Running title: *N*-Glycans of bamboo shoot glycoproteins 2 3 Structural feature of N-glycans of bamboo shoot glycoproteins: Useful source of plant antigenic 4 *N*-glycans 5 6 Chinatsu TANABE, Kaori FURUTA, Megumi MAEDA, and Yoshinobu KIMURA[†] 7 8 Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, 9 Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan 10 11 † To whom correspondence should be addressed. E-mail: yosh8mar@okayama-u.ac.jp 12 13 Abbreviations: RP-HPLC, reversed-phase HPLC; SF-HPLC, size-fractionation HPLC; PA-, 14 pyridylamino; PCT, plant complex type; Hex, hexose; HexNAc, N-acetylhexosamine; Pen, 15 pentose; Deoxyhex, deoxyhexose; Man, D-mannose; GlcNAc, N-acetyl-D-glucosamine; Xyl, s-16 xylose; Fuc, L-fucose; Le^a, Lewis a (Galβ1-3(Fucα1-4)GlcNAc); PCT, plant complex type; 17 M3FX, Manα1-6(Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA; 18 GN2M3FX, GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-19 4(Fucα1-3)GlcNAc-PA; (Le^a)1GN1M3FX, Galβ1-3(Fucα1-4)GlcNAc1-2 Manα1-20 6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA or GlcNAc1-212Manα1-6(Galβ1-3(Fucα1-4)GlcNAc1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-4)GlcNAcβ1-223)GlcNAc-PA; (Le^a)2M3FX, Galβ1-3(Fucα1-4)GlcNAc1-2 Manα1-6(Galβ1-3(Fucα1-23 4)GlcNAc1-2Man α 1-3)(Xyl β 1-2)Man β 1-4GlcNAc β 1-4(Fuc α 1-3)GlcNAc-PA.

1

24

An effective method to prepare plant complex type *N*-glycans in large amounts has been required to evaluate their immunological activity. In this study, we found that glycoproteins in bamboo shoots predominantly carry plant complex type *N*-glycans including the Lewis a epitope-containing ones, suggesting that bamboo shoot is an excellent source for the plant antigenic glycans to synthesize immuno-active neoglycopolymers.

67

1

2

3

4

5

Keywords: Antigenic *N*-glycans, plant *N*-glycans, plant glycoproteins, Bamboo shoot, *Phyllostachys edulis*.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8

Plant complex type (PCT) N-glycans are well known to have antigenicity toward mammalians and are commonly found on Cupressaceae pollen allergens, such as Cup a1, Cry j1, Cha o1, and Jun a1. 1-5) We have already found that these PCT N-glycans suppressed the production of IL-4 from Th2 cells in patients with Japanese cedar pollinosis, 6 although the clinical significance of these PCT N-glycans involved in pollinosis has not been clarified. Our findings suggested a possibility that free PCT N-glycans (FNGs) have potential anti-pollinosis activity for treatment of cedar pollinosis. For evaluation of the putative anti-pollinosis activity or other immunological activities of PCT N-glycans, the effective method to prepare PCT-FNGs in large amount has been required but only a few good sources have been reported. ^{7,8)} For preparation of Lewis a epitope-containing PCT N-glycans with high efficiency, we have analyzed the structures of N-glycans linked to plant glycoproteins expressed in various plant materials including edible seeds, ^{7,9)} vegetables, ¹⁰⁾ fresh-water plants, ⁸⁾ and seaweeds. ¹¹⁾ In the course of the glycan-screening, we found that bamboo shoot, in addition to fresh-water plants, is a useful source for preparation of immuno-active plant N-glycans or N-glycopeptides containing Lewis a epitope. Hence, in this report, we describe the structural analysis of N-glycans of bamboo glycoproteins. Bamboo shoots were collected at Yakage Town (Oda-Gun, Okayama Prefecture, Japan). Chopped bamboo shoots (732 g) were homogenized in 5% formic acid (2 L) with a waring blender and digested with 1.2 g of pepsin at 37°C for 72 h. After neutralization with ammonium

