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Preface

In the 1960s, Grothendieck introduced the notion of local cohomology from
the viewpoint of geometry. It has brought great benefits to commutative
algebra, and has been an essential tool in such a field. Moreover, in the
1990s, Greenlees and May proved that the left derived functor of an ideal-
adic completion functor is a right adjoint to a local cohomology functor. The
left derived functor is called the local homology functor. In this thesis, we
consider local (co)homology in terms of Bousfield (co)localization.

Bousfield localization, which is a natural generalization of classical lo-
calizations of commutative rings, appeared in the study of stable homotopy
categories by Bousfield in the 1970s. We may simply explain a (Bousfield)
localization functor on a triangulated category as follows; an idempotent tri-
angulated functor endowed with some appropriate morphism from the iden-
tity functor. However, we need Brown representation theorem, to construct
localization functors generally. Hence it is difficult to known concrete forms
of them, except for special cases.

A key of this thesis is the classification of localizing subcategories of the
derived category of a commutative Noetherian ring; it was given by Neeman
in the 1990s. By this result, we can associate localization and colocalization
functors with subsets of the spectrum of the ring, using the notion of support
and cosupport. If a localization functor has a closed cosupport, then it
coincides with a local homology functor. Moreover, if a colocalization functor
has a closed support, then it coincides with a local cohomology functor.
In this thesis, motivated by these facts, we establish various results about
localization (resp. colocalization) functors with cosupport (resp. support) in
general subsets of the spectrum.

The organization of this thesis is as follows; it consists of four chapters.

In Chapter 1, we study colocalization functors. We first prove that if
a colocalization has a 0-dimensional support , then the colocalization is a
direct sum of composition of known functors. This fact gives a new class
of colocalization functors which are right derived functors of additive func-
tors on the category of modules. After that, we give a method to compute
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any colocalization functor inductively with respect to the dimension of its
support. Finally we extend local duality theorem and Grothendieck type
vanishing theorem of local cohomology to colocalization functors.

In Chapter 2, we establish several results about localization functors. As
with the case of colocalization, we first prove that if a localization has a
0-dimensional cosupport, then the localization is a direct product of com-
position of known functors. Next, we generalize Mayer-Vietoris triangles of
local (co)homology to (co)localization functors. Using such triangles, we ob-
tain a simpler proof of a classical theorem by Gruson and Raynaud. The
theorem states that the projective dimension of a flat module is at most
the Krull dimension of the base ring. Moreover, we give an explicit way to
compute localization functors via Cech complexes. As a result, it is possible
to describe all localization functors concretely. In addition, this way yields
a functorial method to construct pure-injective resolutions for complexes of
flat modules and complexes of finitely generated modules.

In Chapter 3, we treat some problem about cosupport. We prove that a
polynomial ring over a field has full-cosupport, that is, the cosupport of the
ring is equal to its spectrum. This fact was expected by several researchers
from a few years ago, but was not known, except for the case that variables
are less than three, or the base field is countable. As a corollary, it follows
that every affine ring over a field has full-cosupport. Using this result, we
give a complete description of a minimal pure-injective resolution of an affine
ring, provided the cardinality of the base field is ¥;. Furthermore, we give a
partial answer to a conjecture by Gruson.

In Chapter 4, we treat generalized local cohomology, which was intro-
duced by Herzog in the 1970s. We extend some result by Saremi and Mafi
(2013), and simplify their proof. Although this generalization of local coho-
mology is different from the one we consider in Chapter 1, we also observe
there is some connection between generalized local cohomology and colocal-
ization.

Acknowledgements. 1 would like to express my deep gratitude to my
supervisor Yuji Yoshino for his elaborated guidance. My research experience
under him was precious and invaluable. In addition, I would like to thank
Ken-ichiroh Kawasaki. He was my kind mentor when I was a graduate stu-
dent at Nara University of Education. I am also grateful to Srikanth Iyengar
for his helpful comments and suggestions.
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1. Local duality principle in derived
categories

1.1 Introduction

This chapter is based on the author’s paper [33] with Yuji Yoshino. Let
R be a commutative Noetherian ring. We denote by D = D(Mod R) the
derived category of complexes of R-modules, by which we mean that D is
the unbounded derived category. Neeman [36] proved that there is a nat-
ural one-one correspondence between the set of subsets of Spec R and the
set of localizing subcategories of D. We denote by Ly the localizing sub-
category corresponding to a subset W of Spec R. The localization theory of
triangulated categories [27] yields a right adjoint vy to the inclusion functor
Ly < D, and such an adjoint is unique. This functor vy : D — Ly (— D)
is our main target of this chapter, and we call it the colocalization functor
with support in W.

If V is a specialization-closed subset of Spec R, then 7y, is nothing but the
right derived functor RI'y of the section functor I'y, with support in V', whose
ith right derived functor Hi,(—) = H'(RI'y(—)) is known as the ith local
cohomology functor. For a general subset W of Spec R, the colocalization
functor ~y is not necessarily a right derived functor of an additive functor
defined on the category Mod R of R-modules.

In this chapter, we establish several results concerning the colocalization
functor vy, where W is an arbitrary subset of Spec R. Notable are extensions
of the local duality theorem and Grothendieck type vanishing theorem of local
cohomology. The local duality can be viewed as an isomorphism

RI'y RHompg(X,Y) = RHomp(X, Ry Y),

where V' is a specialization-closed subset of Spec R, X € Dy, and YV € Dt
see [16, Proposition 6.1]. The following theorem generalizes this isomorphism
to the case of colocalization functors vy .



Theorem 1.1.1 (Theorem 1.4.1). Let W be a subset of Spec R and let X,Y €
D. We denote by dim W the supremum of the lengths of chains of prime
tdeals in W. Suppose that one of the following conditions holds:

(1) X €D, Y € D" and dim W is finite;

fg

(2) X € Dy, Y is a bounded complex of injective R-modules and dim W is
finite;

(3) W is generalization-closed.

Then there exists a natural isomorphism

~yw RHompg(X,Y) = RHomg(X, ywY).

We shall call Theorem 1.1.1 the Local Duality Principle, which naturally
implies the following corollary.

Corollary 1.1.2 (Corollary 1.4.5). Assume that R admits a dualizing com-
plex Dgr. Let W be an arbitrary subset of Spec R and X € Dg,. We write
XT=RHomg(X, Dg). Then we have a natural isomorphism

Yw X = RHomz(X', ywDg).

The local duality theorem states the validity of this isomorphism in the
case that W is specialization-closed, see [22, Chapter V; Theorem 6.2] and
[16, Corollary 6.2].

As an application of the Local Duality Principle, we can prove the van-
ishing theorem of Grothendieck type for the colocalization functor vy with
support in an arbitrary subset W. Let a be an ideal of R and X € D.
The a-depth of X, which we denote by depth(a, X), is the infimum of the
set { i € Z | Exty(R/a, X) # 0 }. More generally, for a specialization-closed
subset W, the W-depth of X, which we denote by depth(W, X), is de-
fined as the infimum of the set of values depth(a, X') for all ideals a with
V(a) € W. When X € Dy, we denote by dim X the supremum of the set
{dim H(X)+i|ie€Z}.

For a finitely generated R-module M, the Grothendieck vanishing theo-
rem says that the ith local cohomology module H{, (M) = H*(RT'yw M) of
M with support in W is zero for i < depth(W, M) and ¢ > dim M.

We are able to generalize this theorem to the following result in §6.

Theorem 1.1.3 (Theorem 1.6.5). Assume that R admits a dualizing com-
plex. Let W be an arbitrary subset of Spec R with the specialization closure
W’. If X € Dy, then H (ywX) = 0 unless depth(W", X) < i < dim X.

2



In §3, we give an explicit description of vy for subsets W of certain special
type, see Theorem 1.3.12. For example, if W is a one-point set {p}, then
it is proved the colocalization functor 7y,; equals RI'y(,) RHompg(R,, —), see
Corollary 1.3.3. This is one of the rare cases that we know the explicit form
of yw, while for a general subset W we give in Theorem 4.2.4 the way how
we calculate vy by the induction on dim W.

In §4, we give a complete proof of the Local Duality Principle (Theorem
1.1.1).

The subsequent section §5 is devoted to the relationship between ~y, and
left derived functors of completion functors. In particular, we see that there
is a subset W such that H'(yyI) # 0 for an injective module I and some
t < 0. This observation shows that vy is not a right derived functor of an
additive functor defined on Mod R in general.

In the last section §6, we present a precise and complete proof for Theorem
1.1.3 above.

1.2 Colocalization functors

In this section, we summarize some notions and basic facts used later in this
chapter. As in the introduction, R denotes a commutative Noetherian ring
and we work in the derived category D = D(Mod R). Note that complexes
X are cohomologically indexed;

X=(—=X"To3 X 5 X" ...

We denote by Dt (resp. D7) the full subcategory of D consisting of
complexes X such that H(X) = 0 for i < 0 (resp. i > 0). We write Dy,
for the full subcategory of D consisting of complexes with finitely generated
cohomology modules. Furthermore we write Dy, = D™ N D.

For a complex X in D, the (small) support of X is a subset of Spec R
defined as

supp X = { p € Spec R ‘ X% r(p) £0 },

where k(p) = R,/pRy. It is well-known that for X € D, supp X # 0 if and
only if X # 0, see [16, Lemma 2.6] or [36, Lemma 2.12]. In order to compare
with the ordinary support, recall that the (big) support Supp X is the set of
primes p of R satisfying X, # 0 in D. In general, we have supp X C Supp X
and equality holds if X € Dy, see [16, p. 158].

A full subcategory L of D is said to be localizing if £ is triangulated and
closed under arbitrary direct sums. If we are given a subset W of Spec R,
then, since the tensor product commutes with taking direct sums, it is easy to



see that the full subcategory Ly = { X € D | supp X C W } is localizing. A
theorem of Neeman [36, Theorem 2.8] ensures that any localizing subcategory
of D is obtained in this way from a subset W of Spec R.

If A is a set of objects in D, then Loc A denotes the smallest localizing
subcategory of D containing all objects of A. We write Egr(R/p) for the
injective envelope of the R-module R/p for p € Spec R. It is easy to see
supp k(p) = supp Er(R/p) = {p}. Moreover, Neeman [36, Theorem 2.§]

shows the equalities
Lw =Loc{r(p) |p €W} =Loc{ Er(R/p) |peW }.

For a localizing subcategory L of D, its right orthogonal subcategory is
defined as

L-={Y €D |Homp(X,Y)=0forall X € L}.

Note that £ is a triangulated subcategory of D that is closed under arbitrary
direct products. In other words, £ is a colocalizing subcategory of D. The
following equalities hold for any subset W of Spec R;

Ly ={Y € D|Homp(k(p)[i],Y)=0forallp e W and i € Z }
={Y € D| RHomg(k(p),Y)=0forallpe W }.

Let W be an arbitrary subset of Spec R. We denote by iy (resp. jw)
the natural inclusion functor Ly < D (resp. Ly, < D). Then there exist
a couple of adjoint pairs (iw,yw) and (Aw,jw) as it is indicated in the
following diagram:

Lw D EJW
Tw Jw

Moreover, it holds that Ker~y = Lg;, and Ker Ay = Lyy. For details, see
[27, §4.9, §5.1, §7.2]. See also Remark 1.3.14 (ii).

In the following lemma, we identify vy and Ay with iy -y and jy - Aw
respectively.

Lemma 1.2.1. Let W be any subset of Spec R. For any object X of D, there
1S a triangle

’wa > X > AwX — ’wa[l],

where yw X — X and X — A\w X are the natural morphisms. Furthermore,

if

X' y X y X y X'[1]



is a triangle with X' € Ly and X" € L, then there exist unique isomor-
phisms a : ywX — X' and b : A\w X — X" such that the following diagram
1§ commutative:

. X
[ s [
. X

X' X" —— X'

See [27, §4.11] for the proof of this lemma.

Let W be a subset of Spec R. Then Ay is a localization functor. In
other words, writing n : idp — A for the natural morphism, it follows
that \wn : A\ — A%, is invertible and Ay = nAy. Conversely, vy is a
colocalization functor, that is, for the natural morphism ¢ : vy — idp, it
follows that yye : ¥4, — ~w is invertible and yye = ey, Note that we
uniquely obtain the localization (resp. colocalization) functor Ay (resp. /)
for a subset W of Spec R.

Definition 1.2.2. Let W be a subset of Spec R. We call vy the colocaliza-
tion functor with support in W.

Recall that a subset W of Spec R is called specialization-closed (resp.
generalization-closed) if the following condition holds:

(*) Let p,q € SpecR. If p € W and p C q (resp. p 2 q), then q belongs to
wW.

If V is a specialization-closed subset, then the colocalization functor ~y
coincides with the right derived functor RI'y of the section functor I'y, with
support in V', see [28, Appendix 3.5].

1.3 Auxiliary results on colocalization func-
tors

Let W be a subset of Spec R and let vy be the colocalization functor with
support in W. In general, it is hard to describe the functor vy explicitly.
However there are some cases in which the colocalization functor vy is the
form of composition of known functors.

Let S be a multiplicatively closed subset of R. We denote by Ug the
generalization-closed subset { q € Spec R | NS = 0 }. Note that Us is natu-
rally identified with Spec S™'R. We also write U(p) = {q € SpecR | q Cp }
for a prime ideal p of R (cf. [3]). Then, setting S = R\p, we have U(p) = Us.
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Proposition 1.3.1. Let S be a multiplicatively closed subset of R and V' be
a specialization-closed subset of Spec R. We set W =V NUs. Then we have
an isomorphism

Yw = RFV RHOHIR(S_lR, —).
Proof. The ring homomorphism R — S™'R induces a morphism
RHomp(S'R, X) — X

for X € D. Write f : R['y RHomg(S™'R, X) — X for the composition
of the natural morphism RI'y RHompg(S™'R, X) — RHompg(S™'R, X) with

this morphism, and we consider the triangle
RI'y RHomp(S 'R, X) —-5 X — ¢ — RI'y RHomp(S 'R, X)]1].

Since the complex RT'yy RHomp(S™ 'R, X) can be regarded as a complex of
S7!R-modules, it follows that supp R['y RHomz(S™ 'R, X) C Ug. At the
same time, it follows from the definition that supp R['y RHomp(S 'R, X) C
V. Therefore supp R['y RHomp (S~ R, X) must be contained in W.

On the other hand, if p € W, then there are isomorphisms

RHompg(k(p), RTy RHomp (SR, X)) = RHompg(k(p), RHomz(S™'R, X))
= RHompg(k(p), X).

Hence it hold that that RHompg(k(p), f) is an isomorphism. Thus we have
RHompg(x(p),C) = 0.

Since we have shown that R['y RHomg(S™'R, X) € Ly and C' € L, we
can use Lemma 1.2.1 to deduce vy X = RI'y RHompg(S™'R, X). n

In the following lemma we show that the colocalization functor considered
in Proposition 1.3.1 is a right derived functor of a left exact functor defined on
Mod R. We say that a complex I of R-modules is K-injective if Homp(—, I)
preserves quasi-isomorphisms.

Lemma 1.3.2. Let S,V and W be the same as in Proposition 1.3.1. Then
the colocalization functor vy is the right derived functor of the functor

Iy Homp(S™'R, —)
defined on Mod R.

Proof. Let X € D and take a K-injective resolution / of X that consists
of injective R-modules. Then RHomg(S 'R, X) = Hompg(S 'R, I), and the
right-hand complex consists of injective R-modules, too. It is known by [28,
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Lemma 3.5.1] that for any complex J of injective R-modules (that is not
necessarily K-injective), RI'y J is naturally isomorphic to I'yJ. Therefore
we have

RT'y RHomg(S™'R, X) = T'y Homgz(S™ 'R, I) = R(I'y Homgz(S™'R, —))(X).
O

Henceforth, for a subset W of Spec R, we write W¢ = Spec R\W. By
Proposition 1.3.1, we have an isomorphism

YUsg = R,HOHIR(S_IR, —).

We should mention that the isomorphism vy, = RHompg(R,, —) already
appeared in [4, §4; P175], in which the authors use the notation V*®) where
Z(p) =U(p)°, see also Remark 1.5.2.

Corollary 1.3.3. Let p € Spec R. Then we have an isomorphism
Yy = Ry RHompg(R,, —),
the right-hand side of which is the right derived functor of
I'v(p Homp(Ry, —)
defined on Mod R.

If I is an injective R-module, then v/ = T'y ) Hompg(R,, ) is also
an injective R-module by the corollary. We can describe how this injective
R-module is decomposed into a sum of indecomposable ones.

Corollary 1.3.4. Let p be a prime ideal of R and I be an injective R-
module. Then vy I is isomorphic to the direct sum @ 5z Er(R/p) of B-copies
of Er(R/y), where B = dim,,) Hompg(k(p), ).

Proof. Since g/ is an injective R-module with support in {p}, there is
a cardinal number B with v/ =2 @45 Eg(R/p). On the other hand,
Homp(k(p), 1) = Homp(k(p),vipl) = @pr(p). Therefore we have B =
dim, ) Hompg(k(p), I). O

Remark 1.3.5. Let [ be an injective R-module such that supp I = {q} for
q € Spec R, that is, I is of the form € , Er(R/q) for some index set A. Then
it is easily seen that Homg(k(p),I) # 0 if and only if p C q. Therefore, it
follows from Corollary 1.3.4 that vy, 1 # 0 if and only if p C q.



If p is a prime ideal of R which is not maximal, then the colocalization
functor gy is distinet from RI'v ) ((—) ®g R,), which is written as I}, by
Benson, Iyengar and Krause in [3]. In fact, for a prime ideal q such that
p C q, it follows that I, Er(R/q) = 0, while v Er(R/q) # 0 by Remark
1.3.5.

Definition 1.3.6. For a subset W of Spec R, we denote by dim W the supre-
mum of the lengths of chains of prime ideals belonging to W, i.e.,

dim W = sup { n | there are pg,...,p, in W with po CTp; C--- T p, }.

Thus dim W = 0 means that two distinct prime ideals taken from W
have no inclusion relation. Moreover, if W = (), then dim W = —oo by the
definition.

