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ABSTRACT 

In the last two decades extensive research has been undertaken to characterize the time 

and rate dependent response of soils and to describe it by means of a constitutive model. 
However, most of these constitutive equations have been developed for a single stress 

point and limited stress paths, and in engineering practice the time dependent nature of 

soils is still commonly reduced to a single coefficient of secondary consolidation 

obtained from a 24h oedometer test. 

This thesis describes the development and implementation, in the Imperial College 

Finite Element Program (ICFEP), of two elastic visco-plastic models based on the 

overstress theory to describe the stress-strain-time/rate behaviour of clayey soils. The 

models differ essentially in the adopted law to describe the variation of the creep 
deformation with time. The first model - Creep Model 1- incorporates a linear 

logarithmic law to describe the variation of the creep deformation with time, while the 

second model - Equivalent Time (ET) Model - incorporates a non-linear logarithmic 

creep law, with a limit to the amount of volumetric creep strain that can occur. 

The implementation and performance of the models is validated through a series of 

simple finite element analyses that mimic common laboratory stress paths and show that 

the models are able to reproduce the phenomena of primary and secondary compression, 

stress relaxation, primary and secondary creep and persistent rate effects on the stress- 

strain response under Ko and triaxial stress conditions. 

The ET model is then used to investigate the increase in bearing capacity of pre-loaded 
footings on soft clay, taking into account both the effects of consolidation and soil 
hardening due to creep with time. Finally, a series of finite element analyses are 

presented that mimic the loading tests performed on two instrumented rigid footings at 

the Bothkennar test site. These analyses highlight the importance of considering the soil 

viscous effects in engineering practice and the need to account for the soil creep non- 
linearity if good predictions of the long-term settlements of geotechnical structures are 

to be made. 
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SYMBOLS AND ABBREVIATIONS 

Symbol 

A Singh and Mitchell's model parameter 
A Tavenas' model parameter 
B Tavenas' model parameter 

[B] matrix of the derivatives of the shape functions Ni 

C, coefficient of consolidation 
Cce compression index in terms of void ratio 
Ck permeability change index (_ Ae/0 log (k)) 

C1e coefficient of recompression in terms of void ratio 
Ca coefficient of secondary consolidation 
Cae coefficient of secondary compression defined in terms of void ratio 
Cac coefficient of secondary compression defined in terms of strain 
[D] constitutive matrix 
[D] elastic constitutive matrix 
[D] total constitutive matrix 
[D'j 

effective constitutive matrix 
[D 

fj pore fluid stiffness matrix 

{Od }c�odes global nodal displacement vector 

{itd }T displacement vector 

{Ad}nodes vector of the incremental nodal displacements 

d dilatancy (the ratio of volumetric to deviatoric strain increments) 

D* footing equivalent diameter 

e void ratio 

eo initial void ratio 

e; initial void ratio 
Ae change in void ratio 
E error in the stress changes in the non-linear solver 
E total potential energy 
E Young's modulus 
E' drained Young Modulus 

E� undrained Young Modulus 

DEd deviatoric total strain increment 
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AEa deviatoric visco-plastic strain increment 

fd dynamic loading surface 
fs static yield surface 
F overstress 

{OF}T vector of the body forces 

g plastic potential function 

g(O) inclination of the critical state line in p'-J stress space 
G shear modulus 
Gmax elastic shear modulus at very small strains 
h sample height 

H layer thickness 

AH settlement 
{iG } unit vector parallel but in the opposite direction to that of gravity 

J deviatoric stress 

Iii Jacobian determinant 
J2,7 stress ratio squared 

J2q, fauure stress ratio at failure squared 

k permeability 
k hardening parameter 
kh horizontal permeability 
k,, vertical permeability 
kv soil permeability in the direction of the flow 

[k] permeability matrix 

K elastic bulk modulus 
Ko coefficient of earth pressures at rest 

Kö coefficient of earth pressure at rest in the normally consolidated range 

Ke constant related to Kf 

Kf bulk modulus of the pore fluid 
Kskel soil skeleton bulk stiffness 
[KG ] global stiffness matrix 
[KE ] element stiffness matrix 

L work done by the applied forces 

Lf current mobilized load factor 
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in Singh and Mitchell's creep parameter 

m,, coefficient of volume compressibility 

M gradient of the critical state line in p'-q space under triaxial compression 

Mf stress ratio at critical state 
Mf the value of M for the loading surface 

Mg the value of M for the plastic potential surface 

[N] matrix of the displacement interpolation/shape functions 
[N 

pý matrix of the pore pressure interpolation/shape functions. 

P plastic potential function 

p, (current) mean effective stress 

A initial mean effective stress 

p, mean effective stress at a generic stress point i 

p; ef mean effective stress on the reference line 

POref mean effective stress on the reference line 

p,, 0 mean effective stress at zero volumetric strain on the reference time line of 
the natural soil 

p,,,, 0 mean effective stress at zero volumetric strain on the intrinsic reference time 
line 

Pso initial increase in p,,, 0 due to soil structure 

ps current increase in pm ,0 due to soil structure 

p�a, u al mean effective stress on the reference time line of the natural material 

Pi�r,,,, sic mean effective stress on the intrinsic reference time line 

p,, C size of the loading surface correspondent to the largest normally 
consolidated stress state that the soil element have experienced 

poC size of the current loading surface 

p,, size of the current loading surface 

AP 
in mean effective stress change 

{Op} pore pressure change 
{Op}� vector of the pore pressure change at the nodes 

q deviator stress 
qL the current bearing pressure. 
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qL max ultimate bearing capacity 

gmax soil strength at the beginning of the undrained creep process 

q current stress ratio 

qo initial stress ratio 

Q sources or sinks 
Q ultimate bearing capacity 
Q; initial undrained bearing capacity 
Q6months undrained bearing capacity at 6 months 

rk permeability anisotropy ratio (= kho/k, o) 
R relative error in the non-linear solver 
{ARE } element right hand side load vector 
{ORG } global right hand side load vector. 

s Lacerda & Houston's model parameter 

5EOP settlement at the end of primary consolidation 

S1 settlement at an instant t 

S stress level 

S isoparametric coordinate 

S� undrained strength 

t time 

to the real time associated with the reference time line 

to equivalent time 

t; time origin 

At time increment 

T isoparametric coordinate 
AT ratio between the sub-step and the incremental strains in the non-linear 

solver 
{AT }T vector of the surface tractions 

u displacement value in the x direction 

u pore water pressure 

Ub pore water pressure at the base 

DUdcv deviatoric part of the excess pore water pressure 
DUsph spherical part of the excess pore water pressure 

Us degree of settlement 
UPWP degree of pore water dissipation 
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v displacement value in the y direction 

v, t superficial velocity of the pore fluid in the x-direction 

vy superficial velocity of the pore fluid in the y-direction 
{v} vector of the pore fluid superficial velocities 

V (current) specific volume 
VO initial specific volume 
V; initial specific volume 
V1; specific volume at unit mean effective stress 
Viref specific volume at unit mean effective stress on the reference time line 

AV change in specific volume 
W work done by the internal forces 

X parameter of the yield/plastic potential surface in the deviatoric plane 
Y parameter of the yield/plastic potential surface in the deviatoric plane 

z distance from the drainage boundary 

Z constants input parameter 

a Singh and Mitchell's model parameter 
a dilatancy parameter 

af value of a for the loading surface 

ag value of a for the plastic potential function 

ß time function 

ß integration parameter for coupled consolidation analyses 
S settlement 
5max maximum settlement 

6 strain 

El major principal strain 

E2 intermediate principal strain 

63 minor principal strain 

s, strain in the x-direction 

sy strain in the y-direction 

EZ strain in the z-direction 

6,, vertical strain 

C� volumetric strain attained at infinite creep time 

se elastic strain 

s" viscous strain 
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Cc creep strain 

6 tot total strain 

Cvol current total volumetric strain 

Ed sum of the absolute values of incremental volume strain 

svol, m volumetric strain at the equivalent isotropic stress state 

svä M visco-plastic volumetric strain at the equivalent isotropic stress state 

vö 
, »r, Dmit limit volumetric visco-plastic strain 

svoi. mu volumetric strain at a reference mean effective stress pu on the current 
instant line 

svpý, n volumetric strain on the reference time line at the equivalent isotropic 

effective stress p,, 

ref 
MO volumetric strain on the reference time line at the isotropic effective sv 

stress pmo 

Ösel incremental elastic strain 

ACV' incremental visco-plastic strain 

ACT incremental total strain 

Acv incremental visco-plastic strain vector 

A<P incremental visco-plastic strain in the i direction 

DCT 
Vol 

incremental total volumetric strain 

Ac 1 incremental visco-plastic volumetric strain 

Ace' 
,, 

incremental elastic volumetric strain at the equivalent isotropic stress state Vol' 
Oso Vn incremental visco-plastic volumetric strain at the equivalent isotropic stress 

state 
{Ösel } incremental elastic strain vector 
{Acv' } incremental viscous-plastic strain vector 

f ACi 
m} 

incremental strain vector 

JAC. } sub-step incremental strain vector 

sQ axial strain rate 

sei elastic strain rate 

s° creep strain rate. 
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vertical strain rate 

Evp visco-plastic strain rate 
Eiotal total strain rate 

svol current volumetric strain rate 

ref volumetric strain rate on the reference time line 

svol elastic volumetric strain rate 

sVo visco-plastic volumetric strain rate 
{£; 

ýp } 
visco-plastic strain rate vector 

{e; ' } 
elastic strain rate vector 

{e, } 
total strain vector 

{sj `} total strain vector 

PCs critical state angle of shearing resistance 

cp angle of shearing resistance 

(D(F) function of the overstress F 

(D visco-plastic scalar multiplier 

y fluidity parameter 

y bulk unit weight of the soil 

yr bulk unit weight of the pore fluid 

y�, bulk unit weight of the pore water 

TI stress ratio 

Ti viscosity 
i7 generalized normalized stress ratio 

K slope of the instant time line in V-lnp' space 

K/V slope of the instant time line in e� - In p' space; 
X slope of the reference time line in V-Inp' space 
XN slope of the reference time line in c,, - In p' space; 
A visco-plastic multiplier in the non-stationary flow surface theory 

Poisson's ratio 
drained Poisson's ratio 

µ� undrained Poisson's ratio 

µ dilatancy parameter 
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ft f value of the dilatancy parameter µ for the loading surface 

, ug value of the dilatancy parameter µ for the loading surface 

0 Lode's angle 

ps parameter that controls the rate of destructuration 

a direct stress 

6'1 major principal effective stress 

a'2 intermediate principal effective stress 

a'3 minor principal effective stress 

a, stress in the x-direction 

6y stress in the y-direction 

aZ stress in the z-direction 

6, isotropic pre-consolidation pressure 

6,, ' vertical effective stress 

a-, total vertical stress 

6vo in-situ vertical effective stress 

6ho in-situ horizontal effective stress 

a ý; initial vertical effective stress 

(TV, vertical effective stress at large scale yielding 

6hy horizontal effective stress at large scale yielding 

a', eq equivalent vertical effective stress 

07. pre-consolidation vertical effective stress 

ßy yield stress 
Ac, total vertical stress increment 

{Aa} vector of the incremental total stresses 
JAW) vector of the incremental effective stresses 
{iXcf} vector of the incremental pore fluid pressure 
{di, 

'i 
} stress rate tensor 

intrinsic time 

shear stress 

tiXy shear stress in the x-direction action of y facet 

'c,, shear stress in the x-direction action of z facet 

29 



iYZ shear stress in the y-direction action of z facet 

yf creep parameter, change in void ratio per natural logarithmic cycle of time 

Wo model parameter w at the reference time, to 

yr/V creep parameter of the equivalent time model 

VO /V creep parameter yi/V at the reference time to 
I residual load vector for iteration 1 during the solution of the global 

equations matrix 

Abbreviation 

1D one-dimensional 
CRD constant rate of displacement 

CRS constant rate of strain 
CSL critical state line 

EOP end of primary consolidation 
ESP effective stress path 
ET equivalent time 
FE finite element 

ICL intrinsic compression line 

IL incremental load 

MCC modified Cam-Clay 

NC normally consolidated 
NCL normal compression line 

OC overconsolidated 
OCR overconsolidation ratio 
PI plasticity index 

pwp pore water pressure 

RF restricted flow tests 
SRS step-wise change in the rate of strain 
TESRA temporary effect of strain rate and strain acceleration 
YSR yield stress ratio 

30 



1 INTRODUCTION 

1.1 Background 

The first aspect of the time dependent behaviour of soils to have attention from the 

engineering community was the creep time delayed deformation of soils under a given 
load. Observations were reported since the early decades of the 20`h century and 
Buisman (1936) first noticed that the creep deformation of soil was mathematically well 
described by a semi-logarithmic law. Since the 1950s the time dependent behaviour of 

soils has been studies in a more systematic manner. The focus then was the time- 

delayed deformation behaviour of soft clays and its creep characteristics with the aim of 

predicting the long-term settlement of foundations on soft ground, as presented by 

Bjerrum (1967) in the seventh Rankine lecture. Since then various studies have been 

carried out on time dependent deformation and the time dependent structuration of soils 
(concepts that are defined in Chapter 2). 

Until a decade ago it was thought that viscous effects gave rise to predictable patterns, 

which were essentially the same for all soil types. Tatsuoka et al. (1998), based on 

experimental work carried out in the late 1990's, showed that soils of varying nature 

might exhibit very different viscous effects, constituting a major advance in the 

characterization of the viscous behaviour of geomaterials. However, over the same 

period nothing seemed to have changed in engineering practice, and time effects on 

geomaterials are still often reduced to an add on secondary settlement, or a strain rate 

correction factor applied to the undrained strength. 

During the last two decades there has been an increase in the development and use of 

numerical methods in the design of geotechnical structures. This has been boosted by 

increased construction in urban areas and pressure to engineer in locations were the 

geotechnical conditions are less favourable, requiring accurate calculations of stresses 

and ground movements around geotechnical structures, both at failure and at working 
loads, both in the short and long term. 

Although numerical analysis is a powerful tool, the predictions obtained are highly 

dependent on the constitutive soil models adopted. In the analysis of many geotechnical 

problems (e. g. staged embankment construction, engineering in soft soil in general, long 
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term behaviour of geotechnical structures), it is important to use constitutive soil models 

that are able to incorporate the viscous nature of soils. This is particularly the case when 

modelling clayey soils as they are observed to be more susceptible to viscous effects, 
i. e. larger delayed settlements and strain rate effects on strength and stiffness. 

It is apparent from the literature that there are various formulations available to describe 

the time dependent behaviour of clays. However, the majority of these have only been 

validated under very limited stress paths and there is very little experience in their use in 

the analysis of full boundary value problems. The work described in this thesis aims to 

fill these gaps. 

1.2 Objectives 

The aim of this research is to improve the knowledge of using time dependent 

constitutive models, i. e. models that are able to mimic soil viscous effects, to model 

clayey soils. In particular: 

a) Based on available formulations, to develop and implement in a finite element 

program constitutive models that are able to mimic the main features of the time 

dependent behaviour of normally and overconsolidated clays; 

b) To validate the above models against laboratory test data; 

c) To use the models to analyse boundary value problems, so that the performance 

of the models may be fully appreciated, and any problems in their application 
identified. 

1.3 Layout of the thesis 

During this research two constitutive soil models were developed, and they are 
described in this thesis. The two constitutive models are based on the overstress theory 

and they differ essentially in the law adopted to describe the variation of the creep 
deformation with time. The constitutive models were implemented in ICFEP (Imperial 

College Finite Element Program) and validated by means of finite element analyses 

simulating common laboratory stress paths. The models were then used to analyse the 

behaviour of a generic foundation problem and finally to simulate the Bothkennar 

footing tests, for which there is a large amount of data regarding both the footings 
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performance during the tests and soil characterization. The outline of the thesis is given 
in detail below: 

Chapter 2 presents a review of the published literature concerning the time dependent 

behaviour of soils associated with soil viscosity, such as creep, stress relaxation and rate 

effects on the stress-strain-strength soil response. References to other time effects that 

lead to soil ageing or structuration are also included to illustrate the approximations 
involved by their non-consideration. The review concentrates on the behaviour of 

saturated clays, but for clarity and completeness, data on other soil types is also 
included. 

Chapter 3 presents a review of the available constitutive soil models, which attempt to 

incorporate the viscous nature of soils. It is noted that, most of these have been 

developed based on experimental work on clay soils, and therefore, reproduce the so- 

called isotach viscosity, described in Chapter 3. This review covers empirical relations, 

rheological models and selected full general stress-strain-time models. 

Chapter 4 gives a brief description of the finite element (FE) method and discusses 

some basic modifications necessary to allow the method to be used in geotechnical 

engineering, namely to tackle the two phase nature of soils and their strong non-linear 

stress-strain behaviour. 

