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Abstract 
 

Depletion of fossil fuel, stringent emission regulation and environmental concern have led 

to the research and development of alternative fuel powered internal combustion (IC) 

engines. Hydrogen has long been considered as one of the most promising energy carriers 

and investigated as a fuel for internal combustion engines (ICEs) due to its potential for high 

engine efficiency and greenhouse gas reduction. Much research has focused on hydrogen 

direct-injection spark-ignition (DISI) engines. A major challenge in the use of H2-DI is in-

cylinder hydrogen-air mixing. It is critical to understand the physical process of mixing 

between the injected fuel and the air within the cylinder to optimize the overall performance 

of the direct injection engine. The local equivalence ratio near the spark plug at the time of 

the spark discharge is particularly important for successful ignition. In addition, the mixture 

distribution around the spark plug, together with fluid motion, strongly influences the 

combustion initiation, which subsequently affects the engine performance, efficiency, and 

emissions. Thus, a fundamental understanding of mixture formation processes is necessary 

to optimise DI-H2 ICE operation. 

In this study, mixture formation process in jet guided direct injection hydrogen spark 

ignition engine is investigated through simultaneous application of high speed visualization 

and spark-induced breakdown spectroscopy (SIBS). Spectroscopic analysis of spark-plasma 

emission and high-speed visualization of spark behavior with different air-excess ratio are 

conducted simultaneously in a compression-expansion machine (CEM) designed and 

fabricated by Heat Power Laboratory, Okayama University. Spark-induced breakdown 

spectroscopy (SIBS) technique is employed as a diagnostic tool for quantitative 

measurements of local fuel concentration in a direct-injection hydrogen spark-ignition 

research engine developed at Tokyo City University for the first time. A new sensor with an 

optical fibre housed in the centre electrode of the spark plug is developed from a 

commercially available M12-type spark plug with no major modification to the electrodes, 

leading to stable spark formation. Exposure duration for spectroscopic measurement of 

spark plasma is optimized to obtain better atomic emission intensity of Hα (656nm) and N 

(745nm). Results from CEM clearly indicate that with presence of relatively higher hydrogen 
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concentration near spark gap region, breakdown voltage became higher which made spark 

discharge difficult to sustain over a long time and; both continuum background emission (i.e. 

emission from spark plasma) and atomic emission intensity of the spectral distribution 

declines. As expected, lower the preset air excess ratio, resulted in higher intensity ratio of 

Hα/N due to presence of higher concentration of hydrogen fuel compared to that of nitrogen. 

However, with a hydrogen density above a certain level, emission intensity ratio does not 

show a linear relationship and it is considered that there is a limit to the amount of hydrogen 

atoms that can be excited. Therefore, a change in the discharge energy lead to a 

corresponding change in the relationship between atomic emission intensity ratio and 

excess air ratio. 

For SIBS measurements in hydrogen research engine, we sought to characterise the effects 

of ambient pressure at ignition timing on spectral line emissions and to improve the accuracy 

of SIBS measurements by taking into account the pressure dependency of atomic emissions. 

A linear relationship (calibration line) is demonstrated between air excess ratio and 

intensity ratio for both IH/IN and IH/IO over all pressure values at different spark timing. A 

significant effect of the corresponding pressure at ignition timing was observed on SIBS 

measurements and emission line characteristics. Retarded spark timing (i.e. higher ambient 

pressure at the ignition site), resulted in lower spectral line intensities as well as weaker 

background emissions. This indicates the variation in spark discharge behaviour and plasma 

formation with variation in ambient pressure inside the engine cylinder during spark timing 

variation. At relatively higher pressures, the cooling of the expanding plasma was quicker 

due to collisional processes with the surrounding gas, leading to both a weaker broadband 

continuum and atomic emissions. A calibration MAP, representing the correlation of air 

excess ratio with both intensity ratio and pressure at ignition timing, was developed by 

taking into account the effect of the corresponding pressure at ignition timing on spectral 

line intensity for quantitative measurements of local air excess ratio in a research engine. 

Local stratification of the fuel mixture in the vicinity of the spark gap location associated with 

direct injection strategies was confirmed using the newly developed spark plug sensor. The 

COV of local air excess ratio was considerably smaller for measurements made through the 

calibration map. This indicates that the accuracy of measurements of local air excess ratio 
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through the spark plug sensor can be improved significantly when the pressure dependency 

of atomic emissions is taken into account. 

Multidimensional CFD simulation is carried out over a range of global air-excess and 

different injection strategies, by using commercial 3D-CFD software ANSYS Forte, to obtain 

better insight on hydrogen jet characteristics and mixture formation process in hydrogen 

direct-injection engines. Simulation confirmed that with retarded injection during 

compression stroke, fuel jet experience higher pressure immediately upon exiting from the 

nozzle tip. This high ambient pressure hinders the gas diffusion into the ambient air and 

consequently reduce the jet penetration. The G-equation model, mathematically known as 

the level-set method, is used to track the location of the flame front, independent of mesh 

resolution, with a highly efficient numerical technique. As the flame expanded, the flame 

front rippled, and buckled due to the stratification of the fuel/air mixture and turbulence 

conditions in the cylinder. It is found that, with late injection most of the fuel mass exist 

within a small volume (typically near the spark plug region in jet guided combustion system) 

in space and once the ignition is initiated by the spark-discharge, flame surface rapidly 

engulfed the fuel-air mass leading to higher mass fraction burned (MFB) and rapid 

combustion. Very good agreements were achieved between predicted pressure profiles with 

experimental data. To validate the experimental results (i.e. SIBS data), local fuel 

concentration at electrode gap during ignition timing was extracted from simulation results. 

The claim to achieve higher accuracy in SIBS measurement by taking into account the 

pressure dependency of atomic emissions, was confirmed through CFD simulation data of 

local equivalence ratio. The predicted λlocal values from simulation matched quite well with 

experimentally measured values. To reach up-to this level of agreements, it is required to 

specify initial and boundary conditions accurately; do very fine tuning of several important 

parameters namely, turbulent flame speed ratio, flame stretching factor, flame development 

co-efficient etc. These demonstrate that the simulation carried out in this study was 

successful in predicting the mixture formation process as well as combustion phenomenon 

in a hydrogen engine. 
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CHAPTER: 1  

 

Introduction 
 

1.1 Research Background and Motivation 

Hydrogen has long been considered as one of the most promising energy carriers and 

investigated as a fuel for internal combustion engines (ICEs) due to its potential for high 

engine efficiency and greenhouse gas reduction [1-5]. There are some initiatives in Japan to 

move towards the “dream of a hydrogen-based society” and to accelerate the installation of 

hydrogen stations for fuel-cell vehicles that run on electricity, generated by burning 

hydrogen. Today, various governments, especially in Europe, the United States, Canada, and 

Japan, are taking leading roles in establishing and promoting low carbon electricity 

generation through cogeneration systems. Until now, hydrogen-fuelled cogeneration has 

been dominated by fuel cell applications, and the high cost of these systems has been a 

limiting factor for hydrogen’s viability as a fuel for stationary power applications [6-9]. 

However, reciprocating hydrogen-fuelled engines that can offer an economic proposition 

comparable to natural gas and diesel could establish hydrogen-fuelled cogeneration system 

as a viable alternative. Obara et al. investigated a hybrid cogeneration system (HCGS) by 

combining a solid polymer membrane-type fuel cell (PEM-FC) and a hydrogen mixture gas 

engine (NEG) [10]. They reported improvement in power generation efficiency and 

reduction in carbon dioxide emission.  
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Much research has focused on hydrogen direct-injection spark-ignition (DISI) engines due 

to their high volumetric efficiency and potential to avoid knock, preignition, and backfiring, 

which have detrimental effects on engine performance and emissions [11-14]. Optimisation 

of spark timing, injection timing, and injection pressure, are important aspects of the 

development of hydrogen DISI engines [15] and can suppress backfiring and knocking, 

especially at higher engine loads. Oikawa et al. reported a “plume ignition combustion 

concept” (PCC) for hydrogen DISI engines, denoting the ignition of a rich mixture plume 

during or right after an injection event [16]. In their study, the injector was mounted close 

to the spark plug to achieve jet-guided combustion with the jet being directed towards the 

spark plug using high injection pressures (200 bar). This PCC combustion with late injection 

strategy was shown to substantially reduce NOx emissions at high speed and under high load 

conditions while maintaining high thermal efficiency and power. A major challenge in the 

use of H2-DI is in-cylinder hydrogen-air mixing. It is critical to understand the physical 

process of mixing between the injected fuel and the air within the cylinder to optimize the 

overall performance of the direct injection engine. The high-pressure injector used for the 

direct-injection engines usually have multiple holes in the nozzle tip to ensure an even 

distribution of fuel and promote proper mixing. This results in the formation of multiple 

under-expanded jets in the cylinder, which interact with each other and with the in-cylinder 

boundaries to form the fuel-air mixture before combustion. Almost in all cases, fluid fuel 

injection flow is three-dimensional and turbulent. This flow can be measured and calculated 

to some limited degree of accuracy using reasonable assumptions. In continuous system 

whose combustion chamber are usually large, fuel injection may be assumed to be 

represented by a turbulent free gas jet discharging into surrounding air.  



Chapter-1: Introduction 
 

3 
 
 

The local equivalence ratio near the spark plug at the time of the spark discharge is 

particularly important for successful ignition, because the jet-guided system generates a 

stratified fuel concentration near the spark plug in a DISI engine. In addition, the mixture 

distribution around the spark plug, together with fluid motion, strongly influences the 

combustion initiation, which subsequently affects the engine performance, efficiency, and 

emissions. Thus, a fundamental understanding of mixture formation processes is necessary 

to optimise DI-H2 ICE operation. To better understand how to both achieve an optimal local 

mixture and control the large-scale stratification, a diagnostic tool for providing information 

on the mixture distribution in practical engines should be developed. Instantaneous fuel 

concentration measurements in production engines will greatly aid in engine design and 

optimisation. 

There are several approaches to studying fuel concentrations in an SI engine, including 

infrared (IR) absorption, planar laser induced fluorescence (PLIF), Raman scattering, laser-

induced breakdown spectroscopy (LIBS) and spark-induced breakdown spectroscopy 

(SIBS) or spark emission spectroscopy. A 3.392-μm He-Ne laser was used to obtain fuel 

concentrations for combustion diagnostics [17-26]. One of the members of our group was 

the first to investigate the possibility of measuring fuel concentration near the spark plug in 

a test engine [21]. Subsequently, Tomita et al. used an optical sensor with a pair of sapphire 

rods to pass laser light through the combustion chamber of a practical engine; they also 

discussed several of the factors that affected measurement accuracy [22,23]. Their sensor 

has also been applied to practical SI engines and direct-injection gasoline engines [24]. We 

developed an optical spark-plug sensor with a double-pass measurement length using an 
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infrared absorption technique for measuring hydrocarbon fuel concentrations [25,27]. LIF 

measurements have been used widely because the LIF signal is relatively strong and 

provides two-dimensional fuel concentration information at a specified time [28-30]. Tomita 

et al. [28] applied the PLIF method to study the fuel concentration distribution in a transient 

hydrogen jet. Results showed that each transient hydrogen jet had different configurations 

and concentration distributions. Kaiser and White [30] performed an optical study of 

mixture preparation in a hydrogen-fuelled engine using a PLIF technique; their report 

favoured increased injection pressure and careful nozzle design. Ferioli et al. [31] used LIBS 

on engine exhaust gas to illustrate the ability of this technique to measure the equivalence 

ratio of SI engines, using the ratios of C/O and C/N atomic peaks derived from the measured 

spectra. Phuoc [32] used a laser-induced spark to measure the ignition and fuel-to-air ratio 

of CH4-air and H2-air combustible mixtures simultaneously using the measured spectral 

peak ratio Hα (656 nm)/O (777 nm). Shudo and Oba [33] measured the mixture formation 

characteristic with a hydrogen jet in a nitrogen-filled constant-volume chamber using LIBS 

techniques. We have also tried to measure the equivalence ratio using LIBS and discussed 

the accuracy of spatially, temporally, and spectrally resolved measurements [34,35]. 

However, IR absorption is not suitable for measuring the hydrogen/air ratio due to the lack 

of absorption bands at visible and infrared wavelengths. PLIF and LIBS require major engine 

modifications including optical access, which limit their application to production engines. 

Quantitative measurements of the cycle-to cycle variations in the mixture strength at or near 

the ignition site are comparatively rare for practical hydrogen SI engines. 
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With SIBS, the signal detection and spectroscopy are similar to LIBS; however, spark 

generation occurs between two electrodes, in which the spark itself is used as the light 

source to estimate the equivalence ratio in the spark plug. SIBS can therefore be used in a 

combustion chamber with no engine modifications, because the plasma excitation can be 

implemented using a conventional spark plug. Spark-emission spectroscopy has been 

applied to measure the equivalence ratio in a DISI engine [36-38]. Ando and Kuwahara [37], 

and Fansler et al. [38] reported individual measurements of the equivalence ratio at the 

spark gap using the ratio of CN (388 nm) emission intensity and OH (306 nm) radical 

intensity from the spark that initiates combustion. They determined the cycle-resolved local 

fuel–air ratio in the spark gap, controlled the large-scale stratification, and evaluated the 

utility of SIBS as an engine diagnostic tool. However, it is difficult to detect the equivalence 

ratio under lean mixture conditions due to lack of the linearity of CN/OH emission intensity 

ratio. All of these studies require engine modification for optical access to the combustion 

chamber from outside.   Kawahara et al. [39] used the SIBS technique to measure the local 

equivalence ratio in a laminar premixed flame of a CH4/air mixture. Spectrally resolved 

emission spectra of plasma generated by a spark plug were investigated for their potential 

to measure local fuel concentrations in a premixed mixture. The spectrum was measured 

through an optical fibre housed in the centre electrode of the spark plug, which makes this 

technique suitable for measuring the equivalence ratio in the spark gap at ignition timing, in 

production engines without engine modification. Roy et al. [40] further improved the spark-

plug sensor to measure the local fuel–air concentration in the spark gap at the time of 

ignition in a fired, jet-guided hydrogen SI-engine operated under stratified-charge 

conditions using SIBS. Tasyrif et al. [41] investigated the mixing process of a hydrogen jet in 
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a constant-volume vessel and characterised the spatial distribution of the equivalence ratio 

across the jet and along its axis. Later, they reported the effects of the ambient pressure on 

fuel concentration measurements for a jet of hydrogen injected into a nitrogen environment 

with different ambient pressures; also, local concentrations were measured at various spark 

locations in a constant-volume vessel [42]. 

On the other hand, due to the difficulty in modeling the complex physical phenomena and 

the massive computational need, numerical simulations of direct-injection hydrogen engines 

are relatively rare. There have been some studies on DI gas engines; however, better insight 

of the fundamental characteristics of high pressure hydrogen injection, ignition process and 

combustion event in a Hydrogen DISI engine are also necessary. 

1.2 Objectives of the present study 

The experimental works described in this thesis are conducted by using a compression-

expansion machine (CEM) designed and fabricated by Heat Power Laboratory, Okayama 

University; and a direct-injection hydrogen spark-ignition research engine developed at 

Tokyo City University. Both RCEM and research engine allow optical access for the visual 

investigation of jet penetration, mixture formation and flame propagation.  

The primary objective of this study is to investigate mixture formation process in jet guided 

direct injection hydrogen spark ignition engine through simultaneous application of high 

speed visualization and spark-induced breakdown spectroscopy (SIBS). Spark-induced 

breakdown spectroscopy (SIBS) technique is employed as a diagnostic tool for local fuel 

concentration measurements in a direct-injection hydrogen research engine for the first 
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time. A new spark plug sensor is developed from a commercially available spark plug 

embedded with an optical fiber. Experimental investigations are carried out first in a 

compression expansion machine (CEM) and then in a hydrogen production engine. 

In the present work, we sought to characterise the effects of in-cylinder pressure during 

ignition event on spectral line emissions and to improve the accuracy of SIBS measurements 

by taking into account the pressure dependency of atomic emissions.  

For experiment in CEM, time series spectroscopic analysis of spark discharge plasma 

emission is conducted, and exposure duration is optimized to obtain better atomic emission 

intensity of Hα (656nm) and N (745nm). Visualization of hydrogen flame and local air excess 

ratio measurement are carried out simultaneously. 

For experiment in a hydrogen production engine, first, the correlation between the air excess 

ratio (relative air/fuel ratio) and atomic emission intensity ratio (also known as a calibration 

curve) is examined for different ignition timing under port injection conditions. A calibration 

MAP representing the correlation of air excess ratio (air/fuel) with both intensity ratio and 

in-cylinder pressure during ignition event is generated by considering the effect of in-

cylinder pressure on spectral line intensity. The calibration curve and calibration MAP are 

subsequently used for quantitative measurements of the local air excess ratio for both port 

injection and direct injection strategies.  

A second objective of the present work is to obtain a deepened understanding of mixture 

formation and subsequent combustion in hydrogen IC engine by the application of three-

dimensional numerical simulation. The goal is also to establish a basis for recommendations 
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regarding an optimisation of the combustion concept. Commercial 3D-CFD software ANSYS 

Forte is employed to examine different types of turbulence models in single-cylinder engine 

simulations in order to estimate the suitability of a predictive computation of the hydrogen-

air mixing and combustion process of premixed, partially premixed and non-premixed 

combustion modes that occur in hydrogen direct-injection engines. The software 

incorporates proven Chemkin-Pro solver technology which is the gold standard for use in 

chemical kinetic simulation. ANSYS Forte includes state-of-the-art Automatic Mesh 

Generation (AMG), including Solution Adaptive Mesh Refinement (SAM) and geometry-

based adaptive mesh refinement (AMR) features. 

To evaluate the influence of injection timing (i.e. start of injection) relative to spark timing 

on hydrogen jet structure and mixture formation, experimental data of both CEM and 

research engine are validated by means of numerical results obtained from ANSYS Forte CFD 

package.   

1.3 Thesis outline 

The thesis is organized in 7 chapters as follows: 

Chapter 1 briefly presents the introduction and background of the study. It also highlights 

the motivation and objectives of the current research. The discussion involves the global 

initiatives taken to introduce hydrogen energy to meet current challenges and energy 

demand, literature on hydrogen direct injection spark ignition engines, shortcomings of the 

existing approaches to study mixture formation process, and implementation of spark-
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induced breakdown spectroscopy (SIBS) as a diagnostic tool to investigate local fuel 

concentration in hydrogen direct-injection spark-ignition engines.  

Chapter 2 discusses the combustion characteristics of hydrogen fuel, prospects of using 

hydrogen as a fuel for internal combustion engines (ICE), and global R&D efforts on the 

development of hydrogen direct injection spark ignition(DISI) engine and their challenges. 

The DISI engine can operate fundamentally in two modes: the homogeneous (early injection) 

and the stratified-charge modes (late injection). Internal mixture formation, or direct 

injection, can eliminate many of the combustion abnormalities associated with external 

mixture formation strategies. A comprehensive survey on the state-of-the-art techniques to 

study mixture formation process such as Infrared (IR) absorption, Planar laser induced 

fluorescence (PLIF), Raman scattering, Ion current, Laser-induced breakdown spectroscopy 

(LIBS) and Spark-induced breakdown spectroscopy (SIBS) is presented.   

Chapter 3 presents visualization of jet structure through help of a high-speed video camera 

for hydrogen injected in a constant volume vessel with different ambient pressures. A high-

speed camera, able to capture the evolution of hydrogen jet over time, was used along with 

an Ar-ion laser and metal halide lamp as the light sources to illuminate the hydrogen jet at 

the nozzle exit. This allow the study of jet structure in addition to other physical processes 

resulting from hydrogen gas injection. Time-series images show that jet plume appears to 

penetrate faster when hydrogen is injected with higher injection pressure into a chamber of 

comparatively lower ambient pressure as velocity of the jet or total momentum supplied to 

the fuel jet at the injector exit was higher for increasing the injection pressure. Therefore, 

the injected fluid with additional momentum could accelerate more readily by pushing aside 
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the ambient fluid though density of chamber medium was considerably higher than the 

injected gas. On the other hand, higher ambient pressure resulted in considerably shorter jet 

tip penetration along with wider jet angle which is caused by the higher inertia of the fluid 

elements that the injected fluid must accelerate and push aside. 

Chapter 4 introduces the development of new sensor with an optical fibre housed in the 

centre electrode of the spark plug for SIBS measurement. This sensor is developed from a 

commercially available M12-type spark plug with no major modification to the electrodes, 

leading to stable spark formation. Spectroscopic analysis of spark-plasma emission and high-

speed visualization of spark behavior with different air-excess ratio was studied 

simultaneously in a compression expansion machine (CEM). Exposure duration for 

spectroscopic measurement of spark plasma is optimized to obtain better atomic emission 

intensity of Hα (656nm) and N (745nm). When hydrogen concentration was relatively 

higher, both continuum background emission (i.e. emission from spark plasma) and atomic 

emission intensity of the spectral distribution declines. Results clearly indicates that 

presence of higher fuel concentration in the vicinity of spark gap leads to higher discharge 

energy as the magnitude of both breakdown voltage and current increase though duration 

of spark event becomes shorter with lower air excess ratio. Influence of different injection 

timing on local fuel concentration near spark gap region is characterized in detail. It is found 

that the with late injection the mixture at spark gap region become more stratified which 

ultimately lead to rapid combustion and heat release. 

Chapter 5 explains the experimental work for investigation of mixture formation process in 

a hydrogen direct injection production engine. The test engine and its specifications, 
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configurations and basics of engine operation are discussed. An in-house developed common 

rail injector is used for high pressure hydrogen injection directly into the combustion 

chamber. Retarded spark timing (i.e. higher ambient pressure at the ignition site) resulted 

in lower spectral line intensities as well as weaker background emissions. It is well 

established that with relatively higher pressure and density of atoms or molecules, the 

cooling of expanding plasma accelerates, and the collision probability increases, leading to 

both a weaker broadband continuum and atomic emissions. A “calibration MAP” 

representing the correlation of air excess ratio (relative air/fuel ratio) with both intensity 

ratio and pressure at ignition timing is generated and subsequently used for quantitative 

measurements of local fuel concentrations for both port injection and direct injection 

strategies to demonstrate and explore the effects of pressure dependency of atomic emission 

on the accuracy of the SIBS measurements. Local stratification of the fuel mixture in the 

vicinity of the spark gap location associated with direct injection strategies is confirmed; the 

coefficient of variation of the local air excess ratio is relatively small for measurements made 

using the calibration map. This demonstrates that the measurement accuracy of local fuel 

concentrations through a spark plug sensor can be improved significantly when the pressure 

dependency of atomic emissions is taken into account. 

Chapter 6 presents the numerical simulation performed over a range of global air-excess 

and ratio different injection strategies, through commercial 3D-CFD software ANSYS Forte 

to obtain a deepened understanding of hydrogen jet characteristics and mixture formation 

in hydrogen direct-injection engines. Governing equations for 3D-CFD modeling of internal 

combustion engine (ICE), basic of turbulence modeling and wall treatment, setting the initial 
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and boundary conditions is discussed to best describe the physical model. Concept of inflow 

boundary condition at the nozzle exit was successfully utilized to introduce gaseous 

hydrogen directly into the combustion chamber. G-equation model, mathematically known 

as the level-set method, was used to track the location of the flame front, independent of 

mesh resolution, with a highly efficient numerical technique. CFD simulation data of local 

equivalence ratio supported the claim that accuracy of SIBS measurement can be improved 

significantly by taking into account the pressure dependency of atomic emissions. 

Chapter 7 summarizes the conclusions drawn from this study. 
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CHAPTER: 2  

 

Hydrogen as a fuel for IC engine 
 

2.1 Hydrogen as alternative fuel 

Research on alternate fuel is gaining more attention in recent years but which fuel or fuels 

will emerge and to what extent they will replace the use of conventional fuel are remain to 

be answered. A shift to zero-carbon emission hydrogen systems could fundamentally resolve 

these energy supply and environmental problems. Hydrogen can be obtained from natural 

gas, gasoline, coal-gas, methanol, propane, landfill gas, biomass, anaerobic digester gas, other 

fuels containing hydrocarbons, and water. Obtaining hydrogen from water is an energy 

intensive process called electrolysis, while hydrocarbons require a more efficient reforming 

process. Hydrogen is a universal fuel that could power automobiles, aircraft, spacecraft, 

power plants and appliances, including gas stoves that can operate on mountain-tops. The 

use of hydrogen as a fuel for transportation and stationary applications is receiving much 

favorable attention as a technical and policy issue. Hydrogen fueled engines tend to be more 

energy efficient because of their complete combustion.   

The major challenge in using hydrogen as an automotive fuel is storing it safely and 

efficiently on-board vehicles. Although it is possible to store hydrogen as a high-pressure gas 

in steel containers, disadvantages exist because of the weight of the storage containers and 

the safety hazard in the event of an accident. Other methods of storage for hydrogen include 

solid or liquid hybrids, low temperature cryogenic liquids, or a combination of the two.  