We now want to extend Corollary 1.3.3 to the case where dimW = 0.
For this purpose we need some preparatory observations. Compare the next

remark with [3, Lemma 3.4 (1)].

Remark 1.3.7. (i) Let W and W be subsets of Spec R with inclusion rela-
tion Wy € W. In this case, we should note that Ly, C Ly and Ly, C Ly, .
Then it is clear from the uniqueness of adjoint functors that

YW IW = Yo E VW I, AWAW, = A = A Aw

(ii) Let W, and Wy be subsets of Spec R. In general, yw,yw, need not be
isomorphic to yw,yw,. For example, if p,q € Spec R with p C q, then it is
seen from Corollary 1.3.4 and Remark 1.3.5 that v vy Er(R/q) # 0 and
Y Vi Er(R/q) = 0. Similarly, Ay, Aw, need not be isomorphic to Aw,Aw, .
Moreover, for a general subset W, vy, does not necessarily commute with the
localization (—) ®p S™!R with respect to a multiplicatively closed subset S.

The following lemma will be used in the later sections.

Lemma 1.3.8 (Foxby-Iyengar [17]). Let (R, m, k) be a commutative Noethe-
rian local ring. Then the following conditions are equivalent for any X € D:

(1) X @%k #0;
(2) RHomg(k, X) # 0;
(3) Ry X £ 0.
Proof. See [17, Theorem 2.1, Theorem 4.1]. ]



This is implicitly used by Benson, Iyengar and Krause [3] to prove the
following lemma.

Lemma 1.3.9 ([3, Theorem 5.6]). Let V' be a specialization-closed subset of
Spec R. Then, for each X in D, the following equalities hold;

suppyvX =V Nsupp X, supp Ay X =V Nsupp X.

Notice that Lemma 1.3.9 applies only to specialization-closed subsets,
and the equalities do not necessarily hold for general subsets, see Corollary
1.3.4 and Remark 1.3.5.

Definition 1.3.10. Let Wy, C W be subsets of Spec R. We say that W, is
specialization-closed in W it ‘L(p) NW C W, for any p € Wj.
Moreover we denote by W’ the specialization closure of W, which is

defined to be the smallest specialization-closed subset of Spec R containing
w.

Lemma 1.3.11. Let Wy C W C Spec R be sets. Suppose Wy is specialization-
closed in W. Setting W1 = W \Wy, we have Ly, C EJWD.

Proof. It is obvious from the definition that Wy N W; = 0. Assume that
X € Ly,. Then supp v+ X = Wy Nsupp X = 0 by Lemma 1.3.9. Therefore
we have y5-2X = 0. It then follows from Remark 1.3.7 (i) that yyw,X =
Yo Y X = 0. Thus we have X = Ay, X € Ly, as desired. O

The following theorem is one of the main results in this section; it extends
Corollary 1.3.3.

Theorem 1.3.12. Let W be a subset of Spec R with dimW = 0. Then we
have the following isomorphisms of functors

W = @ Yp} = @ RFV(p) RHomR(Rp, —).

pew pewW

Furthermore, vy is the right derived functor of the left exact functor

@ FV(p) HOHlR<Rp, —)

pew

defined on Mod R.



Proof. Let X € D. Summing up all the natural morphisms vy, X — X for
p € W, we obtain a morphism f : @pew Y3 X — X, from which we obtain
a triangle

@’)ﬂﬂa}X ! X > O > @’7{p}X[1].

peW peW

It is clear that D, ey VX € L.
Now let p be a prime in W. Since {p} is specialization-closed in W it
follows from Lemma 1.3.11 that @gcpn () Har X € Eﬁj}. Hence we have

RHomp(k(p), @D v X) = RHomp(k(p), 7 X) = RHomp(k(p), X).
qgeW

This implies that RHompg(x(p), f) is an isomorphism for p € W. Therefore
it follows that RHomg(k(p),C) = 0 for all p € W, equivalently C' € L35
Hence we conclude by Lemma 1.2.1 that vy X = @pew Y X as desired.
The rest of the theorem follows from Lemma 1.3.2 and Corollary 1.3.3. [

We denote by Inj R the full subcategory of Mod R consisting of all injec-
tive R-modules. When dimW > 0, even for I € Inj R, it may happen that
there is a negative integer i with H' (v I) # 0, see Example 1.5.3. There-
fore, for a general subset W of Spec R, vy is not necessarily a right derived
functor of an additive functors defined on Mod R.

The following theorem enables us to compute vy X by using induction
on dim W.

Theorem 1.3.13. Let Wy C W C SpecR be sets. Assume that Wy is
specialization-closed in W, and set Wy = W \ Wy. For any X € D, there is
a triangle of the following form;

’}/WOX — ’yWX — ’}/Wl)\WOX — ’)/WOX[l]

Proof. By virtue of Lemma 1.2.1, we have triangles;

’}/WOX > X /\WOX e ’)/WOX[l],

’)/Wl)\WOX — )\WOX — /\W1>\W0X — "}/Wl)\WOX[l]
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It then follows from the octahedron axiom that there is a commutative dia-
gram whose rows and columns are triangles:

X[=1

— X[

")/Wl)\WOX[—l] S )\WOX[—l] S )\Wl)\WOX[_l] —_— ’)/Wl)\WOX

H

C — YW )\[/V0 X

l

Y AWOX[_l] — P)/WOX

X X

Focusing on the triangle in the second row, we notice from Lemma 1.3.11
that both vy, Aw, X and A, X belong to Lﬁ,@. Hence we have Ay, Ay, X €
L3, Then it follows that Aw, Aw, X € Liy, N Ly, = Ly

On the other hand, in the third row above, we know vy, Aw, X € Ly, C
Ly and vy, X € Ly, C L. Consequently we have C' € Lyy.

Taking a look at the third column above, since C' € Ly and Ay, Ay, X €
L3, we deduce from Lemma 1.2.1 that v X = C. Thus the third row is a
required triangle. O]

The reader should compare Theorem 4.2.4 with [3, Lemma 3.4 (4)].

Remark 1.3.14. (i) Let W, W, and W; be as in the theorem. In its proof,
we have shown an isomorphism Ay, Ay, = Awy.

(ii) Let W be a subset of Spec R, and assume that dim W = n is finite.
Then we can give an alternative proof of the existence of vy and Ay, In
fact, in the case that n = 0, vy can be given explicitly by Theorem 1.3.12.
Note that Ay exists at the same time. Furthermore, if n > 0, we can show
the existence of vy and Ay inductively by the formula in (i).

Let X be a complex of R-modules. We say that X is left (resp. right)
bounded if X? = 0 for i < 0 (resp. ¢ > 0). When X is left and right
bounded, X is called bounded. We denote by K = K (Inj R) the homotopy
category of complexes of injective R-modules. Moreover, we write K for the
full subcategory of I consisting of left bounded complexes. Let a and b be
taken from Z U {+oco}, and assume that a < b. We denote by Kl*! the full
subcategory of KT consisting of complexes I such that I' = 0 for i ¢ [a, ]
(cf. [26, Notations 11.3.7 (ii)]).

Recall that the canonical functor X — D induces an equivalence K+ =
D of triangulated categories, whose quasi-inverse sends a complex X € D+
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to its minimal injective resolution I € K. In the following corollary, we
identify It with DT in this way.

Corollary 1.3.15. Let W be a subset of Spec R, and assume that n = dim W
is finite. Let a,b € ZU{+o0o} with a < b and I € KI**. Then vy I is belongs

to KKlo=™8 under the equivalence K+ = DT. Therefore, yw maps objects of
D+ to objects of DT.

Proof. We prove the corollary by induction on n. If n = 0, then it follows
from Theorem 1.3.12 that vy 1 € K@Y,

Suppose that n > 0. Let W, be the set of all prime ideals in W that
are maximal with respect to the inclusion relation in W, and we set W; =
W\ Wy. Notice that dimWy = 0 and dimW; = n — 1. Since there is a
triangle yw, I — I — Aw,I — yw, I[1], and since both I and 7y, I belong to
Kot we see that Ay, I € Kl*=19 Hence vy, \w, I € K14~ by the inductive
hypothesis.

On the other hand, we have from Theorem 4.2.4 a triangle

")/WOI — ")/Wj — ’}/Wl)\WOI — ’}/Wol[l]

Since Y, I € K%Y by Theorem 1.3.12, and since vy, Aw, I € K™ as shown
in above, it follows that vy I € K™ as desired. m

If dim W is infinite, then it may happen that vy X ¢ DT for a complex
X € DT, see Example 1.5.5.

1.4 Local Duality Principle

Local duality theorem is a duality concerning local cohomology modules with
supports in closed subsets in schemes, which was presented in [22] and [23].
Dualizing complexes or dualizing modules play a significant role there. How-
ever, Foxby [16, Proposition 6.1] discovered a general principle that underlies
local duality, which does not require dualizing complexes. He considered such
duality only for the right derived functor RI'y of the section functor I'y, with
support in a specialization-closed subset V' of Spec R. We propose the local
duality principle as generalization of Foxby’s theorem.

Theorem 1.4.1 (Local Duality Principle). Let W be a subset of Spec R and
let X,Y € D. Suppose that one of the following conditions holds:

(1) X € Dy, Y € DT and dim W < +o0;
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(2) X € Dy, Y is a bounded complex of injective R-modules and dim W <
+00;

(3) W is generalization-closed.

Then there exist natural isomorphisms
yw RHompg(X,Y) = RHomg (X, ywY),

Aw RHomp(X,Y) = RHomp(X, AwY).

Note that Foxby’s theorem states the validity of the first isomorphism
when, added to the condition (1), W is a specialization-closed subset of
Spec R.

Lemma 1.4.2. Let W C Spec R. If Z € L3, then RHomg(X, Z) € Ly for
any X € D.

Proof. The lemma is clear from
RHomp (Y, RHomg(X, Z)) = RHompg(X, RHomg(Y, Z)) =0
for Y € Ly . O

Lemma 1.4.3. Let W be a generalization-closed subset of Spec R. Then it
holds that

Proof. We note that W€ is specialization-closed. The equality Ly = Lij-.
is deduced from Lemma 1.3.9 as follows: If X € Ly, then suppyw.X =
WeNnsupp X = () hence <X = 0 equivalently X = Ay X € Liy.. On the
contrary, if X € L. then supp A\yeX = W Nsupp X therefore X = Ay X
has small support in W thus X € Ly . O

Let X be a complex of R-modules and n be an integer. The cohomological
truncations o<, X and 0+, X are defined as follows:

o X =(—=X"?2 5 X" 5 Kerdy - 0—---)
OonX = (- = 0= Imdy — X" — X" 5 ...)

See [22, Chapter I; §7] for details.
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Proof of Theorem 1.4.1. Applying the functor RHompg (X, —) to the triangle
wY =Y = ApY =y Y[1], we obtain a triangle of the form;

RHompg(X,ywY) — RHomg(X,Y) - RHomg(X, A\wY) — .

It follows from Lemma 1.2.1 that, to prove the desired isomorphisms, we only
have to show that

RHompg (X, ywY) € Ly and RHompg(X, \yY) € Ly

Since A\wY € L3y, we see from Lemma 1.4.2 that RHomp(X, \yY) € L5
Thus it remains to show that RHompg(X,ywY) € L.

Case (1): Let p € W¢. We want to show that RHomz (X, 1Y) ®@% r(p) =
0. Since X € Dy, and YV € D*, Corollary 1.3.15 implies Y € DT, so it
follows that

RHompg (X, ywY) @5 £(p) = RHompg, (X, (ywY)p) @5, £(p).

Now thanks to Lemma 1.3.8 together with this isomorphism, it is sufficient
to show that RHompg, (k(p), RHomp, (X, (ywY),)) = 0. Noting that

RHomp, (k(p), RHomg, (Xy,(vwY),))
=~ RHompg, (X,, RHomg, (k(p), (Y );)) ,
we have sufficiently to show that RHompg, (k(p), (ywY'),) = 0. However,
by using Lemma 1.3.8 again, we see that this is equivalent to show that
(YwY) @5 k(p) =0, i.e., p & suppyw Y. The last is clear, since suppywY C

W and p & W.
Case (2): As in the case (1), taking p € W¢, we show

RHomgz (X, ywY) ®% k(p) = 0.

We consider the triangle 0<, X — X — 0-,X — (0<,X)[1] for an integer
n. Since o<, X € Dy, we have RHompg(0<,X,ywY) € Ly by the case
(1). Hence, applying RHomg(—, ywY) ®% k(p) to the triangle, we obtain an
isomorphism

RHomp(X, ywY) @ £(p) = RHomp (05, X, ywY) @ k(p).
Let i be any integer. It suffices to show that
H° (RHomp(05, X, ywY[i]) ®F £(p)) =0

for some n. By Corollary 1.3.15, yyY is isomorphic to a bounded complex
of injective R-modules, so that there is an integer m with I7 = 0 for j > m.
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Moreover, any element of H*(RHompg(0+,X,vwY[i])) =& Homp(0s,X, I[i])
is represented by a chain map 0-,X — I[i]. Thus, taking n with n > m — i,
we see that H’/(RHompg(0+, X, ywY[i])) = Homp (0, X, I[i+5])) = 0 for all
j > 0. Then it is easily seen that H® (RHompg (05, X,y Y [i]) ®% x(p)) = 0.

Case (3): By Lemma 1.4.3, we have yY € Ly = L., thus it follows
from Lemma 1.4.2 that RHompg(X,ywY) € Liy. = Ly as desired. O

Remark 1.4.4. In the case (3), the isomorphisms in the theorem are also
proved by [2, Theorem 5.14].

When R admits a dualizing complex Dg, we write XT = RHompg(X, Dg)
for X € D. Then we have X = X' for X € Dy, see [22, Chapter V; §2].
The following result is the generalized form of the local duality theorem [22,
Chapter V; Theorem 6.2].

Corollary 1.4.5. Assume that R admits a dualizing complex Dgr. Let W be
a subset of Spec R and X € Dg,. Then we have a natural isomorphism

nyX = RHOH]R(XT, ’yWDR)

The second author and Maiko Ono had proved the following theorem
when W is specialization-closed, and had asked if it holds for an arbitrary
subset W, see [38, Theorem 2.3, Question 2.5].

Theorem 1.4.6 (AR Principle). Let X, I € D. Suppose that a subset W of
Spec R satisfies the condition dimW < 4o00. We assume furthermore that
the following conditions hold for an integer n:

(1) I is a bounded complex of injective R-modules with I' =0 for i > n;
(2) Og_lX S ﬁw
Then there exists a natural isomorphism

o-n RHompg(X, yw 1) = 0-,, RHompg (X, I).

We are now able to prove that this theorem holds in general. As we have
shown in Corollary 1.3.15, vy [ is isomorphic to a bounded complex .J of
injective R-modules with J* = 0 for 4 > n. Then one can observe that the
proof of [38, Theorem 2.3] works well.

The AR Principle is a version of classical Auslander-Reiten duality theo-
rem in terms of complexes, see [38, Corollary 3.2].
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1.5 Relation with completion

In this section, we shall explain the relationship between Ay, and left derived
functors of completion functors. Furthermore, we give some nontrivial ex-
amples of colocalization functors vy, for which vy, I has a non-zero negative
cohomology module even for an injective R-module I.

Let a be an ideal of R which defines a closed subset V' (a) of Spec R. We
denote by AV(® the g-adic completion functor 1&1(— ®pr R/a™) defined on
Mod R. It is known that the left derived functor LAY® of AV(® is a right
adjoint to RI'v(q) by Greenlees and May [21] and Alonso Tarrio, Jeremias
Lépez and Lipman [1]. One also finds an outline of the proof of this fact in
[28, §4; p. 69].

Recall that Ay (q)c is a left adjoint to the inclusion functor jy (e : Ly (a)e <
D. Now we shall prove that LAV® coincides with Av(a)e- By the universality
of derived functors, there is a natural morphism X — LAY® X for any
X € D, from which we have a triangle of the form

C » X » LAV®O X —— C[1].

Applying RI'y(q) to this triangle, we have the following triangle
RFV(a) C — RFV(a) X — RFV(a) LAV(a) X — RI‘V(G) C[l]

By [1, Corollary 5.1.1 (ii)], RT'y(¢) X — RI'y(q LAY® X is an isomorphism.
Hence RI'y () C' = 0, and thus we have C' € E‘L/(a) = Ly (a)e by Lemma 1.4.3.
On the other hand, since LAY® is a right adjoint to RI'y(q), we have

RHomp(k(p), LAY® X) =2 RHompg(RLy(q) #(p), X) =0

for any p € V(a)°. This implies LAY® X ¢ E‘L/(a)c. Thus it follows that

WX 2 C and AyeX = LAY® X by Lemma 1.2.1.
We summarize this fact in the following.

Proposition 1.5.1. Let a be an ideal of R. Then Ay (q)- is isomorphic to the
left derived functor LAV®) of the a-adic completion functor AV®.

Remark 1.5.2. Let a be an ideal of R and W be a specialization-closed
subset of Spec R. Note that it is also proved that LAY® is isomorphic to
RHompg(RT'y () R, —) in [21] and [1]. More generally, RHomgz(RI'w R, —) is
a right adjoint to RI'y,. Furthermore, by using Lemma 1.4.3, it is not hard
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to see that Ay is a right adjoint to ~y,. Thus it follows from the uniqueness
of adjoint functors that there is an isomorphism

Awe = RHomp(RTw R, —).

This fact and Proposition 1.5.1 is essentially stated in [4], where e and
Awe appear as VW and AW respectively.

Now we are ready to give an example as we have previously announced.

