HPS2] shows the existence of an automorphic form π(p) for B(p)

attached to a specific order R(p) of type (Lp, valp(Nf )) with π′p ' π
(p)
p

(we have sketched above the recipe for choosing Lp). Finally, for primes
dividing NCar a similar argument works using this time the trace for-
mula by Chen and Edixhoven (see [Edi, Theorem 1], [dSE, Theorem 2],
and [Che, Section 6], or also [KP1, Theorem 1.11]; the proof in [Che]
only works for p 6= 2, but one can check that it can be extended to the
case p = 2).

Example 2.9. Fix a primitive (in the sense of [Piz2, Definition 8.6])
new cuspidal eigenform f of level Γ0(p2M) as in the proposition with p -
M an odd prime. Let B be the definite quaternion algebra of discrim-
inant p and R be an order of type Mp2 in B, accordingly with [Piz2,
Definition 3.1] (which accordingly with the notation we adopted in the
case of indefinite quaternion algebras, would correspond to orders of
type (M ; 1; (L, 2)), for any choice of quadratic field L ⊆ Bp). It follows
from [Piz2, Proposition 8.5 and Corollary 8.8] that f appears twice
in the space of quaternionic modular forms on B of level R (which
is the space spanned by Theta series, denoted fi and gi in loc. cit.).
Since the multiplicity in Example 2.6 only depends on the behaviour
of the local representation at p, we see that the subspace of new forms
in S2(R) having the same system of Hecke eigenvalues as f (at primes
outside Nf = p2M) is two-dimensional. So we have a “multiplicity 2
phenomenon” as expected from Example 2.6 and the Hecke-equivariant
monomorphism JL in (5). Although this example involves modular forms
on definite quaternion algebras, hence the global setting is of a different
nature, we think it might be illustrative of an explicit example where
the multiplicity is bigger than 1.

2.3. Modular parametrizations. Let JR/Q denote the Jacobian va-
riety of XR. It is a (principally polarized) abelian variety defined over Q,
of dimension equal to the genus of XR. Since XR is not in general geo-
metrically connected, it follows that JR might be not absolutely simple.
Recall the following:

Definition 2.10. An abelian variety A/Q is said to be modular if there
exists a normalized newform f=

∑
n≥1 anq

n of weight 2 and level Γ0(Nf )
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for some Nf ≥ 1 such that

L(A, s) =
∏

σ : F↪→Q̄

L(fσ, s),

where F stands for the number field generated by the Fourier coefficients
of f , σ ranges over the embeddings of F into an algebraic closure of Q,
and fσ =

∑
n≥1 σ(an)qn.

Proposition 2.11. Suppose that A/Q is a modular abelian variety as-
sociated with a modular form f = JL(φ) for some φ ∈ S2(R). Let
Iφ ⊆ T be the kernel of the ring homomorphism T → Z determined by
the system of Hecke eigenvalues of φ. Then the quotient abelian variety
Aφ := JR/IφJR is isogenous to Ar for some r ≥ 1.

Proof: Let ` - Nf be a prime and % : GQ → Aut(Ta`(A) ⊗ Q`) be
the 2-dimensional `-adic Galois representation arising from the natu-
ral action of GQ on the `-adic Tate module Ta`(A) of A. Similarly,
let θ : GQ → Aut(Ta`(Aφ) ⊗ Q`) be the `-adic Galois representation
attached to Aφ. The Eichler–Shimura relations (proved in the required
generality in [Nek2]) imply that θ(σ) is annihilated by the characteristic
polynomial of %(σ) for every σ ∈ GQ. Then the Boston–Lenstra–Ribet
Theorem [BLR] implies that Ta`(Aφ)⊗Q` is isogenous to a direct sum
of r copies of Ta`(A) ⊗ Q` for some r ≥ 1. Finally, Faltings’ Isogeny
Theorem implies that Aφ is isogenous to r copies of A.

Example 2.12. Suppose that R is of type (M ; 1; {(Lp, 2), (Lq, 1)} and
level N := NR = Mp2q, with p and q distinct odd primes as in Exam-
ple 1.5. Set F = Q(

√
p∗). Then

JR ×Q F ∼ JR,1 × JR,2,
where JR,i/F is the Jacobian variety of XR,i. Let S2(Γ0(N)) be the
subspace of S2(Γ0(N)) consisting of primitive newforms. By the same
multiplicity 2 phenomenon observed in Example 2.9 (in a definite setting,
but it is a local phenomenon, cf. also Example 2.6) there is a 2-to-1
Hecke-equivariant morphism of C-vector spaces

S2(R) −→ S2(Γ0(N)),

where S2(R) is the subspace of modular forms φ ∈ S2(R) such that
JL(φ) ∈ S2(Γ0(N)). By a slight abuse of notation we continue to denote
by JL this morphism.

Fix f ∈ S2(Γ0(N)) and assume that the Fourier coefficients of f
belongs to Z. Then the abelian variety associated with f is an elliptic
curve E of conductor Mp2q. Let φ ∈ S2(R) be such that JL(φ) = f
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(we have two linearly independent possible choices). The space S2(R)
of weight 2 modular forms for R is identified with H0(XR,Ω

1), which
in turn is identified with the tangent space at the identity T0(JR) of JR.
The subspace S2(R) corresponds then to a subspace of H0(XR,Ω

1), and
hence to the tangent space T0(JR) of an abelian subvariety JR of JR.
The space of modular forms S2(R) has rank 2 over the Hecke ring T,
and from this it follows that T0(JR)/T0(IφJR) has dimension 2 over Q.
Hence Aφ is 2-dimensional, and therefore Aφ ∼ E × E.

3. Heegner points

3.1. Optimal embeddings. As in previous sections, B denotes an in-
definite rational quaternion algebra of discriminant ∆ = ∆(B). We fix
an order R and a quadratic field K. For each positive integer c write Rc
for the (unique) order of conductor c in K, R1 being the full ring of
integers of K.

Definition 3.1. Let c be a positive integer. An embedding from K to B,
i.e. a Q-algebra homomorphism f : K → B, is said to be optimal with
respect to R/Rc if the equality

f(K) ∩R = Rc

holds. Since f is determined by its restriction to Rc, we also speak of
optimal embeddings of Rc into R.

Two optimal embeddings f , f ′ of Rc into R will be considered to be
equivalent if they are conjugate one to each other by an element in R×.
The set of R×-conjugacy classes of optimal embeddings of Rc into R will
be denoted Embop(Rc,R). We are interested in computing the integer

v(Rc,R) = |Embop(Rc,R)|,
and in particular in knowing whether the set Embop(Rc,R) is empty or
not.

Suppose now that R is of type T = (NEic;NCar; {(Lp, νp)}p|∆) and

level NR = NEicN
2
CarN∆. Recall that the class number h(R) of the

order R is 2|C|, where C is the set introduced in (3). Although the class
number of R is therefore not trivial in general, the lemma below asserts
that the type number of R is always trivial, which amounts to saying
that all orders in B of the same type T are conjugate one to each other.

Lemma 3.2. The type number of orders of a fixed type T is 1.

Proof: Fix a type T = (NEic;NCar; {(Lp, νp)}p|∆) as in Definition 1.3,
and let R and R′ be two orders of type T in B. First of all, notice that R
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(resp. R′) is a suborder of a unique Cartan–Eichler order S (resp. S ′) of
level NEicN

2
Car. Namely, the order which is locally equal to R (resp. R′)

at every prime p - ∆ and locally maximal at primes p | ∆, hence of
type (NEic;NCar; {(Lp, 1)}p|∆). Conversely, it is clear by construction
that R (resp. R′) is the unique suborder of type T of the Cartan–Eichler
order S (resp. S ′). The lemma now follows from the fact that the type
number of Cartan–Eichler orders in B is 1, so that S and S ′ are conju-
gate. By the above observation, this immediately implies that R and R′
are conjugate as well.

