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The formation of continents involves a combination of magmatic and metamorphic processes. These
processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T)
conditions of (ultra) high-temperature granulites and magmatic rocks are similar. Continents grow
laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting), and
vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature
metamorphic setting). Both events are separated from each other in time; the vertical accretion post-
dating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the
high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low
H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines). These fluids
are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic
event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature
metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust.
This accumulation causes tectonic instability, which together with the heat input from the sub-
continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of
a supercontinent is already programmed at the time of its amalgamation.

� 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Continents are present since the very beginning of the Earth
history, at least since w3.5 Ga. Controversy surrounds the ques-
tion of how and when continents reached their present size, but
the general consensus is that continents grew rapidly during the
Archean and attained an approximate near steady-state growth
from the Proterozoic (w2.7 Ga) onwards (e.g., Taylor and
McLennan, 1995). While continental crust is added laterally at
subduction zones along active margins (e.g., the western margin
of the American continents), a substantial volume of the conti-
nental crust disappears into the mantle during continental
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collision (Stern, 2011; Kawai et al., 2013). Despite the steady-state
growth since w2.7 Ga, the geographical distribution of conti-
nental masses never ceased to show remarkable changes. Major
episodes of continental growth occurred during discrete pulses of
intense magmatic-metamorphic activity that lasted a few hun-
dred million years. These events of continental growth are sepa-
rated from each other by roughly equal time periods (Brown, 2007,
2008). Continental destruction and continental growth were
approximately coeval (e.g., Stern, 2011), displaying a never-ending
ballet at the Earth’s surface. These processes impose a relative
displacement of the continental masses as compared to oceans.
Salient advancement of modern trace element and isotope
geochemistry has gained insight into the supercontinent cycle (e.g.,
Murphy et al., 2009), a process which involves continents pro-
gressively amalgamating to constitute a single unit, surrounded by
a single ocean, followed by separation intomoving fragments until
the next amalgamation occurs. Several studies have addressed this
subject, which is considered to be one of the focal themes of
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current research in geology (e.g., Nance et al., 2014; Clark et al.,
2015).

In this work, we focus on the role of deep fluids during continent
formation and evolution, an aspect that is underestimated in recent
studies. One reason for this may be that there has not been a
general agreement on the nature of the lower continental crust,
with conflicting magmatic versus metamorphic models. We will,
therefore, first discuss the arguments that favour the second hy-
pothesis (granulite lower crust), followed by reviewing the role of
fluids in granulites, and the formation and breakup of continents.
We will argue that episodes of granulite metamorphism, leading to
supercontinent amalgamation, immediately prepare for their
disruption. In other words, the demise of supercontinents is already
programmed at the time of their birth.

2. A granulite lower continental crust

A review of the current literature reveals that there is no general
agreement on the composition or, above all, on the structure of the
continental crust. In 1925, the Austrian geophysicist V. Conrad
found that seismic velocities in the lower part of the continental
crust were progressively changing, and are intermediate between
those of the upper crust and the mantle (Conrad, 1925). This
observation led to the idea of a widespread Conrad discontinuity,
once almost more popular than theMoho, whichmarks a transition
at the base of the continent between a dominantly granitic and a
more basic crust. Further studies have questioned the nature and
even the existence of the Conrad discontinuity, which is not found
everywhere (Litak and Brown, 1989). Despite these reservations,
the idea of progressive basification of the continental crust at depth
remained and, as a consequence, various names such as gabbroic or
even basaltic crust are found in the literature, notably among
geophysicists (e.g., Smithson and Brown,1977). We believe that this
terminology should be discarded.

In 1960s, it was shown that the lower continental crust is
composed of rocks metamorphosed under granulite-facies P-T
conditions. This idea was proposed in the former USSR (Belousov,
1966), and supported thereafter by a wealth of data including
seismic velocities, heat budget and field evidence from rocks that
we can study at the Earth’s surface, either exposed by tectonic
movements (regional granulites) or transported as xenoliths in
lavas from recent volcanoes. For the structure of a continent, the
model proposed in 1995 by R.L. Rudnik and D.M. Fountain is in our
view the most realistic one (Rudnick and Fountain, 1995). On the
basis of seismic refraction data, they divided the crust into type
sections associated with different tectonic provinces. Each shows a
three-layer crust consisting of upper, middle, and lower crust, in
which P-wave velocities increase progressively with depth. There is
large variation in average P-wave velocity of the lower crust be-
tween different type sections, but in general, lower crustal veloc-
ities are high (>6.9 km/s) and average middle crustal velocities
range between w6.3 and w6.7 km/s (Rudnick and Fountain, 1995).

The average composition of the continental crust is intermediate
and contains a significant proportion of the bulk silicate Earth’s
incompatible trace element budget (35e55 wt.% of Rb, Ba, K, Pb, Th,
and U) (Rudnick, 1995). However, this generalised picture should not
hide the overall stratified character of the continental crust. Heat
producing elements decrease with depth indicating an overall in-
crease of mafic rocks. This change is markedly progressive and the
variation is a function of geodynamic setting (active or passive
margins, extensive or compressive regime), explaining the elusive
character of the Conrad discontinuity (Lowrie, 2007). Using average
P-wave velocities derived from crustal type sections, the estimated
area extent of each type of crust and the compositions of different
types of granulites, average lower andmiddle crust compositions can
be estimated. The middle crust is composed of rocks at amphibolite-
facies P-T conditions and is granodioritic in bulk composition, con-
taining significant amounts of K, Th, and U. The lower crust is
composed of granulite-facies metamorphic rocks and is lithologi-
cally heterogeneous. Its average composition is mafic, approaching
that of primitivemantle-derived basalt, but itmay have intermediate
bulk compositions in some regions. A comparison of the exposed
granulites to volcanic xenoliths shows that the basification is pro-
gressive, from dominantly metamorphosed supracrustals in the
upper crust to former magmas in the lower crust, related to melts
invading from the underlying mantle and emplaced at peak granu-
lite metamorphic conditions (syn-metamorphic intrusions, e.g.,
Bohlen and Mezger, 1989; Touret and Huizenga, 2012a). This process
leads to crustal thickening (vertical accretion) through accumulation
at the mantle-crust interface of mantle-derived melts of dominantly
basaltic composition (magmatic underplating, Bohlen and Mezger,
1989) as documented, for example, in southern and central
Queensland in Australia (Ewart et al., 1980).