Chapter 5 presents an elastic visco-plastic model based on the overstress theory, which 

incorporates a linear law between creep strain and the logarithm of time to evaluate the 

visco-plastic volumetric strain rate. The model is referred to as Creep Model 1. The 

model is initially formulated under isotropic stress conditions and is then extended to 

general stress space. Based on the experimental work by Tavenas et al. (1978) the 

extension to general stress space is initially done assuming that the visco-plastic 

volumetric strain rate is constant on a given loading surface (which, as explained in 

more detail in Chapter 5, is essentially a surface homothetic to the state boundary 

surface that passes through the current stress state, and it is assumed to have the ellipse 

shape of the Modified Cam Clay model) and the remaining strain components are 

calculated from a plastic potential surface. However, when adopting the above 

assumption, it is found that the model is not able to correctly predict critical state 

conditions. The formulation of the model in general stress space is modified such that a 
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given loading surface becomes a locus of constant visco-plastic scalar multiplier. The 

model is implemented in ICFEP and is then validated by means of finite element 

analyses that mimic common laboratory tests. 

Chapter 6 presents an elastic visco-plastic model based on the overstress theory, which 

incorporates a non-linear logarithmic law between creep strain and time, derived based 

on the concept of Equivalent Time by Yin et al. (2002), to evaluate the visco-plastic 

volumetric strain rate. This model is called the Equivalent Time model and one of the 

main advantages of this model over Creep model 1 is that it incorporates a limit to the 

amount of creep volumetric strain, and therefore predicts a non-linear creep law. Based 

on the results presented in the Chapter 6 the model is extended to general stress space 

by assuming that a given loading surface is a locus of constant visco-plastic scalar 

multiplier. The validation of the model is divided into three parts: a) simulation of 

common laboratory tests; b) predictions of the one-dimensional consolidation of 

samples of various thickness and c) simulation of a set of laboratory tests on Hong 

Kong marine deposits. To conclude the Equivalent Time model is compared with Creep 

Model 1. 

Chapter 7 presents a parametric study on the bearing capacity of a pre-loaded 2m wide 

strip footing. Following from the study presented by Zdravkovic et al. (2003) which 

investigated the increase in bearing capacity of a pre-loaded strip footing due to 

consolidation, this study aims to evaluate the bearing capacity of the same pre-loaded 

strip footing when the soil hardening associated with the development of creep strains is 

also included. The study considers different values of the coefficient of secondary 

compression, the effect of creep non-linearity and the effect of the adopted loading rate. 

Chapter 8 describes the numerical analyses of the loading tests performed on two rigid 
footings at the Bothkennar test site (Jardine et al., 1995; Lehane & Jardine, 2003). In 

1990 two instrumented footings were constructed. One footing (A) was taken to failure 

over four days giving an undrained bearing capacity of about 138kPa, while the other 

(B) was loaded to two thirds of this bearing capacity and then left to consolidate under 

constant applied load for about 11 years, at which point it was then loaded to failure, 

indicating an undrained bearing capacity in excess of 204kPa. The foundation soil is 

modelled using the Equivalent Time model; The model parameters are derived based on 

the large amount of laboratory and in-situ test data available in the literature, and the 
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adopted values are validated by the ability of the analysis to mimic the behaviour of 
footing A. The results of the analyses are compared with the monitoring data published 
in the literature. 

Finally, Chapter 9 gives a summary of the work presented in this thesis, the conclusions 

reached and recommendations for further research. 

The remaining part of this chapter introduces the definitions of stress and strain 

variables used in this thesis. 

1.4 Definition of stress and strain variables 

A constitutive model is essentially a relationship between increments of stress and 

strain. Given that there are various options to characterize the stress and strain state of a 

soil element it is important to declare how it is done within this thesis. 

A stress state in general stress space can be characterized by the magnitudes of the 

individual components of the stress tensor, which will depend on the chosen directions 

for the coordinate axes x, y and z. The second order effective stress tensor is given by 

the following equation: 

6x T 
xy 

Zzz 

Equation 1.1 [ ]= 
zYX o, z 

zzv Try 

where rx, =zyx9 zxZ = r., and zyz =r,. 

Alternatively, the stress state can be described by the value of the three principal 

stresses CFI I, a'2, a'3 and the orientation of the planes on which these principal stresses 

act. In either case, six independent quantities are required to fully characterize a stress 

state in general stress space. 

The effective stress tensor can be divided into two components, a volumetric and a 
deviatoric component as follows: 
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Equation 1.2 

0-x zxy zxz P00 6x -p 
10-11= 

zYX 6y zyZ =0 p' 0+ ry, 

zrr zry 6Z 00 p' z2x 

Volumetric 
component 

Zxy Zxz 

av p zYZ 
zry 6Z -P 

Deviatoric 
component 

wherep' is the mean effective stress defined as: 

Equation 1.3 p=3 
(o-., ' + 6y + o-z 

Equation 1.2 can be rewritten as: 

Equation 1.4 Qli = p, " (Iii + s, 1 

where a, is the component ij of the effective stress tensor, p' is the mean effective 

stress, s; 1 is the component ij of the deviatoric stress tensor and 15y is the Kronecker's 

delta. 

For materials that are isotropic, in which the material properties are the same in all 
directions, it is sufficient and also more convenient to consider only certain aspects of 

the stress tensor. In particular the stress state may be characterized by stress invariants. 

Within this thesis the stress state is represented by three invariants: the mean effective 

stress p' defined by Equation 1.3, the deviatoric stress J (or the deviator stress q) and 

the Lode's angle 0, which are defined below: 

(ý ýjy 
Equation 1.5 J=L1 (S: s)] 

f( ýj 
JI J-[2Llo -p)Z+(ß'y-p)Z+(az-pý2+2r 

2+2r 2+27 Z Y2 

Equation 1.6 q=4"J 

Equation 1.7 B=3 sin-' 
32 det(s) 

'/ 

C (s 
: s)Jj'Z 

2 
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where det(s) is the determinant of the deviatoric stress tensor sy. 

The above three invariants can be expressed in terms of the principal effective stresses 

W19 a'2 and a'3i as follows: 

62 + Q3 Equation 1.8 p, =3(o- +a, ' 

Equation 1.9 J= ý61 
- 6Z 

)2 
+ 

(6Z 
- 63)Z + 

(a'3 
- v; 

)Z 

Equation 1.10 B= tan-' 
12 62 - °3 

_i 
V-ý 61-63 

The choice of the invariants is not arbitrary as the above quantities have a geometric 

meaning in principal effective stress space as shown in Figure 1.1. The mean effective 

stress p' is a measure of the distance of the current deviatoric plane to the stress origin, 

along the space diagonal (a' ý= 6'2 =a'3), noting that a deviatoric plane is any plane 

perpendicular to the space diagonal. The value of J is related to the distance of the 

current stress state to the space diagonal, on the deviatoric plane. The angle 0 gives the 

orientation of the current stress state on the deviatoric plane and given the condition that 

a'>>_ 6'2 >_ 6'3 stress states are confined to lie between the lines 0=-30° and 0=+30° that 

correspond to triaxial compression and extension, respectively. 

It is noted that the three stress invariants p', J and 0 are able to give information on the 

overall magnitude of the stress state, but provide no information on the orientation of 

the principal directions. If the material is considered to be isotropic, i. e. the material 

properties are the same in all directions, and information on the orientation of the 

principal directions is not required. However, if the material is assumed to be 

anisotropic then the use of the three stress invariants is not sufficient and the whole 

stress tensor (6 pieces of information) needs to be involved in the calculation 

procedures. 
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Figure 1.1: Stress invariants in principal effective stress space (after Potts & 

Zdravkovic, 1999). 

As with the stress state, the strain state is a tensor characterized by six components, i. e. 

Ex, ey, 6" Y, Y, Yxz, Yyz: 

Ex Yxy 
/2 

Yxz 
/2 

Equation 1.11 y /2 sy yjz /2 

Y. /2 Yry/2 eZ 

where yam, = y, yxZ =y and yx, = yry . 

The strain tensor can be divided into two components, the deviatoric and volumetric 

components: 

Equation 1.12 

ex y, /2 Y/2 ev 00 £x - ev Y /2 Yxz /2 
[c]= r/2 eY y /2 =0 ev 0+y, /2 cy -ev yy, /2 

Y/2 yy /2 sZ 00 ev y. /2 Yry /2 sz - ev 

Volumetric Deviatoric 
component component 

where ev is defined as: 

Equation 1.13 ev =3 
(c,, +, cy + e, =3 vvOj 

where sß, 01 
is the volumetric strain. Equation 1.12 can be rewritten as: 
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Equation 1.14 eu =3 cva1 8ý + e. 

where E. is the component of the strain tensor, Evo, is the volumetric strain, ö, is 

Kronecker's delta and e; 1 is the component ij of the deviatoric strain tensor. Within this 

thesis the strain state is characterized by two invariants: the volumetric strain 6,,, given 

by 1.13 and the deviatoric strain Ed, which is defined as follows: 

Equation 1.15 Ed _ 
[2(e5 : es )]y 

Y2 E, j= 
[2[(e 

x -ev)2 +(cy -ev)2 +(BZ -ev)2 + 
IYXY2 

+I Yy: 2 + 
21 

Yzc2J 

The strain invariants can be written in terms of the principal strains E, , s2 and 63 : 

Equation 1.16 6a =6 1+ EZ +63 

Equation 1.17 Ed _2 
[(81 

- S3 
)Z 

+ 
(82 

- 63 
)2 

+ 
(£1 

- £Z 
)2 1 
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A basic assumption of elastic behaviour is that the directions of principal effective stress 
increments and incremental strains coincide. The general constitutive equation gives a 

relationship between increments of effective stress and increments of strain: 

Equation 1.18 {Ao-y }= [D] 
" 
IAcij } 

where 
{06; 

ý 
} is the vector containing the effective stress tensor components, IAe } is 

the vector containing the strain tensor components and [D] is the effective stress 

constitutive matrix. If the material is assumed to be isotropic elastic then the matrix [D'] 

can be shown to be symmetric and in addition the behaviour is fully defined by two 

independent elastic parameters. In geotechnical engineering the elastic behaviour of 

materials (i. e. soils) is often characterized in terms of the elastic shear modulus, G and 

the elastic bulk modulus, K. If the material is assumed to be isotropic linear elastic then 

the quantities G and K are constant and Equation 1.18 can be written as: 
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Equation 1.19 

Aux K+4/3G K-2/3G K-2/3G 000 A£x 

Au' K+ 4/3G K- 2/3G 000 AEy 

K+ 4/3G 000 0£Z 

0 zxZ G00 DYXZ 

0z sym G0 AY), 

0z, G DYE 

In an elastic isotropic material, the volumetric and shear components are decoupled and 

the above elastic parameters, G and K, can be calculated from any stress path as: 

Equation 1.20 G= 
aEd 

Equation 1.21 K= 
ap 

aEvol 

Moreover, for an isotropic linear elastic material the elastic parameters G and K can be 

related to Young's Modulus, E and the Poisson's ratio, µ by the following equations: 

Equation 1.22 

Equation 1.23 

E 
G=2 (i + , u) 

E 
K= 

3 (1-2, u) 
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2 OBSERVED VISCOUS BEHAVIOUR OF SOILS 

2.1 Introduction 

As mentioned in Chapter 1, the aim of this thesis is to develop, implement and validate 

constitutive models that are able to reproduce the time dependent behaviour of clays 

that derive from the soil viscosity. 

This Chapter gives a review of the published literature concerning the viscous time 

dependent behaviour of soils, focusing on the behaviour of saturated clays. The time 

dependent behaviour of soils is usually divided into viscous effects (such as creep, 

stress relaxation, strain rate effect) and ageing effects. However the interaction between 

the two types of effects and the interaction with other aspects of soil behaviour like 

natural soil structure and anisotropy considerably complicates their characterization and 

quantification. 

2.2 Definition of common time effects 

From the literature review, it became apparent that there is some confusion in the 

terminology regarding the subject of time dependent behaviour of soils. Therefore, it 

seems important to define the terminology as it is used in this thesis. Nowadays, most 

researchers appear to agree that aspects of the time dependent behaviour such as creep, 

stress relation and strain rate effects can be grouped into what can be called the viscous 

effects, where: 

Creep - the continued deformation of a soil element at constant effective stress; 

can be applied to either the deviatoric and volumetric component of stress/strain. 

Stress relaxation - the continued decrease in effective stresses acting on a soil 

element under constant strain conditions 

Rate effects - the change in the stress-strain-strength soil response due to the rate 

of applied load/strain. 

The viscous effects observed in soils are believed to result mainly from sliding at 
interparticle contacts and associated particle re-arrangement, with the presence or 

absence of (free) water having only a minor influence (Mitchell, 1993). In fluid 
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mechanics, viscosity is "the resistance a gaseous or liquid system offers to flow when it 

is subjected to a shear stress" (Matesic & Vucetic, 2003), noting that an increase in the 

fluid viscosity gives rise to a higher resistance to flow at a given shear stress. 

If the term is extended to soil mechanics, one could say that granular materials are in 

general more viscous than clays, as they tend to give rise to a higher resistance to 

shearing at a given shearing rate. However, the viscous effects as defined above, that 

can be quantified by the magnitude of creep strains at constant stress or the increase in 

shear stress produced by an increase in strain rate, are in general greater in clayey soils 

than in granular materials. In a material such as clay there is a continuous increase in the 

resistance to flow with increasing strain rate, but the coefficient of viscosity is found to 

decreases with strain rate. It is apparent that mathematically, viscous flow alone cannot 

explain the behaviour of soils, and one needs also to consider additional elastic and 

plastic components. 

Some aspects of the observed time and rate dependent behaviour of soils cannot be 

explained by viscous effects. They include for example, the time-dependent 

structuration associated with physico-chemical processes such as thixotropy, bonding 

and cementation. For structuratron or ageing the author means the process (es) by 

which the soil acquires structure, giving the additional components of strength and 

stiffness of the natural soil, in relation to the reconstituted one, which cannot be 

accounted for by void ratio and stress history alone. 

The term thixotropy was first employed to describe the mechanisms of aggregation and 
dispersion occurring in colloidal suspensions and gels. In soil mechanics the term 

thixotropy has been used to describe "an isothermal, reversible, time-dependent process 

occurring under conditions of constant composition and volume whereby a material 

stiffens while at rest and softens or liquefies upon remoulding" (Mitchell, 1960). 

Consequently, some authors have suggested that the term thixotropy should not be 

applied to the process of time dependent strength increase of soils, and instead a term 

such as age hardening should be used. Skempton & Northey (1952) suggest that 

thixotropy in soils results "from the gradual rearrangement of particles, under the action 

of bonding forces, into positions of increasing mechanical stability". Sorensen (2006) 

classifies the processes of thixotropy, bonding and cementation as inherent ageing 

effects, based on the fact that they require little interaction with the surrounding 
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environment (the exception may be significant cementation) and cause, in principle, no 

significant changes in the intrinsic properties of the soil. By "intrinsic properties" the 

author refers to the properties of a given soil that are evaluated on reconstituted 

samples, as defined by e. g. Burland (1990), Leroueil and Vaughan (1990). 

Time dependent changes to the soil structure may also occur as a result of weathering, 

chemical changes in the pore water (e. g. leaching) and heat and pressure variations. 
Sorensen (2006) classified these phenomena as environmental ageing effects, since they 

require significant interaction with the surrounding environment. These effects produce, 
in principle, changes in the soil composition, and consequently are likely to produce 

changes in the intrinsic properties of the soil. 

It is often difficult to distinguish between the components in the soil behaviour that are 
due to viscous effects and those that derive from ageing, as both are time dependent and 
in principle may occur simultaneously. In addition, viscous effects often give rise to 

apparent structuration; i. e. on loading after a period of drained creep an increase in 

stiffness, yield stress and undrained shear strength is often observed. However, there are 
fundamental differences between the apparent structuration that often occurs associated 

with viscous effects and true ageing. In addition, in clayey soils one also needs to 

consider the delayed dissipation of excess pore pressure and its interaction with the 

viscous effects, i. e. the role of viscous deformation during primary consolidation. 

A review of the mechanical behaviour of soils that derives from changes in the soil state 

only, and is independent of time and rate of strain is beyond the scope of this thesis, and 

the reader should refer elsewhere (e. g. Grammatikopoulou, 2004; Gasparre, 2005; 

Cotecchia, 1996). The literature review presented subsequently will concentrate on the 

time dependent behaviour of clays that arise from viscous effects. For clarity and 

completeness, data on other soil types is also included. Such a review will allow the 

evaluation of the applicability of the constitutive models presented in this thesis, which 
have primarily been developed for clays, to other soil types. Throughout this chapter, 

and whenever relevant, reference is made to ageing effects on soils so that the 

limitations of their non-consideration may be fully appreciated. 

Given the viscous nature of soil behaviour it is not surprising that the stress-strain- 
strength soil response is also affected by temperature. Although the consideration of the 
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effect of temperature is beyond the scope of this thesis, a brief account of the effect of 

temperature on the soil behaviour is included in Section 2.6. 

2.3 Creep and strain relaxation 

2.3.1 Characterization of the phenomena of creep and stress relaxation 

Creep is defined as the soil deformation that occurs at constant effective stresses, during 

which the rate of deformation is controlled by the viscous properties, or the viscous 

resistance, of the soil. The phenomena of creep follows qualitatively similar trends for 

all soil types but, in general, the amount of creep deformation is found to increase with 

increasing soil plasticity, water content and stress level, noting that larger creep 

deformations imply a decrease of the soils viscous resistance. 

