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NILPOTENT AND ABELIAN HOPF-GALOIS

STRUCTURES ON FIELD EXTENSIONS

NIGEL P. BYOTT

Abstract. Let L/K be a finite Galois extension of fields with
group Γ. When Γ is nilpotent, we show that the problem of enu-
merating all nilpotent Hopf-Galois structures on L/K can be re-
duced to the corresponding problem for the Sylow subgroups of Γ.
We use this to enumerate all nilpotent (resp. abelian) Hopf-Galois
structures on a cyclic extension of arbitrary finite degree. When
Γ is abelian, we give conditions under which every abelian Hopf-
Galois structure on L/K has type Γ. We also give a criterion on
n such that every Hopf-Galois structure on a cyclic extension of
degree n has cyclic type.

1. Introduction and statement of results

Let Γ be a finite group and let L/K be a finite extension of fields
with Gal(L/K) ∼= Γ (for brevity, we say: L is a Γ-extension of K).
Then L is a module over the group algebra K[Γ], and K[Γ] carries the
structure of a K-Hopf algebra. This makes L into a K[Γ]-Hopf-Galois
extension ofK. There may be other K-Hopf algebras H which act on L
so that L is an H-Hopf-Galois extension. Such Hopf-Galois structures
were investigated by Greither and Pareigis [GP], who showed how the
determination of all Hopf-Galois structures on a given separable field
extension L/K could be reduced to a question in group theory. In
particular, any Hopf algebra H which gives a Hopf-Galois structure on
L has the property that L⊗K H = L[G] as L-Hopf algebras, where G
is some regular group of permutations of Γ. Thus G and Γ have the
same order, but in general they need not be isomorphic. We will refer
to the isomorphism class of G as the type of the Hopf-Galois structure,
and will say that the Hopf-Galois structure is abelian (resp. nilpotent)
if G is abelian (resp. nilpotent).

For some groups Γ it is known that every Hopf-Galois structure on
a Γ-extension must have type Γ. This holds for cyclic groups of order
pn with p > 2 prime and n ≥ 1 [K], for elementary abelian groups of
order p2 with p > 2 [B1], for cyclic groups of order n with (n, ϕ(n)) = 1
(where ϕ is Euler’s totient function) [B1], and for non-abelian simple
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groups [B3]. On the other hand, there are many groups Γ for which
there are Hopf-Galois structures whose type is different from Γ, the
smallest cases being the two groups of order 4 [B1]. Indeed, if Γ is
abelian then there may be Hopf-Galois structures which are not abelian,
or even nilpotent. For example, if Γ is cyclic of order pq, where p, q
are primes such that q|(p− 1), then L/K admits 2(q − 1) Hopf-Galois
structures which are not nilpotent, in addition to the unique (classical)
one of type Γ [B2]. This phenomenon was investigated in some detail
in [BC], where it was shown that any abelian extension L/K of even
degree n > 4 admits a non-abelian Hopf-Galois structure, and that
the same holds for many abelian groups of odd order. On the other
hand, some new groups Γ were given in [BC] for which all Hopf-Galois
structures are of type Γ (cf. Remark 4.3 below).

In this paper, we supplement the results of [BC] by considering the
situation where Γ and G are both abelian or, more generally, both
nilpotent. We will show that the enumeration of such Hopf-Galois
structures can be reduced to the case of groups of prime power order.

Let e(Γ, G) denote the number of Hopf-Galois structures of type G on
a Γ-extension L/K. Thus the total number of Hopf-Galois structures
on L/K is given by

e(Γ) =
∑

G

e(Γ, G),

where the sum is over all isomorphism classes of groups G of order |Γ|.
We also write

eab(Γ) =
∑

G abelian

e(Γ, G), enil(Γ) =
∑

G nilpotent

e(Γ, G),

where the sum is over all isomorphism types of abelian (resp. nilpotent)
groups G of order |Γ|. Thus eab(Γ) (resp. enil(Γ)) is the number of
abelian (resp. nilpotent) Hopf-Galois structures on L/K. Recall that
a finite group ∆ is nilpotent if it is the direct product of its Sylow
subgroups [R, (5.2.4)]. In particular, if ∆ is abelian, or if ∆ is a p-
group for some prime number p, then ∆ is nilpotent.

