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Abstract: A top-down clamped-clamped beam integrated in a CMOS technology with a 

cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two 

different transduction methods: capacitive and piezoresistive. The resonator made from a 

single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive 

transduction avoids the effect of the parasitic capacitance assessing the capability to use it 

and enhance the CMOS-NEMS resonators towards more efficient oscillator. The 

displacement derived from the capacitive transduction allows to compute the gauge factor 

for the polysilicon material available in the CMOS technology. 

Keywords: NEMS; CMOS-NEMS; mechanical resonators; piezoresistive transduction; 

polysilicon nanowires 

 

1. Introduction 

The field of micro/nanoelectromechanical systems (MEMS/NEMS) is increasing its presence in many 

application areas because the advantages that they offer in terms of enhanced portability, reduced power 

consumption and reduced cost. The expected market for these devices is growing in the sensor field and 

also in signal processing for communications systems. Simple device structures like cantilevers and 
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double clamped beams are used as building blocks in microsystems for a wide range of sensing 

applications [1–5]. Cantilevers and double clamped beams of nanometer scale dimensions improve the 

performance of sensors because of their enhanced sensitivity and higher resonance frequency. However, 

the lack of a high yield, high throughput fabrication method for NEMS prevents its industrial 

development. Recently, new approaches, like the so-called NEMS-Very Large Scale Integration (VLSI) 

have arisen enhancing the manufacturability capabilities and offering possibilities for massive 

manufacturing [6]. Regarding the development of NEMS for communications systems, one of the key 

applications is the possibility to substitute the quartz crystal with miniaturized mechanical resonators. 

As highlighted by the semiconductor industries [7] the achievement of frequency reference systems 

monolithically integrated in Complementary Metal Oxide Semiconductor (CMOS) processes, would be a 

major breakthrough towards a production-enabling technology. 

Outstanding MEMS/NEMS performance can be achieved through the synergy with microelectronics. 

On the one hand, microelectronics technology enables the scaling down of dimensions by using 

advanced processing methods, like deep ultraviolet (UV) optical lithography. In addition integration of 

NEMS devices with integrated electronic circuits provides additional functionality, signal conditioning 

and better energy management.  

To achieve an integrated system composed of NEMS devices and electronic circuits it is necessary 

that the mechanical movement be transduced into an electrical signal. However, the dimensional scaling 

down of MEMS devices makes an efficient motional transduction to the electrical domain challenging. 

Among the transduction methods suitable for monolithic integration, capacitive sensing is the most used. 

Unfortunately, scaling down capacitive transduced MEMS resonators provides huge motional 

impedances making very challenging the monolithical integration of oscillators or self-actuated systems [8]. 

Additionally capacitive NEMS produces high impedance mismatch (losses) in the case of RF systems. 

Despite these drawbacks, frequency oscillators fully integrated in CMOS circuits have been reported [9,10], 

although they are power demanding due to the high transimpedance gain needed to compensate for the 

high motional resistance. Some efforts to decrease this motional resistance by gap reduction or enhanced 

quality factor resonators have been proposed [11–14], but no one presents a substantial improvement in 

terms of reduced motional resistance at low bias voltage with scalable dimensions in CMOS technologies.  

As an alternative to capacitive transduction, piezoresistive transduction has been proposed in order to 

decrease the motional impedance in MEMS resonators [15–18]. Piezoresistive transduction is a good 

integrable solution because incorporation of an integrated piezoresistance is compatible with preserving 

the small dimensions of nanomechanical resonators and the interface with the electronic circuits is 

simple. Some approaches dealing with piezoresistance transduction for MEMS resonators in CMOS 

technologies have been reported [12,18,19]. Zalalutdinov et al. [12] reported piezoresistive transduced 

CMOS-MEMS resonators with thermoelastic actuation. However their technological approach is based 

on the use of two polysilicon layers which are not available in CMOS technology nodes below 0.35 µm. 

