
A Study of Exercise Problems in Java Programming
Learning Assistant System

March, 2018

Khin Khin Zaw

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, March 2018.

To Whom It May Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Ms. Khin Khin Zaw

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

As a reliable and portable object-oriented programming language, Java has been extensively
used in a variety of practical systems. A large number of universities and professional schools
are offering Java programming courses to meet these needs. To assist Java programming ed-
ucations in schools, we have developed the Web-based Java Programming Learning Assistant
System (JPLAS). JPLAS mainly provides two types of exercise problems, called the element
fill-in-blank problem, and the code writing problem, to support self-studies by students at
various learning levels.

The element fill-in-blank problem intends for a novice student to learn the Java grammar
and basic programming through code reading. To generate the feasible problem, we also
proposed the graph-based blank element selection algorithm that selects the blank elements
that satisfy the unique correct answers. The code writing problem intends for a student to
learn the Java source code writing from scratch, after completing the grammar study. In
this problem, we adopted the test-driven development (TDD) method using JUnit to verify
its correctness of the answer code from the student. It tests the behaviors of the code via
the test code.

However, through applications to students, we have observed that several drawbacks ex-
ist in the current exercise problems in JPLAS. First, in the element fill-in-blank problem,
generally, students can solve the problems mechanically without reading carefully and under-
standing the code behaviors correctly, if they know the Java grammar, because of the limited
choices for each blank. Thus, the difficulty of the problem should be controlled by changing
the number and importance of blank elements. Then, in the code writing problem, on the
other hand, a lot of students cannot solve harder problems that require multiple classes and
methods. More detailed code specifications should be provided to help the students to design
the proper classes and methods for the code.

In this thesis, we present the five contributions on advancements of exercise problems in
JPLAS. In the first contribution, we present the extensions of the blank element selection
algorithm to change the number of blank elements to control the difficulty level of the gen-
erated problem, and to additionally blank key elements such as conditional expressions. We
verify the effectiveness of these extensions through applications to various Java codes and
evaluations of how they affect the solution performances of the students. The results show
that these extensions can control the number of blank elements and the problem difficulty,
where the solution performance is greatly affected by them.

In the second contribution, we propose the core element fill-in-blank problem to enhance
the code reading studies by novice students. In this problem, to control the importance of
blank elements in terms of algorithm/logic implementations, we adopt the program depen-
dence graph (PDG) in the blank element selection algorithm. We verify the effectiveness of
this problem through applications of the problems using the codes for the graph theory or

i

fundamental algorithms to students with questionnaire. The results show the highly cor-
rect answer rates, nevertheless the code understanding is necessary to solve the problems.
Many students commented that the problems are helpful to understand the behaviors of the
algorithms.

In the third contribution, we propose the value trace problem as a new type of fill-in-blank
problem. This problem asks students to trace the actual values of the important variables
in a code implementing a data structure or an algorithm. To select the tracing values of
the variables, we present the blank line selection algorithm. We verify the effectiveness
of this problem through generated problems for sorting and graph theory algorithms to
students with questionnaire. The results show that some problems are much more difficult
than the element fill-in-blank problem. Many students commented that they are effective in
understanding the algorithm in a code by code reading, and a long problem code is more
difficult to read out because of the limited interface space in JPLAS.

In the fourth contribution, we study the workbook design for three fill-in-blank problems
for use in a Java programming course to enhance the self-studies of Java programming by
novice students. This design consists of 15 categories that are arranged in the conventional
learning order of Java programming. In this thesis, we collect the Java codes from textbooks
and Web sites, and discuss their use in a Java programming course. Then, element fill-in-
blank problems are generated from source codes by using the extended blank element selection
algorithm. For the preliminary evaluations, we assign several problems in the workbook to
novice students. The results show that the problem codes including object array and double
loops are difficult for the novice students.

In the last contribution, we propose the informative test code approach for the code
writing problem. To help the students to solve harder problems that require multiple classes
and methods, the informative test code describes the detailed specifications of the names,
access modifiers, and data types of the classes, methods, and arguments. We verify the
effectiveness of this approach through applications of generated test codes to students. The
software metrics of student answer codes are also evaluated using Eclipse Metric Plugin. The
results show that all the students could complete the qualitative codes using informative test
codes, whereas most students could not complete them without the informative test code.

To complete the works on exercise problems in JPLAS, there are still a lot of issues to
be solved. In future studies, we will further improve the blank element selection algorithm,
improve the PDG generation method, generate the different element fill-in-blank problems
using these algorithms for the workbook, improve the user interfaces for displaying the
problem codes, improve the informative test code approach to avoid the drawbacks, prepare
informative test codes for a variety of source codes, and assign these generated problems in
JPLAS to students in Java programming courses.

ii

Acknowledgements

It is my great pleasure to thank those who made this dissertation possible. I want to say so
much, but I can hardly find the words. So, I’ll just say that you are the greatest blessing in
my life.

I owe my deepest gratitude to my supervisor, Professor Nobuo Funabiki, who has sup-
ported me throughout my thesis with his patience and knowledge. I am greatly indebted to
him, whose encouragement, advice, and support from the beginning enabled me to develop
the understanding of the subject, not only in scientific but also in life. He gave me wonder-
ful advices, comments, and guidance when writing papers and presenting them. Thanks for
making me what I am today.

I am heartily thankful to my co-supervisors, Professor Satoshi Denno and Professor
Yasuyuki Nogami, for their continuous supports, guidance, and proofreading of this work.

I would like to acknowledge Japan International Cooperation Agency (JICA) for finan-
cially supporting my doctoral course study in Okayama University and Yangon Technological
University (YTU) where I am working as a lecturer.

I would like to thank for the helpful discussions from many people including, Professor
Toru Nakanishi, Associate Professor Minuro Kuribayashi, Mr. Nobuo Ishihara, Dr. Tana,
and all the FUNABIKI Lab’s members. Thank you for believing in me when I was too weak
and exhausted to believe in myself. Thank you for pushing me, you have supported me in
all the tough times that I have ahead and thank you to share your thoughts and experiences
with me.

Last but not least, I am eternally grateful to my beloved family, who always encouraged
and supported me throughout my life. Thank you for being with me all that difficult time.
Your support and understanding gave me the strength to continue fighting.

iii

List of Publications

Journal Paper

1. Khin Khin Zaw, Nobuo Funabiki, and Wen-Chung Kao , “A proposal of value trace
problem for algorithm code reading in Java programming learning assistant system,”
Journal of Information Engineering Express, vol. 1, No. 3, pp. 9-18, September 2015.

2. Khin Khin Zaw and Nobuo Funabiki, “A design-aware test code approach for code
writing problem in Java programming learning assistant system,” International Journal
of Space-Based and Situated Computing, vol.7, No.3, pp. 145-154, September 2017.

International Conference Paper

3. Khin Khin Zaw and Nobuo Funabiki, “A concept of value trace problem for Java
code reading education,” IIAI International Congress on Advanced Applied Informatics
2015, pp. 253-258, July 2015.

4. Khin Khin Zaw, Nobuo Funabiki, and Minoru Kuribayashi “A proposal of three ex-
tensions in blank element selection algorithm for Java programming learning assistant
system,” 2016 IEEE 5th Global Conference on Consumer Electronics, pp. 3-6, October
2016.

5. Khin Khin Zaw and Nobuo Funabiki “A core blank element selection algorithm for
code reading studies by fill-in-blank problems in Java programming learning assistant
system”, The 7th International Conference on Science and Engineering 2016, pp. 204-
208, December 2016.

6. Nobuo Funabiki, Shinpei Matsumoto, Khin Khin Zaw, and Wen-Chung Kao, “Ap-
plications of coding rule learning function to workbook codes for Java programming
learning assistant system,” The 7th International Conference on Science and Engineer-
ing 2016, pp. 1170-1175, December 2016.

7. Khin Khin Zaw, Nobuo Funabiki, and Wen-Chung Kao, “A proposal of informative
test code approach for code writing problem in Java programming learning assistant
system,” The 8th International Conference on Science and Engineering 2017, pp. 260-
265, December 2017.

iv

Other Papers

8. Khin Khin Zaw and Nobuo Funabiki, “A blank line selection algorithm for value
trace problem in Java programming learning assistant system,” IEICE Society Conf.,
BS-6-2, pp. S19-S20, September 2015.

9. Khin Khin Zaw and Nobuo Funabiki, “A value trace problem for prim algorithm in
graph theory in Java programming learning assistant system,” 17th IEEE Hiroshima
Section Student Symposium (HISS 2015), pp. 444-447, November 2015.

10. Khin Khin Zaw and Nobuo Funabiki, “A study of value trace problems for graph the-
ory algorithms in Java programming learning assistant system,” IEICE Tech. Report,
SS-2016-01, pp. 159-164, January 2016.

11. Khin Khin Zaw, Nobuo Funabiki, and Minoru Kuribayash, “Extensions of blank
element selection algorithm for Java programming learning assistant system,” IEICE
Tech. Report, ET-2016-06, pp. 41-46, June 2016.

12. Khin Khin Zaw and Nobuo Funabiki, “Preliminary evaluation of blank element
selection algorithm for fill-in-blank problem in Java programming learning assistant
system,” IEICE Society Conf., BS-5-24, pp. S98-S99, September 2016.

13. Khin Khin Zaw and Nobuo Funabiki, “A blank element selection algorithm extension
for algorithm code reading by fill-in-blank problems in Java programming learning
assistant system,” The 18th IEEE Hiroshima Section Student Symposium (HISS 2016),
pp. 129-132, November 2016.

14. Khin Khin Zaw, Nobuo Funabiki, and Minoru Kuribayash, “Element fill-in-blank
problems in Java programming learning assistant system,” IEICE General Conf., BS-
1-21, pp. S41-42, March 2017.

15. Khin Khin Zaw and Nobuo Funabiki, “A proposal of design-aware test code approach
for code writing problem in Java programming learning assistant system,” IEICE So-
ciety Conf., BS-7-8, pp. S56-S57, September 2017.

16. Khin Khin Zaw and Nobuo Funabiki, “An informative test code approach for code
writing problem in Java programming learning assistant system,” IEICE Tech. Report,
SS-2017-10, pp. 31-36, October 2017.

v

List of Figures

2.1 Software platform for JPLAS . 5

3.1 Constraint graph for bubbleSort . 12
3.2 Example of improved edge generation method for bubbleSort 15

4.1 Sample PDG . 21

5.1 Interface for assignment answering . 32

vi

List of Tables

3.1 Vertex information . 10
3.2 Operators in conditional expressions for blank 14
3.3 Average number of vertices and blanks by extensions 1 and 2 16
3.4 Average number of blanks for different BG and CB 17
3.5 Parameter values for problem generations . 17
3.6 Statistics of generated problems . 18
3.7 Solution results for each group . 18
3.8 Average solution performance . 18

4.1 PDG property of adopted Java codes . 23
4.2 Number of selected elements by two algorithms 24
4.3 Student assigned problem and correct rate 24
4.4 Solution performance for each problem . 25
4.5 Questions in questionnaire . 25
4.6 Questionnaire results by students . 25

5.1 Five value trace problems for evaluations . 38
5.2 Questions in questionnaire . 39
5.3 Solution and questionnaire results . 39
5.4 Questionnaire results on effectiveness of value trace problem 40
5.5 Size of value trace problems for graph theory algorithms 42
5.6 Size of value trace problems for fundamental data structures or algorithms . 42
5.7 Questions in questionnaire . 43
5.8 solutions and questionnaire results . 43

6.1 Workbook code collection . 47
6.2 Workbook design of element fill-in-blank problems 48
6.3 Trial application results for four students . 49

7.1 Comparison of metric values for BFS algorithm using proposal 66
7.2 Metric values for four algorithms without using proposal 67
7.3 Metric values of source codes . 68

vii

List of Codes

2.1 Source code for MyMath class . 7
2.2 Test code for MyMath class . 7
3.1 Source code for BubbleSort . 12
4.1 Core element fill-in-blank problem for KnapSack 26
5.1 Source code for InsertionSort . 30
5.2 Insertionsort main class . 30
5.3 InsertionSort code with output function . 31
5.4 Output data file for InsertionSort . 31
5.5 Blanked data file for InsertionSort . 31
5.6 Blanked data file for InsertionSort by algorithm 34
5.7 Pseudo code for Dijkstra . 34
5.8 Source code for WeightedGraph class . 35
5.9 Source code for DijkstraMethod class . 36
5.10 Dijkstra main class . 37
5.11 Output data file for Dijkstra . 38
5.12 Blanked data file for Dijkstra . 38
5.13 Value trace problem for QuickSort . 40
6.1 Problem Q2 . 49
6.2 Problem Q8 . 49
6.3 Problem Q4 . 50
7.1 Input data file for BFS . 56
7.2 Output data file for BFS . 56
7.3 Informative test code for BFS . 57
7.4 Simple test code for BFS . 60
7.5 Example source code for Encapsulation . 61
7.6 Example source code for Inheritance . 61
7.7 Example source code for Polymorphism . 62
7.8 Source code for Queue . 62
7.9 Informative test code for Queue . 63
7.10 Source code for Stack . 64
7.11 Informative test code for Stack . 64

viii

Contents

Abstract i

Acknowledgements iii

List of Publications iv

List of Figures vi

List of Tables vii

List of Codes viii

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2
1.3 Contents of This Dissertation . 4

2 Overview of JPLAS 5
2.1 Software Platform for JPLAS . 5
2.2 User Services . 5

2.2.1 System Utilization Procedure . 6
2.3 Fill-in-blank Problem in JPLAS . 6

2.3.1 Lexical Analyzer . 6
2.4 Code Writing Problem in JPLAS . 7

2.4.1 TDD Method . 7
2.4.1.1 JUint . 7

2.4.2 Test Code . 7
2.4.2.1 Features in TDD Method 8

2.5 Summary . 8

3 Extensions of Blank Element Selection Algorithm 9
3.1 Introduction . 9
3.2 Review of Blank Element Selection Algorithm 9

3.2.1 Vertex Generation for Constraint graph 9
3.2.2 Edge Generation for Constraint graph 9

3.2.2.1 Group Selection Category 10
3.2.2.2 Pair Selection Category . 10
3.2.2.3 Prohibition Category . 11

ix

3.2.3 Example Constraint Graph . 12
3.2.4 Compatibility Graph Generation . 12
3.2.5 Maximal Clique Extraction of Compatibility Graph 13
3.2.6 Fill-in-blank Problem Generation . 13

3.3 Extension 1: Additional Blank Candidates 13
3.4 Extension 2: Improvement of Edge Generation 13

3.4.1 Overview . 13
3.4.2 Improved Edge Generation Procedure 14
3.4.3 Example . 14

3.5 Extension 3: Introduction of Two Parameters 15
3.5.1 Overview . 15
3.5.2 Blank Gap Number . 15
3.5.3 Continuous Blank Number . 15

3.6 Evaluations . 16
3.6.1 Blank Selection Evaluation of Extensions 1 and 2 16
3.6.2 Blank Selection Evaluation of Extension 3 16
3.6.3 Solution Performance Evaluation . 17

3.6.3.1 Assigned Element Fill-in-blank Problems 17
3.6.3.2 Problem Assignments to Students 17
3.6.3.3 Solution Results . 18

3.7 Summary . 19

4 Core Element Fill-in-blank Problem 20
4.1 Introduction . 20
4.2 Review of PDG Generation . 20

4.2.1 Basic PDG Generation for Variable 20
4.2.2 Extended PDG Generation for Object 21
4.2.3 Example of PDG . 21
4.2.4 Restrictions of PDG . 21

4.3 Core Blank Element Selection Algorithm using PDG 22
4.3.1 Overview . 22
4.3.2 Threshold Selection . 22
4.3.3 Modification of Clique Extraction . 22

4.4 Evaluations . 22
4.4.1 Java Source Codes . 23
4.4.2 PDG Property of Adopted Codes . 23
4.4.3 Number of Selected Blanks . 23
4.4.4 Solution Performance of Students . 24
4.4.5 Questionnaire Evaluations . 24
4.4.6 Generated Problem Example . 26

4.5 Summary . 27

5 Value Trace Problem 28
5.1 Introduction . 28
5.2 Related Works . 28
5.3 Concept of Value Trace Problem . 29

5.3.1 Generation Procedure of Value Trace Problem 29

x

5.3.2 Step 1): Selection of Java Code for Insertion Sort 30
5.3.3 Step 2): Generation of Main Class . 30
5.3.4 Step 3): Adding Output Functions 30
5.3.5 Step 5): Obtaining Output Data File 31
5.3.6 Step 6): Blanking Values for Problem Generation 31
5.3.7 Step 7): Generating Assignment . 32

5.4 Blank Line Selection Algorithm . 32
5.4.1 Idea . 32
5.4.2 Procedure . 32
5.4.3 Example Problem for Insertion Sort 34

5.5 Value Trace Problem for Dijkstra Algorithm 34
5.5.1 Background . 34
5.5.2 Dijkstra Algorithm . 34
5.5.3 Pseudo Code for Dijkstra Algorithm 34
5.5.4 Java Classes . 35

5.5.4.1 WeightedGraph Class . 35
5.5.4.2 DijkstraMethod Class . 36
5.5.4.3 Main Class . 37

5.5.5 Generated Value Trace Problem . 38
5.6 Evaluation for Sorting Algorithms . 38

5.6.1 Five Value Trace Problems for Sorting Algorithms 38
5.6.2 Solution Performances by Students 39
5.6.3 Difficulty Analysis of Quick Sort . 40

5.7 Evaluation for Graph Theory Algorithms . 41
5.7.1 Size of Generated Value Trace Problems 41
5.7.2 Solution Performances by Students 42

5.8 Summary . 44

6 Workbook Design for Fill-in-blank Problems 45
6.1 Introduction . 45
6.2 Review of Three Fill-in-blank Problems . 45

6.2.1 Element Fill-in-blank Problem . 45
6.2.2 Core Element Fill-in-blank Problem 46
6.2.3 Value Trace Problem . 46

6.3 Workbook Design for Fill-in-blank Problems 46
6.3.1 Code Collections . 46
6.3.2 Programming Course Use . 47

6.4 Applications of Workbook . 48
6.4.1 Generated Problems for Workbook 48
6.4.2 Trial Application Results to Novice Students 48

6.5 Summary . 50

7 Informative Test Code Approach for Code Writing Problem 51
7.1 Introduction . 51
7.2 Related Works . 51
7.3 Eclipse Metrics Plugin . 53

7.3.1 Software Metrics . 53

xi

7.3.2 Eclipse Metrics Plugin . 54
7.3.3 Adopted Seven Metrics . 54

7.4 Informative Test Code Approach for Code Writing Problem 55
7.4.1 Concept of Informative Test Code . 55
7.4.2 Problem Generation with Informative Test Code 55
7.4.3 Example Problem Generation for BFS Algorithm 56

7.4.3.1 Input Data File . 56
7.4.3.2 Model Source Code . 56
7.4.3.3 Expected Output Data File 56
7.4.3.4 Informative Test Code . 57
7.4.3.5 Informative Test Code Example 57
7.4.3.6 Simple Test Code Example 59

7.5 Informative Test Code for Three Fundamental Concepts 60
7.5.1 Overview of Three Fundamental Concepts 60

7.5.1.1 Encapsulation . 61
7.5.1.2 Inheritance . 61
7.5.1.3 Polymorphism . 61

7.5.2 Example Informative Test Code Generation for Three Concepts . . . 62
7.5.2.1 Source Code for Queue . 62
7.5.2.2 Informative Test Code for Queue 63
7.5.2.3 Source Code for Stack . 64
7.5.2.4 Informative Test Code for Stack 64

7.6 Evaluations . 65
7.6.1 Evaluation for Five Graph Algorithms 65

7.6.1.1 Code Completion Results 65
7.6.1.2 Metric Results for BFS . 65
7.6.1.3 Metric Results for Four Graph Algorithms 66

7.6.2 Evaluation for Three OOP Concepts 67
7.7 Summary . 68

8 Conclusions 69

References 70

xii

Chapter 1

Introduction

1.1 Background

As a reliable and portable object-oriented programming language, Java has been extensively
used variety of practical systems. They involve Web application systems, mission critical
systems for large enterprises, and small-sized embedded systems. Thus, the cultivation of
Java programming engineers has been in high demands amongst industries. As well, a
great number of universities and professional schools are offering Java programming courses
to meet these needs. A Java programming course usually combines grammar instructions
by classroom lectures and programming exercises by computer operations. However, in
programming exercises, a teacher can be overloaded in verifications of a lot of codes from
students and in giving feedbacks with proper comments to them. If responses from the
teacher becomes late, students may lose the learning motivations.

