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Abstract		13 

Changes	 in	biodiversity	at	all	 levels	 from	molecules	 to	ecosystems	are	often	 linked	 to	 climate	14 

change,	which	is	widely	represented	univariately	by	temperature.	A	global	environmental	driving	15 

mechanism	 of	 biodiversity	 dynamics	 is	 thus	 implied	 by	 the	 strong	 correlation	 between	16 

temperature	 proxies	 and	 diversity	 patterns	 in	 a	wide	 variety	 of	 fauna	 and	 flora.	 Yet	 climate	17 

consists	 of	many	 interacting	 variables.	 Species	 likely	 respond	 to	 the	 entire	 climate	 system	as	18 

opposed	to	its	individual	facets.	Here,	we	examine	ecological	and	morphological	traits	of	12,629	19 

individuals	 of	 two	 species	 of	 planktonic	 foraminifera	 with	 similar	 ecologies	 but	 contrasting	20 

evolutionary	 outcomes.	 Our	 results	 show	 that	 morphological	 and	 ecological	 changes	 are	21 

correlated	 to	 the	 interactions	 between	 multiple	 environmental	 factors.	 Models	 including	22 

interactions	between	climate	variables	explain	at	least	twice	as	much	variation	in	size,	shape	and	23 

abundance	 changes	 as	 models	 assuming	 that	 climate	 parameters	 operate	 independently.	 No	24 

dominant	climatic	driver	can	be	identified:	temperature	alone	explains	remarkably	little	variation	25 

through	 our	 highly	 resolved	 temporal	 sequences,	 implying	 that	 a	 multivariate	 approach	 is	26 

required	to	understand	evolutionary	response	to	abiotic	forcing.	Our	results	caution	against	the	27 
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use	 of	 a	 ‘silver	 bullet’	 environmental	 parameter	 to	 represent	 global	 climate	 while	 studying	28 

evolutionary	responses	to	abiotic	change,	and	show	that	more	comprehensive	reconstruction	of	29 

paleobiological	dynamics	requires	multiple	biotic	and	abiotic	dimensions.	30 

	 	31 

1 Introduction	32 

Changes	 in	 biodiversity	 are	 often	 linked	 to	 climate	 change,	 usually	 temperature.	 Phanerozoic	33 

species	richness	covaries	with	global	temperature	[1,	2];	Cenozoic	diversity	patterns	of	mammals	34 

[3,	4],	plants	[5,	6],	insects	[6],	plankton	[7,	8]	and	benthic	microfauna	[9,	10]	correlate	with	the	35 

high-latitude	climate	signal	recorded	in	the	δ18O	composition	of	benthic	foraminifera	[11].	These	36 

results	imply	a	dominant	mechanism	shaping	biodiversity	dynamics	through	time.	Yet	climate	37 

consists	of	many	interacting	variables,	and	species	likely	respond	to	the	entire	climate	system	as	38 

opposed	to	separate	variables:	Harnik	et	al.	[12]	argued	that	simultaneous	changes	in	multiple	39 

environmental	 parameters	drove	most	Phanerozoic	 extinction	 events,	while	Garcia	 et	 al.	 [13]	40 

show	increased	threats	on	modern	biodiversity	become	apparent	when	incorporating	multiple	41 

dimensions	 of	 climate	 change.	However,	 the	 extent	 to	which	 the	 impact	 of	 abiotic	 forcing	 on	42 

within-species	evolutionary	change	is	underestimated	when	only	single	environmental	factors	43 

are	assessed	remains	largely	unknown.	Evidence	exists	for	both	synergistic	(combined	effects	of	44 

multiple	 drivers	 are	 greater	 than	 the	 sum	 of	 individual	 drivers)	 and	 antagonistic	 (combined	45 

effects	of	multiple	drivers	are	smaller	than	the	sum	of	individual	drivers)	processes	in	modern	46 

ecosystems	[14-16],	but	no	empirical	data	exist	for	microevolutionary	processes	in	deep	time.	47 

	48 

To	accurately	quantify	the	link	between	long-term	(>10,000	years)	microevolution	and	climate	49 

change,	high-resolution	fossil	records	of	multivariate	evolutionary	change	need	to	be	allied	to	50 

multivariate	reconstructions	of	 local	environmental	conditions.	Such	data	are	rarely	available.	51 