Chapter-2: Hydrogen as a fuel for IC engine 

20 
 

2.1.1 Characteristics of hydrogen as a fuel for IC engine 
 
 

Table 2-1 Properties of Hydrogen and hydrocarbon fuels 

Hydrogen has significantly different properties compared to the more traditional fuels. Table 

2.1 lists the most important physical and combustion-related properties [1-4] as a reference 

for the discussion in the following.  Hydrogen molecule is very light and mobile (high mass 

diffusivity), and shows a very low density at atmospheric conditions. It has wide 

flammability limits, with flammable mixtures from as lean as λ = 10 to as rich as λ = 0.14 (0.1 

Properties  Hydrogen Gasoline Methane 

Molecular weight, (g/mol) 2.016 ~107 16.043 

Density, (kg/m3) 0.08 ~750 0.65 

Mass diffusivity in air, (cm2/s) 0.61 0.05 0.16 

Kinematic viscosity, (mm2/s) 110 1.18 17.2 

Stoichiometric volume fraction, (in air) 29.5 1.65 9.5 

Minimum ignition energy, (mJ) 0.02 0.25 0.28 

Minimum quenching distance, (mm) 0.64 ~2.0 2.03 

Flammability limits in air, (vol%) 4-75 1.0-7.6 5-15 

Flammability limits, (φ) 0.1-7.1 0.7-3.0 0.5-1.67 

Burning velocity at NTP air, (cm/sec) 265-325 37-43 45 

Auto-ignition temperature, (K) 858 501-744 813 

Adiabatic flame temperature, (K) 2390 ~2275 2225 

Normalized flame emissivity, (200K, 1atm) 1.0 1.7 1.7 

Stoichiometric air-to-fuel ratio, (kg/kg) 34.2 14.7 17.1 

Lower heating value, (MJ/kg) 120 45 50 

Higher heating value, (MJ/kg) 142 48 55.5 
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< φ <7.1) which allows smooth engine operation and a wide range of engine power output. 

The flammability limits widen with increasing temperature, with the lower flammability 

limit dropping to 2 vol% at 300
o
C (equivalent to λ = 20/ φ = 0.05) [18]. The lower 

flammability limit increases with pressure [5], with the upper flammability limit having a 

fairly complex behavior in terms of pressure dependence [6] but of lesser importance to 

engines. Engine efficiency increases remarkably by de-throttling and lean operation at low 

engine loads. Homogeneous operation with λ > 2 reduces combustion temperatures below 

the formation temperature of thermal nitric oxides, resulting in virtually zero combustion 

emissions. There is a limit to how lean the engine can be run, as lean operation can 

significantly reduce the power output due to a reduction in the volumetric heating value of 

the air/fuel mixture. 

Further to the flammability limits, the laminar burning velocities of hydrogen remarkably 

differ from those of hydrocarbon fuels. Taking atmospheric conditions (p = 1.013 bar, T = 

293.15 K) as reference, the laminar flame speed of stoichiometric hydrogen-air mixtures (ul 

= 265 cm/s to 325 cm/s) is about seven times higher than the laminar flame speed of 

gasoline and methane (ul = 37 cm/s to 45 cm/s). Even at lean conditions, the flame speed is 

high enough to prevent efficiency losses caused by delayed combustion. In case of high-

pressure hydrogen direct-injection an additional gain of the effective burning velocity due to 

an increased turbulence level can be obtained. In addition, its high burning velocity may 

contribute to a relatively high thermal efficiency with a shorter combustion period at the 

ignition timing close to top dead center (TDC) [7]. 
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The amount of energy needed to ignite hydrogen is about one order of magnitude less than 

that required for gasoline. This enables hydrogen engines to ignite lean mixtures and ensures 

prompt ignition. The easy ignitability of hydrogen-air mixtures shows a considerable 

reduction of cycle-to-cycle variation coefficients compared to gasoline engines enabling 

efficiency-optimized spark-timing settings. Unfortunately, the low ignition energy means 

that hot gases and hot spots on the cylinder can serve as sources of ignition, creating 

problems of premature ignition and flashback. Preventing this is one of the challenges 

associated with running an engine on hydrogen.  

The auto-ignition temperature of hydrogen can be seen to exceed the values for methane and 

gasoline. This makes hydrogen particularly suited for spark ignition operation and unsuited 

for compression ignition. 

2.2 Hydrogen engine technology and current development  

Current researches have focused on high pressure hydrogen injection directly into the 

engine combustion chamber with spark discharge as ignition source [8-11], due to their high 

volumetric efficiency and potential to avoid preignition and backfiring, which are the main 

problems in hydrogen-fueled IC engines. The ability for hydrogen engines to burn cleanly 

and operate efficiently is owed to the unique combustion characteristics of hydrogen that 

allow ultra-lean combustion with dramatically reduced NOx production and efficient low-

engine load operation. In contrast, the same combustion characteristics impose technical 

challenges at high engine-loads due to an increased propensity to preignite the hydrogen–

air mixture and increased NOx production. 
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Due to the challenges of onboard hydrogen storage, current hydrogen-powered internal 

combustion engine vehicles have a limited range and in some cases reduced trunk space 

available compared to their conventional-fuel counterparts. Numerous hydrogen engine-

powered vehicles ranging from two-wheelers to passenger cars, pickup trucks to buses and 

off-road equipment have been designed, built and tested over the last few decades. 

2.2.1 Overview of R&D projects worldwide 

Japan, USA, EU has taken initiatives to shift towards a hydrogen-based transportation system. 

Whether hydrogen will be used in combustion engines or fuel cells in the future depends 

decisively on the extent to which both concepts meet the existing customer requirements 

with regard to driving performance, procurement and operating costs. It is believed that the 

utilization of hydrogen as a fuel for transportation is more likely to be expected in internal 

combustion engines than in fuel cells at least for some decades [12]. 

2.2.1.1 In Japan 

In Japan’s National Basic Energy Plan, the government has stated that the aim of the policy 

includes the establishment of a hydrogen society ahead of other countries, starting in 2014. 

They developed a roadmap that specifies expansions in popularization efforts for household 

and industrial fuel cells, cost reductions for hydrogen fuel and FCVs, and the establishment 

of a large-scale hydrogen supply chain that includes transport of hydrogen by sea. The 

introduction of hydrogen power generation for industrial purposes is a priority goal and 

policies are being developed to position hydrogen energy as a central secondary energy 

source for other applications as well. 



Chapter-2: Hydrogen as a fuel for IC engine 

24 
 

In Japan, Professor Furuhama at the Musashi Institute of Technology (currently Tokyo City 

University) began his research on hydrogen IC engine since 1970. In 1974, he demonstrated 

the drive of “Musashi No. 1,” the first 2000 cc hydrogen engine vehicle in Japan, which was 

developed by modifying a Nissan Junior 2-ton truck. Major improvements were made later 

and vehicle No. 10, namely, “Musashi No. 10,” was exhibited at the COP3 meeting held in 

Kyoto in 1997.  

 

 

 

 

 

Fig.2.1 RX-8 Hydrogen RE (Source Mazda Motor) 
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Since the announcement of the Mazda HR-X, the first hydrogen rotary engine vehicle, at the 

1991 Tokyo Motor Show, Mazda has been promoting research and development of hydrogen 

rotary engines. The RX-8 Hydrogen RE (see Fig.2.1) and the Premacy Hydrogen RE Hybrid 

(see Fig.2.2) are equipped with a dual-fuel system, so the vehicles can run on gasoline if there 

is no hydrogen available. The RX-8 Hydrogen RE is equipped with two compressed hydrogen 

tanks with an operating pressure of up to 350 bar, giving the vehicle a range of 

approximately 100 km in hydrogen operation plus an additional 550 km on gasoline. A 

combination of lean and stoichiometric hydrogen combustion operation results in a 23% 

improvement in fuel economy compared to gasoline operation, but at the cost of significant 

reductions in power and range. The performance of the vehicle is reduced from 154 kW in 

gasoline mode, to 80 kW in hydrogen operation, with a torque of 140 Nm [92]. The maximum 

speed is reduced from 234 kph to 169 kph. In 2007 Mazda signed a ‘memorandum of 

understanding’ to provide around 30 RX‐8 Hydrogen RE’s to HyNor – a national development 

project of Norway which promotes the use of hydrogen in the transport sector, with the 

ultimate plan being a roadway stretching 580km from Oslo to Stavanger, complete with 

hydrogen fueling stations along the route [93]. In 2007, Mazda unveiled the Mazda Premacy 

RE hybrid which incorporates a hybrid system that improves energy efficiency, delivering 

improved acceleration. As in the hydrogen RX‐8, the on‐board RENESIS rotary engine can 

burn either gasoline or hydrogen, however in the Premacy, the rotary engine does not move 

the vehicle directly; it instead powers a generator that charges a small lithium-ion battery 

pack which helps power an 110kW electric motor. The vehicle can accelerate to 60 mph in 

around ten seconds and reach a top speed of more than 100 mph. Driving range is about 

200km using hydrogen, with the additional 400km from the gasoline. The hydrogen tank 
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with 110 litres at 350 bar stores up to 2.4 kg hydrogen. The Premacy Hydrogen RE Hybrid 

with a driving range of 200 km.  

 

Fig.2.2 Premacy Hydrogen RE (Source Mazda Motor) 
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Next-generation Environmentally Friendly Vehicle Development and Commercialization 

Project (EFV21) of the Japanese Ministry of Land, Infrastructure, and Transport (MLIT) ran 

in two terms between 2005 and 2010; and was coordinated by the National Traffic Safety & 

Environment Laboratory (NTSEL). It aimed at reducing CO2 emissions from heavy duty 

engines and focused on H2ICEs as opposed to FCVs or BEVs in order to obtain high specific 

power outputs. It resulted in the development of DI injectors, mapped combustion strategies 

in single cylinder engines (metal and optical), evaluated a multi-cylinder engine towards the 

project target power output and looked at different ways of reaching NOx emission 

standards [11,13-16]. 

 

 

Parallel to the work performed within the NTSEL project, Tokyo City University was also 

involved in research leading to the demonstration of 2 hydrogen vehicles. Iwasaki et al. [17] 

report the conversion of 2 engines to turbocharged PFI operation on hydrogen. These were 

used in a light duty truck with a hybrid powertrain (with the electric drive used to fill in low 

speed torque), see Fig. 2.3, and a ‘microbus’ (19 passengers, see Fig. 2.4), with the latter 

serving for over 2 years and covering more than 15000 km within the year 2014 (it was put 

Fig.2.4 Microbus equipped with a 4.7 L 

105 kW hydrogen engine 
Fig.2.3 Hybrid light duty truck equipped 
with a 4 L 91 kW hydrogen engine 
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out of service in March 2013-personal comm.). Lean operation was used to avoid the 

formation of NOx, so that after-treatment was not necessary; and turbocharging recovered 

most of the power loss due to the lean mixtures. Both vehicles were tested on the JE05 test 

cycle and emitted NOx emissions far below the Japan Post New Long-Term Regulation. The 

authors devoted much work to devising measures for avoiding abnormal combustion 

(backfire in particular), primarily through changes in the ignition system. 

2.2.1.2 In USA 

In the U.S., between 2004 and 2011 the Office of Energy Efficiency and Renewable Energy of 

the Department of Energy’s FreedomCAR and Vehicle Technologies Program sponsored 

work at the Argonne and Sandia National Laboratories targeted at reaching specific peak and 

part load efficiencies, and NOx emissions. In order to reach these targets, experimental work 

was undertaken on metal and optical single cylinder engines supported by numerical work 

(CFD simulations) [18-29]. 

2.2.1.3 In EU 

In Europe, a three-year (2004-2007) Integrated Project called HyICE [30] resulted in the 

demonstration of engine concepts exceeding a specific power output of 100 kW/l and a peak 

efficiency of 42%. The project was funded in the 6th Framework Programme of the European 

Commission and coordinated by BMW. The consortium consisted out of industrial and 

academic partners and investigated hydrogen’s potential on single and multi-cylinder 

engines, with DI as well as cryogenic PFI; developed 1D and CFD modeling tools; DI injectors, 

and looked at optical measurement techniques to elucidate the particularities of hydrogen 
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combustion in engines. Other regional activities in Europe resulted in the conversion of 

passenger cars [31,32] and a fork lift truck to H2ICE operation [33], in the framework of 

demonstration programs. 

2.2.2 Mixture formation strategies for hydrogen engine 

The proper design of the mixture formation process is crucial for achieving high engine 

efficiencies while meeting more and more stringent emissions targets. Similar to 

conventionally fueled engines, hydrogen engines have gone through continuing 

improvement and refinement in terms of mixture formation strategies. The main 

classification of mixture formation strategies is based on the location of the formation of the 

hydrogen and conventional fuel mixture: External mixture formation refers to where 

hydrogen is introduced outside the combustion chamber (usually within the intake 

manifold), which contrasts with internal mixture formation, where the hydrogen is 

introduced directly into the combustion chamber. Modern hydrogen combustion engines 

almost exclusively use electronically controlled fuel-injection systems; however, the 

requirements and specifications for these systems change widely based on the injection 

location and the temperature of the injected fuel. Generally, hydrogen injection systems for 

external mixture formation are operated at lower injection pressures (2-8 bar) compared to 

systems for hydrogen direct injection (5-250 bar). Also, the exposure of injectors to in-

cylinder temperatures and pressure in combination with increased injection pressures for 

internal mixture formation systems still requires further injector development to reach 

production standards in terms of durability [34]. Research and development have also been 

performed on external mixture formation concepts with cryogenic hydrogen [35-40] posing 
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challenges to the injection system due to extremely low temperatures (boiling temperature 

of hydrogen is approximately 253oC) and related issues, for example, injector icing.  

 

 

Fig.2.5 Potential of specific power of various engine concepts 

 

2.2.2.1 External mixture formation 

Initial implementation of hydrogen fuel technologies included the usage of external mixture 

formation by either injecting hydrogen into an intake manifold or near the intake valve with 

port fuel injection (PFI) [41,42]. External mixture formation by means of port fuel injection 

(PFI) has been demonstrated to result in higher engine efficiencies, extended lean operation, 

lower cyclic variation and lower NOx production compared to internal mixture formation 
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through direct injection (DI) [43,44]. This is the consequence of the higher mixture 

homogeneity due to longer mixing times for PFI as well as decreased mixing for DI as the 

intake generated turbulence contributes less to the mixing. Additionally, the cost and 

complexity are significantly lower for PFI than for DI [45] and retrofitting an existing engine 

is possible. On the other hand, the power output of an external mixture formation hydrogen 

engine is limited because of the decrease in volumetric efficiency: due to the low density of 

hydrogen and small air requirement for stoichiometric mixtures, the cylinder volume taken 

up by the hydrogen in a stoichiometric mixture amounts to 29.5%. Assuming a constant fuel-

to-air equivalence ratio of 0.5 (λ = 2) results in a theoretical maximum power output of the 

hydrogen engine that is only about 50% of a regular gasoline engine in stoichiometric 

operation (see Fig.2.6). Thus researchers have investigated the potential of using 

supercharging in combination with constant lean air–fuel ratio operation to mitigate the 

significant power loss [46,47]. An effective way to limit the power loss compared to gasoline 

or diesel engines is by running hydrogen port-injection engines at stoichiometric air–fuel 

ratios. However, stoichiometric port-fuel injection operation is prone to combustion 

anomalies and also requires an aftertreatment system to reduce the level of oxide of nitrogen 

emissions. As shown in Fig.2.6, stoichiometric H2 PFI operation results in a theoretical power 

density of approximately 86% compared to gasoline. The mixture formation concepts 

employing hydrogen port injection result in compromises either in terms of power density 

with lean air–fuel ratio approaches or engine efficiency with stoichiometric concepts. 

However, the most serious problem with PFI is the high possibility of pre-ignition and 

backfire, especially with rich mixtures. 
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Fig.2.6 Theoretical power density of a PFI H2 engine compared to stoichiometric gasoline 

operation as a function of equivalence ratio and charging strategy 

Pre-ignition is a problem much more serious in hydrogen engines then in other internal 

combustion engines because of the lower ignition energy of hydrogen–air mixtures, wider 

range of flammability and smaller quenching distance of hydrogen. Here, preignition is 

defined as combustion prior to spark discharge, and in general, results from surface ignition 

at engine hot spots, such as spark electrodes, valves or engine deposits. The limiting effect of 

preignition is that a preignition event will advance the start of combustion and produce an 

increased chemical heat release rate. In turn, the increased heat-release rate results in a 

rapid pressure rise, higher peak cylinder pressure, acoustic oscillations and higher heat 

rejection that leads to higher in-cylinder surface temperatures. The latter effect can advance 

the start of combustion further, which in turn can lead to a runaway effect, and if left 

unchecked will lead to engine failure [2]. It is therefore a necessity for practical application 
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that preignition is avoided. The second combustion anomaly backfire or backflash occurs 

when the fresh charge is ignited before the intake valve is closed and results from the 

hydrogen mixing with hot residual gases that remain in the cylinder after combustion. The 

appearance of backfire is difficult to predict. Generally, backfire arises at high thermal loads. 

Possible adaptations to prevent backfire are:  

1. The use of cold-rated spark plugs, in order to have low surface temperatures on the tip. A 

waste spark ignition system has to be avoided. Using an ignition coil with grounding will 

avoid residual voltage on the spark plug.  

2. The use of cooled exhaust valves (e.g. sodium cooled exhaust valves)  

3. A cooling system designed to provide uniform coolant flow rates.  

2.2.2.2 Internal mixture formation 

Direct injection of hydrogen has long been viewed as one of the most attractive options for 

advanced H2ICE to avoid combustion anomalies and increase the power density or 

volumetric efficiency while achieving near-zero emissions. Similar to common classifications 

for gasoline engines, hydrogen DI mixture formation strategies have also been grouped in 

jet-guided, wall-guided, and air-guided concepts (see Fig.2.7) [48]. Based on the start of 

injection (SOI), one can differentiate early DI and late DI operation; however, no clear 

threshold between these two categories has been defined. Fig.2.8 shows a schematic of 

different hydrogen DI strategies and their respective injection timings. In order to avoid 
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displacement of fresh charge by hydrogen of low density, the start of injection even for early 

injection is usually set after intake valve closing. 

 

Fig.2.7 Wall, air and spray-guided combustion concepts 

 

 

Fig.2.8 Schematic of injection strategies for DI [223]. 

 

The preignition problem is controlled by timing injection to both minimize the residence 

time that a combustible mixture is exposed to in-cylinder hot-spots (i.e., late injection) and 

allow for improved mixing of the intake air with the residual gases. The improved volumetric 
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efficiency (equal to PFI gasoline or higher) and the higher heat of combustion of hydrogen 

compared to gasoline provides the potential for DI-H2ICE power density to be approximately 

115% that of the identical engine operated on gasoline [49]. The challenge with DI-H2ICE 

operation is that in-cylinder injection requires hydrogen–air mixing in a very short time. For 

early injection (i.e., coincident with IVC) maximum available mixing times range from 

approximately 20–4 ms across the speed range 1000–5000 rpm, respectively. In practice, to 

avoid preignition, start of injection (SOI) is retarded with respect to IVC, and mixing times 

are further reduced.  

 

Fig.2.9 Effect of injection timing (SOI) on engine performance 

Given the high probability of incomplete mixing with late injection, much effort has been 

devoted to understanding the effect of injection timing on DI-H2ICE properties. The effect of 

SOI on NOx emissions has been investigated by Homan et al. [50], Glasson and Green [51] 
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and Eichlseder et al. [49] where it is observed that the effect of SOI on NOx emissions is not 

simple: NOx emissions increase with retard of SOI in several data sets, and decrease in others. 

Oikawa et al. reported a “plume ignition combustion concept” (PCC) for hydrogen DISI 

engines, denoting the ignition of a rich mixture plume during or right after an injection event 

[9]. In their study, the injector was mounted close to the spark plug to achieve jet-guided 

combustion with the jet being directed towards the spark plug using high injection pressures 

(200 bar). This PCC combustion with late injection strategy was shown to substantially 

reduce NOx emissions at high speed and under high load conditions while maintaining high 

thermal efficiency and power as shown in Fig.2.9.  

2.3 Fuel Concentration Measurement Techniques 

The local equivalence ratio near the spark plug at the time of the spark discharge is 

particularly important for successful ignition, because the jet-guided system generates a 

stratified fuel concentration near the spark plug in a DISI engine. In addition, the mixture 

distribution around the spark plug, together with fluid motion, strongly influences the 

combustion initiation, which subsequently affects the engine performance, efficiency, and 

emissions. Thus, a fundamental understanding of mixture formation processes is necessary 

to optimise DI-H2 ICE operation. To better understand how to both achieve an optimal local 

mixture and control the large-scale stratification, a diagnostic tool for providing information 

on the mixture distribution in practical engines should be developed. Instantaneous fuel 

concentration measurements in production engines will greatly aid in engine design and 

optimisation. 
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There are several approaches to studying fuel concentrations in an SI engine, including 

infrared (IR) absorption, planar laser induced fluorescence (PLIF), Raman scattering, laser-

induced breakdown spectroscopy (LIBS) and spark-induced breakdown spectroscopy 

(SIBS) or spark emission spectroscopy. 

2.3.1 Planar laser induced fluorescence (PLIF) 

Laser diagnostics are widely used in fundamental combustion science, research, and 

development to investigate transient phenomena without influencing the system under 

study by inserting probes and surfaces. LIF measurements have been used widely because 

the LIF signal is relatively strong and provides two-dimensional fuel concentration 

information at a specified time. Figure 2.10 shows the simplified PLIF experimental facility.  

Tomita et al. [52] applied the PLIF method to study the fuel concentration distribution in a 

transient hydrogen jet. Results showed that each transient hydrogen jet had different 

configurations and concentration distributions. Kaiser and White [18] performed an optical 

study of mixture preparation in a hydrogen-fuelled engine using a PLIF technique; their 

report favoured increased injection pressure and careful nozzle design. Volker et al. [53,54] 

reported potential adverse effects that added tracers might have on mixture formation, and 

combustion. In his study quantitative equivalence ratio maps are estimated for the fuel 

injection event within a single cycle in a direct-injection spark-ignition engine. Spray 

velocities determined from the moving fuel cloud are in good agreement with previous 

particle image velocimetry measurements. However, these optical methods require changes 

in the engine combustion chamber design because of the need for optical windows. 

Therefore, these methods are difficult to apply to commercial engines. 
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Fig.2.10 Experimental set-up for PLIF measurement 

 

2.3.2 Infrared (IR) absorption technique 

A 3.392-μm He-Ne laser was used for in-situ measurements of fuel concentrations for 

combustion diagnostics [55-26]. The research group at Heat power engineering laboratory 

of Okayama University was the first to report the possibility of measuring fuel concentration 

near the spark plug in a test engine [59]. Figure 2-10 shows the optical sensor installed in a 

spark plug. This sensor was developed by modifying a commercially available spark plug 

which makes it possible to install it in a practical engine and measure the fuel concentration 

near the spark plug under firing conditions. Subsequently, Tomita et al. used an optical 

sensor with a pair of sapphire rods to pass laser light through the combustion chamber of a 

practical engine; they also discussed several of the factors that affected measurement 

accuracy [60,61]. Their sensor has also been applied to practical SI engines and direct-
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injection gasoline engines [62]. We developed an optical spark-plug sensor with a double-

pass measurement length using an infrared absorption technique for measuring 

hydrocarbon fuel concentrations [63,65]. The results show that during the compression 

stroke, the characteristics of the mixture formation near the spark plug differed according to 

the injection timing. Laser infrared absorption technique indicates higher measurement 

uncertainty even in lean mixture conditions. However, the mixture is ignited near the spray 

plume or the vapour mixture around the spray in a spray-guided DISI engine, so it is 

important to measure the equivalence ratio at the spark point. It is very difficult to measure 

the fuel/air ratio inside an engine cylinder, even using the absorption technique, due to the 

lack of absorption bands at visible and infrared wavelengths. 

 

Fig.2.11 Schematic diagram and photograph of an IR spark plug sensor 
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2.3.3 Raman scattering 

Raman spectroscopy is a spectroscopic technique based on inelastic scattering of 

monochromatic light, usually from a laser source. Inelastic scattering means that the 

frequency of photons in monochromatic light changes upon interaction with a sample. 

Photons of the laser light are absorbed by the sample and then reemitted. Frequency of the 

reemitted photons is shifted up or down in comparison with original monochromatic 

frequency, which is called the Raman Effect. This shift provides information about 

vibrational, rotational and other low frequency transitions in molecules. A Raman photon is 

emitted if a molecule then undergoes a transition to a higher vibrational energy state than 

its original state (Stokes-Raman) to a lower energy vibrational state (Anti-Stokes Raman). 