Let n be the degree of the extension L/K. We write the prime
factorisation of n as

n =
∏

p|n

pvp,

where the product is over the distinct prime factors p of n. If Γ is
nilpotent, we can correspondingly write Γ as a direct product of groups

(1) Γ =
∏

p|n

Γp,
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where Γp is the (unique) Sylow p-subgroup of Γ and has order pvp . By
Galois theory, we can then decompose L as

L =
⊗

p|n

Lp,

(tensor product over K) where Lp is a Γp-extension of K. If, for each
p, we take a Hopf-Galois structure on Lp/K, say of type Gp and with
corresponding K-Hopf algebra Hp, then the Hopf algebra H =

⊗

p|nHp

acts in the obvious way on L, giving L/K a Hopf-Galois structure of
type G =

∏

p|nGp. This Hopf-Galois structure is necessarily nilpotent,
and is abelian if and only if each Gp is abelian.

We will see that if Γ is nilpotent then every nilpotent Hopf-Galois
structure on L/K arises in this way. This is the key observation in the
proof of our first main result:

Theorem 1. Let Γ be a nilpotent group of order n. Then for each
nilpotent group G of order n we have e(Γ, G) =

∏

p|n e(Γp, Gp).

Taking the sum over all isomorphism types of nilpotent (resp. abelian)
groups G of order n, we immediately obtain:

Corollary 1.1. For a finite nilpotent group Γ, we have

enil(Γ) =
∏

p|n

e(Γp) and eab(Γ) =
∏

p|n

eab(Γp).

As an application of Theorem 1, we will determine the number of
nilpotent (resp. abelian) Hopf-Galois structures on a cyclic extension of
arbitrary finite degree. Before stating the result, we fix some notation.
For m ≥ 1, let Cm denote the cyclic group of order m, and, for v ≥ 3,
let D2v (resp. Q2v) denote the dihedral (resp. generalized quaternion)
group of order 2v. Also, for n ≥ 1, let r(n) be the radical of n:

r(n) =
∏

p|n

p.

Theorem 2. Let Γ be a cyclic group of order n.

(i) If n is not divisible by 4, then

enil(Γ) = eab(Γ) = e(Γ,Γ) =
n

r(n)
.

Thus every nilpotent Hopf-Galois structure on a cyclic extension
of degree n is cyclic, and hence abelian.

(ii) If n ≡ 4 (mod 8), then again

enil(Γ) = eab(Γ) =
n

r(n)
,

but
e(Γ,Γ) = e(Γ, C2 × Cn/2) =

n

2r(n)
.
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Thus every nilpotent Hopf-Galois structure on a cyclic extension
of degree n is abelian, but only half of them are cyclic.

(iii) If n is divisible by 8, so n = 2vn′ with v ≥ 3 and n′ odd, then

enil(Γ) =
3n

2r(n)
and eab(Γ) = e(Γ,Γ) =

n

2r(n)
,

with

e(Γ, D2v × Cn′) = e(Γ, Q2v × Cn′) =
n

2r(n)
,

Thus every abelian Hopf-Galois structure on a cyclic extension
of degree n is cyclic, although there are also Hopf-Galois struc-
tures which are nilpotent but not abelian.

For a finite abelian p-group Γ, Featherstonhaugh, Caranti and Childs
[FCC] have given conditions under which every abelian Hopf-Galois
structure on a Γ-extension must have type Γ. Combining this with
Theorem 1, we will obtain the following result in the abelian case.

Theorem 3. Let Γ be a finite group of order n =
∏

p p
vp , and suppose

that, for each prime factor p of n, either vp < p− 1 or p ≤ 3, vp < p.
Then every abelian Hopf-Galois structure on a Γ-extension has type
Γ = Gal(L/K). Equivalently, eab(Γ) = e(Γ,Γ).

Combining Theorems 2 and 3 with a result of L. E. Dickson [D]
dating from 1905, we obtain some new cyclic groups Γ for which every
Hopf-Galois structure has type Γ:

Theorem 4. Suppose that n =
∏

p p
vp satisfies the following condi-

tions:

(i) vp ≤ 2 for all primes p dividing n;
(ii) p ∤ (qvq − 1) for all primes p, q dividing n;
(iii) 4 ∤ n.