In summary, if the term granulite lower crust should be the only
one to be retained, it must be recognised that it does not waive all
ambiguity or misunderstanding. The name granulite seems to have
been especially attractive to petrologists, who attributed different
meanings (German, English or French sense, see discussion in
Touret and Nijland, 2013). However, if only the metamorphic
interpretation is considered to be valid (i.e., rocks metamorphosed
at granulite-facies P-T conditions), a major issue needs clarification.
The temperatures of granulite-facies metamorphism are close or
even equal to magmatic temperatures (ultrahigh-temperature
granulites, see below). Therefore, the distinction between
magmatic andmetamorphic rocks in the lower crust is by nomeans
easy. For instance, two-pyroxene granulites found in many volcanic
ejecta (Kay and Kay,1983) can be considered to be either magmatic,
if one considers the origin (basalt melt), or metamorphic, based on
their mineral assemblage. As metamorphism postdates the
magmatic process, we believe that lower crustal rocks are essen-
tially metamorphic in nature. Of critical importance is to know the
type of metamorphic evolution. This can either be high-pressure
(HP, P > w10 kbar, Brown, 2007) metamorphism, characterised
by a clockwise P-T path (e.g., O’Brien and Rötzler, 2003), or high/
ultrahigh-temperature (HT/UHT, T > 800/900 �C, Brown, 2007)
metamorphism characterised by an anticlockwise P-T path (Harley,
1989). As will be discussed below, these contrasting P-T paths are of
major importance to understand how the continental crust has
been formed and from where the fluids have been sourced.

In most cases, fragments of the lower crust exposed at the sur-
face do not show the upper boundary (transition middle-lower
crust). There are, however, a number of cases where this bound-
ary is exposed, amenable to direct observation. One of the best
example, despite being limited in size, is the Lherz area in the
French Pyrenees, where the Conrad (amphibolite to granulite) and
Moho (crustal to mantle) discontinuities can be seen within a dis-
tance of less than 2 km (Vielzeuf and Kornprobst, 1984). The Pro-
terozoic metamorphic terrane of southern Norway (Bamble sector
and Rogaland) shows a less complete section (i.e., no mantle rocks
are exposed), but is much larger in size and better documented.
Here, the amphibolite-granulite transition is marked by a series of
metamorphic isograds which have been mapped in great detail in
the eastern Bamble sector (Nijland et al., 2014) and in Rogaland in
thewest (Westphal et al., 2003). The transition between the middle
and lower crust corresponds to several isograds (mainly ortho-
pyroxene), defining a temperature up to w1000 �C in osumilite-
bearing rocks of Rogaland. This temperature is well above the
minimum granite melting temperature (700 to 850 �C), i.e., these
rocks represent a typical example of UHT granulite metamorphism
(Maijer et al., 1977).



Figure 1. (a) Primary, moderate-density (w0.9 g/cm3) magnesite-bearing CO2 inclusions in garnet from sapphirine-bearing granulites, Harukutale, Sri-Lanka Central Highlands
(Bolder-Schrijver et al., 2000). (b) Example of a magnesite-bearing CO2 inclusion in the Central Highlands granulites in Sri Lanka. (c) Pure CO2, high-density (w1.1 g/cm3) fluid
inclusions in plagioclase in late Archean garnet-granulite (Kondalpattimedu near Salem, southern India, see Santosh and Tsunogae, 2003). (d) Moderate-density (w1.0 g/cm3), pure
CO2 fluid inclusions in perthitic K-feldspar in ultrahigh-temperature late Pan African granulites from charnockites from the Anchankovil shear zone area in southern India (Santosh,
1987; Ishii et al., 2006). (e) Primary CO2 fluid inclusions in orthopyroxene and plagioclase in sapphirine-bearing granulites from Sri Lanka (Bolder-Schrijver et al., 2000) (cf. a). Note
that each dark spot represents an inclusion that comprises high-density CO2, illustrating the large amount of CO2 fluid present in this rock. (f) Detail of an inclusion in orthopyroxene
(same sample as in e). The inclusion comprises a monophase CO2 fluid phase (dark phase in the middle of the inclusion) and numerous identified (carbonates) and unidentified
isotropic solid phases (including probably halite). The anisotropic solid phases occurring as white masses are most likely alkali carbonates. Note that this inclusion shows a
conspicuously close resemblance with carbonate melt inclusions in volcanic rocks from the East African Rift in Tanzania (Figs. 1 and 2 in Káldos et al., 2015).
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Most UHT granulites are characterised by an anticlockwise P-T
path (Harley, 1989; Santosh et al., 2012). High-temperature and
even UHT granulite metamorphic conditions can also be reached
through clockwise P-T paths; they show a temperature increase
during uplift and equilibrate at HT/UHT metamorphic conditions
(e.g., Harley, 2008). In all cases, the middle crust comprises abun-
dant granite intrusions, most of which are coeval with granulite
metamorphism in the lower crust. For instance, in the French
Massif Central mid-crustal Carboniferous granites were emplaced
w300 Ma ago (Ledru et al., 2001). This event occurred simulta-
neously with the granulite metamorphism as evidenced by radio-
metric dating of granulite xenoliths in Quaternary volcanoes (e.g.,
Pin and Vielzeuf, 1983).