Figure 2.12 shows the difference in energy or wavelength of a scattered light from a material 

is characteristic for a particular bond in its molecular structure. The various energy shifts 

associated with different molecular vibrations leads to a Raman spectrum which is unique 

for each molecule and provides a precise spectral fingerprint. Raman spectroscopy can be 

used to study solid, liquid and gaseous samples. In recent years, several papers have been 

published in which Raman scattering was used for the investigation of mixture formation 

processes, exhaust gas recirculation, and cold start phenomena of conventional [66] or 

propane fired spark ignition engines [67,68]. When applying Raman scattering for the 

investigation of engines with direct fuel injection, the occurrence of droplets is an additional 

source of disturbance, because the elastically scattered light from fuel droplets can generate 

signal intensities which are up to 20 orders of magnitude larger than the Raman signals. 
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Linear Raman scattering has been used for the investigation of the mixture formation inside 

an optically accessible gasoline direct injection spark ignition engine [69]. The 

concentrations of O2, N2, H2O, and isooctane have been measured simultaneously and cycle 

resolved along a line of nearly 1 cm at three different locations inside the combustion 

chamber. By means of polarization-resolved detection optics, it was possible to separate the 

highly polarized Raman signals from unpolarized contributions from light emissions by stray 

light from surfaces, background luminescence, or laser-induced fluorescence. However, this 

measurement technique provides very small signal intensities, so its careful adaptation to 

the particularity of the test object is very important for successful utilization. 

 

Fig.2.12 Energy-level diagram showing the states involved in Raman signal. The line 

thickness is roughly proportional to the signal strength from the different transitions 
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2.3.4 Laser-induced breakdown spectroscopy (LIBS) 

Laser-induced breakdown spectroscopy (LIBS) (or laser-induced plasma spectroscopy, 

LIPS) has advanced dramatically due to the availability of online real-time information on a 

surrogate material with no sample preparation. LIBS of gases are possible using high power 

laser pulses. When a short-pulse laser is focused into air or other gases, the laser beam 

creates localized plasma. The collection and spectral analysis of the plasma emissions allows 

the qualitative identification of atomic species. Ferioli et al. [70] used LIBS on engine exhaust 

gas to illustrate the ability of this technique to measure the equivalence ratio of SI engines, 

using the ratios of C/O and C/N atomic peaks derived from the measured spectra. Phuoc [71] 

used a laser-induced spark to measure the ignition and fuel-to-air ratio of CH4-air and H2-

air combustible mixtures simultaneously using the measured spectral peak ratio Hα (656 

nm)/O (777 nm). Shudo and Oba [72] measured the mixture formation characteristic with a 

hydrogen jet in a nitrogen-filled constant-volume chamber using LIBS techniques. Kawahara 

et al. [73,74] also report measurements of equivalence ratio using LIBS technique and 

discussed the accuracy of spatially, temporally, and spectrally resolved measurements. 

Figure 2.13 shows the Schematic diagram of experimental apparatus for Laser Induced 

Breakdown Spectroscopy (LIBS) [73].  

However, IR absorption is not suitable for measuring the hydrogen/air ratio due to the lack 

of absorption bands at visible and infrared wavelengths. PLIF and LIBS require major engine 

modifications including optical access, which limit their application to production engines. 

Quantitative measurements of the cycle-to cycle variations in the mixture strength at or near 

the ignition site are comparatively rare for practical hydrogen SI engines. 
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Fig.2.13 Schematic diagram of experimental apparatus for Laser Induced Breakdown 

Spectroscopy (LIBS) 

 

2.3.5 Spark-induced breakdown spectroscopy (SIBS) 

With SIBS, the signal detection and spectroscopy are similar to LIBS; however, spark 

generation occurs between two electrodes, in which the spark itself is used as the light 

source to estimate the equivalence ratio in the spark plug. SIBS can therefore be used in a 

combustion chamber with no engine modifications, because the plasma excitation can be 

implemented using a conventional spark plug. Spark-emission spectroscopy has been 
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applied to measure the equivalence ratio in a DISI engine [75-77]. Merer et al. [75] observed 

the light emissions from a spark discharge by inserting a fiber optic cable through the centre 

electrode of a spark plug, to investigate the possibility of determining the fuel-air ratio in the 

spark gap at ignition with spectroscopy. He observed the total broadband light emission 

from the spark and the light emission centred at 385 nm from the cyanogen radical (chemical 

formula CN) for varied f and residual gas concentrations. Ando and Kuwahara [76], and 

Fansler et al. [77] reported individual measurements of the equivalence ratio at the spark 

gap using the ratio of CN (388 nm) emission intensity and OH (306 nm) radical intensity 

from the spark that initiates combustion. They determined the cycle-resolved local fuel–air 

ratio in the spark gap, controlled the large-scale stratification, and evaluated the utility of 

SIBS as an engine diagnostic tool. However, it is difficult to detect the equivalence ratio under 

lean mixture conditions due to lack of the linearity of CN/OH emission intensity ratio. Letty 

et al. [78] analyzed emission spectra from electrical and laser sparks in flowing methane–air 

mixtures of various compositions and discussed the differences and similarities between the 

electrical and laser sparks in the context of their emission. The emission spectra from the 

laser spark were characterized by a weak continuum, onto which several strong atomic lines 

and some molecular bands were superimposed, in contrast to the spectra of electrical spark 

where a strong continuum, few atomic lines and several strong molecular bands were 

evident. All of these studies require engine modification for optical access to the combustion 

chamber from outside.   Kawahara et al. [79] used the SIBS technique to measure the local 

equivalence ratio in a laminar premixed flame of a CH4/air mixture. Spectrally resolved 

emission spectra of plasma generated by a spark plug were investigated for their potential 

to measure local fuel concentrations in a premixed mixture. The spectrum was measured 
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through an optical fibre housed in the centre electrode of the spark plug, which makes this 

technique suitable for measuring the equivalence ratio in the spark gap at ignition timing, in 

production engines without engine modification. Roy et al. [80] further improved the spark-

plug sensor to measure the local fuel–air concentration in the spark gap at the time of 

ignition in a fired, jet-guided hydrogen SI-engine operated under stratified-charge 

conditions using SIBS. Tasyrif et al. [81] investigated the mixing process of a hydrogen jet in 

a constant-volume vessel and characterised the spatial distribution of the equivalence ratio 

across the jet and along its axis. Later, they reported the effects of the ambient pressure on 

fuel concentration measurements for a jet of hydrogen injected into a nitrogen environment 

with different ambient pressures; also, local concentrations were measured at various spark 

locations in a constant-volume vessel [82]. 

2.4 Summary 

Shifting to hydrogen energy can have a profound positive impact on the Earth’s biological 

systems. The wide-flammability limits, the fast fuel conversion, the reliable ignition behavior 

and the carbon-free combustion make hydrogen an ideal fuel for internal combustion engine 

applications. Advanced hydrogen-engine concepts are based on direct-injection (DI) fuel 

systems. In contrast to port-injection, DI not only avoids loss of power due to low volumetric 

efficiency, but also can mitigate combustion problems such as knock, backfire, and pre-

ignition, which have detrimental effects on engine performance and emissions. An area of 

necessary research and development is the improvement of the hydrogen injectors for DI. 

The exposure of injectors to in‐cylinder temperatures and pressure in combination with 

increased injection pressures for internal mixture formation systems still requires further 
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injector development to reach production standards in terms of durability. Extent of benefit 

from DI depends in great degree on the injection strategy and the subsequent mixture 

formation. The local equivalence ratio near the spark plug at the time of the spark discharge 

is particularly important for successful ignition; in addition, the mixture distribution around 

the spark plug, together with fluid motion, strongly influences the combustion initiation, 

which subsequently affects the engine performance, efficiency, and emissions. Therefore, 

understanding the details of injection and mixing is an imperative step to improve the 

efficiency of future hydrogen engines. To better understand how to both achieve an optimal 

local mixture and control the large-scale stratification, a diagnostic tool for providing 

information on the mixture distribution in practical engines should be developed. 

Instantaneous fuel concentration measurements in production engines will greatly aid in 

engine design and optimisation. 
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CHAPTER: 3 

 
Investigation of Hydrogen jet in a confined vessel 
 

3.1 Overview of turbulent jet 

Whenever a moving fluid enters a quiescent body of the same fluid, a velocity shear is created 

between the entering and ambient fluids, causing turbulence and mixing. The Jet flow occurs 

when a stream of one fluid mixes with a surrounding medium, at rest or in motion. Such 

flows occur in a wide variety of situations, and the geometries, sizes, and flow conditions 

cover a large range. Fuel gases are generally injected into still air at high speed, usually at 

Mach number, Ma, greater than 0.3, in order to enhance turbulence and so mixing with the 

oxidant like oxygen in surrounding air. This implies that generally, the hydrogen jet binary 

mixture flow would also most probably be expected to be turbulent and compressible. This 

means that during jet propulsion, the flow gas mixture densities vary greatly with time and 

space as a result of high injection velocity, temperature changes, intense mixing between fuel 

gas and air. In the case of hydrogen gas diffusing in air these density variations near the jet 

boundary mixture are quite large because of the large mass diffusivity of the hydrogen gas 

in air medium. In addition, the large initial density difference between that of the injected 

hydrogen gas and ambient surrounding air which can be as high as 1400 % contributes to 

these large density variations.  



Chapter-3: Investigation of Hydrogen jet in a confined vessel 

61 
 

3.1.1 Steady jets  

Jets are canonical flows that have been widely studied by many researchers, especially 

steady jets. The basic structure of a steady jet includes a potential core that has not felt the 

effects of viscosity and, therefore, has a velocity equal to that at the nozzle exit. Next, the flow 

goes through a transitional development region, and then finally becomes fully developed. 

Figure 3.1 diagrams these regions of a steady circular jet [1].  

 

Fig.3.1 Definition sketch of circular turbulent jets [1]. 

In the fully developed region the flow becomes self-similar and the radial velocity profile, 

U(r,z), normalized by the centerline velocity, UCL, is only a function of the non-dimensional 

distance, η = 2r / dn , where r is the radial position and dn is the diameter of the nozzle exit. 

These relations are represented in equations (3.1) and (3.2).  

      
 U(r,z)

𝑈𝐶𝐿
 = 𝑓(𝜂)         (3.1) 
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and      
 𝑈𝐶𝐿

𝑢𝑛
 =

𝑘𝑑

𝑧 𝑑𝑛⁄
           (3.2) 

where z is the distance from the exit, un is the flow velocity at the nozzle exit, and kd is a 

constant that has been experimentally been determined to be approximately 5.0 [2]. As seen 

in equation (3.2), the centerline velocity scales with the inverse of distance from the exit 

plane.  

In a direct-injection engine, the fuel is injected directly into the chamber through injector 

and then the subsequent fuel jets spread across the combustion chamber. Understanding 

physics of the gas jet is necessary to study the behavior of fuel jet and its interaction with the 

surrounding air in the engine cylinder. Although the main concern with automotive injection 

is the transient behaviour, fundamental information on steady jets can provide a basis for 

understanding the structure and scaling of the transient jet.  

3.1.2 Transient jets  

The structure and properties of incompressible transient jets or impulsively started jets have 

been studied for a wide range of applications. Turner [3] described the structure of plumes 

when studying atmospheric mixing in buoyant plumes. A plume was described as consisting 

of a spherical cap, called a spherical head vortex, which is supplied with additional buoyancy 

and momentum from a plume below. It was shown that the plume displays self-similarity 

characteristics throughout its evolution. Figure 3.2 illustrates this initial description of a jet 

or plume [4]. The jet consists of a spherical vortex flow interacting with a steady-state jet. 

The vortex of radius moves away from the nozzle at a bulk velocity that decays with the  
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Fig.3.2 Turbulent transient jet model [4] 

distance z from the nozzle. The size of the vortex grows continuously due to the entrainment 

of mass from the steady-state jet which pushes it from behind. The jet behind the vortex is 

considered to be in a steady state, which is confirmed by the work of Kuo and Bracco [5]. 

Turner's plume was used as the basic structure of a transient starting jet by many 

researchers. Abramovich and Solan [6] used this model to develop analytical expressions for 

the velocity of the spherical vortex in the near and far fields of a liquid jet under laminar 

conditions with low Reynolds number. It was observed that the velocity of the spherical 

vortex varies proportional to the distance similar to the axial velocity of a steady state jet 

only with differing constants. The velocity of the spherical vortex was found to be 

approximately half that of a fluid element in a steady jet. Abramovich and Solan [6] showed 
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that the half width and maximum axial velocity show similarity characteristics, both making 

the jet appear to start from a virtual origin different from the geometric origin. The virtual 

origin was found to be proportional to the exit diameter and the square root of the Reynolds 

number.  

3.1.2.1 Incompressible transient jets  

A steady, incompressible turbulent jet may be defined as a region of finite thickness, formed 

between two neighbour flows, with a continuous distribution of velocity, temperature and 

species concentration which result from turbulent disorderly movement of eddies cause by 

the instability of the tangential separation surface and exchange of matter. The 

compressibility effects in a flow can be neglected if the maximum Mach number is below 0.3. 

Incompressible jets have been studied extensively in the past [1,7,8]. As one fluid is injected 

into another fluid with uniform pressure field, a mixing layer is formed between the two 

fluids. Mass from the surrounding fluid is entrained in the injected fluid. Experimental 

investigations by Ricou and Spalding [8] concluded that, the rate of entrainment is 

proportional to the distance from the nozzle and to the mass injection rate for 

incompressible air jets issued from the round nozzle into stagnant air. A steady-state jet can 

be divided into three regions [1]. In the initial region the velocity in the potential core of the 

jet remains constant and is equal to the initial velocity. The end of the initial region is marked 

by the disappearance of the potential core because of the thickening of jet boundary layer. 

The transition region may be defined as the region in which the jet viscosity distribution 

becomes fully developed. In the fully developed region, the velocity profile is self-similar.  
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When the densities of the injected fluid and surrounding fluid are different, both the 

entrainment rate and centerline velocity are different. However, the similarity of the profiles 

in the jet is still preserved at some distance from the nozzle and has been shown to behave 

like a jet of similar density as its surroundings when the nozzle diameter is replaced by the 

equivalent diameter given in equation (3.3) [2]: 

      𝑑𝑒𝑞  = 𝑑𝑛 (
𝜌𝑛

𝜌𝑐ℎ
)
1 2⁄

        (3.3) 

where ρn is the density of the injected fluid at the nozzle exit and ρch is the density of the 

chamber fluid. For incompressible jets the nozzle exit density, ρn , is density of the injected 

fluid at the chamber pressure. 

3.1.2.2 Compressible transient jets  

The propagation of a turbulent jet in any medium is characterized basically by the thickness 

of the zone of turbulent mixing and by the profiles of velocity, temperature, concentration, 

and other parameters of the liquid or gas in the cross sections of the flow. When a fluid moves 

at speeds comparable to its speed of sound, density changes become significant and the flow 

is termed compressible. Probably the two most important and distinctive effects of 

compressibility on flow are (1) choking, wherein the duct flow rate is sharply limited by the 

sonic condition, and (2) shock waves, which are nearly discontinuous property changes in a 

supersonic flow. An incompressible flow requires only a momentum and continuity analysis. 

Whereas for compressible flow, if the density change is significant, it follows from the 

equation of state that the temperature and pressure changes are also substantial. Large 
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temperature changes imply that the energy equation can no longer be neglected. Therefore, 

the work is doubled from two basic equations to four- 1. Continuity equation, 2. Momentum 

equation, 3. Energy equation, 4. Equation of state; to be solved simultaneously for four 

unknowns: pressure, density, temperature, and flow velocity (p, ρ, T, V). 

The Mach number, defined as Ma = V/a, (V is the flow velocity and a is the speed of sound of 

the fluid) is the dominant parameter in compressible-flow analysis, with different effects 

depending upon its magnitude. The Mach number is an index that used to define the 

following flow regimes:  

 Ma < 0.3: incompressible flow, where density effects are negligible. 

 0.3 < Ma < 0.8: subsonic flow, where density effects are important, but no shock waves 

appear. 

 0.8 < Ma < 1.2: transonic flow, where shock waves first appear, dividing subsonic and 

supersonic regions of the flow. Powered flight in the transonic region is difficult 

because of the mixed character of the flow field. 

 1.2 < Ma < 3.0: supersonic flow, where shock waves are present but there are no 

subsonic regions. 

 3.0 < Ma: hypersonic flow [9], where shock waves and other flow changes are 

especially strong. 

As the Mach number increases above 0.3, compressibility effects have to be taken into 

account in establishing nozzle exit conditions. The similarity of profiles is still valid in the 

fully developed region where the local Mach numbers are low. However, the effect of 

compressibility on the nozzle density and velocity must be incorporated in the scaling. 
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3.1.2.2.1 Under-expanded jets 

When the pressure ratio between the outlet and inlet of an orifice or nozzle is sufficiently 

dropped to cause the pressure at the exit to be higher than the ambient surroundings, the 

complex flow that results is termed as under-expanded jet. At the nozzle exit the flow is 

choked, expands upon leaving the nozzle, and accelerates to supersonic velocities. The jet is 

expanded radially at the nozzle exit and the jet boundary also forms an expanded shape. A 

complex pattern of expansion waves result at the outer rim of the exit as shown in Fig.3.3 

[10]. The expansion waves originating at the nozzle exit corner are reflected at the jet 

boundary as compression waves, which coalesce to form the so-called barrel shock that is 

terminated by a normal shock also called the Mach disk. These barrel shock structures can  

 

              Fig. 3.3 Schematic of under-expanded jets structure [10] 
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be repeated several times diminishing in strength due to viscous effects. The Mach disk forms 

if the nozzle exit to chamber pressure ratio is above 2.1 [11]. Flow immediately after the 

Mach disk is subsonic, whereas flow behind barrel shock is still supersonic. The flow that 

passes through the barrel shock is again compressed by the reflected shock and separated 

from the flow behind the Mach disk by the slip line. Along the jet axis, the pressure 

continuously decreases to values below the ambient pressure value. The pressure is 

increased to the ambient pressure value by passing through the Mach disk. For moderately 

under expanded flows with a nozzle to chamber pressure ratio below 2.1, a Mach disk does 

not form and instead the barrel shock is able to intersect at the flow axis [11]. Experimental 

investigations usually correlate the location and size of the Mach disk to the nozzle pressure 

ratio (NPR), NPR = p0/p∞; where p0 is the stagnation pressure at the nozzle entrance and p∞ 

the ambient (in-cylinder) static pressure. The ratio of the nozzle total pressure (p0) to the (p

∞), has a significant effect on the characteristics of a gaseous jet issuing from a circular nozzle. 

Based on the level of NPR, jets can be classified as subsonic, moderately under-expanded and 

highly under-expanded [12-14]. Specifically, Donaldson and Snedeker [14] categorized the 

gaseous jets into three major types based on the NPR (p0/p∞) and under-expansion ratio 

(p1/p∞) as subsonic (1.893 > p0/p∞> 1, p1/p∞ = 1), moderately under-expanded (3.8 > p0/p∞ 

> 2.08, 1.1 < p1/p∞ ≤ 2) and highly under-expanded (p0/p∞ > 3.84, p1/p∞ > 2). For NPR above 

~4 the jet is considered to be highly under-expanded. As illustrated in Fig.3.4 [14], at such 

condition, infinite number of Mach waves, namely the Prandtl-Meyer expansion fan, form at 

the nozzle lip that spread out to the jet boundary and reflect as weak compression waves 
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which form the intercepting oblique shock that is ended by a slightly curved strong normal 

shock so-called Mach disk [12]. For higher degrees of under-expansion, e.g. NPR = 8, the 

subsonic core behind the Mach disk rapidly accelerates and becomes supersonic once more, 

which then shapes a second shock cell that may resemble the first shock cell and even include 

a normal shock comparable to the Mach disk [14]. At extremely high levels of NPR, a very 

large Mach disk forms at the nozzle exit, with no additional normal shocks downstream, and 

the jet then decays resembling a subsonic jet [14].       

 

Fig. 3.4 The classical structure of a highly under-expanded jet [14] 

 

3.2 Experimental set-up and Methodology  
 

3.2.1 Constant volume vessel (CVV) 

Visualization of hydrogen jet was performed by supplying high pressure hydrogen into a 

constant volume vessel (CVV) through an injector. The vessel was developed to provide a 

quiescent, pressurized environment for various flows to propagate into. CVV was a steel 
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cylinder with a base height of 145-mm and width of 120-mm (Fig. 3.5). For this experiment, 

the three walls of the chamber were designed to locate and hold the circular quartz windows 

(diameter: 80mm) to allow full line-of-sight optical access to the chamber. A pressure 

accumulating-type hydrogen injector actuated by an electromagnetic valve, was mounted on 

the top of the chamber head so that the jet was directed downward into the cylinder. The 

ambient gas was nitrogen, and introduced into the vessel from a N2 cylinder by a pressure-

regulated inlet valve. Hydrogen was supplied from an H2 cylinder, and a fuel accumulator 

(see Fig. 3.6) was used to maintain constant fuel feed pressure to the injector.  

 

Fig.3.5 Design of the constant volume vessel (CVV) 
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3.2.2 Hydrogen injector 

Figure 3.6 shows the injector used in the experiment for direct visualization of hydrogen jet. 

A solenoid-driven DI injector used as a fuel injector developed by Mitsubishi Electric Co. Ltd 

is shown in Fig. 3.4. The fuel injector was a swirl-type DI injector and the H2 was introduced 

through a single orifice. The injector had a nominal cone angle of 60° and an orifice diameter 

of 1.0 mm. The injection signal was controlled by an electric injector driver requiring a high-

voltage power source and external trigger input to control the pulse width.  

 

Fig.3.6 Mitsubishi DI injector  
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3.2.3 High-Speed camera 

Figure 3.7 shows the high-speed CMOS (complementary metal-oxide semiconductor) video 

camera (nac Image Technology Inc., MEMRECAM GX-1) that was used in the experiment to 

visualize the hydrogen jet in the constant volume vessel. The Memrecam GX-1 uses the latest 

CMOS sensor and meets the imaging requirements of the most demanding applications in 

research and development due to its unrivalled sensitivity, speed and resolution. This 

camera can capture images at maximum resolution of 1280 x 1024 pixels at speed of 2,078 

fps and frame rates in excess of 245,098 fps at reduced resolutions. In this experiment frame 

resolution was set to 256 x 256 pixels with recording speed of 25,000 frames per second. 

The onset of the high-speed camera recording was synchronized to the H2 injection. Figure 

3.8 shows the viewable area through the constant volume chamber window, the dimensions 

of each flame image are 70 mm  70 mm, which is also the case for all of the subsequent 

images. Stability, distance, relative position between high-speed camera and constant 

volume chamber are very important and should be maintain same for all the observations to 

ensure that camera is focused toward same plane along hydrogen jet.  

 

Fig.3.7 High-speed CMOS video camera (nac Image Technology, GX-1) 
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Fig.3.8 Viewable area through the constant volume chamber window 

 

3.2.4 Measurement technique 

Constant volume chamber was filled with nitrogen gas and the hydrogen jet was injected into 

the chamber. An Argon-ion laser beam (Spectra-physics, Stabilite 2017) with an output 

power of 6W was used as one of the light sources. The thickness of the laser light sheet was 

approximately 2 mm. The laser beam was focused on the hydrogen jet, and the visualization 

region was approximately 20×20 mm2 near the nozzle tip. A fine particle of spherical porous 

silica (God Ball B-6C, Suzuki Yushi Co. Ltd.) with a nominal diameter of 2.5 μm was seeded 

into the intake flow (choosing the appropriate size of the flow field visualization tracer was 

very important to accurately track the airflow). In addition to Argon-ion laser light, we have 

also used metal halide lamp as alternate light source to illuminate the tracer particle present 
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in the hydrogen jet. The underlying reasons for this is, with laser light sheet we can 

illuminate the tracer particle in a fixed 2-D plane of thickness 2 mm whereas using metal 

halide lamp it is possible to capture the jet structure that resemble more to the 3-D pattern 

of the hydrogen jet. The high-speed images provided qualitative information of the jet 

structure, as well as quantitative information of the jet penetration and cone angle. 

 

Fig.3.9 Experimental setup for hydrogen jet visualization 
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3.2.5 Operating condition 

The CVV is filled with nitrogen at first with four different ambient pressure starting from 0.5 

MPa, up to 2.0 MPa with a uniform interval of 0.5 MPa. Two different injection pressures of 

5MPa and 7MPa is considered for introducing hydrogen directly into CVV chamber which 

was already filled with quiescent nitrogen. The pulse width for hydrogen injection was set at 

4ms and 8ms. For each condition, the tests were repeated for 5 times and averaged data were 

presented for discussions. Operating conditions and characteristics of the constant-volume 

chamber are summarized in Table 3.1. 