By virtue of the above lemma, the number v(Rc,R) can be expressed
essentially as a product of local contributions that can be explicitly com-
puted. Indeed, proceeding as in the proof of the ‘trace formula’ in [Vig,
Chapter III, 5.C] (cf. especially Theorems 5.11 and 5.11 bis, or [Brz1])
for Eichler orders, we have that

(6) v(Rc,R) =
h(Rc)

h(R)

∏
`

v`(Rc,R),

where h(Rc) (resp. h(R)) is the class number of the quadratic order Rc
(resp. of R), the product ranges over all rational primes and, for each `,
v`(Rc,R) denotes the number of local optimal embeddings of Rc ⊗Z Z`
into R ⊗Z Z` modulo conjugation by (R ⊗Z Z`)×. These local con-
tributions are 1 for every prime ` - N . The number of local optimal
embeddings is determined in §3.2 below. Here we give the following:

Example 3.3. Assume that NCar = 1, ∆ is odd, and νp ≤ 2 for all
p | ∆. Then

v(Rc,R) =
h(Rc)

h(R)

∏
`|NEic

(
1 +

{
Rc
`

}) ∏
q|∆

ν(q)=1

(
1−

{
Rc
`

})∏
p|∆
νp=2

vp(Rc,R),

where for primes p | ∆ with νp = 2,

vp(Rc,R) =


2 if p || c and p is inert in K,

p+ 1 if p - c and p ramifies in K,

0 otherwise.

Here
{
R
`

}
denotes the usual Eichler symbol attached to a quadratic

order R and a prime number `.
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3.2. Local optimal embeddings. For the reader’s convenience, we
reproduce in this subsection the criteria for the existence of local optimal
embeddings of orders in quadratic fields into quaternion orders in the
Eichler, Cartan, and division cases.

3.2.1. Eichler case. Let p be a prime, K/Qp be a quadratic separable
algebra, and Om ⊆ K be the order in K of conductor pm. Let also
M2(Qp) be the split quaternion algebra over Qp and REic

n be the standard
Eichler order of level pn in M2(Qp). Write h(m,n) for the number of
(equivalence classes of) optimal embeddings of Om into REic

n .
Suppose first that K = Qp ⊕ Qp is the split quadratic Qp-algebra.

Then m is the smallest positive integer such that Om/pmOm ' Z/pmZ.

In this case, the embedding (a, b) 7→
( a 0
pn−m(a−b) b

)
from K into M2(Qp)

defines an optimal embedding from Om into REic
n . For later reference,

we state the following lemma.

Lemma 3.4. If K is the split quadratic Qp-algebra, then Om can be
optimally embedded in REic

n for every m ≥ 0. That is, h(m,n) 6= 0 for
every m ≥ 0.

Next we assume that K/Qp is a quadratic field extension with valu-
ation ring O, and again for each m ≥ 1 let Om be the order of conduc-
tor pm in K. Recall that the Eichler symbol is defined as follows:

{
Om
p

}
=


−1 if m = 0 and K/Qp is unramified,

0 if m = 0 and K/Qp is ramified,

1 if m ≥ 1.

It is well known ([Hij], [Vig]) that if n=0 then h(m,n)=1, and for n=1
one has h(m,n) = 1 +

{Om
p

}
. Thus, in particular, every quadratic or-

der Om can be optimally embedded in the maximal Eichler order un-
less m = 0 and K/Qp is unramified, the only case when h(m, 1) = 0.
More generally (see [Brz2, Corollary 1.6]):

Lemma 3.5. (1) If K/Qp is unramified, then h(m,n) 6= 0 if and only
if m ≥ n/2.

(2) If K/Qp is ramified, then h(m,n) 6= 0 if and only if m ≥ (n−1)/2.

3.2.2. Cartan case. Let p be a prime, K = Qp2 be the unramified
quadratic extension of Qp, and O = Zp2 be its valuation ring. As above,
for m ≥ 1 write Om for the order of conductor pm in K. From the
very definition of non-split Cartan orders, we have the following lemma,
which we state for later reference:
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Lemma 3.6. Let RCar
n be a non-split Cartan order of level pn in M2(Qp).

Then O can be optimally embedded in RCar
n . For m > 1, the order Om

does embed in RCar
n , but not optimally.

3.2.3. Division case ([HPS1]). Let p be a prime, and Dp be the
unique division quaternion algebra over Qp. As above, write Rn(L) for
the local order in Dp associated to the choice of an integer n ≥ 1 and
a quadratic extension L/Qp. Let K/Qp be a quadratic field extension,
and Om denote the order of conductor pm in K as before. Recall that
h(m,n,L) denotes the number of equivalence classes of optimal embed-
dings of Om into Rn(L).

It might be useful first to recall the notation used in [HPS1] for the
symbols t(L) and µ(L,L′). For any quadratic field extension L/Qp:

• t(L) = −1 means L unramified;

• t(L) = 0 means L ramified and p 6= 2;

• t(L) = 1 means p = 2 and L = Qp(
√

3), or L = Qp(
√

7);

• t(L) = 2 means p= 2 and L=Qp(
√

2), L=Qp(
√

6), L=Qp(
√

10),

or L = Qp(
√

14).

And for any pair of quadratic field extensions (L,L′) of Qp having dis-
criminants ∆(L) and ∆(L′) we have:

• µ(L,L′) = µ(L′, L) (Theorem 3.10 A (iii) of [HPS1]);

• if ∆(L) = ∆(L′) (which is the case if L ' L′), then µ(L,L′) =∞;

• if t(L) = −1 and ∆(L) 6= ∆(L′), then µ(L,L′) = 1;

• if t(L) = 0, t(L′) = 0, and ∆(L) 6= ∆(L′), then µ(L,L′) = 2;

• if t(L) = 1, t(L′) = 1, and ∆(L) 6= ∆(L′), then µ(L,L′) = 3;

• if t(L) = 1, t(L′) = 2, then µ(L,L′) = 3;

• if t(L) = 2, t(L′) = 2, and ∆(L) 6= ∆(L′), then µ(L,L′) = 5.

The criteria for the existence of optimal embeddings then reads as
follows:

(1) p odd:

(a) n = 2% + 1 odd, K unramified, L unramified: h(m,n,L) 6= 0
if and only if m ≤ %. In particular, if Rn(L) is maximal and
Om is not maximal (i.e. m > 0 and n=0), then h(m,n,L) = 0.

(b) n = 2% + 1 odd, K ramified, L unramified: h(m,n,L) 6= 0
if and only if m = %. In particular, if Rn(L) is maximal and
Om is not maximal (i.e. m > 0 and %=0), then h(m,n,L) = 0.

(c) n = 2% even, K unramified, L ramified: h(m,n,L) 6= 0 if and
only if m = %.
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(d) n = 2% even, K ramified, L ramified and K 6' L: h(m,n,L) 6=
0 if and only if m = %− 1.

(e) n = 2% even, K ramified, L ramified and K ' L: h(m,n,L) 6=
0 if and only if m ≤ %− 1.

(2) p = 2:

(a) n = 1, K ramified or unramified, L unramified: h(m,n,L) 6= 0
if and only if m = 0.

(b) n = 2%, K unramified, L = Q2(
√

3) or L = Q2(
√

7); this is
the case of t(L) = 1, t(K) = −1 and therefore µ(L,K) = 1:
h(m,n,L) 6=0 if and only if m=ρ.

(c) n = 2%, K = Q2(
√

3) or K = Q2(
√

7), L = Q2(
√

3) or L =

Q2(
√

7) and K 6' L; this is the case of t(L) = 1, t(K) = 1 and
∆(L) 6= ∆(K) and therefore µ(L,K)=3: h(m,n,L) 6=0 if and
only if m = ρ− 1.

(d) n = 2%, K = Q2(
√

3) or K = Q2(
√

7) and K ' L; this is the
case of t(L) = 1, t(K) = 1 and ∆(L) = ∆(K) and therefore
µ(L,K) =∞: h(m,n,L) 6= 0 if and only if m ≤ ρ− 1.