solution, the peptic digests were filtered with two-layered gauze and the filtrates were
centrifuged at 12,450 g for 20 min. The supernatants were concentrated to 415 mL with a rotary
evaporator and were dialyzed (using Visking tubing UC24/32, Viskase Co. IL, USA) against
deionized water (2.5 L twice) at 4 C for three days. Outer solution was concentrated to about
200 mL with a rotary evaporator and applied to Dowex $50 \times 2 \text{ resin (200 ml)}$ to remove the
neutral oligosaccharides. After washing the resin with 1% formic acid, adsorbed positive-
charged compounds containing glycopeptides were eluted with 3L of 0.2N NH,OH and
concentrated to a small amount of solution with a rotary evaporator. The glycopeptide-fractions
were applied to a Sephadex G-25 fine column (4.0×80 cm) equilibrated with $0.1N$ NH ₄ OH.
The glycopeptide-fractions (elution volume, 390-700 ml) were detected by the Phenol-H ₂ SO ₄
method,123 and were concentrated with a rotary evaporator and lyophilized. The glycopeptide-
fraction (483 mg) was dissolved in deionized water (25 mL) and applied to a Wako Gel 100C18
column (3.2 x 42.5 cm). Glycopeptides were eluted by a linear gradient of acetonitrile from 0 to
25% in deionized water, and the glycopeptide-fraction eluted between 7 to $20%$ of acetonitrile
was concentrated with a rotary evaporator and lyophilized. The partially purified peptic
glycopeptides (233 mg) were further digested with actinase (20 mg) in 25 mL of 0.1 M Tris-HCl
(pH 8.0) containing 5 mM CaCl ₂ at 37°C for 72 h. After incubation, the reaction mixture was
concentrated to small amount and desalted by a gel-filtration with a Sephadex G-25 fine column
$(4.0 \times 80 \text{ cm})$ equilibrated with 0.1N NH,OH. The glycopeptide-fraction (elution volume, 400-
700 ml) was concentrated with a rotary evaporator and lyophilized. The lyophilized
glycopeptides (95.1 mg) were dissolved in 50% acetonitrile/water, and Asn-glycopeptides were
further purified by the hydrophilic partitioning with Shodex Asahipak NH2P-50 resin as
described in our previous paper, Asn-glycopeptides were predominantly eluted with 0.1%
TFA/water and the final amount of Asn-glycopeptides purified in this study was 15.7 mg.
To identify structures of N-glycans linked to the bamboo shoot glycopeptides, N-
glycans were liberated by hydrazinolysis (100·C, 10 hr) from the peptides (about 1 mg). The

1	liberated N-glycans were N-acetylated and pyridylaminated. ¹⁵⁾ After gel filtration to remove of	
2	excess amount of 2-aminopyridine, the PA-sugar chains were partially purified by RP-HPLC	
3	using a Cosmosil 5C18 AR column (6.0 x 250 mm, Nacalai Tesque, Kyoto), and PA-sugar	
4	chains were pooled as indicated by a horizontal bar in Fig. 1-I. Structural features of the PA-	
5	sugar chains obtained by RP-HPLC were analyzed by SF-HPLC using a Asahipak NH2P-50	
6	column (0.46 x 25 cm, Showa Denko, Tokyo). As shown in Fig. 1-II, seven PA-sugar chains	Fig. 1
7	(peak-a, peak-b, peak-c, peak-d, peak-e, peak-f, and peak-g) were observed, and each elution	rig. i
8	position was compared with those of authentic PCT N-glycans purified the water-plant	
9	glycoproteins. ⁷⁾ The elution position of peak-a on SF-HPLC coincided with that of	
10	Man ₂ Xyl ₁ Fuc ₁ GlcNAc ₂ -PA (M2FX), peak-b with that of M3FX, peak-c with that of	
11	GlcNAc,Man,Xyl,Fuc,GlcNAc,-PA (GN1M3FX), peak-d with that of	
12	GlcNAc ₂ Man ₃ Xyl ₁ Fuc ₁ GlcNAc ₂ -PA (GN2M3FX), peak-e with that of	
13	Gal ₁ GlcNAc ₂ Man ₃ Xyl ₁ Fuc ₁ GlcNAc ₂ -PA (G1GN2M3FX), peak-f with that of	
14	$Gal_{i}Fuc_{i}GlcNAc_{2}Man_{i}Xyl_{i}Fuc_{i}GlcNAc_{2}-PA\left((Le^{a})1GN1M3FX\right), and peak-g with that of the property of the $	
15	$Gal_{2}Fuc_{2}GlcNAc_{2}Man_{3}Xyl_{1}Fuc_{1}GlcNAc_{2}-PA\ ((Le^{s})2M3FX).\ These\ deduced\ structures\ were$	
16	confirmed by ESI-MS analyses as follows: peak-a, m/z 1105.4 [(M+H)·]; peak-b, m/z 1267.5	
17	[(M+H) 1]; peak-c, m/z 735.8 [(M+2H) 2]; peak-d, m/z 837.3 [(M+2H) 2]; peak-e, m/z 918.4	
18	$[(M+2H)^{2x}];$ peak-f, m/z 991.4 $[(M+2H)^{2x}];$ peak-g, m/z 1145.4 $[(M+2H)^{2x}].$ These structures	
19	were further analyzed by exoglycosidase digestions (Fig. 2). Peaks-f and -g were converted to	
20	peak-d (GN2M3FX) by the sequential digestion with α -1,3/4-fucosidase and β -1,3/6-	Fig. 2
21	galactosidase, suggesting that PA-sugar chains in peak-f and peak-g must be modified with	
22	Lewis a epitope(s) at their non-reducing terminals. Finally, PA-sugar chains, peaks-c and -d,	
23	and the enzyme digests obtained from peaks-f and -g, were converted to peak-b by β -N-	
24	acetylglucosaminidase, suggesting modification with N-acetylglucosamine (GlcNAc)	
25	residue(s). Since peak-h emerged after digestion of the β -1,3/6-galactosidase digest with β -N-	
26	acetylglucosaminidase, xylosyl and afucosyl N-glycans (GlcNAc ₁ Man ₂ Xyl ₁ GlcNAc ₂ -PA or	