Li et al. in [18] developed large metal-oxide stacked resonators with a bottom polysilicon layer acting 

as a piezoresistance requiring actuation voltages bigger than 100 V, which are not desired for a fully 

integrable CMOS-MEMS system. Finally Arcamone et al. in [19] required a dedicated process 

consisting of a pre-definition of the MEMS resonator on a Silicon-on-Insulator (SOI) wafer prior to the 

CMOS fabrication.  
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In this paper we present a capacitively actuated and piezoresistively transduced polysilicon  

double-clamped beam resonator fabricated and monolithically integrated in a commercial CMOS 

technology. It presents two main advantages in comparison with previous examples: (a) smaller 

dimensions (the beam dimensions are 500 nm width and 282 nm thick); and (b) the entire body of the 

resonator is used as a piezoresistor. Electrical measurements demonstrate that it is feasible to use 

piezoresistive transduction in nanometer scale mechanical resonators fabricated using non-modified 

commercial CMOS technologies. Comparing the response of the same device for capacitive transduction 

and piezoresistive transduction allows to establish the material properties (i.e. gauge factor for the 

integrated polysilicon layer). 

2. Experimental Section  

The clamped-clamped beam (CC-beam) is fabricated in a 0.35 µm CMOS technology from AMS 

(Austria Microsystems, Graz, Austria). This technology is based on two poly-silicon layers and four 

metals. The beam resonator is defined on the poly1 layer (thickness of 282 nm) using the silicon dioxide 

as the sacrificial layer.  

The electrostatic actuation for the resonant NEMS operation is performed through the fixed 

polysilicon electrode (from the poly2 layer) placed 100 nm besides the CC-beam (in-plane actuation and 

movement, see Figure 1). Efficient vertical alignment between the two polysilicon layers for an in-plane 

movement is obtained due to their different thicknesses (280 nm for poly1 and 200 nm for poly2), the 

insulator layer thickness between them (40 nm) and the conformal deposition used [20,21]. The 

capacitive sensing is done by an additional driver of poly2 at the other side of the beam (in a two-port 

symmetrical configuration). Equal spaced driver electrodes are used. For piezoresistive sensing the two 

anchors of the beam are connected to pads to allow current flowing through the resonator. 

 

Figure 1. Left: Optical image of the integrated Polysilicon clamped-clamped beam in the 

CMOS technology; Right: Detail of the polysilicon resonator after its releasing in a SEM 

image. The thickness of the double clamped-beam is 282 nm and the gaps between driver 

electrodes and beam are 100 nm. The inset shows Coventor simulations for the first in plane 

resonant mode at f0 = 25.5 MHz. 

The CC beam resonator is fabricated by the CMOS foundry following its standard processes. As a 

special requirement two square vias and an opening pad are defined above the resonator to allow the 
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post CMOS releasing process for the NEMS resonator which will be done in-house. This process is a 

maskless wet etching of the silicon dioxide around the CC-beam using a buffered HF acid solution [20]. 

An optical image of the CMOS-NEMS CC-beam showing the pads for the electrical characterization 

and SEM image of the fabricated device is shown in Figure 1. 

According to the technological specifications, the sheet resistance of the polysilicon layers is in the 

range 5–11 Ω/square and the maximum current density that can sustain is 0.5 mA/µm. In order to keep 

the resistance low, the width of the CC-beam is set at 0.5 µm, larger than the minimum allowed in the 

technology. The length of the beam is fixed to 13.2 µm. With these dimensions the maximum dc current 

allowed is 250 µA while the total resistance of the beam is in the range between 132 Ω and 290 Ω. The 

theoretical resonant frequency for the fundamental lateral in-plane mode is 25.2 MHz (assuming a 

polysilicon Young’s modulus of 169 GPa and a mass density of 2330 kg/m3).  

The CC beam is electrostatically actuated applying an AC signal, vac = Vac1 sinwt, at the capacitor 

defined by the coupling area between one of the driver electrodes and the CC-beam (Co in equilibrium), 

while the beam is biased with a DC voltage, VDC. Considering small displacements (x) in comparison 

with the gap (g) and assuming a parallel plate capacitor approximation, 0act

g
C C

g x
=

+
, the electrical 

force component at the resonance frequency of the beam due to this electrostatic excitation is:  

0
1· sin( )x DC ac

C
F V V wt

g
= −  (1)

Assuming a simple harmonic oscillator with a quality factor Q, and elastic constant k, the maximum 

displacement of the beam in the x direction at its resonance frequency can be computed as a function of 

the actuation voltages according to Equation (2):  

0
max 1

x
DC ac

QF CQ
x V V

k k g
= =  (2)

2.1. Capacitive Sensing 

The motion of the beam, due to the AC actuation in the excitation driver, produces changes in the 

readout capacitor between the CC-beam and the read-out driver, Cr, which induces a current in this 

output electrode: 