Example 1.5.3. Let (R,m,k) be a local ring of dimension d and R be
the m-adic completion of R. Let Dz be a dualizing complex of R with
Ext%(k:, Dp) = k. Weregard Dy as a complex of R-modules in a natural way.
Using the isomorphism LAY ™ Rl (m) & LAV™ by [1, Corollary 5.1.1 (i)],
we can show that LAY™ Eg(k) = Dg[d]. Hence it follows from Proposi-
tion 1.5.1 that Ay Er(k) = Dgz[d]. Now we suppose that d > 1. Then,
considering the triangle

WmeEr(k) —— Er(k) —— AvmyeEr(k) —— ywmeEr(k)[1],
we have H™ " (yym)-Er(k)) # 0 and —d + 1 < 0. O
Remark 1.5.4. Let X € D. If W is specialization-closed, then it holds

[a¥)

that supp H'(ywX) C W for all i € Z, since vy = RI'y,. However we see
from Example 1.5.3 that the inclusion relation supp H* (v X) € W does not
necessarily hold in general.

We now give an example such that yy I ¢ DT even for an injective R-
module /.

Example 1.5.5. We assume that dim R = +o0o. Let W be the set of maximal
ideals of R. Then we can show that yye(B,,cy Er(R/m)) ¢ DF. In fact, it
is clear that RI'yy = @mew RI'y (). Thus it follows from Remark 1.5.2 that

Awe = RHomp(RTw R, —) = [[ RHomp(RTym R, —) = J] LA™
meW meW

Then, by Example 1.5.3, we see that A\we(@, ey Er(R/m)) ¢ D. Hence
we have yywe(P e Er(R/m)) ¢ DT O

Remark 1.5.6. More generally, we can prove that Ay is isomorphic to

[1 LAY (- @k Ry)

pew

for an arbitrary subset W of Spec R with dim W = 0, see Theorem 2.3.10.
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1.6 Vanishing for cohomology modules

Let V be a specialization-closed subset of Spec R. In such a classical case,
Grothendieck showed that if M is a finitely generated R-module, then

Hi, (M) = HRIy M) =0

for © < 0 and 7 > dim M.

Our aim in this section is to prove the same type of vanishing theorem
holds for the colocalization functor vy, with support in W, where W is not
necessarily specialization-closed.

Notice from Example 1.5.3 that it is truly nontrivial even to prove that
Hi(ywM) =0 for i < 0.

Proposition 1.6.1. Let W be a subset of Spec R and suppose that dim W
is finite. Then we have H'(ywM) = 0 for any i < 0 and for any finitely
generated R-module M.

Proof. First of all we note the following: Let 0 - N' — N — N” — 0 be an
exact sequence of finitely generated R-modules. If N is a counterexample to
the theorem, then so is one of N/ and N”.

Secondly we note that a finitely generated R-module M has a filtration

0=MyCM C---CM,=M

such that M, /M; = R/p; and p; € Spec R for 0 < ¢ < n. It thus follows that
we have sufficiently to prove that H' (v R/p) = 0 for i < 0 and p € Spec R.

Now supposed that there would exist p € Spec R with H'(yw R/p) # 0
for some ¢ < 0, and take a maximal p among such prime ideals. Then it
is easy to see from the remark made in the first part of this proof that the
theorem is true for M = R/I for all I 2 p.

The key for the proof is Corollary 1.3.15 which states that v R/p € D+,
This exactly means there is the least integer ¢ < 0 with H*(ywR/p) # 0.
Let x be an arbitrary element of R with x ¢ p. Apply the functor vy to the
exact sequence

0—=R/p S R/p— R/(p+(x)) =0,

and we obtain an isomorphism H'(ywR/p) = HY(ywR/p). Since every
element from R \ p acts bijectively on H*(yw R/p), consequently H(yw R/p)
is a k(p)-vector space. Now let I be a minimal injective resolution of vy R/p.
By our choice of integer ¢, we see that I starts from the ¢th term, being of
the form

8( 8Z+1 6Z+2
0 IZ \ ]£+1 ; ]€+2 \
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Note that Ker 9 = H'(yw R/p). Since I is a minimal injective resolution,
I* is an essential extension of H'(yy R/p) that is a x(p)-module. Therefore
I* must be isomorphic to a direct sum of copies of Er(R/p). This forces
that I'v(,)(/,) has a nontrivial cohomology in degree ¢, thus it follows from
Lemma 1.3.8 that p € supp = suppywR/p C W. Since we have shown
that p € W, the following isomorphisms hold;

0 # Homp(k(p), yw R/p[€]) = Homp(k(p), R/p[(]) = Exti(r(p), R/p),

the last of which must be zero since ¢ < 0. By this contradiction we complete
the proof. O

Let a,b € Z U {4oo} with a < b. We denote by D¢ for the full subca-
teogy of D consisting of complexes X such that H(X) = 0 for i ¢ [a, b] (cf.
[26, Notation 13.1.11]). Moreover, we write D}g’b] = Dl N Dy,. For X € D,
we denote by inf X the infimum of the set {i € Z | H/(X) # 0 }.

Corollary 1.6.2. Let X € Dy, and W be a subset of Spec R. We assume
that dim W is finite. Then we have inf X < infyy X.

Proof. We may assume that inf X > —oo. Thus it is enough to show that if
X e D}g’ﬁx’], then vy X € DO+l To see this, setting n = dim W, we con-
sider the triangle 0<,X — X — 0-,X — (0<,X)[1]. Since 0, X € DE;’”],
by Proposition 1.6.1, we can show that vy (0<,X) € D+l Furthermore,

it follows from Corollary 1.3.15 that vy (0-,X) € DO+ Thus we can
conclude that vy X € DO+l by the triangle. O

Let X € D. For an ideal a of R, we define the a-depth of X as
depth(a, X)) = inf RHompg(R/a, X).

Let @ = {x1,...,2,} be a system of generators of a. For each z;, K(z;)
denotes the complex (0 — R %% R — 0) concentrated in degrees —1
and 0. The Koszul complex with respect to x is the complex K(x) =
K(x1) ®gr -+ ®g K(z,). By [17, Theorem 2.1], it holds that depth(a, X) =
inf Hompg (K (x), X) = inf RT'y(q) X.

If W is a specialization-closed subset of Spec R, then we define the W-
depth of X, which we denote by depth(W, X), as the infimum of the set of
values depth(a, X) for all ideals a with V(a) C W. It is easily seen that
depth(W, X)) = inf RI'y X.

Proposition 1.6.3. Let W be a subset of Spec R, and assume that dim W
is finite. Let X € Dy,. Then we have depth(W', X) < inf vy X
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Proof. By Remark 1.3.7 (i), it holds that ywX = RI'yp=(ywX). Therefore
we have o
inf vy X = inf RUyps (7w X)) = depth(W”, 45 X).

Hence it remains to show that depth(W’, X) < depth(W", 4 X). Let a be
an ideal of R with V(a) C W' and « = {z1,...,x,} be a system of generators
of a. Since K () is a bounded complex of finitely generated free R-modules,
it follows from Corollary 1.6.2 that

inf Hompg (K (x), X) < inf vy Homg(K(x), X) = inf Homg(K (x), yw X).
Thus we have depth(a, X') < depth(a,ywX). Hence it holds that
depth(W’, X) < depth(W”, 3 X)
by definition. O
This proposition states that an inequality
inf RI'jps X <inf ypp X
holds for a subset W of Spec R with dim W < 400 and X € Dy,.

Let X € Dy,. Write dim X for the supremum of { dim H*(X) +i | i € Z },
see [16, §3]. Note that dim X[1] = dim X — 1. Let Dg be a dualizing

complex of R with Dg € D}gvd]

proposition, we use a basic fact that Xt € Dﬁg_"ﬂroo], where n = dim X. To
show this, we first suppose that X is a finitely generated R-module. Then
it is straightforward to see that XT € Dggfn’d] C D}gfnﬂroo]. Next, supppose
that X is any complex of Dg,. Notice that it suffices to treat the case that n =
dim X = 0. Then, using the triangle 0<_4X — X — 04X — (0<_4X)[1],
one can deduce that XT € Dﬁg’ﬂo] as desired. This fact is essentially proved
in [16, Proposition 3.14 (d)].

, where d = dim R. In the proof of the next

Proposition 1.6.4. Assume that R admits a dualizing complex. Let W be
a subset of Spec R and X € Dy,. Then H'(ywX) =0 for all i > dim X.

Proof. Let Dg be a dualizing complex with Dy € Dg’d], where d = dim R. By
Corollary 1.3.15, v Dg is isomorphic to a bounded complex I of injective
R-modules with I = 0 for ¢ > d. Then, by Corollary 1.4.5, there are
isomorphisms

YwX = RHompg(XT, v Dr) = Homg (X', I).
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Therefore each element of H(vyyX) = Homp(XT, I[i]) is represented by a
chain map from XT to I[i]. Moreover, setting n = dim X, we have XT €
DL by the above-mentioned fact. Hence it holds that Hi(yyX) = 0

fg
for all > n =dim X. O

We sum up Proposition 1.6.3 and Proposition 1.6.4 in the following the-
orem.

Theorem 1.6.5. Assume that R admits a dualizing complez. Let W be a
subset of Spec R. If X € Dy, then H'(ywX) = 0 unless depth(W°, X) <
1 < dim X.
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2. Localization functors and cosupport
in derived categories

2.1 Introduction

This chapter is based on the author’s paper [34] with Yuji Yoshino. Through-
out this chapter, we assume that R is a commutative Noetherian ring. We
denote by D = D(Mod R) the derived category of all complexes of R-
modules, by which we mean that D is the unbounded derived category.
For a triangulated subcategory T of D, its left (resp. right) orthogonal
subcategory is defined as *7 = { X € D | Homp(X,7) =0} (resp. T+ =
{Y € D|Homp(T,Y)=0}). Moreover, T is called localizing (resp. colo-
calizing) if T is closed under arbitrary direct sums (resp. direct products).
Recall that the support of a complex X € D is defined as follows;

supp X = { p € Spec R ‘ X®Ij%/<c(p)7£0},

where k(p) = R, /pR,. We write Ly = { X € D | supp X C W } for a subset
W of Spec R. Then Ly is a localizing subcategory of D. Neeman [36] proved
that any localizing subcategory of D is obtained in this way. The localization
theory of triangulated categories [27] yields a couple of adjoint pairs (iy, )
and (Aw, jw) as it is indicated in the following diagram:

(2.1.1) Ly D L
Tw Jw

Here, iy and jy are the inclusion functors Ly, <— D and EJW — D re-
spectively. In the previous chapter, we introduced the colocalization functor
with support in W as the functor vyy. If V is a specialization-closed subset
of Spec R, then vy coincides with the right derived functor RI'y of the sec-
tion functor I'yy with support in V; it induces the local cohomology functors
Hi, (=) = H(RI'yv(—)). In loc. cit., we established some methods to compute
yw for general subsets W of Spec R. Furthermore, the local duality theorem
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and Grothendieck type vanishing theorem of local cohomology were extended
to the case of vy .

On the other hand, in this chapter, we introduce the notion of localiza-
tions functors with cosupports in arbitrary subsets W of Spec R. Recall that
the cosupport of a complex X € D is defined as follows;

cosupp X = { p € Spec R | RHompg(x(p), X) #0 }.

We write C = { X € D | cosupp X C W } for a subset W of Spec R. Then
C" is a colocalizing subcategory of D. Neeman [37] proved that any colocal-
izing subcategory of D is obtained in this way.

We remark that there are equalities

(2.1.2) eV = Lye, CV =i,

where W¢ = Spec R\W. The second equality follows from Neeman’s theorem
[36, Theorem 2.8], which states that Ly is equal to the smallest localizing
subcategory of D containing the set { x(p) | p € W¢}. Then it is seen that
the first one holds, since *(Liy.) = Ly (cf. [27, §4.9]).

Now we write AW = A\ and j" = jiye. By (2.1.1) and (2.1.2), there is
a diagram of adjoint pairs:

lyye W
LOW = Lo D cW = k.
’}/Wc W
J

We call \W the localization functor with cosupport in W.

For a multiplicatively closed subset S of R, the localization functor \Us
with cosupport in Ug is nothing but (=) ®p S~'R.Moreover, for an ideal
a of R, the localization functor A\V(® with cosupport in V(a) is isomorphic
to the left derived functor LAY® of the a-adic completion functor AV® =
@(— ®pr R/a™) defined on Mod R. See Section 2 for details.

In this chapter, we establish several results about the localization functor
AW with cosupport in a general subset W of Spec R.

In Section 3, we prove that A" is isomorphic to [,y LAV® (- @ R,)
if there is no inclusion relation between two distinct prime ideals in W.
Furthermore, we give a method to compute A" for a general subset W. We
write nV 1 idp — AW (= jWAW) for the natural morphism given by the
adjointness of (A", j"). In addition, note that when Wy C W, there is a
morphism nWVoAW : AW — \Wo AW =~ A\Wo - The following theorem is one of
the main results of this chapter.
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Theorem 2.1.3 (Theorem 2.3.15)._Let W, Wy and Wy be subsets of Spec R
with W = WoUW,. We denote by Wy (resp. Wi” ) is the specialization (resp.
generalization) closure of W. Suppose that one of the following conditions

holds:
(1) Wo =Wy nW;
(2) Wy =W nWwy’.
Then, for any X € D, there is a triangle

AWy L amx g x L AW AW X1,
where
— nWl)\WX _ Wi1.,,Wo WixWo
f_<nW0AWX>’ g=( AWigWo X (=1)-pMAWoX ).

This theorem enables us to compute A\ by using A" and A" for smaller
subsets Wy and W;. Furthermore, as long as we consider the derived category
D, the theorem and Theorem 2.3.22 in Section 3 generalize Mayer-Vietoris
triangles by Benson, Iyengar and Krause [3, Theorem 7.5].

In Section 4, as an application, we give a simpler proof of a classical
theorem due to Gruson and Raynaud. The theorem states that the projective
dimension of a flat R-module is at most the Krull dimension of R.

Section 5 contains some basic facts about cotorsion flat R-modules.

Section 6 is devoted to study the cosupport of a complex X consisting
of cotorsion flat R-modules. As a consequence, we can calculate vy X and
AV X explicitly for a specialization-closed subset V' of Spec R.

In Section 7, using Theorem 2.1.3 above, we give a new way to get A\".
In fact, provided that d = dim R is finite, we are able to calculate A\ by a
Cech complex of functors of the following form;

AW ANWiy W yW, 3 Wi
I — J[ WA —— o —— M AW,
0<i<d 0<i<j<d

where W; = {p € W[dim R/p = i} and A"i = [Ty, AV®) (= ®p Ry) for
0 < i < d. This Cech complex sends a complex X of R-module to a double
complex in a natural way. We shall prove that A" X is isomorphic to the
total complex of the double complex if X consists of flat R-modules.

Section 8 treats commutativity of A" with tensor products. Conse-
quently, we show that A"Y can be computed by using the Cech complex
above if Y is a complex of finitely generated R-modules.
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In Section 9, as an application, we give a functorial way to construct
quasi-isomorphisms from complexes of flat R-modules or complexes of finitely
generated R-modules to complexes of pure-injective R-modules.

2.2 Localization functors

In this section, we summarize some notions and basic facts used in the later
sections.

We write Mod R for the category of all modules over a commutative
Noetherian ring R. For an ideal a of R, AV® denotes the a-adic completion
functor 1&1(— ®pr R/a™) defined on Mod R. Moreover, we also denote by
M} the a-adic completion AV(®M = lim M/a"M of an R-module M. If
the natural map M — M is an isomorphism, then M is called a-adically
complete. In addition, when R is a local ring with maximal ideal m, we
simply write M for the m-adic completion of M.

We start with the following proposition.

Proposition 2.2.1. Let a be an ideal of R. If F is a flat R-module, then so
is FI.

As stated in [42, 2.4], this fact is known. For the reader’s convenience,
we mention that this proposition follows from the two lemmas below.

Lemma 2.2.2. Let a be an ideal of R and F' be a flat R-module. We consider
a short exact sequence of finitely generated R-modules

0 > L > M » N —— 0.

Then
0 — (FeplLl)y — (FQr M)y —— (F®QrN)} —— 0
18 exact.

Lemma 2.2.3. Let a and F' be as above. Then we have a natural isomor-
phism
(ForM)> 2 Fop M

for any finitely generated R-module M.
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Using Artin-Rees Lemma and [6, I; §2; Proposition 6], we can prove
Lemma 2.2.2, from which we obtain Lemma 2.2.3. Furthermore, Lemma
2.2.2 and Lemma 2.2.3 imply that F* ®g (—) is an exact functor from the
category of finitely generated R-modules to Mod R. Therefore Proposition
2.2.1 holds. O

It is also possible to show that F' is flat over R} by the same argument
as above.

If R is a local ring with maximal ideal m, then m-adically complete flat
R-modules are characterized as follows:

Lemma 2.2.4. Let (R,m,k) be a local ring and F a flat R-module. Set
B = dimy F/mF. Then there is an isomorphism

D
B

where @ g R is the direct sum of B-copies of R.

F

12

This lemma is proved in [19, IT; Proposition 2.4.3.1]. See also [15, Lemma
6.7.4].

As in the introduction, we denote by D = D(Mod R) the derived category
of all complexes of R-modules. We write complexes X cohomologically;

X=(—=X"To X 5 X" ...

For a complex P (resp. F') of R-modules, we say that P (resp. F') is K-
projective (resp. K-flat) if Homg(P, —) (resp. (—)®gr F') preserves acyclicity
of complexes, where a complex is called acyclic if all its cohomology modules
are zero.

Let a be an ideal of R and X € D. If P is a K-projective resolution of
X, then we have LAV® X 2~ AV@® P Moreover, LAY® X is also isomorphic
to AV@F if F is a K-flat resolution of X. In addition, it is known that the
following proposition holds.

Proposition 2.2.5. Let a be an ideal of R and X be a complex of flat R-
modules. Then LAY® X is isomorphic to AV®X.

To prove this proposition, we remark that there is an integer n > 0
such that HY(LAY® M) = 0 for all i > n and all R-modules M, see [21,
Theorem 1.9] or [1, p. 15]. Using this fact, we can show that AV preserves
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acyclicity of complexes of flat R-modules. Then it is straightforward to see
that LAY® X is isomorphic to AV@®X. O

Let W be any subset of Spec R. Recall that vy denotes a right adjoint
to the inclusion functor iy : Ly — D, and AW denotes a left adjoint to the
inclusion functor j% : CW < D. Moreover, vy and A" are identified with
iwyw and jWAW respectively. We write ey : yw — idp and "V : idp —
AW for the natural morphisms induced by the adjointness of (iy,yw) and
(AW, 3" respectively.