To help Java programming educations, we have developed the Web-based Java program-
ming learning assistant system (JPLAS). JPLAS adopts the Ubuntu for the operating system,
Tomcat for the Web application server, JSP for the application programs with HTML, and
MySQL for the database for managing the data. The user can access to JPLAS through a
Web browser.

JPLAS has two user service functions: teacher services and student services. The teacher
services includes the problem registration and the assignment generation. The student ser-
vices include the assignment solution and the score reference. JPLAS mainly provides two
types of exercise problems, namely the element fill-in-blank problem and, the code writing
problem, to support self-studies of students at various learning levels. It has been expected
that this system be a great help for reducing the teacher loads and improving the learning
motivations of the students.

The element fill-in-blank problem in JPLAS intends for a student to learn the Java gram-
mar and basic programming through code reading. This problem asks a student to fill the
correct elements in the blank in a given Java code. The correctness of the answer is marked
by comparing it with the original element in the code. Thus, the original element must be
the unique correct answer for the blank.

In this problem, an element is defined as the least unit of a code such as a reserved word,
an identifier, and a control symbol. A reserved word is a fixed sequence of characters that
has been defined in Java grammar to represent a specified function, and should be mastered
first by the students. An identifier is a sequence of characters defined in the code by the
author to represent a variable, a class, or a method. A control symbol intends other grammar

1

elements such as“ .”(dot),“ :”(colon),“ ;”(semicolon),“ (,)”(bracket),“ {, }”(curly
bracket).

In JPLAS, the teacher needs to register a new assignment with the problem code and
answer in the database. Then, a student solves the problem through accessing to an assign-
ment, checking the results, correcting and resubmitting the answer if necessary. To help a
teacher to generate an element fill-in-blank problem, we also proposed a graph-based blank
element selection algorithm that selects proper blank elements that satisfy the unique correct
answers [1].

The code writing problem in JPLAS intends for a student to learn writing a Java source
code from scratch. This problem asks a student to write a source code that satisfies the
specifications given in the test code. In this problem, we adopted the test-driven development
(TDD) method using JUnit [6][7]-[8]. JUnit automatically tests the answer code via the test
code on the server, to verify its correctness when submitted from a student. In JPLAS, the
teacher needs to register the assignment with the problem statement and the test code. Then,
a student writes a source code through reading the statement and the test code, and testing,
modifying and resubmitting the code if error occurs. As a target of user, we considered a
student who may not be able to write a proper code, but who has studied simple Java codes
in textbooks through exercises

However, through applications to students, we have observed that several drawbacks exist
in the current problems. Firstly, in the element fill-in-blank problem, generally, the students
can solve mechanically without reading carefully and understanding the code behaviors, if
they are familiar with Java grammar. Due to the unique answer constraint, only limited
choices of elements may exist for many blanks. Actually, we have found that as the number
of solving element fill-in-blank problems increases, students could reach correct answers
much faster than the beginning. Thus, the difficulty of the problem should be controlled by
changing the number and importance of blank elements. In our previous studies [10][11], we
found that as the number of blanks increases, the correct answer rates by students decreases.
In the programming educations, the students should study the codes that implement some
algorithms or logics such as standard inputs/outputs, data structure, fundamental algorithms
including sorting, graph algorithms. Thus, in these codes, the blank elements should be
considered not only by the grammar but also by their importance in the code in terms of
algorithm/logic implementation.

On the other hand, in the code writing problem, a lot of students who are studying Java
programming, cannot solve harder problems that require multiple classes and methods even
after solving many simple problems. For example, the implementation of a graph theory
algorithm is included in such problems, where the code needs the handling of the graph data
in addition to the algorithm procedure. More detailed code specifications are necessary to
help students to find the proper classes and methods for the code.

1.2 Contributions

In this thesis, motivated by the above mentioned problems, we propose the five advancements
of the exercise problems for JPLAS as the contributions.

In the first contribution, we present the extensions of the blank element selection algorithm
to change the number of blank elements to control the difficulty level of the generated
problem, and to additionally blank key elements such as conditional expressions. Specifically,

2

first, we extend this algorithm by 1) adding operators in conditional expressions for blank
candidates, 2) improving the edge generation method in the constraint graph to increase the
number of blanks, and 3) introducing two parameters to change the frequency of selecting
blanks [22] [23]. To verify the effectiveness of these extensions, we apply the extended blank
element selection algorithm to 55 Java codes, and confirm that they can increase the number
of blanks and control the problem difficulty. For the trial evaluation, we generated element
fill-in- blank problems by applying this extended algorithm with different parameter values
to investigate the solution performance of students. The results show that the number of
blanks and the code length affect the solution performances by students.

In the second contribution, we propose the core element fill-in-blank problem to enhance
the code reading studies by novice students. In this problem, a long Java source code imple-
menting the graph theory or fundamental algorithm is used. To select the blank elements
while controlling the importance in terms of algorithm/logic implementations, the blank ele-
ment selection algorithm is extended by using the program dependence graph (PDG) together
[28]. The students need to fill in blanks by reading and understanding the code structure.
For evaluations, we apply the extended algorithm to four source codes for the graph theory
or fundamental algorithms, and asked six students in our group to solve them. The results
show that it has the highly correct answer rate, whereas code understanding is still necessary
to solve the problems. The students commented that they are helpful in understanding the
algorithm/logic implementation in a code.

In the third contribution, we propose the value trace problem as a new type of fill-in-blank
problem [44]. It asks the students to trace the actual values of important variables in a Java
code implementing some algorithms such as sorting and graph algorithms. Basically, the
whole data in the line of the output data is blanked through executing the blank line selection
algorithm [46], such that at least one data is changed from the previous one. To verify the
proposal, we generated value trace problems for sorting and graph theory algorithms, and
asked students in our lab. The results show that some problems are much more difficult
than the element fill-in-blank problem. Some students commented that they are effective in
understanding the algorithm in the Java code and the code reading, and that a long problem
code is difficult to read out because of the one column page in JPLAS.

In the fourth contribution, we study the workbook design for the three fill-in-blank prob-
lems for use in Java programming courses to enhance self-studies of Java programming by
students and to help preparing assignments for JPLAS by teachers [53][54]. This workbook
design consists of 15 categories that are arranged in the conventional learning order of Java
programming. Basically, the fill-in-blank problems are used for studying the grammar and
basic programming skills through code reading. For evaluations, the suitable Java source
codes are collected from textbooks and Web sites. Then, element fill-in-blank problems are
generated from source codes by using the extended blank element selection algorithm for the
workbook, and are assigned to students. The results show that the problem codes including
the object array and double loops are more difficult for novice students.

In the last contribution, we propose the informative test code approach for the code writ-
ing problem in JPLAS [75][76]. To help the students to solve harder problems that require
multiple classes and methods, the informative test code describes the detailed specifications
of the names, access modifiers, and data types of the classes, methods, and arguments. By
writing a source code to pass this test code, a student is expected to write a source code
with the proper classes/methods in the model code. To verify effectiveness of this approach,
first we prepared the informative test codes for five well known graph algorithms that consist

3

of multiple classes/methods and asked seven students to write the source codes for them.
Then, the software metrics of student answer codes are evaluated using Eclipse Metric Plu-
gin. The results showed that all the students completed the high-quality source codes for
the harder problems using informative test codes, whereas most students could not complete
them without informative test codes.

1.3 Contents of This Dissertation

The remaining part of this thesis is organized as follows.
In Chapter 2, we review the software architecture and two problems in JPLAS.
In Chapter 3, we propose the extensions of blank element selection algorithm for fill-in-

blank problem in JPLAS.
In Chapter 4, we propose the core element fill-in-blank problem.
In Chapter 5, we propose the value trace problem.
In Chapter 6, we propose the workbook design for the three fill-in-blank problems.
In Chapter 7, we propose the informative test code approach for the code writing problem.
Finally, in Chapter 8, we conclude this thesis with some future works.

4

Chapter 2

Overview of JPLAS

In this chapter, we introduce the outline of Java Programming Learning Assistant System
(JPLAS).

2.1 Software Platform for JPLAS

Figure 2.1 illustrates the software platform for JPLAS. In JPLAS, Ubuntu-Linux is adopted
for OS. The current system is running on VMware for portability. Tomcat is used as the Web
server for JSP. JSP is a script language that can embed Java codes within HTML codes.
Tomcat returns the dynamically generated Web page to the client. MySQL is adopted as
the database for managing the data in JPLAS.

Figure 2.1: Software platform for JPLAS

2.2 User Services

The functions of JPLAS consist of teacher service functions and student service functions.
Teacher service functions include the problem generation, the assignment generation, and
the student performance reference. Student service functions include the assignment view,
the problem view, the problem solution, and the score reference.

5

2.2.1 System Utilization Procedure

The utilization procedure for both JPLAS functions by a teacher and a student is given as
follows:

1. A teacher generates a new problem and registers it to the database.

2. A teacher generates a new assignment by selecting proper problems in the database
and registers it to the database.

3. A student selects an assignment to be solved.

4. A student selects a problem in the assignment to be solved.

5. A student solves the questions in the problem and submits the answers to the server.

6. The server marks the answers and returns the marking results.

7. A student modifies the incorrect answers and resubmits them to the server, if necessary.

8. A student refers to his/her solution results of the assignments.

9. A teacher refers to the solution results of all the students of the assignments.

2.3 Fill-in-blank Problem in JPLAS

The element fill-in-blank problem in JPLAS intends for a student to learn the Java grammar
and basic programming through code reading. This problem asks a student to fill the correct
elements in the blank in a given Java code. The correctness of the answer is marked by
comparing the student answer element with the original element in the code. Thus, the
original element must be the unique answer for the blank. To help a teacher to generate
an element fill-in-blank problem, the blank element selection algorithm has been proposed
[1]-[3]. To generate a new problem by using this algorithm, a teacher needs to prepare the
high quality source code.

2.3.1 Lexical Analyzer

For the element fill-in-blank problem, we adopt open source software JFlex [4] and jay [5].
JFlex is a lexical analyzer generator for a Java code, which is also coded by Java. It trans-
forms a source code into a sequence of lexical units that represent the least meaningful
elements to compose the code. It can classify each element in a code into either a reserved
word, an identifier, a symbol, or an immediate data. A reserved word signifies a fixed se-
quence of characters that has been defined in Java grammar to represent a specific function,
which should be mastered first by the students. An identifier is a sequence of characters
defined in the code by the author to represent a variable, a class, or a method. A control
symbol in this paper indicates other grammar elements such as ”.” (dot), ”:” (colon), ”;”
(semicolon) , ”(,)”(bracket), ”{, }” (curly bracket).

For example, a statement int value = 123 + 456; is divided into int, value, =, 123,
+, 456, and ;. Unfortunately, JFlex cannot identify an identifier among a class, a method,
or a variable. Thus, jay is applied as well. Since, jay is a syntactic parsing program based
on the LALR method, it can identify an identifier.

6

2.4 Code Writing Problem in JPLAS

The code writing problem in JPLAS intends for a student to learn writing a source code
from scratch. This problem asks a student to write a whole source code from scratch that
satisfies the specifications given by the test code [6]. The JPLAS function for this problem
is implemented based on the test-driven development (TDD) method using an open source
framework JUnit [7]-[8]. It automatically tests the answer code on the server to verify the
correctness when submitted from a student. A teacher needs to prepare the specification
and the test code to register a new assignment in JPLAS.

2.4.1 TDD Method

Here, we discuss the test-driven development (TDD) method [7].

2.4.1.1 JUint

JUnit can assist an automatic unit test of a Java source code or a class. Since JUnit has been
designed with the Java-user friendly style, including the use of the test code programming,
is rather simple for Java programmers. In JUnit, one test can be performed by using one
method in the library whose name starts with“ assert”. For example,“ assertEquals”
method is used to compare the execution result of the source code with its expected value.

2.4.2 Test Code

A test code should be written by using libraries in JUnit. The following MyMath class source
code is used to introduce how to write a test code. MyMath class returns the summation of
two integer arguments.

Listing 2.1: Source code for MyMath class

1 public class Math {
2 public int plus(int a, int b) {
3 return(a + b);
4 }
5 }

Then, the following test code tests plus method in MyMath class.

Listing 2.2: Test code for MyMath class

1 import static org.junit.Assert.∗;
2 import org.junit.Test;
3 public class MyMathTest {
4 @Test
5 public void testPlus(){
6 MyMath ma = new MyMath();
7 int result = ma.plus(1, 4);
8 assertEquals(5, result);
9 }

10 }

The test code imports JUnit packages containing required test methods at lines 1 and 2,
and declares MyMathTest at line 3. @Test at line 4 indicates that the succeeding method

7

represents the test method. Then, it describes the procedure for testing the output of plus
method. This test is performed as follows:

1. An instance ma for MyMath class is generated.

2. plus method for this instance ma.plus is called with given arguments.

3. The result result is compared with its expected value using assertEquals method.

2.4.2.1 Features in TDD Method

In the TDD method, the following features can be observed.

1. The test code represents the specifications of the source code, because it must describe
every function which will be tested in the source code.

2. The testing process of a source code becomes efficient, because each function can be
tested individually.

3. The refactoring process of a source code becomes easy, because the modified code can
be tested instantly.

2.5 Summary

In this chapter, we introduced the outline of Java programming Learning assistant System
(JPLAS). The software architecture of the JPLAS implementation, and the two offering
problems, the element fill-in-blank problem and the code writing problem were discussed.

8

Chapter 3

Extensions of Blank Element
Selection Algorithm

In this chapter, we present the extensions of the blank element selection algorithm for the
element fill-in-blank problem in JPLAS.

3.1 Introduction

The blank element selection algorithm is extended in three ways to control the difficulty
level of the generated problem by changing the number of blank elements. 1) It adds the
operators in conditional expressions for blank element candidates. 2) It improves the edge
generation method in the constraint graph to increase the number of blanks. 3) It introduces
two parameters to change the frequency of selecting blanks.

In this chapter, the overview of the existing blank element selection algorithm is first
reviewed. Then, the three extensions are presented sequentially. After them, these extensions
are evaluated. Finally, the conclusion is given for this chapter.

3.2 Review of Blank Element Selection Algorithm

In this section, we review the blank element selection algorithm in [1]. This algorithm gen-
erates the constraint graph to describe the constraints in the blank element selection.

3.2.1 Vertex Generation for Constraint graph

In the constraint graph, each vertex represents a candidate element for being blank. The
candidate elements or vertices are extracted from the source code through the lexical analysis
using JFlex [4] and jay [5]. Each vertex contains the associated information in Table 3.1 that
is necessary for the following edge generation.

3.2.2 Edge Generation for Constraint graph

Then, an edge is generated between any pair of two vertices or elements that should not be
blanked at the same time. There are three categories to represent the constraints in selecting
blank elements with unique answers.

9

Table 3.1: Vertex information

item content
symbol symbol of element
line row index of element
column column index of element
count number of element appearances
order appearing order of element in the code
group statement group index partitioned by { and }
depth number of { from top

3.2.2.1 Group Selection Category

In the group selection category, all the elements related with each other in the code are
grouped together. In each group, one vertex is randomly selected first. Then, edges are
generated between this vertex and the other vertices so that at least this selected element is
not selected for blank. There are five conditions of this category.
(1) Identifier appearing two or more times in the code

The multiple elements representing the same identifier of variable, class and method using
the same name, are grouped together. If all such elements are blanked, a student cannot
answer the original identifier.
(2) Pairing reserved words composed of three or more elements

The three or more elements representing the reserved words in pairs are grouped together.
If all of them are blanked, the unique answers may become too difficult as the following two
cases:

• switch-case-default

• try-catch-finally

(3) Data type for variables in equation
The elements representing the data types for variables in one equation are grouped to-

gether. For example, in sum = a + b, the data types of the three variables, sum, a, and b,
must be the same.
(4) Data type for method and its returning variable

The elements representing the data type of a method and its returning variable are
grouped together.
(5) Data type for arguments in method

The elements representing the data type of an argument in a method and its substituting
variable are grouped together.

3.2.2.2 Pair Selection Category

In the pair selection category, the elements appearing in the code in pairs are grouped
together. For each pair, an edge is simply generated between the two corresponding vertices
so that at least one element is not selected for blank.
(1) Elements appearing continuously in statement

10

The two elements appearing continuously in the same statement are paired in the code.
If both of them are blanked, their unique correct answers may not be guaranteed. The two
elements connected with a dot (“.”) are also paired.
(2) Variables in equation

The elements representing any pair of the variables in an equation are paired. If both
are blanked, the unique answers become impossible. For example, for sum = a + b, sum =

b + a is also feasible.
(3) Pairing reserved words

The two elements representing the paring reserved words are paired. If both are blanked,
the unique correct answers may not be guaranteed. The following five paring reserved words
are considered:

• if-else

• do-while

• class-extends

• interface-extends

• interface-implements

(4) Pairing control symbols
The two elements representing a pair of control symbols, namely “(,)” (bracket) and “{,

}” (curly bracket), are paired. The novice students should carefully check them in their
codes because they often make mistakes with them.