( )·DC r DC r r
cap r DC DC

V C V C C
I C V V

t t t t

∂ ∂ ∂ ∂= = + =
∂ ∂ ∂ ∂

 (3)

The previous Equation could be expressed in terms of velocity of the displacement:  

0
0

r
cap DC DC DC

CC x g x x
I V V C V

x t x g x t g t

 ∂ ∂ ∂ ∂ ∂= = ≈ ∂ ∂ ∂ − ∂ ∂ 
 (4)

for small displacements (x << g). Finally and considering a simple harmonic oscillator, with sinusoidal 

displacement at the resonance frequency, RFf , max( ) sin(2 )RFx t x f t= π , the maximum motional current at 

the resonance frequency can be written in terms of the maximum displacement due to the electrostatic 

actuation force, Equation (5):  
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0
max max2cap DC RF

C
I V f x

g
≈ π  (5)

2.2. Piezoresistive Sensing 

Piezoresistive effect is based on the change of the resistance of the resonator as a function of shape 

deformation or strain, εl = Δl/l, where G represents the gauge factor and ΔR/R0 is the relative change in 

the specific resistance: 

0

· l

R
G

R

Δ = ε  (6)

considering that for the CC-beam structure the main contribution is the longitudinal strain due to bending 

moment. In a symmetric beam equal tensile and compressive strains distributed on the opposite sides of 

the beam will produce zero change in total resistance. However, the resonant movement of the beam 

produces a change on its length which it turns out to a non-negligible longitudinal strain through the  

CC-beam. This strain will be the responsible for a change in resistance and thus for the piezoresistive 

transduction in the symmetric CC-beam. To compute the total lengthening of the beam due to the 
movement, lelongated, the simple arch length model is used ( 2 2 2l x yΔ = Δ + Δ ):  

( ) ( )
2 2

2 2

0 0 0 0

1
( 1) 1

2

l l l l

elongated

dx dx
l dl dy dx dy dy

dy dy

    
= = + = + ≈ +    

     
     (7)

The longitudinal strain becomes: 
2 22

max
20

( )1

2 4

lelongated
l

l l x tl dx
dy

l l l dy l

−  Δ πε = = ≈ = 
 
  (8)

where it has been assumed max( , ) ( )sin
y

x y t x t
l

π= , as the displacement for the fundamental in-plane 

resonant mode for the CC-beam and xmax(t) the displacement at the beam center. Finally the change in 

resistance could be expressed as: 

22
max

0

( )
·

4

x tR
G

R l

Δ π  =  
 

 (9)

According to Equation (9), the maximum change in resistance depends upon the square of 

displacement and thus the signal will be at twice the beam resonance frequency (or similarly the 

resistance is changing twice for each period of the resonance frequency). Finally the output current is 

measured applying a voltage signal over the resonator, VCCB: 

0 0 0

(1 )CCB CCB
piezo piezo

V V R
I I

R R R R

Δ± Δ = ≅ ±
Δ (10)

providing a transduction of the beam displacement assuming small variations ΔR << R0 [16]. From this 

last expression the variation of current, ΔIpiezo, which will be produced due to the change of resistance 
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during the clamped-clamped beam movement can be related to the displacement according to next 

Equation (rearrangement terms in Equations (9) and (10)): 

2
2max

0 0

( )
( ) ( )

4
CCB

piezo piezo

V x tR
I t I G

R R l

 Δ πΔ = = ⋅ 
 

 (11)

This principle has been successfully used and reported for silicon nanowire mechanical resonators 

thanks to the presence of an enhanced gauge factor [22,23]. In these works, a down-mixing scheme for 

the displacement transduction is used, taking profit of the quadratic dependence of the piezoresistive 

current on the displacement (Equation (11)). This down-mixing scheme is based on applying to the  

CC-beam a sinusoidal waveform of a frequency slightly different than the double of the beam resonance 

frequency ( 2 cos 2 (2 )CCB AC RFV V f f t= π + Δ ), at the same time that the beam is capacitively actuated at its 

resonance frequency. With this capacitive actuation the time dependent displacement at the beam center 

can be written as max max( ) cos(2 RFx t x f t= π ). Consequently the transduced piezoresistive current 

corresponding to the displacement of the CC-beam has a frequency component at Δf which can be easily 

acquired using a lock-in instrument. Substituting these signals in Equation (11), the piezoresistive 

current due to the resonant displacement of the beam can be written as Equation (12): 

2
22 max

0

1
( )

4 4
AC

piezo

V x
I G

R l

 πΔ = ⋅ 
 

 (12)

In this paper we have used the principle and transducing scheme explained above to characterize the 

piezoresistive transduction in nanomechanical resonators fabricated using a commercial CMOS 

technology and so, using the available layers of this CMOS technology. 

