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transport inside the sample. This could potentially be exploited to deliver more photons inside large
biological samples, when compared with experiments at room temperature, overcoming some of
difficulties due to highly scattering nature of the tissue. Here we report a change in light transmitted
inside biological tissue with temperature elevation from 20 to 40 °C, indicating a considerable
enhancement of photons collected by the detector in transmission geometry. The measurement of
Raman signals in porcine tissue samples, as large as 40 mm in thickness, indicates a considerable
increase in signal ranging from 1.3 to 2 fold, subject to biological variability. The enhancements
observed are ascribed to phase transitions of lipids in biological samples. This indicates that: 1)
experiments performed on tissue at room temperature can lead to an underestimation of signals that
would be obtained at depth in the body in vivo and 2) that experiments at room temperature could be
modified to increase detection limits by elevating the temperature of the material of interest.

Clinical imaging methods used for diagnosis and monitoring of disease are usually reliant on X-rays, ultrasound
or magnetic resonance. Of these only magnetic resonance imaging (MRI) can provide molecular information on
the tissue/lesion of interest but these devices are highly costly and as such with limited accessibility. Furthermore,
prolonged exposure to X-rays may represent a health risk to the patient!, due to their ionizing nature. Therefore,
there is a considerable gap in the ability of in vivo medical diagnostics to provide a widely applicable, detailed
chemical analysis of suspicious lesions. In this area, Raman spectroscopy holds considerable prospects for in-vivo
biological applications as it conveys rich chemical information and water contained in tissue has only a very small
influence on signals within the so-called fingerprint region. To date, the vast majority of in-vivo applications have
concentrated on development of Raman endoscope/probe platforms for various types of diagnostics®~”/, e.g. for
cancer diagnosis intraoperatively to identify tumour margins during surgical excision®’.

There is a strong incentive to use Raman spectroscopy for in vivo applications for initial detection and diag-
nosis as well as monitoring during periodic check-up. It could for example be exploited as a contrast mechanism
for patient screening when a particular chemical marker is present and disease occurs. Breast cancer screening,
designed for the early detection of signs of calcifications during mammography, can, for example, benefit from
such an approach. Breast micro-calcifications are one of the markers used by radiologists as their presence can be
sign of early cancers'®. Two principal types of breast calcification have been identified: hydroxyapatite (HAP or
type II) and calcium oxalate (CO or type I)!'!. The calcium oxalate micro-calcifications (type I) have been strongly
correlated with the presence of benign features while calcium hydroxyapatite (type II) is found in locations where
breast cancers are present as well as benign lesions — however the type of lesions can be further differentiated
according to their carbonate content'?. Currently, breast cancer diagnosis requires that a female patient with
suspicious features detected in X-ray images is referred for further tests including excisional biopsy followed by
histopathological examination. This financially costly procedure also puts an enormous psychological stress on
the patient. However the majority of these referrals are found to be normal'®. Alternatively, one could contemplate
using laser Raman spectroscopy noninvasively to assess the chemistry of calcifications via a transmission setup
configuration to complement the X-ray mammography*.

The use of light based technologies able to probe molecular constituents using vibrational spectroscopy, such
as Raman spectroscopy’>' could address various needs for in-vivo diagnostics. However, to achieve these goals,
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light needs to be delivered effectively into the tissues to depths of many tens of mm (or cm) and Raman molec-
ular vibrational signals detected on the other side. The highly scattering nature of biological tissues makes light
propagate in a random walk style, rather than directly (ballistic regime). This leads to a rapid loss of light from
the optical axis, meaning only a fraction of the incident light is recovered typically from the other side of tissue.
This approach is challenging due to difficulty of light delivery inside turbid media such as biological tissues; as
well as the relative weakness of the Raman signal, combined with the high penetration depths required for breast
screening (~40-50 mm).

Light propagation in tissue is principally governed by absorption and scattering being described by the coeffi-
cients (p,) and (), respectively'”. If one minimises the effect of absorption inside tissue (e.g. by the appropriate
choice of laser excitation wavelength) the scattering process can become the dominant factor contributing to light
loss.

In previous work, we published the results of absorption measurements obtained using a modified advanced
Transmission Raman setup optimized for detection of HAP inside 40 mm breast phantom tissue (pork). As a
results of major instrumental improvements to yield enhanced light collection rates (x110 enhanced Raman pho-
ton acquisition rates'*) the desired sensitivity to detect small amounts of HAP and CO was achieved although this
was still challenging within >40-50 mm thick tissues. Crucially, all the spectra reported in our previous paper
were measured on phantoms at room temperature (~22 °C); this is significantly lower than the average biological
temperature of human breast in vivo (~35°C'®). Here we explore the dependence of TRS signals on temperature
in this important temperature range.