Then a cyclic extension of degree n admits precisely n/r(n) Hopf-Galois
structures, all of which are of cyclic type.

Acknowledgment: The author thanks Lindsay Childs and Tim
Kohl for email correspondence about this work, which led to a sim-
plification of some of the arguments.

2. Nilpotent Hopf-Galois Structures

In this section we prove Theorem 1.
We first recall the method of counting Hopf-Galois structures on a

Γ-extension for an arbitrary finite group Γ. It was shown in [GP] that
these Hopf-Galois structures correspond to regular permutation groups
on Γ which are normalized by the group λ(Γ) of left multiplications by
elements of Γ. (Recall that a permutation groupH on a setX is regular
if, given x, y ∈ X , there is a unique h ∈ H with hx = y.) Thus finding
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all Hopf-Galois structures with a given type G amounts to finding all
regular subgroups in the group Perm(Γ) of permutations of Γ which
are isomorphic to G and are normalized by λ(Γ). It was shown in [B1]
that this problem can be reframed as a calculation inside Hol(G) =
ρ(G) · Aut(G), the holomorph of G, which is usually a much smaller
group than Perm(Γ). Here ρ : G −→ Perm(G) is the right regular
representation ρ(g)(x) = xg−1 for g, x ∈ G. As further reformulated
by Childs (see e.g. [C, §7]), this gives the following method of counting
Hopf-Galois structures. A homomorphism β : Γ −→ Hol(G) will be
called a regular embedding if it is injective and its image is a regular
group of permutations on G. Two such embeddings will be called
equivalent if they are conjugate by an element of Aut(G). Then the
number e(Γ, G) of Hopf-Galois structures of type G on a Γ-extension
is the number of equivalence classes of regular embeddings of Γ into
Hol(G).

We will need the following general result.

Proposition 2.1. Let N be a regular subgroup of Hol(G). Then the
centralizer of N in Hol(G) has order dividing |G|.

Proof. We can regard Hol(G) as a subgroup of the group B =
Perm(G) of all permutations of G. By [GP, Lemma 2.4.2], the central-
izer of N in B is canonically identified with the opposite group of N ,
so in particular has order |N | = |G|. The centralizer of N in Hol(G) is
a subgroup of this, so has order dividing |G|. �

If G is a nilpotent group, its Sylow subgroups Gp are characteristic
subgroups. We therefore have direct product decompositions

(2) Aut(G) =
∏

p|n

Aut(Gp),

and hence

(3) Hol(G) =
∏

p|n

Hol(Gp).

Now suppose that Γ and G are nilpotent groups of order n, and that
we are given a homomorphism βp : Γp −→ Hol(Gp) for each p|n. Using
(1) and (3), we can define a homomorphism

(4) β =





∏

p|n

βp



 : Γ −→ Hol(G).

It is clear that if each βp is a regular embedding then so is β. This con-
struction corresponds to taking tensor products of Hopf-Galois struc-
tures on field extensions of prime-power degrees, as described in §1.

Not every homomorphism β : Γ −→ Hol(G) arises as such a product.
For any primes p, q dividing n, let ιp : Γp −→ Γ be the inclusion induced
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by the direct product decomposition (1) of Γ, and let πq : Hol(G) −→
Hol(Gq) be the projection induced by (3). Given a homomorphism
β : Γ −→ Hol(G), let βpq be the composite homomorphism βpq = πq◦β◦
ιp : Γp −→ Hol(Gq). Then β is determined by its matrix of components
(βpq). For each q, the images of the βpq must centralize each other
in Hol(Gq), since the Γp centralize each other in Γ. Conversely, a
matrix of homomorphisms (βpq), βpq : Γp −→ Hol(Gq), determines a
homomorphism β : Γ −→ Hol(G), provided only that, for each q, the
images of the βpq centralize each other in Hol(Gq).

We can determine from the matrix (βpq) whether β is a regular em-
bedding:

Lemma 2.2. Let Γ and G be nilpotent, and let β : Γ −→ G correspond
to the matrix of homomorphisms (βpq) as above. Then β is a regular
embedding if and only if βpp : Γp −→ Hol(Gp) is a regular embedding
for each p.

Proof. First observe that βpp(Γp) is the unique Sylow p-subgroup
in the subgroup πp ◦β(Γ) of Hol(Gp), and hence is normal in πp ◦β(Γ).