From the definition of creep, creep tests are defined as tests performed at constant 

effective stress conditions, but due to the difficulties in keeping constant effective stress 

conditions, this term is often inappropriately applied to a broader range of tests. For 

example, in a drained triaxial test constant effective stress conditions can only be 

achieved if the applied load is continuously corrected to account for the change in the 

sample cross-section area, and the descriptor constant load or constant stress is usually 

added. 

Some researchers refer to undrained creep tests (or undrained creep phenomenon) 
during which the applied stresses are kept constant and there is an increase of shear 

deformation (creep deformation) at constant volume with time. However, according to 

the definition presented above, these tests are not true creep tests as during the tests 

there are changes in pore water pressure and consequently, changes (reduction) in the 

soil's effective stress. Undrained creep is found to follow the same trends, qualitatively 

and quantitatively, as drained creep. Therefore when analysing laboratory test data one 

should be well aware of the testing procedures. 

The process of creep can be characterized by three phases: primary, secondary and 

tertiary as shown in Figure 2.1. However, there is some confusion in the literature 

regarding the terms primary, secondary and tertiary creep defined in connection with 

creep tests performed in a triaxial apparatus, and primary, secondary and tertiary 
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compression defined in connection with step load tests performed in an oedometer 

apparatus. 

Primary Secondary Tertiary Primary 
Secondary 

Tertiary 

IM 
O 
J 

Time Log (time) 

Figure 2.1: Definition of creep phase's characteristics (after Augustesen at al., 2004). 

During primary consolidation, the soil deformation is associated mainly with the 

dissipation of excess pore water pressure, and during this period the strain rate decreases 

rapidly with time. After the end of primary consolidation (EOP), deformation continues 

at a reducing rate, and the deformation over this period - denominated secondary 

compression - is controlled by the soil skeleton viscosity, and is usually characterized 
by a linear relationship between creep strain and the logarithm of time. Sometimes a 

tertiary consolidation phase may be subsequently observed. The tertiary consolidation 

phase is characterized by an acceleration of creep strain with the logarithm of time, as 

schematically shown in Figure 2.2. This phenomenon has been reported by e. g. den 

Haan (1994) on oedometer tests on Portage peat. 
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Figure 2.2: Definition of consolidation phases during a 1D oedometer compression test 
(after Augustesen at al., 2004). 
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This behaviour corresponds closely to that observed in one-dimensional (1D) oedometer 

tests (or triaxial tests at stress states far from failure), where the creep behaviour is 

characterized by reducing strain rates with time, corresponding to the primary creep (see 

Figure 2.1). 

During creep triaxial tests, depending on the imposed stress state in relation to the 

failure envelope, secondary and tertiary creep phases may be observed. They are 

characterized by constant and accelerating strain rates with time, respectively. The 

tertiary creep phase leads eventually to failure, commonly known as creep rupture. It is 

noted that the creep phases described above are appropriate for deformations occurring 

after loading stages i. e. they are associated with an increase in the soil's mean effective 

stress. Creep behaviour following a significant unloading stage is usually characterized 
by an initial phase of creep recovery, where creep strains give rise to further swelling, 

reversing to compression deformation after a period of time. 

Stress relaxation is defined as a time dependent change in effective stress at constant 
deformation. Limited information has been found in the literature concerning stress 

relaxation and the work of Lacerda & Houston (1973) remains the basis of the current 

understanding of this phenomenon. Lacerda & Houston (1973) performed undrained 

relaxation tests (in which the axial strain remained constant with time) on a wide range 

of materials, including an undisturbed soft marine clay (San Francisco Bay Mud), 

kaolinite, a clean quartz sand (Monterey sand) and compacted Ygnacio Valley Clay, 

under various testing conditions. They found that the stress relaxation phenomenon was 
identical in all the materials tested and followed common trends that are schematically 

shown in Figure 2.3: 

a) Following an initial time delay the deviator stress was found to vary linear with 

the logarithm of time; 

b) The strain rate applied prior to the stress relaxation phase influences the time at 

which the stress starts to decrease; an increase in the strain rate was found to 

decrease the time delay prior to deviator stress decay. 

Lacerda & Houston (1973) show that the parameters that describe the stress relaxation 

process are related to the creep parameters determined from creep tests, implying that 

the two phenomena result from the same mechanism. Further, the influence of the 
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applied strain rate on the subsequent relaxation phase suggests that, at least for the 

materials tested, there is a correspondence between relaxation and strain rate effects. 

Leroueil & Marques (1996) suggest a relationship between creep and stress relaxation. 

They assume that the total strain rate, s`°`°` is the sum of the elastic strain rate, sei and 

the time dependent visco-plastic strain rate, e'P : 

EC 

0 

(1U)ß (tO)g ('U)C 

sss 

EA is EC 

Actual relaxation curve 
-""""""" Approximation 

Log t 

eA > EB > ec = Strain rate prior to relaxation 

Figure 2.3: Schematic diagram of the stress relaxation model proposed by Lacerda & 
Houston (1973) 

Equation 2.1 'total = se' + s°" 

A change in the current elastic strain Ösel is uniquely related to a change in the current 

effective stress state, AW via the elastic stiffness. In a creep test, the stress is constant 

and consequently sd =0 and s`°'°` = s" 
. During a stress relaxation test, the total strain 

is constant, therefore the strain rate must be zero and sei =-svp . If 8°p is positive, as it 

usually is after a loading stage then sd will be negative producing a reduction in 

effective stress a'. In this way, the reduction in effective stress during stress relaxation 
is directly linked to the creep potential at the same state. 

2.3.2 Uniqueness of the EOP 

Possibly the subject in soil mechanics that has created the most discussion amongst 

researchers is the question of the uniqueness of the end of primary consolidation. The 

discussion revolves around whether the void ratio at the EOP under a given effective 

stress is unique or instead depends on the duration of primary consolidation, and 
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consequently on the consolidating layer thickness, which would imply the existence of 

viscous effects during primary consolidation. 

There are two extreme approaches: one approach, the-so-called End-Of-Primary (EOP) 

approach, is particularly supported by Mesri and co-workers (1985,1994) and assumes 

that the void ratio at the EOP consolidation under a given effective stress is unique and 
independent of the duration of the primary consolidation. Therefore, the compression 

curve obtained in the laboratory can be used directly for settlement analysis of thicker 

layers in the field. This methodology has been used to predict the settlement of various 

embankments and results were found to agree well with the field measurements. The 

second approach - or viscous approach - is based on the assumption that clays are 

viscous, and therefore influenced by strain rate and temperature, during the entire 

process of consolidation. Both approaches, that are apparently contradictory, have been 

supported by experimental data. 

Leroueil (1995) has examined the data in the literature that supports both approaches, 

and has attempted to explain the reasons for the discrepancies. It is generally accepted, 

at least for strain rates encountered in the laboratory, that clays have viscous behaviour 

during primary consolidation and consequently when estimating the field settlements 
from laboratory compression curves one should account for the differences in strain rate 

and temperature. The value of strain rate in the field is likely to be smaller than that 

imposed in laboratory testing and thus, according to the viscous approach, the strain and 

the settlement in the field at EOP are expected to be larger. However, the effect of strain 

rate may be partially compensated by the fact that temperature in the ground is in 

general lower than in the laboratory (see section 2.6 on temperature effects). In addition 

the laboratory compression curve should ideally be obtained from oedometer tests on 
high quality samples; lower quality or disturbed samples will yield, as a rule, a smaller 

pre-consolidation pressure, causing an over prediction of the estimated settlement. 

Another phenomenon that may complicate considerably the interpretation of field 

settlements is the development of structure that may occur while the clay is 

compressing, at sufficiently low strain rates. This has been reported by several 

researchers, e. g. Leroueil et al. (1985) on CRS oedometer tests on intact Batiscan clay. 

However, the strain rate at which structuring effects may become noticeable vary from 

soil to soil. The development of structure has the effect of strengthening the soil and 
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thus reduces the amount of in-situ settlement, in relation to that estimated on the basis 

of the viscous approach. The combination of the above factors causes the long-term 

field settlement curves to fall between those predicted by the EOP and the viscous 

approach (Leroueil, 1995; Aboshi, 2004). 

2.3.3 Quantification of the observed creep behaviour 

During secondary compression the development of creep strain / deformation with time 

can be approximated by a semi-logarithmic law, as first suggested Buisman (1936). The 

1D compressibility of the soil during secondary compression can then be characterized 
by the coefficient of secondary consolidation, Ca,. The coefficient of secondary 

consolidation can be expressed either in terms of changes in void ratio, Cae (Equation 

2.2) or changes in vertical strain, C.: (Equation 2.3), and in this thesis if nothing is said 

to the contrary, the author refers to the former. 

De Ae 
Equation 2.2 C= 

log(t + At) - logt 0 log t 

Equation 2.3 C 
Osv 

= a` flogt 

The value of Ca is usually determined from incremental load (IL) 24-hour oedometer 

tests (in which the load increments are 'applied in 24 hour intervals). In natural soils, in 

particular, the value of Cd, has been found to be highly dependent on the current stress 
level, in relation to the pre-consolidation pressure. Mesri & Castro (1987), based on 

tests on a wide range of natural soils, have shown that the ratio between Cac and the 

compression index, Cce was constant and independent of stress level, where CcE is 

defined by Equation 2.4 in the normally consolidated stress range. They suggest that the 

ratio is about 0.04±0.01 for inorganic soft clays and slightly higher for organic soft 

clays. 

" 
A. -,, Os, 

Equation 2.4 C - log(o-ti, +Lto)-log 6v Ologa,, 

More generally, the relationship between creep strain and the logarithm of time is non- 
linear (Mitchell, 1993). Nevertheless the creep behaviour of soils seems to be 

characterized by a linear relationship between the logarithm of creep strain rate and 
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logarithm of time (i. e. Tavenas et al, 1978). Singh & Mitchell (1968) have defined the 

parameter m to characterize the creep behaviour of soils, where: 

Equation 2.5 m 
log e2 - log s, 

--A 
log s 

log t2 - log tI O log t 

Figure 2.4 shows the relationship between the parameter m and the corresponding 

evolution of creep strains with the logarithm of time. It is noted that the special case of 

m=1 corresponds to a linear law between creep strain and the logarithm of time, and 

therefore to a constant C,, with time. 
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Figure 2.4: Relationship between the parameter m and the evolution of creep strain 
with time. 

The creep behaviour described above is associated with secondary compression where 

the creep strain rate decreases steadily with time and the stress state is not approaching 

failure. Figure 2.5 shows results of undrained constant stress creep tests presented by 

Vaid & Campanella (1977) on intact samples of Haney clay in logs -logt space. 

During the creep tests carried out at stress states far from the peak strength envelope, the 

creep strain rates are found to decrease steadily with time, and there is a linear 

relationship between the logarithm of creep rate and the logarithm of time. The curves 

are found to move upwards with increasing deviatoric stress but to maintain roughly the 

same slope m. For stress states close to the peak failure envelope, an increase in pore 

water pressure in undrained conditions may eventually bring the sample to failure. 

Failure is identified as a deviation from the above mentioned linear relationship and a 

subsequent increase in creep rate. Murayama et at. (1984), based on drained creep tests 

at various stress levels, have reported the same behaviour on Toyoura sand. 
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Several studies have investigated the problem of identifying the stress conditions that 

lead to the occurrence of failure during creep. Vaid & Campanella (1977), based on 

undrained triaxial tests on Haney Clay, suggested the existence of an upper yield stress 
below which creep rupture could not occur. For stress states above that yield stress, the 

time to failure was found to be related to the magnitude of the applied deviatoric stress, 

while for applied stresses below the yield stress the samples showed a steady decrease 

in creep rate with time. Tavenas & Leroueil (1977), based on undrained triaxial tests on 

undisturbed Saint-Alban clay, suggested that the condition for the occurrence of creep 

rupture was for the applied stress state to be located between the critical state line and 

the peak strength envelope in J-p' space. 
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Figure 2.5: Variation of axial strain rate with time during constant stress creep tests 
(Vaid & Campanella, 1977). 

2.3.4 Influence of creep on the yield locus and subsequent stress paths 

From observations of creep (secondary compression) on soft clays in 1D compression, 

Bjerrum (1967) proposed a model for the 1D behaviour of soils based on the concept of 

isochrones or lines of equal time, schematically shown in Figure 2.6. According to 

Bjerrum (1967), the soil deformation can be decomposed into an instant and a delayed 

component. The isochrones plot as parallel lines in e-logou, ' space and represent the 
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positions (void ratio) of equilibrium at the respective times of sustained load at the 

various stress values. Under sustained stress, the void ratio reduces with time as a result 

of creep (delayed compression); on applying further load the soil exhibits a yield 

pressure or an apparent pre-consolidation pressure higher than the stress that the soil 
had been subjected to previously. In addition, the undrained strength is found to 

increase as a result of drained creep. Both phenomena could be explained by the 

reduction of void ratio, or changes in state, during creep. 
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Figure 2.6: Concept of isochrones or time lines for the 1D compression of soft clays, 
Bjerrum (1967). 

Arulanandam et al. (1971) carried out undrained triaxial creep tests on San Francisco 

Bay Mud at various stress ratios and observed that there was an increase of pore water 

pressure with time, and thus a decrease in effective stress. Figure 2.7 shows the stress 
locus at different creep times, showing that with increasing time the effective stress 

conditions move progressively towards smaller stresses, but that they form a surface 

with approximately the same shape. The data suggests that the isochrone concept 

proposed by Bjerrum (1967) for 1D compression can be extended to the entire yield 

surface in triaxial stress space. 

The concept of isochrones or time lines was later replaced by the concept of constant 

rate of strain curves, which describes the rate effects on the stress-strain behaviour of 

soils in more general terms, and is presented in detail in Section 2.4.1. This is supported 
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by the work of Tavenas et al. (1978) who performed an extensive programme of drained 

and undrained triaxial creep tests on intact lightly overconsolidated St. Alban clay. 
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Figure 2.7: Variation of the effective stress state with time during undrained triaxial 

creep tests (after Arulanandam et al., 1971). 

Drained creep tests were carried out at stresses located on the lines 0 to 5 as shown in 

Figure 2.8 and at various stress levels progressively closer to the limit state surface, 

monitoring both the shear and the volumetric creep deformation with time. Figure 2.8 

show contours of equal volumetric strain rate at a creep time equal to 100 minutes, in 

other words, the contours consist of the locus of the stress states that yield the same 

volumetric strain rate after 100 minutes. 
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Figure 2.8: Contours of constant volumetric strain rate from drained tests on St. 
Alban clay (after Tavenas et al., 1978). 
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Between lines 0 to 3 the lines of equal volumetric strain rate have the same shape as the 

limit state surface, but move progressively inwards towards smaller effective stresses 

with reducing strain rate, and therefore the strain rate at a generic stress point is directly 

related to its distance to the limit state surface, which is itself a contour of constant 

volumetric strain rate. Between lines 5 to 4 the volumetric strains were very small or 

nearly zero, such that it was not possible to derive reliable values of the volumetric 

strain rate. In this range of stress states, the limit state line was found to be a contour of 

constant shear strain rate. 

Creep was in general characterized by a linear relationship between the logarithm of 

strain rate (whatever components of strain) and logarithm of time, such that the 

parameter m for the St. Alban clay was consistently between 0.7 and 0.8, for both the 

volumetric and shear strain component. Based on the extensive laboratory data Leroueil 

et al. (1978) have proposed a general model for the effect of time on the soil's yield 

envelope, which is schematically shown in Figure 2.9. A soil element is assumed to be 

loaded in the normally consolidated range to point B on the Yo yield envelope, then the 

soil element is left to rest at stress state B for a period of time, during which it 

undergoes volumetric creep deformation, resulting in an expansion of the current yield 

envelope to Y1. 
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Figure 2.9: General model of the effect of time on the yield envelope of clays (after 
Tavenas et al., 1978). 

According to the isochrone concept, on subsequent loading after a creep period the soil 

element will have an initial stiff response, followed by a gradual yielding until the stress 

path rejoins the normal compression line (NCL) corresponding to the current strain rate. 

54 

PA Fb 0.1+a'3 PC 

2 



This is schematically shown in Figure 2.10(a) and corresponds to pure viscous 

behaviour. However, some studies reported in the literature have observed that on 

subsequent loading after a creep period, the stress path overshoots the NCL, as shown in 

Figure 2.10(b), rejoining the NCL with large straining. This behaviour could be 

attributed to either the development of structure or temporary effects of strain rate 

changes, as described later in Section 2.4.2. It is noted that if structuration occurs 
during the creep period then on subsequent loading the overshooting above the original 

NCL is in general quite persistent with continued straining, and significant straining is 

required to produce sufficient destructuration for the stress path to rejoin the original 

NCL. Similar behaviour has been identified in shearing. 
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Figure 2.10: Schematic diagram of the behaviour of a soil element following a drained 

creep period; a) pure viscous behaviour; b) viscous and structure effects. 

Various studies have been conducted to investigate the evolution of the coefficient of 

earth pressure at rest, KO with time during a creep period, where KO is given by the 

following equation: 

Equation 2.6 KO = ß'tio 10"0 

Where a'ho and o',, o are the in-situ horizontal and vertical effective stresses, respectively. 