Note that AWn"' (resp. ywew) is invertible, and the equality
AW (resp. ywew = ewyw) holds, i.e., MW (resp. ) is a localization
(resp. colocalization) functor on D. See [27] for more details. In this chapter,
we call AW the localization functor with cosupport in .

>‘W77W —

Using (2.1.2), we restate Lemma 1.2.1 as follows.

Lemma 2.2.6. Let W be a subset of Spec R. For any X € D, there is a
triangle of the following form;

EWCX

’}/WCX

Furthermore, if

WX w
> X AMWX —— ’}/WcX[l].

X' X > X7 > X'[1]

is a triangle with X' € *CV = Ly and X" € CV = L3y, then there exist
unique isomorphisms a : yweX — X' and b : WX — X" such that the
following diagram is commutative:

Ewece w
e X K x T AWX s e X
. s [l
X’ > X > X' ——  X'[1]

Remark 2.2.7. (i) Let X € D and W be a subset of Spec R. By Lemma
2.2.6, X belongs to *C" = Ly if and only if A" X = 0. This is equivalent
to saying that AP} X = 0 for all p € W, since *CV = Ly = anW Lipye =

npew Lot}
(ii) Let Wy C W be subsets of Spec R with Wy C W. It follows from the
uniqueness of adjoint functors that

)\Wo)\W ~ /\Wo ~ )\W>\Wo7
see also Remark 1.3.7 (i).
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Now we give a typical example of localization functors. Let S be a mul-
tiplicatively closed subset S of R, and set Us = {p € SpecR |pN S =10}.
It is known that the localization functor AUs with cosupport in Uy is noth-
ing but (=) ®g S™'R. For the reader’s convenience, we give a proof of this
fact. Let X € D. It is clear that cosupp X ®r S™'R C Us, or equiv-
alently, X ®p S™'R € CYs. Moreover, embedding the natural morphism
X — X ® SR into a triangle

C y X y X @p SR —— C[1],

we have C' @ S™'R = 0. This yields an inclusion relation supp C' C (Us)°".
Hence it holds that C' € L(yg).. Since we have shown that C' € L) and
X ®p S7'R € CYs, it follows from Lemma 2.2.6 that \VsX = X @z S'R.
Therefore we obtain the isomorphism

(2.2.8) s = ()®r SR

For p € Spec R, we write U(p) = {q € SpecR | q Cp }. If S = R\p, then
U(p) is equal to Us, so that \V®) = (=) @p R, by (2.2.8). We remark that
AV®) = App)e is written as Ly in [3], where Z(p) = U(p)“.

There is another important example of localization functors. Let a be
an ideal of R. It was proved by [21] and [1] that LAY® : D — D is a
right adjoint to RI'y(q) : D — D. In Proposition 1.5.1, using the adjointness
property of (RFV(Q),LAV(“)), we proved that \V(® = Av(a)e coincides with
LAY®. Hence there is an isomorphism

(2.2.9) AV@ = AV@

The functor H*(—) = H~*(LAV®(=)) is called the ith local homology func-
tor with respect to a.

A subset W of Spec R is called specialization-closed (resp. generalization-
closed) provided that the following condition holds; if p € W and q € Spec R
with p C q (resp. p D q), then q € W.

If V is a specialization-closed subset, then we have

(2.2.10) v = RIy,

see [28, Appendix 3.5].
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2.3 Auxiliary results on localization functors

In this section, we give several results to compute localization functors A"
with cosupports in arbitrary subsets W of Spec R.

We first give the following lemma.

Lemma 2.3.1. Let V' be a specialization-closed subset of Spec R. Then we
have the following equalities;

eV = Lye=LE=C"".

Proof. This follows from Lemma 1.4.3 and (2.1.2). O

Let Wy and W be subsets of Spec R Wi‘g Wy C W. We remark that W,
is specialization-closed in W if and only if W," N W = W,

Corollary 2.3.2. Let Wy C W C SpecR be sets. Suppose that Wy is
specialization-closed in W. Setting Wy = W \ Wy, we have C"* C +C"0,

Proof. Notice that Wy C (W;"). Furthermore, we have LeWo™ = c(W0)° py
Lemma 2.3.1. Hence it holds that C"* € ¢Wo)® = LeWo C LcWo, ]

Remark 2.3.3. For an ideal a of R, \V(® is a right adjoint to Y by (2.2.9)
and (2.2.10). More generally, it is known that for any specialization-closed
subset V, \V : D — D is a right adjoint to 7y : D — D. We now prove this
fact, which will be used in the next proposition. Let X,Y € D, and consider
the following triangles;

’}/VAX > X » AV X —— WvX[]_],
Y — Y WY — s Y

Since \V°X € ¢V = 1CY by Lemma 2.3.1, applying Homp(—, \VY) to
the first triangle, we have Homp(yy X, \VY) = Homp (X, \Y). Moreover,
Lemma 2.3.1 implies that vyY € Lye = L. Thus, applying Homp (yy X, —)
to the second triangle, we have Homp (v X,Y) = Homp(yy X, A\VY). Thus
there is a natural isomorphism Homp (v X,Y) = Homp(X,A\VY), so that
(7w, AV) is an adjoint pair. See also Remark 1.5.2.

Proposition 2.3.4. Let V and U be arbitrary subsets of Spec R. Suppose
that one of the following conditions holds:

(1) V is specialization-closed;
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(2) U s generalization-closed.

Then we have an isomorphism

)\V)\U ~ )\VHU.

Proof. Let X € D and Y € CV"U = CV N CY. Then there are natural
isomorphisms

Homp(A\VAYX,Y) = Homp(AY X, Y) = Homp(X,Y).

Recall that AV is a left adjoint to the inclusion functor CV"Y < D. Hence,

by the uniqueness of adjoint functors, we only have to verify that AV AV X €

CV". Since \YAVX € CV, it remains to show that A\Y\VX € CY.
Case (1): Let p € U°. Since suppyyr(p) C {p}, it follows from (2.1.2)
that vy r(p) € Lye = LCY. Thus, by the adjointness of (v, A\V), we have

RHompg(k(p), A\YAYX) = RHompz(yys(p), \Y X) = 0.

This implies that cosupp A\ A\VX C U, i.e., \YAUX € CY.

Case (2): Since U° is specialization-closed, the case (1) yields an isomor-
phism AV AV = AUV Furthermore, setting W = (U°NV)UU, we see that
U NV is specialization-closed in W, and W\(U°NV) = U. Hence we have
ANV X) 2 \UVAU X = 0, by Corollary 2.3.2. It then follows from
Lemma 2.3.1 that A\VA\VX € 1CV" = CVY. ]

Remark 2.3.5. For arbitrary subsets W, and W; of Spec R, Remark 2.2.7
(ii) and Proposition 2.3.4 yield the following isomorphisms;

)\WO)\Wl ~ )\WOAWOS)\Wl ~ )\WO)\Wosﬂwl
AW AW o2 \Wo\WATAWL o AWl \Ws,
The next result is a corollary of (2.2.8), (2.2.9) and Proposition 2.3.4.

Corollary 2.3.6. Let S be a multiplicatively closed subset of R and a be an
ideal of R. We set W =V (a) N Us. Then we have

MW =LA@ (—op S7IR).

Since V(p)NU(p) = {p} for p € Spec R, as a special case of this corollary,
we have the following result.
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Corollary 2.3.7. Let p be a prime ideal of R. Then we have
AP LAV(P)(_ ®@r Ry).

The next lemma follows from this corollary and Lemma 2.2.4.

Lemma 2.3.8. Let p be a prime ideal of R and F' be a flat R-module. Then
AP F s isomorphic to (D Ry)y , where @5 Ry is the direct sum of B-copies
of R, and B = dim, ) F g k(p).

Remark 2.3.9. Let W, and W, be subsets of Spec R. In general, A1 \"W2
need not be isomorphic to A2 \Wi - For example, let p, q € Spec Rwith p C q.
Then (A\PR)@pk(q) = RP®R/£(C|) 0 and (MM R)®gk(p) = q®R/£( ) # 0.
Then we see from Lemma 2.3.8 that MBAPYR = 0 and AP R £ 0.

Compare this remark with [3, Example 3.5]. See also Remark 1.3.7 (ii).

Let p be a prime ideal which is not maximal. Then A} is distinct from
AP = LAY® RHompg(R,, —), which is introduced in [4] To see this, let q be a
prime ideal with p C q. Then it holds that cosuppR ={q} C U(p)°. Hence
R belongs to CU®)°. Then we have RHompg(R,, R, q) = 0 since R, € £U(p) =
LcU “ by (2.1.2). This implies that A"R, = LAY® RHompg(R,, Ry) = 0,
while AP} R, =2 AWM} R £ 0 by Remark 2.3.9.

Theorem 2.3.10. Let W be a subset of Spec R. We assume that dim W = 0.
Then there are isomorphisms

AV e TT A 2 TT LA™ (- @ Ry).

peWwW peW

Proof. Let X € D, and consider the natural morphisms 7' X : X — MPIX
for p € W. Take the product of the morphisms, and we obtain a morphism
[ X = Tlew MPYX . Embed f into a triangle

C x Lo T 2x — ol
pew
Note that [T ey APPX € C. We have to prove that C' € *C". For this

purpose, take any prime ideal q € W. Then {q} is specialization-closed in
W, because dim W = 0. Hence we have [[,cyn () AP X e cWMak C Letad)

by Corollary 2.3.2. Thus an isomorphism )\{q}(Hpew AMPYX) 22 Mak X holds.

Then it is seen from the triangle above that M%C = 0 for all ¢ € W,
so that C € +C%, see Remark 2.2.7 (i). Therefore Lemma 2.2.6 yields
AWX Hpew MPY X The second isomorphism in the theorem follows from
Corollary 2.3.7. O
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Example 2.3.11. Let W be a subset of Spec R such that W is an infinite
set with dimW = 0. Let X be a complex with cosupp X = {p} for
each p € W. We take p € W. Since dimW = 0, it holds that X3 ¢
CV®)* for any q € W\{p}. Furthermore, Lemma 2.3.1 implies that C"®)°
is equal to *CY®  which is closed under arbitrary direct sums. Thus it
holds that B,y () Xtab g ¢V = LeV) C Leth Therefore, setting

Y = @pew X{p}, we have APY = X} Tt then follows from Theorem

2.3.10 that
AWy o~ H APty o~ H x e}
pew peWw

Under this identification, the natural morphism ¥ — A"Y coincides with
the canonical morphism €,y Xt [Toew X1r},

Remark 2.3.12. Let W, X} be as in Example 2.3.11, and suppose that
each X} is an R-module. Then @peW XY isnot in CV, because the natural
morphism P, X - )‘W(@pew X1}) is not an isomorphism. Hence
the cosupport of @peW X} properly contains W. In particular, setting
X1} = k(p), we have W C cosupp @D, cw #(p). Similarly, we can prove that
W C supp [ [,y #(p). The first author noticed these facts through discussion
with Srikanth Iyengar.

It is possible to give another type of examples, by which we also see that a
colocalizing subcategory of D is not necessarily closed under arbitrary direct
sums. Suppose that (R, m) is a complete local ring with dim R > 1. Then
we have R 2~ R € CV(™ . However the free module @Dy R is never m-adically
complete, so that @y R is not isomorphic to AY™ (@, R). Hence Py R is
not in ¢V,

For a subset W of Spec R, W’ denotes the generalization closure of W,
which is the smallest generalization-closed subset of Spec R containing W.
In addition, for a subset W, C W, we say that W) is generalization-closed
in Wit WnU(p) C W for any q € Wi. This is equivalent to saying that
wnw’ =w.

We extend Proposition 2.3.4 to the following corollary, which will be used
in a main theorem of this section.

Corollary 2.3.13. Let Wy and Wy be arbitrary subsets of Spec R. Suppose
that one of the following conditions hold:

(1) Wy is specialization-closed in Wy U W,

(2) Wy is generalization-closed in Wy U Wy.
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Then we have an isomorphism
)\Wo)\Wl ~ )\WgﬂWl.
Proof. Set W = Wy U W;. By the assumption, we have
Wo NW =W, or WnW," =W,.
Therefore, it holds that
Wosmwl :WOOW1 or Woﬂng:W[)mWL

Hence this proposition follows from Remark 2.3.5 and Remark 2.2.7 (ii). O
Remark 2.3.14. (i) Let W, and W be subsets of Spec R with W, C W. Un-
der the isomorphism Ao AW =2 \Wo by Remark 2.2.7 (ii), there is a morphism
pWoAW AW \Wo,

(ii) Let Wy and W, be subsets of Spec R. Let X € D. Since n""1 :

idp — A1 is a morphism of functors, there is a commutative diagram of the
following form:

WOX
X RN AWo x
J{nwlx lnwl )\WOX
AW1pWo X
A 2T AW We x

Now we prove the following result, which is the main theorem of this
section.

Theorem 2.3.15. Let W, Wy and Wy be subsets of Spec R with W = Wy U
Wi. Suppose that one of the following conditions holds:

(1) Wy is specialization-closed in W ;
(2) Wi is generalization-closed in W.
Then, for any X € D, there is a triangle of the following form;
WX Ly AWMix @AW x L AW X AWX]],
where f and g are morphisms represented by the following matrices;
AT X Wi, Wi Wi\ W,
f:<nW0AWX>’ g:()\ Vo X (=1) - gMIAWe X ).
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Proof. We embed the morphism ¢ into a triangle
C 2 WX g\Wox 2,5 \Wi\Wx — - C1].

Notice that C' € CV since C"o,C"* C CW. By Remark 2.3.14, it is easily
seen that g - f = 0. Thus there is a morphism b : A" X — C making the
following diagram commutative:

WYX X —— 0 —— AVX[
2316) | |7 | o
C s WX g\Wx L AW\ x 5 (C[1]

We only have to show that b is an isomorphism. To do this, embedding the
morphism b into a triangle

b

(2.3.17) 7 —— MWX s C s Z[1],
we prove that Z = 0. Since \WX,C € CV, Z belongs to C". Hence it
suffices to show that Z € +C".

First, we prove that A"1b is an isomorphism. We employ a similar argu-
ment to [3, Theorem 7.5]. Consider the following sequence
(2.3.18) WX Ly WX @Ay L \Wi\Woy,
and apply A1 to it. Then we obtain a sequence which can be completed
to a split triangle. The triangle appears in the first row of the diagram
below. Moreover, A" sends the second row of the diagram (2.3.16) to a split
triangle, which appears in the second row of the the diagram below.

1% AIF W Wi\ W, Mg W w 0 0%
AX 5 MM X @ AN X = Ao X —— A1 X

. | [

W MWia Wi \ W, Mg W\ w 0 W
AC — MM X AN X —= AN X —— A
Since this diagram is commutative, we conclude that A5 is an isomorphism.
Next, we prove that A"ob is an isomorphism. Thanks to Corollary 2.3.13,
we are able to follow the same process as above. In fact, the corollary im-
plies that AWoAWr = \WoWi - Thys applying A" to the sequence (2.3.18),
we obtain a sequence which can be completed into a split triangle. Further-
more, \"? sends the second row of the diagram (2.3.16) to a split triangle.
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Consequently we see that there is a morphism of triangles:

Ao x A0 aworwa x gy awo x AT09 om0 o xy]

lAWOb H ‘ l/\WObU]

Ao A0 AW x gy W X009, awenwiy 0, Aoy

Therefore A"°b is an isomorphism.

Since we have shown that A"°b and A"'b are isomorphisms, it follows
from the triangle (2.3.17) that \"°Z = A\W1Z = 0. Thus we have Z € +C"V
by Remark 2.2.7 (i). O

Remark 2.3.19. Let f, g and a as above. Let b : X — A"1X ¢ A\Wo X be
a morphism induced by "1 X and n""0X. Then ¢ - h = 0 by Remark 2.3.14
(ii). Hence there is a morphism &' : X — C' such that the following diagram
commutative:

X —— X — 0 — X[

bk L

C = WixgMWx L \Wi\Wx - C[1]

We can regard any morphism & making this diagram commutative as the
natural morphism n"X. In fact, since \Wh = f, applying A" to this di-
agram, and setting Mo’ = b, we obtain the diagram (2.3.16). Note that
b-n"WX = b. Moreover, the above proof implies that b : AW X — (' is an
isomorphism. Thus we can identify & with nV' X under the isomorphism b.

We give some examples of Theorem 2.3.15.

Example 2.3.20. (1) Let « be an element of R. Recall that \V®) = LAY
by (2.2.9). We put S = {2"|n>0}. Since V(z)¢ = Us, it holds that
AV@ = \Us = (-) @ R, by (2.2.8). Set W = SpecR, W, = V() and
Wy = V(z)¢. Then the theorem yields the following triangle

R —— R, ® R, — (R,)). — R[]

(2) Suppose that (R, m) is a local ring with p € Spec R and having dim R/p =
1. Setting W = V(p), Wy = V(m) and W; = {p}, we see from the theorem
and Corollary 2.3.7 that there is a short exact sequence

—

0 >y R \Rp69§—>(f2)p—>0.
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Actually, this gives a pure-injective resolution of R}, see Section 9. Moreover,
if R is a 1-dimensional local domain with quotient field @), then this short
exact sequence is of the form

0 s R Q3R —— R®pQ — 0.

By similar arguments to Proposition 2.3.4 and Corollary 2.3.13, one can
prove the following proposition, which is a generalized form of Proposition
1.3.1.

Proposition 2.3.21. Let Wy and Wy be arbitrary subsets of Spec R. Suppose
that one of the following conditions hold:

(1) Wy is specialization-closed in Wy U Wy,
(2) Wi is generalization-closed in Wy U Wy.

Then we have an isomorphism

I
TWo YW1 = YWonWy -

As with Theorem 2.3.15, it is possible to prove the following theorem, in
which we implicitly use the fact that vy, yw = yw, if Wo C W (cf. Remark
1.3.7 ().