 

Table 3.1 Operating condition for visualization experiments 

 

 

 

 

 

 

 

 

Chamber volume (cm³) 675 

Chamber wall temperature 
(K) 

298 

Orifice diameter (mm) 1.0 

Injection duration (ms) 4,8 

Fuel injection pressure with ambient condition 

Fu
el 

Fuel 
Injection 
pressure, 

MPa 

Chamber pressure, MPa 

N2 N2 N2 N2 

H2 5 
0.5 1.0 1.5 2.0 

H2 7 
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3.3 Visualization of jet and selection of light source 

Jet visualization was the main experimental focus here and was used to investigate the flow 

structures of gaseous jets produced by injecting hydrogen under a wide range of conditions. 

Image processing techniques (by MATLAB) were performed on high-speed time-series 

images of the gaseous jets in order to estimate jet tip penetration and jet angle as functions 

of time. The raw images were converted to grayscale images, and then binary images of the 

jet were obtained by thresholding the grayscale images. For image binarization we followed 

the adaptive thresholding technique as presented by Sauvola et al. [15]. The method works 

quite well with presence of degradations, such as variable illumination and noise. Jet 

patterns were imaged both vertically and end-on or directly towards the tip of the injector. 

Figure 3.10 shows the time-series images of the hydrogen jet evolution over time captured 

with laser beam as light source whereas images in Fig.3.11 were illuminated by metal halide 

lamp. Both of these figures correspond to the hydrogen injected with a pressure of 5 MPa 

into the vessel filled by N2 with ambient pressure of 1.0 MPa. The images show that jet 

diameter expands rapidly both in axially and radially, just downstream from the nozzle exit. 

Here binarized images were processed to estimate the jet tip penetration and jet cone angle.  

Figure 3.12 illustrates a comparison of jet tip penetration whereas Fig.3.13 compares jet 

cone angle between the measurements made through ar-ion laser and metal halide lamp. It 

is evident from these two observations that light source has some remarkable effects on   
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Fig.3.10 Time-series images of hydrogen jet evolution. Pinj = 5MPa; Pamb = 1.0MPa; light 

source: Ar-Ion Laser 

 

 

Fig.3.11 Time-series images of hydrogen jet evolution. Pinj = 5MPa; Pamb = 1.0MPa; light 

source: Metal Halide Lamp 
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Figure 3.12 Comparison of Jet tip penetration for two different light sources 

 

 

 

Figure 3.13 Comparison of Jet cone angle for two different light sources 
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visualization of hydrogen jet structure. For visualization with Ar-ion laser, a light sheet optics 

with cylindrical lens was used to generate a light sheet of thickness approximately 2 mm. 

This thin light sheet can illuminate only a portion of scattered tracer particles present in that 

narrow plane of 2 mm thickness during hydrogen jet formation. Therefore, the captured 

images represent a 2-D cross-sectional view of the hydrogen jet. On the other hand, light 

from metal halide lamp could possibly illuminate the entire 3-D structure of the hydrogen 

jet consisting a spherical head vortex. Taking into consideration these differences, 

appropriate choice of light source seems very important and as a consequence metal halide 

lamp is considered to obtain a more complete and qualitative picture of the jet pattern; 

further discussion on this topic is presented in the next section. 

3.4 Jet pattern and penetration measurements 

3.4.1 Effect of injection pressure and ambient pressure 

The first condition included a range of injection and chamber pressures indicative of 

hydrogen engine cylinder conditions. The injection pressures along with chamber pressures 

and gases for these conditions are shown in Table 3.1. In ICEs, penetration depth and jet cone 

angle are two important factors to obtain better fuel air mixing. Figure 3.14 (a) – (d) show 

the development of the hydrogen jet for an injection pressure of 5 MPa over various 

constant-volume chamber (filled with N2) pressures ranging from 0.1 MPa to 2.0 MPa. The 

image shows that the jet diameter expands rapidly just downstream from the nozzle exit. At 

t = 3.0ms, for case (a) Pinj= 0.5MPa jet plume appears to penetrate faster compared to higher 

ambient pressures cases. This is also evident in Fig.3.15 which compares the penetration 
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rate for various ambient pressures. The hydrogen jet dispersed slightly more in low ambient 

density than in high ambient density as expected which implies that higher ambient pressure 

resulted in considerably shorter jet tip penetration. This is caused by the higher inertia of 

the fluid elements that the injected fluid must accelerate and push aside. Comparison of 

Fig.3.14 and Fig.3.16 shows that increasing the injection pressure resulted in a significant 

difference in the jet structure in the initial part of the injection for all the different ambient 

pressures. In both figures, a spherical head vortex which grew over time could be observed 

though the light intensity was quite strong. Here air-entrainment which is caused by the 

shear induced turbulence and momentum exchange between fuel and air is the dominant 

factor for gas jet mixing process. The main mechanism for entrainment is through 

engulfment of ambient air along the upstream edge of the large-scale structures. Subsequent 

mixing occurs as the interface formed between the entrained ambient air and the jet gas is 

stretched, and both jet and entrained air come into contact at ever smaller scales until the 

fluid from the two streams becomes molecularly mixed at the Kolmogorov scale. During the 

gas injection, the jet tip pushes out the still ambient nitrogen, and then the vortex structure 

is formed by the interaction between the jet and the ambient nitrogen. both the vortex 

formation and vortex broken are quite useful for fuel-air mixing and the mixture diffusion. 

The flow induced by the vortex was squeezed out the fuel from the jet tip, which is thought 

to cause the entrainment of the fuel to the surrounding nitrogen. The symmetry of the vortex 

may account for the slower spreading of the jet. From Fig.3.17 and Fig.3.18, it is observed 

that higher injection pressure resulted in faster growth of the hydrogen plume than for the 

lower injection pressure due to the additional momentum that is supplied to the jet at the 

injector exit.  
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Fig.3.14 Time-series images of hydrogen jet evolution. Pinj = 5MPa; (a) Pamb = 0.5 MPa; (b) 

Pamb = 1.0 MPa; (c) Pamb = 1.5 MPa; (d) Pamb = 2.0 MPa; light source: Metal Halide Lamp 
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Figure 3.15 Jet tip penetration for Pinj = 5MPa; and different ambient pressures 

 

 

 

Fig.3.16 Time-series images of hydrogen jet evolution. Pinj = 7MPa; (a) Pamb = 1.0 MPa; (b) 

Pamb = 2.0 MPa; light source: Metal Halide Lamp 
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Figure 3.17 Jet tip penetration for Pinj = 7MPa; and different ambient pressures 

 

 

Figure 3.18 Comparison jet tip penetration for different injection pressures  

at Pamb = 1.0MPa 
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3.5 Jet cone angle measurement 

3.5.1 Effect of injection pressure and ambient pressure 

Several factors such as the jet inlet velocity profile, nozzle geometry, jet Reynolds number 

and fluid temperature at the inlet, affect the jet spread. The jet cone angle is most commonly 

used to describe spray or jet distribution, and is important as it affects the axial and radial 

distribution of the fuel. The jet angle, θ, is calculated by measuring the projected area, Ap, Zp, 

contained within the jet taken at different times during jet flow development and 

approximating the jet as a triangle in this initial region before the head vortex. The relation 

for calculating θ is illustrated in Fig.3.19 and is given in equation 3.4.  

 

 

  
𝜃

2
=  tan−1 (

𝐴𝑝𝑍𝑝

𝑍𝑝
)  (3.4)  

 

Figure 3.19 Determination of jet angle 

 

The cone angle was characterized by measuring the angle generated by a triangle connecting 

the center of the nozzle tip and the widest horizontal span of the gas jet. Here jet cone angle 
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was measured at 20-mm distance from the nozzle tip. Figure 3.20 (a) – (b) show the effect of 

the injection pressure on the jet angle as a function of time after the onset of injection event. 

The jet cone angle is higher at early times due to the development of the head vortex and 

then drops to a relatively steady value. It should be noted that data presented here were the 

average of five observations/runs conducted for each condition. From Fig.3.20 and Fig.3.21, 

for t = 2 ms, it could be observed that an increase in the ambient pressure resulted wider jet 

angle along with slower penetration of the fuel jet (Fig.3.15 and Fig.3.17) in the downstream 

region indicating greater entrainment or higher mass of ambient fluid (N2) into the jet.  From 

conservation of momentum, a greater mass of air in the fuel jet results in lower overall jet 

velocities at axial direction, and thus slower jet tip penetration [16]. Naber and Siebers [17] 

studied the effects of ambient gas density on the penetration and dispersion of diesel sprays 

and developed non-dimensional parameters that included the effects of dispersion or spray 

angle. Their data showed that as the ambient gas density is increased the spray or jet angle 

also increases. The increased spray/jet angle is a result of additional entrainment of ambient 

fluid mass. Moreover, the ambient air moves nearly perpendicular to the jet boundary and is 

entrained into the jet, and a change in the direction of the jet axis in the upstream region has 

been reported [18]. Figure 3.22 shows that increasing the injection pressure lead to smaller 

initial jet angle and higher jet tip penetration (Fig.3.18) as velocity of the jet or total 

momentum supplied in the fuel was higher for increasing the injection pressure. Therefore, 

the injected fluid with additional momentum could accelerate more readily by pushing aside 

the ambient fluid though density of chamber medium was considerably higher than the 

injected gas. 
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Figure 3.20 Jet cone angle for Pinj = 5MPa; and different ambient pressures 

 

 

 

Figure 3.21 Jet cone angle for Pinj = 7MPa; and different ambient pressures 
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Figure 3.22 Comparison jet cone angle for different injection pressures  

at Pamb = 1.0MPa 

 

3.6 Summary 

Understanding physics of the gas jet is necessary to study the behavior of fuel jet and its 

interaction with the surrounding air in the engine cylinder. Visualization of hydrogen jet was 

performed by supplying high pressure hydrogen into a constant volume vessel (CVV) 

through an injector. The vessel was developed to provide a quiescent, pressurized 

environment for various flows to propagate into. A high-speed camera, able to capture the 

evolution of hydrogen jet over time, was used along with an Ar-ion laser and metal halide 

lamp as the light sources. Time-series images show that jet plume appears to penetrate faster 

when hydrogen is injected with higher injection pressure into a chamber of comparatively 

lower ambient pressure as velocity of the jet or total momentum supplied to the fuel jet at 
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the injector exit was higher for increasing the injection pressure. Therefore, the injected fluid 

with additional momentum could accelerate more readily by pushing aside the ambient fluid 

though density of chamber medium was considerably higher than the injected gas. On the 

other hand, higher ambient pressure resulted in considerably shorter jet tip penetration 

along with wider jet angle which is caused by the higher inertia of the fluid elements that the 

injected fluid must accelerate and push aside.  
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CHAPTER: 4 

 

Mixture Formation Process in a Compression-Expansion 

Machine (CEM) 

 

4.1 Fundamental physics of spark discharge in IC engine 

The electrical spark is the most common way to initiate combustion and has been very 

widely studied, mostly in terms of the minimum ignition energy necessary to ignite a given 

mixture as a function of the spark parameters such as electrode material, shape, distance, 

spark duration and electrical circuitry (e.g. capacitor or self-inductance), and as a function of 

flow parameters such as equivalence ratio, velocity, turbulence level, pressure, and 

temperature [1-3]. 

The creation of a spark in a gas may result in flame ignition, if the spark is strong enough and 

the gas mixture falls within the flammability limits. The energy deposited by the spark 

results in plasma formation that generates radicals and ionised species which can then 

trigger chemical reactions and further heat release, in the case of flammable mixture. Even 

in the case of mixtures that would not normally allow self-sustaining combustion, a spark 

will result in a short-lived concentration of various intermediates, such as fuel fragments (e.g. 

CN*) and hydroxyl radicals (OH*) [4].  

Ignition by an electrical discharge is a surprisingly complex process. The fundamental 

physics of spark ignition and its use in internal combustion engines has been reviewed by 

Maly [5]. For coil-type ignition systems, evolution of an electrode spark can be characterized 
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by four phases: pre-breakdown, breakdown, arc, and glow discharge [2]. Initially the gas 

between the electrodes is a perfect isolator. In the pre-breakdown phase, if a voltage is 

applied between the electrodes, the electrons in the spark gap accelerate from the cathode 

and the anode. Collisions with gas molecules ionize these, new electrons are produced. If the 

number of electrons increases sufficiently to make the discharge self-sustainable, 

breakdown takes place and the pre-breakdown phase is closed. A very small conductive path 

is formed between the electrodes with a high pressure ~around 20 MPa and temperature 

~around 60,000 K [5-7].  

The breakdown phase, responsible for the majority of the observed emission characteristics, 

occurs in less than 10 ns and includes a rapid current rise followed by a decrease in the 

electrode voltage, seen as the trailing edge of the initial voltage spike in Fig.4.1. Initially, the 

spark energy is stored in the dissociation, excitation and multiply ionized states of the atoms 

of the gas molecules in the discharge, creating a plasma. During the breakdown and arc 

phases, high energy radiation (wavelength < 250 nm) is almost completely reabsorbed by 

the plasma, although between 1 and 5% of energy escapes as visible radiation [5]. The spark 

is always associated with some form of light emission, especially the initial breakdown phase 

results in strong emission.  A summary of the evolution of the spark light emission is 

presented as Fig.4.2. Extensive dissociation and ionization occur during the breakdown 

phase. Chemical reactions are spectroscopically visible in the gas a few nanoseconds after 

breakdown at the colder fringes of the plasma where the temperature is on the order of a 

few thousand K. At this time the plasma centre has a temperature of up to 60 000 K and a 

diameter on the order of 40 μm. After breakdown, the system relaxes, and the energy is  
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Fig.4.1 Schematic of voltage and current variation with time for convention coil-spark 
ignition engines 
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converted into kinetic energy, initially expanding the plasma channel radially at velocities 

over 5 000 m/s [5]. The rapid expansion of the plasma leads to cooling and recombination 

of atomic species into new molecules within 5 μs. The nitrogen containing molecules CN, NO 

and NH, also visible in hot flames, are then spectroscopically dominant [5]. After 10 – 20 μs, 

the kernel cools to flame temperatures and the expansion velocity falls below 100 m/s, 

allowing chemical reactions to initiate combustion. Consequently, emissions from molecules 

such as OH and CH are visible [5]. The breakdown phase is most efficient in transferring 

energy to the gas and in inflaming the fuel–air mixture, although because of its brevity, it 

typically accounts for only 1–2% of the energy dissipated in the spark event. In contrast, the 

glow discharge phase is least efficient in transferring energy to the gas, but because of its 

long duration accounts for about 90% of the total energy dissipated in the spark. The 

subsequent glow discharge phase, during which most of the energy is usually deposited, also 

results in light emission, although this is now less strong.  

 

Fig.4.2 Evolution of Spark Light Emissions 
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Study of spark light emissions up to 10 μs after discharge in a gasoline fired SI engine [8] 

found that breakdown voltage (Vs) and total light emission (represented by the sensor 

voltage output, Vo, and referred to as the spark shot intensity) increase with increasing 

pressure, and decrease with increasing temperature and ∅. Peterson et al. [9] conducted PIV 

experiments to characterize spark behaviour under extreme high-velocity (0–8m/s) and 

multiphase fuel concentrations in an optical SG-SIDI engine. They reported that, onset of a 

spark began when the spark voltage and current values both became negative and the 

duration of the spark event lasted until the spark current value was no longer negative 

(Fig.4.3).  

Fig.4.3 Spark voltage and current traces for the non-injection and air injection cycles 
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The onset of a spark began when the spark voltage and current values both reach to the peak.  

After the peak voltage value, the voltage drops to a level in the order of 200 V, indicating the 

discharge has transitioned to either the arc or glow discharge phase [10]. As demonstrated 

by Lee et al. [11] at the 12bar pressure attained here, a transition from the arc to glow phase 

cannot always be resolved. The spark voltage trace for the air injection cycle shows a 

continual voltage increase during the arc and glow phase and is associated with the 

lengthening of the plasma channel. The voltage increases to a value in which the available 

coil voltage can no longer sustain the plasma channel, resulting in the re-strike shown in 

Fig.4.3. This restrike is associated with a new breakdown event and is indicated by a sharp 

increase in voltage magnitude. 

 

4.2 Development of Spark Plug Sensor 

4.2.1 Basic structure of spark plug 

Changes in engine design and fuel operating conditions place increased demands on spark 

plugs and the electrical system. The performance of the spark plug may determine the engine 

efficiency of the modern engine. The spark plug provides an electrode gap for the spark that 

is necessary to ignite the compressed fuel-air mixture under compression in each cylinder. 

It must also provide a gas-tight conducting path from the high-tension lead wire to the 

electrode gap. Basically, a spark plug consists of three parts: the insulator, electrode, and a 

threaded metal shell. These parts are assembled together with cement or dry powder to form 

an operational leak-proof unit. The insulator tip will determine the heat range of the plug 
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(hot or cold). Spark plug fouling is due to combustion products which collect on the plug's 

insulator. These products may cause misfiring at high speeds; thus, it is aggravated by rich 

idle mixtures and excessive oil consumption that may bypass the rings or valve guides. 

Figure 4.4 demonstrates the basic design and construction of a commercially available 

standard spark plug which will be used as a SIBS sensor for local fuel concentration 

measurements in DISI engine. The top of the spark plug contains a terminal to connect to the 

ignition system. The exact terminal construction varies depending on the use of the spark 

plug. The physical shape of the ribs function to improve the insulator and prevent electrical 

energy from leaking from the terminal to the metal case along the side of the insulator. The 

disrupted and longer path makes the electricity encounter more resistance along the surface 

of the spark plug. The insulator is typically made from an aluminium oxide, ceramic as is 

designed to withstand 550° C and 60,000 V. It extends from the metal case into the 

combustion chamber. The exact composition and length of the insulator partly determines 

the heat range of the plug. As the spark plug also seals the combustion chamber of the engine 

when installed, the seals ensure there is no leakage from the combustion chamber. The seals 

are generally made of copper in the form of washer so that it can get compressed to give a 

good seal. The metal case of the spark plug bears the torque of tightening the plug, serves to 

remove heat from the insulator and pass it on to the cylinder head. It also acts as the ground 

for the sparks passing through the center electrode to the side electrode to body. The tip of 

the insulator surrounding the center electrode is within the combustion chamber and 

directly affects the spark plug performance, particularly the heat range. The ground 

electrode is made from high nickel steel and is welded to the side of the metal case. The 

ground electrode also runs very hot, especially on projected nose plugs. The center electrode 
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is connected to the terminal through an internal wire and commonly a ceramic series 

resistance to reduce emission of radio noise from the sparking. The tip can be made of a 

combination of copper, nickel, iron, chromium, or precious metals. The center electrode is 

usually the one designed to eject the electrons (the cathode) because it is the hottest 

(normally) part of the plug; it is easier to emit electrons from a hot surface, because of the 

same physical laws that increase emissions of vapor from hot surfaces. In addition, electrons 

are emitted where the electrical field strength is greatest; this is from wherever the radius 

of curvature of the surface is smallest, i.e. from a sharp point or edge rather than a flat surface. 

It would be easiest to pull electrons from a pointed electrode, but a pointed electrode would 

erode after only a few seconds. Instead, the electrons emit from the sharp edges of the end 

of the electrode; as these edges erode, the spark becomes weaker and less reliable. The 

development of precious metal high temperature electrodes (using metals such as yttrium, 

iridium, platinum, tungsten, or palladium, as well as the relatively prosaic silver or gold) 

allows the use of a smaller center wire, which has sharper edges but will not melt or corrode 

away. The smaller electrode also absorbs less heat from the spark and initial flame energy. 

Spark plugs are typically designed to have a spark gap which can be adjusted manually 

before installing the spark plug, by the simple mechanism of bending the ground electrode 

slightly to bring it closer to or further from the center electrode. 
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Fig.4.4 Basic structure of a standard spark plug 

 

4.2.2 SIBS sensor: optical fibre-embedded spark plug 

In the previous spark plug sensor (Fig.4.5), the ground electrode was modified with a sharp-

edged electrode for stable ionic initiation and made separable from the thread reach, which 

could be attached again using screws. This design was adopted initially to make cleaning of 

the sapphire window and other maintenance easier, because the spark plug sensor was 

developed for use in the combustion of hydrocarbon fuels [12], in which deposits or fouling 

of the sapphire window occurred frequently. However, these modifications led to unstable 

spark formation outside of the measurement area, especially for high ambient pressures 
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(Fig.4.6). To overcome this issue, a new SIBS sensor was developed without modification to 

the thread reach or electrodes [13]. In addition, the deposit on the sapphire window was 

minimal, because the plug was used only for the combustion of hydrogen fuel. In addition, 

this SIBS sensor is applicable to a production SI engine because it does not require any engine 

modifications.  

 

Fig.4.5 Previously designed fibre optic spark plug sensor with separable ground electrode 

 

 
Fig.4.6 Spark discharge occurring outside of measurement area in case of previous design 
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Figure 4.7 shows the new fibre optic plug sensor developed from a commercially available 

spark plug (M-12 type) in which a 1.5-mm-diameter hole was drilled centrally along the 

spark plug body to accommodate the optical fibre and sapphire window assembly. The 

electrode tip where sapphire window was housed could be attached with centre electrode 

through threads cut on the both electrode tip and centre electrode. In initial design of the 

plug sensor, a 200-μm UV-grade quartz fiber was used for investigating a laminar premixed 

flame in a CH4/air mixture [12]. Further improvement was made by using larger core 

diameter of the UV-grade quartz fiber up to 600 μm to enhance the capability to collect light 

from spark plasma [14]. Newly developed spark plug sensor is the outcome of continuous 

effort to attain improvement in measurement accuracy. For current research, an optical 

ultraviolet (UV)-grade quartz fibre (core diameter: 1000 mm; outer diameter: 1250 mm) 

was housed along the centre electrode to collect light from the spark discharge. Sapphire 

window that could be used safely under high-pressure conditions, was mounted at the tip of 

the centre electrode to provide passage for light from spark emission. Spark plug gap was 

maintained at 1.5 mm to generate a stable spark discharge. Optical fibre had a numerical 

aperture (NA) of 0.20, and covered the area around the ground electrode. A small projection 

towards the centre electrode was made to facilitate spark discharge initiation; this also acted 

as the starting point of the ionic streamer during breakdown and arc phases. The discharge 

voltage and current were supplied to the fibre optic spark plug through a high-voltage power 

source and a coil-type ignition system. 
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Fig.4.7 Newly developed spark plug sensor (top: laser light passing through the optical 

fibre housed in the center electrode) [13] 

 

4.3 Experimentation for SIBS Measurement in a CEM 

4.3.1 Compression Expansion Machine 

A single-cylinder engine (Compression-expansion machine), specially designed to fire only 

once (single cycle combustion) in one experimental run, was used in this experiment. A 

schematic diagram of the engine geometry with optical access is shown in Fig.4.8. 
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Fig.4.8 Schematic diagram of the engine experimental setup 

 

Table 4.1 Engine (CEM) specifications 

 

 

 

 

 

Bore x Stroke (mm x mm) 78 x 67 

Compression ratio 7 

Engine speed, rpm 600 

Intake Valve Closing, IVC  BDC 

Charge motion Jet guided 

Fuel (H2) injection pressure, MPa 5 

Spark timing TDC 

High speed 

camera

Rotary 

encoder

Fly wheel
Electric motor

Mixture

tank

Elongated piston

Sapphire window

Spectrometer

Optical fiber

PC

PC
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Fig.4.9 (a) Orientation of injector and spark plug; (b) Field of view through bottom window; 

(c) Arrangement for side window 
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A summary of engine specifications is presented in Table 4.1. This engine had only one intake 

valve through which in-cylinder exhaust gas was drawn out by a vacuum pump after each 

experimental run. A 52 mm-diameter sapphire window was attached to the crown of 

Bowditch elongated flat piston to get optical access inside the combustion chamber. Initially 

air was introduced into the cylinder through inlet valve at a pressure of 101 kPa and a 

temperature of 300 K. An electric motor drove the engine starting from piston position at 

TDC. Control circuit was triggered when engine reached desired speed of 600 rpm, and 

solenoid driven intake valve was closed for piston location at bottom dead center (BDC).  