Leroueil & Marques (1996) have summarized data available in the literature and 

concluded that with the exception of heavily overconsolidated clays that showed a 

constant KO value with time, normally consolidated and lightly overconsolidated clays 

develop an increase of KO with time during secondary compression, this increase being 

between 0.003 and 0.05 per logarithmic cycle of time. 

oI drained `. 
` creep 
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2.4 Strain rate effects 

2.4.1 Introduction 

The effect of strain rate on soil behaviour is generally investigated by means of constant 

rate of strain (CRS) tests, in which the relevant strain rate component - as a rule the 

vertical strain rate in oedometer tests and the axial strain rate in triaxial tests - is kept 

constant throughout the test. Given that, in general, small displacement theory is used in 

laboratory test interpretation, CRS tests are equivalent to constant rate of displacement 

(CRD) tests. The effect of strain rate is then evaluated by comparing the stress - strain 

response at different values of constant rates of straining. 

Another type of laboratory test used to investigate the effect of strain rate is the step- 

wise change in the rate of strain (SRS) tests in which during a single test various strain 

rate values are applied in a step-wise manner. This procedure reduces the time of testing 

and eliminates sample variability. However it was soon noticed that the results from 

SRS and CRS tests did not agree in some cases. 

Conceptually the effect of the loading or strain rate on the stress-strain response of soils 
is quite simple. If the rate of loading is reduced there is more time for the soil to relax 

and creep, allowing the development of larger deformations at a given load value, or in 

a displacement controlled test smaller stress at a given deformation value. The 

application of a larger strain rate causes, in general, the soil to yield a higher yield 

pressure and undrained strength. However this does not apply to all soils. According to 

Tatsuoka (2006) three types of viscosity can be identified in geomaterials: isotach, 

TESRA and Positive and negative viscosity and they are described subsequently. 

2.4.2 A unique stress-strain-strain rate relationship or isotach behaviour 

Until the late 1990's most of the work on the effect of strain rate on soil behaviour had 

concentrated on soft clays, which appeared to behave, in general, in an isotach manner. 
According to the isotach concept, the stress state of a soil element under any stress path 
is uniquely defined by the current strain and strain rate (Leroueil et al., 1985, Vaid & 

Campanella, 1977). Soon it was realized that it is more rigorous to state that the current 

stress is a unique function of the visco-plastic (or non-recoverable) strain and the 

respective strain rate. In this manner, the isotach model is able to explain the behaviour 
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during stress relaxation where the total strain rate remains zero. Tatsuoka (2006) states 

that the isotach behaviour is only valid during monotonic loading and cannot be applied 
during cyclic loading. 

Sorensen (2006) has constructed a database of the viscous behaviour of various 

geomaterials under shearing, isotropic and ID compression, found in the literature. The 

isotach behaviour is found to be applicable for a wide range of soils including soft clays 
in their natural and reconstituted states, undisturbed natural stiff clays and soft rocks 
(pre-peak), in which the stress is uniquely defined by the plastic strain and plastic strain 

rate and independent of the strain history. This has been observed under both ID 

compression in oedometer tests and more general stress paths in the triaxial apparatus, 
in both drained and undrained conditions. 

Several studies have investigated the strain rate dependency of the 1D and isotropic 

compression behaviour of soft clays. Figure 2.11 shows data from CRS 1D oedometer 

tests on Batiscan clay presented by Leroueil et al. (1985). 
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Figure 2.11: Constant rate of strain oedometer tests on Batiscan clay (after Leroueil et 
al., 1996). 

It can be seen that following yielding there is a near linear relationship between vertical 

strain and effective stress for each given value of strain rate. However, with increasing 
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strain rate the value of pre-consolidation pressure increases causing the normal 

compression curves to move to the right, such that for a given vertical strain the soil 

element is able to sustain higher stress. 

It is noted that the compression line corresponding to the slowest vertical strain rate of 
1.69x10"8/s (test n. 6) significantly deviates from the trend described above for the 

higher strain rates. Leroueil et al. (1985) interpreted this as being due to the 

development of structure, which occurred when the applied strain rate was sufficiently 

slow. With the exception of this data set, the data suggest the existence of a unique 

stress-strain-strain rate relationship. 

Leroueil et at. (1985) suggest that the compression curves could be normalized by the 

correspondent yield stress, and in this case the compression behaviour could be reduced 

to two independent equations, one giving the relationship between the applied strain rate 

and the yield stress, ay' and other giving the variation of vertical strain with normalized 

stress o, '/a, '. This further implies that the CRS curves plot parallel in the vertical 

strain - log a, ' plane, such that at any given vertical strain, the ratio of effective 

stresses measured at two different strain rates is constant. 

Leroueil et al. (1983) and Leroueil et al. (1985) based on 1D compression tests on clay 

samples from the Champlain Sea have shown that the yield stress increased almost 
linearly with the logarithm of strain rate, between 7% and 15% per logarithmic cycle of 

strain rate. They noted that the effect of strain rate decreased at smaller strain rates, and 

as proposed later by other authors (i. e. Soga & Mitchell, 1996; Leroueil & Marques, 

1996) it is more appropriate to consider a linear relationship between the logarithm of 

the YSR and the logarithm of strain rate. 

Figure 2.12 shows SRS 1D oedometer tests performed on Batiscan clay by Leroueil et 

al. (1985). It can be seen that following an increase in the applied strain rate the soil is 

initially stiff and then gradually yields to join the compression curve corresponding to 

the current strain rate value. The compression curve is uniquely defined by the current 

strain rate value and the effects of strain rate are found to be persistent, which is a 

characteristic of isotach behaviour. 
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Figure 2.12: Step-wise change of strain rate and constant strain rate oedometer tests 

on Batiscan clay (after Leroueil et al., 1996). 

Vaid & Campanella (1977) have performed undrained triaxial tests on undisturbed 
Haney clay (a sensitive marine soft clay) under a variety of loading conditions. After 

comparing the data from the various test types they identified a unique stress - strain - 

strain rate relationship independent of the test type, both pre and post peak. From the 

CRS undrained triaxial compression tests they observed that for strain rates higher than 

about 5x10"5 /min the undrained strength increased almost linearly with the logarithm of 

strain rate, about 10% per logarithmic cycle of strain rate (identical to the strain rate 

effect on the yield stress reported above). However, at lower strain rate values no further 

reduction in undrained strength was observed. 

It is widely accepted that while the yield envelope, the undrained stress path and the 

undrained shear strength are strain rate dependent, the effective stress peak strength 

envelope and the critical state are strain rate independent. Therefore any observed 

changes in undrained strength of both NC and OC clays with strain rate are due to creep 

pore water pressure changes. In addition, any changes to the effective stress peak 

strength envelope implies the action of ageing effects and the development of soil 

structure. 

Figure 2.13 shows the stress path and the stress-strain curve of an undrained triaxial test 

on kaolin during which the strain rate was varied in a stepwise manner. The test results 

are typical of an isotach material. Following an increase in the applied strain rate the 
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stress-strain curve jumps until it joins the stress-strain curve appropriate for the new 

current applied strain rate. It is noted that although the change in total strain rate may be 

stepwise, the change in the non-recoverable component of strain rate is gradual because 

following a change in applied strain rate there is first a change in the elastic strain rate 

associated with the changes in effective stresses. Given that the isotach behaviour may 

be expressed as a unique function of stress-irrecoverable strain - irrecoverable strain 

rate some authors prefer to express laboratory test results in terms of the irrecoverable 

strain component instead of the total one, and estimating the elastic component from a 

small loading - swelling loop at the start of the test. 
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Figure 2.13: Isotach behaviour observed in an undrained triaxial compression test on 
Kaolin (after Tatsuoka et al., 1999). 

Although the isotach model is able to explain well the facets of the time and rate 

dependency of soil behaviour that derive from the soil viscosity, it fails to explain other 

simultaneous time effects that cause the development of soil structure. It has been 

pointed out in relation to Figure 2.11 that the application of a sufficiently slow strain 

rate allowed the development of structure, such that the soil compressed less at the 

slowest strain rate and was able to cross the remaining CRS compression lines and 

sustain a higher void ratio at a given effective stress than that derived from the isotach 

model. However, when considering the phenomenon of structuration and the whole soil 

response, it is important to consider the full loading history as illustrated by the 

following example. 

Figure 2.14 shows the compression curves from three oedometer tests performed on re- 

sedimented Jonquiere clay; a conventional IL 24 hours oedometer test and two CRS 

tests performed at 1.27x10"5/s and 1x10"7/s vertical strain rate. The average strain rate 
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for the IL oedometer test was calculated to be close to Ix10"7/s, and thus according to 

the isotach model the IL test would be expected to yield a compression curve close to 

that given by the slowest CRS test, and the faster CRS test to plot to the right, above of 

the other two. 

The test results shown in Figure 2.14 cannot be explained by the viscous effects alone. 
During the slowest CRS test, soil structure has developed such that the slowest CRS test 

plots well above the faster one, and the distance between the two CRS compression 

curves increases with loading/time. In the faster CSR test, the strain rate value was such 

that structuration was not able to develop. In the IL 24 hour oedometer test, although 

the average strain rate was identical to that in the slower CRS test, the structure that 

may have developed during one loading stage was destroyed when the new load 

increment was applied, and the difference between this test and the faster CRS test is 

thought to be due to strain rate dependency (thus explainable by the isotach model). 
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Figure 2.14: 1D oedometer tests on re-sedimented Jonquiere clay (after Leroueil et al, 
1996). 

Leroueil et al. (1996) suggest that for the Jonquiere clay low strain rates - that allow 

significant soil structuration to occur - correspond to rates below 10"7/s. However, for 

other clays it is difficult to predict this threshold strain rate, as the potential for the 

development of structure is influenced, amongst other factors, by the environment and 
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age of the clay. It is noted that in clays structuration is mainly associated with the 

strengthening of the contacts between particles or aggregates, known as bonding. 

Various researchers have investigated the influence of structure and geological age on 

the magnitude of strain rate effects on clays. Soga & Mitchell (1996) found that the rate 
dependency of various NC clays increased with the degree of soil structure (or 

sensitivity). This is corroborated by the fact that tests on reconstituted Bothkennar clay 

yield a value of Cae of about 0.011 (Allman & Atkinson, 1992) while intact Bothkennar 

clay was found to have an average value of Cae of about 0.028 (Nash et al., 1992b) - this 

value corresponding to partial to full destructuration - and thus has a much higher 

potential for developing creep deformations. Identically, Sorensen et al. (2007) have 

studied experimentally the time dependent behaviour of intact and reconstituted London 

Clay and have noted that when applying a strain rate change, during an otherwise 

constant rate of strain test, the intact samples showed a large stress jump. 

In contrast, Komoto et at. (2003), based on drained triaxial compression tests on 

reconstituted and undisturbed samples of stiff plastic clays, suggest that rate effects are 

significantly smaller in undisturbed samples than in reconstituted ones, and that the 

difference increases with increasing geological age. However, the reconstituted samples 

were consolidated from slurry to the respective in-situ effective stresses (OCR=1.0), and 

the full stress history was not mimicked, what certainly contributed to the contradictory 

trend observed in the test results. It seems that more research is needed to clarify the 

role of soil structure and geological age on the magnitude and type of observed rate 

effects. In any case, the rule is that the rate effects and creep behaviour of a natural soil 

cannot be derived from tests on reconstituted samples. 

This thesis considers the time effects associated with the soil viscosity only, however it 

is important to be aware that in some cases the contribution of the ageing effects may 
dominate the soil response. 

2.4.3 Temporary effect of strain rate and strain acceleration 

In the late 1990's various new aspects of the time and rate dependent behaviour of soils 

was observed, especially in sands, cemented soils and some stiff clays that could not be 

explained by the isotach concept. 
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Santucci de Magistris & Tatsuoka (1999) studied the time dependent behaviour of 

Metramo silty sand, by means of undrained triaxial compression tests on reconstituted 

compacted samples, during which the strain rate was changed step-wise. They observed 

that at small strains the behaviour followed the isotach model but changed at larger 

strains close to and post peak strength. At small strains, an increase in the applied strain 

rate caused the stress-strain curve to shift to the unique stress-strain relationship 

corresponding to the new strain rate and the effect of strain rate changes were found to 

be permanent. As the strain level increases, the change in deviatoric stress following a 

change in strain rate becomes temporary, and the stress-strain curve is found to decay to 

a unique curve independent of strain rate. This behaviour has been termed TESRA - 
temporary effect of strain rate and strain acceleration. 

It has been shown by Tatsuoka and co-workers that the TESRA behaviour is 

characteristic of various clean sands over the full shearing range, until failure. Figure 

2.15 shows the behaviour of Hostun sand in undrained triaxial compression tests during 

which the strain rate was changed stepwise. The data show that there is a unique stress- 

strain relationship independent of the applied strain rate. Following a change in the 

applied strain rate, the stress-strain response initially overshoots or undershoots the 

otherwise time independent stress-strain curve, -but with continuing straining the path 

rejoins the unique CRS curve. 
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Figure 2.15: Consolidated undrained triaxial tests on Hostun sand (Tatsuoka, et al., 
2002). 

Materials that have pure TESRA viscosity can misleadingly be thought to be time and 

rate independent, because CRS tests performed at different strain rates yield the same 

stress-strain relationship. Their behaviour is independent of the absolute value of strain 
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rate and it is only affected by rate acceleration. In addition, Di Benedetto et al. (1999) 

have shown that Hostun sand undergoes significant creep and stress relaxation. 

Figure 2.16 shows the stress path and the stress-strain relationship from undrained 

triaxial compression tests on reconstituted Fujinomori clay, two CRS and one SRS tests. 

During the SRS test, the strain rate was changed step-wise to investigate the temporary 

and immediate viscous effects. At low strain values, the viscous behaviour can be 

defined as isotach, given that the effects of strain rate are permanent and the soil 

response seems to be defined by a unique stress-strain-strain rate relationship (defined 

in terms of the plastic components of strain as discussed above). At large strain values, 

the effect of strain rate becomes more temporary with the stress path and stress-strain 

curve overshooting or undershooting the persistent CRS curves following a change in 

strain rate. This feature becomes more important as failure is approached. However, in 

contrast to the behaviour observed for clean sands (Figure 2.15), the stress path and 

stress-strain curve do not decay completely to a single time independent CRS curve, and 

instead rejoins the CRS stress-strain response that corresponds to the current strain rate 

value, which is well defined even at large stresses. This behaviour has been termed 

General TESRA behaviour (Tatsuoka, 2006). 
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Figure 2.16: Consolidated undrained triaxial compression tests on reconstituted 
Fujinomori clay (after Tatsuoka et al., 1999). 

In addition, the CRS effective stress paths are found to approach a unique critical state 

line such that the observed differences in undrained strength are due to differences in 

the accumulated pore water pressures. Similar behaviour has been identified by other 

authors i. e. Sorensen et al. (2007) on reconstituted London Clay. Generally, in soils that 

show a combination of temporary and persistent viscous effects, the temporary effects 

are found to increase with strain level (Tatsuoka, 2006). 
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2.4.4 Positive and Negative viscosity 

Positive and negative (P&N) viscosity behaviour was found recently and has been 

characterized by Tatsuoka (2006) based on drained triaxial compression tests on three 

types of granular materials consisting of relatively round and rigid particles, namely: 

Albany silica sand, corundum A and Hime gravel. As an example, Figure 2.17 shows 

the stress-strain curves from drained triaxial compression tests performed at different 

constant axial strain rates on Albany sand. It can be observed that the strength decreases 

with an increase in the applied strain rate value. This behaviour is opposite to that of the 

usual isotach viscosity in which strength (or the deviatoric stress at a given value of 

axial strain) increases with increasing strain rate. Tatsuoka (2006) has termed the 

classical isotach viscosity as described in section 2.4.2 as positive isotach viscosity and 

this one as negative isotnch viscosity. Therefore it can be said that in Figure 2.17 only 

the negative isotach viscosity is active. 
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Figure 2.17: Consolidated drained triaxial compression tests at constant strain rates 
on air-dried dense Albany silica sand (after Tatsuoka, 2006). 

Figure 2.18 shows the stress - strain curve obtained from a drained triaxial compression 

test performed on Albany sand during which the strain rate was changed in a stepwise 

manner. Following a step increase in the applied strain rate, there is a positive stress 
jump similar to those observed with the (positive) Isotach and the TESRA viscosity. 
Subsequently the stress is found to decrease relatively quickly until it joins the stress- 

strain curve that corresponds to the current applied strain rate (i. e. that obtained in a 
CRS test at that strain rate value). Conversely, when the applied strain rate is stepwise 
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reduced there is an immediate reduction on the stress but it then increases relatively fast 

until it joins the appropriate stress-strain curve that corresponds to the current strain 

rate, which lies above the previous one. 