1	GlcNAc ₂ Man ₃ Xyl ₃ GlcNAc ₂ -PA), which are eluted at almost the same elution positions to	
2	M3FX and GN1M3FX respectively, must be contaminated in peak-b or peak-c. These results	
3	indicate that almost all glycoproteins expressed in bamboo shoot carry PCT N-glycans but not	
4	high-mannose type ones, and some of them are modified with Lewis a epitope(s). This	
5	glycoform of bamboo N -glycans is basically similar to that of N -glycans linked to	
6	glycoproteins in a fresh-water plant, Elodea nuttallii, so although the relative amount of M3FX	
7	in the bamboo PCT <i>N</i> -glycans (32.6%) was higher than that in the water plant PCT <i>N</i> -glycans	
8	(12.1%). Since we have already confirmed that Lewis a epitope-containing N-glycans and the	
9	truncated type N-glycans (M3FX and M2FX) were separated by a gel-filtration with Sephadex	
10	G-25 column used in our previous study, the Lewis a epitope-containing N-glycans can be	
11	easily prepared from the mixture of bamboo N-glycans or N-glycopeptides. The yield of each	
12	PCT N-glycans is summarized in Table. The yield of the Le epitope-containing PCT N-	
13	glycans as pyridylaminated derivatives was more than 300 nmol from 700 g of bamboo shoot,	Table
14	indicating that bamboo shoot is one of good sources for preparation of Le epitope-containing	
15	PCT N-glycans to evaluate their putative immunological activities. In previous study, we	
16	found that the fresh-water plants, Elodea nuttallii, Egeria densa, Ceratophyllum demersum,	
17	are good sources for preparation of immunogenic PCT N-glycans. However, large amount	
18	contamination of water soluble pigments contained in these fresh-water plants interfered the	
19	extraction and purification steps, and we had to remove these pigments by repeat gel-filtration	
20	or hydrophilic chromatographic steps. On the other hand, the bamboo shoot extract was	
21	almost uncolored and the decolorization steps to purify PCT N-glycans or N-glycopeptides	
22	were not required. Furthermore, chips of bamboo shoot can be easily homogenized with 5%	
23	formic acid using a waring blender compared with the bulky water-plants.	
24	Using bamboo shoot glycopeptides obtained by the method established in this study, we	
25	have already succeeded in synthesis of a neoglycopolymer consisting of γ -poly glutamic acid	
26	and plant antigenic N-glycans (Itano, S., et al., Proceedings of the Japanese Society for	

1 Immunology. 45, 166 (2016)). The immunological activities of this neoglycopolymer will be 2 described elsewhere. 3 4 **Author contribution** 5 Y.K. shared responsibility for the writing of the manuscript with C.T., K.F., and M.M. All 6 authors were responsible for the study concept and design. C.T., K.F., and M.M. carried it out. 7 All authors contributed to the critical revision of the manuscript. 8 9 Funding. 10 This work was supported in part by grants from the Ministry of Education, Culture, Sports, 11 Science, and Technology of Japan (Basic Research C (no. 15K07841 to M.M.), Fostering Joint 12 International Research (no. 15KK0282) to M.M., Japan Science and Technology Agency 13 (Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-step, 14 no. AS262Z00115Q to YK), and Takano Life Science Research Foundation (Y.K). 15 16 Acknowledgments 17 We are grateful to the Department of Instrumental Analysis, Advanced Science Research a 18 nonsensical phrase Center, Okayama University, for ESI-MS analysis. 19 20 References 21[1] Di Felice GD, Barletta B, Tinghino R, et al. Cupressaceae pollinosis: identification, 22 purification and cloning of relevant allergens. Int. Arch. Allergy Immunol. 125, 280-289 23 (2001).24[2] Alisi C, Afferni C, Iacovacci P, et al. Rapid isolation, charcterization, and glycan analysis

of Cup a 1, the major allergen of Arizona cypress (Cupressus arizonica) pollen. Allergy, 56,

25

26

978-984 (2001).