Fuel accumulator was used to maintain stable fuel (supplied from a H2 cylinder) feed 

pressure to the injector. A single-hole injector, developed by Mitsubishi Electric Co. Ltd, had 

an orifice diameter of 1.0 mm and was located close to the spark plug (see Fig.4.9 (a)) on the 

central part of the cylinder head in order to form a jet guided combustion system. The 

inclined injector geometry directed the injected fuel toward the spark plug. Distance 

between injector nozzle tip and spark plug was around 17.4 mm. Direct photography of the 

combustion flame was acquired through a mirror mounted at 45o in the extended piston and 

using a high-speed CMOS camera (GX-8, nac Image Technology) and field of view was 

depicted in Fig.4.9 (b). Simultaneous visualization of spark behavior with different fuel 

concentration and flow field was also performed through the side window in the cylinder 

head using another high-speed CMOS camera (GX-1, nac Image Technology) as illustrated in 

Fig.4.9(c). For visualization through bottom view, frame resolution were 320 x 320 pixels at 

3,000 frames per second whereas to capture spark discharge frame resolution were 208 x 

156 pixels at 60,000 frames per second. Kistler piezoelectric transducer installed on the 

cylinder head could trace in-cylinder pressure history and facilitated subsequent pressure-
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based analysis. Synchronization of the various trigger signals with high-speed video 

recording and the data acquisition system were achieved by using a time-generator control 

circuit.  

4.3.2 Spectrometer with CCD 

A spectrometer is used in spectroscopy for producing spectral lines and measuring their 

wavelengths and intensities. The spectrometer converted incoming light into voltage across 

a charge-coupled device (CCD), wherein each pixel of the CCD represented a pre-calibrated 

wavelength. For SIBS analysis, emission spectra from the spark-induced plasma were led to 

the spectrometer (Ocean Optics USB2000+) with CCD detector as shown in Fig.4.10. Ocean 

Optics USB2000+, can measure optical emission spectrum over a range from 250 and 800 

nm with a resolution of 0.3 nm and a minimum integration time of 1 ms. Data analysis was 

performed using the Ocean Optics Spectra Suite software package. The USB 2000+ 

spectrometer is a simple optical instrument based on a diffraction grating and a one-

dimensional CCD detector array. The CCD array has 1 × 2048 pixels, so the spectrum reads 

out as a list of 2048 data numbers.  

Figure 4.11 shows a schematic of the USB 2000+ spectrometer. Light from a fiber enters the 

optical bench through the SMA connector (1). Light from the fiber passes through a slit (2), 

which acts as the entrance aperture. An optical filter (3) is installed between the slit and the 

aperture in the SMA connector. This filter blocks light that would be diffracted in the second- 

and third-orders by the grating. A collimating mirror (4) matches to the 0.22 numerical 

aperture (F/2.3) of the optical fiber. Light reflects from this mirror, as a collimated beam, 

toward the grating. The grating (5) is installed on a rotating platform that selects wavelength 
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range. After assembly, the grating platform is fixed to eliminate mechanical shifts or drift. A 

mirror (6) focuses the first-order spectra on the detector plane. A cylindrical lens (7) is fixed 

to the detector to focus the light from the tall slit onto the shorter detector element (14 μm 

× 200 μm pixels), increasing light-collection efficiency. A 2048-element Sony ILX511 linear 

CCD array detector (8) pixel responds to the wavelength of light that strikes it.  

The corresponding ‘Absolute efficiency’ of the CCD photocathode for groove density of 

600line/mm was shown in Fig.4.12. and properties for different grating numbers are 

summarize in Table 4.2. For SIBS measurements, Grating#03 was selected which set the 

spectral range within 350-850 nm. The detector used for the USB2000+ is a charge transfer 

device (CCD) that has a fixed well depth (capacitor) associated with each photodetector 

(pixel). Charge transfer, reset and readout initiation begin with the integration time clock 

going HIGH. At this point, the remaining charge in the detector wells is transferred to a shift 

register for serial transfer. This process is how the array is read.  The reset function 

recharges the photodetector wells to their full potential and allows for nearly continuous 

integration of the light energy during the integration time, while the data is read out through 

serial shift registers. At the end of an integration period, the process is repeated.  When a 

well is fully depleted by leakage through the back-biased photodetector, the detector is 

considered saturated and provides the maximum output level. The CCD is a depletion device 

and thus the output signal is inversely proportional to the input photons. The electronics in 

the USB2000+ invert and amplify this electrical signal.  
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Each pixel on the CCD represents a specific wavelength of light, and the more photons 

absorbed, the more electrical signal generated. Therefore, the electrical signal output by the 

CCD at each pixel is proportional to the light intensity at each corresponding wavelength.  

 

 

Fig.4.10 The Ocean Optics USB2000+ spectrometer 

 

 

Fig.4.11 Interior of USB 2000+ spectrometer 
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Fig.4.12 Efficiency for groove density of 600 lines/mm 

 

Table 4.2 Spectral range and other properties for different grating numbers 
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4.3.3 Opticle fiber 

 The optical fiber used in this research to collect spark emission spectra is known as a step 

index (SI) and refers to the fact that the refractive index of the fiber core (n core) is a constant. 

The fiber (Fig.4.13) is manufactured by Mitsubishi Cable Industries Ltd. (STU1000H) which 

has a core diameter 1000 μm and fiber diameter of 1250 μm. A summary of the major 

specification is shown in Table 4.3. Optical fiber consists of several elements which are core, 

cladding, coating buffer, strength member and outer jacket. The optic core is the light 

carrying element at the center. This pure silica core fibers feature high light transmission 

efficiency and is suitable for a wide range of applications. The optical fiber had a numerical 

aperture (NA) of 0.20±0.02, which covered the area around the ground electrode as 

indicated in Fig.4.14. Numerical aperture (NA) of fiber optic is the measurement of the 

acceptance angle of an optical fiber, which is the maximum angle at which the core of the 

fiber will take in light that will be contained within the core.  

 

 

 

Fig.4.13 Optical fiber structure Fig.4.14 Diagram of light collecting area of optical fiber 
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Table 4.3 Specifications of the Optical fiber 

 

 

4.3.4 Pressure sensor with charge amplifier 

For the measurement of pressure inside the chamber during the combustion of hydrogen, a 

piezo-electric pressure transducer (Kistler-6052C) as shown in Fig.4.14 (a) is used in this 

experiment with charge amplifier (Kistler 5011B) shown in Fig.4.14 (b). The sensor is 

installed with front sealing in an M5x0.5 bore. This pressure sensor uses a piezoelectric 

crystal which achieves high sensitivity in conjunction with an extremely small sensor 

structure. The front end of the crystal is exposed through a diaphragm to the chamber 

pressure; as the chamber pressure increases during the combustion, the crystal is 

compressed and generates an electric charge which is proportional to the pressure. The 

output electric charge from the sensor is fed to the charge amplifier through a rugged cable 

with steel braiding. Finally, the charge amplifier (Type 5011B) converts the electrical charge 

produced by piezoelectric sensors into a proportional voltage signal. This sensitivity varies 

by not more than ±1,0 % in the operating temperature range. The passive acceleration 

compensation patented by Kistler keeps the influence of engine vibrations to a minimum. 

Type NA Core 

diameter, 

μm 

Fiber 

diamete

r, μm 

Allowable 

bending 

radius, mm 

Optical 

transmission 

loss (dB/km) 

STU 

1000H 

0.2±0.

02 
1000 1250 250 <600 
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Fig.4.14 (a) Piezo-electric pressure sensor (Kistler 6052C), (b) Charge amplifier (Kistler 

5011B) 

 

4.4 Spark behavior and mixture formation for different fuel 

concentration 

4.4.1 Early injection case; SOI=180oBTDC 

It is possible to conduct a fundamental investigation of mixture formation near spark plug in 

compression-expansion machine (CEM) using SIBS technique. For different preset air-excess 

ratio (air excess ratio can be defined as the ratio of the actual air-to-fuel ratio to the 

stoichiometric air-to-fuel ratio i.e. simply the inverse of fuel/air equivalence ratio), varying 

from λpreset =1.0 to λpreset = 5.0, spark behavior was studied by the help of high speed 

visualization through optical window mounted at the side of the CEM head (Fig.4.9-c). Spark-

induced breakdown spectroscopic measurements were performed simultaneously using the 
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SIBS sensor. In order to avoid abnormal combustion such as knocking, hydrogen was 

injected into the nitrogen atmosphere field at a pressure of 101 kPa. The injection timing 

was set to SOI = 180 ° BTDC, just at the time of intake valve closing to ensure a premixed 

state of the mixture while onset of spark discharge occurred at TDC. For SIBS measurements, 

integration time used here was 150 μs from the onset of spark discharge; as this is found to 

be optimum duration to record strong atomic emission line of Hα, N(I) and O(I) within the 

spark duration of around 2 ms.  

There have been a few studies that investigated spark behaviour under various levels of fuel 

concentration [10, 15-18]. Merer and Wallace [16] demonstrated that spark properties, such 

as breakdown voltage, were affected by fuel concentration. Figure 4.15 shows the time-

series images of the spark discharge for λpreset = 5.0 and λpreset = 1.0, whereas voltage and 

current traces are shown in Fig.4.16. In these figures, it is apparent that for lean mixture 

(λpreset = 5.0), the glow discharge appears to persist up to 2000 μs, whereas for stoichiometric 

mixture (λpreset = 1.0), spark event lasted only up to 1000 μs. The spark voltage was measured 

at the top of the spark plug by a high-voltage probe (Tektronix model P6015A), while the 

spark current was measured using a current monitor (Pearson Model 110). The spark energy, 

E (energy dissipated throughout the duration of the spark event) was evaluated by 

integrating the product of the measured spark current, i(t) and voltage, v(t) over the 

appropriate time using the following relation, 

𝐸 =  ∫ 𝑣 (𝑡)𝑖(𝑡)𝑑𝑡
∞

0
        (4.1) 
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(a) λpreset = 5.0 

 

 

(b) λpreset = 1.0 

 

Fig.4.15 Time -series images of spark discharge behavior for different fuel concentration 
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(a) λpreset = 5.0 

 

 
(b) λpreset = 5.0 

 
Fig.4.16 Spark voltage and current traces for different fuel concentration 

 
 

 
Fig.4.17 Spark discharge energy for different fuel concentration 
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Fig.4.18 Spectral distribution for different fuel concentration 

 

 

Fig.4.19 Correlation of preset air excess ratio, λpreset with atomic intensity ratio of Hα to N 

 

Influence of fuel concentration on spark discharge energy was plotted in Fig.4.17 which 

clearly indicates that presence of higher fuel concentration in the vicinity of spark gap leads  
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to higher discharge energy as the magnitude of both breakdown voltage and current increase 

though duration of spark event becomes shorter with lower air excess ratio. 

Spectral distribution for corresponding preset air-excess ratio is shown in Fig.4.18, where 

the atomic emission lines of Hα at 656 nm, N(I) at 501 nm and at 745 nm were clearly 

recorded. The intensity of the Hα line was due to electronically excited hydrogen dissociated 

from the fuel (H2) molecules, while the emissions of N(I) lines was obtained from 

electronically excited nitrogen dissociated from ambient.  In spectroscopic measurements 

and analyses, it is important to subtract the background from the raw spectrum data, 

especially when the intensities of some elements become the subject of interest. Here, 

background was subtracted from the raw spectra following the method suggested by Proctor 

and Sherwood [19] to obtain the background-corrected intensities for Hα, and N(I) emission 

lines. Details of the calibration and background subtraction methods can be found in the 

previous works conducted at Heat Power Engineering Laboratory of Okayama University, 

Japan [20-23].  

In Fig.4.18, it is evident that, increasing λpreset (i.e. higher hydrogen concentration) resulted 

in decreased signal intensities (i.e. line emissions), as well as weaker background emissions 

(i.e. plasma or arc emission). This is probably because when hydrogen concentration was 

relatively higher, breakdown voltage became higher which made spark discharge difficult to 

sustain over a long time (see Fig.4.15 and 4.16) and both continuum background emission 

(i.e. emission from spark plasma) and atomic emission intensity of the spectral distribution 

declines. An exponential relationship was observed between preset air-excess ratio (λpreset) 

and emission intensity ratio of Hα (656 nm) to N (745 nm) as shown in Fig.4.19. As expected,  
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lower the preset air excess ratio, resulted in higher intensity ratio of Hα/N due to presence 

of higher concentration of hydrogen fuel compared to that of nitrogen. However, with a 

hydrogen density above a certain level, it is considered that the emission intensity ratio does 

not show a linear relationship because there is a limit to the amount of hydrogen atoms that 

can be excited. Therefore, a change in the discharge energy lead to a corresponding change 

in the relationship between atomic emission intensity ratio and excess air ratio.  

4.4.2 Late injection case; EOI=70oBTDC ~ 0oBTDC 

In order to investigate the mixture formation process around the spark plug for different 

injection strategies, injection timing was varied from EOI (End of Injection) = 70 to 0 ° BTDC, 

for a preset global air-excess ratio of λpreset = 12.6, and fixed ignition timing at TDC. Exposure 

time for spectroscopic analysis (i.e. SIBS measurement), was set at 150 μs from onset of 

spark event. In addition, simultaneous visualization of hydrogen flames was performed using 

high speed camera, GX-8 at a frame speed of 3000 fps with frame resolution of 320 × 320 

pixels.  

For each operating condition, experiment was repeated for ten times and average values of 

10 cycles are presented for discussion. The average in-cylinder pressure history and 

corresponding rate of heat release (ROHR) for hydrogen combustion are shown in Fig.4.20. 

Here, it is evident that cylinder pressure and heat release rate rise rapidly with retarded 

injection timing. This may be attributed to the fact that with direct injection condition the 

mixture became locally fuel-rich and the degree of richness increased with delayed start of  
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Fig.4.20 In-cylinder pressure history and rate of heat release (ROHR) for injection timing, 

EOI = 70 to 0°BTDC 

 

 
 

Fig.4.21 Variation local air-excess ratio with injection timing, EOI = 70 to 0°BTDC 
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injection (or end of injection) leading to rapid burning of the mixture. To confirm this local 

stratification of the fuel mixture during ignition, SIBS measurements were carried out and 

the local air excess ratios was plotted against varying end of injection (Fig.4.21). With 

retarded injection timing, i.e. when the EOI was delayed from 70°BTDC to 0°BTDC, the 

mixture in the vicinity of the spark gap location became successively richer during spark 

timing at TDC and this phenomenon is evident in Fig.4.21 because the average local air excess 

ratio (indicated by empty circle in the figure) decreased gradually with retarded EOI. 

However, for some observations, local air excess ratio (λlocal) was higher compared to preset 

air-excess ratio. In addition, cyclic variation in λlocal was significant and more pronounced for 

EOI = 70 to 20°BTDC than EOI = 10 to 0°BTDC. It is surmised that, for EOI = 10 to 0°BTDC 

hydrogen jet was less effected by in-cylinder flow, could retain its structure and just passing 

through the spark plug during the spark event at TDC. On the other hand, for EOI = 70 to 

15°BTDC, behavior of the hydrogen jet was greatly influenced by the swirl flow and in-

cylinder turbulence before ignition event could take place.  

To have a close look in mixture formation process, EOI = 10 to 0°BTDC was considered with 

increments of 1 CAD. It can be seen that (Fig.4.22), as the injection timing retards, even for a 

small increment, combustion becomes more abrupt. Partial combustion can be observed for 

EOI = 10 to 5°BTDC, correlating with the fact that λlocal in each cycle fall below the lean limit 

of flammability (λ = 10) for hydrogen. As shown in Fig.4.23, for EOI = 5 to 0 ° BTDC, as the 

injection timing retarded, cyclic variation in λlocal decreased and lead lower average value of 

λlocal, indicating that a dense fuel-air mixture is formed near the spark plug region and very  
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dense portion of the hydrogen jet was ignited. For EOI = 0°BTDC, rapid combustion occurred 

along with peak pressure oscillation. This can be attributed to the fact that, presence of high 

fuel concentration with huge jet velocity lead to re-striking or multiple spark channels 

between the electrodes. As a consequence, several localized flame kernels might have 

developed and contributed to the pressure oscillation. 

 

 

 

Fig.4.22 In-cylinder pressure history and rate of heat release (ROHR) for injection timing, 

EOI = 10 to 0°BTDC 
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Fig.4.23 Variation local air-excess ratio with injection timing, EOI = 10 to 0°BTDC 

 

4.5 Summary 

A new sensor with an optical fibre housed in the centre electrode of the spark plug was 

developed from a commercially available M12-type spark plug with no major modification 

to the electrodes, leading to stable spark formation. Spectroscopic analysis of spark-plasma 

emission and high-speed visualization of spark behavior with different air-excess ratio was 

studied simultaneously in a compression expansion machine (CEM). Results clearly indicates 

that presence of higher fuel concentration in the vicinity of spark gap leads to higher 

discharge energy as the magnitude of both breakdown voltage and current increase though 

duration of spark event becomes shorter with lower air excess ratio. Exposure duration for 

-2024681012

EOI, °BTDC

0

5

10

15

20

25

30

l
lo

c
a
l

l preset



Chapter-4: Mixture Formation Process in a Compression-Expansion Machine 

125 
 

spectroscopic measurement of spark plasma is optimized to obtain better atomic emission 

intensity of Hα (656nm) and N (745nm). When hydrogen concentration was relatively 

higher, breakdown voltage became higher which made spark discharge difficult to sustain 

over a long time and both continuum background emission (i.e. emission from spark plasma) 

and atomic emission intensity of the spectral distribution declines. As expected, lower the 

preset air excess ratio, resulted in higher intensity ratio of Hα/N due to presence of higher 

concentration of hydrogen fuel compared to that of nitrogen. However, with a hydrogen 

density above a certain level, it is considered that the emission intensity ratio does not show 

a linear relationship because there is a limit to the amount of hydrogen atoms that can be 

excited. Therefore, a change in the discharge energy lead to a corresponding change in the 

relationship between atomic emission intensity ratio and excess air ratio. 
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CHAPTER: 5 

 
 

Mixture Formation Process in a DISI Hydrogen Engine 

5.1 Introduction 

The local equivalence ratio near the spark plug at the time of the spark discharge is 

particularly important for successful ignition, because the jet-guided system generates a 

stratified fuel concentration near the spark plug in a DISI engine. Spark-emission 

spectroscopy has been applied to measure the equivalence ratio in a DISI engine [1-3]. Ando 

and Kuwahara [2], and Fansler et al. [3] reported individual measurements of the 

equivalence ratio at the spark gap using the ratio of CN (388 nm) emission intensity and OH 

(306 nm) radical intensity from the spark that initiates combustion. They determined the 

cycle-resolved local fuel–air ratio in the spark gap, controlled the large-scale stratification, 

and evaluated the utility of SIBS as an engine diagnostic tool. However, it is difficult to detect 

the equivalence ratio under lean mixture conditions due to lack of the linearity of CN/OH 

emission intensity ratio. All of these studies require engine modification for optical access to 

the combustion chamber from outside.   Kawahara et al. [4] used the SIBS technique to 

measure the local equivalence ratio in a laminar premixed flame of a CH4/air mixture. 

Spectrally resolved emission spectra of plasma generated by a spark plug were investigated 

for their potential to measure local fuel concentrations in a premixed mixture. The spectrum 

was measured through an optical fibre housed in the centre electrode of the spark plug, 

which makes this technique suitable for measuring the equivalence ratio in the spark gap at 
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ignition timing, in production engines without engine modification. Roy et al. [5] further 

improved the spark-plug sensor to measure the local fuel–air concentration in the spark gap 

at the time of ignition in a fired, jet-guided hydrogen SI-engine operated under stratified-

charge conditions using SIBS. Tasyrif et al. [6] investigated the mixing process of a hydrogen 

jet in a constant-volume vessel and characterised the spatial distribution of the equivalence 

ratio across the jet and along its axis. Later, they reported the effects of the ambient pressure 

on fuel concentration measurements for a jet of hydrogen injected into a nitrogen 

environment with different ambient pressures; also, local concentrations were measured at 

various spark locations in a constant-volume vessel [7]. 

5.2 Plume ignition combustion concept (PCC) 

Optimisation of spark timing, injection timing, and injection pressure, are important aspects 

of the development of hydrogen DISI engines and can suppress backfiring and knocking, 

especially at higher engine loads. Oikawa et al. reported a “plume ignition combustion 

concept” (PCC) for hydrogen DISI engines, denoting the ignition of a rich mixture plume 

during or right after an injection event [8]. In their study, the injector was mounted close to 

the spark plug to achieve jet-guided combustion with the jet being directed towards the 

spark plug using high injection pressures (200 bar). This PCC combustion with late injection 

strategy was shown to substantially reduce NOx emissions at high speed and under high load 

conditions while maintaining high thermal efficiency and power. A major challenge in the 

use of H2-DI is in-cylinder hydrogen-air mixing. It is critical to understand the physical 

process of mixing between the injected fuel and the air within the cylinder to optimize the 

overall performance of the direct injection engine. The high-pressure injector used for the 
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direct-injection engines usually have multiple holes in the nozzle tip to ensure an even 

distribution of fuel and promote proper mixing. This results in the formation of multiple 

under-expanded jets in the cylinder, which interact with each other and with the in-cylinder 

boundaries to form the fuel-air mixture before combustion. Almost in all cases, fluid fuel 

injection flow is three-dimensional and turbulent. This flow can be measured and calculated 

to some limited degree of accuracy using reasonable assumptions. In continuous system 

whose combustion chamber are usually large, fuel injection may be assumed to be 

represented by a turbulent free gas jet discharging into surrounding air. In this experiment 

PCC (Plume Ignition Combustion Concept) was successfully employed in a direct injection 

hydrogen spark-ignition research engine at Tokyo City University and quantitative 

measurements of local fuel concentrations were performed using the spark-induced 

breakdown spectroscopy (SIBS) technique.   

5.3 SIBS Measurement in a production engine 

5.3.1 Experimental set-up 

The engine experiments were conducted using a single cylinder production engine (Nissan 

diesel engine, FD1), modified and redesigned by Tokyo City University (TCU) [8] for using it 

as a hydrogen direct injection spark-ignition engine. The major specifications of the engine 

are presented in Table 5.1. The combustion chamber geometry, orientation of the injector, 

and spark plug are shown in Fig.5.1 and Fig.5.2. A bowl-shaped piston was used to achieve 

better fuel-air mixing and improved combustion performance. Spark plug was located 20 

mm away from the injector, and the hydrogen jet was aimed towards the spark plug gap, 
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forming a jet-guided combustion system. Hydrogen fuel was introduced from a high-

pressure cylinder with a maximum pressure of 20 MPa and the flow rate was measured with 

a hot-wire type mass flowmeter (OVAL corporation, F-133M). A lamina air flow meter 

(Tsukasa Sokken Co. Ltd., LFE-25B) was used for measuring the intake air amount. Surge 

tanks were installed downstream of the hot wire mass flowmeter and air flow meter to 

eliminate the measurement error due to pressure oscillation. 

 

 

 

 

Fig.5.1 Schematic diagram of the engine experimental setup 

 



Chapter-5: Mixture Formation Process in a DISI Hydrogen Engine 
 

133 
 

 
Table 5.1 Major specifications of the research engine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                    (b) 

 

Fig.5.2 (a) Combustion chamber geometry, orientation of injector and spark plug; (b) Field 
of view (dotted circle) 

Bore x Stroke (mm x mm) 108 x 115 

Compression ratio 13:1 

Engine displacement, cc 1054 

Engine speed, rpm 1000 

Combustion chamber type  Bowl 

Throttle opening 50%, 100% 

Swirl ratio 2.2 

Injection system PFI, DI 

Cooling system Water  

Ignition system Spark ignition 
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For measuring hydrogen concentration in exhaust gas, a magnetic sector type hydrogen gas 

analyzer (MSHA-1000W, Horiba Ltd.) was used whereas an automobile exhaust gas analyzer 

(NBY-401, Best Instruments Co. Ltd.) measured other exhaust gas components. Fuel 

injection timing, injection duration and ignition timing were synchronized by a control 

device (Controller Type II, Serizawa System Research Co. Ltd.) which can be set arbitrarily 

based on the crank angle of the engine. In-cylinder pressure was measured using a water-

cooled piezoelectric pressure sensor (6067C, Kistler) and charge amplifier (5010, Kistler); 

and then combustion characteristics were evaluated by using a combustion analyzer (DS-

9110, Ono Sokki Co. Ltd.)  