3.2.2.3 Prohibition Category

In the prohibition category, an element is prohibited from the blank selection because it
does not satisfy the uniqueness with the high probability. There are four conditions for this
category. However, an element in a fixed sequence of elements indicating a specific meaning
in a Java code, such as public static void main and public void paint(Graphics g),
are excluded from this category, because they should be mastered by students.
(1) Identifier appearing only once in code

The selected element representing the identifier in this category appears only once in the
code. If it is blanked, a student cannot answer the original identifier.
(2) Operator

The element representing an operator such as the arithmetic operator: =, +, -, *, /, the
comparative operator: <, >, <=, >=, ==, !=, and the logical operator: &, |, ^, ! is selected to
this category. If an operator is blanked, a student cannot answer the original one unless the
proper explanation on the specification related to the operator is given.
(3) Access modifier

The element representing an access modifier for an identifier is selected to this category.
If it is blanked, either public, protected, private can often be grammatically correct.
(4) Constant

The element representing a constant is selected to this category. If it is blanked, a student
cannot answer the original constant.

11

3.2.3 Example Constraint Graph

Figure 3.1 illustrates the constraint graph for lines 1-6 in the Java code for bubbleSort. Some
elements are excluded there by the prohibition category. For example, the four array are
grouped together by 3.2.2.1 (1), and static and void are paired by 3.2.2.2 (1), public is
excluded by 3.2.2.3 (3).

Listing 3.1: Source code for BubbleSort

1 public static void bubbleSort(int[] array){
2 int start=1;
3 for (int i=array.length−1; i>0; i−−)
4 for (int j=0; j<i; j++)
5 if (array[j]>array[j+start]){
6 int tmp= array[j];
7 array[j]=array[j+1];
8 array[j+1]=tmp;
9 for (int k:array){

10 System.out.print(k);
11 System.out.print(",");
12 }
13 System.out.println();
14 }
15 }
16 }
17 }

Figure 3.1: Constraint graph for bubbleSort

3.2.4 Compatibility Graph Generation

By taking the complement of the constraint graph, the compatibility graph is generated to
represent the pairs of elements that can be blanked simultaneously.

12

3.2.5 Maximal Clique Extraction of Compatibility Graph

Finally, a maximal clique of the compatibility graph is extracted by a simple greedy algorithm
to find the maximal number of blank elements with unique answers from the given Java code.
A clique of a graph represents its subgraph where any pair of two vertices is connected by
an edge. The procedure for our algorithm is described as follows:

1) Calculate the degree (= number of incident edges) every vertex in the compatibility
graph.

2) Select one vertex among the vertices whose degree is maximum. If two or more vertices
have the same maximum degree, select one randomly.

3) If the selected vertex is a control symbol and the number of selected control symbols
exceeds 1/3 of the total number of selected vertices, remove this vertex from the com-
patibility graph and go to (5).

4) Add the selected vertex for blank, and remove it as well as its non-adjacent vertices
from the compatibility graph.

5) If the compatibility graph becomes null, terminate the procedure.

3.2.6 Fill-in-blank Problem Generation

In the maximal clique procedure, 3) is used to sustain the total number of blank control
symbols, because a code usually has a lot of control symbols. Here, we examined the aver-
age number of blanks for control symbols and other symbols by the algorithm. Then, we
empirically selected 1/3 as an appropriate ratio to generate the feasible fill-in-blank problems
for novice students. However, in these condition, the generated fill-in-blank problems can be
solved without reading out the code if students are familiar with Java grammar.

3.3 Extension 1: Additional Blank Candidates

In this section, we present the first extension of the blank element selection algorithm. 16
operators for conditional expressions in Table 3.2 [9] are added for blank element candidates.
To satisfy the uniqueness of the correct answers and avoid the extreme hardness for novice
students, the operators in the same conditional expression are grouped together as the group
selection category, where at least one element in the same group is not selected for blank.
In the code for bubbleSort, > and -- in line 3 and < and ++ in line 4 are grouped together.

3.4 Extension 2: Improvement of Edge Generation

In this section, we present the second extension.

3.4.1 Overview

In our previous studies [10][11], it was found that as the number of blanks increases, the
correct answer rates by students decreases. Thus, even from the same source code, the
different number of blanks can change the difficulty level of the element fill-in-blank problem.

13

Table 3.2: Operators in conditional expressions for blank

operator example operator example
< a<b ++ a++
<= a<=b -- a--
> a>b ! !a

>= a>=b += a+=b
== a==b -= a-=b
!= a!=b *= a*=b
&& a&&b /= a/=b
|| a||b % a%b

In this thesis, to select a larger number of blanks, the following improved edge generation
method is adopted for the group selection category in the constraint graph. Here, instead
of randomly selecting one vertex in the same group in the previous work, the vertex that
has the largest number of incident edges is selected. As a result, other many vertices can be
selected for blanks when this vertex is not selected for the blank.

3.4.2 Improved Edge Generation Procedure

The following procedure describes the details:

1) Generate the edge between two vertices for each vertex pair in the pair selection cate-
gory.

2) Sort the vertex groups for the group selection category in the descending order of the
group size.

3) Select one vertex for each group in 2) from the top by the following procedure:

(1) Calculate the degree of the vertices in the group.

(2) Select the vertex that has the largest degree. If two or more vertices have the
same largest degree, randomly select one among them.

(3) Generate the edges between the vertex in (2) and the other vertices in the group.

3.4.3 Example

In bubbleSort, the four int in lines 1, 3, 6 and 9 are grouped by the group selection category.
At least one int must not be selected as the blank element for the unique correct answer.
Using this group, we explain the improved edge generation method for the constraint graph.

Figure 3.2 illustrates the four vertices in this group and their incident vertices are selected
by the pair selection category. int and (, int and [in line 1, int and (, int and i in line
3, int and tmp in line 6, int and (, int and k in line 9 are connected by the pair selection
category respectively. These edges are described by the straight lines with (P). Then, int
in lines 1, 3 and 9 has the same largest degree 2 among the four. Thus, we select int in line
1 among the two randomly. Then, we generate the edges between this vertex and the other
three vertices for int that are described by the dotted lines with (G).

14

Figure 3.2: Example of improved edge generation method for bubbleSort

3.5 Extension 3: Introduction of Two Parameters

In this section, we present the third extension.

3.5.1 Overview

The ratio between the number of blank elements and non-blank ones in the problem code can
change the difficulty of the element fill-in-blank problem. In general, more blanks makes the
problem harder, and less blanks make it easier. To control this ratio, the two new parameters
are introduced, namely, BG (blank gap number) and CB (continuous blank number).

3.5.2 Blank Gap Number

The non-blanked elements in a problem code become hints to solve the element fill-in-blank
problem. As more non-blanked elements exist between blanked elements, it becomes easier.
Thus, we try to control the difficulty of the problem by changing the number of non-blanked
elements between blanked ones by introducing the blank gap number BG. To realize it, for
the constraint graph, we generate an edge for each vertex with every vertex in the same
statement in the code that exists within its BG neighbors. Here, we note that the previous
algorithm actually adopts BG = 1 where at least one non-blanked element exists. For
example, in the case of BG = 2, bubbleSort at line 1 has an edge with static, void, (,
and int so that at least two non-blanked elements exist in the problem code.

3.5.3 Continuous Blank Number

On contrary, as more blanked elements continue in a problem code, it becomes harder. Thus,
we also try to control the difficulty by changing the number of continuously blanked elements
by introducing the continuous blank number CB. Here, we note that when CB is 2 or larger,
BG must be set 0. The following procedure describes the extension to realize it:

15

Table 3.3: Average number of vertices and blanks by extensions 1 and 2

avg.# of vertices 127.39 132.41 127.39 132.41
BG CB previous extension 1 extension 2 both
1 1 34.59 37.15 35.91 37.65
0 8 52.81 57.41 53.39 58.11

(1) Find a solution by applying the blank element selection algorithm with BG = 0.

(2) Change the last blanked element into non-blanked one if the number of continuously
blanked elements exceeds CB.

For example, in the case of CB = 3, the following blanks can be generated for line 1.

1 public static void bubbleSort _1_ _2_ _3_ array)

3.6 Evaluations

In this section, we evaluate the three extensions of the blank element selection algorithm for
the element fill-in-blank problem in JPLAS.

3.6.1 Blank Selection Evaluation of Extensions 1 and 2

55 Java source codes for fundamental data structure or algorithms in textbooks and Web
sites in [12]-[21] are collected to generate element fill-in-blank problems. First, the effects
of Extensions 1 and 2 are evaluated by applying the extended algorithm with BG = 1
and CB = 1 in Extension 3. Table 3.3 shows the average number of blank candidates
or vertices in the constraint graphs and the average number of blanks for the 55 problem
codes that are generated by the previous algorithm, the extended algorithm with Extension
1 only (operators in conditional expressions), the one with Extension 2 only (improved edge
generation method), and the one with both Extensions 1 and 2. Table 3.3 indicates that the
number of blanks increases by applying each extension and becomes the largest by applying
both extensions at the same time. Extension 1 increases the number of blanks by increasing
the number of vertices in the constraint graphs, while Extension 2 increases it even with the
same number of vertices as in the previous algorithm by selecting better edges among them
for the constraint graph.

Then, their effects are examined in the extreme case of BG = 0 and CB = 8 to remove
the limitation of controlling the ratio of blank elements and non-blank ones in each problem
code. In this case, the number of blanks can be the largest. Table 3.3 also shows the
average number of blanks by the four algorithm cases, where the proposed two extensions
can increase the number of blanks.

3.6.2 Blank Selection Evaluation of Extension 3

Then, the effects of Extension 3 is evaluated by applying the extended algorithm with dif-
ferent values for BG and CB, while Extensions 1 and 2 are adopted together. Table 3.4

16

Table 3.4: Average number of blanks for different BG and CB

BG 3 2 1 0 0
CB 1 1 1 2 3

avg.# of blanks 23.35 28.33 37.65 57.61 57.69

Table 3.5: Parameter values for problem generations

L1 L2 L3
BG 3 1 0
CB 1 1 3

shows the average number of blanks for 55 problem codes when BG and CB are changed
from 0 to 3 respectively. It is noted that for BG ≥ 1, CB must be 1, because at most one
blank element can be selected continuously to have BG non-blank elements between blank
ones, and for CB ≥ 2, BG must be 0, because two or more blank elements can be selected
continuously. Table 3.4 indicates that the larger BG can decrease the number of blanks and
the larger CB can increase it. Thus, it is confirmed that they can control the difficulty of
the element fill-in-blank problems.

3.6.3 Solution Performance Evaluation

Then, the solution performances of students are evaluated by the algorithm extensions by
applying the generated problems to students.

3.6.3.1 Assigned Element Fill-in-blank Problems

As Java source codes for the assigned element fill-in-blank problems, three codes related to
the RSA algorithm, namely Euclid (calculate the GCD of two arguments using the Euclid
method), TrialDiv (calculate the GCD using the trial division method), and ModExp (calcu-
late the modulo exponentiation of a big integer) [21], are used. For the two parameter values
in Extension 3, the three sets in Table 3.5 are adopted to examine three different levels, L1,
L2, and L3.

Table 3.6 shows the LOC (the number of lines) in the problem code and the number of
blanks in each problem with three levels. As LOC is larger, the number of blanks increases
for any difficulty level.

3.6.3.2 Problem Assignments to Students

The 33 students are randomly divided into three groups, A, B and C, with the equal number.
Then, one level of each problem is assigned to each group, so that every student solves the
different problems with the different levels. Thus, any student solved any level in our problem
assignment.

17

Table 3.6: Statistics of generated problems

Java code LOC number of blanks
L1 L2 L3

Euclid 12 6 9 16
TrialDiv 19 14 19 38
ModExp 13 11 14 20

Table 3.7: Solution results for each group

Euclid TrialDiv ModExp
Group L correct rate (%) L correct rate (%) L correct rate (%)
A 1 76 % 2 71% 3 75%
B 2 87% 3 67% 1 73%
C 3 80% 1 78% 2 84%

3.6.3.3 Solution Results

Table 3.7 shows the solving problem level and the percentage of the correctly solved blanks
among the students in each group. This table indicates that in each group, this percentage
for TrialDiv is smaller than the others at any difficulty level.

Table 3.8 shows the average correct rate for each group, problem, and level. First, among
the three groups, Group C has the highest average correct rate. Thus, Group C is the best
student group. Then, among the problems, the average correct rate for TrialDiv is the
lowest, because this problem has the larger LOC and number of blanks than other problems
at any difficulty level. Finally, among the three levels, L3 has the lowest average correct
rate. However, L2 has the higher rate than L1, because Group B solved better than Group
A for Euclid and Group C solved better than Group B for ModExp. It is necessary to further
investigate the relationship between the two parameter values for the difficulty level and the
average correct rate of students, which will be in our future works.

Table 3.8: Average solution performance

Euclid TrialDiv ModExp
A 73% Euclid 81% L1 76%
B 71% TrialDiv 70% L2 79%
C 80% ModExp 77% L3 71%

18

3.7 Summary

In this chapter, we presented the three extensions of the blank element selection algorithm for
the element fill-in-blank problem in JPLAS. Firstly, the effectiveness of Extensions 1-3 was
evaluated through applications to 55 Java source codes for fundamental data structure or
algorithms. Then, the solution performance of students was evaluated through the generated
problems by applying the extended algorithm. The future studies include the improvement
of the blank element selection algorithm by adopting more sophisticated maximal clique
algorithm to further increase the number of blanks and the generation of element fill-in-
blank problems using the algorithm to assign them in Java programming course.

19

Chapter 4

Core Element Fill-in-blank Problem

In this chapter, we present the core element fill-in-blank problem in JPLAS.

4.1 Introduction

The core element fill-in-blank is proposed to enhance the code reading studies by the novice
students. In this problem, a Java code implementing the graph theory or fundamental
algorithm is used. In general, such the code is longer and usually includes multiple class-
es/methods and the blank elements are selected while controlling the importance in terms of
algorithm/logic implementations by applying core blank element selection algorithm. This
algorithm is extended by using the program dependence graph (PDG) together from the
previous blank element selection algorithm. PDG represents the dependency between the
statements or lines in the code. Thus, it is used to compute the importance of blank ele-
ments with regarding the statements that implement the algorithm/logic in the code. The
students need to fill in the blanks by reading and understanding the code structure.

In this chapter, the procedure for the PDG generation is first reviewed. Then, core blank
element selection algorithm is presented. After them, the proposed problem is evaluated.
Finally, the conclusion is given for this chapter.

4.2 Review of PDG Generation

In this section, we review the PDG generation procedure in [24].

4.2.1 Basic PDG Generation for Variable

In the PDG, a vertex represents a statement in the code and an edge represents the de-
pendency between the corresponding two statements. Thus, a statement, or vertex, with
a larger degree can have influence to many other statements in the code [25], and can be
considered as a core statement. Based on the data flow dependence, an edge is generated
between two statements s1 and s2 in a code when the following conditions are satisfied.

1) A variable v1 is defined at s1 (definition).

2) v1 is referred at s2 (reference).

20

4.2.2 Extended PDG Generation for Object

In [24], the PDG generation method was extended for a Java source code. As an object-
oriented language, an object in a Java code should be considered in addition to a variable
in a non-objected oriented language. Then, the conditions for the edge are modified:

1) An object is considered as a variable in the data flow dependence. Besides, when a
variable inside an object, or a member variable, is accessed, it is regarded that the
object itself is accessed there.

2) The following two cases are regarded that an object is defined at the corresponding
statement: 1) the object appears at the left side of an assign statement, and 2) the
object is called.

3) The following two cases are regarded that an object is referred at the statement: 1)
the object appears at the right side of an assignment statement, and 2) the object is
used as an argument of a method.

4.2.3 Example of PDG

Figure 4.1 illustrates the PDG for a simple Java code that transfers the data from the input
stream“ is” to the file“ out”. Each node represents a statement or vertex, and each
directed edge represents the data dependency between statements. Line 2 is selected as the
blank statement because it has the maximum degree of seven.

Figure 4.1: Sample PDG

4.2.4 Restrictions of PDG

This thesis only considers the dependency between the statements in the same method to
simplify the implementation of the PDG generation. Because our proposal aims to offer
Java programming learning environments to novice students, it is important for them to
understand the structure of one method first. Besides, the core statements for an algorithm
or logic are often described in one method. Then, the statements outside any method are
assigned zero for the PDG degrees, and their elements are not selected in this extension at
all. The consideration of the dependency between statements beyond a method will be in
further works.

21

4.3 Core Blank Element Selection Algorithm using PDG

In this section, we present the core blank element selection algorithm for selecting blank
elements from the core statements using PDG of the code.

4.3.1 Overview

The important elements or core elements in the source code should be blanked for the
element fill-in-blank problem to be more effective in studying the related grammar and the
code reading. In this thesis, the statements related with many statements in the code are
regarded as the core statements that include the core elements. Thus, to find core statements,
the PDG of the source code is generated and the statements that have high degrees in the
PDG are regarded as the core statements.

4.3.2 Threshold Selection

To find the core statements in a code using the PDG, it is essential to select the proper
value for the threshold of the PDG degree depending on the code. The following procedure
describes the procedure for the threshold selection:

1) The PDG is generated for the given code using the procedure in Section 4.2.

2) The degrees of all the vertices in the PDG are calculated.

3) The PDG degrees are sorted in the descending order to make the sorted list of the
PDG degrees.

4) The number of core statements to be extracted, which is named K, is calculated by
the following equation:

K = NOS ∗ SP/100 (4.1)

where NOS represents the total number of statements in the code, and SP does the
percentage of the core statements to be extracted in the code that should be properly
given by the user. It has been observed that SP = 25 is the best choice for the core
statement extraction generally from the experimented Java source codes.

5) The K-th degree in the sorted list made in 1) is selected for the threshold. If it is 0,
the smallest non-zero PDG degree is selected for the threshold.

4.3.3 Modification of Clique Extraction

To select the blank elements from the core statements only in the code, the clique extraction
step in the blank element selection algorithm is modified. Here, the elements in the state-
ments whose PDG degrees are larger than or equal to the threshold are considered in the
clique extraction.

4.4 Evaluations

In this section, we evaluate the effects of core element fill-in-blank problem using four Java
codes implementing graph or fundamental algorithms.

22

Table 4.1: PDG property of adopted Java codes

ID code # of # of edge thre- # of
　 vertices edges density shold cores
P1 Dijkstra 96 132 0.03 3 24
P2 Prim 95 116 0.03 2 24
P3 KMP Search 50 135 0.11 6 13
P4 Knapsack 44 94 0.09 10 11

4.4.1 Java Source Codes

In this evaluation, the four Java source codes implementing Dijkstra, Prim, KMP search,
and Knapsack with dynamic algorithms are adopted [26][27]. These algorithms have been
often taught in corresponding classes in universities. These codes have multiple classes and
methods so that they become longer than codes for grammar studies.

Then, the previous blank element selection algorithm and the proposed one were applied
to the four codes, and generated the corresponding element fill-in-blank problems. For the
parameters in the algorithms, BG = 3, CB = 1, and SP = 25% were used. Six student in
our group who have the better knowledge in Java programming than conventional students
in a Java programming course were asked to solve the four problems.

4.4.2 PDG Property of Adopted Codes

First, the property of the generated PDG for each Java code is examined. Table 4.1 shows
the number of vertices, the number of edges, and the edge density in the PDG, the threshold
for selecting core statements, and the number of core statements obtained by the proposed
algorithm for each code. The edge density is calculated by the following equation:

density = NOE/[NOV ∗ (NOV − 1)/2] (4.2)

where NOE represents the total number of edges and NOV represents the number of vertices
in the graph. The results show that the two codes for graph theory algorithms have the larger
number of statements (LOC) than the two codes for fundamental algorithms, but have the
smaller edge density in the PDG graph. This means that the latter codes have the more
complex dependency among statements, and their structure can be more difficult to be
understood.