(e) n = 2%, K = Qp(
√

2), K = Qp(
√

6), K = Qp(
√

10) or K =

Qp(
√

14), L=Q2(
√

3) or L=Q2(
√

7); this is the case of t(L)=
1, t(K) = 2 and therefore µ(L,K) = 3: h(m,n,L) 6= 0 if and
only if m = ρ− 1.

(f) n = 2% + 1 odd, n ≥ 3, K unramified and L unramified:
h(m,n,L) 6= 0 if and only if m ≤ %.

(g) n=2%+1 odd, n≥3, K ramified and L unramified: h(m,n,L) 6=
0 if and only if m = %.

(h) n = 2%, K unramified and L ramified. Then t(L) = 1 or 2 and
µ(L,K) = 1: h(m,n,L) 6= 0 if and only if m = %.

(i) n=2%, K=Q2(
√

3) or K=Qp(
√

7), L=Q2(
√

2), L=Q2(
√

6),

L = Q2(
√

10) or L = Q2(
√

14). Then t(L) = 2, t(K) = 1,
µ(L,K)=3: h(m,n,L) 6= 0 if and only if m = %− 1.

(j) n = 2%, K = Q2(
√

2), K = Q2(
√

6), K = Q2(
√

10) or K =

Q2(
√

14), L = Q2(
√

2), L = Q2(
√

6), L = Q2(
√

10) or L =

Q2(
√

14) and K 6' L. Then t(L) = 2, t(K) = 2, µ(L,K) = 5:
h(m,n,L) 6= 0 if and only if m = %− 1 or m = %− 2.

(k) n = 2%, K = Q2(
√

2), K = Q2(
√

6), K = Q2(
√

10) or K =

Q2(
√

14), andK ' L. Then t(L) = 2, t(K) = 2, µ(L,K) =∞:
h(m,n,L) 6= 0 if and only if m ≤ %− 1.

3.3. Heegner points. Let U be any open compact subgroup of B̂×,
and assume that K is an imaginary quadratic field. There is a natural
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map

B̂× ×Hom(K,B) −→
(
U\B̂× ×Hom(C,M2(R))

)
/B× = XU (C)

obtained by extending scalars (i.e., tensoring with R). Notice that the
left-hand side can certainly be the empty set, as Hom(K,B) is empty
if K does not embed into B. We shall assume that this is not the case
in the discussion below. If (g, f) ∈ B̂× ×Hom(K,B), write [g, f ] for its
image in XR(C). Points in the image of this map are called Heegner
points; the set of such Heegner points is denoted Heeg(U,K).

For each positive integer c, continue to denote by Rc the order of
conductor c in K and let R be an order of B.

Definition 3.7. A point x ∈ XR is called a Heegner point of conductor c
associated to K if x = [g, f ] for some pair (g, f) ∈ B̂××Hom(K,B) such
that

f(K) ∩ g−1R̂g = f(Rc).

This last condition means that f is an optimal embedding of Rc into the
order g−1R̂g ∩ B. We shall denote by Heeg(R,K, c) the set of Heegner
points of conductor c associated to K in XR.

Recall that the set of geometrically connected components of the
Shimura curve XR is in bijection with R̂×\B̂×/B×, and hence with
the class group Pic(R) of R. In particular, the number of geometric
connected components coincides with the class number h(R). Fix rep-
resentatives Ij for the distinct h(R) ideal classes in Pic(R), and let

aj ∈ B̂× be the corresponding representatives in R̂×\B̂×/B×. It is then
clear that every Heegner point in Heeg(R,K, c) can be represented by
a pair of the form (aj , f), for a unique j ∈ {1, . . . , h(R)} and some op-

timal embedding f from Rc into the order a−1
j R̂aj ∩ B. Further, two

pairs (aj , f) and (aj , g) represent the same Heegner point if and only
if the embeddings f and g are R×-conjugate. Therefore, we have the
following identity relating Heegner points on XR attached to Rc and
optimal embeddings of Rc into R:

|Heeg(R,K, c)| = h(R)|Embop(Rc,R)| = h(R)v(Rc,R),

thus applying (6) we find:

Proposition 3.8. The number of Heegner points on XR attached to Rc
is h(Rc)

∏
` v`(Rc,R).
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3.4. Galois action and fields of rationality. Keep the same nota-
tions as above, and assume that Rc embeds optimally in R, so that
Heegner points with respect to Rc do exist on XR. The reciprocity
law, cf. [Del1, 3.9], [Mil1, II.5.1] (with a sign corrected [Mil2, 1.10]),
asserts that CM(R,K, c) ⊆ XR(Kab), where as usual Kab denotes the
maximal abelian extension of K, and further that the Galois action of
Gal(Kab/K) on CM(R,K, c) is described by

(7) recK(a)[g, f ] = [f̂(a)g, f ], (a ∈ K̂×).

Here, recK : K̂× → Gal(Kab/K) is the reciprocity map from class field

theory. Then, for an arbitrary a ∈ K̂× and every Heegner point [g, f ]
we have

recK(a)[g, f ] = [g, f ] ⇐⇒ there exist b ∈ B×, u ∈ R̂×
such that (f̂(a)g, f) = (ugb, b−1fb).

It is easy to show that if f : K → B is an embedding and b ∈ B×, then
the equality f = b−1fb holds if and only if b = f(λ) for some λ ∈ K×.
Thus we deduce that

recK(a)[g, f ] = [g, f ] ⇐⇒ there exist λ ∈ K×, u ∈ R̂×
such that f̂(a) = g−1ugf(λ)

⇐⇒ a ∈ f̂−1(g−1R̂×g)K× = R̂×c K
×.

By class field theory, recK induces an isomorphism

K̂×/R̂×c K
× = Pic(Rc)

'−→ Gal(Hc/K),

where Hc is the ring class field of conductor c. Hence we have proved:

Proposition 3.9. With notations as above, Heeg(R,K, c) ⊆ XR(Hc),
and the action of Gal(Hc/K) on the set of Heegner points Heeg(R,K, c)
is described by the rule in (7).

4. Applications

4.1. Gross–Zagier formula. We briefly review the general form of
Gross–Zagier formula in [YZZ] for modular abelian varieties. Let B/Q
be an indefinite quaternion algebra of discriminant ∆. If U1 ⊆ U2 are
open compact subgroups of B̂×, then we have a canonical projection
map πU1,U2 : XU1 � XU2 , and one may consider the projective limit

X = lim←−
U

XU ,

and let J := Jac(X) denote the Jacobian variety of X.
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Definition 4.1. A simple abelian variety A/Q is said to be uniformized
by X if there exists a surjective morphism J � A defined over Q.

Let A/Q be a simple abelian variety uniformized by X and fix U such
that there is a surjective morphism JU := Jac(XU ) � A defined over Q.
Let ξU be the normalized Hodge class in XU and define

πA := lim−→
U

Hom0
ξU (XU , A),

where Hom0
ξU (XU , A) denotes morphisms of Hom(XU , A) ⊗Z Q defined

by using the Hodge class ξU as a base point. Since, by the universal
property of Jacobians, every morphism XU → A factors through JU , we
also have

πA := lim−→
U

Hom0
ξU (JU , A),

where Hom0
ξU (JU , A) := Hom(JU , A) ⊗Z Q. For any ϕ ∈ πA and any

point P ∈ XU (H), where H/Q is a field extension, we then see that
P (ϕ) := ϕ(P ) ∈ A(H).

Let K/Q be an imaginary quadratic field and assume there exists
an embedding ψ : K ↪→ B; this is equivalent to say that all primes

dividing ∆ are inert or ramified in K. Define XK× to be the subscheme
of X, defined over Q, consisting of fixed points under the canonical

action by left translation of ψ̂ : K̂× ↪→ B̂×. The subscheme XK× is
independent up to translation of the choice of ψ. We will often omit
the reference to ψ, viewing K simply as a subfield of B. Recall that

the theory of complex multiplication shows that every point in XK×(Q̄)
is defined over Kab, the maximal abelian extension of K, and that the
Galois action is given by left translation under the reciprocity map. Fix

a point P ∈ XK×(Kab). This amounts to choose a point PU for all open
compact subgroups U , satisfying the condition that πU1,U2

(PU1
) = PU2

.
Let dτ denote the Haar measure of Gal(Kab/K) of total mass equal

to 1 and fix a finite order character χ : Gal(Kab/K)→ F×χ , where Fχ =
Q(χ) is the finite field extension of Q generated by the values of χ. Define

Pχ(ϕ) :=

∫
Gal(Kab/K)

ϕ(P τ )⊗ χ(τ) dτ.