One	 of	 the	 few	media	 on	which	multivariate	 evolutionary	 and	 environmental	 change	 can	 be	52 

determined	at	high	temporal	resolution	is	 the	marine	fossil	record	of	planktonic	 foraminifera.	53 

The	excellent	preservation	of	this	group	in	open	ocean	sediments	permits	direct	comparison	of	54 
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morphological	 and	 ecological	 change	 to	 high-resolution	 records	 of	 climate	 and	 evolution	55 

reconstructed	 from	 the	 same	 marine	 cores.	 Several	 studies	 have	 shown	 responses	 of	56 

foraminiferal	 morphology	 to	 sea	 surface	 temperature	 [17-20],	 but	 many	 have	 also	 reported	57 

relationships	with	productivity	 [21]	and	ocean	stratification	 [17,	22].	However,	none	of	 these	58 

studies	analysed	the	ecological	and	evolutionary	impacts	due	to	the	interplay	of	multiple	climate	59 

drivers.	60 

	61 

Here	we	 study	 species’	 response	 to	multivariate	 climate	 change	during	 the	 last	 great	 climate	62 

transition	in	Earth’s	history:	the	late	Pliocene	to	earliest	Pleistocene	intensification	of	Northern	63 

Hemisphere	glaciation	(3.6-2.4	million	years	ago	[Ma])	[23].	This	interval	was	characterized	by	64 

major	reorganizations	of	the	global	climate	system:	global	atmospheric	CO2	concentrations	[24]	65 

dropped	 below	 the	 ~280	 μatm	 threshold	 for	 extensive	Northern	 Hemisphere	 glaciation	 [25]	66 

between	2.9-2.7	Ma	(Figure	1c).	By	2.7	Ma,	continental	ice-sheets	had	expanded	significantly	on	67 

Greenland,	Scandinavia	and	North	America	as	evidenced	by	the	onset	of	widespread	ice-rafted	68 

debris	deposition	in	high	northern	latitude	oceans	[26,	27]	and	an	increase	in	the	amplitude	of	69 

glacial-interglacial	 cycles	 as	 recorded	 in	 benthic	 foraminifera	 δ18O	 (to	 >0.5‰)	 from	 Marine	70 

Isotope	Stage	(MIS)	G6	(2.7	Ma)	onwards	(Figure	1a,b).	In	the	North	Atlantic	Ocean	this	transition	71 

to	deeper	glacials	was	associated	with	(i)	incursions	of	southern-sourced	deep	waters	[28],	(ii)	a	72 

major	intensification	of	dust	flux	from	North	America	carried	on	the	westerly	winds	[29,	30],	and	73 

(iii)	increases	in	glacial	primary	productivity	[30,	31]	(Figure	1d,e).	Together,	these	synergistic	74 

environmental	changes	likely	had	a	major	impact	on	life	in	the	marine	realm	[32].	All	parameters	75 

would	 have	 directly	 influenced	 individual	 foraminifera	 during	 their	 lifetime:	 species	 prefer	76 

specific	 temperature	 ranges	 [33,	 34]	 and	 will	 respond	 to	 temperature	 changes	 in	 their	77 

environment	[19,	20]	as	well	as	productivity	regimes	[35],	while	ocean	pH	influences	calcification	78 

potential	[35].	To	quantify	the	combined	effects	of	changes	in	temperature,	primary	productivity,	79 

dust	input	and	atmospheric	CO2	on	evolution	during	the	intensification	of	Northern	Hemisphere	80 

glaciation,	 we	 employ	 multivariate	 statistical	 techniques	 to	 compare	 ecological	 (abundance,	81 



 4 

Figure	1g)	and	morphological	(size	and	shape,	Figure	1h,i)	dynamics	across	12,629	specimens	of	82 

the	 ecologically	 similar	 planktonic	 foraminifera	 species	 Globoconella	 puncticulata	 and	83 

Truncorotalia	crassaformis	(Figure	S1).	Truncorotalia	crassaformis	survived	the	intensification	of	84 