3. Results and Discussion 

3.1. Capacitive Transduction 

The frequency response of the CC beam using capacitive read-out is acquired directly from a network 

analyser according to the set-up of Figure 2a.  

A two port configuration is used. Each driver electrode is used for the actuation and the read-out 

respectively. The CC beam is kept at a constant bias voltage. Applying an AC signal with a power of  

P = 10 dBm and Vdc = 15 V the magnitude and phase for the gain obtained from the network analyser 

are shown in Figure 2a. The frequency response in Figure 2a shows the resonance peak due to the 

mechanical oscillation/response of the device together with the anti-resonance electrical response due to 

the parasitic capacitance between the two drivers. In the simple linear electrical model for these 

mechanical resonators an RLC in parallel with Cp (see inset of Figure 2b) can be assumed. Figure 2b 

shows the fitting with an electrical RLC//C circuit of the experimental frequency response. According 

to the fitting, a motional resistance of 2.4 ΜΩ is obtained. The computed motional current at the 

resonance is 292 nA when an input power of 10 dBm is delivered to the NEMs by the network analyzer, 

(equivalent to 0.7 V rms assuming a 50 Ω load). In our setup the load in the network analyzer is in parallel 

with the reference input, thus even in the case of high input impedance from the NEMS, the equivalent 

load is close to the nominal 50 Ω. With this motional current we can compute the maximum beam 

displacement at the resonance frequency from Equation (5), obtaining a value of 52 nm, (with C0, the 
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coupling capacitance between CC-beam and reading electrode, C0 = 0.22 fF, VDC  = 15 V, g = 100 nm and 

fr, the experimental resonance frequency fr = 27 MHz). An almost equal value, 58 nm, is obtained from 

the computed electrostatic actuation force (Equation (2)) under the same conditions (A = 0.7 Vrms,  

VDC = 15 V) and considering a quality factor, Q = 100 (extracted from the experimental frequency response 

of Figure 2) and a spring constant of k = 40 N/m, computed from finite model simulations (Coventor).  

 

Figure 2. (a) Experimental frequency response (magnitude and phase) and Electrical 

characterization set-up for capacitive actuation and sensing; (b) Fitting of the experimental 

frequency response with the electrical equivalent circuit shown in the inset. 

3.2. Piezoresistive Transduction 

The set-up for piezoresistive sensing is based on a downmixing scheme using the NEMS CC beam 

as a mixer in order to detect its motion at low frequencies (Figure 3). This technique often called  
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two-source, double-frequency technique has been previously used to characterize bottom-up and also 

top-down crystalline silicon nanowires [23]. The actuation electrode is connected to an excitation signal 

with a frequency, fRF, which is equally to the first lateral mode of the CC-beam. This signal along with 

a bias voltage VDC, induces the motion of the beam producing its resonance at fRF. This beam motion 

produces a change in resistance which will be at 2fRF due to the quadratic dependence of the resistance 

versus the displacement (piezoresistance effect, Equation (9)). In order to produce a down-mixing in the 

final piezoresistance current, an additional signal at 2fRF + Δf is applied directly to the CC-beam. In this 

way a mixing process will take place at the CC-beam, producing a piezoresistive signal proportional to 

the product of the signals with frequencies 2fRF and 2fRF + Δf and thus composed of several harmonics, 

one of which is at Δf. Finally the lock-in amplifier will detect only the component at Δf, neglecting all 

the others. This reference signal for the lock-in is generated through a mixer and a frequency doubler. A 

lock-in amplifier is used instead of the network analyzer due to the benefits of using a superheterodyne 

receiver where a known low frequency reference signal is multiplied by the input signal and amplified, 

so the scheme is capable to detect small signals even buried in noise.  

 

Figure 3. Piezoresistive sensing set-up with an electrostatic excitation. f will be around the 

first mode resonance frequency of the CMOS-NEMS CC-beam (around f = 27 MHz), and 

the low frequency is in our case 543 Hz. 