Therefore this type of behaviour has been termed Positive & Negative, as during a 

change in strain rate the soil expresses initially positive viscosity and then with time 

develops negative viscosity, as they have been termed above. This type of behaviour has 

also been observed in Toyoura and Hostun sands in the post - peak strain softening and 

residual regime from drained triaxial compression tests (while during the pre-peak 

regime it had been found to be of the TESRA type as described in Section 2.4.3). 
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Figure 2.18: Consolidated drained triaxial compression test with stepwise change in 

strain rate performed on Albany sand (after Tatsuoka, 2006). 
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2.4.5 Transition of viscosity type 

Based on an extensive number of tests Tatsuoka (2006) made a preliminary attempt to 

summarize the various factors that appear to influence the viscous behaviour of 

geomaterials (see Table 2.1). A change in each of the given factors while keeping all the 

other factors unchanged appeared to have the effect of progressively changing the 

viscous behaviour from Isotach to generalized TESRA, and then to TESRA, and finally 

to P&N. From the data presented in the previous two sections, it is clear that an increase 

in strain level, and consequent damage to any bonding at inter-particle contacts, is 

responsible for a change in viscosity type. 

Tatsuoka (2006) suggests that the global viscous stress-strain behaviour of a 

geomaterial results from the balance between two mechanisms at the interparticle 

contact points: 

c) The load-deformation relationship at the interparticle contacts becomes stiffer 

and stronger with an increase in the deformation rate, which corresponds to 

higher global strain rates; 
d) There is an increase in the number of interparticle contact points with time and 

creep deformation, i. e. lower global strain rate, which results in a more stable 

and stronger behaviour. 

Table 2.1: Summary of the factors affecting the viscosity type (after Tatsuoka, 2006) 

Viscosity type Isotach Intermediate TESRA Positive and 

Influencing factors or generalized Negative 
TESRA 

Particle shape (in case of More angular --- more round 
stiff particles) 

Grading characteristics Better graded - more poorly graded 

Particle size Smaller (clay) -> Larger (sand/gravel) 

Particle crushability More crushable --* less crushable 

Inter-particle bonding Stronger --*Weaker - Null 

e. g. rock/cement-mixed soil) Unbond granular materials 
Strain level Pre peak - Post peak (in particular at residual state) 

Inter-particle contact More stable (better bond, Less stable (less bond, less 
points better interlocking &- --º interlocking & smaller 

larger coordination numbers) coordination numbers) 
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Mechanism a) causes any geomaterial to undergo a sudden increase in shear stress 
following a step increase in the global shear strain rate. The importance of mechanism 
b) on the response of the geomaterial is found to depend on the geomaterial type, but it 

seems to decrease as the particles become more stable, either due to interparticle 

bonding, interlocking, particle angularity or a larger number of interparticle contact 

points. Depending on the balance between the two mechanism mentioned above the 

viscosity type of the geomaterial will be of the Isotach, TESRA, generalized TESRA or 
P&N type. 

2.5 Influence of creep and strain rate on the soil stiffness 

As mentioned in Section 2.3.4, on loading a soil element after a creep period the soil 

exhibits an initial stiff response. Several studies have been carried out to investigate the 

influence of creep on the elastic shear stiffness modulus, Gmax using dynamic tests of 

the resonant column or bender element types (i. e. Anderson & Stokoe, 1978; Lo Presti 

et al., 1996, Lohani et al., 2001), or simply using a triaxial apparatus with high 

resolution strain/stress measurement/control system (i. e. Santucci de Magistris et al., 
1998). 

These studies have observed an increase in the small strain / elastic shear stiffness with 

time during creep both in clayey and granular materials, however it is not clear if the 

observed increase in Gm. is due to viscous effects only. 

Anderson & Stokoe (1978) have presented the results of an oedometer test on a sample 

of kaolinite, which was step loaded and left to consolidate at constant stress for about 

seven days. Figure 2.19 shows the variation of the sample height and the elastic shear 

modulus Gn,, measured using resonant column tests, with the logarithm of time (where 

the origin of time coincides with the application of the step load). The results are typical 

of the behaviour observed on clayey soils. During primary consolidation, the variation 

of elastic shear modulus follows the variation of the sample height, increasing towards 

the EOP consolidation. 

After the EOP, given that the pore water pressure has dissipated, the variation of the 

sample height is controlled by creep only, and the sample height and the elastic shear 

stiffness modulus are seen to increase linearly with the logarithm of time. In this case 

the increase in elastic shear modulus during secondary compression is found to be 
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significantly larger than that due to the reduction of void ratio alone (i. e. see Lohani et 

al., 2001). However, no information is presented regarding the subsequent loading of 

this soil element after the seven days of maintained load, so that the possibility of the 

development of structure could be investigated, although due to the inactive nature of 
kaolinite, the development of structure over this time period is unlikely. 
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Figure 2.19: Typical behaviour of the variation of sample height and Gmax with time 
for a kaolinite sample at constant confining pressure (after Anderson & 
Stokoe, 1978). 

The behaviour of a sample of granular material would be similar to that shown in Figure 

2.19, with the difference that the primary consolidation phase would be very short or 

more likely, nonexistent, and the long-term phase would be characterized by a smaller 

change in both the sample height and the elastic shear stiffness with time, when 

compared with clayey samples. 
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The increase in elastic shear stiffness per logarithmic cycle of time is found to be more 
important in fine-grained soils, varying between 2% and 40% for a wide range of 

natural clays, and between I% and 17% for granular materials. 

Lohani et al. (2001) has performed drained triaxial creep tests under KO stress 

conditions for periods up to 15 days, on reconstituted samples of four clays of different 

origin and plasticity. The samples were subjected to incremental loading and then 

subjected to sustained load at various stress levels. Throughout the tests, the elastic 

shear modulus was determined using bender elements. Similarly to Anderson & Stokoe 

(1978), they found that during the creep period the elastic shear stiffness increased by 

an amount well in excess of that due to the change in void ratio only, which was 

suggested to be due to ageing or structuring effects. However, on applying further load 

after the creep period the stress path in e-logcr'v space was found to rejoin the original 

NCL with no overshooting, indicating that during the creep period there was no 

significant structuration. It is proposed that either the increase in elastic shear stiffness 
is in fact due to viscous effects alone or the soil stiffness is dependent on subtle 

components of soil structure that cause no significant changes to the large scale yielding 

properties such as the yield stress and undrained shear strength. 

Various studies have investigated the influence of the applied strain rate on the soil's 

elastic shear stiffness (i. e. Lo Presti et al., 1996; Shibuya et al., 1996) and it is generally 

accepted that the elastic shear stiffness is independent of the applied strain rate, and a 
function of the soil state only. Shibuya et al. (1996) have studied the influence of strain 

rate on the small strain stiffness of reconstituted NSF clay (an artificial clay constituted 

mainly of pyrophyllite and quartz; LL=56%, IP 27%) isotropically consolidated to a 

mean effective stress of 300 kPa. The study included undrained monotonic loading tests 

at a constant rate of axial strain, fixed in each test, varying between 0.01%/min and 
1%/min, and cyclic loading tests with varying strain amplitude. They concluded that the 

(pseudo) elastic shear stiffness (the initial slope of the stress-strain curves), did not 

appear to vary with axial strain rate for the range of strain rate values considered, but 

there was an increase in the elastic limit strain - the strain beyond which the stress-strain 

curve exhibits non-linear and irrecoverable behaviour, assumed to coincide with limit of 

the elastic region - with increasing strain rate. Lo Presti et al. (1996) based on Resonant 

Column / Torsional shear tests on two undisturbed clays (Pisa and Augusta Clays) have 
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noted that due to the soil viscosity some strain rate dependency of the secant shear 

stiffness will in general be observed, even at very small strains. They further report that 

the dependency of the soil shear stiffness increases with increasing strain level. The 

main implication of this finding is that the GIG,,,. - ycurves are rate dependent. 

In contrast Matesic & Vucetic (2003) have performed cyclic simple shear tests on six 

soils (three clays and three sands) and based on the test results they suggest that the 

GIG,,,, -y curves are not strain rate dependent. However it is the author's opinion that 

there were errors in the interpretation of the test results and the curves may not in fact 

be normalized as Gmax is strain rate independent. In addition, the data shows that beyond 

the linear range the secant shear stiffness is strain rate dependent in clayey soils and 

virtually strain rate independent in sands. This behaviour is in agreement with the 

observed isotach and TESRA behaviour of clays and sands, respectively, during 

monotonic loading. 

2.6 Temperature effects 

Leroueil & Marques (1996) present a review of the available data on the literature 

regarding the "importance of strain rate and temperature effects in geotechnical 

engineering". Temperature seems to have two major effects on soils: thermal expansion 

of the solid particles and the pore water, and thermally induced changes of the contacts 

between the particles or aggregates. The combined effect of these two components is for 

an increase in the soil compressibility with increase of temperature: the soil becomes 

more compressible in the overconsolidated range, the pre-consolidation pressure 
decreases and the entire compression curve moves towards smaller effective stresses, 

similar to the effect of reducing strain rate. Therefore in general an increase in 

temperature during a drained creep test causes the creep rates to increase, and in 

relaxation tests the effective stress at a given value of strain decreases (Mitchell, 1993). 

Leroueil & Marques (1996) propose that the model of Leroueil et al (1985) for strain 

rate effects should be extended to include temperature effects, such that the pre- 

consolidation pressure is now a function of the applied strain rate and temperature. 

Similarly to strain rate effects, viscous effects associated with temperature are found to 

affect the limit state curve, the undrained shear strength and the pre-consolidation 
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pressure, on average by about 10% for a temperature change of 12°C (equivalent to a 
logarithmic cycle of strain rate). Viscous effects on the critical state line and residual 

strength envelope may be considered nonexistent. Therefore one should be aware when 

extrapolating laboratory test results to engineering practice, as the strain rates in-situ are 
in general lower than those applied in the laboratory (according to Leroueil & Marques, 

1996 typically 2 to 4 orders of magnitude smaller) and the temperature is typically 10°C 

less, and in many situations they may partially compensate each other. Leroueil & 

Marques (1996) suggest that strain rate and temperature effects should be considered 

simultaneously as they are two facets of the viscous behaviour of soils. 

2.7 Concluding remarks 

This Chapter aimed to give a review of the current state of art regarding the observed 
time dependent viscous behaviour of geomaterials, and in particular of clayey soils. 
Viscous effects include phenomena such as creep, stress relaxation and strain rate 

effects, and are the aspects of the time dependent behaviour that are primarily intended 

to be reproduced by the constitutive models presented in this thesis. Ageing or 

structuration corresponds to a gain of additional components of strength and stiffness of 

the natural soil, in relation to the reconstituted soil, that cannot be accounted for by void 

ratio and stress history alone. However it is often difficult to distinguish between the 

components in the soil behaviour that are due to viscous effects and those that derive 

from ageing, as both are time dependent and in principle may occur simultaneously. 

Most soils show qualitatively identical behaviour under creep and stress relaxation, 

showing a reduction in a component of strain or in effective stress, respectively with 

time. This variation, for stress states far from failure, can be approximated by a linear 

logarithmic law, or more generally by a non-linear logarithmic law. However when 

considering the strain rate effects on geomaterials three types of viscosity have been 

identified: Isotach, TESRA and Positive & Negative. The transition between the 

viscosity types has been identified with a reduction in the number of inter-particle 

contact points. The viscous behaviour of soft and stiff clays, in their natural state, can be 

described by an isotach viscosity, such that the soil response can be expressed by a 

single stress-delayed strain-delayed strain rate relationship. Due to the interaction 

between viscous and ageing effects the rate effects and creep behaviour of a natural soil 

cannot be evaluated from tests on reconstituted samples. 
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3 CONSTITUTIVE MODELS TO DESCRIBE THE TIME 

DEPENDENT BEHAVIOUR OF SOILS 

3.1 Introduction 

This Chapter presents a review of the constitutive models currently available in the 

literature to describe the time dependent viscous effects of soils such as creep, stress 

relaxation and strain rate effects. Following the methodology by Adachi et al. (1996) 

and Liingaard et al. (2004) the constitutive models are divided into three categories: 

empirical, rheological and general stress-strain-time models. 

Empirical models are usually obtained by fitting experimental data with simple 

mathematical expressions. The constitutive relations are, in general, expressed by means 

of closed form solutions and their applicability is restricted to the boundary conditions 
from which they have been derived. Though they express a single aspect of the soil 
behaviour, e. g. stress decay during stress relaxation or the soil compression under Ko 

stress conditions, they may be used as a basis for developing constitutive laws for 

generalized stress space. 

Rheological models are typically employed to describe the behaviour of metals and 
fluids, but they may be used to obtain a conceptual understanding of the time dependent 

behaviour of geomaterials. They are often used to describe uniaxial loading conditions 

and the constitutive relations are usually expressed by means of closed form solutions or 
in differential form. The terminology "rheological models" is often used to describe 

linear viscoelastic behaviour, however when applied to soils it may include plastic 
behaviour as well. 

In principal general stress-strain-time constitutive laws extend the models developed for 

rate independent behaviour to include viscous effects. They are often expressed in 

incremental form for direct numerical implementation in a finite element procedure. 
Herein only elastic visco-plastic models are considered, which are based on the 

assumption that viscous effects are negligible within the soil's elastic range. Two main 

types of elastic visco-plastic models are discussed: those based on the overstress theory 

and those based on the non-stationary flow surface theory. 
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All the general stress-strain-time models known to the author are based on a form of a 

stress - strain - strain rate relationship and are therefore suitable to reproduce isotach 

viscosity, which as shown in Chapter 2 is appropriate to describe the rate dependent 

behaviour of most clays in their natural state. The first attempt to develop an equation 

capable of expressing all viscosity types from Isotach to Positive & Negative viscosity, 
including all the intermediate behaviour types, was presented by Tatsuoka and co- 

workers (Tatsuoka et al., 2003, Tatsuoka, 2006). This equation provides a relationship 
between the stress ratio and a single component of strain and strain rate, during 

shearing. For further details on this formulation please refer to e. g. Tatsuoka (2006). 

It is noted that this review is not exhaustive and focuses on the constitutive relations that 

have contributed to the author's understanding of the problems involved in modelling 

the viscous behaviour of clays, and are thus relevant to the work presented in this thesis. 

3.2 Empirical models 

This Section presents a review of empirical constitutive relations developed to mimic 

observed viscous effects in soils. Despite their simplicity the empirical models reflect 

real soil behaviour and they may be used either as a basis for more sophisticated general 

constitutive models or to provide a practical solution to engineering problems, provided 

that the boundary conditions are similar to those from which the relations have been 

derived. 

3.2.1 Semi-Logarithmic creep law 

It is common practice to plot the deformation during secondary compression, as 

observed from oedometer tests, against the logarithm of time. This is because the 

secondary compression is found to be, in general, well approximated by a semi- 
logarithmic law using the following equation: 

2 Equation 3.1 Ae =C log t2 
ae ýg 

tl 

where Cae is the coefficient of secondary compression expressed in terms of void ratio, 

De is the change in void ratio during secondary compression between a time tl and a 

time t2. 
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In its simplest form, the coefficient of secondary compression Cae may be considered 

constant for a specific soil, in which case the vertical strain due to creep, in boundary 

value problems in which the stress conditions are close to 1D compression, can be 

quantified as: 

Equation 3.2 s, = 
CIXe 

" log 1+ 
t 

I +e, t, 

where c, is the vertical strain; e; is the initial void ratio; t is the time and t; is a reference 

time, that corresponds to the start of the creep deformation. 

However, the assumption that the value of Cae is constant for a given soil is an 

oversimplification as in natural soils the value of Cae has been shown to be influenced 

by the magnitude of the vertical effective stress in oedometer tests and time. 

Mesri & Godlewski (1977) note that Cue depends on the current vertical effective stress, 

and essentially how this relates to the pre-consolidation pressure. It is noted that both 

the compression index, CCe defined by Equation 3.3 and Cue increase as the vertical 

effective stress approaches the pre-consolidation pressure reaching their maximum at or 
just beyond the pre-consolidation pressure and remaining reasonably constant thereafter, 

such that the ratio of Cae/Cce remains approximately constant throughout. 

Equation 3.3 C" = 
Ae 

Alog6; 

where Ae is the change in void ratio and o is the vertical effective stress. Mesri & 

Castro (1987) note that the value of the ratio Cae/CCe for a variety of soils, including 

peat, organic silt, highly sensitive clay as well as granular materials, falls in a very 

narrow range between 0.02 and 0.10. For a large number of inorganic soft clays the ratio 

of Cae/CCe was reported to be very consistent and about 0.04±0.01. 

The uniqueness of the ratio CaC/CCe is based on the assumption that Cae and CCe remain 

constant with time. However, it is observed that Cqe may not in fact remain constant 

with time. The assumption of a constant Cote implies that there is a linear relationship 
between the creep strain and the logarithm of time during a creep period, under constant 

effective stresses. This assumption may overestimate considerably the long-term creep 

settlements as it implies that creep volumetric strains are predicted even when there are 
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no voids left in the soil. Yin (1999) presents an equation to describe the soil secondary 

compression that introduces a variation of the coefficient of secondary compression 

with time and in which there is a limit to the amount of creep volumetric strain that is 

attained at infinite creep time: 

Equation 3.4 v, =-" In 
t+t, 

V ti 

where 
V_ VfO/V 
V 

1+ V/0 
"ln[(t-ti)/t, 

] 
V s. 

where e« is the volumetric strain attained at infinite creep time (being by definition an 

asymptotic value) and yr/V is the creep parameter with V =1 +e. If the quantity yr/V is 

set as a constant then the above equation predicts a linear logarithmic creep law. It is 

noted that instead of the parameter Cae, Yin (1999) describes the creep behaviour by 

means of the parameter VIV however the two parameters are related as follows: 

Equation 3.5 V= C- 

V In10 

where CaE is the coefficient of secondary consolidation defined in terms of strain and is 

equal to C,, e/V, where V is the specific volume. 