Theorem 2.3.22. Let W, Wy and Wy be subsets of Spec R with W = Wy U
W1. Suppose that one of the following conditions holds:

(1) Wy is specialization-closed in W ;
(2) Wi is generalization-closed in W.

Then, for any X € D, there is a triangle of the following form;

f
Y X —— X @ X —2— ywX —— Yy X[1],

where f and g are the morphisms represented by the following matrices;

YW Ewy X
f= o y 9= ( 5W17WX €W07WX )
(1) - ew, yw, X

Remark 2.3.23. As long as we work on the derived category D, Theorem
2.3.15 and Theorem 2.3.22 generalize Mayer-Vietoris triangles in the sense
of Benson, Iyengar and Krause [3, Theorem 7.5], in which 7y and Ay are
written as [y and Ly respectively for a specialization-closed subset V' of

Spec R.
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2.4 Projective dimension of flat modules

As an application of results in Section 3, we give a simpler proof of a classical
theorem due to Gruson and Raynaud.

Theorem 2.4.1 ([19, II; Corollary 3.2.7]). Let F' be a flat R-module. Then
the projective dimension of F is at most dim R.

We start by showing the following lemma.

Lemma 2.4.2. Let I be a flat R-module and p be a prime ideal of R. Suppose
that X € C*}Y. Then there is an isomorphism

RHomp(F, X) = [ X,
B

where B = dim, ) F Qg k(p).

Proof. Since M} : D — CW} is a left adjoint to the inclusion functor
Cl*t < D, we have RHomp(F, X) = RHomz(APF, X). Moreover it fol-
lows from Lemma 2.3.8 that APWF =~ (@, R,)) = APH(@5R), where
B = dim, ) F' ®g k(p). Therefore we obtain isomorphisms RHomp(F, X) =
RHomp(AWH (@4 R), X) = RHomgz(Py R, X) 2 [[5 X. O

Let a,b € Z U {£o0} with a < b. We write DY for the full subcategory
of D consisting of all complexes X of R-modules such that H*(X) = 0 for
i ¢ la,b] (cf. [26, Notation 13.1.11]). For a subset W of Spec R, max W
denotes the set of prime ideals p € W which are maximal with respect to
inclusion in W.

Proposition 2.4.3. Let F' be a flat R-module and X € D0 Suppose
that W is a subset of Spec R such that n = dim W s finite. Then we have
Extz(F,A\WX) =0 fori>n.

Proof. We use induction on n. First, we suppose that n = 0. It then holds
that AW X 2 [Tcp AW X = ] LAY® X, € D0 by Theorem 2.3.10.
Hence, noting that RHompg(F, A" X) = [] .,y RHomg(F, AP} X), we have
Ext’ (F, AW X) =0 for i > 0, by Lemma 2.4.2.

Next, we suppose n > 0. Set Wy = maxW and W; = W\W,. By
Theorem 2.3.15, there is a triangle

WX s WX @A X s AWMy AWXT],
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Note that dim Wy = 0 and dim W; = n — 1. By the argument above, it holds
that Ext’(F,A"0X) = 0 for i > 0. Furthermore, since X, \"oX € D=0,
we have Exth(F,A\"1X) = Exth(F, A\W1AWoX) = 0 for i > n — 1, by the
inductive hypothesis. Hence it is seen from the triangle that Ext’ (F, \W X)) =
0 for ¢ > n. N

Proof of Theorem 2.4.1. We may assume that d = dim R is finite. Let M
be any R-module. We only have to show that Ext%(F, M) = 0 for i > d.
Setting W = Spec R, we have dimW = d and M = AWM. It then follows
from Proposition 2.4.3 that Extly(F, M) = Extyy(F, AW M) =0fori >d. O

2.5 Cotorsion flat modules and cosupport

In this section, we summarize some basic facts about cotorsion flat R-modules.

Recall that an R-module M is called cotorsion if Extp(F, M) = 0 for
any flat R-module F. This is equivalent to saying that Ext’(F, M) = 0 for
any flat R-module F' and any ¢ > 0. Clearly, all injective R-modules are
cotorsion.

A cotorsion flat R-module means an R-module which is cotorsion and flat.
If F'is a flat R-module and p € Spec R, then Corollary 2.3.7 implies that
M} F is isomorphic to F,, which is a cotorsion flat R-module by Lemma 2.4.2
and Proposition 2.2.1. Moreover, recall that ﬁ is isomorphic to the p-adic
completion of a free R,-module by Lemma 2.3.8.

We remark that arbitrary direct products of flat R-modules are flat, since
R is Noetherian. Hence, if T}, is the p-adic completion of a free 12, module for
each p € Spec R, then HpESpec r I} is a cotorsion flat R-module. Conversely,
the following fact holds.

Proposition 2.5.1 (Enochs [13]). Let F' be a cotorsion flat R-module. Then
there 1s an isomorphism
F = T,
pESpec R

where T, is the p-adic completion of a free R, module.

Proof. See [13, Theorem] or [15, Theorem 5.3.28]. O

Let S be a multiplicatively closed subset of R and a be an ideal of R. For
a cotorsion flat R-module F, we have RHomg(S™'R, F') & Homg(S™'R, F)
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and LAY® F =~ AV@F Moreover, by Proposition 2.5.1, we may regard F

as an R-module of the form [] g .. Ts- Then it holds that

(252) RHomgp(S™'R, [[ T,) ®Homa(S™'R, [[ T) =[] T

pESpec R pESpec R peUs

This fact appears implicitly in [47, §5.2]. Furthermore we have

(2.5.3) LAY I mo=A"™ I ne ] &
pESpec R pESpec R peV(a)

One can show (2.5.2) and (2.5.3) by Lemma 2.3.1 and (2.2.9). See also the
recent paper [44, Lemma 2.2] of Thompson.

Let F' be a cotorsion flat R-module with cosupp F© C W for a subset W
of Spec R. Then it follows from Proposition 2.5.1 that F' is isomorphic to an
R-module of the form [y, 7. More precisely, using Lemma 2.2.4, (2.5.2)
and (2.5.3), one can show the following corollary, which is essentially proved
in [15, Lemma 8.5.25].

Corollary 2.5.4. Let F' be a cotorsion flat R-module, and set W = cosupp F'.
Then we have an isomorphism

F=1]7T.

pewW

where Ty, is of the form (g, Ry), with B, = dimy) Hompg(Ry, I') ®r £(p).

2.6 Complexes of cotorsion flat modules and
cosupport

In this section, we study the cosupport of a complex X consisting of cotorsion
flat R-modules. As a consequence, we obtain an explicit way to calculate
X and AV X for a specialization-closed subset V' of Spec R.

Notation 2.6.1. Let W be a subset of Spec R. Let X be a complex of
cotorsion flat R-modules such that cosupp X¢* C W for all i € Z. Under
Corollary 2.5.4, we use a presentation of the following form;

X=(-=>[][n-11%"— ).

peW peW

where X’ = [, cspec g Ty and T, is the p-adic completion of a free R,-module.
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Remark 2.6.2. Let X = (- = [[cspecr Ty = [lpespecr T — -+) be a
complex of cotorsion flat R-modules. Let V' be a specialization-closed subset
of Spec R. By Lemma 2.3.1, we have Hompg([[,cy. Ty, [[,cy 7,7') = 0 for

all i € Z. Therefore Y = (- = [[cpe Ty = [ley T, — --) is a

subcomplex of X, where the differentials in Y are the restrictions of ones in
X.

We say that a complex X of R-modules is left (resp. right) bounded if
X" =0 for i < 0 (resp. i > 0). When X is left and right bounded, X is
called bounded.

Proposition 2.6.3. Let W be a subset of Spec R and X be a complex of
cotorsion flat R-modules such that cosupp X' C W for all i € Z. Suppose
that one of the following conditions holds;

1) X is left bounded;

)
2) W is equal to V(a) for an ideal a of R;
3) W is generalization-closed;

)

(
(
(
(4

dim W s finite.

Then it holds that cosupp X C W, i.e., X € CWV.

To prove this proposition, we use the next elementary lemma. In the
lemma, for a complex X and n € Z, we define the truncations 7, X and
T-nX as follows (cf. [22, Chapter I, §7]):

TenX=(—=X"1T 3 X" 50—--)
TonX = (- =0 — X" 5 X2 .0

Lemma 2.6.4. Let W be a subset of Spec R. We assume that 7<, X € CV
(resp. Ts,X € Lw) for allm > 0 (resp. n < 0). Then we have X € CV
(resp. X € Ly ).

Recall that CV' (resp. Ly ) is closed under arbitrary direct products
(resp. sums). Then one can show this lemma by using homotopy limit (resp.
colimit), see [5, Remark 2.2, Remark 2.3]. O

Proof of Proposition 2.6.3. Case (1): We have 7<,X € C" for all n > 0,
since 7<, X are bounded. Thus Lemma 2.6.4 implies that X € CV.

Case (2): By (2.2.9), Proposition 2.2.5 and (2.5.3), it holds that \V(®) X =
LAY® X >~ AV@X =~ X. Hence X belongs to CV(®.
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Case (3): It follows from the case (1) that 7.,X € C" for all n < 0.
Moreover, we have C = Ly by Lemma 2.3.1. Thus Lemma 2.6.4 implies
that X € Ly =CW.

Case (4): Under Notation 2.6.1, we write X* = [,y T, for i € Z. Set
n = dim W, and use induction on n. First, suppose that n = 0. It is seen
from Remark 2.6.2 that X is the direct product of complexes of the form
Vb = (oo - TP — T — ...) for p € W. Furthermore, by the cases
(2) and (3), we have cosupp Y} C V(p) N U(p) = {p}. Thus it holds that
X 2 [lew Y® eC™.

Next, suppose that n > 0. Set Wy = max W and W; = W\W,. We write
V== ILew Ty = pew, Ty — -++), which is a subcomplex of X
by Remark 2.6.2. Hence there is a short exact sequence of complexes;

0 > Y > X XY — 0,

where X/Y = (- = [Tyew, Ty = [loew, Ty — -+ ). Note that dim Wy =
0 and dim W; = n — 1. Then we have cosupp X/Y C Wy, by the argument
above. Moreover the inductive hypothesis implies that cosuppY C Wj.
Hence it holds that cosupp X C Wy U W; = W. O]

Under some assumption, it is possible to extend the condition (4) in
Proposition 2.6.3 to the case where dim W is infinite, see Remark 2.7.15.

Corollary 2.6.5. Let X be a complex of cotorsion flat R-modules and W be
a specialization-closed subset of Spec R. Under Notation 2.6.1, we write

X=(-— H Ty — H T — ).

peESpec R peSpec R

Suppose that one of the conditions in Proposition 2.6.3 holds. Then it holds
that

weX (= [[ = [ T =),

peWe peWwe
WX 2. - HT;—> l_IT;.+1 — ).
peWw peW

Proof. Since Y = (--+ = [lyewe Ty = [lyewe Ty — -++) is a subcomplex
of X by Remark 2.6.2, there is a triangle

Y X y XY —— Y1,
where X/Y = (- = [[,ew Ty = [lyew T, — -+ ). By Proposition 2.6.3,

we have X/Y € C". Moreover, since W¢ is generalization-closed, it holds
that Y € C"° = +C" by Proposition 2.6.3 and Lemma 2.3.1. Therefore we
conclude that vy X =Y and AW X = X/Y by Lemma 2.2.6. O
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Let X be a complex of cotorsion flat R-modules and S be a multiplica-
tively closed subset of R. We assume that X is left bounded, or dim R is
finite. It then follows from the corollary and (2.5.2) that

WX (= [[Th—= [[ ™ =) = Homp(S™'R, X).
peUs peUs

We now recall that vy, = RHompg(S 'R, —), see Proposition 1.3.1. Hence

it holds that RHomg(S 'R, X) = Hompg(S™'R, X). This fact also follows
from Lemma 2.9.1.

2.7 Localization functors via Cech complexes

In this section, we introduce a new notion of Cech complexes to calculate
M X, where W is a general subset W of Spec R and X is a complex of flat
R-modules.

We first make the following notations.

Notation 2.7.1. Let IV be a subset of Spec R with dimW = 0. We define
a functor A" : Mod R — Mod R by

A= H AV(p)(_ ®r Ry).
peWw

For a prime ideal p in W, we write 71"} : idyeq g — AP = AV®)(— @5 R,)
for the composition of the natural morphisms idyear — (—) ®r R, and
(=) ®r Ry = AV®) (= ®@g R,). Moreover, "V : idyoar — AV = [Lew e}
denotes the product of the morphisms 7} for p € W.

Notation 2.7.2. Let {W; }o<i<, be a family of subsets of Spec R, and suppose
that dim W; = 0 for 0 < i < n. For a sequence (i,,...11,79) of integers with
0<ipg <ty <+ <ty <N, Wwe write

E\(im,...il,io) — S\Wim . S\Wil E\Wio.
If the sequence is empty, then we use the general convention that \() =

idyiod . For an integer s with 0 < s < m, 7% @ idyoar — AU induces a
morphism
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where we mean by Z: that 7, is omitted. We set

o1 . H S\(im_l,...,io) N H S\(im ..... i0)

0<ip<-<im-1<n 0<ip<-<im<n

to be the product of the morphisms A(imsissio) s N(imio) pyyltiplied by
1)

Remark 2.7.3. Let Wy, W; C Spec R be subsets such that dim W, =
dimW; = 0. As with Remark 2.3.14 (ii), the following diagram is com-
mutative:

. "o W,
1dModR — Ao

lﬁwl lﬁwl AWo

_ AW mW _ _
)\W1 A 1” 0 )\Wl)\Wo

Definition 2.7.4. Let W = {W;}o<;<,, be a family of subsets of Spec R, and
suppose that dimW; = 0 for 0 < ¢ < n. By Remark 2.7.3, it is possible to
construct a Cech complex of functors of the following form;

H 5\(2‘0)8_0> H Nvio) _y ..y H N (in—t5ees io)a”_*1>/—\(n ,,,,, o)’

0<ip<n 0<ip<i1<n 0<ip<-<ip—1<n

which we denote by LW and call it the Cech complex with respect to W.

For an R-module M, LW M denotes the complex of R-modules obtained
by LY in a natural way, where it is concentrated in degrees from 0 to n. We
call LYM the Cech complex of M with respect to W. Note that there is a
chain map ("M : M — LM induced by the map M — [To<ig<n A6 M in
degree 0, which is the product of fWio M : M — XM for 0 < iy < n.

More generally, we regard every term of LW as a functor C(Mod R) —
C'(Mod R), where C'(Mod R) denotes the category of complexes of R-modules.
Then LW naturally sends a complex X to a double complex, which we de-
note by LWX. Furthermore, we write tot LY X for the total complex of
LWX. The family of chain maps ¢V X7 : X7 — LW XJ for j € Z induces a
morphism X — LW X as double complexes, from which we obtain a chain
map (VX : X — tot LW X,

Remark 2.7.5. (i) We regard tot L" as a functor C'(Mod R) — C(Mod R).
Then ¢V is a morphism idonvod Ry — tot LYW of functors. Moreover, if M is
an R-module, then tot LM = LW M.
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(i) Let a,b € Z U {£oo} with @ < b and X be a complex of R-modules
such that X* = 0 for ¢ ¢ [a,b]. Then it holds that (tot LW X)? = 0 for
i ¢ [a,b+ n], where n is the number given to W = {W;}o<;<n.

(iii) Let X be a complex of flat R-modules. Then we see that tot L' X
consists of cotorsion flat R-modules with cosupports in | J,,,, Wi.

Definition 2.7.6. Let W be a non-empty subset of Spec R and {W;}o<i<n
be a family of subsets of W. We say that {W;}o<i<, is a system of slices of
W if the following conditions hold:

L W= Uogign Wi;
2. W,nW; =0 if i # j;
3. dimW,; =0 for 0 <i <n;

4. W is specialization-closed in (J;< ., Wj for each 0 <7 <n.

Compare this definition with the filtrations discussed in [22, Chapter IV;
§3].

If dim W is finite, then there exists at least one system of slices of W.
Conversely, if there is a system of slices of W, then dim W is finite.

Proposition 2.7.7. Let W be a subset of Spec R and W = {W, }o<i<n be a
system of slices of W. Then, for any flat R-module F, there is an isomor-
phism in D;

MWE~VE
Under this isomorphism, (" F : F — LWF coincides with n'VF : F — \WVF
m D.

Proof. We use induction on n, which is the number given to W = {W; }o<;<p.
Suppose that n = 0. It then holds that LW F = AWoF = \WF and (VF =
Vo ' = "V F. Hence this proposition follows from Theorem 2.3.10.

Next, suppose that n > 0, and write U = |, .,.,, W;. Setting U;,_; = W},
we obtain a system of slices U = {U;}g<i<n_1 of U. Consider the following
two squares, where the first (resp. second) one is in C'(Mod R) (resp. D):

F0R Swp Foo20E g
léUF lKUS\WOF anF an)\WOF
Vg TR ruswep N F AE S uawe
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By Remark 2.7.5 (i) and Remark 2.3.14 (ii), both of them are commutative.
Moreover, A\Un"oF' is the unique morphism which makes the right square
commutative, because AU is a left adjoint to the inclusion functor CY <
D. Then, regarding the left one as being in D, we see from the inductive
hypothesis that the left one coincides with the right one in D.

Let g: LYF@ M F — LYA\WoF and h : F — LVF @ Ao F be chain maps
represented by the following matrices;

VF
5 — UsWo _ .U_Wo _:
g=( LVi"F (=1)-("A%X ), h (nWOF)’

Notice that the mapping cone of g[—1] is nothing but LW F. Then we can
obtain the following morphism of triangles, where it is regarded as being in
D:

(2.7.8)
Fl-1 —— Fl-1] — 0 — F

lEWF[—l] lﬁ[fl] l lEWF
LYE[1] —— (LVF @ \Wop)[—1] 22 poawop—1] — ¥R
Therefore, by Theorem 2.3.15 and Remark 2.3.19, there is an isomorphism
MW F =~ LWF such that /" F coincides with nW F' under this isomorphism. [J

The following corollary is one of the main results of this chapter.