The systematic relation between granites in the middle crust
and LILE-depleted granulites in the underlying lower crust has led
to the idea that granulites are restites. Restites are assemblages of
refractory anhydrous minerals fromwhich granitic melts have been
extracted, i.e., the granite-granulite connection (Clemens, 1990,
1992). This is, for example, the case for granulites in Scotland
(Pride and Muecke, 1980), a region where the idea of restite gran-
ulites has taken its roots, and in northern Quebec (Morfin et al.,
2013), where the lower crust has actually been enriched in melts.
However, in southern Norway the granulite domain does not at all
show an increase in the degree of melting. Former supracrustals
can still be identified, sometimes with extremely delicate struc-
tures such as flysch-type banding or cross-bedding (Touret, 1965).
These HT granulites are definitely not restites and were able to
withstand high metamorphic temperatures without melting. This
phenomenon can only be understood by including lowH2O-activity
fluids as an essential element of granulite facies metamorphism, as
we have argued for many years (Touret and Huizenga, 2011, 2012a
and references therein).
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3. Fluids in granulites

The importance of fluids during granulite metamorphism was
initiated by the discovery of CO2 inclusions in granulites from
southern Norway (Touret, 1971). Soon afterwards, similar fluid
inclusions were also found in numerous other granulite terrains
worldwide (e.g., Santosh, 1986, 1987). The major exception is for
granulites that suffered solid state recrystallisation (roughly
equant mineral size with equilibrated triple junction boundaries),
which is the type of texture precisely called granulitic in the
British literature (Harker, 1932). This recrystallisation process
wipes out any inclusion in the former mineral. But even in these
rocks, fluid inclusions can still be found in resistant minerals
(notably garnet) or non-recrystallised quartz domains. Figs. 1 and
2 show some typical examples of fluid inclusions found in
granulites.

In addition to CO2, NaCl-saturated aqueous (brines) fluid in-
clusions have also been found in many granulites (Touret, 1985;
Newton et al., 1998). The occurrence of brine and CO2 fluid in-
clusions as part of a single fluid inclusion assemblage is clear evi-
dence of fluid-fluid immiscibility at peak metamorphic conditions
(Fig. 2) (Touret, 1985, 1986, 1995; Newton et al., 1998). This obser-
vation is supported by experimental evidence (Johnson, 1991). A
number of scientists did not believe that fluid inclusions formed in
the deep crust could survive the way up to the Earth’s surface,
claiming that these inclusions were late and thus not related to
granulite metamorphism (e.g., Lamb et al., 1987). But a better un-
derstanding of the fluid inclusion behaviour in relation to the
Figure 2. Brine and pure CO2 fluid inclusions quartz-feldspar gneisses from the Bakhuis w2
et al., 2014), which are currently being researched by De Roever and Huizenga. (a) Doubly
density CO2 fluid inclusions. The fluid inclusions occur in quartz shielded by feldspar shown
inclusions. (c) Primary brine inclusions with numerous unidentified solid phases (red circle)
fluid immiscibility. Cluster of small (generally <10 mm) ultrahigh dense CO2 fluid inclusions.
and �60 �C (Huizenga, unpublished data), corresponding to a maximum density of w1.16
metamorphic P-T paths (e.g., Touret, 2001; Touret and Huizenga,
2011), as well as the determination of a precise chronology of in-
clusion formation with respect to their host minerals (concept of
fluid inclusion assemblage as introduced by Goldstein and
Reynolds, 1994; see also Touret, 2001) have established beyond
any reasonable doubt that these fluids were indeed present at peak
metamorphic conditions (Touret and Hartel, 1990). Both fluid types
(CO2 and brines) have a low H2O-activity, the prime condition to
stabilise the granulite water-deficient mineral assemblages at high
P and T (e.g., Newton et al., 2014). Fig. 1 shows a variety of fluid
inclusions found in granulites from type localities in South India
and Sri Lanka.

Fluid inclusions, stable isotope studies, and field relationships
have led to some general conclusions regarding the fluid charac-
teristics of HT/UHT and HP granulites. Firstly, the major fluid types
include CO2 (of variable density) and brines, which are identical for
both HT/UHT and HP granulites. However, they appear different in
their relative amounts; brines are generally more dominant in HP
granulites whereas CO2 prevails in HT and especially UHT granu-
lites. In HT/UHTgranulites, CO2 inclusions are particularly abundant
in or near syntectonic basic intrusions. This and the mantle signa-
ture of isotope geochemical tracers (d13C, noble gas isotope ratios)
(Dunai et al., 1992; Dunai and Touret, 1993) indicates a dominantly
external (mantle) origin for CO2. This implies that CO2 is introduced
into the lower crust by the mantle-derived intrusions, which have
also provided the heat responsible for HT/UHT granulite meta-
morphism. This is confirmed by the fact that similar fluid inclusions
also exist in mantle-derived xenoliths in volcanic rocks, which are
.1 Ga ultrahigh-temperature granulite belt in Suriname (De Roever et al., 2003; Klaver
polished thick section of a quartz-feldspar gneiss that comprises brines and ultrahigh-
in b. (b) Quartz showing isolated and clustered brine and ultrahigh-density CO2 fluid

occurring together with high-density monophase CO2 inclusions. (d) Evidence of fluid-
The inclusions homogenise into the liquid phase at temperatures ranging between �55
g/cm3.
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far more abundant than in granulite xenoliths. It has been
hypothesised that these CO2 fluids are derived from the breakdown
of magmatic carbonates at depth, which are thus considered to be
the ultimate source of most lower crustal CO2 (Frezzotti and Touret,
2014). This suggestion is supported by the fact that some inclusions
in granulites appear to be very similar to fluid/melt inclusions
found in carbonatites, notably from Tanzania (cf. Fig. 1f and Figs. 1
and 2 in Káldos et al., 2015).