The dynamics of optical properties of tissue associated with temperature represents a topic also of relevance
to many biomedical applications such as low level laser therapy'®. Applications which require light delivery deep
inside the tissue for diagnostic purposes can also be affected. A few available papers addressing the temperature
influence on the reduced scattering coefficient in biological samples point to a significant variation with temper-
ature?®-? observed, in a variety of biological tissue types, that can be correlated with structural adjustments in
tissue heterogeneity. At temperatures where protein denaturation occurs a sharp change in scattering coefficient
has been reported®*. It should be noted that all our experiments were performed below 40 °C to avoid any irre-
versible biochemical processes in tissue.

This paper explores the changes in relative transparency of biological tissues, from the standpoint of transmis-
sion Raman spectroscopy (TRS), with temperature. Specifically, when going from room temperature to natural
body temperature. To date, the main body of research carried out on excised biological tissues has focused pre-
dominantly on studies at room, or lower temperatures. Although some studies did report significant dependence
of phantom tissue optical properties on temperature, indicating significant changes in the j1,'***-2% value with
elevated temperatures and approximate invariance of i, to temperature the influence of these effects on TRS sig-
nals, which involves photon transport of both laser photons as well as inelastically scattered photons, has not been
reported to date. It is therefore important to assess the role of temperature in the context of such studies. Here we
present preliminary results obtained using a Transmission Raman platform on samples placed in a thermal bath.
The Raman spectra were recorded at several temperatures and the results were analysed to assess the influence of
temperature on the retrieved TRS signal. The phenomena reported here is not limited to TRS of biological sam-
ples. In fact it may play a role also when performing conventional backscattering Raman spectroscopy or imaging
of biological tissues.

Materials and Methods

Sample preparation. The breast tissue phantoms used in this study were made of porcine shoulder tissues.
These contained skin, fat and muscle replicating crudely much of the gross chemical composition of human breast
tissue. The tissue samples were purchased fresh from a local supermarket and sliced to a thickness of around
40 mm (illumination path-length) x 35mm x 50 mm (precision of +1.5mm) to fit inside a quartz container. The
samples were wrapped in a fine polyethylene cling film to avoid water evaporation during experiments.

Two different amounts of calcium hydroxyapatite (HAP) powder (Sigma Aldrich, St Louise, USA), represent-
ing type II breast calcifications®, 80 mg and 120 mg were smeared on tissue in the middle of sample over a disk
shape area (of approximately 4 mm diameter) oriented perpendicularly to the optical axis.

A thermal water bath was used to control sample temperature. The water was piped to a copper based heat
exchange element placed underneath, on the left and on right of the sample (see Fig. 1) permitting a uniform and
steady heating of samples to desired temperatures.

Transmission Raman Instrument. The schematic of the TRS setup is presented in Fig. 1 with a detailed
description given in our earlier paper®’. The laser used in these experiments was a solid state laser operating at
808 nm (Innovative Photonic Solutions, Monmouth Junction, NJ, US) and the light was delivered to the sample
using an optical fibre (550 um diameter, 0.22 N.A., Thorlabs, USA). Prior to spectral filtering the laser output was
expanded and collimated to 6-8 mm diameter using a biconvex lens with 25 mm focal length and 25 mm diam-
eter. The Raman signal was collected on the other side of the sample with a 50 mm diameter biconvex collection
lens of 38 mm focal length (N.A.=0.6) which directed the light towards relaying lens of the same diameter and a
focal length of 60 mm to deliver the light inside spectrometer. A couple of long pass edge filters at 830 nm (LP02-
830RU-25, Semrock, Rochester, US) were deployed to filter out (O.D. 7) the elastically scattered light, first being
placed between collection and focusing lens and the second located inside the spectrometer. The spectrometer
employed in the setup, Holospec 1.8i (Kaiser Optical Systems, Ann Arbor, Michigan, USA) was equipped with a
high dispersion grating covering a spectral range of 608-1243 cm ™. A deep depletion CCD detector, Andor iDus
420 (Andor, Belfast, UK) was coupled with the spectrometer to collect the Raman signals. The slit used inside
the spectrometer was 1 mm wide, which, combined with a high resolution diffraction grating, provided a spec-
tral resolution of ~15cm™!. Some additional measurements of tissue chemical evolution with temperature were
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Figure 1. Schematics of the Transmission Raman setup with heated sample holder.

performed with a low dispersion grating and a 50 microns slit (spectral resolution around 12cm™!) to enable the
recording of a more precise descriptive picture of tissue dynamics. This is noted in the text.