Northern	Hemisphere	glaciation	and	is	still	alive	today,	whereas	G.	puncticulata	became	extinct	85 

shortly	after	2.41	Ma	(during	MIS	96	[36]).	These	two	foraminifer	species	provide	an	opportunity	86 

to	 study	 species’	 responses	 to	 multivariate	 climate	 change	 under	 contrasting	 evolutionary	87 

outcomes.	88 

	89 

2 Methods	90 

2.1 Study	species	91 

Truncorotalia	crassaformis	and	Globoconella	puncticulata	(Figure	S1)	are	two	ecologically	similar	92 

species	 characterised	 by	 low	 trochospiral	 shells	with	 flattened	 spiral	 sides,	 inflated	 umbilical	93 

sides	and	umbilical-extraumbilical	apertures	[37].	Both	inhabit	thermocline	to	subthermocline	94 

waters	at	middle	and	low	latitudes	[37,	38].	Truncorotalia	crassaformis	originated	around	5.7	Ma	95 

and	 survives	 to	 the	 present	 day.	Globoconella	 puncticulata	 first	 appeared	 around	4.6	Ma	 and	96 

became	 extinct	 at	 2.41	 Ma	 [36],	 shortly	 after	 the	 onset	 of	 significant	 Northern	 Hemisphere	97 

glaciation	at	2.72	Ma	[27].	Our	500,000-year	study	 interval	 includes	 the	onset	of	wide-spread	98 

Northern	 Hemisphere	 glaciation	 (MIS	 G6,	 2.72	 Ma,	 [27]),	 the	 first	 three	 major	 Northern	99 

Hemisphere	glaciations	MIS	100,	98	and	96	[39],	and	ends	with	the	extinction	of	G.	puncticulata	100 

[36].	Preservation	of	planktonic	foraminifera	is	good	throughout	the	study	interval	[40]	implying	101 

little	dissolution	effects	on	traits.	We	study	three	traits:	mean	shell	area	and	mean	aspect	ratio	102 

per	time	slice	(data	from	[41]),	which	have	been	shown	to	be	repeatable	proxies	for	shell	size	and	103 

shape	[42],	and	abundance	(this	study)	(Figure	1g-i).	Schmidt	et	al.	[43]	show	that	maximum	size	104 

and	 abundance	 generally	 occur	 at	 the	 same	 temperature	 for	modern	 planktonic	 foraminifera	105 

species,	implying	that	the	combination	of	abundance	and	size	are	indicators	of	ecological	optima	106 

[43,	 44].	 Shell	 shape	 controls	 the	 area:	 volume	 ratio	 which	 influences	 respiratory	 processes	107 

according	to	first	principles	of	cell	physiology.		108 
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	109 

2.2 Study	site	110 

IODP	Site	U1313	 is	 located	 in	 the	mid	 latitude	North	Atlantic	Ocean	at	 the	base	of	 the	upper	111 

western	 flank	 of	 the	Mid-Atlantic	Ridge	 at	 a	water	 depth	 of	 3426	m	 (41	 °N,	 32.5	 ‘W)	 on	 the	112 

northern	edge	of	the	North	Atlantic	subtropical	gyre	(Figure	S2).	The	sediments	deposited	at	Site	113 

U1313	accumulated	at	consistently	high	rates	(~5	cm/kyr)	for	the	past	5	Myr	[39,	40],	and	yield	114 

a	 demonstrably	 continuous	 record	 of	 sedimentation	 through	 the	 intensification	 of	 Northern	115 

Hemisphere	glaciation	[45]	and	exceptionally	well-preserved	microfossil	carbonate	[29].		116 

	117 

We	used	75	sediment	samples	from	Site	U1313	(every	30	cm,	i.e.	~5-kyr-resolution)	dated	by	118 

Bolton	et	al.	[45]	by	matching	an	orbital-resolution	benthic	foraminiferal	oxygen	isotope	(δ18O)	119 

record	to	the	global	oxygen	isotope	stack	[39].	The	samples	were	dry-sieved	over	a	>150	μm	mesh	120 

sieve	and	divided	into	equal	fractions	using	a	microsplitter	until	a	single	fraction	contained	70-121 