 
 

5.3.2 Development of a high pressure common-rail injector 

A high-pressure injector with a five-hole arrangement capable of producing a flat cone jet 

was developed by the researchers at TCU and used in this study (see Fig.5.3). Specifications 

for this newly developed injector are given in Table 5.2. The needle valve of this common rail 

injector was driven by oil pressure, enabling hydrogen to be injected at a pressure of 20 MPa 

and providing fast response. This injection system is capable of injecting maximum amount 

of required fuel into the combustion chamber for injection duration of 30 crank angle 

degrees at an engine speed of 3000 rpm. Injection timing and duration were adjusted by 

controlling the timing and quantity of spill oil in the common rail injector drive line. Details 

of this newly developed high-pressure injector can be found in the reference [9]. 
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Table 5.2 specifications of the high-pressure injector 

 

 

 

 

 

 

 

            (a) Photograph                       (b) Close position                    (c) Open position 

 

 

Fig.5.3 Structure and Injection mechanism of the newly developed high-pressure injector 
 

 

 

Nozzle type Hole nozzle 

Drive method Oil pressure driven and Back 

pressure spill control 

Max. oil pressure 120 MPa 

Max. injection pressure 20 MPa 

Max. injection rate (target) 400 Nml/stroke @30 deg. CA, 
@3000 rpm 
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5.3.3 Effect of corresponding pressure during spark initiation 

on spectral calibration: calibration map 

Prior to measuring the mixture distribution in the hydrogen engine, SIBS require calibration 

to determine the correlation between the local air excess ratio and the intensities of the 

emission lines (i.e. IH/IN). To make a calibration curve, port fuel injection was used, which 

ensured a premixed charge of hydrogen and air. To investigate the effects of the 

corresponding ambient pressure during ignition (i.e. spark discharge) on the accuracy of fuel 

concentration measurements; the ignition timing was varied from 20o to 0oBTDC (before top 

dead centre) along with different throttle openings (50% and 100%) over a range of preset 

or overall air excess ratios (i.e. overall relative air/fuel ratio) varying from λpreset =2.0 to λpreset 

= 4.5. The experiments were repeated for 100 times for each operating condition and all the 

data presented throughout the study represent the average of 100 engine cycles. 

Fig.5.4 shows the in-cylinder pressure history of the port fuel injected hydrogen combustion 

with different air-excess ratios. For λpreset = 3.0, in-cylinder pressure during onset of spark 

discharge at (Ig.T. =) 20oBTDC with 50% throttle was 1.03 MPa, whereas it was 2.2 MPa for 

Ig.T. = 15oBTDC with a throttle opening of 100%, which produced peak combustion pressure 

of ~4.5 MPa. The durability and functionality of the optical fibre and sapphire window 

assembly was not affected adversely by this harsh environment, although the pressure 

variation had a significant effect on emission intensities, as shown in Fig.5.5.  

 

 



Chapter-5: Mixture Formation Process in a DISI Hydrogen Engine 
 

137 
 

 

 

 

Fig.5.4 In-cylinder pressure history for PCC combustion with different air-excess ratio and 
throttle opening 
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Fig.5.5 Spark emission spectra for PCC combustion with different air-excess ratio and 

throttle opening 
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Here, the integration time or the gate width of the spectrometer was 150 ms with no gate 

delay with respect to the onset of spark discharge. In Fig.5.5, the atomic emission lines of Ha 

at 656 nm, O(I) at 777 nm, N(I) at 501 nm and at 745 nm were clearly recorded. The intensity 

of the Hα line was due to electronically excited hydrogen dissociated from the fuel (H2) 

molecules, while the emissions of N(I) and O(I) lines were obtained from electronically 

excited nitrogen and oxygen, respectively, dissociated from air. It can be seen in Fig.5.5 that 

retarded spark timing (i.e. higher ambient pressure at ignition timing) resulted in decreased 

signal intensities (i.e. line emissions), as well as weaker background emissions (i.e. plasma 

or arc emission). This indicates that variations in ambient pressure inside the engine 

cylinder during different sparks lead to variation in spark discharge behaviour and plasma 

formation.  

Fig.5.6 shows the effect of ambient pressure during spark initiation on background-

corrected atomic emission intensities of Hα, N(I), and O(I). Here, background was subtracted 

from the raw spectra following the method as previously mentioned in Chapter-4, section 

4.3.4 to obtain the background-corrected intensities for Hα, N(I), and O(I) emission lines. 

From Fig.5.5, it can be observed that the intensity of background emission was considerably 

higher underneath the atomic emission of N(I) at 501 nm compared to that of N(I) at 745 nm 

which will lead to greater inaccuracy when calculating background corrected peak intensity. 

Besides; N(I) at 745 nm was considered to be free of interference from other nearby 

emissions unlike N(I) at 501 nm. As a consequence, for atomic emission intensity of nitrogen 

N(I), emission line at 745 nm was chosen for further analysis throughout the study. 

Significant effect of in-cylinder pressure at ignition timing could be observed on the atomic 
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emissions of Hα, N(I), and O(I) as demonstrated in Fig.5.6. Especially, the spectral line 

intensity of Hα (656 nm) decreased more rapidly with pressure compared to N (745 nm) and 

O (777 nm), indicating Hα has greater degree of pressure dependency compared to others. It 

is known that with higher pressure and density of atoms or molecules, interactions between 

atoms or molecules increase, which produces a higher collision probability and intensified 

collisions. The decay time of atoms becomes shorter when excited atoms collide with and are 

knocked down from excited levels by other atoms before radiating spontaneously. A 

decrease in the decay time of the atoms or the molecules and higher collision probability 

reduce the line intensities and broaden the line widths. 

 

 

Fig.5.6 Variation in atomic emission intensities of Hα, N(I) and O(I) with in-cylinder 

ambient pressure at spark timing, λpreset = 3.0 
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Fig.5.7 shows the correlation of the air excess ratio with background-corrected atomic 

emission intensity ratio (also known as a calibration curve) as a function of pressure at 

different ignition timings with different throttle openings (50% and 100%) over a range of 

preset or overall air excess ratios (i.e. overall relative air/fuel ratio) varying from λpreset =2.0 

to λpreset = 4.0. A linear relationship was demonstrated between the air excess ratio and the 

intensity ratio for both IH/IN and IH/IO over all pressure values. In Fig.5.7(a) the black thick 

line, which is a linear regression line for all the data sets, represents the correlation of air 

excess ratio with intensity ratio of H/N, regardless of the pressure dependency of the atomic 

emission. The standard deviation of the mean value of intensity ratios were calculated and 

all the values of standard deviation found to lie within σ = 0.5967. Higher intensity ratios for 

both IH/IN and IH/IO could be observed with a lower air excess ratio, as the electronically 

excited hydrogen dissociated from the fuel (H2) molecules increased with higher fuel 

concentration. Fig.5.7 shows that the calibration lines became steeper (i.e. absolute slopes 

became greater) when the pressure at spark discharge increased and also effect of pressure 

on atomic emission was less pronounced as the mixture became leaner (i.e. when air excess 

ratio was increasing). A comparison between Fig.5.7 (a) and (b) reveals that the pressure 

dependence characteristics of IH/IN differ from those of IH/IO. Absolute slope or gradient of 

each calibration line was calculated and plotted against the pressure at ignition timing, as 

shown in Fig.5.8. An increasing trend in absolute slope with pressure, Pig at ignition timing 

was observed though this pressure effect or the pressure dependency of spectral line 

intensity was found to be less significant at comparatively higher pressure (Pig beyond 2 

MPa). Here the absolute slopes of calibration lines for IH/IO showed greater values than that  
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Fig.5.7 Correlation of the air excess ratio with atomic intensity ratio (a) of Hα to N, (b) with 

that of the Hα to O for different in-cylinder ambient pressure at spark timing 
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for IH/IN which imply that, for a fixed value of pressure, Pig or ignition timing a small 

difference in measured intensity ratio of IH/IO will produce a comparatively large deviation 

between local air excess ratio (λlocal) and preset or overall air excess ratio (λpreset). Therefore, 

only the correlation between the air excess ratio λpreset with intensity ratio of IH/IN was 

considered as the calibration line for measuring the local fuel concentration in hydrogen 

direct injection case.  

In the previous sections, a significant effect of pressure at ignition timing was observed on 

spark-induced breakdown spectroscopic measurements and emission line characteristics 

under port injection conditions. Retarded spark timing (i.e. higher ambient pressure at the 

ignition site) resulted in lower spectral line intensities as well as weaker background 

emissions. These results are consistent with those from the literature (e.g. Phuoc [10] and 

Zhang et al. [11]). As reported in the literature, at relatively higher pressures the expanding 

plasma is cooled quickly by the surrounding gas through enhanced collisional processes, 

leading to both a weak broadband continuum and spectral line intensities.  

A calibration map which represents the correlation of air excess ratio with both intensity 

ratio and pressure at ignition timing was developed as shown in Fig.5.9, by taking into 

account the pressure dependency of spectral line intensity. This calibration map and 

calibration line (i.e. the black thick line in Fig.5.7 (a), that did not consider the effect of 

pressure at ignition timing on atomic emissions) were used for SIBS measurements. 

Fig.5.10 shows a comparison of mean local air excess ratio measured with the use of the 

calibration map (Fig.5.9) with that measured using the calibration line (black thick line in 
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Fig.5.8 Effect of pressures at ignition timing on slope of the calibration lines 
 

 

 

Fig.5.9 Calibration map or correlation of air excess ratio with intensity ratio and pressure 

at ignition timing 
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Fig.5.10 Improvement in accuracy of SIBS measurement through the use of calibration map 

under port injection condition 
 

 

Fig.5.7 (a)) under port injection conditions. Here, for a fixed/ preset air excess ratio, local air 

excess ratios were measured for different spark or ignition timing, varying from 20O to 0O 

BTDC along with different throttle openings (50% and 100%) over a range of air excess 

ratios from 2.0 to 4.0 and mean local air excess ratios were plotted against the preset value 

(λpreset) in the figure. Although for a fixed ignition timing, the SIBS measurements made with 

calibration line produced completely different λlocal from fixed/preset air excess ratio but 

averaging the values over ignition pressures Pig (i.e. mean λlocal for Ig.T. = 20O - 0O BTDC) 

diminished this difference remarkably. Despite, it can be clearly observed from Fig.5.10 that 

the deviation in λlocal from fixed/preset air excess ratio (λpreset) was comparatively large for 
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measurement made without using calibration map whereas λlocal obtained with calibration 

map leads to higher degree of closeness of local air excess ratios to the preset air excess 

ratios (true values). Furthermore, the coefficient of variation in local air excess ratio (COV 

λlocal) was significantly smaller for measurements made with the calibration map. For 

example, in the case of λpreset = 3.0, the COV λlocal for measurements made with the calibration 

map was ~1% whereas this increased to ~10% for data obtained using calibration line. This 

indicates that the quantitative measurement of fuel concentration through SIBS technique is 

strongly dependent on the strategy to generate calibration curve and the measurement 

accuracy can be improved significantly when the pressure dependency of atomic emissions 

is taken into account. 

5.3.4 Local air excess ratio measurement for hydrogen direct-

injection  

Quantitative measurements of fuel concentration around the spark gap location at the time 

of ignition in a jet-guided direct-injection hydrogen research engine were conducted for both 

PI and DI strategies using the same spark plug sensor. The experiments were performed with 

different air excess ratio varying from 2.5 to 4.5; and to achieve an axially stratified charge, 

the start of injection (SOI) was varied from120O BTDC to 35O BTDC while MBT (minimum 

advance for best torque) timing was considered as an ignition strategy. The in-cylinder 

pressure history and rate of heat release (ROHR) for hydrogen combustion (PCC) with 

varying air excess ratio and different injection timing are shown in Fig.5.11. Here, it is  
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Fig.5.11 In-cylinder pressure history and rate of heat release (ROHR) with varying injection 

timing and air excess ratio 
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evident that in-cylinder combustion pressure and heat release rate rise rapidly with 

retarded injection timing.  

This may be attributed to the fact that with direct injection condition the mixture became 

locally fuel-rich and the degree of richness increased with delayed start of injection leading 

to rapid burning of the mixture. It can be seen in Fig.5.12 that retarded SOI (i.e. higher degree 

of fuel stratification) resulted in greater signal intensities (i.e. line emissions), as well as 

strong background emissions (i.e. plasma or arc emission). This indicates that variations in 

fuel concentration inside the engine cylinder lead to variation in spark discharge behaviour 

and plasma formation. To confirm this local stratification of the fuel mixture during ignition 

timing, SIBS measurements were carried out and the local air excess ratios was plotted 

against varying injection timing (Fig.5.13). With retarded injection timing, i.e. when the SOI 

was delayed from 120O BTDC to 35O BTDC, the mixture in the vicinity of the spark gap 

location became successively richer during spark timing at MBT. This phenomenon is 

evident in both Fig.5.13 (a) and (b) because the local air excess ratio (λlocal) decreased 

gradually with retarded SOI. However, direct injection (DI) conditions generated a higher 

local air excess ratio (λlocal) compared with port injection (PI) conditions when the pressure 

dependency of the spectral emissions was ignored (Fig.5.13 (a)). This measurement 

inaccuracy can be eliminated by taking into account the effect of ambient pressure on atomic 

emission intensity, as shown in Fig.5.13 (b). Fig.5.14 (a) shows the results for local air excess 

ratios obtained without considering the pressure dependency of atomic emissions, whereas 

Fig.5.14 (b) shows the results obtained using the calibration map. It can be seen from Fig.5.14 

(a) that the mixture at the spark gap  
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Fig.5.12 Spark emission spectra for PCC combustion with varying air-excess ratio and 

different start of injection 
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Fig.5.13 Variation of local air excess ratio (λlocal) with injection timing; (a) without 

considering pressure dependency, (b) SIBS measurements through calibration map 
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Fig.5.14 Effect of pressure dependency of spectral emission on SIBS measurements of local 

air excess ratio with different injection strategies 
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seems to be comparatively leaner for the direct injection strategy with SOI = 120O - 50O BTDC 

compared with that for PI conditions. This is quite unlikely and impractical because local air 

excess ratio (λlocal) around the spark gap region for the jet-guided stratified operation of the 

engine should be lower (as the mixture was stratified and became locally rich) than the local 

air excess ratio (λlocal) for port injection conditions. This discrepancy demonstrates that 

ignoring the pressure dependency of atomic emissions i.e. measurements made through 

average calibration line (the black thick line in Fig.5.7 (a)), the value of local air excess ratio 

(λlocal) would be greater than the actual. In Fig.5.14 (b), local air excess ratio (λlocal) for direct 

injection condition found to be lower than that for PI for all the values of preset air-excess 

ratios, λpreset , indicating formation of a richer mixture around the spark gap region with the 

jet-guided stratified operation. This result is consistent and indicates improvement in 

measurement accuracy due to taking into account the effects of in-cylinder ambient pressure 

at ignition timing on the spectral line emissions. 

5.4 Summary 

Quantitative measurements of fuel concentration were conducted for the first time in a 

direct-injection hydrogen spark-ignition research engine through spark-induced breakdown 

spectroscopy (SIBS) technique. A new sensor with an optical fibre housed in the centre 

electrode of the spark plug was developed from a commercially available M12-type spark 

plug with no major modification to the electrodes, leading to stable spark formation. The 

main focus of this study was to characterise the effects of ambient pressure at ignition timing 

on atomic emissions and to improve the accuracy of the SIBS measurements by taking into 
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account the pressure dependency of atomic emissions. Summarising the results, the 

following conclusions can be drawn: 

1. The newly developed fibre optic spark plug sensor was used successfully in a DISI research 

engine. The plug sensor had better durability and required less maintenance when applied 

to hydrogen combustion. 

2. A linear relationship (calibration line) was demonstrated between air excess ratio and 

intensity ratio for both IH/IN and IH/IO over all pressure values. A significant effect of the 

corresponding pressure at ignition timing was observed on SIBS measurements and 

emission line characteristics. Retarded spark timing (i.e. higher ambient pressure at the 

ignition site), resulted in lower spectral line intensities as well as weaker background 

emissions. This indicates the variation in spark discharge behaviour and plasma formation 

with variation in ambient pressure inside the engine cylinder during spark timing variation. 

At relatively higher pressures, cooling process of the expanding plasma was quicker due to 

collisional processes with the surrounding gas, leading to both a weaker broadband 

continuum and atomic emissions. 

3. A calibration map, representing the correlation of air excess ratio with both intensity ratio 

and pressure at ignition timing, was developed by taking into account the effect of the 

corresponding pressure at ignition timing on spectral line intensity for quantitative 

measurements of local air excess ratio in a research engine. Local stratification of the fuel 

mixture in the vicinity of the spark gap location associated with direct injection was 

confirmed through SIBS measurements using newly developed spark plug sensor. The COV 

of local air excess ratio was considerably smaller for measurements made through the 
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calibration map. This indicates that the accuracy of measurements of local air excess ratio 

through SIBS technique can be improved significantly when the pressure dependency of 

atomic emissions is taken into account. 
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CHAPTER: 6 

 
CFD Modeling of Mixture Formation Process in Hydrogen 

IC Engine 

 

6.1 Introduction  

For the past few decades, in addition to experimental investigations, Computational Fluid 

Dynamics (CFD) has become an essential tool to gain a better knowledge about the mixture 

formation and combustion processes inside the engine cylinder. CFD is developed and 

employed in many fields of internal combustion engine application and offers successful 

assessment of new technologies, e. g. new combustion concepts, and/or alternative fuels. 

With the recent advancement in computer processors and expansion of allowable memory, 

researchers are now able to integrate detailed chemical kinetics with a computational fluid 

dynamics (CFD) code to simulate IC engines. Many statistical studies have focused on using 

three-dimensional computational fluid dynamics (CFD) tools to understand the in-cylinder 

flow field and mixing process [1-10]. Rakopoulos et al. [1,4-5] have recently developed 

combustion model for simulation of a hydrogen spark-ignition engine. They have 

investigated the combustion processes inside cylinder, especially with varying equivalence 

ratios. Kosmadakis et al. [6] have reported reduction in exhaust nitrogen oxides emissions 

through variation of EGR rates using the same model. However, only a few investigations 

may be found in the literature that carried out simulation of hydrogen engines, specially 

mixture formation process.  
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For internal combustion (IC) engines, in-cylinder reacting flows are compressible and highly 

turbulent. In order to modeling the in-cylinder mixture formation process and hydrogen 

combustion, ANSYS FORTE CFD that is specially designed for internal combustion engine 

applications, was employed in the current study. This code is based on the Reynolds 

Averaged Navier-Stokes (RANS) equations and primary governing equations are the 

conservation of mass, momentum, and energy. The ANSYS Forte CFD Package introduces 

important breakthroughs in chemistry-solution techniques that greatly enhance the 

accuracy achievable by engine simulation within commercial design time lines. Detailed 

chemical kinetic reactions for hydrogen oxidation were considered in the code. These 

techniques reduce simulation time by as much as two orders of magnitude when compared 

to conventional CFD. Chemistry models that were previously thought of as only practical for 

0-D simulations now become practical for full 3-D engine simulations with moving pistons 

and valves. Better handling of chemistry with multi-component fuel representation makes 

predictive simulation possible within the schedule constraints of the concept phase of design. 

ANSYS Forte builds on models and sub-models that have been well validated against 

experimental data over a broad range of conditions and over many years by engine-

simulation experts.  

6.2 Conservation Equations for Turbulent Reacting Flows 

6.2.1 Species Conservation Equation 

In ANSYS Forte’s turbulent reacting flow representation, the basic fluid dynamics are 

governed by the Navier-Stokes equations. Model transport equations represent the 
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turbulent nature of the flow. Beyond these models, the main assumptions made in the 

derivation of the governing equations are the use of the ideal gas law for the gas-phase 

equation of state, the use of Fick’s law for mass diffusion, and the use of Fourier’s law for 

thermal diffusion. For a high diffusible gas like hydrogen which mixes faster with air at the 

molecular level than conventional fuels, the question arises whether preferential diffusion 

of hydrogen should be introduced into the CFD model for hydrogen/air mixture formation 

simulation. Colin [11] carried out a study to preferential diffusion modelling for RANS 

mixture formation simulations in hydrogen combustion engines. He concluded that for 

relatively high turbulent Reynolds numbers (Ret >>1), as occur in internal combustion 

engines, preferential diffusion effects can be neglected in comparison to turbulent fluxes. 

Regarding mean species diffusion fluxes, turbulent diffusion largely exceeds molecular 

diffusion, so that preferential diffusion effects do not have to be taken into account in the 

investigation of mixture formation. 

The aim of the turbulent combustion modeling approach is to remove the necessity of 

resolving all the smallest structures and fluctuations associated with turbulence, while 

retaining the main effects of turbulence on the flow and combustion characteristics. To 

accomplish this, the Favre average is employed to represent an instantaneous quantity, such 

as the flow velocity vector u, into an average ũ and a fluctuating part ű as u = ũ + ű. In this 

approach, the average ũ part is defined as a conventional average by ũ = 𝛒𝐮̅̅̅̅  / 𝛒̅ while the 

fluctuation ű is defined to satisfy  𝛒ű̅̅̅̅  =  𝟎, where the over-bar represents an averaging 

operator. The governing equations in ANSYS Forte all follow this convention. 
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The conservation equation for species k is: 

𝜕𝜌̅𝑘

𝜕𝑡
 + ∇ ∙ (𝜌̅𝑘ũ) = ∇ ∙ [𝜌̅𝐷𝑇∇ (

𝜌̅𝑘

𝜌̅ 
)]  +  𝜌̅𝑘̇

𝑐
 +  𝜌̅𝑘̇

𝑠
   (𝑘 =  1, . . . . . . 𝐾),              (6.1) 

where ρ is the density, subscript k is the species index, K is the total number of species, u is 

the flow velocity vector. Application of Fick’s Law of diffusion results in a mixture averaged 

turbulent diffusion coefficient𝑫𝑻, 𝝆̅𝒌̇
𝒄
 and  𝝆̅𝒌̇

𝒔
    are source terms due to chemical reactions 

and spray evaporation, respectively. 

6.2.2 Fluid Continuity Equation  

The summation of Equation 6.2 over all species gives the continuity equation for the total 

fluid: 

    
𝝏𝝆̅

𝝏𝒕
 + ∇ ∙ (𝜌̅ũ) =  𝜌̇̅𝑠           (6.2) 

6.2.3 Momentum Conservation Equation 

The momentum equation for the fluid is 

        
𝝏𝝆̅ũ

𝝏𝒕
 + ∇ ∙ (𝜌̅ũũ) =  − ∇𝑝̅  + ∇ ∙ 𝜎̅  − 

2

3
𝜌̅𝑘̃𝐼 + 𝐹̅𝑠  + 𝜌g̅̅ ̅,               (6.3) 

where p is the pressure, I is the identity tensor,  𝑭̅𝒔 is the rate of momentum gain per unit 

volume due to the spray, g is the specific body force. 
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 𝝈̅ is molecular momentum transport due to the total viscous stress tensor (laminar plus 

turbulent) given by 

   𝜎̅  =  (𝜇 + 𝜇𝑇)[∇ũ + ∇ũ𝑻  −  
2

3
 (∇ ∙ ũ)𝐼],               (6.4) 

𝛍 is the laminar dynamic viscosity,  𝝁𝑻  is the turbulent dynamic viscosity, superscript T 

means vector transpose, 𝒌̃ is the turbulent kinetic energy, defined by 

     𝑘̃  =  
𝟏

𝟐
ű ∙ ű,̃         (6.5) 

The turbulent dynamic viscosity 𝝁𝑻  is related to the turbulent kinetic energy 𝒌̃  and its 

dissipation rate ε by 

     𝜇𝑇 =  𝑐𝜇𝜌̅
𝑘̃2

𝜀̃
,         (6.6) 

where 𝒄𝝁  is a model constant that varies in different turbulence model formulations. By 

definition, 𝝁𝑻 is related to the turbulent thermal diffusivity αT and mass diffusivity 𝑫𝑻 by 

     𝛼𝑇 =  
𝑉𝑇

𝑃𝑟𝑇
 =  

𝜇𝑇

𝜌̅𝑃𝑟𝑇
,        (6.7) 

     𝐷𝑇 =  
𝑉𝑇

𝑆𝑐𝑇
 =  

𝜇𝑇

𝜌̅𝑆𝑐𝑇
,       (6.8) 

where  𝑽𝑻 is the turbulent kinematic viscosity,  𝑷𝒓𝑻 and  𝑺𝒄𝑻 are the turbulent Prandtl and 

Schmidt numbers, respectively. Based on Equation 6.4, the stress contribution due to 

turbulence, called the Reynolds stress tensor 𝝉̅, is defined as 
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  𝝉̅  =  −𝜌̅ű ∙ ű̃  = 𝜇𝑇[∇ũ + ∇ũ
𝑻

 − 2
3

 (∇ ∙ũ)𝐼] − 2
3

𝜌̅𝑘̃𝐼       (6.9) 

6.2.4 Internal Energy Conservation Equation  

The internal energy transport equation is: 

 
𝜕𝜌̅𝐼

𝜕𝑡
 + 𝛻 ∙ (𝜌̅ũ𝐼) =  −𝑝̅𝛻 ∙ ũ −  𝛻 ∙ 𝐽  + 𝜌̅𝜀̃  +  𝑄̇̃𝑐 + 𝑄̇̃𝑠,              (6.10) 

where 𝑰̃ is the specific internal energy, 𝑰̃ is the heat flux vector accounting for contributions 

due to heat conduction and enthalpy diffusion, 

   𝐽  =  −𝜆∇𝑇̃  −   𝜌̅𝐷𝑇 ∑ ℎ̃𝑘∇𝑘 (
𝜌̅𝑘

𝜌̅
),     (6.11) 

λ is the turbulent thermal conductivity, 𝑻̃  is the fluid temperature, and 𝒉̃𝒌 is the specific 

enthalpy of species k.  𝑸̇̃𝒄 and  𝑸̇̃𝒔 are source terms due to chemical heat release and spray 

interactions, respectively. By definition, λ is related to the turbulent thermal diffusivity αT 

and heat capacity cp by 

     𝜆 =  𝜌̅𝑐𝑝𝛼𝑇               (6.12) 

6.3 Turbulence modeling  

Instead of turbulence modelling in terms of RANS, computation may be performed in terms 

of Large Eddy Simulation (LES). In this method, the largest structures of the flow field are 

explicitly computed, and only smallest eddies are modelled. Consequently, a higher 
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predictability of turbulent quantities is reported for this approach. Due to the increased 

numerical expense compared to RANS, this modelling technique was not investigated in the 

present work. Reynolds-Averaged Navier-Stokes (RANS) models decompose the 

instantaneous flow variables into their steady and fluctuating components. Both advanced 

RNG (Re-Normalized Group Theory) k-ε model and standard k-ε model formulations are 

evaluated and compared. These consider velocity dilatation in the ε-equation and jet-

induced source terms for both k and ε equations. The standard Favre-averaged equations for 

k and ε are given in equation 6.13 and 6.14: 

𝜕𝜌̅𝑘̃

𝜕𝑡
+ ∇ ∙ (𝜌̅ũ𝑘̃) = −

2

3
𝜌̅𝑘̃∇ ∙ ũ + 𝜎: ∇ũ + ∇ ∙ [

(𝜇 + 𝜇𝑇)

𝑃𝑟𝑘
∇𝑘̃]  − 𝜌̅𝜀̃ + 𝑊̇̃𝑠,       (6.13) 

 

𝜕𝜌̅𝜀̃

𝜕𝑡
+ ∇ ∙ (𝜌̅ũ𝜀̃) = − (

2

3
𝑐𝜀1 − 𝑐𝜀3) 𝜌̅𝜀̃∇ ∙ ũ + ∇ ∙ [

(𝜇 + 𝜇𝑇)

𝑃𝑟𝜀
∇𝜀̃]  +

𝜀̃

𝑘̃
(𝑐𝜀1𝜎: ∇ũ −

𝑐𝜀2𝜌̅𝜀̃ +  𝑐𝑠𝑊̇̃𝑠),                                     (6.14) 

In these equations, 𝐏𝐫𝐤, 𝑷𝒓𝜺 ,  𝒄𝜺𝟏 ,  𝒄𝜺𝟐  and 𝒄𝝁  are model constants, which are listed and 

described in Table 6-1.  