4.4.3 Number of Selected Blanks

Next, the number of blank elements is compared between the previous algorithm and the
proposed one. Table 4.2 shows the number of blanks by both algorithms. Because the codes
for graph theory algorithms have the larger LOC, the number of selected blank elements is
larger for both algorithms. When the number of blank elements is compared between the
two algorithms, the proposed one can reduce it by about 30% by limiting the selections from
core statements.

23

Table 4.2: Number of selected elements by two algorithms

ID code LOC # of blanks
previous proposal

P1 Dijkstra 96 72 42
P2 Prim 95 71 42
P3 KMP Search 50 34 22
P4 Knapsack 44 42 18

Table 4.3: Student assigned problem and correct rate

ID S1 S2 S3 S4 S5 S6
group A A A B B B
P1 2 1 2 1 2 1
P2 1 2 1 2 1 2
P3 2 1 2 1 2 1
P4 1 2 1 2 1 2

correct rate (%) 97% 92% 96% 99% 94% 90%

4.4.4 Solution Performance of Students

Next, the solution performance of the students are evaluated in the problems. To let the same
number of students solve each problem and avoid the same student solving the both problems
from the same code, the problems are assigned to each student as shown in Table 4.3. In this
table,“ 1”indicates the problem by the previous algorithm and“ 2”does the problem by
the proposed algorithm. Actually, the six students are divided into two groups, A (S1, S2,
S3) and B (S4, S5, S6), and assigned the same set of the problems to the three students
in each group. For reference, the average correct answer rate for the four problems by each
student is also shown there. The student S4 shows the best performance and the student
S2 does the worst one among them.

Table 4.4 shows the average correct answer rate for each problem among the six students.
The rate for the problems generated by the previous algorithm is generally higher than the
rate by the proposed one except for P1, although they have larger number of blanks. This
means that the students must understand the algorithm/logic to solve the element fill-in-
blank problems by the proposed algorithm. Besides, in both problems, the correct rate
for P3 is the smallest among the other problems because the edge density is the highest
among the codes and it has the complex structure with the highest dependency among the
statements.

4.4.5 Questionnaire Evaluations

Finally, we asked the students to answer the four questions in Table 4.5 as the questionnaire.
For Q1, the approximate time spent to solve each problem is answered by four levels: 1
indicates less than 10 min., 2 does about 20 min., 3 does about 40 min., and 4 does longer

24

Table 4.4: Solution performance for each problem

ID LOC correct rate (%)
previous proposal

P1 96 94% 95%
P2 95 97% 92%
P3 50 91% 90%
P4 44 95% 94%

Table 4.5: Questions in questionnaire

ID question
Q1 How long did you spend to answer each problem?
Q2 Which one of the previous or the proposal is helpful

for implementing the algorithm Java code?
Q3 Which one of the previous or the proposal is easier

to solve the fill-in-blank problem?
Q4 Which one of the previous or the proposal is useful

for reading the algorithm Java code?

than 40min. Then, for Q2-Q4,“ yes”or“ no”questions is answered. Table 4.6 shows the
result by each student.

From Q1, the student S2 spent long time to solve both fill-in-blank problems in graph
theory algorithms and fundamental algorithms.

For Q2, fours replied that the fill-in-blank problems by the both algorithms are helpful
for implementing the algorithm Java codes. On the other hand, the student S1 in Group A
and the student S4 in Group B replied that the problems by the previous algorithm are not
helpful for implementing the Java codes. These two students have higher programming skill
among the students, where their correct answer rates are the highest in each group.

Table 4.6: Questionnaire results by students

S1 S2 S3 S4 S5 S6
Q1 previous 2 4 1 2 3 2

proposal 1 4 1 2 2 2
Q2 previous no yes yes no yes yes

proposal yes yes yes yes yes yes
Q3 previous no yes no no no yes

proposal yes no yes yes yes no
Q4 previous no yes yes yes yes yes

proposal yes yes yes yes yes yes

25

For Q3, the student S2 in Group A and the student S6 in Group B replied that the
problems by the previous algorithm are easier than the problems by the proposal. However,
it was found that the student S2 spent long time to solve these problems. Besides, the
correct rates of both students are smaller than the others in each group.

For Q4, five students replied that the element fill-in-blank problems by both algorithms
are useful for reading algorithm Java codes, and student S1 replied that only the problems
by the proposal are useful for reading algorithm Java codes.

From these observations, it is concluded that generally, the core element fill-in-blank
problem is more helpful for reading and implementing algorithm Java source codes, although
further investigations through applying a number of problems to the sufficient number of
students are necessary to strengthen this conclusion.

4.4.6 Generated Problem Example

For reference, we show an example core element fill-in-blank problem generated by the pro-
posed algorithm from the Java code for Knapsack. In this code, the lines 17, 18, 20, 21, 26,
27, 28, 30, 34, 35, 36, 37 are selected as the core statements.

Listing 4.1: Core element fill-in-blank problem for KnapSack

1 class Knapsack {
2 static class Product {
3 public final int size;
4 public final int value;
5 public Product(int size, int value) {
6 this.size = size;
7 this.value = value;
8 }
9 }

10 private static Product[] products = {
11 new Product(2, 2), new Product(3, 4),
12 new Product(5, 7), new Product(6, 10),
13 new Product(9, 14) };
14 public static void main(String [] args) {
15 int napValue[] = new int[products.length + 1];
16 System.out.print("the size of knapsack");
17 1 (int i = 0; i < products.length; i++) {
18 napValue [2] = 0;
19 String num = (i + 1) + " ";
20 3 (num.length() == 2) {
21 4 = " " + num;
22 }
23 System.out.print (num);
24 }
25 System.out.print ("\n\n");
26 for (5 i = 0; i < products.length; i++){
27 6 (int j = 7 [i].size; 8 <
28 products.length + 1; ++j){
29 9 newValue = napValue[10 −
30 products[11].size] +
31 products[i].value;
32 if (newValue > napValue[j]) {
33 12 [j] = newValue;
34 }
35 }
36 System.out.print("Use the goods until"+(i+1));

26

37 for (13 j = 1; j < products.length + 1
38 ; j++){
39 14 num = napValue[15] + " ";
40 16 (num.length() == 2) {
41 17 = " " + 18 ;
42 }
43 System.out.print(num);
44 }
45 System.out.println();
46 }
47 }
48 }

4.5 Summary

In this chapter, we presented the core element fill-in-blank problem for enhancing the code
reading studies by novice students. The effectiveness of core element fill-in-blank problem
was evaluated through applications to four Java codes in the graph theory or fundamental
algorithms. The future studies include the improvement of PDG generation method to
consider the dependency between statements beyond a method, and the generation of fill-in-
blank problems by applying the algorithm to assign them to students in Java programming
course for evaluations of the educational effects.

27

Chapter 5

Value Trace Problem

In this chapter, we present the value trace problem in JPLAS.

5.1 Introduction

The value trace problem is proposed as a new type of fill-in-blank problem in JPLAS. This
problem asks students to trace the actual values of the important variables in a source
code implementing a data structure or an algorithm. To trace the values of the important
variables, the whole data in the line of the output data sets that are obtained by executing
the code, where at least one data is changed from the previous one, is blanked by applying
the blank line selection algorithm. Here, it is noted that the line intends all the data of the
array of the variables at one step or one iteration, where the target algorithm, such as the
sorting, usually handle multiple data and change their values iteratively.

In this chapter, some related works of the value trace problem is first introduced. Then,
the value trace problem with insertion sort and blank line selection algorithm are presented
respectively. Next, the value trace problems for graph algorithms are studied. After that,
our proposal are evaluated. Finally, the conclusion is given for this chapter.

5.2 Related Works

In this section, we briefly introduce some partially related works of the value trace problem.
However, in our survey, no work has been reported for the same problem.

In [33], Smulders presented the Annotate Code project for explaining algorithms in in-
troductory programming courses to students that have not yet developed a mental image of
them. It allows teachers to create visualizations based on code stepping. As Web applica-
tions, users can submit codes and steps through a browser. Each step can be accompanied
by a user-generated drawing to creating a step-by-step animation like a debugger.

In [34], Quinson et al. presented the Programmer’s Learning Machine (PLM) as an in-
teractive exerciser aimed at learning programming and algorithms. It targets students in
(semi-)autonomous settings, using an integrated and graphical environment that provides
a short feedback loop. This generic platform also enables teachers to create specific pro-
gramming microworlds that match their teaching goals. PLM provides two main panels to
provide information for students to solve exercises.

28

In [35], Sykes et al. presented the Web-based Java Intelligent Tutoring System (JITS)
for students in first programming courses. By bringing together recent developments in
intelligent tutoring systems, cognitive science, and AI, it constructs an intelligent tutor to
help students learn Java programing.

In [36], Osman et al. introduced a visualized learning system to enhance the education
of data structure course. It has the capability to display data structure graphically as well
as allow its graphical manipulation for students to observe the execution result and track
the algorithm execution.

5.3 Concept of Value Trace Problem

In this section, we present the concept of the value trace problems in JPLAS.

5.3.1 Generation Procedure of Value Trace Problem

The goal of the value trace problem in JPLAS for Java programming educations is to give
students training opportunities of profoundly reading and analyzing a Java code that im-
plements a fundamental data structure or an algorithm by asking to trace real values of
important variables in the code. The code reading plays an essential role in writing high-
quality codes for any programmer. It is also indispensable in modifying existing codes for
some systems, which is common in real worlds. A value trace problem is generated by a
teacher with the following steps:

1) to select a high-quality class code for a fundamental data structure or an algorithm,

2) to make the main class to instantiate the class in 1) if it does not contain the main
method,

3) to add the functions to write values of important variable in questions into a text file,

4) to prepare the input data file to be accessed by algorithm Java code and the teachers
can modify the data in the input data file if necessary,

5) to run the algorithm Java code to obtain the set of variable values in the output text
file,

6) to blank some values from the output text file to be filled by students,

7) to upload the final Java code, the blanked text file, and the correct answer file into the
JPLAS server, and add the brief description on the algorithm and the problem for a
new assignment.

In the following subsections, we describe the detail of each step in the value trace prob-
lem generation procedure except for step 4), using a Java code for Insertion sort [37][38].
Insertion sort maintains the sorted data list at the lower positions of the input data list. A
new data in the input data list is inserted into the sorted list such that the largest data is
located at the last position of the expanded sorted list. Thus, the input data list after k
iterations has the property where the first k + 1 entries are sorted. Here, the following code
for Insertion sort is adopted.

29

5.3.2 Step 1): Selection of Java Code for Insertion Sort

In Step 1), the following Java source code for Insertion Sort in [39] is selected.

Listing 5.1: Source code for InsertionSort

1 class InsertionSort{
2 　　//input data is arr[]
3 　　 public static void sort(int[] arr){
4 　　　　 int i, j;
5 　　　　 int tmp; //item to be inserted
6 　　　　//start with 1 (not 0)
7 　　　　 for (i=1; i<arr.length; i++){
8 　　　　　　 tmp = arr[i];
9 　　　　　　//smaller values are moving up

10 for (j=i ; j>0 && arr[j−1]> tmp; j−−){
11 arr[j] = arr[j−1];
12 }
13 　　　　　 arr[j] = tmp;
14 　　　 }
15 　 }
16 }

5.3.3 Step 2): Generation of Main Class

Some Java codes may not include main method and contain only class like the code for
Insertion Sort in Section 5.3.2. For convenience, it is called algorithm class. Then, it is
necessary to generate main class to contain main method to instantiate the class to run the
code and read input data of the algorithm as well as write the output data. In the following
main class, the input data is also described, so that the input file in Step 4) can be skipped.

Listing 5.2: Insertionsort main class

1 class Insertionsort Main{
2 public static void main(String args[]){
3 int[] a= new int[] {2,1,3,5,4,7,6,8,9,10};
4 InsertionSort.sort(a);
5 }
6 }

5.3.4 Step 3): Adding Output Functions

An algorithm is regarded as a well-defined computational procedure that takes some input
values, and produces some output values after a sequence of computational steps that trans-
form the input values into the output values [40]. Thus, we believe that students can study
and understand the main procedure of the fundamental data structure or the algorithm in
the Java code by tracing the values of some important variables during transformations the
input values to the output values. Then, it becomes necessary to add the functions of writing
such variable values into a text file in main class and algorithm class.

In Insertion sort, the values of the variables for the sorted data are essential for un-
derstanding the algorithm, and should be traced at each iteration by students. Thus, the
function of writing these values of variables into a text file is added as functions to complete
the problem code in generating a value trace problem as follows:

30

Listing 5.3: InsertionSort code with output function

1 class InsertionSort{
2 　　//input data is arr[]
3 　　 public static void sort(int[] arr){
4 　　　　 int i, j;
5 　　　　 int tmp; //item to be inserted
6 　　　　//start with 1 (not 0)
7 　　　　 for (i=1; i<arr.length; i++){
8 　　　　　　 tmp = arr[i];
9 　　　　　　//smaller values are moving up

10 for (j=i ; j>0 && arr[j−1]> tmp; j−−){
11 arr[j] = arr[j−1];
12 　　　　 }
13 　　　　　 arr[j] = tmp;
14 　　　　　 for(int k:arr){
15 　　　　　　　 System.out.print(k);
16 　　　　　　　 System.out.print(",");　　　　
17 　 }
18 　　　　 System.out.println();
19 　　　 }
20 　 }
21 }

5.3.5 Step 5): Obtaining Output Data File

After running the problem code, the complete output text file for the value trace problem is
given as follows:

Listing 5.4: Output data file for InsertionSort

1 1,2,3,5,4,7,6,8,9,10
2 1,2,3,5,4,7,6,8,9,10
3 1,2,3,5,4,7,6,8,9,10
4 1,2,3,4,5,7,6,8,9,10
5 1,2,3,4,5,7,6,8,9,10
6 1,2,3,4,5,6,7,8,9,10
7 1,2,3,4,5,6,7,8,9,10
8 1,2,3,4,5,6,7,8,9,10
9 1,2,3,4,5,6,7,8,9,10

5.3.6 Step 6): Blanking Values for Problem Generation

To let students trace the data sorting results, the whole line in the output text file is blanked
such that at least one data in the line is changed from the previous line, in addition to the
first line. Then, the corresponding lines is blanked in the text file as follows:

Listing 5.5: Blanked data file for InsertionSort

1 , , , , , , , , ,
2 1 , 2 , 3 , 5 , 4 , 7 , 6 , 8 , 9 , 10
3 1 , 2 , 3 , 5 , 4 , 7 , 6 , 8 , 9 , 10
4 , , , , , , , , ,
5 1 , 2 , 3 , 4 , 5 , 7 , 6 , 8 , 9 , 10
6 , , , , , , , , ,
7 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
8 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10

31

9 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10

5.3.7 Step 7): Generating Assignment

After preparing the final Java codes of main class and algorithm class, the blanked text file,
and the correct answer file, all of them are uploaded to the JPLAS server using the existing
function. Then, the brief descriptions on the algorithm and the problem can be added to
help students to understand the problem.

Figure 5.1 illustrates the user interface for generated blanked function, where the assign-
ment title, the comment, the problem code, the answer forms, and the answering buttons
are shown. The problem code contains all the necessary information including the final Java
source code and the blanked text file.

Figure 5.1: Interface for assignment answering

5.4 Blank Line Selection Algorithm

In this section, we present the blank line selection algorithm for Step 6).

5.4.1 Idea

In this algorithm, the whole data in one line is blanked in the output text file from the
problem code. To create a more difficult problem, the line should be selected such that at
least one data is changed from the previous line, which is called change line. Nevertheless,
the number of lines to be blanked or target lines, can be specified by the teacher. If the
number of change lines is smaller than the number of target lines, select all the change lines
and randomly select the remaining number of lines from non change lines. If the number of
change lines is larger, randomly select change lines by this number.

5.4.2 Procedure

The procedure for the blank line selection algorithm is described as follows:

32

1. Calculate the number of target lines to be blanked (targetLine) from the algorithm
input parameter (blankRate) and the total number of lines in the output text file
(totalLine) by targetLine=blankRate/100 ∗ totalLine.

2. Count the number of changed data in each line from the previous one in the output
text file.

3. Count the number of change lines in the output text file (changeLine) such that the
number in 2 is not zero.

4. If changeLine=targetLine, then select all of the change lines for blanks.

5. If changeLine<targetLine, then select (targetLine − changeLine) non change lines
to be blanked by repeating the following procedure:

1) Calculate the selection rate (selectRate) by selectRate=(targetLine−changeLine)
/(totalLine− changeLine).

2) Initialize the number of the selected blank lines (selectLine) by changeLine.

3) Repeat the following steps:

(1) Visit the first line in the output text file.

(2) If this line has been selected to be blanked, go to (4).

(3) If random<selectRate, then select this line to be blanked, and count up by
selectLine++, where random returns a 0-1 random real number.

(4) If selectLine=targetLine, then terminate the procedure.

(5) If the current line is not the last line in the output text file, then visit the
next line and go to (2).

(6) Go to (1).

6. If changeLine>targetLine, then select (targetLine) change lines to be blanked by
repeating the following procedure:

1) Calculate the selection rate (selectRate) by selectRate=targetLine/changeLine.

2) Initialize the number of the selected blank lines (selectLine) by 0.

3) Repeat the following steps:

(1) Visit the first line in the output text file.

(2) If this line has been selected to be blanked, go to (4).

(3) If random<selectRate, then select this line to be blanked, and count up by
selectLine++.

(4) If selectLine=targetLine, then terminate the procedure.

(5) If the current line is not the last line in the output text file, then visit the
next line and go to (2).

(6) Go to (1).

33

5.4.3 Example Problem for Insertion Sort

For the sample code of Section 5.3.2, this algorithm calculates targetLine = 5 (=50/100∗ 9)
by choosing blankRate = 50. It first selects the three change lines, then randomly selects the
two non change lines. Then, we obtain the following result:

Listing 5.6: Blanked data file for InsertionSort by algorithm

1 , , , , , , , , ,
2 1 , 2 , 3 , 5 , 4 , 7 , 6 , 8 , 9 , 10
3 , , , , , , , , ,
4 , , , , , , , , ,
5 1 , 2 , 3 , 4 , 5 , 7 , 6 , 8 , 9 , 10
6 , , , , , , , , ,
7 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
8 , , , , , , , , ,
9 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10

5.5 Value Trace Problem for Dijkstra Algorithm

In this section, we discuss the value trace problem for Dijkstra algorithm as the representative
graph theory algorithm.

5.5.1 Background

In the graph theory, several important algorithms exist to be studied by students. They
include Djkstra algorithm, Prim algorithm, Breadth first search algorithm (BFS), Depth first
search algorithm (DFS), and Maximum flow algorithm. These algorithms have been used
in a lot of important practical applications in computer systems, information systems, and
communication networks [15].