150	 specimens	 of	 T.	 crassaformis	 or	 G.	 puncticulata.	 The	 smallest	 analysed	 individual	 of	 T.	122 

crassaformis	is	30%	larger	than	the	smallest	particle	that	could	be	captured	by	the	sieve,	so	it	is	123 

unlikely	we	missed	any	specimens	of	this	species	by	our	choice	of	size	fraction.	For	G.	puncticulata	124 

the	smallest	possible	particle	to	be	captured	by	the	sieve	is	smaller	than	the	species’	mean	shell	125 

size	minus	2	 sigma,	meaning	>97.5%	of	all	 specimens	would	be	captured	by	 the	 current	 size	126 

fraction,	implying	that	the	used	size	fraction	has	little	effect	on	the	data.	To	avoid	size	bias	all	127 

individuals	from	a	single	fraction	were	analysed,	resulting	in	a	total	of	12,633	individuals	(6058	128 

specimens	of	T.	 crassaformis	 and	6575	of	G.	puncticulata)	over	 the	 studied	 interval.	The	 total	129 

number	 of	 specimens	 in	 the	 sample	was	 estimated	 by	multiplying	 the	 number	 of	 individuals	130 

found	in	the	fraction	by	the	total	number	of	fractions	into	which	the	sample	was	split.	Abundance	131 

(represented	as	accumulation	rates)	was	calculated	as	the	number	of	individuals	divided	by	the	132 

weight	of	the	sediment	fraction	larger	than	>150	μm2,	divided	by	the	total	time	in	the	sample	as	133 

determined	by	Bolton	et	al.	[45].	Morphological	trait	data	are	available	in	the	Dryad	database	as	134 

part	 of	 [41].	 Abundance	 data	 are	 deposited	 in	 the	 Figshare	 repository	 at	135 
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https://figshare.com/s/9db6657150242fb8a593	 and	 will	 be	 made	 publicly	 available	 upon	136 

manuscript	acceptance.	137 

	138 

2.3 Existing	environmental	reconstructions	139 

When	comparing	biotic	to	abiotic	processes,	global	climate	is	often	represented	by	oxygen	isotope	140 

records	generated	 from	 foraminiferal	calcite.	However,	 these	 records	 form	a	 composite	of	 sea	141 

water	 temperature,	salinity	and	global	 ice	volume,	and	mainly	represent	high-latitude	climate.	142 

Therefore,	to	directly	compare	species’	responses	to	their	immediate	environment,	local	climatic	143 

reconstructions	are	required.	Several	published	orbitally	resolved	environmental	reconstructions	144 

are	 available	 for	 Site	 U1313,	 including	 n-alkane	 accumulation	 rates	 representing	mixed-layer	145 

productivity	[46],	terrestrial	plant	leaf	wax	fluxes	linked	to	eolian	input	of	North	American	dust	146 

[30]	 and	 a	mean	 annual	 sea	 surface	 temperature	 record	 based	 on	 the	 saturation	 index	 of	 C37	147 

alkenones	(Uk’37)	[30].	Although	our	study	species	inhabit	thermocline	waters,	a	comparison	of	148 

foraminifera	test	Mg/Ca	ratio-derived	sea	surface	and	thermocline	temperatures	over	the	interval	149 

~2.4	–	2.6	Ma	(Bolton	et	al.,	pers.	Comm.)	showed	similar	morphological	response	between	our	150 

study	species,	which	agrees	with	 findings	 from	a	study	by	 Schmidt	et	al.	 [47]	 showing	similar	151 

response	to	temperature	in	species	living	at	different	depth	habitats.	Two	plant	wax	records	are	152 

available	for	Site	U1313,	one	based	on	n-alkanes	and	the	other	on	C26-alkan-1-ol	chains.	The	two	153 

records	are	highly	correlated	[30]	and	argued	to	be	from	a	common	North	American	origin	[30].	154 

As	both	are	therefore	likely	to	experience	the	same	absolute	level	of	noise,	we	chose	to	use	the	n-155 

alkanes	record	because	its	values	are	higher	by	a	factor	~1.5	as	compared	to	the	C26-alkan-1-ol-156 

based	record,	providing	the	highest	signal:	noise	ratio.	At	present,	the	North	Atlantic	Subtropical	157 