Measurements of the absorption profile of tissue.  For the measurements of the tissue attenuation
profile, the recorded exposure times were 0.1 s with 300 accumulations. A HL-2000 (Ocean Optic, Dunedin, US)
white light source was delivered via 400 um diameter multimode fibre to a 35 mm focal length/diameter 1 inch
lens which expanded the beam to 12 mm diameter while a Holospec 1.8i (Kaiser optical, UK) spectrometer was
placed on the detection side. For these experiments we used a different custom transmission diffraction grating
covering a wider spectral range from 600 nm to 1200 nm in combination with a 50 microns slit.

Transmission Raman measurements. The measurements of TRS signals were performed at 808 nm
excitation wavelength, selected as optimum for these tissues elsewhere'*. The laser power, measured with the
power meter after the laser-line filters was maintained constant at 1.3 W during all measurements. The acquisition
times of the spectra varied between 2's with 30 accumulations and 8 s with 10 accumulations. These were chosen
to obtain optimum signals whilst avoiding CCD detector saturation.

Temperature monitoring. Temperature monitoring was performed using a Thermocouple Data Logger
(Pico Technology, Cambridgeshire, UK) via 4 channels using probes located in the thermal bath, the quartz vial
outside the tissue and inside the tissue.

Data analysis.  All the recorded spectra were imported into Matlab for data pre-processing, which consisted
of cosmic background removal, noise filtering using singular value decomposition, background subtraction (first
order polynomial) and detector intensity offset removal. Additional peak fitting of the Raman bands intensities
were performed using Gaussian peak fitting in Origin (OriginLab, Northampton, USA) following a first order
polynomial baseline subtraction.

Results and discussions

Tissue attenuation profile. Figure 2 presents the evolution of the transmission profiles of porcine tissue,
with 120 mg HAP powder samples located within the tissue, in the temperature range of 20-40 °C. The blue and
red lines mark laser excitation wavelength and corresponding Raman peak of HAP (~960 cm™!), respectively. The
data provides a direct indication of temperature spectral effects at both the laser and Raman wavelengths. It is
evident that more laser photons can travel deeper into tissue and the Raman (signal) photons more easily escape
as a result of the overall increase of transparency at elevated temperatures. Thus by increasing tissue temperature
from room to human body temperature, one would expect to observe a higher level of TRS signal leading to con-
sequential higher detection sensitivity.

The observed spectra are dominated by the absorption peaks of fat and water!”. As the temperature of the
tissue is elevated from 20 to 30 °C, we observe a ~30% increase in transmission at the relevant wavelengths. A less
significant increase is observed by further elevation to 37°C/40 °C. This behaviour is likely to be related to the
melting of numerous lipids at various temperature points and associate change of their scattering properties2.
Porcine adipose tissue exhibits a heat induced change around 26 °C and 35 °C?*2. Subcutaneous fats have phase
changes between 26 °C and 47 °C** with the most significant around 31 °C.

All the transmission measurements of tissue with inclusions of either 120 mg or 80 mg HAP indicate a broadly
consistent evolution of the peak heights with temperature for each HAP amount with insignificant influence of
HAP powder presence (supporting information Fig. S1b). This is consistent with the fact that the tiny amounts
of HAP would not be expected to affect the measured transmission profiles to any significant degree. This is also
confirmed through similar data obtained from tissue alone (Fig. S2b).
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Figure 2. Broadband light transmission spectra of 40 mm tissue (with 120 mg HAP inside the tissue). The
marked vertical bands are laser excitation wavelength (blue) and corresponding Raman band of HAP at
~960 cm™! (red). Note the change from 20-30 °C is more significant that the change observed from 30-40 °C.
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Figure 3. TRS spectra of 40 mm thick slab of porcine tissue at four representative temperatures. The blue band
indicates the position of the 960 cm~! Raman peak of HAP, when excitation wavelength is 808 nm. The red
highlighted strip indicates 1120 cm™! position, which is the location of a Raman band shown in Fig. 4 to vary
with temperature.