5.5.2 Dijkstra Algorithm

It computes a solution to the single source shortest path problem for a weighted graph
G = (V,E) where each edge in E has a non-negative weight [16].

1. It starts by assigning initials values for the distances from the starting node s to the
other nodes in G.

2. It operates in steps where the shortest distance from node s to another node is im-
proved.

5.5.3 Pseudo Code for Dijkstra Algorithm

The pseudo code for Dijkstra algorithm is described as follows:

Listing 5.7: Pseudo code for Dijkstra

1 begin
2 for each vertex u in V
3 begin
4 dist[v]=infinity

34

5 pred[v]=NULL
6 end
7 add all the vertices in V to Q
8 while (!ISEMPTY (Q))
9 begin

10 Extract from Q a vertex u such that dist[u] is minimum
11 remove u from Q
12 for each vertex v adjacent to u do
13 if dist[v]> dist[u]+w(u,v)
14 then
15 begin
16 dist[v]=dist[u]+w(u,v)
17 pred[v]=u
18 end
19 end
20 end

For this pseudo code, a connected weighted graph G = (V,E) with a cost function w to
an edge, and a source node s are given as the inputs, and a shortest path tree T is generated
as the output. In this pseudo code, dist[v] represents the minimum weight of the path from
s to v, which is initialized by INFINITY that represents a larger value that any path weight.
The queue Q contains all the nodes whose shortest paths have not been found. pred[v]

represents the parent vertex of v in T .

5.5.4 Java Classes

For the generation of the value trace problem for Dijkstra algorithm, three Java classes are
adopted, namely, WeightedGraph class, PrimMethod class, and Main class from [41].

5.5.4.1 WeightedGraph Class

WeightedGraph class defines the necessary procedures to handle the input graph for Dijkstra
algorithm. It contains the methods of setLabel, getLabel, addEdgeWeight, getEdgeWeight,
and neighbors. setLabel method sets the label for the specified vertex. getLabel method gets
the label of the specified vertex. addEdgeWeight method assigns the weight to the edge
specified by the incident vertices. setLabel and addEdgeWeight methods are used to generate
a weighted connected graph. neighbors method returns the list of the neighbor vertices of
the vertex in the argument, which is used for line 12 in the pseudo code in Section 5.5.3.
getEdgeWeight method returns the weight of the edge in the argument, which is used for
lines 13 and 16 in the pseudo code.

Listing 5.8: Source code for WeightedGraph class

1 public class WeightedGraph{
2 // adjacency matrix
3 public int [][] edges;
4 public String [] lables;
5 public WeightedGraph(int n){
6 edges=int[n][n];
7 lables=new String[n];
8 }
9 public int size(){

10 return labels.length;
11 }
12 public void setLabel(int vertex, String label){

35

13 labels[vertex]=label;
14 }
15 public Object getLabel(int vertex){
16 return labels[vertex];
17 }
18 public void addEdgeWeight(int source, int target, int w){
19 edges[source][target] = w;
20 }
21 public int getEdgeWeight(int source, int target){
22 return edges[source][target];
23 }
24 public int [] neighbors(int vertex){
25 int count = 0;
26 for(int i=0;i<edges[vertex].length; i++){
27 if (edges[vertex][i]>0)
28 answer[count++]=i;
29 }
30 final int[]answer= new int[count];
31 count=0;
32 for(int i=0;i<edges[vertex].length;i++){
33 if (edges[vertex][i]>0)
34 answer[count++]=i;
35 }
36 return answer;
37 }
38 }

5.5.4.2 DijkstraMethod Class

DijkstraMethod class produces the shortest path tree T , by finding the shortest path from
the source node s to another node sequentially in the ascending order of the distance in the
graph G [42].

Listing 5.9: Source code for DijkstraMethod class

1 public class DijkstraMethod{
2 public static int[] dijkstra(WeightedGraph G, int s){
3 final int []dist = new int[G.size()];
4 final int []pred = new int[G.size()];
5 int sum=0;
6 final boolean[] visited=new boolean[G.size()];
7 for (int i=0; i<dist.length; i++){
8 //set all distances to maximum value
9 dist[i] = Integer.MAX VALUE;

10 }
11 //initialize distance of source to zero
12 dist[s] = 0;
13 for (int i=0; i<dist.length; i++){
14 final int u = minVertex(G, dist, visited);
15 visited[u] = true;
16 //each vertex adjacent to u
17 final int [] n = G.neighbors(u);
18 for (int j=0; j<n.length; j++){
19 final int v = n[j];
20 final int d = dist[u]+G.getEdgeWeight(u,v);
21 if (dist[v] > d){
22 dist[v] = d;
23 pred[v] = u;

36

24 }
25 }
26 }
27 return pred; //(ignore pred[s]==0!)
28 }
29 private static int minVertex(WeightedGraph G, int [] dist, boolean [] v){
30 int x = Integer.MAX VALUE;
31 //graph not connected
32 int y = −1;
33 for (int i=0; i<dist.length; i++){
34 if (!v[i] && dist[i]<x){
35 y=i;
36 x=dist[i];
37 }
38 }
39 sum = sum + x;
40 System.out.println("selected vertex:"+G.getLabel(y)+", the edge weight: "+x

);
41 return y;
42 }
43 }

5.5.4.3 Main Class

Main class generates an input graph to the algorithm using WeightedGraph class, and find
the shortest path tree using DijkstraMethod class.

Listing 5.10: Dijkstra main class

1 class DijkstraMain{
2 public static void main (String[] args) {
3 //initialize the weighted graph
4 final WeightedGraph t = new WeightedGraph(6);
5 // set label for six vertices
6 t.setLabel(0, "v0");
7 t.setLabel(1, "v1");
8 t.setLabel(2, "v2");
9 t.setLabel(3, "v3");

10 t.setLabel(4, "v4");
11 t.setLabel(5, "v5");
12 t.addEdgeWeight(1,0,2);
13 t.addEdgeWeight(2,1,8);
14 t.addEdgeWeight(2,4,7);
15 t.addEdgeWeight(3,1,15);
16 t.addEdgeWeight(3,2,1);
17 t.addEdgeWeight(3,4,3);
18 t.addEdgeWeight(4,5,3);
19 t.addEdgeWeight(5,0,9);
20 t.addEdgeWeight(5,1,6);
21 DijkstraMethod.dijkstra(t,0);
22 System.out.println("The total least cost"+sum);
23 }
24 }

37

5.5.5 Generated Value Trace Problem

By running the Java class codes in Section 5.5.4, the following output file is obtained:

Listing 5.11: Output data file for Dijkstra

1 selected vertex : v0 , the edge weight: 0
2 selected vertex : v1 , the edge weight: 2
3 selected vertex : v5 , the edge weight: 8
4 selected vertex : v2 , the edge weight: 10
5 selected vertex : v3 , the edge weight: 11
6 selected vertex : v4 , the edge weight: 11
7 The total least cost: 42

Then, by blanking all the values of the selected vertices and the edge weights, the following
value trace problem is generated. Then, the students are asked to fill in the blanks by reading
the codes in Section 5.5.4, which are called problem codes for convenience.

Listing 5.12: Blanked data file for Dijkstra

1 selected vertex: 1 ,the edge weight: 2
2 selected vertex: 3 ,the edge weight: 4
3 selected vertex: 5 ,the edge weight: 6
4 selected vertex: 7 ,the edge weight: 8
5 selected vertex: 9 ,the edge weight: 10
6 selected vertex: 11 ,the edge weight: 12
7 total least cost: 13

5.6 Evaluation for Sorting Algorithms

In this section, we evaluate the effectiveness of value trace problems for sorting algorithms.

5.6.1 Five Value Trace Problems for Sorting Algorithms

In this evaluation, the five value trace problems are generated by using the Java codes for
selection sort, insertion sort, bubble sort, quick sort [43] and shell sort [13]. These algorithms
are commonly taught in universities. Table 5.1 shows the problem outlines.

Table 5.1: Five value trace problems for evaluations

ID algorithm LOC # of blanks
P1 Selection sort 27 24
P2 Insertion sort 27 23
P3 Bubble sort 32 10
P4 Quick sort 44 43
P5 Shell sort 37 22

38

5.6.2 Solution Performances by Students

Then, 10 students in our group who have different skills and knowledge in Java programming,
are asked to solve them using JPLAS. After that, they are requested to answer the five
questions in Table 5.2 for the questionnaire. For Q1, students should reply with five levels,
where 1 is the easiest and 5 is the most difficult. For Q2, they should reply with four levels,
where 1 is less than 10 min., 2 is about 15 min., 3 is about 20 min., and 4 is longer than 25
min. Then, for Q3-Q5, students should reply with yes or no for all five problems.

Table 5.2: Questions in questionnaire

ID question
Q1 How difficult is each problem ?
Q2 How long did you spend to answer each problem ?
Q3 Do you understand the algorithm in the code by solving the problems ?
Q4 Do you think the value trace problem is useful for Java code reading ?
Q5 Can you implement the algorithm in Java code by solving the problems ?

Table 5.3 shows the results for the individual problems. Here, the results show the
number of students who solved each problem correctly and the average number of their
answer submissions, where JPLAS can record the submission numbers. This table indicates
that among the five value trace problems, the problem for Quicksort is the most difficult
since two students were not able to solve it and the average number of submissions as well as
the average difficulty and spending time levels are the highest. The reason will be analyzed
in Section 5.6.3.

Table 5.3: Solution and questionnaire results

ID # of solving ave. # of ave. level ave. level
students submissions for Q1 for Q2

P1 10 2.5 1.3 1.5
P2 9 3.2 1.3 1.6
P3 10 1.8 1.5 1.8
P4 8 12.8 3.2 3.5
P5 10 4.7 2 2.4

Table 5.4 shows the results for Q3-Q5. From Q3 and Q4, nine students among 10 replied
that the value trace problem in JPLAS is effective in understanding the algorithm in the
Java code and the code reading. However, for Q5, only seven students replied that they have
confidence in writing a code for the algorithm even after solving them. From these results,
we conclude that the value trace problem is useful and effective for Java code reading, but
may not be sufficient for Java code implementations of algorithms.

39

Table 5.4: Questionnaire results on effectiveness of value trace problem

Q3 Q4 Q5
yes 9 9 7
no 1 1 3

5.6.3 Difficulty Analysis of Quick Sort

In the previous subsection, the value trace problem for Quick Sort is the most difficult. Our
analysis on the reason is that Quick sort employs the divide-and-conquer strategy. It starts
by picking an element from the data list as the pivot. Then, it reorders the data list so that
all the elements with values less than the pivot come before the pivot and the other elements
come after it, called partitioning. Then, it recursively applies the same procedure to each
sub-list at the left side and the right side of the pivot, until the whole list is sorted [43].

In the following problem for Quick Sort, the codes from line 1 to line 38 describe the
algorithm class with added output functions to a text file, the codes from line 39 to line 44
describe main class, while the codes from line 46 to line 60 depicts the problems yet to be
solved by students. 43 blanks are prepared for students to fill in the correct values. The
pivot p is the most important parameter. For each p, the data arrangement is applied for
each data set. Thus, to understand the code, students should trace the values of p from the
first one to the last and the data arrangement results for each p.

Listing 5.13: Value trace problem for QuickSort

1 class QuickSort{
2 public static int partition(int array[], int left, int right){
3 int p,tmp,i,j;
4 p=array[left];
5 i=left;
6 j=right+1;
7 System.out.println("pivot: "+p);
8 for(;;){
9 while (array[++i]<p) if (i>=right) break;

10 while (array[−−j]>p) if (j<=left) break;
11 if (i>=j) break;
12 tmp=array[i];
13 array[i]=array[j];
14 array[j]=tmp;
15 }
16 if (j!=left){
17 tmp=array[left];
18 array[left]=array[j];
19 array[j]=tmp;
20 }
21 System.out.print("output: ");
22 for (int k:array){
23 System.out.print(k);
24 System.out.print(",");
25 }
26 System.out.println();
27 return j;
28 }

40

29 public static void quicksort(int a[], int left, int right){
30 int i;
31 if (right>left){
32 i=partition(a, left, right);
33 System.out.println();
34 quicksort(a, left, i−1);
35 quicksort(a, i+1, right);
36 }
37 }
38 }
39 public class Quickmain{
40 public static void main (String[] args){
41 int [] arr={65,70,75,80,85,60,55,50,45};
42 QuickSort.quicksort(arr,0,arr.length−1);
43 }
44 }
45 <Problem>
46 pivot: 1
47 output: 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
48 pivot: 11
49 output: 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20
50 pivot: 21
51 output: 50 , 45 , 55 , 60 , 65 , 85 , 80 , 75 , 70
52 pivot: 22
53 output: 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31
54 pivot: 32
55 output: 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41
56 pivot: 42
57 output: 45 , 50 , 55 , 60 , 65 , 70 , 80 , 75 , 85
58 pivot: 43
59 output: 45 , 50 , 55 , 60 , 65 , 70 , 75 , 80 , 85

5.7 Evaluation for Graph Theory Algorithms

Next, we evaluate the effectiveness of value trace problems for graph theory algorithms.

5.7.1 Size of Generated Value Trace Problems

In this evaluation, first, we evaluate the problem size through the generated seven value
trace problems for Dijkstra, Kruskal, Prim, Breath First Search (BFS), Depth First Search
(DFS), Traveling Salesman Problem (TSP), and Maximum Flow as important graph theory
algorithms, using their Java codes in [17][18][19][20]. Table 5.5 shows the number of vertices
in the adopted graph, LOC (the number of lines) in the problem code, and the number of
blanks for each value trace problem.

For comparisons, Table 5.6 shows the number of the input data, LOC in the problem
code, and the number of blanks for fundamental data structures or algorithms in [45]. We
note that the number of blanks is obtained here after applying the blank selection algorithm
such that 50% of the output data lines can be blanked. When we compared the results in
the two tables, we found that value trace problems for graph theory algorithms have more
LOC and a fewer number of blanks. One reason of the larger LOC is the graph generation
procedure of giving labels to the vertices and the weights and the incident vertices to the
edges in the code. This indicates that reading out the problem code for a graph theory

41

Table 5.5: Size of value trace problems for graph theory algorithms

ID algorithm # of vertices LOC # of blanks
P1 Dijkstra 6 97 13
P2 Prim 6 97 13
P3 BFS 8 85 8
P4 DFS 8 79 8
P5 TSP 5 98 13
P6 Kruskal 7 176 19
P7 Maximum flow 6 141 19

Table 5.6: Size of value trace problems for fundamental data structures or algorithms

ID algorithm # of data LOC # of blanks
P8 Stack 10 33 20
P9 Queue 10 32 20
P10 Selection sort 8 27 24
P11 Insertion sort 6 27 23
P12 Bubble sort 5 32 10
P13 Quick sort 9 44 43
P14 Shell sort 5 37 22
P15 Merge Sort 8 51 24
P16 Heap Sort 6 63 24

algorithm is generally more difficult and takes more time than doing so for a fundamental
data structure or algorithm. In other words, the improvement of displaying the problem
code to students is very important to reduce the difficulty in solving the problem by them.

5.7.2 Solution Performances by Students

Then, we evaluate the solution performance by asking five students who have sufficient Java
programming skills in our group, to solve the value trace problems for Prim and Dijkstra
algorithms. From Table 5.5, the problem codes for them have the same LOC. Actually, their
algorithm structures and the codes are very similar. To investigate the difference by using
the one-column format or the two-column format and by using the online form or the PDF
file for displaying the problem codes to students, we prepared the one-column/online for
Prim and the two-column/PDF for Dijkstra in JPLAS.

After solving the two value trace problems correctly, we asked the students to answer
the five questions in Table 5.7 as the questionnaire. For Q1, the difficulty of solving each
problem is denoted by four levels, where 1 is the easiest and 4 is the most difficult. For Q2,
the approximate time spent to solve each problem is denoted by four levels, where 1 is less
than 10min., 2 is about 15min., 3 is about 20min., and 4 is longer than 25min. Then, for
Q3-Q5, we used ”yes” or ”no” questions to ask the students for these problems.

42

Table 5.7: Questions in questionnaire

ID question
Q1 How difficult is each problem?
Q2 How long did you spent to answer each

problem?
Q3 Can you easily read and understand the algorithm

Java code to solve the problem in JPLAS?
Q4 Can you easily read and understand the algorithm

Java code to solve the problem in two column PDF
format?

Q5 Do you think the value trace problem for graph
theory is useful to improve the java code reading
and understanding?

Table 5.8: solutions and questionnaire results

ID
Q1 Q2

Q3 Q4 Q5
Dijkstra Prim Dijkstra Prim

S1 3 4 3 4 no yes yes
S2 4 4 4 4 yes no no
S3 4 4 4 4 yes no yes
S4 4 4 4 4 yes yes yes
S5 4 4 4 4 yes no yes

Table 5.8 shows the results for this questionnaire. For Q1 and Q2, four students replied
that the difficulty of the problem is the highest and took long time to solve them. When
compared between the two-column/PDF for Dijkstra and the one-column/online for Prim,
only student S1 replied that the former is easier than the latter, whereas the others replied
the same. This indicates the two-column/PDF format slightly improves the user interface in
displaying the problem code.

For Q3, four students replied that they can easily read and understand the problem
code, whereas one student has difficulty to solve the problem. For Q4, two students replied
that the two-column/PDF format is easy to read and understand the problem code, whereas
three students replied that it is not. This indicates that the problem code format still needs
to be improved. For Q5, four students replied that value trace problems for graph theory
algorithms are useful to improve the Java code reading.

From the results, we conclude that value trace problems for graph theory algorithms
are generally useful to improve the Java code reading capability of students, although they
can be difficult for Java novice students due to long problem codes. In future works, we
need to improve the user interface in displaying the problem code and have their extensive
evaluations.

43

5.8 Summary

In this chapter, we presented the value trace problem in JPLAS for studying algorithm Java
code reading by students. The effectiveness of the value trace problem was evaluated through
the generated problems using Java codes for sorting and graph theory algorithms. The
future studies include the improvement of the user interface in displaying the problem code,
and their extensive evaluations through the applications to students in Java programming
courses.

44

Chapter 6

Workbook Design for Fill-in-blank
Problems

In this chapter, we present the workbook design for the element fill-in-blank problem, the core
element fill-in-blank problem, and the value trace problem in JPLAS.

6.1 Introduction

In this thesis, a workbook of the three fill-in-blank problems is designed for use in a Java
programming course to enhance the self-studies of Java programming by novice students.
This workbook consists of 15 categories that are arranged in the conventional learning order
of Java programming, and each category has a considerable number of problems. A set of
suitable Java source codes is collected from textbooks and Web sites for the introductory
Java programming.

In this chapter, the workbook design of the three problems in JPLAS is presented. Then,
the generation of element fill-in-blank problems using the workbook and their evaluations
are discussed. Finally, the conclusion is given for this chapter.

6.2 Review of Three Fill-in-blank Problems

In this section, we review the three fill-in-blank problems in JPLAS.