If β is regular then πp◦β(Γ) is transitive on Gp. Then, by Proposition
2.3 below, the number of orbits of βpp(Γp) onGp divides both |Gp| = pvp

and |πp ◦ β(Γ)/βpp(Γ)| (which is coprime to p). Thus βpp is transitive,
and hence regular, on Gp.

Conversely, suppose that each βpp is a regular embedding. We write
eG for the identity element of G. Consider the subsets X = β(Γ)eG
and Y = β(Γp)eG of G. Clearly |Y | ≤ |Γp|, and the regularity of βpp

ensures that |Y | ≥ |Gp| = |Γp|. Hence |Y | = |Γp|. As β(Γp) is normal
in β(Γ), Proposition 2.3 shows that all orbits of β(Γp) on X have the
same size. One such orbit is Y , so |X| is divisible by |Γp|. This holds
for all p, so X = G and β is a regular embedding. �

In the above proof, we used the following simple fact about permu-
tation groups:

Proposition 2.3. Let H be a finite group acting transitively on a set
X, and let N be a normal subgroup of H. Then the orbits of N on X
all have the same size, and the number of these orbits divides both |X|
and |H/N |.

Proof. Let N have m orbits on X , and let Nx and Ny be two such
orbits. Then y = hx for some h ∈ H , and Ny = Nhx = hNx. This
shows that the quotient group H/N acts on the set {Nx} of orbits of
N , and that this action is transitive. It follows firstly that these orbits
have the same size, so that m divides |X|, and secondly that m divides
|H/N |. �

Proof of Theorem 1. Let β : Γ −→ Hol(G) be a regular embed-
ding, and let (βpq) be the corresponding matrix of homomorphisms.
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By Lemma 2.2, each βpp is a regular embedding of Γp into Hol(Gp).
For p 6= q, the image of the homomorphism βpq : Γp −→ Hol(Gq) must
centralize the regular subgroup βqq(Γq) of Hol(Gq), and so must be a
q-group by Proposition 2.1. But βpq(Γp) is a p-group since Γp is. Thus
βpq is the trivial homomorphism whenever p 6= q. This means that the
matrix (βpq) is “diagonal” and β is just the product β = (

∏

p βpp) as

in (4). Conversely, given a regular embedding βp : Γp −→ Hol(Gp) for
each p, the homomorphism (

∏

p βp) : Γ −→ G is a regular embedding.
It is immediate that these two constructions are mutually inverse.

We have just established a bijection between regular embeddings
β : Γ −→ Hol(G) and families of regular embeddings βp : Γp −→ Hol(Gp)
for each p|n. It follows from (2) that two regular embeddings β, β ′ are
conjugate by an element of Aut(G) if and only if, for each p, their
components βp, β

′
p are conjugate by an element of Aut(Gp). Hence

the equivalence classes of regular embeddings β : Γ −→ Hol(G) cor-
respond bijectively to families of equivalence classes of regular embed-
dings βp : Γp −→ Hol(Gp). This shows that e(Γ, G) =

∏

p e(Γp, Gp). �

3. Hopf-Galois structures on cyclic extensions

For cyclic extensions whose degree is a power of a prime p, all the
Hopf-Galois structures are already known. We recall the results.

Lemma 3.1. (i) For n = pv with p > 2 and v ≥ 1, we have e(Cn) =
e(Cn, Cn) = pv−1.

(ii) For n = 2, we have e(C2) = e(C2, C2) = 1; for n = 4, we have
e(C4) = 2 with e(C4, C4) = e(C4, C2 × C2) = 1.

(iii) For n = 2v with v ≥ 3, we have e(Cn) = 3·2v−2 with e(Cn, Cn) =
e(Cn, Dn) = e(Cn, Qn) = 2v−2.

Thus, for a prime power n = pv, we have e(Cn) = n/r(n) except in
the case p = 2, v ≥ 3, when e(Cn) = 3n/(2r(n)).

Proof. (i) is equivalent to Kohl’s result [K] that, for an odd prime
p, a cyclic Galois extension of degree pr admits pr−1 Hopf-Galois struc-
tures, all of cyclic type. Similarly, (ii) follows from [B1] and (iii) from
[B4]. �

Theorem 2 follows directly from Lemma 3.1 and Theorem 1.