The dominant mantle source of fluids in HT/UHT granulites
indicates an external origin. On the other hand, both CO2 and
brine fluids in HP granulites appear to be internally generated. The
brines do most likely represent remnants of former pore fluids
already present in the protolith. Field relations and carbon stable
isotope data suggest also a dominantly local derivation for CO2,
which in many cases appears to be generated by the reaction
between graphite (former organic matter in detrital sediments)
and H2O liberated by the subsolidus breakdown of hydrous min-
erals (micas of amphiboles). This is followed by preferential
dissolution of H2O, initially mixed with CO2, in partial melts of
granitic composition (see e.g., Touret and Dietvorst, 1983). Obvi-
ously, this process occurs also in HT/UHT granulites, but in these
rocks this process is not that significant compared to the influx of
externally-derived CO2.

Interestingly, metacarbonates cannot be a significant source
for lower crustal CO2. Many granulite terranes (e.g., the Grenville
Province in Canada and the USA) contain regional-size occur-
rences of marbles in the stratigraphic sequence. This indicates
that sedimentary carbonates were preserved throughout pro-
gressive metamorphism at oxidising conditions (see discussion in
Nijland et al., 2014). If redox conditions were more reducing,
carbonates would have been (partially) transformed into graphite
(Nokleberg, 1973), with no possibility for carbon to enter the fluid
phase. The marbles horizons show d13C-compositions reflecting
their pre-metamorphic values (Broekmans et al., 1994). This
remarkable feature has been taken as an argument to negate the
possibility of CO2 streaming. However, it actually only indicates
that there was no significant infiltration of CO2 derived from
decarbonation reactions. It does not exclude CO2 streaming from
another source such as mantle-derived magmas. In fact, it is quite
possible that this externally-derived CO2 has protected the met-
acarbonates against decarbonation reactions, helping them to
withstand the extreme temperatures reached during HT/UHT
granulite metamorphism.

Second, in some HT/UHT granulites, high-density CO2 in-
clusions can be extremely abundant and well preserved (e.g.,
Santosh and Tsunogae, 2003), occurring in many rock-forming
minerals including garnet, feldspar, and quartz (Fig. 1). Remark-
ably, fluid inclusions in quartz in HT/UHT granulites are less
abundant, in contrast to what is observed in most other rock
types. Formed at peak metamorphic conditions (i.e., at a depth of
15e20 km and at temperatures between 800 and 1000 �C), these
primary inclusions have not been seriously affected by post-
metamorphic cooling and uplift. They do not show any sign of
decrepitation or transposition; in many cases they exhibit a
beautiful negative crystal shape (Fig. 1c,d for instance; Fig. 13-7 on
p. 377 in Roedder, 1984; or Fig. 2 in Van den Kerkhof et al., 2014).
The fluid density matches approximately the peak P-T conditions,
as evidenced by the intersection of the fluid isochore (line of
constant density that a fluid trapped in an inclusionmust follow in
P-T space if no leakage or volume change has occurred) and the P-T
conditions defined by the mineral assemblage (Touret, 2001). The
only discrepancy in most cases studied so far is a slight pressure
difference at peak metamorphic temperature, about 1 kbar for a
regional pressure of 7e8 kbar and a temperature of w800 �C (e.g.,
Coolen, 1981). As discussed in Touret (2001), this can be explained
either by a thin film invisible water on the wall of the fluid in-
clusion cavity or, more likely, by selective water leakage. Brine and
CO2 inclusions occur normally together in the same mineral grain,
but their relative amount may be quite different (generally there
are many more CO2 than brine inclusions). The subsequent
retrograde P-T evolution, however, results in distinct differences in
shape and content of both fluid inclusion types. In contrast to CO2
inclusions, brine inclusions have not survived the post-
metamorphic uplift. They show systematically signs of trans-
position (partial decrepitation or implosion, Touret, 2001), corre-
sponding to the loss of some liquid relative to the solid mineral
phases included in the cavity (daughter minerals). Brine in-
clusions contain systematically one or several of these solids
(Fig. 3b,c,e,f), first of all halite and other halides and frequently
also Fe-Ti oxides. The cavity is commonly squeezed around these
solids (referred to as collapsed inclusions in Touret, 2001). These
collapsed inclusions eventually end up as isolated NaCl cubes
(Fig. 3b,c) or as irregular crystal aggregates masses within the
mineral host, without any trace of remaining liquid left (Fig. 3e,f).
This remarkable difference with CO2 inclusions is easily explained
by the striking difference between the CO2 and the much steeper
aqueous isochores in P-T space.

For most granulites (especially HT and UHT granulites) the post-
metamorphic P-T path starts with sub-isobaric cooling until a
temperature of 600e500 �C is reached followed by rapid decom-
pression towards the surface. The initial near-isobaric P-T path is
virtually parallel to that of the high-density CO2 isochores (i.e., a
pseudo-isochoric P-T path, Touret, 2001). Consequently, only minor
differences between the lithostatic and fluid pressure (i.e., pressure
of the fluid trapped in the inclusion) exist. The strength of the host
mineral is not relevant; even open cavities would remain unaf-
fected if fluid and lithostatic pressure are equal. On the other hand,
brine inclusions would be grossly underpressurised during isobaric
cooling due to the steep slope of H2O-NaCl isochores in P-T space.
This will result in fluid leakage and collapse of the cavity around
halite daughter crystals, if present. The fact that halite did exist at
high temperature shows that the solution was already saturated,
imposing a composition close to molten salts at peak UHT granulite
conditions (at least 70e80wt.% eq. NaCl for T> 800 �C). Brine fluids
are extremely mobile and able to move along grain boundaries.
They have a great capacity of element dissolution and transport,
especially alkalies (Na and K), resulting in a great variety of mi-
crostructures (e.g., K-feldspar microveins and myrmekites) (Fig. 4).
These types of microstructures have been ignored for a long time
but are clearly present in granulites (e.g., Franz and Harlov, 1998)
and in particular in their magmatic equivalents (charnockites)
(Hansen et al., 1984; Perchuk and Gerya, 1995; Touret and
Huizenga, 2012b).