6.2.1 Element Fill-in-blank Problem

This problem intends for students to learn the Java grammar and basic programming skills
by filling the blank elements in a given code. An element is the least unit of a code including
a reserved word, an identifier, and a control symbol. A reserved word is a fixed sequence
of characters that has been defined in the grammar to represent a specified function. An
identifier is a sequence of characters defined in the code to represent a variable, a class, or a
method. A control symbol intends other grammar elements such as“ .”(dot),“ : ”(colon),
“ ; ”(semicolon) ,“ (,) ”(bracket),“ {, }”(curly bracket).

The difficulty of the element fill-in-blank problem can be changed by controlling the ratio
between the number of blank elements and non-blank ones in the problem. As more non-
blanked elements exist between the blanked ones, the problem becomes easier. As more

45

blanked elements continue in the problem, it becomes harder. The two parameters, BG
(Blank Gap Number) and CB (Continuous Blank Number) were introduced to control them.
BG determines the number of non-blanked elements between the blanked ones, and CB does
the number of continuous blanked elements that are appearing in a statement.

6.2.2 Core Element Fill-in-blank Problem

In the element fill-in-blank problem, the students can solve mechanically without understand-
ing the code behaviors, if they are familiar with Java grammar. In programming educations,
the students should study not only the grammar but also the codes that implement some al-
gorithms or logics, such as standard input/outputs, data structure, fundamental algorithms,
and graph algorithms. Thus, this problem selects the blank elements from the core state-
ments that implement the algorithm/logic in the code, to enhance code reading studies of
novice students. The students need to fill in the blanks by reading and understanding the
code structure.

The difficulty of the core element fill-in-blank problem depends on the ratio of the selected
core statements to all the statements in the code. This parameter, SP (Selection Percentage),
should be properly given by the teacher. To select core statements, the PDG is generated
from the code.

The PDG represents the data flow dependency between the statements in the code, where
a vertex corresponds to a statement and an edge exists if the two end statements depend
on each other. The statement can be considered as the core if it depends on many other
statements. Thus, the vertices with high degrees in the PDG are selected as the core ones.
Actually, in the clique extraction step in the blank element selection algorithm, we limit the
elements in the statements whose PDG degrees are larger than or equal to the threshold
that is calculated from SP .

6.2.3 Value Trace Problem

This problem intends for students to enhance the code tracing ability. It asks them to fill
the blanks suggesting the actual values of important variables in the code that implements
a sorting algorithm or a graph theory algorithm. The students can answer them only by
correctly tracing the true values of the variables from the initial to final ones at every step
in the algorithm procedure.

The difficulty of the value trace problem can be changed by the ratio of the blank steps to
all the steps. This parameter, BS (Blank Step Ratio), should properly be set by the teacher.

6.3 Workbook Design for Fill-in-blank Problems

In this section, we present a workbook design for the three fill-in-blank problems in JPLAS.

6.3.1 Code Collections

To help teachers to use the fill-in-blank problems in JPLAS, Java source codes are collected
from textbooks [47]-[49] and Web sites [13]-[20], [50]-[52] for Java programming. Then, by
referring to the contents of the textbooks that have been used in the introductory Java

46

Table 6.1: Workbook code collection

category code topic # of Java
ID codes
1 variable 5
2 operator 7
3 conditional statement 6
4 loop, break, continue 15
5 array 11
6 class: field, method, member 4
7 class: overload, constructor, this 4
8 class: library, string, class method 6
9 class: inheritance, superclass, override 6
10 interface 5
11 package, file 3
12 exception 8
13 data structure 2
14 sorting algorithms 4
15 graph algorithms 7

programming course, 16 categories have been selected to classify these codes as in Table 6.1.
The first 12 categories (ID=1∼12) are related to Java grammar where each code usually
consists of a single class. These codes can be used for element fill-in-blank problems. On the
other hand, the remaining four categories (ID=13∼15) are for applications where each code
usually consists of multiple classes and methods. Data structure, sorting algorithms, graph
algorithms, and fundamental algorithms are selected here, since they are usually educated
in the corresponding courses in universities. These codes can be used for both element
fill-in-blank problem and value trace problem.

6.3.2 Programming Course Use

In general, the difficulty is increased in the order of the element fill-in-blank problem, the
core element fill-in-blank problem, and the value trace problem. Besides, the difficulty of the
two element fill-in-blank problems can be increased by taking the smaller BG and the larger
CB (and SP), and the difficulty of the value trace problem can be increased by using the
larger BS.

Unfortunately, every student in a Java programming course is not highly motivated in
studying Java programming. Some students may easily lose motivations of studying it, if
they feel difficulty in solving some element fill-in-blank problems in JPLAS. Therefore, they
should start from easiest problems using the codes in ID = 1 with BG = 3 and CB = 1.
Then, the assigned problems should be gradually more difficult by using the smaller BG and
larger CB until ID = 12. After that, the core element fill-in-blank problem and the value
trace problem can be assigned to students using codes in ID = 13 ∼ 16.

47

Table 6.2: Workbook design of element fill-in-blank problems

category code # of ave. # of ave. # of blanks (BG, CB)
ID topic problems lines (LOC) (3, 1) (1, 1) (0, 3)
1 variable 5 9.6 8.6 9.4 13.2
2 operator 7 9.43 8.86 9.0 14.14
3 conditional statement 6 21.17 15.33 15.83 27.33
4 loop, break, continue 15 13.33 10.67 11.4 18.0
5 array 11 16.91 16.36 19.91 29.54
6 class: field, method, member 4 16.5 10.25 13.25 20.75
7 class: overload, constructor, this 4 21.0 14.75 19.5 26.25
8 class: library, string, class method 6 17.17 16.0 17.83 26.83
9 class: inheritance, superclass, override 6 20.5 13.67 15.5 23.33
10 interface 5 24.0 16.0 18.2 26.8
11 package, file 3 27.0 16.0 20.0 31.0
12 exception 8 21.0 16.75 17.5 25.0

6.4 Applications of Workbook

In this section, we discuss the generation of element fill-in-blank problems in the workbook
and their application results by the students.

6.4.1 Generated Problems for Workbook

In this evaluation, we generated the element fill-in-blank problems from source codes by
applying the extended blank element selection algorithm (ID: 1-12). Table 6.2 shows the code
topic, the number of problems, the average number of statements (LOC) for one problem,
and the average number of blanks with (3, 1), (1, 1), and (0, 3) for (BG, CB) in each
category.

The number of selected blanks is gradually increase by the larger LOC until ID = 12.
Our past results show that as the number of blanks increases, the problem becomes more
difficult [11]. Thus, the teacher should carefully select assigned problems depending on
performances of students in the course.

6.4.2 Trial Application Results to Novice Students

Then, we selected eight problems related to Java grammar in this workbook and asked four
novice students from Indonesia to solve them. These students have studied Java program-
ming for about 10 days, but sufficiently studied C programming before. Table 6.3 shows
the category ID, the number of statements (LOC), the adopted values of (BG, CB) for the
problem generation, the average number of selected blanks, and the average correct answer
rate for each problem. Here, we note that the original source codes for these problems come
from [47] and [48].

Table 6.3 indicates that the two problems Q2 and Q8 had lower correct answer rates than
the others. Problem Q2 and Problem Q8 illustrate their problem codes respectively. As
shown there, the problem code for Q2 includes the object array at lines 19-22, and the code
for Q8 includes double loops at lines 3 and 5. It can be considered that they are difficult for
the novice students. On the other hand, LOC and the values of (BG, CB) are not sensitive in

48

Table 6.3: Trial application results for four students

problem category LOC BG CB ave. # of ave # of ave. correct
ID ID blanks corrects rate (%)
Q1 6 32 1 1 22 20.75 94.31
Q2 9 28 3 1 21 18.75 89.29
Q3 4 26 1 1 17 16 94.12
Q4 3 19 0 3 24 23.75 98.96
Q5 5 18 1 1 19 18 94.74
Q6 7 18 1 1 23 22 95.65
Q7 3 12 0 3 20 19.5 97.5
Q8 4 11 0 3 18 16 88.89

solving performances of students, because these codes for Java grammar have many simple
short statements. It is necessary to investigate their performance changes by them when
students solve fill-in-blank problems using application codes such as sorting algorithms and
graph algorithms, which will be in our future studies.

Listing 6.1: Problem Q2

1 class 1 {
2 protected int num;
3 protected double gas;
4 public Car() {
5 2 = 0;
6 3 = 0.0;
7 System.out.println("generate a car");
8 }
9 }

10 4 RacingCar extends Car {
11 private int course;
12 public 5 () {
13 6 = 0;
14 System.out.println("generate a racing car");
15 }
16 }
17 7 CodeQ2{
18 public 8 void main(9 [] args) {
19 10 [] cars;
20 cars = 11 Car[2];
21 12 [0] = 13 Car();
22 14 [1] = 15 RacingCar();
23 16 (int i=0; i<cars.length; i++){
24 Class clsName = 17 [i] 18 getClass();
25 19 .out. 20 (class of (i+1) +
26 "th object is" + 21);
27 }
28 }
29 }

Listing 6.2: Problem Q8

1 public 1 CodeQ8 {
2 public 2 3 main(4 [] args) {

49

3 5 (6 i = 0; 7 8 10; 9 ++) {
4 10 .out.print 11 i + ":");
5 12 (int j = 0; j 13 14 ; 15 ++) {
6 System.out. 16 ("*");
7 }
8 17 .out. 18 ("");
9 }

10 }
11 }

For reference, the problem code for Q4 is illustrated as follows. The average correct rate
for Q4 is the highest among the eight problems. It has a simple structure of if else.

Listing 6.3: Problem Q4

1 1 java.io.∗;
2 2 CodeQ4{
3 public 3 4 main(5 [] args) 6 IOException{
4 System. 7 .println("Please enter an integer");
5 BufferedReader br = 8 9 (10 InputStreamReader(11 .in));
6 12 str = 13 .readLine(14 ;
7 int res = Integer.parseInt(15);
8 16 (17 == 1){
9 System.out. 18 ("the input is 1");

10 }
11 else 19 (20 == 2){
12 21 .out.println("the input is 2");
13 }
14 22 {
15 23 .out. 24 ("Please enter 1 or 2");
16 }
17 }
18 }

6.5 Summary

In this chapter, we presented a workbook design of the three fill-in-blank problems in JPLAS
by collecting a set of Java source codes from textbooks and Web sites. Then, eight problems
in the workbook were assigned to novice students as the preliminary evaluations. The future
studies include the generation of fill-in-blank problems for the remaining categories and
the verification of the adequacy of this workbook in Java programming educations for novice
students by assigning the problems in the workbook to students in Java programming courses.

50

Chapter 7

Informative Test Code Approach for
Code Writing Problem

In this chapter, we present the informative test code approach of the code writing problem
in JPLAS.

7.1 Introduction

In this chapter, the code writing problem is advanced by introducing the informative test
code approach to help the students to solve harder problems that require multiple classes
and methods. The informative test code describes the detailed specifications of the names,
access modifiers, and data types of the classes, methods, and arguments. This problem
asks a student to write a source code with the proper classes/methods that satisfies the
specifications given by an informative code.

Generally, the test code can more clearly describe the specifications than a description
using natural language. It is expected that the student obtains the information for the
class/method names, the data types, and the argument settings by reading the test code,
before writing the source code. Because the information in the test code comes from the
model source code, the student is able to complete the same qualitative source code as the
model code.

In this chapter, some related works of the test code is first reviewed. Then, Eclipse
Metrics Plugin is introduced. And then, the informative test code approach for the code
writing problem is presented. Next, three fundamental concepts in the object-oriented pro-
gramming (OOP) are discussed for use of the informative test code approach. After that, the
informative test code approach is evaluated. Finally, the conclusion is given for this chapter.

7.2 Related Works

In this section, we review some related works to the proposal in this chapter.
In [56], Yamamoto et al. presented an improved group discussion system for the active

learning system (ALS) using mobile devices to increase the examination pass rate. In their
previous study, it was found that the proposed ALS could not increase the examination pass
rate of the students although the self-learning time was increased. The experimental evalu-
ation of the improved group discussion system showed that it can increase the examination

51

pass rate. In future works, we will consider implementing the group discussion function
with interfaces for mobile devices in JPLAS, so that students can continue studying Java
programming with proper advises or hints from other students.

In [57], Xue et al. presented an integrity verification method for exception handling
in service-oriented software. In this method, they construct state spaces associated with
exception handling, convert the issue of integrity verification into a model of boundedness
analysis based on CPN, and reduce the size of state spaces by extending Stubborn Set and
Transition Dependency Graph. The experimental results confirmed that the method has
good generalization abilities. In future studies, we will study the use of this method for
learning exception handling in JPLAS.

In [58], Zhou et al. presented an Android application system using a tablet called Isaly
to provide visual programming environments for educations. In this proposal, the concept of
the state-transition diagram is used to make a program by a student. Isaly contains several
features and user interfaces suitable for the use in a tablet.

In [59], Zhu et al. presented a system for mining API usage examples from the test
code. They found that the test code can be a good source for API usage examples that
programmers need to know, like our approach. The test code can provide the information
on small units of a code like functions, classes, procedures, and interfaces. The information in
the test code is helpful in developing and maintaining a source code, including the knowledge
sharing and transfer among programmers. However, the repetitive API use in a test code
makes it complicated for programmers to read it. To address this issue, they studied the
JUnit test code and summarized a set of test code patterns. They employed a code pattern
based heuristic slicing approach to separate test scenarios in code examples. Then, they
cluster similar API usages to remove redundancy and provide recommendations for API
usage examples for programmers. In future works, we will study the use of the informative
test code for API usage.

In [60], Kolassa et al. presented a system based on JUnit to test the partial code in a
template of a template-based code generator where it is generated by the template engine.
It facilitates the partial testing of a code by supporting the code execution in a mocked
environment. They adopted TUnit, an extension of JUnit based on the MontiCore language
workbench [61][62][63], to support the unit test of an incomplete code in the mocked envi-
ronment. By using TUnit, a code generator template can be tested with mocked contexts
such as mocked variables, mocked templates, and mocked help functions that are the inputs
to the template. This testing intends to answer the questions: Is the set of the specified
inputs accepted by the code generator template, e.g., the code can be generated?, Does the
code generator template produce syntactically valid source code?, and Are the target language
context conditions valid for the generated source code?

On the other hand, in this paper, the informative test code approach is presented for the
code writing problem in JPLAS, so that a student can learn how to write a complex source
code in a harder assignment that requires multiple classes, by referring the information on
the source code described in the test code, such as the names of the classes, the methods,
the essential variables, the arguments, the returning data types of the methods, and the
exception handling that are intended by the teacher. In JPLAS, we have implemented the
interfaces only for a PC browser using a mouse and a keyboard.

52

7.3 Eclipse Metrics Plugin

In this section, we introduce Eclipse Metrics Plugin that is used to measure the code quality
metrics.

7.3.1 Software Metrics

Software metrics are used for a variety of purposes including the evaluation of the software
quality and the prediction of the development/maintenance cost. Software metrics can be
measured from software products such as source codes and documents. Most of software
metrics are defined on the conceptual modules of software systems, including files, classes,
methods, functions, and data flows. This means that software metrics can be measured in
any programming language.

At present, a variety of software metrics exist. They can be classified into basic metrics,
complexity metrics, CK metrics, and coupling metrics. CK metrics indicate features of
object-oriented software, and has been widely used [64][65].

Basic metrics include the following metrics:

• number of classes (NOC)

• number of methods (NOM)

• number of fields (NOF)

• number of overridden methods (NORM)

• number of parameters (PAR)

• number of static methods (NSM)

• number of static fields (NSF).

Complexity metrics include the following metrics:

• method lines of code (MLOC)

• specialization index (SIX),

• McCabe cyclomatic complexity (VG)

• nested block depth (NBD).

CK metrics include the following metrics:

• weighted methods per class (WMC)

• depth of inheritance tree (DIT),

• number of children (NSC)

• lack of cohesion in methods (LCOM).

Coupling metrics include the following metrics:

• afferent/efferent coupling (CA/CE).

53

7.3.2 Eclipse Metrics Plugin

Until now, a lot of software metric measurement tools have been developed. Among them,
Eclipse Metrics Plugin by Frank Sauer is the commonly used open source software plugin for
Eclipse IDE for the metrics calculation and the dependency analyzer. It can measure various
metrics and display the results in the integrated view. Actually, 23 metrics can be measured
by this tool, which can be used for the quality assurance testing, the software performance
optimization, the software debugging, the process management of software developments
such as time or methodology, and the cost/size estimations of a project [66].

7.3.3 Adopted Seven Metrics

In this thesis, we use this tool to measure the necessary metrics to evaluate the quality of
source codes from the students that pass the test code on JUnit. The following seven metrics
are actually adopted in this thesis:

1. Number of Classes (NOC)
This metric represents the number of classes in the source code.

2. Number of Methods (NOM)
This metric represents the total number of methods in all the classes.

3. Cyclomatic Complexity (VG)
This metric represents the number of decisions caused by the conditional statements
in the source code. The larger value for V G indicates that the source code is more
complex and becomes harder to be modified.

4. Lack of Cohesion in Methods (LCOM)
This metric represents how much the class lacks cohesion. A low value for LCOM
indicates that it is a cohesive class. On the other hand, the value close to 1 for LCOM
indicates the lack of cohesion and suggests that the class might better be split into
several (sub)classes. LCOM can be calculated as follows:

1) Each pair of methods in the class are selected.

2) If they access to the disjoint set of instance variables, P is increased by one. If
they share at least one variable, Q is increased by one. It is noted that P and Q
are initialized by 0.

3) LCOM is calculated by:

LCOM =

{
P −Q (if P > Q)

0 (otherwise)
(7.1)

5 Nested Block Depth (NBD)
This metric represents the maximum number of nests in the method. It indicates the
depth of the nested blocks in the code.

6. Total Lines of Code (TLC)
This metric represents the total number of lines in the source code, where the comment
and empty lines are not included.

54

7. Method Lines of Code (MLC)
This metric represents the total number of lines inside the methods in the source code,
where the comment and empty lines are not included.

7.4 Informative Test Code Approach for Code Writing

Problem

In this section, we present the informative test code approach for the code writing problem
in JPLAS.

7.4.1 Concept of Informative Test Code

The informative test code is intended to help a student to complete the source code by offering
the code design information to write the high quality code for a harder code writing problem.
It gives the necessary information to implement the code, which includes the following items
for the code:

• the class names and method names

• the access modifier, and data types for the important member variables

• the argument types

• the returning data types for the methods

• the exception handling

7.4.2 Problem Generation with Informative Test Code

Generally, in a code writing problem, the test code file, the input data file, and the expected
output data file should be given to the students by a teacher, in addition to the problem
statement in natural language. Then, a student is requested to write the source code that
passes every test described in the test code on JUnit. The test code represents the detailed
specifications of the source code.

The informative test code can be prepared after the qualitative model source code for the
problem is prepared by the teacher. It is expected that the student completes the qualitative
source code for the problem that has the similar structure with the model source code by
referring this test code. The following steps describe the generation procedure of the code
writing problem using the informative test code:

1. The teacher prepares the statement and the input data file for the new problem.

2. The teacher prepares themodel source code that does not only satisfy every specification
of the problem but has the high quality design.