The semi-logarithmic creep law is only able to describe the behaviour during primary 

creep (as defined in Chapter 2) as it predicts a continuous reduction of the rate of 

compression with time. The main advantage of the semi-logarithmic creep law is the 

fact that there is a large database of Cae values and of the ratio Cae/Cce for various soils, 

which can be used to estimate the value of Cae when there is not enough test data. 

However, Equation 3.2 can only be used to evaluate the vertical strain developed during 

secondary compression in boundary value problems in which the stress conditions are 

close to those in an oedometer test (1D compression). In addition, the application of 

Equation 3.2 requires the definition of a time origin for the start of the creep t; (that 

corresponds to the time at EOP) and which in itself is not straightforward, as discussed 

in Chapter 2. 
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3.2.2 Singh and Mitchell's creep model 

Based on drained and undrained triaxial creep tests on various clays Singh and Mitchell 

(1968) noted that during both drained and undrained creep there is a linear relationship 
between the logarithm of the axial or the volumetric strain rate (depending on the test 

type) and the logarithm of time. Based on this observation they have defined the 

parameter m: 

0 loge 
Equation 3.6 m =- Alogt 

The parameter ni is found to vary between 0.7 and 1.3 for geomaterials. The particular 

case when m=1 yields a linear logarithmic creep law for the relationship between the 

creep strain and creep time. Singh and Mitchell (1968) proposed an equation to describe 

the relationship between the axial strain rate, sQ and time, t of clayey soils during an 

undrained creep period under constant deviator stress, q: 

Equation 3.7 s=A. ex a 
t' m 

p( qý' 
t 

with ä=a" qm. and q=q/ qm., 

where A, a and m are model parameters that can be evaluated from a few creep tests on 

a given soil, q is the applied deviator stress, ti is the time origin, and q,,, is the soil 

strength at the beginning of the undrained creep process. The parameter A reflects the 

soil composition, structure and stress history, a gives a measure of the effect of the 

deviator stress on the creep rate and m controls the rate of decay of the strain rate with 
time. It is noted that the above equation has been derived from laboratory tests in which 
the samples were subjected to a deviatoric stress that is between 30% and 90% of the 

soil strength, and should therefore be used under similar stress conditions. The equation 
is not able to reproduce the phenomenon of undrained creep rupture, when the soil 

sample is subjected to a sufficiently high stress ratio. 

One of the main limitations of Equation 3.7 is that it describes the creep behaviour 

under constant deviator stress only. In addition, identically to the semi-logarithmic law, 

the model only describes the behaviour during the primary creep phase, as it predicts a 

continuous reduction of axial strain rate with time. 
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3.2.3 Lacerda & Houston's Relaxation model 

Lacerda & Houston (1973) derived an equation to describe the change in effective stress 

with time, observed during relaxation triaxial tests: 

Equation 3.8 q= 
_q =1-slog 

t for t>t, 
qo qo 

(t, 

where q is the current stress ratio, qo is the stress ratio at t--ti, t is the time since the 

beginning of the relaxation test, t, is the time delay between the start of the relaxation 

test and any decay in the deviator stress and s is the slope of the relaxation curve in qlqo 

- log t space. 

The equation predicts that the deviator stress decreases linearly with the logarithm of 

time after an initial period of time t; has been exceeded. For a given soil, the value oft; 
(also called delay time) was found, experimentally, to decrease with increasing applied 

strain rate prior to the stress relaxation period. Equation 3.8 was derived based on the 

three parameter creep equation proposed by Singh & Mitchell (1968), such that the 

parameters in Equation 3.8 can be related to the parameters ä and m in Equation 3.7 as 
follows: 

Equation 3.9 s=12.3. 
(1 

_- 
m) 

; To a 

The above relation between the creep and relaxation parameters has been demonstrated 

experimentally by Lacerda & Houston (1973) and show that the two phenomena result 
from the same mechanism. However, from the definition of the parameters in Equation 

3.9, Equation 3.8 is only valid for values of m lower than unity. In addition, Equation 

3.8 predicts that there is stress decay for an infinite period of time, which can lead to 

unrealistic and non-stable values of q after a long finite period of time. 

3.2.4 Strain Rate Approach 

The strain rate approach is based on the assumption that there is a unique relationship 
between the current stress state, the strain and the applied strain rate, which is 

independent of the previous loading history. This concept was first proposed by Sukjle 

(1957) and it was later investigated in detail and demonstrated experimentally by 

Leroueil et al. (1985). Leroueil et al. (1985) performed an extensive laboratory testing 
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programme on the 1D compression behaviour of Champlain Clays and noted that the 

effective stress rate had no significant effect on the time dependent behaviour of clays. 
The 1D behaviour of soils could then be completely described by a unique effective 

stress-strain-strain rate relationship, which could be decomposed into two independent 

functions deducted from CRS tests at different strain rates; one, Equation 3.10, giving 

the variation of the pre-consolidation pressure with the strain rate and the other, 
Equation 3.11, expressing the relationship between the normalized effective stress and 

strain. 

Equation 3.10 6, p=f 
(s" 

where o-v, is the vertical pre-consolidation effective stress and E" is the vertical strain 

rate; 

Equation 3.11-" = g(s" 
6"p 

where a-ti, is the vertical effective stress and sv is the vertical strain. Once the above two 

equations are known it is possible to reconstruct any stress-strain-strain rate 

relationship. The above equations imply that in sv -log o space the distance between 

two compression curves corresponding to different strain rates is constant, and the 

compression curves are therefore parallel. 

This model has been derived based on oedometer tests, mainly on normally 

consolidated soils, and during which the strains are always increasing. Therefore the 

model cannot reproduce soil rebound during unloading stages and gives very poor 

predictions in the overconsolidated range, where the elastic strains dominate the soil 
behaviour. In addition, because Equation 3.10 and 3.11 are formulated in terms of the 

total strain component and the respective total strain rate the model is not able to 

reproduce stress relaxation. During stress relaxation, the total strain rate remains zero 

and so the uniqueness of the stress-strain-strain rate relationship implies that there 

would be no stress change. To reproduce the strain relaxation phenomena the strain 

should be decomposed into an elastic and a plastic component, and the uniqueness of 

the stress-strain-strain rate relationship should be applied to the plastic strain component 

only. 
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Leroueil and Marques (1996) have suggested that Equation 3.10 can be approximated 

by a double logarithmic function, as follows: 

Equation 3.12 log 6"P 
=A+ log £" 

a"po m 

(. 

Z, o 

where A and m' are model parameters and a' 0 and svo are reference values. They 

show that the value of the parameter m' can be related to the compression parameters as 

follows: 

Equation 3.13 _ 
CC, 

m, Cae 

The above equation implies that the strain rate approach and the Ca, /CC, = constant 

concept (discussed in Section 3.2.1) are equivalent for describing the viscous behaviour 

of soils during secondary consolidation. 

3.2.5 Bjerrum's Model 

Bjerrum (1967) noted that, as a result of secondary compression, the 1D compression 

behaviour of clays could not be described by a single curve in e-log a-i, space (where e 

is the void ratio and o is the vertical effective stress), but was instead characterized by 

a family of curves called time lines. Each time line was the locus of the equilibrium soil 

states after a specific period of sustained load, and the time lines were postulated to be 

equally spaced per logarithmic cycle of time. Bjerrum (1967) stated that a "given value 

of overburden pressure and void ratio corresponded to an equivalent time of sustained 

loading and a certain rate of delayed compression, independent of the way the clay has 

reached these values". 

In addition the deformation of a clay sediment could be decomposed into an instant and 

a delayed component. The definition of the instant and delayed components of soil 

compression is shown schematically in Figure 3.1. The instant compression is the 

deformation that takes place simultaneously with the increase in the effective stress, if 

there is no hydro-dynamic lag and the delayed compression corresponds then to the 

reduction in volume at constant effective stress associated with the soil viscosity. 
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The terminology instant and delayed should not be confused with the expressions 

primary and secondary, which are used to separate the compression developed during 

and after the excess pore water pressures have dissipated. The dashed line in the lower 

diagram in Figure 3.1 corresponds to the reaction of the soil structure if the applied 

stress was transferred immediately to the soil structure as an effective stress. Due to the 

development of excess pore water pressures and the subsequent process of consolidation 
the effective stress will increase gradually and compression will occur along the solid 
line. 

e 

t(- Consolidation-) to time 

Secondary 

Figure 3.1: Definition of the concepts of instant and delayed compression (after 
Bjerrum, 1967) 

Based on the above model Bjerrum (1967) introduced the concept of aged normally 

consolidated clay, as on loading a normally consolidated clay sample, after a period of 
delayed compression, the sample may show a pre-consolidation pressure in excess of 

the largest stress it had been subjected to previously. Bjerrum presented an equation to 
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evaluate the total settlement of an aged sediment when subjected to an increase in the 

applied vertical stress, e. g. due to the construction of a building, in which the model 

parameters are the compression index, Cce and the coefficient of secondary 

compression, C. E. 

Garlanger (1972) has written the Bjerrum concept in terms of the coefficients of 

compression, recompression and secondary compression. Consider an aged normally 

consolidated (NC) soil sediment subjected to an initial vertical effective stress 6'�o and 

with an initial void ratio eo. The sediment is subjected to an increase in the vertical 

effective stress to a value o- . The current void ratio at a time t after the application of 

the load increment can be determined as: 

Equation 3.14 e= eo -C, e " 
log 6p 

-CCe " log 6, " -C.. log t, + t 

v0 VP i 

where e is the current void ratio; eo the initial void ratio; C1, CCe and Cae are coefficients 

of recompression, virgin compression and secondary compression defined in terms of 

void ratio, respectively; ti is the time associated with the start of the secondary 

compression and o' is the vertical pre-consolidation pressure. 

Based on this formulation it is possible to derive a relationship between the vertical 

effective stress Eva acting on a NC soil element and its current pre-consolidation 

vertical stress a' P(, ) after a time of secondary compression t: 

jC/ 
6vp(: ) 

- I: ti+t c-c.. 
Equation 3.15 - 

0-, 0 tr 

where t is the duration of the period of secondary compression and C1c, CCe and Cae are 

defined above. Equation 3.15 is very similar to Equation 3.12 (which was derived based 

on CRS oedometer tests) if the parameter m' is instead taken equal to Cae /C, - Cre 

3.2.6 Kavazanjian and Mitchell's Model 

Kavazanjian and Mitchell (1977) have made one of the first attempts to develop a 

stress-strain-time constitutive model for triaxial stress space for clayey soils. They 
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decompose the soil stress state into volumetric and deviatoric stress components, each 

having a corresponding strain component, as expressed by the following equations: 

Equation 3.16 {c} 
= 

{si, }+ {so } 

Both the volumetric and the deviatoric strain components are divided into an instant and 

a delayed component: 

Equation 3.17 {sv }_ {sý }+ {sý }ý ; {so }_ {so }i + {so }d 

where the subscript i and d denote instant and delayed components, respectively. 

The above decomposition for the volumetric component is done based on Bjerrum's 

concepts of instant and delayed compression. In one-dimensional compression the 

instant component is given by a line with slope CCe in e-log p' space. The delayed 

component is evaluated by means of a logarithmic law, and assuming that the 

coefficient of secondary compression is constant, and independent of the stress level. 

The delayed volumetric strain {sV }d is then: 

Equation 3.18 {sy }d 
= 

Cae 
. log 

1+e0 tf 

where t; is the time required for the instant compression to occur. 

For clays of low sensitivity and within the normally consolidated range the value of CCe 

is found to remain approximately constant and so the assumption that CadCCe constant 

is equivalent to Cae constant. 

The instant deviatoric strain component is evaluated assuming that deviatoric stress- 

strain curves have a hyperbolic shape and are normalized by the isotropic consolidation 

pressure. The delayed deviatoric strain component is evaluated using the general 

equation proposed by Singh and Mitchell (1968) given by Equation 3.7. 

Kavazanjian and Mitchell (1977) have employed the model to estimate the increase in 

the coefficient of earth pressure with time during secondary compression of San 

Francisco Bay Mud, and found that the results agreed well with the available 

experimental data. This model was later developed into a general elasto-viscoplastic 

model for generalized stress space by Borja & Kavazanjian (1985). 

83 



3.2.7 Tavenas Model 

Tavenas et al. (1978) have conducted a series of drained and undrained triaxial creep 

tests on intact samples of lightly overconsolidated St. Alban clay and based on the test 

results have concluded that both the shear and the volumetric strain components could 
be expressed by an equation of the form proposed by Singh & Mitchell (1968): 

Equation 3.19 8, =Af 
(U, 

ý) " 
(L)- 

t 

m tJ 

Equation 3.20 s9 =B g(6; ß 

where A and B are soil parameters that reflect the soil composition, structure and stress 
history, m is the parameter defined by Singh & Mitchell (1968) which controls the rate 

of decay of the creep strain rate with time and f and g are functions of the current stress 

state and replace the exponential function in Equation 3.7. Tavenas et al. (1978), based 

on contours of creep strain rate at a time t=100 minutes obtained from drained and 

undrained creep triaxial tests on St. Alban clay (see Figure 2.8), suggest that the above 
functions could be expressed in terms to the distance to the limit state surface. 

If the parameter m is assumed to have the same value for the volumetric and the shear 

strain components then Equations 3.19 and 3.20 can be rewritten as: 

Equation 3.21 £v 
=Af 

ýo 

=C" h(o . 
sv B"g6, 

j 

where C is a constant and h is a function of the current stress state and corresponds to a 
flow rule for the creep deformation. Although the value of m may not be the same for 

the volumetric and shear creep strain components Equation 3.21 is still largely used in 

the development of viscoplastic constitutive models that are discussed in more detail in 

Section 3.4. 

3.2.8 Equivalent Time Concept 

The concept of Equivalent Time was first introduced by Yin & Graham (1989). Yin & 

Graham (1989) postulate that the deformation of a soil element associated with an 

effective stress change can be decomposed into an instant and a delayed component. 
However this decomposition differs from that suggested by Bjerrum (1967) as in Yin & 
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Graham (1989) the instant deformation corresponds to the elastic time independent soil 

response and in Bjerrum's model the instant deformations corresponds to the 

deformation that would take place simultaneously to the application of the effective 

stress increment assuming that no hydro-dynamic lag occurs (see Figure 3.1). The time 

dependent behaviour of soils under isotropic stress conditions is then described by a 

series of parallel lines in svo, - lnp' space (where c, is the volumetric strain and p' is 

the mean effective stress) which are lines of constant Equivalent Time. 

The model requires the definition of an instant time line (defining the soils instant 

elastic behaviour), a reference time line and ideally a limit time line (that defines a 

region of pure elastic behaviour). The Equivalent Time, to of a soil state (. p) is then 

defined as the time it would take that soil element to creep from the reference time line 

to the current state, under constant effective stresses. 

When considering a soil sample subjected to a constant load, such as in a oedometer 

test, for NC stress state the equivalent time tt is very similar to the duration of loading, 

however for overconsolidated stress states, the equivalent time te will be considerably 
different from the loading time. They also assume that the equivalent time is directly 

related to a unique creep strain rate. Therefore by mathematical manipulation they are 

able to express the creep strain rate as a function of the vertical distance of the current 

soil state to the reference time line in c ,,,, -p' space. Yin & Graham (1989) present an 

equation for the 1D compression of soils based on the above concepts and assuming that 

there a linear relationship between the creep strain and the logarithm of time. This 

means that an infinite creep strain is predicted at an infinite creep time and consequently 

time dependent (creep) strains are always predicted (i. e. there is no zone of pure elastic 
behaviour). 

Later, Yin (1999) proposed a non-linear logarithmic law to describe the secondary 

compression of soils, which assumes that there is a limit time line and thus a limit to the 

volumetric creep strain. The limit time line is the locus of the soil's states associated 

with a creep strain rate equal to zero and defines a region of pure elastic behaviour. 

The above 1D compression models have been extended to general models based on the 

overstress theory (see Section 3.4). The Equivalent Time model formulation is 
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described in more detail in Chapter 6, being the basis for one of the models investigated 

within this thesis. 

Den Haan (1994) and den Haan and van den Berg (2001) have developed a model for 

the time dependent 1D compression behaviour of soils following a very similar 
formulation, the differences concerning mainly the choice and definition of the model 

parameters. The model assumes that the 1D compression behaviour of soils can be 

defined with reference to a set of parallel lines in ' vor p' space which are lines of 

constant intrinsic time r. Den Haan and van den Berg (2001) define intrinsic time as 
"the geological time necessary to attain the present degree of compression, under the 

present effective stress, if that stress was applied at the moment of formation of the 

soil". Again the value of intrinsic time is uniquely related to a value of delayed strain 

rate. 