Third and lastly, in addition to the fact that fluid inclusion
studies indicate that two immiscible low H2O-activity fluids, high-
density CO2 and concentrated saline solutions (brines) were pre-
sent at peak metamorphic conditions, they can also give some
information on the overall proportion or minimum amount of the
fluids present in the rock. Quantities of CO2 fluids preserved in
fluid inclusions in minerals that have escaped recrystallisation can
be up to few weight percent for some charnockites or related
rocks in southern India (Touret and Hansteen, 1988) and Sri Lanka
(e.g., Bolder-Schrijver et al., 2000) (Fig. 1e). Additional evidence
supporting the large amount of fluids involved is given by the
extensive metasomatic effects caused by CO2 fluids and brines
that occur during retrogression of granulite terrains. These
include albitisation and scapolitisation (recently described in
some detail by Touret and Nijland, 2013), regional-scale quartz-
graphite vein occurrences in, for example, Sri-Lanka, India and
Madagascar (e.g., Luque et al., 2014), and quartz-carbonate



Figure 3. Halite occurrences in granulites. (aec) Isolated single halite crystals (probably hosted in quartz) in a garnet gneiss from the Bakhuis ultrahigh-temperature granulite belt
(De Roever et al., 2003), currently researched by De Roever and Huizenga. (a) Doubly polished thick section of garnet granulite. (b) Isolated halite cube (plane polarised light). (c)
Isolated rectangular-shaped halite in the vicinity of halite cube shown in (b) (plane polarised light). (dee) Halite in a quartz-orthopyroxene vein from Satnur locality near Kabbal in
Southern India (Newton et al., 2014). (d) Quartz-orthopyroxene vein. (e) Backscatter SEM image of open cavities (black) surrounded by swarms of small NaCl crystals (white)
deposited on the broken surface. (f) Backscatter SEM image of irregular mass of NaCl (white) still present in a quartz cavity. SEM analyses on broken quartz surfaces were done by D.
Deldicque in the Laboratoire de Géologie, Ecole Normale Supérieure Paris. This inclusion is strikingly similar to the halite inclusions found by Káldos et al. (2015) in Kerimasi
jacupirangite (Fig. 2 in Káldos et al., 2015).
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megashear zones (Newton, 1990). Quartz-carbonate megashear
zones are linear domains of regional size, typically over 100 km by
10 km, in which up to 30% of the country rocks (Newton, 1990;
Newton and Manning, 2002) are replaced by carbonates in the
form of fine-grained massive calcite or, more commonly, dolomite
(Fig. 5) (Dahlgren et al., 1993) like in the Bamble area in southern
Norway. Here, carbonate formation occurred at a temperature of
500e700 �C. The carbonate mineral phases show a uniform
d13CPDB signature between �6 and �9& (Dahlgren et al., 1993),
which clearly indicates a primary mantle origin. Retrograde hy-
drothermal quartz-graphite veins found in the HT/UHT granulites
of Sri-Lanka Central Highlands, by far the largest world reserves of
highly crystalline graphite (e.g., Luque et al., 2014), are also an
indication of the large amount of CO2 fluids that have migrated
through the crust.

Both, field and geochemical data suggest an ultimate granulite
fluid source but also indicate significant differences in the behav-
iour of the two major fluid types. Deep brines frequently contain
sulphate, hence they have a strong oxidising effect (Newton and
Manning, 2005; Hansen and Harlov, 2007). Most of the carbon in
the fluid phase will finally end up in carbonates. Obviously, CO2 and
brines can still be present in the form of fluid inclusions which form
the dominant inclusion type found in large shear zones. But when
minerals like sulfides are present in the host rock, the oxygen
fugacity may be low enough to provoke the reduction of infiltrating
CO2 into graphite (e.g., Huizenga and Touret, 2012). We hypothesise
that this is what might have happened in Sri-Lanka (Touret, un-
published data). These retrograde effects lead to significant ore
concentrations including uranium and/or rutile during albitisation
(e.g., Engvik et al., 2014), graphite (Sri Lanka, e.g., Luque et al., 2014),
and gold (e.g., Cameron, 1988; Newton, 1990) in quartz-carbonate
mega-shear zones (Newton, 1990; Newton and Manning, 2002;
Fu and Touret, 2014). Their extent shows that the amount of
granulite fluids in the lower crust at peak conditions must have
been indeed very high, orders of magnitude more than the rem-
nants preserved in fluid inclusions. In the example described by
Dahlgren et al. (1993) in southern Norway (Kamerfoss near Risör),
dolomite veins occur in localised (few metre size) breccias (Fig. 5),
showing a relatively small displacement of the host rock fragments.
This occurrence indicates explosive breccias, caused by a sudden
release of high-velocity, overpressurised fluids in a small vent.
Many other examples of explosive volcanism are well known in
Southern Norway, including the famous carbonatite occurrences in
the Fen area (Brøgger, 1921). Their age is quite variable, with two
major periods of activity during the late Precambrian and
Carboniferous, respectively (Verschure et al., 1983). On the other