3. The teacher prepares the expected output data file by running the model source code.
This output file is used for comparison with the output data file of the student code
to check the correctness.

4. The teacher generates the informative test code from the model source code such that
any information in the model source code is tested including the exception handling.

55

7.4.3 Example Problem Generation for BFS Algorithm

In this subsection, we describe the details of steps 1, 2, and 3 using the BFS algorithm [67].
It starts at the root node (or arbitrary node of a graph), and explores the neighbor nodes
first, before moving to the next level neighbors.

7.4.3.1 Input Data File

To represent a graph, the input data file should contain the index and the label for every
vertex, and the source vertex label and the destination vertex label for every edge. The
following example represents a graph with eight vertices and seven edges.

Listing 7.1: Input data file for BFS

1 node−number node−label
2 0 s
3 1 r
4 2 w
5 3 t
6 4 x
7 5 v
8 6 u
9 7 y

10 source−node target−node
11 s r
12 s w
13 r v
14 w t
15 w x
16 t u
17 x y

7.4.3.2 Model Source Code

The model source code for a problem should be prepared carefully by using the proper classes
and methods, so that the measured metrics of the model source code exist in the desired
ranges. For example, the model source code for the BFS algorithm can be implemented using
graph class for handling the graph data, BFS class for applying the algorithm procedure,
and main class for controlling the whole code. The teacher can obtain the model source
code from textbooks or websites. By comparing the measured metrics of the source codes
in them, the teacher can select the best source code for the model one.

7.4.3.3 Expected Output Data File

The expected output data file can be obtained by running the model source code with the
input data file. It describes the expected results of the source code by a student. For the
BFS algorithm, it includes the selected edges by the algorithm in the selected order that is
described by a pair of two end node labels.

Listing 7.2: Output data file for BFS

1 selec−node pre−node
2 s −
3 r s
4 w s

56

5 v r
6 t w
7 x w
8 u t
9 y x

7.4.3.4 Informative Test Code

The informative test code should be generated by referring the model source code such that
any important method in the model code must be tested in this test code. It is possible to
apply an automatic test code generation tool to help the test code generation [68]. Then,
the test code is generated from the model source code by the following rules:

1. The class name is given by the test class name + Test.

2. The method name is given by the test + test method name.

3. The specific values are specified for the arguments in the test code by the teacher.

The test code can more clearly describe the specifications than a description using natural
language. It is expected that the student obtains the information for the class/method
names, the data types, and the argument settings by reading the test code, before writing
the source code. Because the information in the test code comes from the model source code,
the student is able to complete the same qualitative source code as the model code.

7.4.3.5 Informative Test Code Example

The following test code is generated from the source code for the BFS algorithm. It contains
the necessary information to implement a source code for the BFS algorithm, including the
classes, the methods, the important variables and their data type, the exception handling,
and returning values of method.

Listing 7.3: Informative test code for BFS

1 import static org.junit.Assert.∗;
2 import java.io.BufferedReader;
3 import java.io.File;
4 import java.io.FileReader;
5 import java.io.IOException;
6 import java.util.Arrays;
7 import org.junit.Test;
8 public class BFSTest {
9 @Test

10 public void testSimpleGraph() {
11 SimpleGraph G = new SimpleGraph (5);
12 boolean a=G.labels instanceof String [];
13 boolean b=G.edges instanceof boolean [][];
14 assertEquals(true, a);
15 assertEquals(true, b);
16 assertEquals(5,G.labels.length);
17 assertEquals(5,G.edges.length);
18 assertEquals(5,G.edges[0].length);
19 }
20 @Test
21 public void testSetLabel(){

57

22 SimpleGraph G= new SimpleGraph(2);
23 G.setLabel(1, "a");
24 assertEquals("a",G.labels[1]);
25 }
26 @Test
27 public void testGetLabel(){
28 SimpleGraph G = new SimpleGraph (2);
29 G.setLabel(1, "b");
30 String label=(String)G.getLabel(1);
31 assertEquals("b",label);
32 }
33 @Test
34 public void testAddEdge(){
35 SimpleGraph G = new SimpleGraph (3);
36 G.addEdge(1, 2);
37 assertEquals(true,G.edges[1][2]);
38 }
39 @Test
40 public void testNeighbours(){
41 SimpleGraph G = new SimpleGraph(3);
42 int [] expectedNode = {1,2};
43 G.addEdge(0,1);
44 G.addEdge(0,2);
45 assertTrue(Arrays.equals(expectedNode, G.neighbors(0)));
46 }
47 @Test
48 public void testFindBFS1(){
49 SimpleGraph G = new SimpleGraph(4);
50 BFS bfs = new BFS();
51 G.setLabel(0, "a");
52 G.setLabel(1, "b");
53 G.setLabel(2, "c");
54 G.setLabel(3, "e");
55 G.addEdge(0,1);
56 G.addEdge(0,2);
57 G.addEdge(1,3);
58 String Path[]=bfs.findBFS(G, 0);
59 String[] expectedPath = {"a a", "b a", "c a", "e b"};
60 assertTrue(Arrays.equals (expectedPath,Path));
61 }
62 @Test
63 public void testFindBFS2() throws IOException {
64 BFS bfs= new BFS();
65 File testFileName=new File ("./Graph/graphBFS.txt");
66 File OutFileName=new File ("D:/Graph/bfsout.txt");
67 String graph=bfs.readFile(testFileName);
68 String [] path=bfs.findBFS(graph);
69 bfs.writeFile(OutFileName, path);
70 }
71 @Test
72 public void assertReaders() throws IOException {
73 BufferedReader expected= new BufferedReader (new FileReader("./Graph/

expectedbfsout.txt"));
74 BufferedReader actual = new BufferedReader (new FileReader("D:/Graph/

bfsout.txt"));
75 String line;
76 while ((line = expected.readLine()) != null) {
77 assertEquals(line, actual.readLine());
78 }

58

79 assertNull("Actual had more lines than the expected.", actual.readLine());
80 assertNull ("Expected had more lines than the actual.", expected.readLine

());
81 }
82 }

• Lines from 10 to 19 describe the test method for two important variables, labels and
edges, in SimpleGraph class. labels has the String data type and one dimensional array.
edges has the Boolean data type and two dimensional array.

• Lines from 21 to 25 describe the test method for setLabel method in SimpleGraph,
which accepts two arguments with integer and string data types, namely index and
label, and inserts the information to labels.

• Lines from 27 to 32 describe the test method for getLabel method, which accepts one
argument with integer data type and returns the corresponding label from labels.

• Lines from 34 to 38 describe the test method for addEdge method, which accepts
two arguments with integer data types, namely source and target, and inserts the
information to edges.

• Lines from 40 to 46 describe the test method for neighbours method, which accepts one
argument with integer data type, namely index, and returns the integer array which
includes the indexes are neighboring to the input index.

• Lines from 48 to 61 describe the first test method for findBFS method in BFS class,
which accepts two arguments with the Graph object and the integer data type and
returns a string array which includes the labels from labels for the selected indexes
and the previous index from them by BFS. Here, setLabel and addEdge methods in
SimpleGraph class are also described here.

• Lines from 63 to 70 describe the second test method for findBFSmethod, which accepts
one argument of the string data type and returns the string array which includes the
labels from labels for the selected indexes and the previous index from them by BFS.
Here, readFile and writeFile methods in BFS class are also described. readFile method
accepts one argument of File object and returns the string that includes the index and
labels for the graph to be applied to findBFS method. writeFile method accepts two
arguments of the File object and the string data type array, and writes the input string
array, which includes the labels from labels for the selected indexes and the previous
index from them by BFS, to the output file and generate it. This test method throws
IOException whenever an input or output operation is failed or interrupted when the
program is executed.

• Lines from 72 to 81 describe the test method that is used to compare the expected
output data file with the output data file from the source code of the student.

7.4.3.6 Simple Test Code Example

Then, to evaluate the solving performances of students using the informative test codes, we
also prepare the simple test codes for them. The following simple test code for BFS contains

59

only the test methods for readFile method, writeFile method, and findBFS method in BFS
class. This simple test code only tests the input data file reading and output data file writing
functions in the source code, where it does not test the internal functions of the code.

Listing 7.4: Simple test code for BFS

1 import static org.junit.Assert.∗;
2 import java.io.BufferedReader;
3 import java.io.File;
4 import java.io.FileReader;
5 import java.io.IOException;
6 import java.util.Arrays;
7 import org.junit.Test;
8 public class BFSTest {
9 @Test

10 public void testFindBFS() throws IOException {
11 BFS bfs= new BFS();
12 File testFileName=new File ("./Graph/graphBFS.txt");
13 File OutFileName=new File ("D:/Graph/bfsout.txt");
14 String graph=bfs.readFile(testFileName);
15 String [] path= bfs.findBFS(graph);
16 bfs.writeFile(OutFileName, path);
17 }
18 @Test
19 public void assertReaders() throws IOException {
20 BufferedReader expected= new BufferedReader (new FileReader("./Graph/

expectedbfsout.txt"));
21 BufferedReader actual = new BufferedReader (new FileReader("D:/Graph/

bfsout.txt"));
22 String line;
23 while ((line = expected.readLine()) != null) {
24 assertEquals(line, actual.readLine());
25 }
26 assertNull("Actual had more lines than the expected.", actual.readLine());
27 assertNull ("Expected had more lines than the actual.", expected.readLine

());
28 }
29 }

7.5 Informative Test Code for Three Fundamental Con-

cepts

In this section, we study the informative test code for three fundamental concepts.

7.5.1 Overview of Three Fundamental Concepts

OOP is a methodology or paradigm to design a program using classes and objects, and
simplifies the software development and maintenance by providing some concepts such as
encapsulation, inheritance and polymorphism. They are hard concepts for novice students
to understand how to use them.

60

7.5.1.1 Encapsulation

Encapsulation is the mechanism of wrapping data (variables) and the code parts acting on the
data (methods) together as a single unit [69]. By encapsulation, the variables of a class are
hidden from the other classes, and can be accessed only through the methods implemented
in the class. It is also known as the data hiding. Encapsulation can be realized as follows in
Java:

1) to declare the variables in the class as private, and

2) to provide the public setter and getter methods to modify and view the values of them.

The following code shows the example of the encapsulation, where the variable name in
class Student is encapsulated and can be accessed using getName and setName methods:

Listing 7.5: Example source code for Encapsulation

1 public class Student {
2 private String name;
3 public String getName() {
4 return name;
5 }
6 public void setName(String name) {
7 this.name = name;
8 }
9 }

7.5.1.2 Inheritance

Inheritance is the mechanism where the object for the child class or subclass acquires all the
properties and behaviors of the object for its parent class or superclass. It represents the
IS-A relationship, also known as the parent-child relationship. By adopting inheritance, the
code can be made in the hierarchical order [70].

The following code shows the example of the inheritance, where class B inherits class A
that defines the variable salary:

Listing 7.6: Example source code for Inheritance

1 class A {
2 float salary=40000;
3 }
4 class B extends A {
5 int bonous=100000;
6 public static void main (String args[]){
7 B b=new B();
8 System.out.println(b.salary);
9 System.out.println(b.bonous);

10 }
11 }

7.5.1.3 Polymorphism

Polymophism is the ability of an object to take on many forms. The most common use of
polymophism occurs when the parent class reference is used to refer to the child class [71].

61

Two types, method overloading and method overwriting, exist for polymophism. In method
overloading, a class has multiple methods have same name but different in parameters. In
method overwriting, the subclass has the same method as declared in the parent class and it
is used for run time.

The following code shows the example of polymorphism, where makeNoise method is
first defined in class Animal, and is redefined in class Dog in the two ways depending on the
argument:

Listing 7.7: Example source code for Polymorphism

1 public class Animal {
2 public void makeNoise(){
3 System.out.println("Some sound");
4 }
5 }
6 class Dog extends Animal{
7 public void makeNoise(){
8 System.out.println("Bark");
9 }

10 public void makeNoise(int x){
11 for (int i=0; i<x; i++)
12 System.out.println("Bark");
13 }
14 }

7.5.2 Example Informative Test Code Generation for Three Con-
cepts

For the generation of the informative test code for the three concepts, the source codes for
Queue and Stack are adopted.

7.5.2.1 Source Code for Queue

Queue is an abstract data structure following First-In-First-Out. Queue is open at both its
ends, where one end is always used to insert a new data (enqueue) and the other is used to
remove an existing data (dequeue) [72].

The following source code implements Queue data structure using encapsulation. The
three important variables, content, tail, and head, are declared as private and are hidden from
the other class. content stores the string and integer values. tail and head store the first
and last index number of the stored values in content. They can be accessed only through
three methods in the class, push, pop, and empty, declared as public. empty method checks
the index number of content. push inserts the integer and string values into the bottom
of content, pop retrieves the integer and string values from the bottom of content. empty
returns true if content is empty.

Listing 7.8: Source code for Queue

1 class Que{
2 private Object content[]=new Object[1000];
3 private int tail=0;
4 private int head=0;
5 public boolean empty() {
6 return (tail==head)?true:false;

62

7 }
8 public void push(Object num) {
9 content [tail++]=num;

10 }
11 public Object pop() {
12 return content [head++];
13 }
14 }

7.5.2.2 Informative Test Code for Queue

Then, the following informative test code is generated from the source code for Queue. test1
method first tests the names, the access modifiers, the data types of the three important
variables, content, tail, and head. The access modifiers of content, tail and head must be
private. The data types of content, tail, and head must be Object, int, and int respectively.

Then, it tests the names, the access modifiers, the returning data types of three important
methods, push, pop, and empty. The access modifiers of them must be public. The returning
data types of push, pop, and empty must be void, Object, and Boolean respectively.

test2 method tests the behaviors of push, empty, and pop. push stores the integer or
string argument in content as the setter method where no value is returned. empty and pop
do not accept the argument as the getter method. empty returns a boolean value, and pop
returns an integer or string value in content.

Listing 7.9: Informative test code for Queue

1 import static org.junit.Assert.∗;
2 import java.lang.reflect.Field;
3 import java.lang.reflect.Method;
4 import java.lang.reflect.Modifier;
5 import org.junit.Test;
6 public class QueTest {
7 @Test
8 public void test1() throws NoSuchFieldException, SecurityException,

NoSuchMethodException{
9 //Field

10 Field f1=Que.class.getDeclaredField("content");
11 Field f2=Que.class.getDeclaredField("tail");
12 Field f3=Que.class.getDeclaredField("head");
13 //check Modifier
14 assertEquals(f1.getModifiers(), Modifier.PRIVATE);
15 assertEquals(f2.getModifiers(), Modifier.PRIVATE);
16 assertEquals(f3.getModifiers(), Modifier.PRIVATE);
17 //data type for each variable
18 assertEquals(f1.getType(),Object[].class);
19 assertEquals(f2.getType(),int.class);
20 assertEquals(f3.getType(),int.class);
21 //Method
22 Method m1=Que.class.getDeclaredMethod("empty", null);
23 Method m2=Que.class.getDeclaredMethod("push", Object.class);
24 Method m3=Que.class.getMethod("pop", null);
25 //check Modifier
26 assertEquals(m1.getModifiers(), Modifier.PUBLIC);
27 assertEquals(m2.getModifiers(), Modifier.PUBLIC);
28 assertEquals(m3.getModifiers(), Modifier.PUBLIC);
29 //data type for each Method
30 assertEquals(m1.getReturnType(),boolean.class);

63

31 assertEquals(m2.getReturnType(),void.class);
32 assertEquals(m3.getReturnType(),Object.class);
33 }
34 @Test
35 public void test2() {
36 Que q = new Que();
37 q.push(1);
38 q.push("a");
39 if (!q.empty()) {
40 assertEquals(1, q.pop());
41 assertEquals("a", q.pop());
42 }
43 }
44 }

7.5.2.3 Source Code for Stack

Stack is a basic data structure following Last-In-First-Out. Stack allows the operations at
one end only, where the insertion and deletion of data take places at one end called the top
of the stack [73].

The following source code implements Stack data structure using inheritance and poly-
morphism. Stack class inherits the three important variables, content, tail, and head, and two
methods, empty and push, from Que class. To inherit those variables from Que where they
are declared as private, the access modifier must be changed to protected. Then, pop method
is overwritten in Stack from that in Que, to retrieve the data at the top of the content.

Listing 7.10: Source code for Stack

1 class Stack extends Que{
2 public Object pop() {
3 return content [−−tail];
4 }
5 }

7.5.2.4 Informative Test Code for Stack

Then, the following informative test code is generated from the source code for Stack. test1
method tests the name, the access modifier, the returning data type of pop method. The
access modifier must be public and the returning data type must be Object.

test2 method tests the behaviors of empty, push, and pop. empty and push are tested by
calling them from Que, and pop is tested by calling it from Stack. push stores the integer or
string argument in content and returns no value. empty and pop do not accept the argument.
empty returns a boolean value and push returns an integer or string value in content.

Listing 7.11: Informative test code for Stack

1 import static org.junit.Assert.∗;
2 import java.lang.reflect.Field;
3 import java.lang.reflect.Method;
4 import java.lang.reflect.Modifier;
5 import org.junit.Test;
6 public class StackTest {
7 @Test

64

8 public void test1() throws NoSuchFieldException, SecurityException,
NoSuchMethodException {

9 //Method
10 Method m1=Stack.class.getMethod("pop", null);
11 //check Modifier
12 assertEquals(m1.getModifiers(), Modifier.PUBLIC);
13 //data type for each Method
14 assertEquals(m1.getReturnType(), Object.class);
15 }
16 @Test
17 public void test2() {
18 Stack q = new Stack();
19 //inherit from Queue
20 q.push(1);
21 q.push("a");
22 if (!q.empty()) {
23 assertEquals("a", q.pop());
24 assertEquals(1, q.pop());
25 }
26 }
27 }

7.6 Evaluations

In this section, we evaluate the informative test code approach for the code writing problem
in JPLAS.

7.6.1 Evaluation for Five Graph Algorithms

First, we evaluate the informative test code approach for five well-known five graph algo-
rithms, BFS, DFS, Prim, Dijkstra, and Kruskal.

7.6.1.1 Code Completion Results

In this evaluation, first, we asked the seven students to write the source code for BFS using
the simple test code, where it was found that only one student could complete it within one
week. After that, we gave them the informative test code to do the same thing. Then, all of
them could complete it. The students tested source codes by using the given test code on
JUnit from Eclipse.

After every student completed the source code for BFS using the informative test code,
we selected three students who solved it in the shortest time. Then, we asked them to
write the source codes for DFS, Prim, Dijkstra, and Kruskal algorithms using the simple test
codes, where all of them could complete them. This time, they did not need informative
test codes, because they have known how to design and implement the codes for the similar
graph algorithms from their experiences in BFS.