Corollary 2.7.9. Let W and W = {W;}o<i<n be as above. Let X be a
complez of flat R-modules. Then there is an isomorphism in D;

WX ~tot LYX.

Under this isomorphism, ("X : X — tot LW X coincides with n"W X : X —
WX inD.

Proof. We embed /"X : X — tot LY X into a triangle

WX

C y X tot LY X —— C[1].

Proposition 2.6.3 and Remark 2.7.5 (iii) imply that tot LY X € C". Thus it
suffices to show that A\"¢C' = 0 for each i, by Lemma 2.2.6 and Remark 2.2.7
(i). For this purpose, we prove that AW/ X is an isomorphism in D. This
is equivalent to showing that A"/ X is a quasi-isomorphism, since X and
tot LY X consist of flat R-modules.
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Consider the natural morphism X — LY X as double complexes, which
is induced by the chain maps "X/ : X/ — LWXJ for j € Z. To prove
that A"V X is a quasi-isomorphism, it is enough to show that A"W:«¢/W X7 is
a quasi-isomorphism for each j € Z, see [26, Theorem 12.5.4]. Furthermore,
by Proposition 2.7.7, each (W X7 coincides with nW X7 : X7 — AW XJ in
D. Since W; C W, it follows from Remark 2.2.7 (ii) that A"ipV' X7 is an
isomorphism in D. This means that \W¢/W X7 is a quasi-isomorphism. [

Let W be a subset of Spec R, and suppose that n = dim W is finite.
Then Corollary 2.7.9 implies AW R € DO We give an example such that
H"(A\WR) #0.

Example 2.7.10. Let (R, m) be a local ring of dimension d > 1. Then we
have dim V(m)¢ = d — 1. By Lemma 2.2.6, there is a triangle

TR R » WV R —— qym R[],

Since RI'ym) = Yvm) by (2.2.10), Grothendieck’s non-vanishing theorem
implies that H?(yy(mR) is non-zero. Then we see from the triangle that
HIH AV R) £ 0.

We denote by D~ the full subcategory of D consisting of complexes X
such that H*(X) = 0 for ¢ > 0. Let W be a subset of Spec R and X € D.
If dim W is finite, then we have AW R € D~ by Corollary 2.7.9. However, as
shown in the following example, it can happen that A" R ¢ D~ when dim W
is infinite.

Example 2.7.11. Assume that dim R = +o00, and set W = max(Spec R).
Then it holds that dimW = 0 and dim W*¢ = +o00. Since each m € W is
maximal, there are isomorphisms

yw = Ry = @ RFV(m) .
meWw

Thus we see from Example 2.7.10 that yw R ¢ D~. Then, considering the
triangle

Yw R > R s W'R —— ’wa[l],
we have \W'R ¢ D~.
Let W be a subset of Spec R and X € CW. Then WX : X — \WX is

an isomorphism in D. Thus Remark 2.7.5 (iii) and Corollary 2.7.9 yield the
following result.
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Corollary 2.7.12. Let W be a subset of Spec R, and W = {W, }o<i<n, be a
system of slices of W. Let X be a complex of flat R-modules with cosupp X C
W. Then the chain map ("X : X — tot LV X is a quasi-isomorphism, where
tot LW X consists of cotorsion flat R-modules with cosupports in W .

Remark 2.7.13. If d = dim R is finite, then any complex Y is quasi-
isomorphic to a K-flat complex consisting of cotorsion flat R-modules. To
see this, set W; = {p € SpecR |dim R/p =i} for 0 < i < d. Then W =
{Wi}o<i<a is a system of slices of Spec R. We take a K-flat resolution X
of Y such that X consists of flat R-modules. Corollary 2.7.12 implies that
(WX : X = tot LW X is a quasi-isomorphism, and tot LY X consists of cotor-
sion flat R-modules. At the same time, the chain maps ¢V X : X — LW X
are quasi-isomorphisms for all ¢ € Z. Then it is not hard to see that the
mapping cone of /" X is K-flat. Thus tot LW X is K-flat.

By Proposition 2.6.3 and Corollary 2.7.12, we have the next result.

Corollary 2.7.14. Let W be a subset of Spec R such that dim W is finite.
Then a complex X € D belongs to CV if and only if X is isomorphic to
a complex Z of cotorsion flat R-modules such that cosupp Z° C W for all
1€ 7.

Remark 2.7.15. If dim W is infinite, it is possible to construct a similar
family to systems of slices. We first put Wy = maxW. Let i > 0 be
an ordinal, and suppose that subsets W; of W are defined for all j < i.
Then we put W; = max(W\ ;_; Wi). In this way, we obtain the smallest
ordinal o(W) satisfying the following conditions: (1) W' = Uy<;comr Wii
2) WinW; = 0if i # j; (3) dimW; < 0 for 0 < i < o(W); (4) W; is
specialization-closed in (J;<; ., W for each 0 <i < o(W).

One should remark that the ordinal o(W) can be uncountable in general,
see [18, p. 48, Theorem 9.8]. However, if R is an infinite dimensional com-
mutative Noetherian ring given by Nagata [31, Appendix Al; Example 1],
then o(W) is at most countable. Moreover, using transfinite induction, it is
possible to extend the condition (4) in Proposition 2.6.3 and Corollary 2.6.5
to the case where o(IV) is countable. One can also extend Corollary 2.7.14
to the case where o(1V) is countable.

Using Theorem 2.3.22 and results in §1.3, it is possible to give a similar

result to Corollary 2.7.9, for colocalization functors 7y and complexes of
injective R-modules.
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2.8 Cech complexes and complexes of finitely
generated modules

Let W be a subset of Spec R and W = {W,}o<;<, be a system of slices of
W. In this section, we prove that AWY is isomorphic to tot LY if YV is a
complex of finitely generated R-modules.

We denote by Dy, the full subcategory of D consisting of all complexes
with finitely generated cohomology modules, and set Dy, = D™ N Dg,. We
first prove the following proposition.

Proposition 2.8.1. Let W be a subset of Spec R such that dim W 1is finite.
Let XY € D. We suppose that one of the following conditions holds;

(1) X €D andY € Dg;

fg

(2) X is a bounded complex of flat R-modules and Y € Dy,.

Then there are natural isomorphisms

(e X)@%Y 2 e (X @5Y), WX)eLy 2\ (XehY).

For X € D and n € Z, we define the cohomological truncations o<, X
and 0-,X as follows (cf. [22, Chapter I; §7]):

ocnX = (- = X"2 5 X" 5 Kerdy —-0— )
J>nX:(---—>0—>Imd}—>X”+1—>X"+2_>...)

Proof of Proposition 2.8.1. Apply (—)®%Y to the triangle vy X — X —
AW X — yweX[1], and we obtain the following triangle;

(e X)@EY —— X @Y —— WX)hY —— (1 X) @5 Y][1].

Since suppyweX C W€ it holds that supp(ywX)®%Y C W€, that is,
(YweX) ®%Y € Lye. Hence it remains to show that (AW X) @k Y € CW| see
Lemma 2.2.6.

Case (1): We remark that X is isomorphic to a right bounded com-
plex of flat R-modules. Then it is seen from Corollary 2.7.9 that AW X
is isomorphic to a right bounded complex Z of cotorsion flat R-modules
such that cosupp Z° C W for all ¢ € Z. Furthermore, Y is isomorphic to
a right bounded complex P of finite free R-modules. Hence it follows that
X ®@%Y = Z®pg P, where the second one consists of cotorsion flat R-modules
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with cosupports in . Then we have X @3 Y = Z®@z P € C'V by Proposition
2.6.3.

Case (2): By Corollary 2.7.9, AW X is isomorphic to a bounded complex
consisting of cotorsion flat R-modules with cosupports in W. Thus it is
enough to prove that Z @z Y € CW for a cotorsion flat R-module Z with
cosupp Z C W.

We consider the triangle 0<,Y — Y — 0.,Y — 0<,Y[1] for an integer
n. Applying Z ®pr (—) to this triangle, we obtain the following one;

Z®R UgnY —_— Z@RY — Z®R 0’>nY e Z@RUSnY[l]

Let p € W¢. The case (1) implies that Z ®@g o<,Y € C for any n € Z, since
AV Z =~ 7. Thus, applying RHompg(x(p), —) to the triangle above, we have

RHOHIR(H(]J), Z Qn Y) = RHomR(ﬁ(p), 7 Qn O’>nY>.
Furthermore, taking a projective resolution P of k(p), we have
RHompg(k(p), Z ®g 0-,Y) = Homg(P, Z @ 0-,Y).

Let j be any integer. To see that RHompg(k(p),Z ®r Y) = 0, it suf-
fices to show that there exists an integer n such that H°(Hompg(P[j], Z ®g
0-,Y)) = 0. Note that P* = 0 for ¢ > 0. Moreover, each element of
H°(Hompg(P[j], Z ®r 0-,Y)) = Homp(P[j], Z ®r 0-,Y) is represented by a
chain map P[j] = Z ®go,Y . Therefore it holds that H°(Hompg(P[j], Z ®r
0-,Y)) =0if n > —j. O

Remark 2.8.2. (i) In the proposition, we can remove the finiteness condition
on dim W if W = V(a) for an ideal a. In such case, we need only use a-adic
completions of free R-modules instead of cotorsion flat R-modules.

(ii) If W is a generalization-closed subset of Spec R, then the isomor-
phisms in the proposition hold for any XY € D because vy is isomorphic
to RIye.

Let W be a subset of Spec R and W = {W,}o<;<, be a system of slices of
W. Let Y € Dy, By Proposition 2.8.1 and Proposition 2.7.7, we have

(2.8.3) MY 2 (AWR)@LY = (LYR)®rY.

Let F be a flat R-module and M be a finitely generated R-module. Then
we see from Lemma 2.2.3 that

WiF)@r M = \Vi(F ®r M).
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This fact ensures that (Am-0)R) @p M =2 \im--ivi) \f - Thus, if Y is a
complex of finitely generated R-modules, then there is a natural isomorphism

(2.8.4) (LVR)®rY = tot LY

in C(Mod R). By (2.8.3) and (2.8.4), we have shown the following proposi-
tion.

Proposition 2.8.5. Let W be a subset of Spec R and W = {W, }o<i<n be a
system of slices of W. Let'Y be a complex of finitely generated R-modules.
Then there is an isomorphism in D;

MY 2 ot LYY,

Under this identification, (VY Y — tot LY coincides with n'V'Y : Y —
AY in D.

We see from (2.8.4) and the remark below that it is also possible to give a
quick proof of this proposition, provided that Y is a right bounded complex
of finitely generated R-modules.

Remark 2.8.6. Let W be a subset of Spec R and W = {W,}o<i<n be a
system of slices of W. We denote by K(Mod R) the homotopy category of
complexes of R-modules. Note that tot LY induces a triangulated functor
K(Mod R) — K(Mod R), which we also write tot L. Then it is seen from
Corollary 2.7.9 that A\ : D — D is isomorphic to the left derived functor of
tot LY : K(Mod R) — K (Mod R).

Let W be a subset of Spec R such that n = dim W is finite. By Corollary
2.8.5, if an R-module M is finitely generated, then AW A/ € DI On
the other hand, since \V® = LAV® for an ideal a, it can happen that
Hi(AW M) # 0 for some i < 0 when M is not finitely generated, see Example
1.5.3.

Remark 2.8.7. Let n > 0 be an integer. Let a; be ideals of R and S5;
be multiplicatively closed subsets of R for 0 < ¢ < n. In Notation 2.7.2
and Definition 2.7.4, one can replace A = \Wi by AV(®)(— @5 S;'R), and
construct a kind of Cech complexes. For the Cech complex and AW with
W = Uy<jen(V(a;) N Usg,), it is possible to show similar results to Corollary
2.7.9 and Proposition 2.8.5, provided that one of the following conditions
holds: (1) V/(a;) NUs, is specialization-closed in (J;;,,(V (a;) NUs;) for each
0 <i <mn; (2) V(a;) NUs, is generalization-closed in (Jy<;;,(V (a;) N Us;) for
each 0 <7 <n.
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2.9 Cech complexes and complexes of pure-
injective modules

In this section, as an application, we give a functorial way to construct a
quasi-isomorphism from a complex of flat R-modules or a complex of finitely
generated R-modules to a complex of pure-injective R-modules.

We start with the following well-known fact.

Lemma 2.9.1. Let X be a complex of flat R-modules and 'Y be a complex of
cotorsion R-modules. We assume that one of the following conditions holds:

(1) X is a right bounded and Y is left bounded;
(2) X is bounded and dim R is finite.
Then we have RHompg(X,Y) = Hompg(X,Y).

One can prove this lemma by [26, Theorem 12.5.4] and Theorem 2.4.1.

Next, we recall the notion of pure-injective modules and resolutions. We
say that a morphism f : M — N of R-modules is pure if f ®r L is a
monomorphism in Mod R for any R-module L. Moreover an R-module P is
called pure-injective if Hompg(f, P) is an epimorphism in Mod R for any pure
morphism f : M — N of R-modules. Clearly, all injective R-modules are
pure-injective. Furthermore, all pure-injective R-modules are cotorsion, see
[15, Lemma 5.3.23].

Let M be an R-module. A complex P together with a quasi-isomorphism
M — P is called a pure-injective resolution of M if P consists of pure-
injective R-modules and P? = 0 for ¢ < 0. It is known that any R-module
has a minimal pure-injective resolution, which is constructed by using pure-
injective envelopes, see [14] and [15, Example 6.6.5, Definition 8.1.4]. More-
over, if F'is a flat R-module and P is a pure-injective resolution of M, then
we have RHompg(F, M) = Hompg(F, P) by Lemma 2.9.1.

Now we observe that any cotorsion flat R-module is pure-injective. Con-
sider an R-module of the form (P p R,), with some index set B and a prime
ideal p, which is a cotorsion flat R-module. Writing Er(R/p) for the injective
hull of R/p, we have

(@ R,), = Homp(ERr(R/p), @ Er(R/p)),

see [15, Theorem 3.4.1]. Tensor-hom adjunction implies that Hompg (M, I)
is pure-injective for any R-module M and any injective R-module I. Hence
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(D5 Ry), is pure-injective. Thus we see that any cotorsion flat R-module is
pure-injective, see Proposition 2.5.1.

There is another example of pure-injective R-modules. Let M be a finitely
generated R-module. Using Five Lemma, we are able to prove an isomor-
phism

Homp, (Er(R/p), EDER(R/p)) @1 M

>~ Homp ( Hompg(M, Er(R/p)), @ Er(R/p)).

B

Therefore (P 5 R,), @rM is pure-injective; it is also isomorphic to (P ; M,),
by Lemma 2.2.3. Moreover, Proposition 2.8.1 implies that

cosupp(ED M)} < {n}.

By the above observation, we see that Corollary 2.7.12, (2.8.4) and Propo-
sition 2.8.5 yield the following theorem, which is one of the main results of
this chapter.

Theorem 2.9.2. Let W be a subset of Spec R and W = {W;}o<i<n be a
system of slices of W. Let Z be a complex of flat R-modules or a complex
of finitely generated R-modules. We assume that cosuppZ C W. Then
M7 o Z — tot LNZ is a quasi-isomorphism, where tot LW Z consists of
pure-injective R-modules with cosupports in W.

Remark 2.9.3. Let N be a flat or finitely generated R-module. Suppose
that d = dim R is finite. Set W; = {p € SpecR | dimR/p =17} and W =
{Wi;}o<i<a- By Theorem 2.9.2, we obtain a pure-injective resolution ("N :
N — LWN of N, that is, there is an exact sequence of R-modules of the
following form:

0-N— J[ XN— J] AN - = NN -0

0<io<d 0<io<i1<d

We remark that, in C(Mod R), LN need not be isomorphic to a mini-
mal pure-injective resolution P of N. In fact, when N is a projective or
finitely generated R-module, it holds that P = T .y No = MNON - (cf.
[46, Theorem 3] and [15, Remark 6.7.12]), while (LW N)? = J],; 4, A“N.
Furthermore, Enochs [14, Theorem 2.1] proved that if N is flat R-module,
then P’ is of the form [] ;. 7, for 0 < i < d (cf. Notation 2.6.1), where

Ws; ={peSpecR|dimR/p>i}.
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On the other hand, for a flat or finitely generated R-module N, the dif-
ferential maps in the pure-injective resolution L™ N are concretely described.
In addition, our approach based on the localization functor A" and the Cech
complex L% provide a natural morphism ¢ : idcod ry — tot LY which in-
duces isomorphisms in D for all complexes of flat R-modules and complexes

of finitely generated R-modules. The reader should also compare Theorem
2.9.2 with [44, Proposition 5.9].

We close this chapter with the following example of Theorem 2.9.2.

Example 2.9.4. Let R be a 2-dimensional local domain with quotient field
Q. Let W = {W, }p<i<2 be as in Remark 2.9.3. Then LY R is a pure-injective
resolution of R, and LW R is of the following form:

—

0-Qa([[ BoeR— (][ Bowe ®we [ @y— (][] By —0
peEW] peEW] peEW] peW
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3. Cosupports of affine rings

3.1 Introduction

This chapter is based on the author’s paper [35]. Let R be a commutative
Noetherian ring. We denote by D(R) the unbounded derived category of
R. Note that the objects of D(R) are complexes of R-modules, which are
cohomologically indexed;

X=( =X Xt 5 Xx* ...
The (small) support of X € D(R) is defined as
suppp X = {p € Spec R ‘ X ®@%k(p) #0 },

where k(p) = Ry /pR,. Let a be an ideal of R, and write I'y for the a-torsion
functor @HomR(R/a”, —) on the category Mod R of R-modules. Then we
have suppp Ry X C V(a) for any X € D(R).

The cosupport of X € D(R) is defined as

cosuppp X = { p € Spec R | RHompg(k(p), X) #0 }.

We write A® for the a-adic completion functor lim(— ®x R/a™) on Mod R.
Greenlees and May [21] proved that the left derived functor LA : D(R) —
D(R) is a right adjoin to RI'y : D(R) — D(R), see also [28, §4; p.69]. It
follows from the adjointness property that cosuppp LA* X C V(a) for any
X € D(R).