Temperature dependence of TRS of porcine tissue. As anticipated the TRS measurements carried
out on 40 mm-thick porcine tissue at different temperatures reveal a significant enhancement of TRS signals at
elevated temperatures from 20 to 40 °C, a type of behaviour not reported previously (Fig. 3). The Raman spectral
evolution with temperature is consistent with literature data on tissue absorption profile changes with tempera-
ture, as well as our above findings, evidencing increased light transmission through thick biological tissue at both
the laser excitation and Raman wavelengths with elevated temperatures above the room temperature.
Interestingly, we have also observed the presence of a small Raman band (marked with red highlighted strip)
around 1120 cm ! at 20° C, which disappears at higher temperature. The band has been observed consistently in
other porcine samples measured under similar conditions. Because of the lower spectral resolution and narrower
spectral coverage, we have also performed additional temperature dependence experiments using a low dispersion
grating and 50 microns slit on adipose tissue. Figure 4 confirms the presence of the same band at low temperatures
and its disappearance at higher temperatures. The data also evidences a shift of the band from ~1060cm™! (19°C)
to ~1070cm™! (35°C). Overall, we observe tissue Raman bands which are typically present at ambient tempera-
ture: 883 cm ™' -red arrow, 1119 cm™! -pink arrow corresponding to C-C stretching of oleic acid and triglycerides®,
1062 cm ™! -blue arrow, and 1175 cm ™! -arrow of palmitic acids saturated fat**. Porcine adipose tissue contains a high
percentage of polyunsaturated fat*, since several peaks associated with oleic acids are present. As the temperature
increases a band shift from 1062 cm™" -blue arrow (C-C aliphatic out-of-phase stretch of triglycerides*) towards
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Figure 4. Normalised transmission Raman spectra of the porcine adipose tissue measured with the low
dispersion grating and 50 pm slit.
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Figure 5. (a) Spectral difference of Raman spectra of porcine tissue Raman spectra of porcine tissue with HAP
(120 mg) and without HAP at several temperature values (b) overlapped plots of spectral difference of Raman
spectra of porcine tissue Raman spectra of porcine tissue/120 mg HAP 20 °C and 40°C.

1073 cm ! -green arrow while the rest of the bands mentioned above, completely vanish over 30°C indicating a change
in structure of the lipids from gel to liquid configuration. A zoom into the spectral region of 800cm~!-1100 cm™!
is presented in Fig. S3; the entire spectral region exhibits an increase in intensity with increasing temperature. We
were unable to ascertain whether Raman signal from lipids was higher or lower in absolute terms.

We tested our hypothesis of improved sensitivity of TRS detection of calcifications in samples at elevated tem-
peratures within a 40 mm thick porcine sample containing 120 mg HAP at its centre. To visualise the weak HAP
band we subtracted the TRS signal obtained with tissue alone from that measured with HAP 120 mg within it. The
HAP was contained within a quartz vial. The cell was placed inside the tissue in its centre and kept at the same posi-
tion throughout the measurements. The HAP powder was wrapped in ‘cling film’ and inserted in the cell without
disturbing surrounding tissue; thus ensuring a high reproducibility between measurements. Difference spectra
plotted in a spectral region around the 960 cm~! HAP band are presented in Fig. 5a. The observed differences evi-
dence the expected evolution of the HAP peak in tissue with temperature. As expected, the biggest jump in HAP
Raman intensity is observed between 20 °C and 30 °C. Further elevation from 30 to 40 °C appears to have much
smaller influence on the HAP band intensity. The overlap of two difference spectra obtained at 40°C and 20°C in
Fig. 5b shows more clearly the enhancement of the HAP band intensity with increased temperature. The peak anal-
ysis using Gaussian peak fitting yielded a two-fold increase in the peak area between the two temperature points.
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The measurements were repeated on other tissue samples (example in Fig. S2). The spectra appear to be nois-
ier, as the changes in peak height/area were less pronounced, an indication of a more scattering sample and
explained by tissue variability between two different batches of porcine meat. Overlap of spectral differences at
the same temperatures 20 °C and 40 °C are consistent with the results derived from the first sample although the
band profiles are less distinguishable due to lower SNR. The estimated gain in TRS signal intensity in this sample
was around 30%.

In conclusion we described the effect of temperature on TRS signal strength within both the tissue matrix
and any inclusions buried within it. The temperatures explored ranged from room to normal body temperatures
(35-37°C). The smallest recorded value of the TRS signal enhancement in 40 mm thick porcine tissue samples
was 30%. The changes are ascribed to temperature specific phase transitions of glycolipids and a consequential
reduction of the overall tissue scattering coefficient.
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