3.2.9 Discussion 

Most of the empirical models described in this Section are based on the understanding 

that the phenomena of creep, stress relaxation and rate dependency are due to the same 
basic mechanism and consequently, the observed behaviour of one of the above 

phenomena, for example creep, may be derived from CRS tests, or vice-versa. This is 

emphasized by the relationship between the parameters of the various models presented, 

and is valid for geomaterials that show isotach viscosity. 

The simplest empirical models discussed above aim to provide a solution for a time 

dependent component of the soil behaviour, under particular boundary conditions, being 

able to give either an estimate of the secondary compression (e. g. semi-logarithmic law, 

Singh & Mitchell model) or the stress decay during stress relaxation (e. g. Lacerda & 

Houston model). In either case, the models only provide information regarding one 

component of stress or strain. Based on the work by Singh & Mitchell, Tavenas' model 

considers both volumetric and shear strain components, having the merit of implying 

that the creep deformation could be obtained with reference to a flow rule. The resulting 

model still considers the time delayed component of soil behaviour only. 

Bjerrum's and the Equivalent Time concept models combine one or more of the 

previous simple empirical relationships and add this creep law to a basic time 
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independent model, so that the full soil deformation is considered. However, they only 

provide a solution for stress conditions close to 1D compression. 

The empirical models are often divided into two main categories depending on whether 

they are time or strain hardening. Time hardening models are characterized by relations 

that include the time t as the hardening parameter, such that they can be written as: 

Equation 3.22 s` =f 
(a. ) 

" g(t) 

where s° is the creep strain and f and g are functions of stress and time, respectively, or 

as: 

Equation 3.23 s` =f (Cr) 
" g(t) 

where s` is the creep strain rate. 

The above two equations incorporate the time as the hardening parameter, but more 

often Equation 3.22 is referred to as a total strain model. An example is the semi- 

logarithmic creep law, in which case the function f is either constant (Cae constant) or 

varies with confining pressure (Cae/Cce constant) and the function g is a logarithmic 

function. In the literature it is recommended that Equation 3.22 should only be used 

when the applied stresses remain constant or varies very slowly with time. Equation 

3.23 is referred to as time hardening model and given its incremental form can take 

stress changes into account. Examples are the Singh & Mitchell and the Lacerda & 

Houston models. Because the time t is introduced explicitly, time hardening models 

require the definition of a time origin that establishes the onset of creep strains. 

Strain hardening models are characterized by relations that include the creep strain as 

the hardening parameter, and can be written as: 

Equation 3.24 s` =f(. 
) 

" g(e° 

where g is now a function of the creep strain. Equation 3.24 corresponds to the strain 

rate approach model if the hardening equation is instead formulated in terms of the total 

strain and its respective rate. 
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3.3 Rheological models 

Rheological models are typically employed to describe the behaviour of metals and 
fluids, but they may be used to obtain a conceptual understanding of the time dependent 

behaviour of geomaterials. Within the rheological models, three main categories can be 

identified: 

a) The differential approach, in which the constitutive relations are constructed by 

combining elementary material models such as the Hookean spring, the 

Newtonian dashpot and the Saint Vernant's slider; 

b) Engineering theories of creep, which are general theories for determining the 

creep response of solids (mainly concrete and metals). In their structure they are 

very similar to the empirical relations described in the previous Section, 

however while the phenomena of creep was originally studied on plastic 

normally consolidated clays, the engineering theories of creep have been 

developed and are valid for materials in which the stress states are below the 

yield limit; 

c) The hereditary approach, which postulates that the current strain at a given 

stress point may be obtained by integration over the entire loading history. The 

general opinion is that the hereditary approach is to complex to be applied in soil 

mechanics. For further details please refer to Feda (1992). 

The differential approach is probably the one of more interest to the subject of soil 

mechanics as it is often used to describe and obtain a conceptual understanding of the 

time dependent behaviour of geomaterials. In the differential approach, the behaviour of 

a material is represented by a composition of elementary models such as the elastic 

spring, the plastic slider and the viscous dashpot, which are illustrated in Figure 3.2. 

Three models are frequently used for geomaterials: the Maxwell model, the Kelvin- 

Voigt model and the Bingham model, and they are described subsequently. 
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Figure 3.2: Schematic representation of the elementary material models; the Hookean 

spring, the Newtonian dashpot and the Saint Vernant's slider. 

The Maxwell model consists of an elastic spring, characterized by a modulus E and a 

viscous dashpot, characterized by a constant viscosity 17, arranged in series. The total 

strain s`°` (or deformation) is then the sum of the elastic ee and the viscous 

g° components: 

Equation 3.25 ctol = se + C° 

while the following condition 6-e = 6-v =a is still verified. Writing Equation 3.25 in 

terms of strain rate and substituting the respective elemental constitutive equations it 

becomes: 

Equation 3.26 s`°` + 
E 17 

During creep at constant stress Equation 3.26 reduces to: 

Equation 3.27 6 r 

11 

which means that during creep at constant stress the Maxwell model predicts a constant 

strain rate, which corresponds to the secondary creep phase, as defined in Chapter 2. 

During stress relaxation, the total strain rate is equal to zero and so Equation 3.26 can be 

rewritten as: 

v 
Equation 3.28 

s 

iE E 
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The Maxwell model predicts that during stress relaxation there is a reduction in the 

applied stresses, at a rate linearly proportional to the viscous strain rate. 

The Kelvin-Voigt model consists of an elastic spring, with a modulus E and a dashpot 

characterized by a constant viscosity i, placed in parallel. The governing equation of 

this system can be written as: 

Equation 3.29 a Tor _ 6e + Q' =E. ce +)7. Ev 

while the deformation of the spring and the dashpot are, for compatibility, required to 

be equal, such that £T" = Se = £v =£ or in terms of strain rate £T I= £e = £v =£. 

During creep at constant applied stress, Equation 3.29 can be rewritten as: 

6-E"8 Equation 3.30 s= 

which implies that the Kelvin-Voigt model predicts that during a creep period the total 

strain rate decreases with increasing values of accumulated strain, which corresponds to 

a decreasing strain rate with creep time. During a stress relaxation period, the total strain 

remains constant, or in other words the total strain rate is equal to zero: 

Equation 3.31 s`°` = se. =e =0 

In that case Equation 3.29 can be rewritten as: 

Equation 3.32 0-`°` =E" se +0 

Equation 3.32 implies that the Kelvin-Voigt model predicts that the stress remains 

constant when the total deformation is restrained, i. e. when stress relaxation boundary 

conditions are applied. 

The Bingham model consists of a parallel unit composed of a dashpot characterized by a 

constant viscosity il and a plastic slider characterized by a yield stress ay, connected in 

series to an elastic spring with a modulus E. The governing equations of this system can 
be written as: 

£e! -I-£vp=6+ 

(6 
- 6y) 

for 6>6y 

Equation 3.33 sTot =E 
17 

6 
for o-< cy 

E 
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The concept of the Bingham model corresponds very closely to that of the overstress 

theory, which is presented in Section 3.4. The model predicts pure elastic behaviour 

below the yield stress ßy, but above this threshold value the model predicts viscous 

flow. The model can be divided into two components connected in series; one a time 

independent component consisting of the elastic spring and the other a time dependent 

component consisting of the dashpot and the slider combined in parallel. The 

viscoplastic elements are inactive provided that a< 6y, The viscous behaviour of the 

Bingham model is very similar to the Maxwell model; the only difference is that the 

quantity a in Equation 3.26 is here replaced by the quantity (a-ay). Therefore the model 

predicts constant creep rate under constant stress (i. e. secondary creep), decay in stress 
during stress relaxation and the effect of strain rate on the material stress-strain 

response. 

The models presented above are able to mimic a viscoelastic material only, because the 

element constitutive relations are very simple, and the behaviour of the spring, the 

dashpot and the slider are all described by linear relationships. However, soils are in 

general highly non-linear (even within a pseudo-elastic range), show plastic behaviour 

and in addition the assumption of a linear viscosity is found not to be suitable for soils. 

It has been shown that the models above are able to mimic either primary or secondary 

creep (but not both), while soils may exhibit both primary and secondary creep stages 
during a creep process. 

While the adoption of more complex element constitutive relations (e. g. a non-linear 

elastic spring, a plastic slider with a varying yield stress) and the extension of the 

rheological models to generalized stress space may improve the potential of the 

rheological models to mimic real soil behaviour, it would considerably complicate the 

mathematic manipulation of the governing equations, and the models would lose one of 

their main attractions that is to provide a straightforward visualization of soil behaviour. 

3.4 General stress-strain-time models 

This section covers general constitutive laws that are able to describe both the viscous 

effects and the inviscid rate - independent aspects of soil behaviour (e. g. critical state), 

in principle, under any loading conditions. Given that soils, in particular clayey soils, 

are strongly plastic, the models are required to combine elastic, plastic and viscous 
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components of behaviour. Based on the literature review presented in Chapter 2, which 

showed that within the elastic range, soil behaviour might be considered time and rate 
independent, viscoelastic-viscoplastic models are not included here, and the discussion 

will focus on elastic-viscoplastic models. 

Elastic visco-plastic models can be divided into three categories, depending on whether 

they are based on: a) the overstress theory, b) the concept of a nonstationary flow 

surface or c) others. The underlying assumption of all elastic visco-plastic models is that 

the elastic behaviour is time and rate independent, while the plastic behaviour is time 

dependent. 

3.4.1 Overstress theory 

The following description of the overstress theory is based on the work by Perzyna 

(1963). The total strain rate 
{s, 

ý 
} is decomposed into an elastic and a visco-plastic 

{-z-, f } 
component: 

Equation 3.34 +{s,. °} 

The elastic strains are assumed to be time independent while the viscoplastic strains are 

time dependent, and represent combined viscous and plastic effects. The elastic strain 

rate is calculated by inverting the following equation: 

Equation 3.35 {6, }= [D] 
" 
{{Ul } 

where [D] is the elastic constitutive matrix and t6; 
j 
} is the stress rate tensor. The visco- 

plastic strain rate is obtained from a flow rule, such that: 

of Equation 3.36 I& T }= 
y(1(F)) d 

a6,, 

where ((D(F)) = c(F) if F> 0 

(O(F))=0 if F<_0 

where y is a fluidity parameter, fd is the plastic potential function (and corresponds to 

the dynamic loading surface) and iD(F) is a function of the overstress F, which is 

defined as: 
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Equation 3.37 F= d 
-1 

, 

where the function fd depends on the current stress state and viscoplastic work and 
describes the dynamic loading surface on which the current stress state is located. The 

function f is the hardening parameter and from Equation 3.37, f corresponds to the 

static yield surface, i. e. the surface associated with loading at a plastic strain rate equal 

to zero. From Equation 3.36 it can be inferred that the static loading surface is 

equivalent to the yield surface in classical plasticity, being the threshold for the 

development of irrecoverable deformations. 

Comparing Equation 3.33 with Equations 3.34 to 3.36 shows that the overstress theory 

is a three dimensional version of the Bingham model; the plastic potential function 

derivative is omitted in the Bingham model as the model applies to one dimensional 

cases only, the overstress stress function c(F) can be interpreted as a function of the 

distance of the current loading surface from the static yield surface, and is the three 

dimensional equivalent of the quantity (6 
- 6y) in the Bingham model and the 

parameter y is essentially the inverse of the viscosity parameter il. 

The overstress theory differs from the plasticity theory in the sense that it does not 
invoke the consistency rule to derive the equations that govern the deformation 

behaviour of a soil element. Consequently, in plasticity theory, the plastic strains are 

related to the stress rate; whereas in the overstress theory, the time dependent visco- 

plastic strains are a function of the current stress state only, and independent of the 

stress rate or stress history. In addition, because the consistency rule is not invoked in 

overstress theory, the stress state can lie, on, above or below the current static yield 

surface. 

It can be shown that the overstress theory is able to mimic strain rate effects in a 

material's stress-strain response and is able to simulate the phenomena of creep and 

stress relaxation provided that the processes start from a stress state outside (above) the 

static yield surface f. Adachi et at. (1987) show that elasto visco-plastic models based 

on the overstress theory cannot mimic acceleration creep processes and therefore cannot 

reproduce appropriately undrained creep rupture. When loading a soil element at a very 
high strain rate, the theory will predict that the material response is identical or very 
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close to pure elastic behaviour, as there is no time for the development of the time 

delayed visco-plastic strains. 

Some authors suggest that the function J(F) may be evaluated from laboratory tests. 

However the main difficulty in applying the overstress theory in the form described 

above is to define the static yield function, as by definition, it is associated with loading 

at a plastic strain rate equal to zero. Therefore many authors have replaced the static 

yield function f, in Equation 3.37, with a reference loading surface, fefassociated with a 

finite visco-plastic strain rate value, in which case the function t(F) is then evaluated 

for stress states on, above and below f ,, f (for values of F larger, smaller or equal to 

zero). This is the approach used by e. g. Adachi & Oka (1982), Adachi et at. (1987), 

Kutter and Sathialingam (1992), Yin et al. (2002), den Haan & van den Berg (2001). 

If no static or limit loading surface is specified then c(F) is evaluated for all values of 

F and the model predicts an infinite visco-plastic strain at infinite creep time under 

constant effective stresses (e. g. Kutter and Sathialingam, 1992, den Haan & van den 

Berg, 2001). If instead, a limit loading surface is specified then it defines the stress 

region of pure elastic behaviour, which corresponds now to a value of F<0 (e. g. Yin et 

al., 2002). 

The models proposed by e. g. Kutter and Sathialingam (1992), Yin et al. (2002), den 

Haan & van den Berg (2001) are overstress models that use an empirical law of the type 

described in Section 3.2 to determine the volumetric viscoplastic strain rate under 
isotropic or KO stress conditions. To extend the models to generalized stress space 

further assumptions regarding the ratio between the volumetric and the deviatoric visco- 

plastic strain increments are required. In this respect the work of Tavenas et at. (1978) is 

often invoked, and it is assumed that the visco-plastic volumetric strain rate is constant 

on a given loading surface (e. g. Yin et al., 2002; Vermeer & Neher, 1999). It will be 

shown later in this thesis that this assumption prevents the soil from reaching critical 

state conditions, and it is preferable to assume that the function c(F) is constant on a 

given loading surface as assumed by den Haan & van den Berg, (2001). 
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3.4.2 Non-stationary Flow Surface theory 

The non-stationary flow surface (NSFS) theory is based on the inviscid time 

independent classical plasticity theory. As in the overstress theory, the total strain rate 
{s; 

ý 
} is decomposed into an elastic 

{E;. ' } and a visco-plastic component, as 

expressed by Equation 3.34. The main difference between the plasticity and the NSFS 

theory lies in the definition of the yield condition. In plasticity theory, the yield 

condition for an isotropic hardening material is given by: 

Equation 3.38 f (6,,, k) =0 

where c; y is the effective stress tensor and k is a state or hardening parameter that is a 

function of the plastic strains. It is noted that according to the above equation the yield 

condition does not change with time provided that the plastic strains (or the hardening 

parameter k) remains constant, and therefore the yield surface is called "stationary". In 

contrast in the NSFS theory the yield condition is also a function of time and can be 

written as: 

Equation 3.39 f (ali, k, , 3)= 0 

where k is now a function of the viscoplastic strains and fi is a function of time. 

Therefore, even if the visco-plastic strains are held constant, the yield surface is able to 

change with time, and is referred to as "non-stationary". The elastic strain rate is 

determined by inverting Equation 3.35 and the viscoplastic strain rate is determined 

according to a flow rule: 

Equation 3.40 Sj'" =A- 
ag 

a6, '; 

where g is the plastic potential function and A is a positive visco-plastic multiplier that 

is evaluated only when loading from a plastic state. The viscoplastic multiplier can be 

determined by invoking the consistency rule, such that loading from a state lying on the 

current yield surface must lead to a stress state on the new yield surface: 
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T 

a6. 
[D]"{E, Tot}+r kl. i +, ft 

Equation 3.41 A= ý' 
TLJ 

Af- D 
a6 a6. 

where [D] is the elastic constitutive matrix and 
{&'dt } the total strain tensor, k is a 

function of the viscoplastic strains and /0 is a function of time. The above parameter A is 

similar to the plastic scalar multiplier defined within the classical plasticity theory, with 

the exception that the latter does not contain the term 
la, 

6- 

the 

the term that includes 

time and rate dependency. 

As mentioned above, visco-plastic strains are only evaluated when the stress state is 

being loaded from a state on the current yield surface (i. e. f 0). Therefore it is important 

to set up the criteria for loading, unloading and neutral loading, which are defined as: 

Equation3.42 L= 
af 

"ß"'+f k+f " 
a6;, ''' ak aQ 

L>O loading 

L=O neutral loading 

L<O unloading 

It is noted that time influences the loading criterion and a given stress increment may be 

considered loading if applied at a given rate, but unloading if applied at a lower rate. 

It can be shown that models based on the NSFS are not able to reproduce the 

phenomena of creep and stress relaxation when the processes are initiated from stress 

states within the yield surface. This implies that this theory cannot reproduce time 

effects within the overconsolidated stress region. When the processes of stress 

relaxation and creep are initiated from a stress state on the yield surface the model 

should, in principle, be able to describe them. 