If M is a finitely generated R-module, Nakayama’s lemma implies that
suppr M = Suppy M = {p € Spec R | M, # 0 }. In particular, suppy R is
nothing but Spec R. However, it is not easy to compute cosuppy R in general.

Since LA® R = A°®R, the cosupport of AR is contained in V' (a). Hence
we have cosuppp C V(cg), where ¢g denotes the sum of all ideals a such
that R is a-adically complete. In [40, Question 6.13], Sather-Wagstaff and
Wicklein questioned whether the equality cosuppyp R = V(¢g) holds for any
commutative Noetherian ring R or not. Thompson [43, Example 5.6] gave
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a negative answer to this question. He proved that if k is a field and R =
E[X][Y], then cosuppg R is strictly contained in V'(c¢g). Moreover, it was
also shown that the cosupport of this ring is not Zariski closed.

Following [43], we say that a commutative Noetherian ring R has full-
cosupport if cosuppp R is equal to Spec R. Let k be a field and R be the
polynomial ring k[X7, ..., X,,] in n variables over k. Then, since cg = (0),
we expect that cosuppp R = Spec R. Indeed, this is true.

Theorem 3.1.1. Let k be a field and n be a non-negative integer. The
polynomial ring k[ X, ..., X,] has full-cosupport.

Surprisingly, this fact was known only in the case where n < 2 or k is
countable, see [43, Theorem 4.11]. See also [40, Question 6.16], [4, Proposi-
tion 4.18] and [20, Proposition 3.2].

We say that R is an affine ring over a field k if R is finitely generated as
a k-algebra. By Theorem 3.1.1, we can show the following corollary, which
is the main result of this chapter.

Corollary 3.1.2. Any affine ring over a field has full-cosupport.

In Section 2, we prove the two results above. Section 3 is devoted to
explain some relationship between cosupport and minimal pure-injective res-
olutions. Section 4 contains applications of the main theorem. Let k& be a
field with |k| = N; and R be an affine ring over k such that dim R > 2. We
specify all terms of a minimal pure-injective resolution of R. As a corollary,
it is possible to give a partial answer to Gruson’s conjecture. Suppose that
R is a polynomial ring k[X7,..., X,,] over a field k. The conjecture states
that Extl (R, R) # 0 if and only if i = inf{s + 1,n}, where s is defined by
the equation |k| = Ny if £ is infinite, and s = 0 otherwise. We prove that this
conjecture is true when s = 1.

Acknowledgements. The author is grateful to his supervisor Yuji Yoshino
for valuable discussions and suggestions. The author also thanks Srikanth
Iyengar for many helpful comments.

3.2 Proof of main result

We start with the following lemma.

Lemma 3.2.1 (Thompson [43, Lemma 4.4]). Let ¢ : R — S be a morphism
of commutative Noetherian rings. Suppose that o is finite, i.e., S is finitely
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generated as an R-module. Let f : Spec S — Spec R be the canonical map
defined by f(q) = ¢ (q) for q € Spec S. Then, there is an equality

cosuppg S = f ' (cosuppy R).

In other words, for q € Spec .S, we have q € cosuppg S if and only if f(q) €
cosuppp RR.

In the next section, we will give an outline of the proof of this lemma,
provided that R has finite Krull dimension.

Remark 3.2.2. Let R be a commutative Noetherian ring. We denote by Og
the zero element of R. The following statements hold by Lemma 3.2.1.

(i) Let p be a prime ideal of R. Then we have (Og/,) € cosuppp,, R/p if
and only if p € cosuppy R.

(ii) Let S be an integral domain. Suppose that there is a finite morphism
¢ : R — S of rings such that ¢ is an injection. Then we have (0g) €
cosuppg S if and only if (0g) € cosuppy R.

We next recall a well-known description of local cohomology via Cech
complexes. Let R be a commutative Noetherian ring and a be an ideal of
R. Let © = {xy,...,z,} be a system of generators of a. In D(R), RI'y R is
isomorphism to the (extended) Cech complex with respect to x;

0—R— P R, — P Rew, — - — Ry, — 0.

1<i<n 1<i<j<n

Here, for an element y € R\{Og}, R, denotes the localization of R with
respect to the multiplicatively closed set { y" |n > 0}. See [25, Lecture 7,
§4] for details.

Remark 3.2.3. Let k be a field and n be a non-negative integer. Set R =
E[X1,...,X,] and S = k[Xy,..., X,41]. Take y € R\{Og}. Then S/(1 —
yX,41) is isomorphic to R, as a k-algebra.

Let R be a commutative Noetherian ring. When R is an integral domain,
we denote by Q(R) the quotient field of R. Moreover, for p € Spec R,
Er(R/p) denotes the injective envelope of R/p.

Proof of Theorem 3.1.1. Set R = k[X;,...,X,] and take p € Spec R. By
Remark 3.2.2 (i), (Og/,) € cosuppg,, R/p if and only if p € cosuppp R. More-
over, Noether normalization theorem yields a finite map ¢ : k[X7, ..., X,,] —
R/p of rings such that ¢ is an injection, where dim R/p = m. Therefore, by
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Remark 3.2.2 (ii), it is sufficient to show that (0g) € cosuppy R for any
n > 0.

We suppose that (0g) ¢ cosuppy R for some n > 0, and deduce a con-
tradiction. Let p be a prime ideal of S = k[X1,..., X;41] with dim S/p = n.
By Noether normalization theorem, there is a finite morphism ¢ : R — S/p
of rings such that ¢ is an injection. Hence we have (0s/,) ¢ cosuppgy, S/p
by Remark 3.2.2 (ii). Consequently, for any y € R\{Og}, it follows from
Remark 3.2.3 that (Og,) ¢ cosuppg, R,. In other words, it holds that
RHomg, (Q(R,), R,) = 0 in D(R,). This implies that (Og) ¢ cosuppy R,
for any y € R\{Ogr}, since RHompg, (Q(R,), R,) = RHomg(Q(R),R,) in
D(R).

Now set m = (X1,...,X,,) € R. Then R, R is isomorphic to the Cech
complex with respect to @ = {Xi,...,X,}. Hence, by the above argu-
ment, we have RHompg(Q(R), RI'w R) = 0. However, there is an isomor-
phism RI'y, R = Eg(R/m)[—n] in D(R), see [25, Theorem 11.26]. Moreover,
the canonical map R — R/m induces a non-trivial map Q(R) — Egr(R/m),
since Er(R/m) is injective. Therefore RHomp(Q(R), Ry, R) must be non-
zero in D(R). This is a contradiction. O

Proof of Corollary 3.1.2. When a commutative Noetherian ring R has full-
cosupport, Lemma 3.2.1 implies that R/a has full-cosupport for any ideal a
of R. Therefore, this corollary follows from Theorem 3.1.1. [

Remark 3.2.4. Let k£ be a field and R be an affine ring over k. Let y €
R\{Og}. We see from Corollary 3.1.2 and Remark 3.2.3 that R, has full-
cosupport.

Question 3.2.5. Let k£ be a field and n be a non-negative integer. Set
R =Fk[X1,...,X,], and let U be a multiplicatively closed subset of R. Does
the ring U 'R have full-cosupport?

A commutative ring R is said to be essentially of finite type over a field
k when R is a localization of an affine ring over k. If the question above
is true, then any ring essentially of finite type over k has full-cosupport, by
Corollary 3.1.2.

Remark 3.2.6. Let R be a commutative Noetherian ring with finite Krull
dimension and X € D(R) be a complex with finitely generated cohomology
modules. As shown in [43, Corollary 4.3], there is an equality cosuppyp X =
suppp X N cosuppy R, see also [40, Theorem 6.6]. Hence, if R has full-
cosupport, then we have cosuppy X = suppy X, so that the cosupport of any
finitely generated R-module M is Zariski-closed, since suppp M = Suppy M.
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Thompson [43, Example 5.7] showed that the cosupport of k[ X][Y1,. .., Ys]
is not Zariski-closed for n > 0, where k is any field. Hence the following ques-
tion naturally arises.

Question 3.2.7. Let R be any commutative Noetherian ring. Is the cosup-
port of R specialization-closed?

3.3 Minimal pure-injective resolutions

In this section, we summarize some known facts about cosupport and minimal
pure-injective resolutions.

Let R be a commutative Noetherian ring. For p € Spec R and X € D(R),
it is well-known that the following bi-implications hold;

(3.3.1) p € suppp X & RI, X, # 0 & RHompg(k(p), X,) # 0.

See [17, Theorem 2.1, Theorem 4.1]. In loc. cit., it is also shown that these
conditions are equivalent to saying that LA? X, # 0. Moreover, the last
condition of (3.3.1) means that p € cosuppp X,. Therefore, setting X =
RHompg(R,,Y) for Y € D(R), one can deduce the following lemma, see also
[40, Proposition 4.4].

Lemma 3.3.2. Forp € Spec R and Y € D(R), the following bi-implications
hold:

p € cosuppp Y < LA RHompg(R,,Y) # 0 < RHomg(R,,Y) ®% x(p) # 0.

For any X € D(R), suppg X = 0 if and only if X = 0, see [16, Lemma
2.6] or [36, Lemma 2.12]. Similarly, cosuppp X = 0 if and only if X = 0.
This is a direct consequence of [36, Theorem 2.8]. See also [4, Theorem 4.5]
or [8, Corollary 3.3].

For an R-module M and an ideal a of R, we denote by M/ the a-adic
completion A°M = l&l M/a". In addition, for the localization M, at a prime
ideal p, we also write ]\/4\p = APM,.

Let B # 0 be some cardinality and @z Er(R/p) be the direct sum of B-
copies of Er(R/p). We remark that suppr @5 Er(R/p) = {p}. Furthermore

there is an isomorphism

(3.3.3) Homp (Er(R/p), @pEr(R/p)) = (BsR,);,

38



see [15, Theorem 3.4.1; (7)]. Then, tensor-hom adjunction in D(R) implies
that cosuppz(@p Ry), = {p}. In addition, we see that (Pgz R,); is cotor-
sion, where an R-module M is said to be cotorsion if Ext’(F, M) = 0 for any
flat R-module F' and any i > 0. By [15, Theorem 5.3.28|, an R-module M
is cotorsion and flat iff M is of the form [] T,, where T}, is the p-adic
completion of a free R,-module.

There are two known formulas for such an R-module HpESpec r 1, Take
q € Spec R, and write U(q) = {p € Spec R | p C q }. It then holds that

Homp(Ry, [[ T) H o, NI = I] &

pESpec R peU(q pESpec R peV(q)

peSpec R

One can deduce the first one from (3.3.3) and tensor-hom adjunction in
Mod R. Furthermore, the other one holds since A% = lgl(— ®r R/q") com-
mutes with arbitrary direct products in Mod R.

A morphism f : M — N of R-modules is called pure if f ®g L is an
injective map for any R-module L. We say that an R-module P is pure-
injective if Homg(f, P) is a surjection for any pure morphism f : M — N.
It is easily seen that any pure-injective module is cotorsion.

Let (0 = M — P — P! — ...) be an exact sequence of R-modules.
If every P! is pure-injective, then we call the complex P = (0 — P° —
P! — ...) a pure-injective resolution of M. Since each P’ is cotorsion, we
have RHompg(F, M) = Hompg(F, X) in D(R) for a flat R-module F. Any R-
module M has a pure-injective envelope, so that there exists a minimal pure-
injective resolution of M; (0 — PE°(M) — PE*(M) — ---). Moreover,
if M is flat, then each PE'(M) is isomorphic to the direct product of the
p-adic completion of a free R,-module for p € Spec R. See [15, §6.7, §8.5] for
more details.

Remark 3.3.4. Let F' be a flat R-module. As mentioned above, we may
Wr'ite PEYF) = [l,espec g Ty» where T, = (Dp; Ry)y for some cardinality
B,. We write

Wsi={peSpecR|dimR/p>i}, W,={peSpecR|dimR/p=i}.
It follows from [15, Corollary 8.5.10] that PE*(F) = [oew-, T;. In addition,
if ' = R, then PE°(R) = [cw, Rp, see [15, Proposition 6.7.3].

Lemma 3.3.5. Suppose that dim R s finite. Let F be a flat R-module.
Under Remark 5.3.4, we denote by (0 — [T en-, 1) — [oew-, Ty —--)a

manimal pure-injective resolution of F'. Then p € cosuppg F' if and only if
T; # 0 for some i.
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To see this lemma, we make a remark.

Remark 3.3.6. Let P be the minimal pure-injective resolution of F' in
Lemma 3.3.5. Notice that P* = 0 for ¢ > n = dim R. Moreover, recall
that LAP X = APX if X is a complex of flat R-modules with X? = 0 for
1 > 0. Then we see that
LA? RHompg(R,, F') = A’ Homg(R,, P)
~0—=T = - =T'—=0),
RHompg(R,, F) ®% r(p) = Homg(R,, P) ®r k(p)
=(0— @BQ K(p) = — @B;L K(p) — 0),

where T, = (Ds; Loy

Lemma 3.3.5 follows from Lemma 3.3.2, Remark 3.3.6 and the following
fact.

Lemma 3.3.7. Let F' be a flat R-module and P be a minimal pure-injective
resolution of F. Then the differentials of Hompg(R,, P) ®g k(p) are zero.

See [15, Proposition 8.5.26] for the proof.

Lemma 3.3.5 and Lemma 3.3.7 were formulated by Thompson in more
general setting. See [43, Theorem 2.5.] and [44, Theorem 3.5].

Remark 3.3.8. By Remark 3.3.6 and Lemma 3.3.7, the cardinality B; in
Remark 3.3.4 is nothing but dim, ) H'( RHompg(R,, F') @% £(p)).

Proposition 3.3.9. Suppose that ¢ : R — S is a finite morphism of com-
mutative Noetherian rings. Let P be a minimal pure-injective resolution of

a flat R-module F'. Then P ®g S is a minimal pure-injective resolution of
F®grS in ModS.

See [15, Theorem 8.5.1] for the proof.

Finally, we give an outline of the proof of Lemma 3.2.1. Let o : R — §
and f : Spec S — Spec R be as in the lemma. For simplicity, we assume that
the Krull dimension of R is finite. Let B, be some cardinality for p € Spec R.
Then it holds that

(3.3.10) ( 1] @r)ers= T EP S,

pESpec R By q€SpecS By

where By = B, if f(q) = p. This follows from (3.3.3) and the following
isomorphism; Homp(S, Er(R/p)) = D1 Ls(S/q) (cf. [39, Theorem
1.1]). Thus, Lemma 3.2.1 is a consequence of Lemma 3.3.5 and Proposition
3.3.9. See Thompson’s paper [43, Lemma 4.4] for more details.
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3.4 Applications

In this section, we give a complete description of all terms in a minimal
pure-injective resolution of an affine ring R over a field k, where |k| = N,
and dim R > 2. Consequently we obtain a partial answer to the following
conjecture by Gruson, which is stated in the recent paper [45] of Thorup.

Conjecture 3.4.1. Let k be a field. We define s by the equation |k| = Ny
of cardinalities if k is infinite, and s = 0 otherwise. Let n be a non-negative
integer, and set R = k[X,,...,X,]. Then Ext%(Q(R), R) # 0 if and only if
i =inf{s+ 1,n}.

In the classical paper [20, Proposition 3.2], Gruson verified this conjecture
under the assumption that s > 1 and n = 2.

In relation to this problem, Thorup proved the following result.

Proposition 3.4.2 ([45, Theorem 13]). Let k be a field with |k| > Ny and n
be an integer with n > 2. Set R = k[X1,..., X,]. Then Exty(Q(R), R) = 0.

We first extend this to the following corollary.

Corollary 3.4.3. Let k be a field with |k| > Wy. Suppose that S is an affine
domain over k with dim S > 2. Then Ext(Q(S),S) = 0.

Proof. Set n = dim S and R = k[Xi,...,X,]. By Noether normalization
theorem, there is a finite morphism ¢ : R — S of rings such that ¢ is an
injection. Write f : Spec.S — Spec R for the canonical map induced by .
Let P be a minimal pure-injective resolution of R. Under Remark 3.3.4 and
Remark 3.3.8, we write P* = HpeWZi T; for 0 < i < n, where Ty = (EBB;’ Ry,
and B} = dim,, H'(r(p) @ RHompg(Ry, R)). By Proposition 3.4.2, we have
Exth(Q(R), R) = 0, so that B} ) = 0. In other words, it holds that

(Or
1_ 1_ 1
pr=1l75= 11 =
peEW>, peEW>1\{(0R)}

Recall that P ®g S is a minimal pure-injective resolution of S by Propo-
sition 3.3.9. Moreover, since f(0s) = (0Og), it follows from (3.3.10) that
Homg(Q(S), P! ®r S) = 0. Hence we have

Ext5(Q(S), S) = H' (Homg(Q(S), P @x S)) = 0.
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Using this corollary, we can show the next result.

Corollary 3.4.4. Let k be a field with |k| > X;. Let R be an affine ring over
k. Suppose that p is a prime ideal of R with dim R/p > 2. Then we have

H'(RHompg(Ry, R) @y k(p)) = 0.

Proof. Notice that RHomg(Ry, R) ®% r(p) = RHomg(R,, R) ®% R/p. Let P
be a minimal pure-injective resolution of R. By Remark 3.3.6 and (3.3.10),
we see that there is an isomorphism of complexes;

Homp(Ry, P) @5 R/p = Homp,(Q(R/p), P & R/p).

Since P ®x R/p is a minimal pure-injective resolution of R/p by Proposition
3.3.9, it holds that

H'(RHompg(R,, R) ®% R/p) = Extly ,(Q(R/p), R/p).
The right-hand side vanishes if ¢ = 1, by Corollary 3.4.3. O

Remark 3.4.5. There is a more general form of the last isomorphism in the
proof above. Let ¢ : R — S be a finite morphism of commutative Noetherian
rings, where R has finite Krull dimeision. Let p € Spec R and X € D(R) with
H'(X) =0 for i > 0. Then it is possible to prove the following isomorphism
in D(5);

RHompg(R,, X) ®% S = RHomg(R, @5 S, X @ S).