Gyre	 is	nutrient	 limited	with	nitrogen	fixation	correlated	to	dissolved	iron	[48]	and	the	strong	158 

correlation	between	aeolian	input	and	productivity	in	the	late	Pliocene	(see	Figure	1d,e)	implies	159 

that	this	was	to	an	extent	also	true	for	our	study	interval.	Biotic	responses	were	compared	to	the	160 

site-specific	reconstructions	of	sea	surface	temperature,	productivity	and	dust	input	[30,	46],	and	161 

a	global	reconstruction	of	atmospheric	CO2	concentration	[24]	to	represent	multiple	dimensions	162 
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of	 environmental	 conditions	 experienced	 by	 the	 study	 species	 (Figure	 1c-f).	 Although	163 

reconstructed	 from	 an	 equatorial	 site,	 the	 atmospheric	 CO2	 reconstruction	 is	 likely	 to	 reflect	164 

changes	in	pH	at	IODP	Site	U1313	induced	by	atmospheric	CO2	as	well	given	the	short	mixing	time	165 

of	 CO2	 between	 the	 sea	 surface	 and	 the	 atmosphere	 [24].	 Additionally,	 Site	 U1313	 likely	166 

experienced	 little	 oceanographic	 change	 during	 the	 intensification	 of	 Northern	 Hemisphere	167 

glaciation	[49]	implying	a	constant	local	CO2	balance.	Aeolian	dust	is	used	here	to	indicate	nutrient	168 

levels,	 as	 dust	 provides	 an	 additional	 nutrient	 source	 to	 the	 oligotrophic	 and	 iron-limited	169 

subtropical	gyre	 [48],	 and	ocean	pH	 influences	calcification	potential,	 influencing	 selection	 for	170 

larger	shell	size	and	thickness	with	decreasing	pH	[35].	Although	these	parameters	only	represent	171 

a	subset	of	all	environmental	change,		comparing	species’	responses	to	these	parameters	and	their	172 

combinations	will	shed	new	light	on	multivariate	drivers	of	evolutionary	change.	173 

	174 

2.4 Analysis	175 

Because	the	environmental	reconstructions	of	Site	U1313	and	the	foraminifera	trait	data	were	176 

generated	 using	 different	 sample	 sets,	 the	 climate	 data	 point	 ages	 are	 offset	 relative	 to	 our	177 

foraminifera	 samples.	Generalised	Additive	Models	 (GAMs)	were	 employed	 to	 interpolate	 the	178 

climate	 parameters	 to	 the	 foraminiferal	 sample	 ages.	 The	 individual	 climate	 records	 were	179 

smoothed	using	a	GAM,	and	the	value	at	the	age	of	the	foraminifera	samples	was	estimated	using	180 

the	 non-parametric	 curve	 (Figure	 2).	 To	 enable	 comparisons	 of	 responses	 among	 traits	 we	181 

studied	the	morphological	trait	means	and	single	abundance	values	per	time	slice.		To	compare	182 

trait	changes	 to	climate	change,	 first	differences	of	all	biotic	and	environmental	records	were	183 

calculated	to	remove	temporal	autocorrelation	in	the	residuals	(supplementary	figures	S3	and	184 

S4).	Using	Linear	Models	the	first	difference	of	the	trait	records	were	then	compared	to	those	of	185 

the	environmental	parameters	to	calculate	the	total	variance	explained	in	the	biotic	parameters	186 

to	change	in	the	environmental	parameters	and	their	interactions.	Trait	variance	explained	by	187 

individual	parameters	was	calculated	as	the	variance	explained	(R2)	by	the	full	model	(up	to	and	188 

including	 all	 two-way	 interactions),	 minus	 the	 variance	 explained	 by	 the	 model	 with	 each	189 
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parameter	removed	[50].	Another	Linear	Model	with	only	univariate	effects	was	compared	to	our	190 

full	 model	 to	 quantify	 the	 synergistic	 effects	 of	 interactions	 among	 climate	 variables	 on	191 

morphological	and	ecological	change.	We	 focus	on	 the	R2	value	due	 to	 its	tractability,	and	 the	192 

possibility	to	study	effect	sizes	of	al	climate	variables	and	their	interactions.	DAkaike	Information	193 