This is an element inA(Kab)⊗MFχ, whereM=End0
Q(A) := EndQ(A)⊗Z

Q. This element can be essentially written as a finite sum: suppose
that P = (PU )U , and each PU is defined over the abelian extension HU

of K. Suppose that χ factors through Gal(HU/K) for some U . Then
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the Fχ-subspace of A(HU )⊗ Fχ spanned by Pχ(ϕ) and∑
σ∈Gal(HU/K)

ϕ(P )σ ⊗ χ(σ)

are the same. We also note that Pχ(ϕ) belongs to (A(HU )⊗Z C)χ.
Let ηK be the quadratic character of the extension K/Q. Suppose

that χ satisfies the self-duality condition ωA · χ|A×Q = 1, where (·)|A×Q
means restriction of the character (·) to the idele group A×Q and ωA is
the central character of the automorphic representation πA. We assume
for simplicity that ωA is trivial, and therefore χ|A×Q

= 1. For any place v

of Q, let ε(1/2, πA,v, χv) ∈ {±1} be the sign of the functional equation
with respect to its center of symmetry s = 1/2 of the local representa-
tion πA,v ⊗ χv. Define the set

Σ(A,χ) = {v place of Q : ε(1/2, πA,v, χv) 6= ηK,v(−1)}.

Proposition 4.2. The real place∞ belongs to the set Σ(A,χ), and every
finite prime p ∈ Σ(A,χ) divides the conductor of A.

Proof: According to [CV, Section 1], the real place ∞ belongs to the
set Σ(A,χ) if χ∞ = 1 and πA,∞ is the holomorphic discrete series (of
weight at least 2). The first condition is true by our assumptions, while
the second one holds because πA is the automorphic representation at-
tached to an abelian variety. On the other hand, also from loc. cit.
we know that if p is a finite prime in the set Σ(A,χ), then πA,p is ei-
ther special or supercuspidal, and therefore p must divide the conductor
of A.

Remark 4.3. If p is a finite prime belonging to Σ(A,χ), one also knows
that Kp := K ⊗Q Qp is a field. In particular, if B is an indefinite
quaternion algebra whose ramification set is supported in Σ(A,χ), then
K splits B (i.e. K embeds as a maximal subfield of B).

Let ε(1/2, πA, χ) be the sign of the functional equation with respect
to its center of symmetry s = 1/2 of the global representation πA ⊗ χ.
Then

ε(1/2, πA, χ) = (−1)|Σ(A,χ)|.

Recall our assumption that the central character ωA of πA is trivial,
and let now χ be a character of Gal(Kab/K). Suppose that χ factors
through Gal(Hc/K) where Hc is the ring class field of conductor c; if
there is no c′ | c such that χ factors through Gal(Hc′/K), we say that
χ has conductor c; if χ factors through Gal(Hc/K), then the conductor
of χ divides c.
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Suppose we have a character χ of conductor dividing the positive
integer c and a Heegner point Pc of conductor c in X(Hc). For any ϕ ∈
πA define

Pχc,ϕ :=
∑

σ∈Gal(Hc/K)

ϕ(Pσc )⊗ χ(σ).

If |Σ(A,χ)| is odd, by [YZZ, Theorem 1.3.1] one can choose ϕ such that

(8) Pχc,ϕ 6= 0 in (A(Hc)⊗Z C)χ ⇐⇒ L′(πA, χ, 1/2) 6= 0.

From now on, we fix such a ϕ and write simply Pχc for Pχc,ϕ.

4.2. Euler systems and BSD conjecture. Before discussing our ap-
plications to the BSD conjecture, we recall the following result, which in
this general form is due to Nekovář [Nek1].

Theorem 4.4 (Nekovář). Suppose that A/Q is a modular abelian variety
of dimension d. Fix an imaginary quadratic field K and an anticyclo-
tomic character χ factoring through Hc for some integer c ≥ 1 such that
the cardinality of Σ(A,χ) is odd. Let B be the indefinite quaternion al-
gebra of discriminant equal to the product of finite primes in Σ(A,χ).
Assume that A does not acquire CM over any imaginary quadratic field
contained in Hc, and that there exists

(1) an order R of B with an uniformization JR = Jac(XR) � A
defined over Q, and

(2) a Heegner point Pc in XR(Hc).

Then the following implication holds:

L′(πA, χ, 1/2) 6= 0 =⇒ dimC (A(Hc)⊗Z C)χ) = d.

We first observe that if the ramification set of the quaternion alge-
bra B coincides with Σ(A,χ) − {∞}, then there always exists a uni-
formization JU = Jac(XU ) � A for some open compact subgroup U

of B̂×; so in (1) we are asking that this U is associated with an order.

Theorem 4.5. Fix the following objects:

(1) a modular abelian variety A/Q of dimension d and conductor Nd,

(2) an imaginary quadratic field K, and

(3) an anticyclotomic character χ factoring through the ring class
field Hc of K of conductor c ≥ 1 such that the cardinality of Σ(A,χ)
is odd.

If 2 ∈ Σ(A,χ) and 23 | N , assume that val2(N) is odd. Let B denote
the indefinite quaternion algebra of discriminant ∆ equal to the product
of all the finite primes in Σ(A,χ). Then there exists an order R of type
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T = (NEic;NCar; {(Lp, νp)}p|∆) in B and a Heegner point Pc′ ∈ XR(Hc′)
with c | c′ such that:

(1) A is uniformized by XR, hence there is a surjective morphism
JR � A defined over Q;

(2) N divides the level NEic ·N2
Car ·

∏
p|∆ pνp of R;

(3) c divides c′.

Proof: The problem is local, being equivalent to the existence of optimal
local embeddings for all primes `. Fix the order Rmin of type Tmin =
(NEic;NCar; {(Lp, ν′p)}p|∆) and level Nmin = NEicN

2
CarN∆ as in the proof

of Proposition 2.8, choosing the integers NEic and NCar such that NCar

is divisible only by primes p which are inert in K and do not divide c.
For primes p | NEicNCar which are split in K, one knows that the set

of local optimal embeddings of the required form is non-empty (cf. Lem-
ma 3.4).

Fix until the end of the proof a prime p | Nmin which is inert or
ramified inK. Letm be the p-adic valuation of c and set n := valp(Nmin).
If p divides NCar, then we can apply Lemma 3.6 and show that the
maximal order Rc⊗Z Zp embeds optimally into Rmin⊗Z Zp. So suppose
from now on that p does not divide NCar.

Suppose first that p 6∈ Σ(A,χ). If m ≥ n/2 (unramified case) or
m ≥ (n − 1)/2 (ramified case) then Lemma 3.5 shows that the set of
local optimal embeddings of Rc ⊗Z Zp into Rmin ⊗Z Zp is non-empty.
If these conditions do not hold, replacing m by m′ such that m′ ≥
n/2 (unramified case) or m′ ≥ (n − 1)/2 (ramified case) then the local

order Rc′ ⊗Z Zp with c′ = c · pm′−m embeds optimally into Rmin ⊗Z Zp.
Suppose now that p ∈ Σ(A,χ). Take any pair (m′, n′) satisfying the

following condition:

• if n is odd, then n′ = 2m′ + 1;
• if n is even, then n′ = 2m′ if p is inert in K whereas n′ = 2(m′+1)

if p ramifies in K.

Choose also the pair (m′, n′) so that m′ ≥ m and n′ ≥ n. Compar-
ing with the results recalled in §3.2.3, we see that the set of optimal
embeddings of the local quadratic order of conductor pm

′
into the local

quaternion order Rn′(Lp) ⊆ Rmin⊗Z Zp of type (Lp, n
′) is non-zero.