Let k and s as in Conjecture 3.4.1. Let R be an affine ring over k£ such
that n = dim R and P be a minimal pure-injective resolution of R. Under
Remark 3.3.4, we write P° = [[ .y, B and P* =[] ey T} for 1 <i <.
By [18, II; Corollary 3.2.7, Corollary 3.3.2], the projective dimension of any
flat R-module is at most inf{s+1,n}. Hence the pure-injective dimension of
R is at most inf { s + 1,n }, that is, P =0 for ¢ > inf{ s+ 1,n }. One can
observe this fact from Remark 3.3.6 and Lemma 3.3.7. See also [15, Theorem
8.4.12].

Now suppose that s = 0 or n = 1. Then the minimal pure-injective
resolution of R is of the form

(0 — H R — H T, —0).

meWy peEW>1

In this case, it is known that Tp1 # 0 for any p € W>;. One can also prove
this fact by Corollary 3.1.2 and Lemma 3.3.5.
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Next, suppose that s > 1 and n > 2. By Remark 3.3.8 and Corollary
3.4.4, we have

(3.4.6) II%=1I7

pGWzl peWq

This extends Enochs’s result [12, Theorem 3.5], in which he proved the above
equality for polynomial rings over the fields of complex numbers and real
numbers.

Combining Corollary 3.1.2, Lemma 3.3.5, Remark 3.3.8 and (3.4.6), we
have the following result.

Theorem 3.4.7. Let k be a field with |k| = Ny. Let R be an affine ring over
k with dim R > 2. Then, a minimal pure-injective resolution of R is of the
following form;

0— ]I R — 17— 1] 77-o0.

meWy peWy pEW>,

where Ty = (D By)y and B} = dimy) H'(k(p) @ RHomg(R,, R)). In
addition, T)C,1 # 0 for allp € Wy, and sz # 0 for all p € Wss.

By this theorem, we obtain a positive answer to Conjecture 3.4.1 in the
case that s =1 and n > 2.

Corollary 3.4.8. Let k be a field with |k| = X;. Let R be an affine ring over
k with n = dim R > 2 and p be a prime ideal of R such that dim R/p > 2.
Then Exty(Ry, R) # 0 if and only if i =inf { 2,n }.

When R is an affine domain, this corollary yields a (non-)vanishing prop-
erty on right derived functors of some inverse limits, see [45, Setup 3]. See
also [20, Corollary 3.4].

There is an analogue to Conjecture 3.4.1; it claims that if m is a maximal
ideal of R = k[X,...,X,)], then Extl (Q(R), Rn) # 0 if and only if i =
inf{s + 1,n} (cf [45, §1; 1]). When s = 0 or n = 1, this is true. In [45,
Theorem 13], Thorup also proved that Exty (Q(R), Rw) = 0, provided that
s > 1 and n > 2. Therefore, when s = 1 and n > 2, it is enough to solve
Question 3.2.5.
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4. On ideals preserving generalized lo-
cal cohomology modules

4.1 Introduction

This chapter is based on the author’s paper [32]. Let R be a commutative
Noetherian ring. Let a be an ideal of R and M, N are two finitely generated
R-modules. We denote by Ny the set of non-negative integers. For an R-
module L # 0, dim Supp L is defined by sup,cg,,,z dim R/p. If L = 0, we
set dimSupp L = —1 (cf. [7, Reminder 6.1.1]). For a subset T of Spec(R),
we denote by MinT" the set of ideals q such that q is minimal in 7.

The generalized local cohomology was defined by Herzog in [24]. The ith
generalized local cohomology module H:(M,N) of M and N with respect
to a is defined by Hi((M,N) = lim | Ext(M/a"M, N). Clearly, H(R, N) is
just the ordinary local cohomology module H(N) of N with respect to a.

Following [10], we use the convenience that if ¢ = oo, then the set
{ieNy|i<t} means Ny. Let ¢ be a positive integer or co. We denote
by Q; the set of ideals ¢ such that H!(M,N) = H!(M, N) for all : < t. The
first purpose of this chapter is to show that there exists the ideal b; such
that b, is the largest in €, and dim R/b; = sup,_, dim Supp H:(M, N). As a
consequence, we obtain a short proof and a generalization of [41, Theorem
2.7] due to Saremi and Mafi. Next, we prove that if 0 is an ideal such that
a C0C by, then HY(M,N) = H/(M,N) for all i < t.

4.2 Results

Let t be a positive integer or co. We set ¥, = |J,_, Supp H:(M, N). An ideal
b, is defined to be ﬂpeMin 5, P if ¥y # 0, otherwise b, = R.
We start this section by the following lemma.

Lemma 4.2.1. Let ¢ be a positive integer or co. We denote by J, the ideal
<, ann(Exty(M/aM, N)). Then H' (M, N) = H{(M,N) for all i <t.
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Proof. See [10, Lemma 2.7] for the proof. O

Lemma 4.2.2. Let t be a positive integer or oo. Then we have

% = | Supp Ext}y(M/aM, N).

1<t

Proof. See [10, Lemma 2.8] for the proof. O

Remark 4.2.3. Let ¢ be a positive integer or co. Let J; be as in Lemma
4.2.1. Tt follows that V(J;) = U,., Supp Ext’(M/aM, N) (see [10, Lemma
2.8]). If t is a positive integer, this is clear. For the reader, we shall show
that the equation holds in the case that ¢t = co. It is obvious that V(Jy) D
Usen, Supp Extt(M/aM, N). Conversely, let p € V(Jy). We set ay =
ann(M/aM). Note that ap; C Jo and ann(N) C J. Thus it follows that
N, # 0 and N, # (ap)pNp. Set v = depth((an)p, Np). Then v < oco. It
implies that p € Supp Ext}(M/aM, N). Therefore it follows that V(Jy) C
Usen, Supp Ext(M/aM, N).

Now we prove the first main result of this chapter.

Theorem 4.2.4. Let t be a positive integer or oo. Then the following state-
ments hold.

i) 3¢ =V{(by),

i) Hi (M,N)=H.,M,N) for alli <t,
iii) by is the largest ideal in €y,
iV) dim R/b, = sup,., dim Supp H:(M, N).

Proof. 1) Set J; = ,-, ann(Exty(M/aM,N)). By Lemma 4.2.2, we have
¢ = V(Ji). Therefore the set Min ¥ is finite and X; = V(J;) = V(by).

ii) By i), v/J; = b;. Hence, by Lemma 4.2.1, it follows that H{ (M, N) =
Hi{(M,N) for all i < t.

iii) Let ¢ € ;. Then X, = (J,_, Supp H!(M, N). Therefore ¢ is included
in b;.

iv) If 3; = (), there is nothing to prove. So we may assume that ¥; # ().
Let q € Spec(R) such that q¢ D b;. Since the set Min ¥, is finite by i),
there exists an ideal p € Min ¥, such that ¢ D p. Therefore it follows that
dim R/b; = sup,cppin s, dim R/p = sup;_, dim Supp H(M, N). O

By Theorem 4.2.4, we obtain a generalization of [41, Theorem 2.7] due to
Saremi and Mafi. In fact, we have the following result.
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Corollary 4.2.5. Let s be a non-negative integer and t be a positive integer
or co. Then the following statements are equivalent.

i) dim Supp H(M, N) < s for all i < t,
ii) There exists an ideal b of R such that dim R/b < s and Hi(M,N) =
Hi(M,N) for alli < t.

Proof. i)==ii) By assumption, sup,_, dim Supp H:(M, N) < s. Hence, by
Theorem 4.2.4, we obtain the ideal b = b; such that dim R/b;, < s and
Hi (M, N) = Hi(M,N) for all i < t.

ii)==1) Since Supp H:(M, N) = Supp H;(M,N) C V(b) for all i < ¢, it
follows that dim Supp H: (M, N) < dim R/b < s for all i < ¢. O

Lemma 4.2.6. Let x be an element of R. Then there exists a long exact
sequence

co = Ho o) (MUN) — Hy(M,N) = Hyp (M, Ny) — Hy7 (o (M, N) = -

Proof. See [11, Lemma 3.1] for the proof. O

To prove the following result, we employ the method similar to that fol-
lowed in [41, Theorem 2.7].

Theorem 4.2.7. Let t be a positive integer or oo. If 0 is an ideal such that
a C0C by, then H(M,N) = H{(M,N) for all i <t.

Proof. If a = 0, there is nothing to prove. Hence we may assume that
a C 2 C b;. Then there exists v € d\a. We shall show that Hy, (M, N) =

Hi(M,N) for all i < t. By Lemma 4.2.6, there exists a long exact sequence
o= Hp (M, N,) — Hij)(M, N) = H{(M,N) — Hlp (My,N;) = -« .

Since Hlp (My, N;) = Hi(M,N),, it follows that Assg, Hlp (M,,N,) =
{ pR, | p € Assp H.(M,N),z ¢ p }. We shall see Hip (M,,N,) = 0
for all i < ¢. If X, = ), then Assg H.(M,N) = 0 for all i < t. Hence
Assg, Hip (M,,N,) = 0 for all i < t. So we have Hip (M., N,) = 0 for
all i < t. Assume that ¥, # (). We suppose that Assp, Hlp (M,, N;) # 0
for some 7 < ¢ and look for a contradiction. Then there exists an ideal q €
Assp Hy(M, N) which does not contains x. Since x € b; = (\,cpgny, P59 8 in
3¢\ Min ;. Then there exists an ideal q' € Min ¥; such that ¢’ C g. On the
other hand, z is included in ¢’. Then x is in q, which is a contradiction. Hence
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Assg, Hip (M, N,) =0 for all ¢ < t. So we deduce that Hi, (M, N,) =0
for all + < t. Therefore, from the above long exact sequence, it follows that
I{;Hm)(]w7 N)= H,(M,N) for all i < t.

If a+ () = 0, there is nothing to prove. In the case that a + (z) C 0,
replace a with a+ (z) and continue the same process. Now R is Noetherian,
thus we have Hi(M,N) = Hi(M,N) for all i < ¢ in a finite number of
steps. [

We close this thesis with the following remark.

Remark 4.2.8. For arbitrary (not necessarily finitely generated) R-modules
M and N, one can also define the ith generalized local cohomology mod-
ule Hi(M,N) = @Ext%(M/a"M, N). Let S be a multiplicatively closed
subset of R. By Proposition 1.3.1, the colocalization functor vy on the
derived category D = D(Mod R) coincides with RI'y (o) RHomg(S™'R, —),
where W = V' (a) N Ug. Then it is seen that

H'(ywN) = lim Extp(S™'R/a"S™'R, N) = Hy(S™'R, N).

In this sense, the colocalization functor vy has connection with generalized
local cohomology. However, the infiniteness of S™'R causes some difficulties
concerning computation of Hi(S™!'R, N). For example, when R is an integral
domain, we have H(y{0)R) = Extyh(Q(R),R) = H{,(Q(R), R). One may
notice from Chapter 3 that it is hard work to compute Exth(Q(R), R) in
general. One the other hand, as shown in Theorem 1.6.5, Grothendieck type
vanishing holds for colocalization functors with supports in arbitrary subsets;
it does not necessarily hold for generalized local cohomology.

67



Bibliography

1]

2]

3]

8]

[9]

[10]

[11]

L. Alonso Tarrio, A. Jeremias Lépez and J. Lipman, Local homology and
cohomology on schemes, Ann. Scient. Ec. Norm. Sup. 30 (1997), 1-39.

L. Alonso Tarrio, A. Jeremias Lopez and M. José Souto Salorio, Bous-
field localization on formal schemes, J. Algebra 278 (2004), 585-610.

D. Benson, S. Iyengar, and H. Krause, Local cohomology and support
for triangulated categories, Ann. Scient. Ec. Norm. Sup. (4) 41 (2008),
1-47.

D. Benson, S. Iyengar, and H. Krause, Colocalizing subcategories and
cosupport, J. reine angew. Math. 673 (2012), 161-207.

M. Bokstedt and A. Neeman, Homotopy limits in triangulated categories,
Compositio Math. 86 (1993), 209-234.

N. Bourbaki, Algébre commutative, Springer-Verlag (2006).

M. P. Brodmann and R.Y. Sharp, Local cohomology: an algebraic in-
troduction with geometric applications, Cambr. Uni. Press, Cambridge,

(1998).

L. W. Christensen and S. B. Iyengar, Tests for injectivity of modules
over commutative rings, Collect. Math., 68 (2017), 243-250.

A. K. Bousfield, The localization of spectra with respect to homology,
Topology 18 (1979), no. 4, 257-281.

N. T. Cuong and N. V. Hoang, On the vanishing and the finiteness
of supports of generalized local cohomology modules, Manuscripta math.
126 (2008), 59-72.

K. Divaani-Aazar and A. Hajikarimi, Generalized local cohomology mod-
ules and homological Gorenstein dimensions, Comm. Algebra, 39 (2011),
2051-2067.

68



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

E. E. Enochs, The first term in a minimal pure injective resolution,
Math. Scand. 65 (1989), 41-49.

E. E. Enochs, Flat covers and cotorsion flat modules, Proc. Amer. Math.
Soc., 92 (1984), 179-184.

E. E. Enochs, Minimal pure-injective resolutions of flat modules, J. Al-
gebra, 105 (1987), 351-364.

E. E. Enochs and O. M. G. Jenda. Relative Homological Algebra, De
Gruyter Expositions in Mathematics, 30, Walter De Gruyter (2000).

H.-B. Foxby, Bounded complezes of flat modules, J. Pure Appl. Algebra
15 (1979), 149-172.

H.-B. Foxby, S. Iyengar, Depth and amplitude for unbounded com-
pleres, Commutative algebra and its interactions with algebraic ge-
ometry (Grenoble-Lyon 2001), Contemp. Math. 331 (2003), American
Math. Soc. Providence, RI, 119-137.

R. Gordon and J. C. Robson, Krull dimension, Memoirs Amer. Math.
Soc., 133 (1973).

L. Gruson and M. Raynaud, Critéres de platitude et de projectivité,
Invent. math. 13 (1971), 1-89.

L. Gruson, Dimension homologique des modules plats sur an anneau
commutatif noethérien, Symposia Mathematica, XI, Academic Press,
London (1973), pp. 243-254.

J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion
and local homology, J. Algebra 149 (1992), 438-453.

R. Hartshorne, Residues and Duality: Lecture Notes of a Seminar on the
Work of A. Grothendieck, Lecture Notes in Math. 20, Springer-Verlag
(1966).

R. Hartshorne, Local cohomology: A seminar given by A. Grothendieck
(Harvard, 1961), Lecture Notes in Math. 41, Springer-Verlag, Berlin,
Heidelberg, New York (1967).

J. Herzog, Komplexe, Auflésungen und Dualitdt in der Lokalen Algebra,
Habilitationsschrift, Universitdt Regensburg, (1974).

69



[25]

[26]

[27]

[33]

[34]

[35]

[36]

[37]

S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K.
Singh, and U. Walther, Twenty Four Hours of Local Cohomology, Grad-
uate Studies in Math. 87, American Math. Soc. Providence, RI, (2007).

M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der
Mathematischen Wissenschaften 332, Springer-Verlag (2006).

H. Krause Localization theory for triangulated categories, Triangulated
categories, London Math. Soc. Lecture Note Ser. 375, Cambridge Univ.
Press (2010), 161-235.

J. Lipman, Lectures on local cohomology and duality, Local cohomology
and its applications, Lect. Notes Pure Appl. Math. 226 (2002), Dekker,
New York, 39-89.

H. Matsumura, Commutative Ring Theory, Cambridge University Press,
Cambridge (1986).

H. Matsumura, Commutative ring theory, Cambr. Uni. Press, Cam-
bridge, (1986).

M. Nagata, Local rings, Robert E. Krieger Publishing Company, Hunt-
ington, New York (1975).

T. Nakamura, On ideals preserving generalized local cohomology mod-
ules, Journal of Algebra and Its Applications 15 (2016), pp. (1650019-
1)—(165019-4).

T. Nakamura and Y. Yoshino, A Local duality principle in derived cat-
egories of commutative Noetherian rings, to appear in Journal of Pure

and Applied Algebra.

T. Nakamura and Y. Yoshino, Localization functors and cosupport in
derived categories of commutative Noetherian rings, arXiv:1710.08625.

T. Nakamura, Cosupports and minimal pure-injective resolutions of
affine rings, arXiv:1801.04476.

A. Neeman, The chromatic tower of D(R), Topology 31 (1992), 519~
532.

A. Neeman, Colocalizing subcategories of D(R), J. reine angew. Math.
653 (2011), 221-243.

70



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

M. Ono and Y. Yoshino, An Auslander-Reiten principle in derived cat-
egories, J. Pure Appl. Algebra 221 (2017), 1268-1278.

H. Rahmati, Contracting endomorphisms and Gorenstein modules,
Archiv der Mathematik, 92 (2009), 26-34.

S. Sather-Wagstaff and R. Wicklein, Support and adic finiteness for com-
plezes, Comm. Algebra, 45 (2017), 2569-2592.

H. Saremi and A. Mafi, Finiteness dimension and Bass numbers of gen-
eralized local cohomology modules, J. Algebra Appl., 12, No. 7 (2013),
1350036.

A.-M. Simon, Some homological properties of complete modules, Math.
Proc. Camb. Phil. Soc. 108 (1990), 231-246.

P. Thompson, Cosupport computations for finitely generated modules
over commutative noetherian rings, arXiv:1702.03270.

P. Thompson, Minimal complexes of cotorsion flat modules,
arXiv:1702.02985.

A. Thorup, Completeness of the ring of polynomials. J. Pure Appl. Al-
gebra, 219 (2015), 1278-1283.

R. B. Warfield, Jr. Purity and algebraic compactness for modules, Pacific
J. of Math. 28 (1969), 699-719.

J. Xu, Flat Covers of Modules, Lecture Notes in Math. 1634, Springer-
Verlag, Berlin Heidelberg (1996).

71