Criterion	(AIC)	scores	of	individual	parameters	and	interactions	are	included	in	supplementary	194 

figure	S5.	195 

	196 

3 Results	197 

In	all	cases,	most	variation	of	that	explained	by	models	was	through	the	combination	of	all	studied	198 

parameters	and	their	 interactions	(7.1%,	17.3%	and	17.3%	for	G.	puncticulata	size,	shape	and	199 

abundance,	 and	 10.9%,	 18.3%	and	26.6%	 for	T.	 crassaformis	 size,	 shape	 and	 abundance).	No	200 

single	driver	is	found	to	dominate	the	variance	explained	in	all	studied	traits	(Figure	3).	Variation	201 

in	size	of	G.	puncticulata	and	size	and	shape	of	T.	crassaformis	are	most	strongly	correlated	to	202 

temperature	(5.5%,	8.2%	and	7.3%	for	G.	puncticulata	size,	and	T.	crassaformis	size	and	shape	203 

respectively),	whereas	productivity	is	most	strongly	correlated	to	shape	in	G.	puncticulata	(13.9%	204 

variance	explained)	and	abundance	of	T.	crassaformis	(20.5%	variance	explained).	Abundance	of	205 

G.	puncticulata	 is	best	explained	by	aeolian	 input	 (14.8%	variance	explained).	However,	 in	all	206 

three	cases	little	variance	is	explained	by	these	parameters	alone.		207 

	208 

The	model	including	all	two-way	interactions	provides	a	significantly	better	fit	to	the	data	than	209 

the	additive	model	without	the	interactions	for	shape	in	G.	puncticulata	(ANOVA,	F6,69	>	2.1,	p	<	210 

0.05),	and	abundance	in	T.	crassaformis	(ANOVA,	F6,69	>	2.4,	p	<	0.05).	In	both	species,	response	211 

of	abundance	 is	most	strongly	correlated	 to	 the	environmental	parameters	 (Wilcoxon	signed-212 

rank	 test,	 p	 <	 0.01	 and	 p	 <	 0.05	 for	G.	 puncticulata	 and	T.	 crassaformis	 respectively)	 but	 no	213 

difference	was	detected	between	the	responses	of	size	and	shape	(Wilcoxon	signed	rank	test,	p	=	214 

0.79	and	p	=	0.74	for	G.	puncticulata	and	T.	crassaformis	respectively).	Response	of	size	is	stronger	215 

in	G.	puncticulata	than	T.	crassaformis	(Wilcoxon	signed-rank	test,	p	<0.01),	but	the	strength	of	216 
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responses	is	comparable	between	species	for	shape	and	abundance	(Wilcoxon	signed-rank	test,	217 

p	=	0.65	for	shape,	p	=	0.69	for	abundance).		218 

	219 

4 Discussion	220 

Our	results	show	that	temperature	is	a	poor	proxy	for	synergistic	climate	forcing	of	the	observed	221 

biotic	change.	The	amount	of	morphological	and	ecological	variation	explained	is	highest	when	222 

studied	including	interactions	between	multiple	environmental	parameters.	These	results	imply	223 

that	species’	response	to	climate	change	can	be	underestimated	when	only	single	variables	are	224 

taken	to	represent	the	complex	multifaceted	climate	system:	in	our	study	the	amount	of	biotic	225 

variance	 explained	 by	 environmental	 change	 decreases	 by	 up	 to	 a	 factor	 ~2	 if	 only	 single	226 

variables	 are	 considered	 (Figure	 3),	 and	 is	 likely	 to	 decrease	 further	 relative	 to	multivariate	227 

change	with	more	drivers	included	in	the	analyses.	Our	findings	are	consistent	with	short-term	228 

studies	 of	 modern	 populations	 that	 show	 increased	 mortality	 as	 a	 response	 to	 multiple	229 

environmental	 stressors	 [14,	 15,	 51],	 as	well	 as	macroevolutionary	 research	 into	 the	 abiotic	230 

drivers	 of	mass	 extinctions	 [12,	 13].	 The	 strength	 of	 the	 correlation	 between	 environmental	231 

parameters	 and	 traits	 varies	 –	 no	 single	 parameter	 best	 explains	 the	 variance	 in	 all	 records.	232 