Figure 4. Brine-induced metasomatic features in incipient charnockites from Kurunegala in Sri Lanka (Perchuk et al., 2000; Touret and Huizenga, 2012a). (a) Charnockite (plane
polarised light) comprising quartz, feldspar (mesoperthite), biotite and orthopyroxene (arrow in the bottom right corner). Black rectangle: field of view of shown in (b). (b) K-
feldspar microvein developed along the boundaries of mesoperthite, biotite, and quartz (crossed polars). (c) Myrmekite and K-feldspar microvein (arrow) around large mesoperthite
crystals (crossed polars). Note that white spots in the upper part of the photograph are quartz blebs with an identical optical orientation that are formed from the myrmekite
reaction (Touret and Nijland, 2013). White rectangle: field of view shown in (c). (d) Detail of the myrmekite (crossed polars). Large arrow: K-feldspar microvein along the boundary
of two mesoperthite crystals.
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hand, dolomite veins in Kamerfoss occur within actinolite-rich
domains (Touret and Nijland, 2013) and are related to the
scapolitisation-albitisation event which has occurred at the onset
of granulite retrogression about 1000 Ma ago. It seems that CO2-
rich deep fluids (lower crustal source for the Kamerfoss carbonate
breccia, a mantle source for the Fen carbonatite) were able to
penetrate repeatedly within the Precambrian basement in more
recent times.

Fig. 6 shows general section of the continental crust (including
fluid compositional domains) representing the time where the
crust has acquired its structure during peak metamorphism
(Fig. 6a), and after cooling and isostatic re-equilibration (Fig. 6b). At
the climax of the orogenic cycle, the lower crust is a major reservoir
of low-H2O activity fluids (CO2 and highly saline brines). These
Figure 5. (a) Hydrothermal dolomite (light brown) in meta-gabbro (dark), emplaced at th
(Dahlgren et al., 1993; Touret and Huizenga, 2012a). (b) Part of the original photo by Dahlgre
published by permission from Springer). Situated along a fresh road-cut, this exposure, which
the carbonate veins. Width of photo: w2 m.
fluids are expelled towards the outer envelopes when the meta-
morphic episode has come to an end, which is evidenced by
extensive retrograde alteration at higher crustal levels. Fig. 6b il-
lustrates schematically the three major ways for the release of the
vast amount of lower crustal fluids, namely through quartz-
carbonate megashear zones (oxidising conditions), quartz-
graphite veins (reducing conditions) or carbonate-rich explosive
breccias.

4. How continents are formed

One way (and for many workers the only way) by which
continents grow is laterally, through volcanism along active
margins (continent-ocean collision). Metamorphism in this
e end of Sveconorvegian metamorphic event (Kamerfoss, Bamble Province, Norway)
n et al. (1993) of dolomite veins at the Knipen locality (Fig. 3b in Dahlgren et al., 1993,
lasted only for few years before weathering, illustrates well the brecciated character of



Figure 7. A model of how continents are formed. a. Preparation: formation of oceanic
crust; b: lateral accretion above ocean subduction (G1: clockwise P-T path); c: exten-
sional rebound after slab break-off; vertical accretion by magma stacking at the base of
the crust (G2: anticlockwise P-T path); d: release of lower crustal fluids at peak
metamorphic conditions during uplift.

Figure 6. Fluid distribution in the crust at (a) peak HT granulite and (b) retrograde
conditions in the lower crust. (a) Peak metamorphic conditions; the middle crust is
characterised by granite intrusions with hydrothermal veins systems (indicated in red)
around them. The granite batholiths (indicated in red with white crosses) have their
roots in wet (H2O-dominated) migmatites. All free H2O dissolves in the granite melts
(red arrows), i.e., the middle crust acts as a H2O barrier, preventing H2O from moving
into the lower crust. H2O-saturated melts crystallise near their source under
amphibolite facies metamorphic conditions. The Conrad boundary represents the
boundary between the middle and lower crust. The top of the lower crust is charac-
terised by dehydrated migmatites. Despite the temperature increase, partial melting
tends to decrease with increasing depth due to limited H2O availability. The granite
melts are thus relatively dry (H2O-unsaturated), able to rise in the upper crust or even
reaching the surface (not represented on the diagram). In the lower crust, mantle-
derived syn-metamorphic intrusives (green) provide heat and deep fluids (CO2,
possibly brines where most brines are locally derived). The mafic intrusions become
more abundant while approaching the Moho. (b) Post-metamorphic release of deep
crustal fluids. The upper part of the eroded section corresponds in most cases to the
upper limit of granite intrusions. Fluids move along large- and small-scale shear zones.
The nature of the fluids and associated mineralisation is controlled by the local
environment (e.g., oxygen fugacity) and the fluid composition at the source. The three
basic mechanisms (1, 2, 3) by which fluids escape from the lower crust during post-
metamorphic uplift include: (1) quartz-carbonate megashear zones (Newton, 1990),
(2) quartz þ graphite veins (e.g., Luque et al., 2014), and (3) explosive breccia with
carbonate infill (cf. Bamble, Dahlgren et al. 1993, see Fig. 5).
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setting typically generates eclogites and/or HP granulites. The
model of formation of the HT/UHT granulite lower crust that we
have discussed above implies that there is also a possibility of
vertical growth, through stacking of mantle-derived magmas at
the base of the crust. These provide the heat which explains the
HT/UHT metamorphic regime, together with the fluids which
invade the lower crust at peak metamorphic conditions. Both HT/
UHT and HP metamorphic regimes occur during the formation of
a mountain chain (orogen) are ultimately eroded when incor-
porated in the mass of the continent. In the early sixties, Japa-
nese geologist A. Miyashiro (Miyashiro, 1961), together with
independent work by E. den Tex and H. Zwart in Holland (Den
Tex, 1965; Zwart, 1967) introduced the notion of paired belts,
based on the example of circum-Pacific accretionary orogens
(Ryoke and Sanbagawa Belts, respectively). The initial concept,
first based on the hypothesis of two parallel HP and HT mountain
chains of the same age, has recently been extended, to include
“penecontemporaneous belts of contrasting type of metamorphism
that record different apparent thermal gradients, one warmer and
the other colder, juxtaposed by plate tectonics processes” (Brown,
2010). One reason for this modification is that the apparent
contemporaneity of both belts in Japan, due in part to their
relative young ages (Cretaceous), is more an exception than the
rule. In the Variscan orogen of Middle Europe, now exposed in a
series of fragmented thrust slices (known in the French Massif
Central as Groupe Leptyno-amphibolique, GLA, e.g., Lardeaux,
2014) has been metamorphosed at HP conditions in early Ordo-
vician (w400 Ma ago), about 100 million years before the
Carboniferous HT granulite event, during which the unexposed
HT granulite lower crust has been formed. This Carboniferous age
(w300 Ma ago) also corresponds to the emplacement of volu-
minous granites in the middle crust as we discussed earlier in
section two.