Corollary 4.6. Let A/Q, K, and χ be as in the previous theorem. If A
does not acquire CM over any imaginary quadratic field contained in Hc

and L′(πA, χ, 1/2) 6= 0, then dimC (A(Hc)⊗Z C)χ) = d.
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Proof: Let R and c′ be as in the statement of Theorem 4.5 and apply
Theorem 4.4, viewing χ as a character of Gal(Hc′/K) via the canonical
projection Gal(Hc′/K)→ Gal(Hc/K).

4.3. Proof of Theorem A. Theorems 4.4 and 4.5, although giving
an Euler System which is sufficient for the proof of our main result in
the introduction, are not completely satisfying in the sense that they
are not effective in the computation of the order R. Suppose we are in
the situation of the theorem, so that we are given a modular abelian
variety A/Q, an imaginary quadratic field K, and an anticyclotomic
character χ of conductor c such that Σ(A,χ) has odd cardinality. Then
we would like to have Heegner points in Rmin for a choice of minimal
parametrization JRmin

� A described in Proposition 2.8, or at least of
level R with R ⊆ Rmin. We begin by discussing a couple of examples.

Example 4.7. Let A = E be an elliptic curve of conductor N = p2q,
with q and p odd distinct primes both inert in K. Assume that the
automorphic representation πE attached to E is supercuspidal at p.
Let B be the quaternion algebra of discriminant pq, R = Rmin be
the Hijikata–Pizer–Shemanske order R = Rmin of level N = p2q (and
type (1; 1; {(Lp, 2), (Lq, 1)}), for any choice of quadratic ramified exten-
sion Lp/Qp), and let XR be its associated Shimura curve. Note that
K embeds into B because both p and q are inert in K. Let χ be an
anticyclotomic character of p-power conductor.

Consider first the case of the trivial character 1. Then εp(E/K,1) =
+1 [Del2, (5.5.1)]. Therefore Σ(E,1) = {q,∞} and in fact there are no
Heegner points of conductor 1 in XR (cf. §3.2.3, case (1c)). The case of
non-trivial conductor pm with m ≥ 2 is similar: by [Tun, p. 1299] we
know that εp(E/K,χ) = +1, so Σ(E,1) = {q,∞} and in fact there are
no Heegner points of conductor pm in XR. So the only case in which
Σ(E,χ) = {p, q,∞} may occur for a non-trivial character χ of conduc-
tor p, and by case (1c) in §3.2.3, Heegner points of conductor c = p do
exist in XR. In this case, we realize a perfect matching between exis-
tence of Heegner points on Shimura curves, and local ε-signs of functional
equations.

Example 4.8. As in the above example, let A = E be an elliptic curve
of conductor N = p2q, with q and p odd distinct primes and suppose that
q is inert and p is ramified in K. Identify the Weil–Deligne group WQp
of Qp with Q×p via the reciprocity map rQp , normalized in such a way

that rQp(a) acts on F̄p by the character x 7→ x|a|, where | · | = | · |p is the

p-adic absolute value satisfying |p| = p−1. Assume that the automorphic
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representation πE attached to E is supercuspidal at p, and write it as

πE,p = Ind
WQp
WF

(ψ) where F/Qp is a quadratic extension with associated

character η and ψ : W ab
F → C× is a quasi-character not factoring through

the norm map; then we have ηψ = | · |−1 as quasi-characters of Q×p . The
above conditions force ψ to have conductor equal to 1, p ≡ 3 mod 4
and ψ|Z×p = η [Pac, Corollary 3.1]. Consider the quaternion algebra B

of discriminant pq, the Hijikata–Pizer–Shemanske order R of level p2q
as in the previous example and its associated Shimura curve XR. Again
πE admits a Jacquet–Langlands lift to XR. In this situation, there
are no Heegner points of conductor pm with m ≥ 1 in XR. So, if for
a character χ of conductor pm we have Σ(E,χ) = {p, q,∞}, then we
expect to find Heegner points in appropriate coverings of XR, but not
in XR itself.

The above examples motivate our discussion below, leading to the
proof of (a slightly refined version of) Theorem A in the introduction.

Fix for the rest of the article an elliptic curve E/Q of conductor N ,
an imaginary quadratic field K of discriminant −D, and a ring class
character χ of conductor c of K. Let ∆ be the product of the finite
primes in Σ(E,χ), which is assumed to have odd cardinality, and let
B be the quaternion algebra of discriminant ∆. Fix also R := Rmin

to be the minimal order of type Tmin = (NEic;NCar; {(Lp, νp)}p|∆) as in
Proposition 2.8, on which the Jacquet–Langlands lift toB of the newform
f ∈ S2(Γ0(N)) associated with E is realized, and let NR = NEicN

2
CarN∆

be its level. We can further assume the (coprime) integers NEic and NCar

satisfy that, for every primep dividing NEicNCar,

p | NCar if and only if p is inert in K, valp(N) is even and p - c.
From now on, we shall make the following assumption. Observe that

under the hypotheses in Theorem A the assumption below is obviously
satisfied (cf. Definitions 4.17, 4.18).

Assumption 4.9. Let f ∈ S2(Γ0(N)) be the newform attached to the
elliptic curve E by modularity. With the above notations, the following
conditions are assumed.

(i) Let πf,p be the p-component of the automorphic representation
attached to f . Then πf,p has minimal Artin conductor among its
twists by quasi-characters of Q×p in the following cases: (1) p = 2;
(2) p | NEic, with valp(N) even and p ramified in K; (3) p = 3,
with 3 | ∆ and val3(N) = 4.

(ii) If 23 | NEic, then either 2 splits in K or val2(NEic) is odd and 2 is
inert in K.
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(iii) If 2 | ∆ and 23 | N , then val2(N) is odd; if in addition πf,2 is
supercuspidal, then 2 is inert in K.

(iv) If val3(NEic) = 4 and 3 is inert in K, then val3(c) 6= 1.
(v) If 3 | ∆, val3(N) = 3 or 5 and 3 is ramified in K, then val3(c) ≥

(val3(N)− 1)/2.

Remark 4.10. As commented in Remark 2.7, if 2 | ∆ and val2(N) is even
and greater than or equal to 4, then [HPS2, Theorem 3.9] claims that
f is a twist of a modular form of lower level, but such statement is not
true in general. One expects that those cases for which that assertion
holds can be dealt with via different methods. If f = g ⊗ ξ, then one
expects to construct points on the modular abelian varieties attached
to g, and then, using twisting techniques, to construct points on the
elliptic curve. It seems possible that condition (i) can be treated by
similar considerations.

Write also Rc for the order of conductor c in K of conductor c as
usual. Our goal now is to investigate under which conditions Rc embeds
optimally into R. And in those cases where this does not happen, we
must find a suitable suborderR′ ofR such that Rc does optimally embed
into it. This task is carried out in a series of lemmas below.

The problem is clearly local, and it suffices to study it at those primes
dividing N . So fix from now on a prime p | N , and set the following
notations. We write m := valp(c) for the p-adic valuation of c, and
n := valp(NR) for that of NR. By the discussion prior to Proposition 2.8,
observe that n coincides with valp(N). Then we denote by Ep(m,n) the
set of (local) optimal embeddings of Rc ⊗Z Zp into R ⊗Z Zp. Recall
that the conditions that characterize the non-emptiness of Ep(m,n), in
each of the possible cases, have been collected in §3.2. If p is not split
in K, then we write χp for the component of χ at the unique prime of K
above p. In that case, notice that m = c(χp), the (exponent of the)
conductor of χp.

If the prime p does not belong to Σ(E,χ) (i.e., if p - ∆), then we
will prove in Lemma 4.11 that Ep(m,n) 6= ∅, hence we do not need to
increase the level of R at p. If in contrast p | ∆, and n′ ≥ n is an integer
(with the same parity as n), then we define R′ to be the suborder of R
obtained by replacing the local data (Lp, n) at p in the type of R by the
data (Lp, n

′). In the series of Lemmas 4.12 to 4.15 we prove that one
can always choose such a suborder R′ of R for which Ep(m,n′) 6= ∅. For
convenience of the reader, we summarize in Table 1 the minimal choice
for n′ in each of the possible cases, depending on the local data at p,
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when p 6= 2, 3. The third column indicates the condition on m (if any)
imposed by the fact that p ∈ Σ(E,χ).