- 1 [3] Kimura Y, Kamamoto M, Maeda M, et al. Occurrence of Lewis a epitope in N-glycans of a
- 2 glycoallergen, Jun a 1, from mountain cedar pollen. Biosci. Biotechnol. Biochem., 69, 137-
- 3 144 (2005).
- 4 [4] Maeda M, Kamamoto M, Hino K, et al. Glycoform analysis of Japanese cedar pollen allergen,
- 5 Cry j1. *Biosci. Biotechnol. Biochem.*, **69**, 1700-1705 (2005).
- 6 [5] Kimura Y, Kuroki M, Maeda M, et al. Glycoform analysis of Japanese cypress pollen allergen,
- 7 Cha o 1: A comparison of the glycoforms of cedar and cypress pollen allergens. *Biosci*.
- 8 *Biotechnol. Biochem.* **72**, 485-491 (2008).
- 9 [6] Okano, M., Kimura, Y., Maeda, M., Matsuda, F., Michigami, Y., Kimura, M., and Nishizaki,
- 10 K. Roles of major oligosaccharides on Cry j 1 in human immunoglobulin E and T cell
- 11 responses. Clin. Exp. Allergy, **34**. 770-778 (2004).
- 12 [7] Maeda M, Takeda N, Mano A, et al. Large-scale preparation of Asn-glycopeptide carrying
- structurally homologous antigenic *N*-glycan. *Biosci. Biotechnol. Biochem.* 77, 1269-1274
- 14 (2013).
- 15 [8] Maeda M, Tani M, Yoshiie T, et al. Structural features of N-glycans linked to glycoproteins
- expressed in three kinds of water plants: Predominant occurrence of the plant complex
- type *N*-glycans bearing Lewis a epitope. *Carbohydr. Res.* **435**, 50-57 (2016).
- 18 [9] Kimura M, Hara T, and Kimura Y. *N*-Glycans linked to glycoproteins in edible beans
- 19 (Zatsu-mame): Natural resources for bioactive oligosaccharides. *Biosci. Biotechnol.*
- 20 *Biochem.*, **74**, 155-158 (2011).
- [10] Nakamura K, Inoue M, Hosoi K, et al. Predominant occurrence of truncated complex
- 22 type N-glycans among glycoproteins in mature-red tomato. Biosci. Biotechnol. Biochem.,
- **73** 221-223 (2009).
- [11] Yoshiie T, Maeda M, Kimura M, et al. Structural features of N-glycans of seaweed
- glycoproteins: predominant occurrence of high-mannose type N-glycans in marine plants.
- 26 Biosci. Biotechnol. Biochem., **76**, 1996-1998 (2012).
- 27 [12] Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of

1 sugar and related substances. Anal. Chem. 28, 350-356 (1956). 2 [13] Natsuka S, and Hase S. Analysis of N- and O-glycans by pyridylamination. Methods Mol. 3 Biol. **76** 101-113 (1998). 4 [14] Itano S, Maeda M, Kimura Y. Immunodulatory activity of glycopolymers bearing highly 5 clustered N-glycans for Th 1 and Th 2 immune response. Proc Jpn Soc Immunol. 2016; 6 45:166. 7 8 Legends to figures 9 Fig. 1. RP-HPLC and SF-HPLC profiles of PA-sugar chains obtained from bamboo shoot 10 glycopeptides. 11 I. RP-HPLC profile of PA-sugar chains obtained from bamboo shoot glycopeptides. 12 II. SF-HPLC profiles of PA-sugar chains obtained in I. 13 14 Fig. 2. SF-HPLC profiles of exoglycosidase digests of PA-sugar chains obtained from 15 bamboo shoot glycopeptides 16 1, PA-sugar chains from bamboo shoot glycopeptides. 2, Streptomyces α -1,3/4-Fuc'ase digest 17 of 1, 3, β -1,3/6-Gal'ase digest of 2; 4, Jack bean β -GlcNAc'ase digest of 3. 18 19 Table. Comparison of relative amount of N-glycans linked to Elodea nuttallii and bamboo

20

shoot glycoproteins

Fig. 1 Tanabe et al.

Fig. 2 Tanabe et al.

Structure	Elodea nuttallii a)			bamboo shoot		
Structure	(nmol/g	g) (%)	(nmol/g	(%)	Peaks	
M2FX	0.09	3.70	0.11	4.60	Peak-a	
M3FX	0.29	12.1	0.79	32.6	Peak-b	
GN1M3X	0.27				1 Cak-0	
GN1M3FX	0.28	11.7	0.26	10.6	Peak-c	
GN2M3X	0.20	11./	0.20		1 can-c	
GN2M3FX	0.94	39.8	0.63	26.1	Peak-d	
G1GN2M3FX	ND		0.17	7.10	Peak-e	
(Le ^a)1GN1M3FX	0.38	16.0	0.22	9.00	Peak-f	
(Le ^a)2M3FX	0.39	16.7	0.24	10.0	Peak-g	

a) Reference [8]