Miyashiro (1961) suggested that paired belts were formed
during a single collisional event, the HT belt being further away
from the collision front and approximately of the same size (or even
smaller) than the HP one. However, HP rocks occur almost exclu-
sively in relatively young (post Cambrian) orogens, in narrow,
elongated belts following the limit of the ocean-continent. High-
temperature granulites, on the other hand, constitute the lower
part of most cratons and are dominant, if not exclusive, Precam-
brian in age (Brown, 2008). It is not easy to understand how a pure
compressional regime can provide at depth the room necessary to
accommodate the intrusions of voluminous mantle-derived
magmas. Moreover, a number of examples show that the relations
between HP and HT rocks can be far more complicated than a
simple, progressive collision. The Sveconorwegian in Southern
Scandinavia, for instance, does not show a single, but a succession
of compressional and extensional orogenic phases between 1.14
and 0.96 Ga (Andersson et al., 2008). The time difference between
the HP- and subsequent HT-metamorphic event is also quite vari-
able, possibly related to the slope of the subduction plane: about
100 Ma for the Paleozoic Hercynian orogeny whereas it is less than
10e20 Ma in the western Alps (Bousquet et al., 2008). Keeping
these complexities in mind, we suggest that the model as shown in
Fig. 7 has been operative for building the architecture of most
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continental areas since the advent of modern-type plate tectonics,
at least 2 Ga ago: a major collisional event, interrupted by exten-
sional rebounds, most likely induced by the detachment of the
subducted slab.

5. From continents to supercontinents

In his controversial, yet epoch-making book entitled Die
Entstehung der Kontinente, Alfred Wegener postulated that all
continents were once united in a single mass, that he referred to as
Urkontinent (Wegener, 1912), which later came to be known as
Pangea (Van Waterschoot van der Gracht, 1926). Ironically, this
name was then used by most established geologists of the time to
demonstrate that such a supercontinent could not have existed!
(Frankel, 2012). Only after World War II major achievements in
Earth Sciences (probably less due to plate tectonic theories than the
extraordinary analytical possibilities of modern instrumentation)
established beyond any doubt that not only Pangea had existed, but
also that it has not been a unique landmass. Supercontinents did
exist as long as plate tectonics processes were operative, presum-
ably since the early Archean (e.g., Cawood et al., 2006). Under-
standably, older supercontinents are the most difficult ones to be
identified and the names and even existence of some of them
(Vaalbara, Superia, Sclavia, Kenorland) remain a matter of discus-
sion. However, most scientists now accept the history of super-
continents (Neoarchean to present) as reviewed in Nance et al.
(2014): Columbia (Nuna) (1.9e1.7 Ga), Rodinia (1.3e1.0 Ga), Pan-
notia (or Gondwana, the reason being that Pannotia consists of two
supercontinents, Gondwana and Laurentia, respectively)
(0.8e0.5 Ga), and finally Pangea (w0.3 Ga). The amalgamation of
each supercontinent corresponds to a series of discrete collisional
events, each lasting for a few 100 Ma, separated by longer periods
during which only a few metamorphic episodes have occurred. A
careful review of metamorphic gradients during all these events by
Brown (2010) showed a steady decrease of metamorphic gradients
with time, with at least two successive plate tectonic regimes: a
Figure 8. Pan-African UHT granulite occurrences in Neoproterozoic terranes using data sup
Ouzzal, Hogar, Algeria (e.g., Kienast and Ouzegane, 1987); 2: Furua, Tanzania (Coolen et al.,
et al., 2006); 5: Southern India (Tsunogae and Santosh, 2006); 6: Napier Complex, Antarcti
Africa (Waters, 1986); 9:Warumpi Province, Australia (Scrimgeour et al., 2005). Figure mod
Precambrian one (2.7e0.7 Ga), with only hot orogens (UT/UHT
metamorphism), and a modern one, involving cold subduction and
the widespread occurrence of HP/UHPmetamorphic rocks (Fig. 4 in
Brown, 2010). Gondwana plays a critical role for the transition
between both regimes as it includes both metamorphic types:
probably the most typical being UHT Pan-African metamorphic
rocks (Kelsey, 2008) and eclogites, and HP metamorphic terranes
(e.g., Möller et al., 2000) (Fig. 4 in Brown, 2010). The details of the
processes of amalgamation-disruption of these supercontinents
have been discussed in recent works (e.g., Meert, 2014; Nance et al.,
2014). Here we emphasise the point that at least for the last su-
percontinents (Gondwana and Rodinia and to a lesser extent Pan-
gea), the final amalgamation involved the formation of linear belts
of UHT metamorphic rocks. Examples include the Rogaland
osumilite-bearing aureoles around anorthosites in Rodinia, and
UHT occurrences in central and eastern Africa, Antarctica,
Madagascar, Sri-Lanka and southern India in Gondwana. The UHT
occurrences in Gondwana are by far the most abundant and typical
occurrences of UHT granulites described so far (Kelsey, 2008;
Kelsey and Hand, 2015) (Fig. 8). More generally, it has been
shown that the final amalgamation of a supercontinent is sealed by
a UHT orogen (Santosh and Omori, 2008; Santosh et al., 2012)
(Fig. 9).