πE,p p, n restrictions on m n′

supercuspidal
p inert m ≥ 1 2m

p ramified 2(m+ 1)

Steinberg

p inert, n = 1 m = 0 n
p inert, n = 2 m = 1 n

p ramified, n = 1 2m+ 1
p ramified, n = 2 2(m+ 1)

Table 1. Choice of n′ for primes p ∈ Σ(E,χ), p 6= 2, 3.

As announced above, first we consider the case where p does not
belong to the set Σ(E,χ), so that B is split at p.

Lemma 4.11. If p 6∈ Σ(E,χ), then Ep(m,n) 6= ∅.

Proof: First observe that if p 6∈ Σ(E,χ) then p divides NEicNCar. Hav-
ing said this, notice that if p | NCar then Ep(m,n) is non-empty by
Lemma 3.6 (because if p | NCar then m = 0). So we assume for the rest
of the proof that p divides NEic. By our choice of NEic and N2

Car, we
shall distinguish three cases:

(1) p is split in K;
(2) p is inert or ramified in K and n is odd;
(3) p is inert or ramified in K and n is even.

If p is in case (1), then Lemma 3.4 implies that Ep(m,n) is non-
empty. Suppose that p is in case (2), and assume first that n = 1,
which is the only possible value if p ≥ 5. If p ramifies in K, then
Ep(m,n) 6= ∅ by part (2) in Lemma 3.5. If p is inert in K, then we
split the discussion according to whether p - c or p | c. In the former
case, εp(E/K,χ) = εp(E/K, 1) = −1 but ηK,p(−1) = 1, thus p should
be in Σ(E,χ), contradicting our hypotheses. And in the latter case, we
have m ≥ 1 and therefore 2m ≥ n = 1, hence Lemma 3.5 shows that
Ep(m,n) 6= ∅. Thus we are left with the cases where p = 2 or 3 and
n = valp(N) > 1 is odd.

• If p = 3, then n can be either 3 or 5. Then πE,3 is supercuspidal
induced from a quasicharacter ψ of conductor n − 1 of a ramified
quadratic extension F3 of Q3. If 3 is inert in K, we know on the one
hand by Lemma 3.5 that E3(m,n) 6= ∅ if and only ifm ≥ n/2, hence
if and only if m > (n−1)/2. On the other hand, being 3 inert in K
the assumption that 3 6∈ Σ(E,χ) tells us that ε3(E/K,χ) = 1 and
by [Tun, Proposition 2.8] this holds if and only if m > (n−1)/2 =
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1. Thus it follows that E3(m,n) 6= ∅. Now suppose that 3 ramifies
in K. Then ηK,3(−1) = −1, hence ε3(E/K,χ) = −1 because
3 6∈ Σ(E,χ). By Lemma 3.5 we have that E3(m,n) 6= ∅ if and only
if m ≥ (n−1)/2. By [Tun, Proposition 2.8], if m < (n−1)/2 then
ε3(E/K,χ) = +1, therefore we must have m ≥ (n− 1)/2, and we
conclude that E3(m,n) 6= ∅.
• If p = 2, then n can be either 3, 5, or 7. By Assumption 4.9 (ii), we

may suppose that 2 is inert in K, so that 2 6∈ Σ(E,χ) implies that
ε2(E/K,χ) = 1. Further, by Assumption 4.9 (i), we may assume
that πE,2 has minimal conductor among its twists as well.

Suppose first that n = 3. Then [Tun, Proposition 3.7] implies
that m ≥ 2, and then by part (1) of Lemma 3.5 we deduce that
E2(m,n) 6= ∅. If n = 5, then πE,2 is supercuspidal induced from a
quasicharacter of conductor 3 on a ramified extension of Q2 with
discriminant valuation 2. If the conductor of χ were m < 3, then
[Tun, Lemma 3.2] would imply that ε2(E/K,χ) = −1, thus we de-
duce that m ≥ 3. And then by part (1) of Lemma 3.5 we conclude
that E2(m,n) 6= ∅.

Lastly, if n=7 then πE,2 is supercuspidal of exceptional type, and
its conductor is minimal with respect to twist. Then ε2(E/K,χ) =
1 implies, by [Tun, Lemma 3.2], that m ≥ 4. But then we deduce
that E2(m,n) 6= ∅ thanks to Lemma 3.5, part (1).

Finally, suppose that p is in case (3). Again let us start with the
case n = 2, which is the only possible case if p ≥ 5. If p is inert in K,
then our choice of NEic and NCar implies that m = valp(c) ≥ 1, hence
we see that 2m ≥ n and Lemma 3.5 implies that Ep(m,n) 6= ∅. If p is
ramified, Assumption 4.9 (i) implies that πE is supercuspidal at p. If
it were m = 0, then [Tun, Lemma 3.2] would imply that p ∈ Σ(E,χ),
hence we have m ≥ 1 and Lemma 3.5 implies again that Ep(m,n) 6= ∅.
We are then left with the cases where p = 2 or 3, and n = valp(N) > 2
is even.

By Assumption 4.9 (ii), the case p = 2 does not arise, so we assume
that p = 3. Then the only possible value for n is 4. If 3 is inert in K, then
Assumption 4.9 (iv) implies that m ≥ 2, and by part (1) of Lemma 3.5
we conclude that E3(m,n) 6= ∅. If 3 ramifies in K, then it follows from
condition (i) in Assumption 4.9 that πE,3 is supercuspidal induced from
a quasicharacter of conductor 2 of the unramified quadratic extension
of Q3. Then [Tun, Lemma 3.2] implies that if m ≤ 3 then 3 would
belong to Σ(E,χ). Thus we have m ≥ 4 and by Lemma 3.5 (2) it follows
that E3(m,n) 6= ∅.
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Next we will deal with the case that p ∈ Σ(E,χ), or equivalently
p | ∆. This means that εp(E/K,χ) = −ηK,p(−1). So if p is odd, then

εp(E/K,χ) =


−1 if p is inert in K,

−1 if p is ramified in K and p ≡ 1 mod 4,

1 if p is ramified in K and p ≡ 3 mod 4.

Let πE be the automorphic representation attached to E, and πE,p be
its p-th component. The (exponent of the) conductor of πE,p is valp(N).

We will split our discussion into distinct lemmas, to distinguish be-
tween the cases where πE,p is supercuspidal or Steinberg. If πE,p is super-
cuspidal, then it is well-known that valp(N) ≥ 2. For p ≥ 5 this means
that valp(N)=2, whereas for p=3 (resp. p=2) we have 2 ≤ val3(N) ≤ 5
(resp. 2 ≤ val2(N) ≤ 8). Besides, if πE,p is Steinberg, then valp(N) can
only be 1 or 2 if p is odd, whereas if p = 2 then val2(N) ∈ {1, 4, 6}.
However, the reader should keep in mind that under Assumption 4.9,
some of the previous cases with p = 2 do not appear in our discussion.

Lemma 4.12. If p ∈ Σ(E,χ), πE is supercuspidal at p and p is inert
in K, then there exists n′ ≥ n such that Ep(m,n′) 6= ∅.

Proof: The assumptions p ∈ Σ(E,χ) and p inert in K imply that
εp(E/K,χ) = −1. Suppose first that p is odd. We have the following
cases:

(1) n = 2. If m = 0, then εp(E/K,χ) = 1 by [Del2, (5.5.1)], so we
may assume that m ≥ 1. But then defining n′ := 2m ≥ n we
conclude by case (1c) in §3.2.3 that Ep(m,n′) 6= ∅.