It is important to consider that the density current flow through the clamped-clamped beam limits the 

maximum power applied over the resonator to prevent its melting. However the discrete mixer requires 

enough power to work properly, so a voltage controlled attenuator is placed between the power splitter 

and the resonator. With an AC signal power of 10 dBm the discrete mixer works properly and with an 

attenuation of 17 dB the resulting power applied directly to the resonator is −10 dBm. Maintaining a DC 

bias voltage of 15 V, an AC actuation voltage of 10 dBm and an AC voltage through the beam of −10 dBm, 

the motional current across the beam presents the frequency response depicted in Figure 4 (with a 

frequency offset, Δf = 543.21 Hz).  
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The obtained experimental frequency response clearly show the resonance peak which is produced 

by the piezoresistance change due to the beam elongation during resonant displacement.  

 

Figure 4. Frequency response obtained from the CMOS-NEMS clamped-clamped beam 

with the piezoresistive transduction method in vacuum. 

Once proved the feasibility of piezoresistive transduction in a CMOS-NEMS beam considering only 

the strain produced due to the change in the beam length, some parameters from the resonator can be 

extracted. One of the key characteristics in order to establish the applicability of the piezoresistive 

sensing is the gauge factor. Note that the polysilicon layer is the standard layer in the CMOS technology 

for defining the gates of the MOS transistors. In order to extract the gauge factor we consider that the 

vibration amplitude of the clamped-clamped beam will be the same than the one obtained with the 

capacitive transduction. Although a mixing actuation is performed due to the two AC signals applied 

(the ac signal applied to the driver electrode, Vac1, and the AC signal directly applied to the beam, Vac2), 

the actuation force component at the resonance frequency of the beam will be the same than in the capacitive 

transduction case. In both cases the same actuation voltages, P = 10 dBm and VDC = 15 V are used.  

Taking into account an experimental piezoresistive peak current of 22 pA at resonance, a maximum 

vibration amplitude of 52 nm (extracted from the capacitive measurement under the same actuation 

electrostatic force);  R0 = 2.75 kΩ (equivalent to the serial resistance between clamped-clamped beam, 

250 Ω and the input resistance of the lock-in amplifier in low noise mode of 2.5 kΩ ); and VAC2 = 140 mV 

(corresponding to −10 dBm applied to a load impedance of 2.9 kΩ), a gauge factor of 0.05 is extracted 

from Equation (12). The gauge factor obtained is low if we compare with the values obtained for other 

piezoresistive resonators [8,12,15–19,22,23]. Only in [12,18] the polysilicon material from a CMOS 

technology is used, and in both cases the dimensions of the polysilicon structure are considerably larger. 

For instance, in [18] the polysilicon layer of a CMOS technology has been used as a simple resistance, 

constituting one of the building blocks of a metal-oxide stacked structure. In this case much bigger 

piezoresistance current through the polysilicon was allowed due to the bigger dimensions used contrary 

to the low current level allowed in our very small CC-beam resonator. Similarly larger piezoresistance 

26.8M 27.0M 27.2M 27.4M 27.6M 27.8M 28.0M

0.0

5.0p

10.0p

15.0p

20.0p

25.0p

M
ag

ni
tu

de
 c

ur
re

nt
 (A

)

Frequency (Hz)

PDR=10dBm
PCCB=-10dBm
Vdc=15V



Sensors 2015, 15 17045 

 

 

coefficients were reported in the case of small nanowires [22,23] although in these cases crystalline 

silicon was the structural material instead of polysilicon. In [24] an in-depth study of the piezoresistive 

effect in top-down fabricated silicon nanowires (with nanowires from similar cross section than the one 

presented here) is made. One of the conclusions in [24] is that a much lower piezoresistance effect is 

computed for polysilicon nanowires in comparison with the crystalline silicon ones, emphasizing the 

dependence on the fabrication process. Despite of this, we have been capable to sense the piezoresistive 

current and successfully transduce the movement of the clamped-clamped polysilicon beam at 

resonance. Taking into account that the layer employed have been the original one used in the 

commercial CMOS process, we believe that there is room for improvement by introducing some 

modifications in the process that would improve the electromechanical properties of the polysilicon. 

4. Conclusions 

The dynamic displacement of a CMOS-NEMS clamped-clamped beam at resonance frequencies  

of 27 MHz has been successfully transduced capacitively as well as piezoresistively. From the 

measurements it has been possible to compute the gauge factor for the polysilicon material obtaining a 

lower value than expected. From these results it can be concluded that the piezoresistance transduction 

for top-down CMOS-NEMS polysilicon resonators is possible, but requires larger structures that can 

sustain larger deformations for an efficient transduction.  
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