4. Abelian Hopf-Galois Structures

In this section, we prove Theorems 3 and 4.
From [FCC, Theorem 1] we have the following result:

Lemma 4.1. Let Γ be an abelian p-group of p-rank m, with p > m+1.
Then eab(Γ) = e(Γ,Γ).
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Proof of Theorem 3. Let G be an abelian group of order n, and
let Γp, Gp be the Sylow p-subgroups of Γ, G as usual. If vp < p − 1
then certainly p > m + 1 where m is the p-rank of Gp, so, by Lemma
4.1, e(Γp, Gp) = 0 unless Gp = Γp. If p = 3 and v3 = 2 then either
Γ3 = C9, when by Lemma 3.1(i) we have e(Γ3, G3) = 0 unless G3 = Γ3,
or Γ3 = C3×C3, when the same conclusion holds by [B1]. If p = 2 and
v2 = 1 then Γ2 = C2 and G2 = C2. Thus the hypotheses of Theorem
3 ensure that eab(Γp) = e(Γp,Γp) for all p. By Corollary 1.1 we then
have

eab(Γ) =
∏

p|n

e(Γp,Γp) = e(Γ,Γ),

and every abelian Hopf-Galois structure on L/K has type Γ. �

To prove Theorem 4, we need the following old result of L. E. Dickson
[D] (see also [DF, §5.5, Exercise 24, p. 189]):

Lemma 4.2. Let n have prime factorisation
∏

p p
vp. Then every group

of order n is abelian if and only if vp ≤ 2 for each prime p dividing n,
and p ∤ (qvq − 1) for all primes p, q dividing n.

Proof of Theorem 4. Let Γ be a cyclic group of order n. The conditions
of Theorem 4 imply those of Theorem 3, so that every abelian Hopf-
Galois structure on a Γ-extension has cyclic type. On the other hand,
the hypotheses of Lemma 4.2 are also satisfied. Thus every group of
order n is abelian, and therefore every Hopf-Galois structure is abelian.
It follows that all the Hopf-Galois structures are cyclic. By Theorem
2(i), the number of Hopf-Galois structures is therefore n/r(n). �

Remark 4.3. In Theorem 4, there are no non-abelian Hopf-Galois
structures for the rather trivial reason that there are no non-abelian
groups of the appropriate order. This result is certainly not best pos-
sible, since if n = p2q2 for primes 2 < q < p with (q, p + 1) > 1
(e.g. q = 3, p = 11), or if n = p3q for distinct primes p, q with
(p, q− 1) = (q, p2− 1) = 1 but (q, p3− 1) > 1 (e.g. p = 7, q = 19), then
a cyclic extension of degree n admits only cyclic Hopf-Galois structures
[BC, Theorems 24, 25]. In both cases, non-abelian groups of order n
exist, but a partial analysis of their holomorphs shows that they cannot
arise as the type of a Hopf-Galois structure on a cyclic extension.

5. Abelian Hopf-Galois structures on abelian extensions

In this final section we describe an alternative approach to Theorem
1 in the case that Γ and G are both abelian (restated as Theorem 5
below). This avoids the use of Proposition 2.1, and instead is based
upon a result of Caranti, Dalla Volta and Sala [CDVS] which underlies
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Lemma 4.1. It therefore shows how the ideas in [FCC] extend to a
finite abelian group Γ which is not of prime-power order.

An important ingredient in the proof of Lemma 4.1 (though not of
the original weaker version in Featherstonhaugh’s thesis [F]) is a corre-
spondence between regular subgroups of Hol(G) for an abelian group
G and certain multiplication operations · on G. This correspondence
was first observed in [CDVS, Theorem 1] for vector spaces over a field
F . The case F = Fp (the field of p elements) covers elementary abelian
p-groups G. It was noted in [FCC] that the same argument works for
any finite p-group; indeed, this is what is required to prove Lemma
4.1. It is easily verified that the argument of [CDVS] is still valid for
arbitrary abelian groups. Here is the result in that setting.