The source terms involving 𝑾̇̃𝒔are calculated based on the droplet probability distribution 

function [12]. Physically, 𝑾̇̃𝒔is the negative of the rate at which the turbulent eddies are 

doing work in dispersing the spray droplets.  𝒄𝒔 = 1.5 was suggested by Amsden [12] based 

on the postulate of length scale conservation in spray/turbulence interactions. The advanced 

version of the k-ε model is derived from Re-Normalized Group (RNG) theory, as first 

proposed by Yakhot and Orszag [13]. The k equation in the RNG version of the model is the 
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same as the standard version, but the ε equation is based on rigorous mathematical 

derivation rather than on empirically derived constants. The RNG ε equation is written as 

𝜕𝜌̅𝜀̃

𝜕𝑡
+ ∇ ∙ (𝜌̅ũ𝜀̃) = − (

2

3
𝑐𝜀1 − 𝑐𝜀3) 𝜌̅𝜀̃∇ ∙ ũ + ∇ ∙ [

(𝜇 + 𝜇𝑇)

𝑃𝑟𝜀
∇𝜀̃]  +

𝜀̃

𝑘̃
(𝑐𝜀1𝜎: ∇ũ −

𝑐𝜀2𝜌̅𝜀̃ +  𝑐𝑠𝑊̇̃𝑠)  − 𝜌̅𝑅,                            (6.15) 

where the R in the last term of the right-hand side of the equation is depends on the model. 

For standard k-ε model, R = 0 and for RNG k-ε, R is described as 

   𝑅 =  
𝒄𝝁(𝜂)3 (1− 𝜂 𝜂0⁄ )

1+𝛽𝜂3

𝜀̃2

𝑘̃
,      (6.16) 

with   𝜂 =  𝑆 
𝑘̃

𝜀̃
,         (6.17) 

   𝑆 =  (2𝑆̅ ∙ 𝑆̅)1 2⁄ ,       (6.18) 

and  𝐒̅ is the rate of strain tensor, 

   𝑆̅ =  
1

2
(∇ũ + ∇ũ𝑇)       (6.19) 

Compared to the standard ε equation, the RNG model has one extra term, which accounts for 

non-isotropic turbulence, as described by Yakhot and Orszag [13]. Values of the model 

constants, 𝑷𝒓𝒌, 𝑷𝒓𝜺,  𝒄𝜺𝟏,  𝒄𝜺𝟐 and 𝒄𝝁 used in the RNG version are also listed in Table 6-1. In 

the ANSYS Forte implementation, the RNG value for the variable 𝒄𝜺𝟑 is based on the work of 

Han and Reitz [14], who modified the constant 𝒄𝜺𝟑 to take the compressibility effect into 

account. According to Han and Reitz [14], 
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  𝒄𝜺𝟑 =  
−𝟏+𝟐 𝒄𝜺𝟐− 𝟑𝒎(𝒏−𝟏)+ (−𝟏)𝜹√𝟔𝒄𝝁𝒄𝜼 

𝟑
,                  (6.20)  

 where m=0.5, n=1.4 for an ideal gas. The value of 𝒄𝜺𝟑 varies in the range of -0.9 to 1.726 [14], 

and in ANSYS Forte is determined automatically, based on the flow conditions and 

specification of other model constants, η0 and β. In previous studies on engine CFD, Han and 

Reitz [14] applied their version of the RNG k-ε model to engine simulations and observed 

large-scale structures in the results compared to the standard k-ε model. In hydrogen DI 

engines large-scale structures are generated by the hydrogen jet during injection. Therefore, 

RNG k-ε model might be favourable for computation of mixture formation process in 

hydrogen direct-injection engine. In ANSYS Forte, the RNG k-ε model is the default and 

recommended turbulence model.  

Table 6.1 Constants in the standard and RNG k-ε models [15] 
 

 
  

6.4 Initial and Boundary Conditions 

In numerical methods, different boundary condition may result in distinct solutions. Some 

of them may introduce non-physical influences on the domain. Arranging a correct set of 

boundary condition is important for physical stability inside the domain. For transient 

simulations, initial conditions for all variables and fluid properties are required. Fluid 

 𝒄𝝁 𝒄𝜺𝟏 𝒄𝜺𝟐 𝒄𝜺𝟑 𝟏/𝐏𝐫𝐤 
𝟏
/𝑷𝒓𝜺 

𝜼𝟎 𝜷 

Standard 
k-ε 

0.09 1.44 1.92 -1.0 1.0 0.769   

RNG k-ε 0.0845 1.42 1.68 
Eq-
6.20 

1.39 1.39 4.38 0.012 
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properties are used to determine the initial values of the state variables and to initialize other 

terms in the governing equations. Initial fluid properties include initial pressure, 

temperature, species composition, initial turbulence kinetic-energy density (TKEI) and 

turbulence length scale (TLS) for each computational region. In this work for in-cylinder 

engine simulations, initial and boundary conditions of the computational model are derived 

from experimental results of engine measurements; turbulent law-of-the-wall velocity 

condition with fixed-temperature walls are employed. Fluid momentum boundary 

conditions on rigid walls are introduced by imposing a value of the velocity at the wall. On 

turbulent law-of-the-wall boundaries the normal gas velocity is set equal to the normal wall 

velocity and the two tangential components of the wall stress are explicitly specified by 

matching to a logarithmic profile. The wall heat transfer model of Han and Reitz [16] is used 

to calculate the gas-phase wall heat transfer. In the near wall region of wall-confined in-

cylinder engine flows, the following assumptions hold: 

1. Gradients normal to the wall are much greater than those parallel to the wall; 

2. The flow velocity is directed parallel to the flat wall; 

3. Pressure gradients are neglected; 

4. Viscous dissipation and enthalpy diffusion effects on energy flux are neglected; 

5. Radiation heat transfer is neglected. 
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6.5 Spark-Ignition Model 

Spark-ignition engines are characterized by flame initiation near the spark location followed 

by flame propagation into the engine cylinder. The initial formation and development of the 

flame kernel caused by spark discharge in internal combustion engines is a very complex 

phenomenon which has a non-negligible influence on the subsequent combustion process. 

The high electrical potential difference across the spark-plug electrodes causes breakdown, 

creates a strong pressure wave and establishes a partially ionized plasma channel at high 

temperature [17,18]. Heat conduction and diffusion allow the kernel to expand before the 

combustion reactions take over and the combustion becomes self-sustainable [19]. Due to 

the high requirements in terms of mesh resolution associated with the use of Eulerian 

models [18], Lagrangian models are generally employed: a set of particles is placed in the 

vicinity of the spark plug, each of them representing a part of the ignited kernel and evolves 

in time. Several models have been proposed, namely: DPIK (Discrete Particle Ignition Kernel) 

model [20], further improved version, which accounts for spark discharge energy and effects 

of flow turbulence on kernel growth [21,22], AKTIM (Arc and Kernel Tracking Ignition 

Model) proposed by Duclos and Colin [23], and more recent Spark-CIMM model introduced 

to predict combustion in stratified-charge direct-injection engines, where mixture 

distribution, flow field and turbulence play a very important role in combustion process 

[24,25]. AKTIM model introduces marker particles to represent both the spark and flame 

kernels that advect and diffuse in response to the turbulent flow field after the spark 

discharge ignites the gas–air mixture. In the DPIK model by Fan,Tan and Reitz [20,21], a 

spherical-shaped kernel is initialized (and remains) centered on the spark gap while the 
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flame front position is marked (or tracked) by Lagrangian particles as it grows by spark-

energy input and flame propagation until it is large enough for a G-equation simulation. The 

flame surface density is obtained from the number density of these particles in each 

computational cell as shown in Fig.6.1.  

 

Fig.6.1 Discrete particle ignition kernel  

 

With this method, even when the kernel size is smaller than the computational cell size, 

kernel growth can still be tracked accurately. Thus, the use of a very fine numerical mesh to 

predict the spark ignition process is not needed. This model is a phenomenological one, and 

the great advantage of this Lagrangian method lies in the reduction of model sensitivity to 

grid size effects, which are unavoidable during the early stage of the ignition process when 

the flame kernel is really smaller than the same grid size. ANSYS Forte tracks the growth of 

the ignition kernel by using the Discrete Particle Ignition Kernel Flame (DPIK) model. A 

thermodynamic system model of the ignition kernel region was used to analyze the flame 

kernel growth rate. The system is schematically shown in Fig.6.2. It is assumed that  

Fig.6.2 Thermodynamic system for the ignition 
kernel 
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1. The calculation starts after the breakdown period (e.g., after 1 μs), and the ignition 

kernel is spherical with a radius of 0.5 mm, as suggested by experiments [26]. 

2. The ignition kernel flame is very thin and separates the burned and unburned gas. 

The kernel flame structure is not resolved, and the temperature and all reactive 

scalars jump from their values in unburned mixture to the corresponding equilibrium 

values in the burned gas.  

3. The ignition kernel surface (defined by marker particles positions) is located just in 

front of the flame, and thus, there is no heat transfer between the kernel and 

unburned gas.  

4. The pressure is uniform inside and outside the kernel. 

5. The temperature inside the kernel is uniform. 

Assuming the temperature inside the kernel to be uniform, the kernel growth rate is: 

     
𝑑𝑟𝑘

𝑑𝑡
=

𝜌𝑢

𝜌𝑘
(𝑆𝑝𝑙𝑎𝑠𝑚𝑎 + 𝑆𝑇)    (6.21) 

where rk is the kernel radius, ρu is the local unburnt gas density, and ρk is the gas density 

inside the kernel region. The above equation is used to calculate the movement of the kernel 

particles. 

The plasma velocity 𝑺𝒑𝒍𝒂𝒔𝒎𝒂 is given as: 

    𝑆𝑝𝑙𝑎𝑠𝑚𝑎 =
𝑄̇𝑠𝑝𝑘∙𝜂𝑒𝑓𝑓

4𝜋𝑟𝑘
2[𝜌𝑢(𝑢𝑘−ℎ𝑢)]+𝑃

𝜌𝑢
𝜌𝑘

                      (6.22) 
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where ρu and hu are the density and enthalpy of the unburned mixture. ρk and uk are the 

density and internal energy of the mixture inside the kernel. 𝑸̇𝒔𝒑𝒌 is the electrical energy 

discharge rate, 𝜼𝒆𝒇𝒇 is the electrical energy transfer efficiency due to heat loss to the spark-

plug. A typical value of 𝜼𝒆𝒇𝒇 is 0.3, as suggested by Heywood [17]. 

 

6.6 G-equation Model for Turbulent Flame Propagation 

One of the most promising methods to simulate turbulent combustion in spark-ignition (SI) 

engines is the G-equation combustion model [27]. The G-equation concept has been 

successfully applied to model Bunsen flames [28,29], homogeneous charge SI engines [21, 

30,31], and lifted turbulent flames [32,33]. The modeling of early flame propagation after 

spark initiation is, however, a field of active academic and industrial research and presents 

a particular challenge for SG-SIDI engines. The G-equation combustion model is based on the 

turbulent premixed combustion flamelet theory of Peters [27]. This theory addresses two 

regimes of practical interest: 

1. The corrugated flamelet regime where the entire reactive-diffusive flame structure is 

assumed to be embedded within eddies of the size of the Kolmogorov length scale η; 

2. The thin reaction zone regime where the Kolmogorov eddies can penetrate into the 

chemically inert preheat zone of the reactive-diffusive flame structure but cannot 

enter the inner layer where the chemical reactions occur.  
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For application of the G-equation model to IC engine applications, this theory was further 

developed by Tan et al. [21] and by Liang et al. [34, 35]. For the current work, G-equation 

model is employed to track the propagation of fully developed turbulent flames. The G-

equation model consists of a set of Favre-averaged level-set equations. This includes the 

equations for the Favre mean, 𝑮̃, and its variance, 𝑮"𝟐̃, as well as a model equation for the 

turbulent/laminar flame surface area ratio σT. Application of the equation for the 

turbulent/laminar flame surface area ratio results in an explicit expression for the turbulent 

flame speed 𝑺𝑻
𝟎 . Together with the Reynolds-averaged Navier-Stokes equations and the 

turbulence modeling equations, these provide a complete set of equations to describe 

premixed turbulent flame-front propagation. The equation set used is: 

  
𝜕𝐺̃

𝜕𝑡
= 𝑢̃̅ − 𝑢̅𝑣𝑒𝑟𝑡𝑒𝑥 ∙ ∇𝐺̃ =

𝜌̅𝑢

𝜌̅𝑏
𝑆𝑇
0  |∇𝐺̃|  −  𝐷𝑇𝐾̃ |∇𝐺̃|,   (6.24) 

𝜕𝐺"2̃

𝜕𝑡
+ 𝑢̃̅ ∙ ∇𝐺"2̃ = ∇∥∙ (

𝜌̅𝑢

𝜌̅𝑏
 𝐷𝑇∇∥ 𝐺"2̃)𝐺̃|  + 2𝐷𝑇(∇𝐺̃)2 − 𝑐𝑠

𝜀̃

𝑘̃
𝐺"2̃,  (6.25) 

where ∇|| denotes the tangential gradient operator; 𝒖̅ is the fluid velocity; 𝒖̅𝒗𝒆𝒓𝒕𝒆𝒙  is the 

velocity of the moving vertex; ρu and ρb are the average densities of the unburned and 

burned mixtures, respectively; DT is the turbulent diffusivity; 𝑲̃ is the Favre mean flame front 

curvature; cs, a4, b1, and b3 are modeling constants (cf. ref. [50]); 𝒌̃ and 𝜺̃ are the Favre mean 

turbulent kinetic energy and its dissipation rate from the RNG k-ε; u′is the turbulence 

intensity.  
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Here the flame front is represented by level-set surface 𝑮̃ (𝒙, 𝒕) = 𝟎. This interface divides 

the flow field into unburned region, 𝑮̃ < 0.0, and a burned gas region, 𝑮̃ > 0.0. It is assumed 

that the instantaneous flame front always falls in those computational cells where the mean 

flame front is located, as depicted in Fig.6.3.  

 

 
 

Fig.6.3 Schematic diagram of turbulent flame structure (mean flame front, flame brush) 

 

When the flame is initiated by the spark, the ignition-kernel flame has a structure that is 

typically smaller than the average grid size in the computational mesh. During this time, then, 

the kernel flame front is first tracked by a group of discrete “particles”. The calculation 

switches from this kernel flame model to the G-equation model after the flame structure 

grows bigger than a characteristic flow length scale. The transition from the kernel model to 

the turbulent G-equation model is controlled by a comparison of the kernel radius with a 

critical size that is proportional to the locally averaged turbulence integral length scale, viz., 

   𝑟𝑘 ≥ 𝐶𝑚𝑙 ∙ 𝑙 = 𝐶𝑚𝑙 ∙ 0.16
𝑘3/2

𝜀
    (6.23) 
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where 𝑪𝒎𝒍 is a model constant. 𝑪𝒎𝒍 is provided as a user input (Kernel Flame to G-equation 

Switch Constant) in ANSYS Forte with typical value 2.0 ANSYS Forte checks two criteria: 

critical temperature and size of the ignition kernel. After the ignition kernel is formed, the 

flame propagation model is activated. Computational cells with temperatures greater than 

the critical temperature become ignition sites. For each of these cells, if the ignition kernel 

radius is greater than the TLS (turbulent length scale), a 𝑮̃ (𝒙, 𝒕) = 𝟎 surface is initialized. 

This surface divides the areas where the gas temperature is lower or higher than the critical 

temperature. The area inside the surface is the area of ignition. 

 

6.7 Model development and Mesh generation 

Figure 6.4 provides a high-level view of the Simulation tasks. ANSYS Forte provides several 

options for defining the computational mesh, which allows much flexibility in creating a 

workflow that best suits the needs of a particular simulation. There are three options to 

define the computational mesh: 1). load in just the definitions of the geometric surfaces that 

bound the system from a Fluent, CGNS, or other mesh surface file, and then use the automatic 

mesh-generation option, or 2). load in a pre-defined, structured body-fitted mesh, 3). 

generate a body-fitted sector mesh from basic piston-bowl profile information. In this study, 

for CFD simulation, model development and mesh generation started by importing basic 

geometry information in a CAD software- generated STL format, splitting the geometry and 

defining various elements/parts of engine and then defining the computational mesh (i.e. 

creating a full 360° mesh) by employing automatic, on-the-fly mesh generation option in 

ANSYS Forte. Fig.6.5 and Fig.6.6 show the CAD geometry and corresponding mesh for both 
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CEM and research engine respectively. The global grid size of the immersed-boundary 

meshes for CEM case was set to 3 mm whereas for research engine case it was only 2 mm in 

order to achieve greater accuracy in the calculation results. Mesh refinement around the key 

geometric features such as valves, piston, walls, and open boundaries (“continuative 

outflows”) in terms of Point, Surface, Line, or Feature Refinements, or Small Feature 

Avoidance Controls were also performed. This mesh control found to be useful in allowing 

certain regions of the domain to remain coarse when refinement is not needed. The mesh 

format adopted in ANSYS FORTE is block-structured hexahedron as hexahedral cells provide 

better convergence and accuracy than tetrahedral cells. In addition, hexahedral cells were 

preferred when dealing with moving meshes and boundaries. 
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Fig.6.4 ANSYS Forte Simulate: Workflow overview 

 

 
Fig.6.5 CEM: CAD geometry and Corresponding Mesh 
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Fig.6.6 Research engine (TCU): CAD geometry and Corresponding Mesh 
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6.8 Concept of Inflow Boundary Condition  

Basically, ANSYS FORTE CFD is designed for simulating IC engine operating in either PFI 

mode, or liquid fuel direct injection (GDI, Diesel CI etc.) mode. For PFI operation one has to 

just specify mixture concentration at inlet boundary whereas for DI operation user has to 

choose the appropriate spray model and specify the nozzle characteristics. As our main focus 

was to simulate direct injection spark-ignition engine with gaseous fuel like Hydrogen; it is 

not possible to introduce hydrogen directly into the combustion chamber with existing spray 

model found in the user interface. Therefore, we opted to utilize the concept of inflow 

boundary condition at the nozzle exit so that gaseous hydrogen can be introduced into the 

simulated domain. In a typical direct-injection engine, the injector tip extrudes from the 

cylinder head surface so that the nozzle exit is exposed to the in-cylinder gas. In the geometry 

of both CEM and research engine, injector tip was added as an integrated part of the cylinder 

head surface. In Fig.6.7., the integrated cylinder head and injector tip surface is shown as a 

solid black curve, and the nozzle exit is marked by the blue. The integrated surface of cylinder 

head and injector tip was then specified as a solid wall boundary condition, except for the 

nozzle exit area. The geometric area of the nozzle exit was explicitly marked out of the 

injector tip surface, and a velocity inflow boundary condition was specified on it. 

Correspondingly, in Forte Simulate setup, we need to set up meshing controls such that the 

volume mesh near the nozzle exit (inflow boundary) is refined to a similar or smaller  
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Fig.6.7 Concept of velocity inflow boundary condition 

 

 
Fig.6.8 Velocity profiles for hydrogen injection 

 
 

length scale than the nozzle size, in order to capture the hydrogen jet structure and mass 

diffusion more accurately. Jet cone angle is to be predicted by Forte CFD solution. The 

predicted turbulent diffusion of hydrogen upon its exit from the nozzle will affect the jet cone 

angle. Forte allows specification of inflow boundary condition using the option of “velocity, 
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time varying”. Therefore, velocity profiles varying with crank angle were predicted in order 

to specify the both start of injection (SOI) and end of injection (EOI) as illustrated in Fig.6.8. 

6.9 Intake Flow Characteristics 

The research engine has intake port with helical geometry that generates in-cylinder swirl. 

The valve lift profiles are set using experimentally measured valve lift values. The fine grid 

arrangement is necessary during the valve movement to obtain the stability and 

convergence criteria. The mesh for intake ports of both engine configurations have been 

created using a similar topology, where the cells are oriented in the flow direction and joined 

with a cylindrical structured mesh in the zone upstream of the valves.  

Simulations are started from intake TDC to 80oATDC during expansion. This encompasses 

the full intake, compression stroke and part way through the expansion stroke, after 

combustion has completed. The intake stroke is computed to account for realistic thermal 

stratification and in-cylinder velocity profiles in the premixed intake gas. Chemistry is 

computed only for cells with temperatures in excess of 600 K and is not computed in the 

intake or exhaust ports while the respective valves are closed. This helps reduce the 

computational cost of the simulations, as the time computing chemistry accounts for a large 

fraction of the total computational effort. The initial pressure and temperature within engine 

cylinder need to be defined to provide the initial conditions of governing equations to be 

solved. The initial pressure of 0.09MPa while initial temperature of 300 K was set for both 

CEM and research engine.  
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Fig.6.9 Velocity plot for air flow during intake stroke in CEM case (continue) 
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Fig.6.9 Velocity plot for air flow during intake stroke in CEM case 
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Fig.6.10 Velocity field with pressure plot for air flow during intake stroke in research 

engine case (continue) 
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Fig.6.10 Velocity field with pressure plot for air flow during intake stroke in research 

engine case 
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 Fig.6.9 shows the velocity plot in a vertical cut plane for air intake into the CEM at the time 

of maximum intake valve lift, whereas pressure plot with velocity vector in a vertical cut 

plane for air intake into the hydrogen research engine is shown in Fig.6.10. Very strong 

annular jet flows can be observed in both of engine configuration. As the flow velocity was 

quite high during the entry into the cylinder, vortex regions formed later on when the high-

speed air interact with fixed wall of the cylinder and piston bowl. These toroidal vortices 

gradually become stronger and expanded over time. For research engine case, air swirl 

generated with a magnitude of 2.2 (measured experimentally) due to the helical shape of 

intake port; consequently, vortices appeared to be much stronger compared to that in RCEM 

case. 

6.10 Hydrogen Injection and jet characteristics  

In order to capture the hydrogen jet with higher spatial resolution and to overcome the mesh 

dependence, a very fine mesh is required in the region where the jet is present. This is 

achieved using “line refinement” feature available in the mesh control (see Fig.6.11). This 

particular mesh refinement was activated only during the injection event which caused the 

number of cells in the computational domain to become 1.7 million and 0.7 million, for 

research engine and CEM, respectively. To run simulation for such a huge number of cells, 

therefore, a high-performance computer (HPC) with Intel XEON processor including 32 

cores was used to reduce the computational time. 