Therefore,	our	results	caution	against	the	use	of	a	single	“silver	bullet”	environmental	parameter	233 

to	represent	global	climate	while	studying	evolutionary	response	to	abiotic	change.	234 

	235 

Our	 results	 generate	 an	 appropriately	 multi-faceted	 picture	 of	 abiotic	 forcing,	 and	 suggest	236 

strongly	 that	 (sea	surface)	 temperature	alone	 is	a	poor	proxy	 for	environmental	changes	 that	237 

supposedly	drive	ecological	and	morphological	changes	through	time.	These	results	contrast	with	238 

the	findings	of	spatial	studies	by	Tittensor	et	al.	[52],	Rutherford	et	al.	[53]	and	Fenton	et	al.	[54],	239 

who	used	multiple	species	of	planktonic	foraminifera	to	report	the	dominance	of	temperature	in	240 

shaping	ecological	processes	across	space.	The	comparison	of	these	results	implies	that	spatial	241 

abiotic	drivers	[54]	do	not	directly	translate	to	those	operating	through	time	along	single	species’	242 

branches,	supporting	hypotheses	that	spatial	variation	is	not	a	suitable	substitute	for	temporal	243 
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change	 and	 that	 data	 with	 a	 substantial	 temporal	 component	 are	 required	 to	 accurately	244 

reconstruct	biodiversity	dynamics	over	long	time	scales	[55,	56].		245 

	246 

Neither	 species’	 responses	 are	 synergistic	 (total	 response	 >	 sum	 of	 response	 to	 individual	247 

parameters)	because	response	to	the	total	model	describes	less	trait	variance	than	the	sum	of	the	248 

responses	to	single	climate	variables.	These	results	are	consistent	with	the	findings	of	Darling	et	249 

al.	 [16],	 who	 reviewed	 112	 published	mortality	 experiments	 and	 found	 only	 a	 third	 showed	250 

synergistic	responses	to	external	drivers.	In	our	case,	the	species’	antagonistic	responses	(total	251 

response	<	sum	of	response	to	individual	parameters)	to	abiotic	change	could	be	explained	by	a	252 

common	driving	mechanism	underpinning	 the	studied	environmental	variables.	Late	Pliocene	253 

North	Atlantic	sea	surface	temperature,	productivity,	aeolian	dust	input	and	CO2	are	all	correlated	254 

and	 strongly	 linked	 to	 the	 intensification	 of	 Northern	Hemisphere	 glaciation	 [24,	 27-30,	 46],	255 

resulting	 in	 similar	 trends	 in	 each	 record	 (Figure	 1c-f)	 that	 are	 expected	 to	 add	 little	 extra	256 

variance	explained	in	the	biotic	records.	Depending	on	its	ecological	preferences,	a	species	could	257 

respond	to	parameters	in	opposite	ways:	a	positive	response	to	an	increase	in	one	variable	and	a	258 

negative	 response	 to	 increase	 in	 another	 could	 lead	 to	 little	 net	 effect	 when	 both	 variables	259 

increase,	decreasing	the	variance	explained	by	the	total	model.	This	further	advocates	the	use	of	260 

multiple	 environmental	 parameters	 in	 the	 model	 as	 it	 allows	 exploration	 of	 synergistic	 or	261 

antagonistic	responses	that	would	otherwise	have	remained	unknown.	262 

	263 

The	unexplained	variance	in	size,	shape	and	abundance	dynamics	could	be	attributable	to	several	264 

factors.	Firstly,	planktonic	foraminifera	have	a	life	span	of	a	few	weeks	[35].	Individuals	living	in	265 

different	seasons	in	the	mid-latitude	Atlantic	Ocean	experience	temperature	differences	of	up	to	266 

6-7	degrees	Celsius	 [57].	Such	variability	 is	comparable	 to	mean	annual	Late	Pliocene	–	Early	267 