In addition to the above, it has also been observed that super-
continent disruption is frequently followed by cold climates,
notably periods during which ice caps can cover virtually the entire
Earth, referred to as Snowball Earth (Hoffman et al., 1998; see also
Fig. 5 in Nance et al., 2014). Marked by thewidespread deposition of
glacial sediments (tillites), the cold periods lasted millions of years
(Hoffman, 1999) ending abruptly with the deposition of cap rocks;
continuous layers of carbonates (calcite and dolomites) which
sharply overlie glacial deposits (http://www.snowballearth.org).
Such a situation suggests rapid fluctuations of atmospheric CO2
concentrations characterised by an initial decrease to explain the
widespread cold climate followed by a sudden increase at the time
of the deposition of the cap rock. Cap carbonates have a number of
plied by Kelsey (2008) (Gondwana reconstruction after Kröner and Stern, 2004). 1: In-
1982); 3: Madagascar (Paquette et al., 2004); 4: Highland Complex, Sri Lanka (Osanai
ca (Ellis, 1980); 7: Bahia region, Brazil (Ackerman et al., 1987); 8: Namaqualand, South
ified after Touret and Huizenga (2012a).

http://www.snowballearth.org


Figure 9. Supercontinents sealed by UHT orogens (modified after Santosh et al., 2012). The model proposes that asthenospheric upwelling during slab break-off following the
collisional assembly of continents leads to UHT metamorphism and ponding of low H2O-activity fluids (brines and CO2) into the lower crust sourced from underplated mafic
magma’s. For HP granulites, fluids are internally sourced (yellow arrows). The inset corresponds to Fig. 6a.
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features which distinguish them from standard carbonates, e.g.,
world-wide occurrence on platforms, shelves and slopes (even in
region otherwise lacking carbonate strata), thick sea-floor cement,
microbial mounts with vertical tubular structure, primary and early
diagenetic sulphate (barite) (http://www.snowballearth.org). Most
important is the negative d13C isotopic signature, which is in sharp
contrast to the positive values recorded in sedimentary carbonates
(e.g., Kennedy, 1996). The frequent occurrence of giant wave ripples
indicate that carbonate deposition has been accompanied by vio-
lent seismic activity, like the explosive breccias found in Southern
Norway. The similarities between both rock types, i.e., the mode of
deposition as well as in the isotopic signature, lead us to propose
that former granulite fluids, first of all CO2, could well have reached
the atmosphere after supercontinent disruption and thus played a
role in the sudden end of the glacial periods (Touret and Huizenga,
2012a).

Fluids that pond beneath the lower crust during the amalgam-
ation of continents into supercontinents through subduction-
accretion-collision process are likely to cause instability. The for-
mation of supercontinents leads to a thermal blanket effect whereby
a large region of the mantle is covered by the supercontinent, thus
inhibiting heat loss. We propose that the coupled effect of heating
from the mantle and fluids accumulated in the lower crust leads to
the breakup of supercontinents. Studies focussing on the involve-
ment of fluids on earthquakes have shown that mantle CO2 does
play an active role in the mechanical weakening of the middle and
lower crust (e.g., Miller et al., 2004; Collettini et al., 2008). For
example, Miller et al. (2004) proposed that earthquakes can insti-
gate a fluid connection between the lower and upper crust result-
ing in a sudden, fast upward flow of overpressurised CO2 fluids
along fault zones. It is possible to create an overpressurised carbon-
saturated CO2 fluid (Pfluid z PCO2

> Plithostatic) of several kbars if the
fugacities for both oxygen and hydrogen fugacities are buffered by
the fayalite-magnetite-quartz and the biotite-magnetite-K-
feldspar, respectively in the lower crust (Skippen and Marshall,
1991; Touret, 1992). Obviously, it is not likely that such high fluid
overpressure can exist in the lower crust; it will result in instan-
taneous fluid-induced fracturing and fast upward migration of the
CO2 fluid. Such a process can explain why mantle d13C values have
been observed in surface fluids (e.g., Collettini et al., 2008); the fast
moving CO2 simply did not allow chemical equilibration between
the fluid phase and host rock along the fluid pathway.
6. Conclusion

Despite continuous destruction by collision and subduction, it
is remarkable that the total mass of the continental crust has
remained relatively constant during most of the Earth’s history.
This shows that crustal growth, either laterally or vertically, must
approximately compensate its destruction. The most obvious way
by which a continent grows, namely through volcanic accretion
above subduction zone, is only the beginning of a long evolution,
leading finally to the formation of a single supercontinent. A
large part of the structure of continents is acquired through
widespread granulite metamorphic episodes in the lower crust
and coeval emplacement of granites in the middle crust. At peak
metamorphic conditions, the lower crust is invaded by mantle-
derived low H2O-activity fluids: high-density CO2 and brines.
These fluids, in particular CO2, lead to tectonic instability and
fragmentation of the supercontinent. In other words, supercon-
tinent disruption is already programmed at the time of its
amalgamation.
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