7.6.1.2 Metric Results for BFS

The seven software metrics in Section 7.3.3 were measured for these completed source codes
of the students using Eclipse Metrics Plugin. Table 7.1 shows the measured metric results of

65

Table 7.1: Comparison of metric values for BFS algorithm using proposal

Metrics S1 S1 S2 S3 S4 S5 S6 S7
(simple)

1 NOC 1 2 2 3 2 5 2 2
2 NOM 7 11 10 11 11 19 9 9
3 V G 18 4 5 4 5 2 7 6
4 NBD 3 4 4 4 3 2 4 4
5 LCOM 0.9 0.37 0.5 0.5 0.375 0.7 0.5 0.5
6 TLC 142 120 143 137 144 157 114 121
7 MLC 102 87 104 93 102 88 81 88

the eight source codes for BFS by them. In this table, the student S1 completed the source
codes both with the simple and informative test codes.

Actually, the student S1 has studied the Java programing only for three months in our
group, where the other students have studied it for at least one year. S1 has never made
similar graph theory programs that require multiple classes/methods. In this experiment, S1
spent one week to complete this programming task. The skill of S1 is supposed to be lower
than the others. Thus, the source code by S1 using the simple test code uses only one class
where the procedures of the graph data handling and the search algorithm are implemented
together.

When the metric values are compared between the two source codes of S1, V G, LCOM ,
TLC, and MLC are much worse for the simple test code than those for the informative one,
as shown in Table 7.1. Particularly, the metric value for V G becomes very large. It means
that this source code is very complex and becomes hard to be modified or extended.

Besides, the metric value for LCOM was close to 1 in Table 7.1, because the member
variables (public attributes) and methods in the class were used without being shared with
other classes. This class should be split into two or more classes. On the other hand, the
seven source codes using the informative test codes have good metrics where V G is 2-7,
and LCOM is 0.3-0.7. It has been known that the desired V G should be less than 20, and
LCOM should not be close to 1 [66]. Thus, these source codes can be recognized as highly
qualitative codes.

7.6.1.3 Metric Results for Four Graph Algorithms

Table 7.2 shows the measured metric results of the 12 source codes for the remaining four
algorithms by three students. In DFS, every code has good metrics where V G is 2-4 and
LCOM is 0-0.7 respectively. It is noted that DFS is the most similar to BFS among them.

However, in the remaining algorithms, V G for S3 is always larger than that for other
students, and LCOM by S3 is always zero. The reason is that S3 implements the source
codes using only one class, which results in no cohesion between classes and becomes complex
and hard to be modified. In this case, it is necessary to redesign the code with multiple classes
by using the design-aware test code.

In each algorithm, V G for S5 is always smaller than that for S3 and S4, whereas LCOM
for S5 is larger than that for S3 and S4. From NOC and NOM , S5 uses more classes such

66

Table 7.2: Metric values for four algorithms without using proposal

Metrics DFS Prim Dijkstra Kruskal
S3 S4 S5 S3 S4 S5 S3 S4 S5 S3 S4 S5

NOC 2 2 6 1 4 8 1 4 6 1 3 7
NOM 5 9 23 3 15 35 3 14 23 3 8 29
V G 3 4 2 15 6 2 11 10 3 20 9 2
NBD 3 3 2 5 4 2 4 5 3 6 4 2
LCOM 0 0.5 0.7 0 0.5 0.7 0 0.33 0.7 0 0.5 0.7
TLC 74 124 189 108 205 299 107 195 203 123 141 250
MLC 49 58 109 93 114 190 91 109 121 105 64 154

as the node class, the edge class, their subclasses, and the encapsulated class for Encapsula-
tion, and more methods than other students. As a result, the cohesion between classes are
necessary.

Encapsulation is a technique to protect the important attributes from any unauthorized
access. These attributes can be hidden from the other classes, and can be accessed through
the public methods defined in the class containing them. In Encapsulation, the important
attribute or data member to be protected is defined as private so that it can only be accessed
within the same class. No outside class can access to this private data member. Then, the
public getter and setter methods are defined in the class so that it can be read or updated
from the outside class.

7.6.2 Evaluation for Three OOP Concepts

Then, we evaluate the effectiveness of the informative test code approach for the code writing
problem to study the three fundamental concepts of the object-oriented programming.

In this evaluation, first, we asked students to write source codes using encapsulation,
inheritance, and polymorphism for Queue and Stack with the informative test codes. It was
found that all of them could complete them. Then, the seven metrics in Section 7.3.3 were
measured for these complete codes using Eclipse Metrics Plugin. The metrics are compared
between the source codes by S1, S2, and the textbook. Table 7.3 shows the metric results
of the three source codes for each assignment.

In Queue, any source code is implemented using one class and has good metrics. V G is
1-3, NBD is 1-2, and LCOM is 0.5 except S2. It is noted that desired V G is less than 20,
NBD is less than or equal to 5, and LCOM should not be close to 1 [66]. However, LCOM
by S2 is 1 because the important variables for Queue are declared by using different names
from the ones specified in the test code. To pass the test code, the specified variables are
declared only and not used in the code. Our current test code cannot detect it because of
the private access modifier. Thus, we need to improve the informative test code to avoid
it, which will be in future studies. TLC and MLC by S1 are the larger than the others,
because S1 implements the source code using more methods than the expected in the test
code.

In Stack, any source code is also implemented using one class, and has good metrics
where V G is 1-2, NBD is 1-2, and LCOM is 0. Unfortunately, although the code by S2
does not inherit the variables and methods from Que, it can pass the test code assuming the

67

Table 7.3: Metric values of source codes

Metrics Queue Stack
textbook S1 S2 textbook S1 S2

NOC 1 1 1 1 1 1
NOM 3 9 3 1 1 3
V G 2 3 1 1 2 1
NBD 1 2 1 1 2 1
LCOM 0.5 0.5 1 0 0 0
TLC 14 53 18 5 15 14
MLC 3 25 3 1 10 3

inheritance and polymorphism. Thus, we need to improve the test code to avoid it, which
will also be in future studies.

7.7 Summary

In this chapter, we presented the informative test code approach for the code writing prob-
lem in JPLAS. The effectiveness of this approach was evaluated by generating informative
test codes for graph algorithms and three concepts and applying them to students in our
group. The future studies include the improvement of the informative test code to avoid
the drawbacks found in the evaluations, the generations of informative test codes for other
programming assignments, and their applications to students in Java programming courses.

68

Chapter 8

Conclusions

In this thesis, we presented the five advancements of the exercise problems for Java program-
ming learning assistant system (JPLAS).

Firstly, we presented the three extensions of the blank element selection algorithm for the
element fill-in-blank problem in JPLAS. We evaluated the effectiveness of these extensions
through applications of the generated problems by this extended algorithm with various Java
codes to students.

Secondly, we presented the core element fill-in-blank problem in JPLAS for enhancing
code reading studies by novice students. We evaluated the effectiveness through applications
to students of the problems using four Java codes for the graph theory or fundamental
algorithms.

Thirdly, we presented the value trace problem as the new type of the fill-in-blank problem
in JPLAS for studying algorithm Java code reading by students. We evaluated the effective-
ness through applications to students of the problems using Java source codes for sorting
and graph theory algorithms.

Fourthly, we presented the workbook design for the three fill-in-blank problems in JPLAS
by collecting various Java source codes from Java programming textbooks and Web sites. We
evaluated the effectiveness of this workbook design through applications of some problems
in the generated workbook to novice students.

Finally, we presented the informative test code approach for the code writing problem
in JPLAS for studying code writing in harder assignments. We evaluated the effectiveness
through applications to students of the problems for the graph algorithms and the three
fundamental concepts for the object-oriented programming.

In future studies, we will further improve the blank element selection algorithm, improve
the program dependence graph (PDG) generation method, generate the different element
fill-in-blank problems using these algorithms for a workbook, improve the user interface for
displaying the problem code, improve the informative test code to avoid the drawbacks,
prepare test codes for other problems, and assign the generated problems to students in
Java programming courses.

69

Bibliography

[1] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao,“ A graph-based blank
element selection algorithm for fill-in-blank problems in Java programming learning
assistant system,” IAENG Int. J. Computer Science, vol. 44, no. 2, pp. 247-260, May
2017.

[2] Tana, N. Funabiki, and N. Ishihara,“A proposal of graph-based blank element selection
algorithm for Java programming learning with fill-in-blank problem, Proc. IMECS2015,”
pp. 448-453, March 2015.

[3] Tana, N. Funabiki, and N. Ishihara,“ Practices of fill-in-blank problems in Java pro-
gramming course,”Proc. ICCE-TW 2015, pp. 120-121, June 2015.

[4] JFlex, http://jflex.de/.

[5] jay, http://www.cs.rit.edu/~ats/projects/lp/doc/jay/package-summary.

[6] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano,“A Java programming learn-
ing assistant system using test-driven development method,”IAENG Int. J. Computer
Science, vol. 40, no. 1, pp. 38-46, February 2013.

[7] K. Beck, Test-driven development: by example, Addison-Wesley, 2002.

[8] JUnit, http://www.junit.org/.

[9] N. Funabiki, S. Sasaki, Tana, and W.-C. Kao,“ An operator fill-in-blank problem for
algorithm understanding in Java programming learning assistant system,”Proc. GCCE
2015, pp. 346-347, October 2015.

[10] T. Ogawa, N. Funabiki, T. Nakanishi, N. Ishihara, Tana, and N. Amano,“A difficulty
estimation method of fill-in-blank problems for Java programming learning assistant
system,”IEICE Tech. Report, ET2013-99, pp. 41-46, March 2013.

[11] N. Funabiki, Tana, N. Ishihara, and W.-C. Kao,“ Analysis of fill-in-blank problem
solution results in Java programming course,”Proc. GCCE 2016, pp. 479-481, October
2016.

[12] Java program samples, http://www7a.biglobe.ne.jp/~java-master/samples/.

[13] Shell Sort, http://www.thelearningpoint.net/computer-science/arrays-and-sorting-
shell-sort-with-c-program-source-code.

70

[14] Sorting, http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/ LN250 Weiss/L12-
ShellSort.htm.

[15] S. K. Chang,“Data Structures and Algorithms,”World Scientific Pub., USA, October
2003.

[16] Dijkstra Algorithm, http://www.ifp.illinois.edu/~angelia/ge330fall09_

dijkstra_l18.pdf.

[17] Prim Java, http://cs.fit.edu/~ryan/java/programs/graph/Prim-java.html.

[18] Graph Java, http://www.sanfoundry.com/java-program.

[19] Breadth First Search, https://en.wikipedia.org/wiki/Breadth-first_search.

[20] Depth First Search, https://en.wikipedia.org/wiki/Depth-first_search.

[21] Security, http://www.morikita.co.jp/books/book/2214.

[22] K. K. Zaw, N. Funabiki, and M. Kuribayashi,“ Extensions of blank element selec-
tion algorithm for Java programming learning assistant system,”IEICE Tech. Report,
ET2016-15, pp. 41-46, June 2016.

[23] K. K. Zaw, N. Funabiki, and M. Kuribayashi,“A proposal of three extensions in blank
element selection algorithm for Java programming learning assistant system,”Proc.
GCCE 2016, pp. 3-6, October 2016.

[24] N. Ishihara, N. Funabiki, and W.-C. Kao,“A proposal of statement fill-in-blank prob-
lem using program dependence graph in Java programming learning assistant system,”
Inform. Eng. Express, vol. 1, no. 3, pp. 19-28, September 2015.

[25] J. Ferrante, K. J. Ottenstein, and J. D. Warren,“The program dependence graph and
its use in optimization,”ACM Trans. Program. Lang. Syst., vol. 9, no. 3, July 1987.

[26] Graph Java, http://www.sanfoundry.com/java-program.

[27] Fundamental Java, http://www.sbcr.jp/books.

[28] K. K. Zaw and N. Funabiki,“A core blank element selection algorithm for code reading
studies by fill-in-blank problems in Java programming learning assistant system”, Proc.
7th Int. Conf. Science and Eng., pp. 204-208, December 2016.

[29] N. Funabiki, Y. Fukuyama, Y. Matsushima, and T. Nakanishi,“ An extension of fill-
in-the-blank problem function in Java programming learning assistant system,”Proc.
Humanitarian Tech. Conf. (HTC 2013), pp. 95-100, August 2013.

[30] Tana, N. Funabiki, T. Nakanishi, and N. Amano,“An improvement of graph-based fill-
in-blank problem generation algorithm in Java programming learning assistant system,”
2013 Int. Work. ICT Beppu, December 2013.

[31] Sorting, http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/LN250_

Weiss/L12-ShellSort.htm.

71

[32] Data Structures Tutorials, http://cs-fundamentals.com/data-structures/

data-structures-tutorials.php.

[33] B. Smulders,“Annotate Code, introducing a system for code-stepping based visualiza-
tion,”Master Thesis, Leiden Univ., August 2014.

[34] M. Quinson and G. Oster,“A teaching system to learn programming: the programmer’
s learning machine,”Proc. ITiCSE ’15, July 2015.

[35] E. R. Sykes and F. Franek,“ An intelligent tutoring system prototype for learning to
program Java,”Proc. Int. Conf. Adv. Learn. Tech., 2003.

[36] W. I. Osman and M. M. Elmusharaf,“Effectiveness of combining algorithm and program
animation: a case study with data structures courses,”Issue. Inform. Sci. Inform. Tech.,
vol. 11, 2014, pp. 155-168.

[37] Insertion, http://interactivepython.org/courselib/static/pythonds/

SortSearch/TheInsertionSort.html.

[38] InsertionSort, http://mycodinglab.com/insertion-sort-algorithm/.

[39] Java code, http://www.journaldev.com/585/insertion-sort-in-java-algorithm-
and-code-with-example.

[40] Algorithm, http://people.cis.ksu.edu/~tamtoft/CIS775/F08/Slides/01.pdf.

[41] JavaMain, http://csis.pace.edu/~bergin/KarelJava2ed/ch2/javamain.html.

[42] Dijkstra Java, http://cs.fit.edu/~ryan/java/programs/graph/Dijkstra-java.

html.

[43] Quicksort, http://www.algolist.net/Algorithms/Sorting/Quicksort.

[44] K. K. Zaw and N. Funabiki,“ A concept of value trace problem for Java code reading
education,”Proc. Int. Cong. Adv. Appl. Inform., pp. 253-258, July 2015.

[45] K. K. Zaw, N. Funabiki, and W.-C. Kao,“ A proposal of value trace problem for
algorithm code reading in Java programming learning assistant system,” Inf. Eng.
Express, pp. 9-18 , September 2015.

[46] K. K. Zaw and N. Funabiki,“A blank line selection algorithm for value trace problem
in Java programming learning assistant system,” IEICE Society Conf., BS-6-2, pp.
S19-S20, September 2015.

[47] H. Yuki, Java programming lesson, Softbank Creative, 2012, http://www.hyuki.com/
jb/#download.

[48] M. Takahashi, Easy Java, Softbank Creative, 2013, http://homepage3.nifty.com/

~mana/yasaj.html.

[49] Y. Kondo, Algorithm and data structure for Java programmers, Softbank Creative,
2011.

72

[50] ITSenka, http://torialspoint.com/java/index.htm.

[51] tutorialspoint, http://www.tutorialpoint.com/java/index.htm

[52] L. Sinapova, Lecture Notes, http://faculty.simpson.edu/lydia.sinapova/www/

cmsc250/LN250Weiss/Contents.htm..

[53] K. K. Zaw, N. Funabiki and M. Kuribayash,“ Element fill-in-blank problems in Java
programming learning assistant system,”IEICE General Conf., BS-1-21, pp. S40-S41,
March 2017.

[54] N. Funabiki, M. Dake, K. K. Zaw, W.-C. Kao,“ A workbook design for fill-in-blank
problems in Java programming learning assistant system,” Proc. Int. Conf. Broad.
Wireless Comput., Commun. Appl. (BWCCA2016), pp. 331-342, November 2016.

[55] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao,“ A proposal of software
architecture for Java programming learning assistant system,”Proc. AINA-2017, pp.
64-70, March 2017.

[56] N. Yamamoto,“An improved group discussion system for active learning using smart-
phone and its experimental evaluation,”Int. J. Space-Base. Situated Comput., vol. 6,
no. 4, pp. 221-227, 2016.

[57] T. Xue, S. Ying, Q. Wu, X. Jia, X. Hu, X. Zhai, and T. Zhang,“Verifying integrity of
exception handling in service-oriented software,”Int. J. Grid. Utility Comput., vol. 8,
pp. 17-21, 2017.

[58] E. Zhou, Z. Niibori, S. Okamoto, M. Kamada, and T. Yonekura,“ IslayTouch: an
educational visual programming environment for tablet devices”, Int. J. Space-Based
and Situated Computing, vol. 6, no. 3, pp. 183-197, 2016.

[59] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang,“Mining API usage examples
from test code,”Proc. IEEE Int. Conf. Soft. Mainte. Evo., pp. 301-310, 2014.

[60] C. Kolassa, M. Look, K. Müller, A. Roth, D. Rei, and B. Rumpe,“TUnit unit testing
for template-based code generators,”Proc. Modellierung Conf., pp. 221-236, 2016.

[61] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, S. Völkel,“MontiCore: A framework
for the development of textual domain specific languages,”Proc. Int. Conf. Soft. Eng.
(ICSE), 2008.

[62] H. Krahn, B. Rumpe, S. Völkel,“MontiCore: modular development of textual domain
specific languages,”Proc. Int. Conf. Model. Tech. Tool. Comp. Perform. Evaluation,
pp. 297-315, 2008.

[63] H. Krahn, B. Rumpe, S. Völkel,“MontiCore: a framework for compositional develop-
ment of domain specific languages,”Int. J. Software Tool. Tech. Transfer, vol. 12, no.
5, pp. 353-372, September 2010.

[64] Y. Higo, A. Saitoh, G. Yamada, T. Miyake, S. Kusumoto, and K. Inoue,“A pluggable
tool for measuring software metrics from source code,”Proc. IWSM-MENSURA, pp.
2-12, 2011.

73

[65] T. G. S. Fil and M. A. S. Bigonha,“ A catalogue of thresholds for object-oriented
software metrics,”Proc. SOFTENG, pp. 48-55, 2015.

[66] Metric Plugin, http://metrics.sourceforge.net.

[67] BFS, http://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph.

[68] JUnit-Tools, http://junit-tools.org/index.php/getting-started.

[69] Encapsulation, https://www.tutorialspoint.com//java_encapsulation.htm

[70] Inheritance, https://www.javatpoint.com/inheritance-in-java

[71] Polymorphismm, https://www.javatpoint.com/runtime-polymorphism-in-java

[72] Queue, https://www.tutorialspoint.com/data_structures_algorithms/dsa_

queue.htm

[73] Stack, https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues

[74] KMP and KnapSack Algorithms, http://www.sbcr.jp/books/

[75] K. K. Zaw and N. Funabiki,“ A desing-aware test code approach for code writing
problem in Java programming learning assistant system”, Int. J. Spaced-Based and
Situated Computing, vol. 7, no. 3 pp. 145-154, September 2017.

[76] K. K. Zaw, and N. Funabiki,“ An informative test code approach for code writing
problem in Java programming learning assistant system,” IEICE Tech. Report, SS-
2017-10, pp. 31-36, October 2017.

74