(2) p = 3 and n > 2. In this case n = val3(N) can be either 3, 4,
or 5. If n 6= 4, then πE,p is induced from a quasicharacter ψ of
conductor n−1 of a ramified quadratic extension of Q3. On the one
hand, from §3.2.3, case (1a) we see that E3(m,n) 6= ∅ if and only if
m ≤ (n− 1)/2. And on the other hand, by [Tun, Proposition 2.8]
one has that ε3(E/K,χ) = −1 if and only if m ≤ (n− 1)/2. Thus
we conclude that E3(m,n) 6= ∅.

Suppose now that n = 4. In this case, πE,3 is induced from a
quasicharacter ψ of conductor 2 of the unramified quadratic ex-
tension of Q3. If χp is unramified, that is m = 0, then by [Del2,
(5.5.1)] we would have εp(E/K,χ) = 1, hence it must be m ≥ 1.
However, if m = 1 then by Assumption 4.9 (i) we can use [Tun,
Proposition 3.5] to show that ε3(E/K,χ) = 1, thus it follows that
m ≥ 2. But then for n′ := 2m ≥ n we have that E3(m,n′) 6= ∅ by
case (1c) in §3.2.3.
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Now we assume that p = 2. Again we can split the discussion into
cases.

(i) First suppose n=valp(N)=2. As above, ifm=0 then εp(E/K,χ)=
1, hence it must be m ≥ 1. Letting n′ := 2m ≥ n, case (2b) now
ensures that Ep(m,n′) 6= ∅.

(ii) If valp(N) > 2, then Assumption 4.9 (iii) implies that n is odd.
If n= 3, on the one hand by [Tun, Proposition 3.7] we have that
ε2(E/K,χ) = −1 if and only if m ≤ 1. And on the other hand,
case (2f) in §3.2.3 tells us that E2(m,n) 6= ∅ if and only if m ≤ 1,
thus we conclude that E2(m,n) 6= ∅. If n is either 5 or 7, again
according to §3.2.3 case (2f) we see that if m ≤ (n − 1)/2 then
E2(m,n) 6=∅. If not, defining n′ :=2m+1 we will have E2(m,n′) 6=∅.

This concludes the proof.

Lemma 4.13. If p ∈ Σ(E,χ), πE is supercuspidal at p and p is ramified
in K, then there exists n′ ≥ n such that Ep(m,n′) 6= ∅.

Proof: As in the previous lemma, we assume first that p is odd. We have
the following cases:

(1) Suppose n = valp(N) = 2. If m = 0, we deduce from §3.2.3
(cases (1d) and (1e)) that Ep(m,n) 6= ∅. In contrast, if m > 0 the
set Ep(m,n) is empty. But by virtue of §3.2.3, cases (1d) and (1e),
for n′ := 2(m+ 1) > n we have Ep(m,n′) 6= ∅.

(2) Suppose that p = 3 and n = val3(N) ≥ 3. In this case, 3 ≤ n ≤ 5.
Assume first that n=4. In this case, the quadratic extension L3/Q3

is ramified. Up to replacing L3 by the other quadratic ramified
extension, we might assume that K3 6' L3. Then from case (1e)
in §3.2.3 we see that Ep(m,n) 6= ∅ if and only if m ≤ 1. If m > 1,
then we take n′ := 2(m+ 1), and again case (1e) in §3.2.3 tells us
that Ep(m,n′) 6= ∅. If n = 3 or 5 instead, then Assumption 4.9 (v)
implies that m≥(n− 1)/2. By setting n′ :=2m+ 1≥n, we obtain
Ep(m,n′) 6= ∅ by case (1b) in §3.2.3.

Now we deal with the case p= 2. By Assumption 4.9 (iii), if it were
val2(N) > 2 then 2 should be inert in K, thus we only need to con-
sider the case n = val2(N) = 2. By cases (2c), (2d), and (2e) in §3.2.3
we have that Ep(m,n) 6= ∅ if and only if m = 0. Notice first that
πE,p is of minimal conductor among its twists, since supercuspidal rep-
resentations have conductor ≥ 2. Then, by virtue of [Tun, Proposi-
tion 3.5], we see that εp(E/K,χ)ηK,2(−1) is +1 (resp. −1) if and only if
m ≥ 2 (resp. m < 2). But the hypothesis that 2 ∈ Σ(E,χ) tells us that
εp(E/K,χ)ηK,2(−1) = −1, hence m < 2. But notice that m cannot be 1
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in the case at hand, thus we deduce that m = 0, and hence Ep(m,n) 6= ∅
as desired.

Next we consider the Steinberg case. Write πE,p = Sp2⊗ψ where
ψ : W ab

Qp → C× is a quadratic character. By [Tun, Proposition 1.7], we

know p ∈ Σ(E,χ) if and only if χ−1
p = ψ ◦ Nr, where x 7→ Nr(x) is the

norm map from Kp = K ⊗Q Qp to Qp.

Lemma 4.14. If p ∈ Σ(E,χ), πE is Steinberg at p and p is inert in K,
then there exists n′ ≥ n such that Ep(m,n′) 6= ∅.

Proof: By the above discussion, p ∈ Σ(E,χ) if and only if χ−1
p = ψ ◦Nr.

We assume first that p is odd, so that n = valp(N) can be either 1 or 2.
We split the discussion into subcases:

(1) n=1. Comparing with §3.2.3 (1a), we see that Ep(m,n) 6=∅ if and
only if m = 0. On the other hand, ψ is unramified and therefore if
p ∈ Σ(E,χ) then m = 0.

(2) n = 2. Looking now at §3.2.3 (1c), Ep(m,n) 6= ∅ if and only if
m = 1. On the other hand, ψ is ramified with conductor equal
to 1, and therefore if p ∈ Σ(E,χ) then m = 1.

Assume now that p = 2. A priori one could have val2(N) ∈ {1, 4, 6},
but by condition (iii) in Assumption 4.9 we only need to deal with the
case val2(N) = 1. In this case, the character ψ is unramified, and
then since 2 ∈ Σ(E,χ) we deduce that m = 0. On the other hand, by
case (2a) in §3.2.3 we also have Ep(m,n) 6= ∅ if and only if m = 0. Thus
Ep(m,n) 6= ∅ as we want.

Lemma 4.15. If p ∈ Σ(E,χ), πE is Steinberg at p and p is ramified
in K, then there exists n′ ≥ n such that Ep(m,n′) 6= ∅.

Proof: Suppose first that p is odd, so that n = valp(N) is either 1 or 2.
Again by the above discussion, p ∈ Σ(E,χ) if and only if χ−1

p = ψ ◦Nr.
We have the following cases:

(1) n = 1. If m = 0, by case (1b) in §3.2.3 we see that Ep(m,n) 6= ∅.
Otherwise, we can take n′ := 2m+ 1, and again case (1b) in §3.2.3
implies Ep(m,n′) 6= ∅.

(2) n=2. Again, for m=0 we have Ep(m,n) 6=∅ by cases (1d) or (1e)
in §3.2.3. If instead m > 0, then we consider n′ := 2(m + 1) and
by applying §3.2.3, cases (1d) and (1e), we see that Ep(m,n′) 6= ∅.

Now assume that p = 2. As in the previous lemma, by Assump-
tion 4.9 we only need to deal with the case n=val2(N)=1. Then notice
that ψ is unramified. On the other hand, now the hypothesis that 2
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belongs to Σ(E,χ) implies that either ηK,2(−1)=1 and χ−1
p =ψ ◦Nr or

ηK,2(−1)=−1 and χ−1
p 6=ψ◦Nr. Having this into account, if ηK,2(−1) =

1 then the equality χ−1
p =ψ◦Nr implies that m=0. By case (2a) in §3.2.3

it thus follows that Ep(m,n) 6= ∅. And if ηK,2(−1)=−1, it could be the
case that m> 0. But in any case, defining n′ :=2m+ 1≥n=1 case (2g)
in §3.2.3 implies that Ep(m,n′) 6= ∅.