Lemma 5.1. Let (G,+) be an abelian group with identity element 0.
Then there is a one-to-one correspondence between regular abelian sub-
groups T of Hol(G) and binary operations · on G which make (G,+, ·)
into a commutative, associative (non-unital) ring with the property
that every element of G has an inverse under the circle operation
x ◦ y = x + y + x · y (so (G, ◦) is an abelian group, whose identity
element is again 0). Under this correspondence, the subgroup T of
Hol(G) corresponding to · is {τg : g ∈ G}, where τg(x) = g ◦ x for all
x ∈ G.

We next investigate the Sylow subgroups of (the additive group of)
such a ring.

Proposition 5.2. Let (R,+, ·) be a finite associative non-unital ring,
and for each prime p dividing its order, let Rp be the Sylow p-subgroup
of (R,+). Then Rp is an ideal (and hence a subring) of R, and R is
the direct product of its subrings Rp. Moreover, every element of R has
an inverse under ◦ if and only if the same is true in each Rp.

Proof. Let r ∈ Rp, and let s ∈ R be arbitrary. If pe is the exponent
of Rp then, by associativity, pe(r · s) = (per) · s = 0 · s = 0, so that
r · s ∈ Rp. Similarly s · r ∈ Rp. In particular, if r ∈ Rp and s ∈ Rp then
r · s ∈ Rp, and if r ∈ Rp and s ∈ Rq with p 6= q then r · s ∈ Rp ∩Rq so
r · s = 0. Hence Rp is both an ideal and a subring of R, and R is the
direct product of its subrings Rp. Suppose now that every r ∈ R has a
◦-inverse. If r ∈ Rp has ◦-inverse s in R then s = −r− r · s ∈ Rp, so r
has ◦-inverse s in Rp. Conversely, suppose that ◦-inverses exist in each
Rp. Let r ∈ R. We can write r =

∑

p rp with rp ∈ Rp for each p. If sp
is the ◦-inverse of rp in Rp then s =

∑

p sp is the ◦-inverse of r in R. �

Corollary 5.3. In Lemma 5.1, the Sylow p-subgroup Tp of T is {τg :
g ∈ Gp}.

Proof. If g, h ∈ Gp then g ◦ h = g + h + g · h ∈ Gp by Proposition
5.2. But τg(τh(x)) = g ◦ (h ◦ x) = (g ◦ h) ◦ x = τg◦h(x). The non-empty
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subset {τg : g ∈ Gp} of the finite abelian group T is therefore closed
under composition, and hence is a subgroup. Since its cardinality is
|Gp| and |G| = |T |, it is the Sylow p-subgroup Tp. �

Theorem 5. Let Γ and G be abelian groups of order n. Then

e(Γ, G) =
∏

p|n

e(Γp, Gp).

Proof. Let β : Γ −→ Hol(G) be a regular embedding. Then T =
β(Γ) ∼= Γ is a regular subgroup of Hol(G) which by Lemma 5.1 gives a
multiplication · on G making G into a ring. Then T = {τg : g ∈ G},
where the τg are defined using the ◦-operation obtained from ·. By
Proposition 5.2, G is the direct product of its subrings Gp. Since ◦-
inverses exist in G, they exist in Gp, so that the multiplication on
Gp corresponds via Lemma 5.1 to a regular subgroup T ′

p of Hol(Gp).
Writing elements of G =

∏

pGp as tuples g = (gp)p with gp ∈ Gp, we
have

τg(x) = g + x+ g · x = (gp + xp + gp · xp)p

for any x = (xp)p ∈ G. It follows that T ′
p consists of the restrictions

to Gp of the τgp for gp ∈ Gp. By Corollary 5.3, the τgp are precisely
the elements of the Sylow p-subgroup Tp = β(Γp) of T . Thus β in-
duces a regular embedding βp : Γp −→ Hol(Gp) for each p, where βp(h)
for h ∈ Gp is merely the restriction of β(h) to Gp. If we form the

product β∗ =
(

∏

p βp

)

: Γ −→ Hol(G) as in (4), then T ∗ = β∗(Γ) is

a regular subgroup of Hol(G) which induces the operation · on each
Gp. By Lemma 5.1 and Proposition 5.2 we then have T ∗ = T and
so β∗ = β. Thus every regular embedding β comes from a family of
regular embeddings βp. As in the proof of Theorem 1, it follows that
e(Γ, G) =

∏

p e(Γp, Gp). �
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