Pleistocene	 glacial-interglacial	 SST	 changes	 at	 our	 study	 site	 [46,	 49]	 (Figure	 1f)	 and	 plastic	268 

responses	 to	 these	 seasonal	 differences	 could	 increase	 trait	 variance	 in	 our	 time-averaged	269 

samples.	 Secondly,	 some	 of	 the	 observed	 trait	 variance	 could	 be	 caused	 by	 migration	 of	270 
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morphologically	 distinct	 populations.	 However,	 the	 position	 of	 major	 surface	 water	 currents	271 

likely	remained	unchanged	throughout	our	study	interval	[49],	providing	little	opportunity	for	272 

migrations	of	populations	from	other	areas.	Third,	abundance	and	shell	shape	responded	more	273 

strongly	to	the	studied	environmental	variables	than	shell	size,	but	in	reality	traits	are	often	not	274 

independent	[58,	59].	Such	covariation	can	constrain	evolutionary	responses	to	environmental	275 

drivers	[60].	Climatic	upheaval	can	disrupt	the	covariation	between	traits	[41],	emphasising	the	276 

need	for	comprehensive	understanding	of	abiotic	catalysts	for	biotic	change.	277 

	278 

5 Conclusion	279 

We	 show	 that	 morphological	 and	 ecological	 change	 through	 time	 correlate	 to	 multivariate	280 

environmental	change,	particularly	the	interactions	between	distinct	parts	of	global	climate.	No	281 

single	climate	variable	was	identified	that	best	explained	morphological	and	ecological	change	in	282 

all	studied	traits	of	both	foraminifera	species,	implying	that	responses	to	environmental	change	283 

are	likely	to	be	severely	underestimated	when	only	single	variables	such	as	temperature	are	used	284 

to	represent	global	climate.	Temperature	was	not	even	the	most	important	single	climate	variable	285 

explaining	morphological	or	ecological	variation.	Responses	also	varied	among	morphological	286 

and	ecological	traits,	suggesting	trait-specific	sensitivities	to	environmental	change	that	require	287 

comprehensive	 comparative	 analyses	 to	 tease	 apart.	 Our	 results	 imply	 that	 use	 of	 local	288 

temperature	as	a	single	variable	to	test	for	biotic	response	to	climate	change	is	limiting.	Successful	289 

reconstruction	of	 eco-evolutionary	dynamics	 in	deep	 time	 therefore	necessitates	multivariate	290 

explanatory	and	response	variables.	291 
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	480 

Figure	1	481 

Environmental	reconstructions	and	morphology	of	two	planktonic	foraminifera	species	at	IODP	482 

Site	U1313:	Oxygen	isotopes	from	the	Lisiecki	et	al.	[39]	benthic	stack	(a,b,	black	lines)	and	Site	483 

U1313	[45]	(b,	grey	line),	atmospheric	CO2	reconstructed	at	ODP	Site	999	by	Martínez-Botí	et	al.	484 

[24]	(c),	productivity	(d),	eolian	input	(e)	and	sea	surface	temperature	(f)	by	Naafs	et	al.	[30],	485 

abundance	 (c)	 of	 Globoconella	 puncticulata	 (red)	 and	 Truncorotalia	 crassaformis	 (blue)	 (this	486 

study),	and	size	(d)	and	shape	(e)	of	G.	puncticulata	and	T.	crassaformis	[41].	Key	glacial	stages	487 

are	indicated	by	grey	bars.	488 
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	489 

Figure	2	490 

Generalised	Additive	Models	(GAM)	used	to	interpolate	values	of	sea	surface	temperature	(a),	491 

productivity	(b),	eolian	dust	input	(c)	and	atmospheric	CO2	concentration	(d)	at	the	ages	of	the	492 

foraminifera	samples	from	Site	U1313	(internal	tick	marks	on	x-axis).	Original	data	points	are	493 

denoted	by	open	circles,	with	solid	and	dashed	lines	representing	the	GAM	and	95%	confidence	494 

interval	respectively.	Estimated	values	are	indicated	by	red	circles.	495 

	496 
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	497 

Figure	3	498 

Variance	explained	in	size	(a,b),	shape	(c,d)	and	abundance	(e,f)	of	Globoconella	puncticulata	(red)	499 

and	 Truncorotalia	 crassaformis	 (blue)	 from	 North	 Atlantic	 Site	 U1313	 (41˚N)	 by	 the	500 

environmental	parameters	and	their	interactions.		501 
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