Combining the above lemmas, we obtain the following:

Theorem 4.16. Let E/Q be an elliptic curve of conductor N , K be
an imaginary quadratic field, and χ be an anticyclotomic character of
conductor c. Suppose that the set Σ(E,χ) has odd cardinality, so that
ε(E/K,χ) = −1 and hence L(E/K,χ, 1) = 0. If Assumption 4.9 holds,
then the set of Heegner points in E(Hc) is non-empty. And if further E
does not acquire CM over any imaginary quadratic field contained in Hc

and L′(E/K,χ, 1) 6= 0, then dimC (E(Hc)⊗ CZ)
χ

= 1.

Proof: Let B be the indefinite quaternion algebra ramified exactly at
the finite primes in Σ(E,χ), and let Rmin be the order in B from Propo-
sition 2.8. The above lemmas together imply that there is a suborder R
of Rmin such that the set of Heegner points of conductor c in XR(Hc) is
non-empty. The Jacobian of XR uniformizes E as well, hence the set of
Heegner points of conductor c in E(Hc) is non-empty. By Theorem 4.4,
if E does not acquire CM over any imaginary quadratic field contained
in Hc, then dimC (E(Hc)⊗ CZ)

χ
= 1.

We state now the above result in a more restrictive but maybe more
attractive form, which already generalizes Theorem A in the introduc-
tion, by introducing a couple of definitions.

Definition 4.17. Let p be a prime. We say that f ∈ S2(Γ0(N)) has
p-minimal Artin conductor if the p-component πf,p of the automorphic
representation πf attached to f has minimal conductor among its twists
by quasi-characters of Q×p ; in other words, if we write a(πf ) for the
Artin conductor of the automorphic representation πf , we require that
a(πf ) ≤ a(πf ⊗ η) for all quasi-characters η of Q×p .

Requiring that f ∈ S2(Γ0(N)) has p-minimal Artin conductor is ac-
tually equivalent to asking that the modular form f is p-primitive, in
the following sense (cf. [AL, p. 236] and [Piz2, Definition 8.6]):
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Definition 4.18. We say that a form f ∈ S2(Γ0(N)) is p-primitive if
valp(N) is minimal among all the twists of f by Dirichlet characters of
p-power conductor. More generally, f is said to be primitive if f 6= g⊗ ξ
for any Dirichlet character ξ and any g ∈ S2(Γ0(M)) with M 6= N .

Corollary 4.19. Let E/Q be an elliptic curve of conductor N , and
f ∈ S2(Γ0(N)) be the newform attached to E by modularity. Let K be
an imaginary quadratic field, χ be an anticyclotomic character of con-
ductor c, and suppose that the set Σ(E,χ) has odd cardinality. Assume
the following conditions hold:

(1) f is p-primitive at p = 2 and at every prime p | N with valp(N)
even;

(2) if 23 | N , then either 2 splits in K or val2(N) is odd and 2 is inert
in K;

(3) if val3(N) ≥ 3, then val3(c) ≥ (val3(N)− 1)/2.

Then the set of Heegner points in E(Hc) is non-empty. If further E does
not acquire CM over any imaginary quadratic field contained in Hc and
L′(E/K,χ, 1) 6= 0, then dimC (E(Hc)⊗ CZ)

χ
= 1.

Proof: We only need to remark that condition (1) implies condition (i)
in Assumption 4.9, whereas condition (2) (resp. (3)) implies that both
conditions (ii), (iii) (resp. (iv), (v)) in Assumption 4.9 hold.

4.4. Final remarks. It might be interesting to discuss how to extend
the above theorem to the general case of abelian varieties. One can easily
show that if A/Q is a modular variety of dimension d and conductor Nd,
and no prime divides N to a power greater than 3, then the argument for
elliptic curves developed in the previous section also works for abelian
varieties. However, it is easy to construct examples in which we do not
have Heegner points in any cover of XRmin

if we allow the conductor
of A to be divisible by arbitrary powers of p if we just consider orders of
type (NEic;NCar; {(Lp, νp)}), as the following examples show:

Example 4.20. Let A/Q be a modular abelian variety of conductor Nd,
and suppose N = pnq with p and q distinct odd primes and n = 2%+ 1
an odd integer. Let χ be a character of conductor pm with m ≥ 1.
Suppose that p is ramified in K and q is inert in K. Then q ∈ Σ(A,χ).
Now assume that n is minimal among the conductor of all twists of
πA,p. In this case [Tun, Proposition 3.5] shows that if m ≤ n − 1 then
p ∈ Σ(A,χ). If now m < (n − 1)/2, then comparing with §3.2.3 we see
that there are no Heegner points of conductor pm in any cover of XRmin

associated with an order as in Definition 1.3.
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Example 4.21. As in the above example, let A/Q be a modular abelian
variety of conductorNd, and suppose now thatN = pnq with p and q two
odd primes and n = 2% ≥ 4 an even integer. Let χ be a character of con-
ductor pm with m ≥ 1. Suppose first that p ∈ Σ(A,χ), so εp(A,χ) = −1,
and q is inert in K, so q ∈ Σ(A,χ). Consider the quaternion algebra B
of discriminant pq and the order Rmin of B and form the correspond-
ing Shimura curve XRmin

. From §3.2.3, we see that if m < n/2, then
there are no Heegner points of conductor pm in any covering of XRmin

associated with special orders as in Definition 1.3. Secondly, suppose
p 6∈ Σ(A,χ), so εp(A,χ) = +1 and q is split in K, so q 6∈ Σ(A,χ). In this
case, if m < n/2 then again there are no Heegner points of conductor pm

in any cover of the Shimura curve XRmin
associated with Eichler orders

(which, in this case, correspond to modular curves and usual congruence
subgroups).

As we may see from the above examples, it seems to us that that one
should introduce more general type of orders to find other sources of
Heegner points defined over the predicted ring class field.

Conjecture 4.22. Let A/Q be a modular abelian variety, K be an imag-
inary quadratic field, χ be an anticyclotomic character factoring through
the ring class field Hc of K of conductor c ≥ 1, and suppose that the car-
dinality of Σ(A,χ) is odd. Let B denote the indefinite quaternion algebra
of discriminant ∆ equal to the product of the finite primes in Σ(A,χ),
and f be the newform associated with A. Suppose that f is primitive
and has p-minimal Artin conductor, for all primes p. Then, there exists
an open compact subgroup U in B̂× equipped with a surjective mor-
phism JU � A and such that the set of Heegner points in XU (Hc) is
non-empty.

As a variant of the above conjecture, one can ask if we can take
U = R̂× for some global order R in B. This conjecture is inspired by
Corollary 4.19; we only point out that the relevant part in this conjecture
is to show the existence of suitable open compact subgroups (not neces-
sarily arising from global orders) so that we have a good understanding
of rationality questions of points arising from embeddings K ↪→ B. This
would allow us to solve cases excluded by Assumption 4.9 and discuss
Examples 4.20 and 4.21 above.
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Surfaces”, Univ. Montréal, Montreal, QC, 1992, pp. 151–253.
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Éc. Norm. Supér. (4) (to appear).

[Pac] A. Pacetti, On the change of root numbers under twisting and
applications, Proc. Amer. Math. Soc. 141(8) (2013), 2615–2628.
DOI: 10.1090/S0002-9939-2013-11532-7.

[Piz1] A. Pizer, On the arithmetic of quaternion algebras. II, J. Math.
Soc. Japan 28(4) (1976), 676–688. DOI: 10.2969/jmsj/02840676.

[Piz2] A. Pizer, Theta series and modular forms of level p2M , Com-
positio Math. 40(2) (1980), 177–241.

[Shi] G. Shimura, Construction of class fields and zeta functions of
algebraic curves, Ann. of Math. (2) 85(1) (1967), 58–159. DOI:
10.2307/1970526.

[Tei] J. Teitelbaum, Geometry of an étale covering of the p-adic
upper half plane, Ann. Inst. Fourier (Grenoble) 40(1) (1990),
68–78. DOI: 10.5802/aif.1203.

[Tun] J. B. Tunnell, Local ε-factors and characters of GL(2), Amer.
J. Math. 105(6) (1983), 1277–1307. DOI: 10.2307/2374441.
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