Fig.6.12 shows the jet structure in vertical cut plane through nozzle exit and spark-plug 

geometry for hydrogen direct injection into CEM with start of injection (SOI) =10oBTDC and 
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Fig.6.11 Local mesh refinement along jet direction for air flow during intake stroke 

 

global air-excess ratio, λ = 10. Here, end of injection (EOI) = 0oBTDC and spark timing 

coincide with EOI (i.e. at TDC). Fig.6.9 confirms that it is possible to introduce gaseous fuel 

directly into the combustion chamber using the concept of “velocity inflow boundary” by 

specifying boundary conditions like pressure, temperature, time varying velocity profile etc. 

appropriately for the nozzle exit area. This simulation also confirms that the hydrogen jet 

directed towards the spark gap region forming a jet guided combustion system in accordance 

with original design of the chamber head. 
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Fig.6.12 Hydrogen jet structure in CEM case for EOI=0oBTDC and λ = 10 (continue) 
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Fig.6.12 Hydrogen jet structure in CEM case for EOI=0oBTDC and λ = 10 

 

Fig.6.13 and Fig.6.14 present hydrogen jet structure at different crank angle after start of 

injection (ASOI) for different injection timing considered in the experimental works  

7oASOI

9oASOI
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Fig.6.13 Hydrogen jet structure at 1o ASOI for research engine case; λ = 4 

 

conducted in research engine case; here preset air excess ratio was, λ = 4. It is clearly 

depicted in the figure that when start of injection (SOI) was retarded jet penetration and jet 

diffusion became slower or reduced. This might be attributed to the fact that in cylinder 

SOI=50oBTDC

SOI=90oBTDC

SOI=120oBTDC
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pressure getting higher as piston advances during compression stroke; therefore, with 

retarded injection during compression stroke fuel jet experience higher pressure 

immediately upon exiting from the nozzle tip. This high ambient pressure hinders the gas 

diffusion into the ambient air and consequently reduce the jet penetration.  

 

Fig.6.14 Hydrogen jet structure at 6o ASOI for research engine case; λ = 4 

 

SOI=50oBTDC

SOI=90oBTDC

SOI=120oBTDC
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For SOI = 120oBTDC, the in-cylinder pressure during the onset of injection was only 0.128 

MPa whereas the value increased to 0.556 MPa with SOI = 50oBTDC. This explains the reason 

why hydrogen molecular diffusion was weaker for SOI = 50oBTDC, as seen in Fig. 6.13 and 

Fig.6.14 compared to others injection timing. 

6.11 Modeling Mixture formation and Combustion in CEM case 

6.11.1 Flame front tracking and pressure history 

In accordance with the experimental conditions, 3-D CFD simulation were performed for 

hydrogen direct injection and spark ignition in CEM case. Evolution of hydrogen flames with 

crank angle position was modeled and depicted in Fig.6.15 whereas simulated in-cylinder 

pressure history for hydrogen combustion was plotted and compared with experimental 

result in Fig.6.16.  Here, injection event completed at, EOI=0oBTDC and spark discharge 

occurred at the same instant. Therefore, at TDC, we can presume that the mixture was highly 

stratified and ignition point might be located somewhere along the hydrogen jet. As a result, 

flame propagation velocity was so high that 50% heat release occurred within just 1oCA from 

the onset of spark event, as found in FORTE log file. It took only 2oCA to accumulate 90% of 

the total heat release. This phenomenon is clearly demonstrated in Fig. 6.12, as the flame 

front, tracked by G-equation model, engulfed the whole combustion chamber within 2oCA 

from the onset of spark event. The complex flame motion phenomena can be included when 

the flame front is tracked accurately. These phenomena would be neglected if only the 

kinetics within each cell were considered in determining flame location.  
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Turbulent flame speed cannot be pre-determined in the same way as laminar flame speed, 

because of the dependence on local and dynamic turbulence parameters and the fact that 

turbulence scales can vary over several orders of magnitude within the same simulation. 

However, there are fundamental correlations that allow on-the-fly determination of 

turbulent flame-speed values using the kinetics-derived laminar flame-speed and the local 

turbulent kinetic energy and turbulent length scale. ANSYS FORTE accounts for local 

conditions at each flame front location by accessing pre-established look-up tables that 

provide laminar flame-speed values dynamically at each location of the flame front. 

Turbulent flame speeds are derived from the fundamental laminar flame speed and from the 

local turbulence parameters. In this way the flame propagation at each time step and at each 

point along the flame surface is determined by the fundamental chemical kinetics relevant 

to those conditions as well as the turbulence conditions. 

Initially full cycle simulation was performed in order to capture more flow structures, eddies 

and vortices that have significant influences on both mixture formation process and 

subsequent combustion. But a remarkable deviation in agreement between experiment and 

simulation can be observed in Fig.6.16. This discrepancy indicates the presence of very small 

leakage in the RCEM. As an alternative to full cycle modeling, a second simulation carried out 

from -25o ATDC to 40o ATDC during which all the major events like injection, spark 

discharge and flame propagation took place. The trend of peak pressure is well captured; 

and very good agreements are obtained for the injection, ignition and combustion stages. 
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Fig.6.15 Flame front evolution with crank angle for EOI = 0oBTDC in CEM case; λ = 10 
(conitue) 

 

at 1oATDC

Spark Timing = 0oATDC

Flame front location

Flame front location
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Fig.6.15 Flame front evolution with crank angle for EOI = 0oBTDC in CEM case; λ = 10 

 

 

at 1oATDC

Flame front location

Flame front location at 3oATDC
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Fig.6.16 Comparing simulated pressure history with experimental data for EOI = 0oBTDC 
and λ = 10 in CEM case 

 

 

6.11.2 Comparison of local equivalence ratio  

Previously in Chapter-4 it is stated that mixture formation process was investigated 

experimentally through spark-induced breakdown spectroscopy (SIBS) technique in a 

compression-expansion machine (CEM). As a consequence, local fuel-air equivalence ratio, 

ϕ (or local air-excess ratio) near spark gap were measured through SIBS sensor. To validate 

the experimental results, and to get better insight into mixture formation process, therefore 

it is quite necessary to accurately estimate the local fuel concentration at electrode gap 

during ignition timing while performing simulation. In ANSYS FORTE it is possible to use 

“point probe sampling” feature which is a single sampling point specified in Cartesian 
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coordinates within the volumetric region of the solution geometry, in order to extract the 

information of local equivalence ratio at spark timing (see Fig.6.17). Multiples point probe 

were created at location very close to the spark gap region to estimate average of the local 

equivalence ratio and plotted against experimental values in Fig.6.18 for validation. Three 

injection timing were considered here namely, EOI= 10o, 5 o, and 0 o BTDC. Though overall 

agreements seem very reasonable, but CFD simulation slightly overpredicted local fuel-air 

equivalence ratio, ϕ than in experiments, particularly for EOI= 5o BTDC case.  

 

 

 

Fig.6.17 Point probe sampling to extract local mixture properties 

Location of Point probe

RCEM

Research Engine
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Fig.6.18 Comparison of predicted local equivalence ratio with experimental results for 

varying injection timing 

 

6.12 Modeling Mixture formation and Combustion in a 

hydrogen research engine 

6.12.1 Hydrogen PFI operation 

Operating the engine in PFI (port fuel injection) leads to formation of premixed or 

homogeneous mixture and after spark event a premixed flame propagate throughout the 

combustion chamber. Therefore, while modeling the PFI engine operation, initial gas  

0

1

2

3

4

5

6

051015

Experiment FORTE CFD

EOI, deg. BTDC

L
o

c
a
l

e
q

u
iv

a
le

n
c
e

ra
ti

o
,
ɸ



Chapter-6: CFD Modeling of Mixture Formation Process in Hydrogen IC Engine 
 

196 
 

composition was used to specify the fuel-air mixture in the intake port region and perfect 

mixing within the port was assumed. Simulations were carried out for global air excess ratio 

varying from 2.0 to 4.0 and for different spark timing. Fig.6.19 and Fig.6.20 represent the 

flame propagation for λ=2.5 and λ=4.0, respectively. In both of the cases spark timing was 

fixed at 15oBTDC. 

 

Fig.6.19 Flame front evolution with crank angle for PFI operation; λ = 4 

at 15oBTDC (=Spark Timing)

Flame front location

at 3oBTDC

at -10oBTDC
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Fig.6.20 Flame front evolution with crank angle for PFI operation; λ = 2.5 

 

Front tracking algorithms for resolving sharp gradients in flow systems are well established 

in computational mathematics. The G-equation model, mathematically known as the level-

set method, was used to track the location of the flame front, independent of mesh resolution, 

with a highly efficient numerical technique. From the comparison between Fig.6.19 and 6.20 

at 15oBTDC (=Spark Timing)

Flame front location

at 3oBTDC

at -10oBTDC
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it is quite evident that flame development and propagation was much faster for λ = 2.5 than 

for λ = 4.0. Here, color bars show that mass fraction of H2 fuel in combustion chamber is 

higher for λ = 2.5, as expected. It is generally agreed that the higher fuel concentration or 

comparatively rich mixture leads to faster kernel development and flame propagation. This 

characteristics feature is also observed in the pressure history as shown in Fig.6.21.  

 

Fig.6.21 Comparing simulated pressure history with experimental data for hydrogen 
research engine in PFI mode 

 

Very good agreements were achieved between predicted pressure histories with that of 

experimental data. To reach up-to this level of agreements, it is required to specify initial and 
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boundary conditions accurately; do very fine tuning of several important parameters namely, 

turbulent flame speed ratio, flame stretching factor, flame development co-efficient etc. In 

Fig.6.21, it is found that, with increasing air-excess ratio, pressure rise deaccelerated and 

produced lower peak values. This is caused by lower heat content in the mixture with higher 

λ values which ultimately decreased the flame propagation as evident in Fig.6.19 and Fig.6.20 

also. 

 In Chapter-5, mean local air excess ratios (λlocal) were plotted against the preset value 

(λpreset) for port injection conditions, and it was described how accuracy of SIBS 

measurement can be improved significantly through the “calibration map” that takes into 

account the pressure dependency of atomic emissions. Here, in Fig.6.22, local fuel  

 

 

Fig.6.22 Comparison of predicted local air excess ratios with experimental results for 

varying preset value (λpreset) 
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concentration estimated by ANSYS FORTE simulation was compared with experimentally 

measured values by using calibration map; and calibration line. The predicted λlocal values 

from simulation matched quite well with experimentally measured values by using 

calibration map. This demonstrates that simulation carried out in this study was successful 

in predicting the mixture formation process as well as combustion phenomenon in a 

hydrogen engine operating in PFI mode.  

6.12.2 Hydrogen DI operation 

As stated in Chapter-5, experiments were performed with different air excess ratio varying 

from 2.5 to 4.5; and to achieve an axially stratified charge, the start of injection (SOI) was 

varied from120O BTDC to 35O BTDC while MBT (minimum advance for best torque) timing 

was considered as an ignition strategy. Full cycle simulations were performed operating 

conditions similar to experiments. Hydrogen flame front movement for different SOI are 

shown in Fig.6.23As the flame expanded, the flame front rippled, and buckled due to the 

stratification of the fuel/air mixture and turbulence conditions in the cylinder. From the 

color bar, representing the hydrogen mass fraction, it can be observed that for SOI= 

120oBTDC and 90oBTDC hydrogen was diffused throughout chamber forming almost 

homogeneous mixture whereas for SOI= 50oBTDC and 35oBTDC, mixture became highly 

stratified at spark timing. Therefore, simulation is able to confirm that for late injection cases, 

combustion occurred with diffusion flame propagation. In Fig.6.23, it seems that the area 

engulfed by the flame front gradually decreased with retarded injection timing, therefore,  
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Fig.6.23 (a) Flame front evolution for SOI =120oBTDC; λ = 4.0 

at 17oBTDC (=Spark Timing)

Flame front location

at 12oBTDC

at 5oBTDC
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Fig.6.23 (b) Flame front evolution for SOI =90oBTDC; λ = 4.0 

 

at 12oBTDC (=Spark Timing)

Flame front location
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at 10oBTDC (=Spark Timing)

Flame front location

at 6oBTDC

at 0oBTDC

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.23 (c) Flame front evolution for SOI =50oBTDC; λ = 4.0 
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at 7oBTDC (=Spark Timing)

Flame front location

at 2oBTDC

at -4oBTDC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.23 (d) Flame front evolution for SOI =35oBTDC; λ = 4.0 
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one may misunderstand that the combustion with late injection became slower. But this 

misunderstanding can be eliminated by shedding light on the fact that with late injection 

most of the fuel mass exist within a small volume (typically near the spark plug region in jet 

guided combustion system) in space and once the ignition is initiated by the spark-discharge, 

flame surface rapidly engulfed the fuel-air mass leading to higher mass fraction burned 

(MFB) and rapid combustion.  

 

 

Fig.6.24 Comparing simulated pressure history with experimental data for hydrogen 
research engine operating in DI mode; λ = 4.0 
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Fig.6.24 shows a comparison of simulated and measured pressure histories for different 

injection timing while global equivalence ration was maintained at constant value (λ = 4.0). 

During this CFD simulation through ANSYS FORTE, three most important parameters that 

have significant influence on initial kernel development and burning velocity are: 

1. Turbulent flame speed ratio, b1 which is the ratio of fully developed turbulent flame 

speed over turbulent burning velocity. A larger value increases the turbulent flame 

speed. 

2. Flame development coefficient, Cm2 which models the increasingly disturbing effect 

of the surrounding eddies on the flame front surface as the ignition kernel grows from 

the laminar flame stage into the fully developed turbulent stage. Increasing the value 

of this variable will expedite the transition from the laminar kernel flame to the fully 

developed turbulent flame. 

3. Flame stretching coefficient which accounts for strain and curvature effects. A larger 

value will increase the flame strain cause by turbulence and reduce flame speed. Its 

effect can be large when flame propagation is weak, for example, under high EGR or 

lean burn conditions.    

In Chapter-5, spark-induced breakdown spectroscopic (SIBS) measurements confirmed 

higher degree of mixture stratification and higher equivalence ratio in spark gap region at 

the time of ignition with retarded injection timing. Local air-excess ratio, λlocal predicted by 

ANSYS FORTE CFD was compared with measured values by using calibration map and 

calibration line as shown in Fig.6.25. Very good agreement obtained between simulation and 

experimental data measured with calibration map for SOI = 120oBTDC, 90oBTDC and 
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35oBTDC; while for SOI = 50oBTDC, a reasonable agreement achieved. It should be reminded 

that for each operating condition, experiments were repeated for 100 times and all the data 

presented throughout the study represent the average of 100 engine cycles, thereby 

diminishing the cycle to cycle variation. On the other hand, predicted data represents only a 

single cycle. Furthermore, the velocity profile that adopted in the simulation for introducing 

hydrogen into the combustion chamber was not measured experimentally rather it was just 

the assumption though fine tuning was performed to maintain the same equivalence ratio. 

Therefore, there might be some short fall in accurately predicting the jet movement and 

molecular diffusion of hydrogen.  These factors might have led to the discrepancy between 

simulation and experimental results.  

 

Fig.6.25 Comparison of predicted local air excess ratios with experimental results for 

varying start of injection (SOI); λpreset = 4.0 
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6.13 Summary 

In this study, CFD simulations were carried out for different injection strategies and over a 

range of global air-excess ratio varying from 2.0 to 4.0. Full cycle simulation was performed 

in order to capture more flow structures, eddies and vortices that have significant influences 

on both mixture formation process and subsequent combustion. Concept of inflow boundary 

condition at the nozzle exit was successfully utilized to introduce gaseous hydrogen directly 

into the combustion chamber. This simulation confirms that the hydrogen jet directed 

towards the spark gap region forming a jet guided combustion system in accordance with 

original design of the chamber head. With retarded injection during compression stroke, fuel 

jet experience higher pressure immediately upon exiting from the nozzle tip. This high 

ambient pressure hinders the gas diffusion into the ambient air and consequently reduce the 

jet penetration. The complex flame motion phenomena can be included when the flame front 

is tracked accurately. These phenomena would be neglected if only the kinetics within each 

cell were considered in determining flame location. The G-equation model, mathematically 

known as the level-set method, was used to track the location of the flame front, independent 

of mesh resolution, with a highly efficient numerical technique. As the flame expanded, the 

flame front rippled, and buckled due to the stratification of the fuel/air mixture and 

turbulence conditions in the cylinder. It is generally agreed that the higher fuel concentration 

or comparatively rich mixture leads to faster kernel development and flame propagation; 

this characteristics feature was observed in the simulation. It is found that, with increasing 

air-excess ratio, pressure rise deaccelerated and produced lower peak values. This caused 

by lower heat content in the comparatively leaner mixture which ultimately decreased the 
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flame propagation. With late injection most of the fuel mass exist within a small volume 

(typically near the spark plug region in jet guided combustion system) in space and once the 

ignition is initiated by the spark-discharge, flame surface rapidly engulfed the fuel-air mass 

leading to higher mass fraction burned (MFB) and rapid combustion. Very good agreements 

were achieved between predicted pressure profiles with experimental data. 

To validate the experimental results (i.e. SIBS data), and to get better insight into mixture 

formation process, local fuel concentration at electrode gap during ignition timing was 

extracted from simulation results. CFD simulation data of local equivalence ratio supported 

the claim that accuracy of SIBS measurement can be improved significantly by taking into 

account the pressure dependency of atomic emissions. The predicted λlocal values from 

simulation matched quite well with experimentally measured values by using calibration 

map. This demonstrates that simulation carried out in this study was successful in predicting 

the mixture formation process as well as combustion phenomenon in a hydrogen engine. To 

reach up-to this level of agreements, it is required to specify initial and boundary conditions 

accurately; do very fine tuning of several important parameters namely, turbulent flame 

speed ratio, flame stretching factor, flame development co-efficient etc.  
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CHAPTER: 7 

 

Conclusions  

The primary objective of this study was to investigate mixture formation process in jet 

guided direct injection hydrogen spark ignition engine through simultaneous application of 

high speed visualization and spark-induced breakdown spectroscopy (SIBS). The 

experimental works were conducted in a compression-expansion machine (CEM) designed 

and fabricated by Heat Power Laboratory, Okayama University; and a direct-injection 

hydrogen spark-ignition research engine developed at Tokyo City University. Spark-induced 

breakdown spectroscopy (SIBS) technique was employed as a diagnostic tool for local fuel 

concentration measurements in a direct-injection hydrogen research engine for the first 

time. The followings are the key findings obtained from this research: 

1) Time-series images of the evolution of hydrogen jet showed that jet plume appears to 

penetrate faster when hydrogen was injected with higher injection pressure into a 

chamber of comparatively lower ambient pressure as velocity of the jet or total 

momentum supplied to the fuel jet at the injector exit was higher for increasing the 

injection pressure. Therefore, the injected fluid with additional momentum could 

accelerated more readily by pushing aside the ambient fluid; though density of 

chamber medium was considerably higher than that of the injected gas. 



Chapter-7: Concluding Remarks   

216 
 

2) Higher ambient pressure resulted in considerably shorter jet tip penetration along 

with wider jet angle which was caused by the higher inertia of the fluid elements that 

the injected fluid must accelerate and push aside. 

3) A new sensor with an optical fibre housed in the centre electrode of the spark plug 

was developed from a commercially available M12-type spark plug with no major 

modification to the electrodes, leading to stable spark formation.  

4) Spectroscopic analysis of spark-plasma emission and high-speed visualization of 

spark behavior with different air-excess ratio was studied simultaneously in a 

compression expansion machine (CEM). Results clearly indicates that presence of 

higher fuel concentration in the vicinity of spark gap leads to higher discharge energy 

as the magnitude of both breakdown voltage and current increase though duration of 

spark event becomes shorter with lower air excess ratio.  

5) Exposure duration for spectroscopic measurement of spark plasma was optimized to 

obtain better atomic emission intensity of Hα (656nm) and N (745nm). When 

hydrogen concentration was relatively higher, breakdown voltage became higher 

which made spark discharge difficult to sustain over a long time and both continuum 

background emission (i.e. emission from spark plasma) and atomic emission 

intensity of the spectral distribution declines. As expected, lower the preset air excess 

ratio, resulted in higher intensity ratio of Hα/N due to presence of higher 

concentration of hydrogen fuel compared to that of nitrogen. However, with a 

hydrogen density above a certain level, emission intensity ratio did not show a linear 

relationship and it was considered that there was a limit to the amount of hydrogen 

atoms that can be excited. Therefore, a change in the discharge energy lead to a 
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corresponding change in the relationship between atomic emission intensity ratio 

and excess air ratio. 

6) Quantitative measurements of fuel concentration were conducted for the first time in 

a direct-injection hydrogen spark-ignition research engine through spark-induced 

breakdown spectroscopy (SIBS) technique. The newly developed fibre optic spark 

plug sensor was used successfully in a DISI research engine and showed better 

durability and robustness even with very in-cylinder pressure and turbulence. Here 

the main focus was to characterise the effects of ambient pressure at ignition timing 

on atomic emissions and to improve the accuracy of the SIBS measurements by taking 

into account the pressure dependency of atomic emissions. 

7) A linear relationship (calibration line) was demonstrated between air excess ratio 

and intensity ratio for both IH/IN and IH/IO over all pressure values. A significant 

effect of the corresponding pressure at ignition timing was observed on SIBS 

measurements and emission line characteristics. Retarded spark timing (i.e. higher 

ambient pressure at the ignition site), resulted in lower spectral line intensities as 

well as weaker background emissions. This indicates the variation in spark discharge 

behaviour and plasma formation with variation in ambient pressure inside the engine 

cylinder during spark timing variation. At relatively higher pressures, the cooling of 

the expanding plasma was quicker due to collisional processes with the surrounding 

gas, leading to both a weaker broadband continuum and atomic emissions. 

8) A calibration map, representing the correlation of air excess ratio with both intensity 

ratio and pressure at ignition timing, was developed by taking into account the effect 

of the corresponding pressure at ignition timing on spectral line intensity for 
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quantitative measurements of local air excess ratio in a research engine. Local 

stratification of the fuel mixture in the vicinity of the spark gap location associated 

with direct injection  was confirmed through SIBS measurements using the newly 

developed spark plug sensor. The COV of local air excess ratio was considerably 

smaller for measurements made through the calibration map. This indicates that the 

accuracy of measurements of local air excess ratio through SIBS technique can be 

improved significantly when the pressure dependency of atomic emissions is taken 

into account. 

9) Multidimensional CFD simulation was carried out over a range of global air-excess 

varying from 2.0 to 4.0 and different injection strategies, by using commercial 3D-

CFD software ANSYS Forte, to obtain better insight on hydrogen jet characteristics 

and mixture formation process in hydrogen direct-injection engines.  

10)  Simulation confirmed that with retarded injection during compression stroke, fuel 

jet experience higher pressure immediately upon exiting from the nozzle tip. This 

high ambient pressure hinders the gas diffusion into the ambient air and 

consequently reduce the jet penetration.  

11)  The G-equation model, mathematically known as the level-set method, was used to 

track the location of the flame front, independent of mesh resolution, with a highly 

efficient numerical technique. As the flame expanded, the flame front rippled, and 

buckled due to the stratification of the fuel/air mixture and turbulence conditions in 

the cylinder. It is generally agreed that the higher fuel concentration or comparatively 

rich mixture leads to faster kernel development and flame propagation; this 

characteristics feature was observed in the simulation. It is found that, with 
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increasing air-excess ratio, pressure rise deaccelerated and produced lower peak 

values. This was caused by lower heat content in the comparatively leaner mixture 

which ultimately decreased the flame propagation. With late injection most of the fuel 

mass exist within a small volume (typically near the spark plug region in jet guided 

combustion system) in space and once the ignition is initiated by the spark-discharge, 

flame surface rapidly engulfed the fuel-air mass leading to higher mass fraction 

burned (MFB) and rapid combustion.  

12)  Very good agreements were achieved between predicted pressure profiles with 

experimental data. 

13)  To validate the experimental results (i.e. SIBS data), local fuel concentration at 

electrode gap during ignition timing was extracted from simulation results. The claim 

to achieve higher accuracy in SIBS measurement by taking into account the pressure 

dependency of atomic emissions, was confirmed through CFD simulation data of local 

fuel concentration. The predicted λlocal values from simulation matched quite well 

with experimentally measured values.  

14)  To reach up-to this level of agreements, it is required to specify initial and boundary 

conditions accurately; do very fine tuning of several important parameters namely, 

turbulent flame speed ratio, flame stretching factor, flame development co-efficient 

etc. 

15)  These demonstrate that the simulation carried out in this study was successful in 

predicting the mixture formation process as well as combustion phenomenon in a 

hydrogen engine. 
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