The NSFS theory is able to mimic the rate dependency of soils over a wide range of 

strain rate values. When loading a soil element at a very fast strain rate the time 

dependent term containing ß in Equation 3.41 will be very small and the model 

96 



response will correspond to the time independent elasto-plastic response. In contrast in 

the overstress theory, loading at a very fast strain rate will yield an elastic response. 

It is noted that both the overstress and the NSFS theories are based on the assumption 

that all aspects of the viscous effects are due to the same basic mechanism and the same 
fundamental equation is used to predict the phenomena of creep, stress relaxation and 

strain rate effects. It is the appropriate boundary conditions used in each case that ensure 

a different soil response. 

Also in both theories the viscoplastic strain rate component s, 7' is treated as a single 

quantity combining both plastic and viscous effects. Tatsuoka et at. (2006) have noted 

that it is not possible to decompose the above quantity s, P into a plastic and a viscous 

part. Nevertheless, Borja & Kavazanjian (1985) have developed a time dependent 

constitutive model for normally and lightly overconsolidated clays in which they 

assume that the total strain rate is decomposed into three components: the elastic and 

plastic components are assumed to be time-independent and the creep or viscous 

component is time dependent. For more details please refer to Borja & Kavazanjian 

(1985). 

3.5 Concluding remarks 

This Chapter presents a review of some of the constitutive laws available in the 

literature to describe time dependent viscous effects in soils. It has been noted that this 

review is not exhaustive and has focused on the constitutive relations that have 

contributed to the author's understanding of the problems involved in modelling the 

time dependent viscous behaviour of clays and are relevant for the work presented in 

this thesis. The constitutive relations presented herein, and the majority of those 

available in the literature, are based on isotach viscosity, as they have primarily been 

developed based on experimental observation of clayey soils. 

The aim of this thesis is to develop, implement and validate general constitutive laws 

that are able to mimic the viscous nature of clayey soils. In this respect empirical and 

rheological models may be used to improve one's conceptual understanding of the time 

dependent behaviour of geomaterials and help to devise the requirements that general 

stress-strain-time equations have to obey. 
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Based on experimental data, viscous effects may be neglected within the elastic range, 

and so the time dependent behaviour of geomaterials may be appropriately described 

using elastic visco-plastic models. From the discussion on elastic visco-plastic 

formulations presented in Section 3.4, it can be concluded that the overstress theory 

presents some advantages in relation to the NSFS theory: it has a simpler mathematical 

formulation and presents the possibility of mimicking the time dependent behaviour of 

soils both in the normally consolidated and overconsolidated stress range. However, the 

overstress theory is not able to mimic: a) the tertiary compression phase - corresponding 

to an increase of the current coefficient of secondary consolidation with time during a 

drained creep period at constant effective stress and b) tertiary creep, which implies that 

undrained creep rupture cannot be appropriately predicted. In addition, when using the 

overstress theory it is not possible to determine the soil response that would be found 

from an equivalent time independent elasto-plastic formulation, which in the NSFS 

theory can be obtained by applying an infinitely fast strain rate. 
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4 FINITE ELEMENT METHOD APPLIED TO GEOMECHANICS 

4.1 Introduction 

The finite element method is a complex form of numerical analysis that has been used 

for the last forty years to solve boundary value problems in many fields of engineering 

(e. g. structural engineering, fluid mechanics, geotechnics). The main advantage of the 

finite element method, in relation to other analytical methods is that it is able to satisfy 

the four requirements of a true theoretical solution: equilibrium, compatibility, the 

material constitutive behaviour and the boundary conditions. In coupled consolidation 

analysis there are two additional requirements: continuity of flow and the generalized 

Darcy's law. 

The analyses presented in this thesis have been carried out with the finite element 

program ICFEP. ICFEP is a program that has been developed specifically for the 

analysis of geotechnical structures and uses a displacement based finite element method. 

ICFEP is able to perform two-dimensional (axi-symmetric, plane strain, plane stress), 

three-dimensional and Fourier series aided three-dimensional analyses. The work shown 

in this thesis only includes axi-symmetric and plane strain analyses. 

This Chapter gives a brief description of the basic fundamentals of the finite element 

method, with particular reference to the approach followed in ICFEP and the features 

that are used in this thesis. A detailed description of the finite element theory 

formulation and the full range of ICFEP features can be found in Potts & Zdravkovic 

(1999). 

4.2 Finite element theory 

The formulation of the finite element (FE) method consists essentially of six phases: a) 

element discretisation; b) primary variable approximation; c) formulation of the element 

equations; d) assembly of the global equations; e) formulation of the boundary 

conditions and f) solution of the global equations. The formulation of the finite element 

method for a single phase continuum material is presented in the following paragraphs. 

Section 4.3 describes how the finite element theory may be extended to account for the 

two phase nature of soils. 
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When the soil behaviour is described by non-linear constitutive relationships the 

solution strategy for the global equations becomes complex and this aspect is discussed 

separately in Section 4.2.8. 

4.2.1 Element discretisation 

The first step in a FE procedure is to approximate the geometry of the problem under 

consideration by an equivalent FE mesh, which comprises small discrete regions, called 
finite elements. For two-dimensional problems, the finite elements have in general 

triangular or quadrilateral shapes. The elements are defined by the nodes at the corners, 

though they can also have additional nodes at the mid sides, resulting in 6-noded 

triangular and 8-noded quadrilateral elements. The number of elements in a finite 

element mesh controls the accuracy and the computational time of the analysis. 
Therefore the ideal FE mesh should have as few elements as possible, to reduce the 

computational cost and be refined in the areas where large stress and strain gradients are 

expected, to ensure the accuracy of the analysis. 

4.2.2 Primary variable approximation 

In the displacement based finite element method the primary unknown is the 

displacements at the nodes and the main approximation is to assume the displacement 

field to vary in a particular way across the element. Stresses and strains are treated as 

secondary quantities and are calculated once the displacement field has been 

determined. It is assumed that the displacement field across an element can be expressed 

as a polynomial function of the displacement values at the nodes, where the polynomial 

order depends on the number of the nodes in the element. For three and four noded 

elements the displacement field varies linearly across the element, while for the higher 

order six and eight noded elements, the displacement field varies quadratically across 

the element. 

In two-dimensional analyses the displacement field is characterized by two 

displacement values u and v in the x and y direction, respectively and is given by 

Equation 4.1. 

Equation 4.1 
uV 

=[N]"{u1, V1, u2, V2ý..... 'un, Vn}T _[N]. 
V 

nodes 
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Where [N] is the matrix of the displacement interpolation functions also known as the 

shape functions, and the subscript n indicates the number of nodes in the element. 

In this way the number of degrees of freedom becomes finite and equal to the number of 

nodal displacements, and the displacement of any point within the element can be 

determined from the shape function and the displacement values at the nodes. 

In the analyses reported in this thesis 8-noded isoparametric elements are employed, and 

an example is shown in Figure 4.1. For an isoparametric element the global element as 

it appears in the finite element mesh is derived from the parent element, which has the 

same number of nodes but is defined in relation to the natural coordinate system, in 

terms of the coordinates S and T such that -1 < S: 51 and -1 <T 51. 

The denomination isoparametric derives from the fact that the interpolation functions Ni 

that are used to describe the displacement field in terms of the nodal displacements are 

also used to map the geometry of the element from the global to the natural coordinate 

system. The global coordinates x, y of a point within an element can be expressed as a 

function of the global nodal coordinates xi, y; by means of Equation 4.2. 

nn 

Equation 4.2 xN, x, yN, y, 
=t r=t 

7' 

6 
S 

b) Global Element 

Figure 4.1: Eight-noded isoparametric element (after Potts and Zdravkovic, 1999). 

The main advantage of using the isoparametric finite element formulation is that the 

interpolation functions Ni that are used to define the displacement field and map the 

element geometry are expressed in terms of the natural coordinates S and T. The 

interpolation functions of an eight-noded quadrilateral element as shown in Figure 4.1 

are given by Equation 4.3. 
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Equation 4.3 
Mid-side nodes 

N5=1(1_S2X1-T) 

N6 =I (1+SXI-T2) 

N7 =1 
(1-SZ XI+T) 

N8 =2(1-SX1-T2) 

Corner nodes 

N, =4(1-SXl-T)-1N, - 
1N$ 

N2=4(1+SX1-T)-1N5 
2 -1N6 2 

N3 =-(1+SXl+T)--N6 - 
ýN7 

N4 =4 (1- SX1 + T) -1 N7 
2 -1 N8 

2 

4.2.3 Formulation of the element equations 

The derivation of the equations that govern the deformational behaviour of each element 
is based on the conditions of compatibility, equilibrium and the constitutive relations. 
Given that the soil is, in general, non-linear the equations are formulated in incremental 

form, and the displacement field across an element can then be written in the form of 
Equation 4.4. Equation 4.5 defines the strains corresponding to these displacements 

assuming plane strain conditions. It is noted that throughout this thesis (if nothing is 

stated to the contrary) positive stresses and strains are compressive. 

Equation 4.4 (Ad) = 
Ju 

= [N 
Qv 

n= 

[N]{Ad},, 

a(Du) 

AEx ax 

Osy 
a(iv) 

Equation 4.5 {As} 
== ay 

ý£Z 
0 kyjs 

a(Au) ö(_v) 

öy äx 
Combining Equation 4.4 and 4.5 the strains across an element can be expressed in terms 

of the nodal displacements by means of Equation 4.6. 

Equation 4.6 {Ac}= [B]{Ad}nýeS 

Where [B] contains the derivatives of the shape functions Ni in relation to the global 

coordinates x and y, and {Ad}�odes contains the nodal displacements. 

As mentioned above in an isoparametric element the shape functions Ni are dependent 

on the natural coordinates S and T only. In this case the derivatives of the functions Ni 
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in relation to the global coordinates can not be determined directly, but require the use 

of the chain rule of differentiation and some mathematical manipulation to be expressed 

as: 

aN1 ay C"Y aN,. 
1 ýT as as Equation 4.7 

ax 
aN, _ ýJ) 

- 
ax ax am 

ay aT as aT 

Where IJI is the Jacobian determinant, IJI = 
ax öy 

_ 
äy ax 

öS öT öS aT 

The constitutive law that describes the material behaviour provides a relationship 

between stresses and strains, which can be expressed by Equation 4.8, where [D] is the 

constitutive matrix and in plane strain conditions {06}T = 
{Ac, 06y, Ac, Ot., 

y 
} 

Equation 4.8 (Au l= [D]{is} 

The element equations are then determined by invoking the principle of minimum 

potential energy, that states that the static equilibrium position of a loaded body is that 

which minimizes the total potential energy. The total potential energy (E) is the sum of 

the strain energy or the work done by the internal forces (W) and the work- done by the 

applied forces (L) during deformation of the body. The equilibrium of an element E can 

be expressed in incremental form as: 

Equation 4.9 DEE _ AWE + ALE 

where the incremental strain energy OW and the incremental work done by the applied 

loads AL during an increment of deformation of the body are given by Equation 4.10 

and 4.11, respectively. 

Equation 4.10 OW =2f {Os}T {A6} 
" dVol =If 1A }T M{Os} 

" dVol 
vol Vol 2 

Equation 4.11 OL =f {Ad }T {AF} 
" dVol + J{Ad }T JOT} 

" dSurface 
Vol surface 

Where {Ad IT = {Du, Ov} is the displacement vector; {AF}T = x, 
OFy } is the vector of 

the body forces and {OT}T = 
{AT, iTy } is the vector of the surface tractions. 
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The volume integrals are performed over the volume of the element and the surface 

integral is done over that part of the element boundary on which surface tractions are 

being applied. Substituting Equations 4.10 and 4.11 into Equation 4.9, expressing the 

displacement variation over the element in terms of the nodal values (Equation 4.6) and 

then summing the potential energies of the various elements, leads to Equation 4.12. 

Equation 4.12 

DE _ 
vf 

ý{Ad}n [B]T [DjB]{0d}� 
- 2{0d}n [N]T {0F'}ýdVol 

-f 
{Od}n [N]{AT}dSrf 

surface 

where the volume and the surface integrals refer to that over the element i. 

To mathematically obtain the state that corresponds to the minimum potential energy, 
Equation 4.12 is differentiated and the result set to zero. This expression can then be 

reworked such that it can take the form of Equation 4.13 that represents the governing 

equation of the finite element method. 

NN 

Equation 4.13 EKE], ({E d}� ), _L {LRE } 

Where [KE I: 
-- 

J[B]T [DIB] 
"d Vol is the element stiffness matrix and 

vol 

{ORE }=f [NIT {AF} 
" dVol +f [N]T {AT} 

" dSurface is the right hand side load vector. 
Vol Surface 

The problem is thus reduced to determining and summing the separate element 

equilibrium equations. The integrals in Equation 4.13 are formulated in terms of the 

global coordinates x and y, but using the isoparametric coordinate transformation they 

can be evaluated using the natural coordinate system and reduced to an integral over a 

square with S and T varying between -1 and 1, and for example the element stiffness 

matrix becomes: 

Equation 4.14 [K5 ]=J f[B]T[DIB] II t d" T 

-1 -1 

Noting that dVo1= t" dx " dy =t"I JI " dS " dT and in a plane strain problem the thickness 

t is assumed equal to unity. 
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4.2.4 Numerical integration 

In general it is not possible to evaluate the integrals in Equation 4.13 and 4.14 explicitly 

and instead numerical integration is employed. The most common integration scheme is 

Gaussian integration and this is the method used in ICFEP. Gaussian integration 

consists of a weighted sum of the value of the function to be integrated at a discrete 

number of points, denominated as integration points or in this case Gauss points. The 

number of integration points determines the integration order, and Figure 4.2 shows the 

location of the Gauss points for an 8-noded isoparametric element for a 2x2 and 3x3 

integration order, usually referred to as reduced and full integration, respectively. The 

accuracy of the integration improves with the integration order, however this is at the 

expense of longer computational time/cost since the function needs to be evaluated at a 

greater number of points. 

I/ J 
I/, / 

ilf 

Parent Element Global Element 

a) 2x2 order 

q/ 

` 

T3/5 

1, t) 

xx 
J3-/5 

3151 1xx 

Parent Element 

b) 3x3 order 

Figure 4.2: Location of the Gauss points for an 8-noded isoparametric element (after 
Potts and Zdravkovic, 1999). 

105 

Global Element 



4.2.5 Assembly of the global equations 

The next step in the finite element formulation is to assemble the separate element 

equations into a set of global equations in the form of Equation 4.15. 

Equation 4.15 [KG ]{Ad}Geodes - 
WG } 

Where [KG ] is the global stiffness matrix, {Od }Geodes is the vector containing the nodal 

displacements (unknowns) for the entire finite element mesh and JAR-G} is the global 

right hand side load vector. 

The terms of the global stiffness matrix are obtained by summing the individual element 

contributions taking into account the degrees of freedom that are common between 

elements. From Equation 4.14 it can be inferred that if the constitutive matrix [D] is 

symmetric -a situation that arises frequently - the element stiffness and the global 

stiffness matrix will also be, and this may be used to reduce the amount of information 

being stored. In addition, zero entries in the global stiffness matrix arise if two degrees 

of freedom are not connected, and so from the geometry of the finite element mesh there 

will be a large number of zero terms. There are techniques to reduce the non-zero terms 

to a diagonal band by means of careful renumbering of the element nodes, in order to 

reduce the memory requirement. 

The terms in the right hand side vector are obtained in a similar way by adding the 

individual loads acting at each node in a given direction. 

4.2.6 Formulation of the boundary conditions 

To fully define the boundary value problem being analysed, all that remains is to 

specify appropriate boundary conditions along the boundary of the FE mesh and 

incorporate them in the global system of equations. 

The boundary conditions can be broadly divided into three types according to their 

influence on the global system of equations. One group of boundary conditions affects 

the right hand side vector and are loading conditions such as point load, surcharge 

pressures, body weight and excavation/construction. 
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The second group of boundary conditions affects the vector of the unknown nodal 
displacements, i. e. prescribed degrees of the freedom. It is noted that sufficient 
displacement conditions need to be specified in order to prevent any rigid body modes 

of deformation (e. g. rotation, translation) otherwise the global stiffness matrix will be 

singular and the equations cannot be solved. 

There is a third group of more complex boundary conditions that affect the whole 

structure of the system of equations; included in this group are tied degrees offreedom, 

which affect the numbering of the degrees of freedom and the stiffness matrix assembly. 
The tied degrees of freedom boundary condition allows the user to specify that two or 

more nodal displacements are equal, but the magnitude of that displacement is unknown 

and a result of the analysis. 

4.2.7 Solution of the global equations 

The global equations form mathematically a large system of simultaneous equations, 

which need to be solved in order to obtain the value of the unknown nodal 
displacements. There are several techniques for solving such large systems of equations; 

a popular scheme adopted by many finite element programs, including ICFEP is the 

Gaussian elimination method (Potts '& Zdravkovic, 1999). However, for three- 

dimensional problems the large size of the equation system means that iterative 

techniques may be preferable. 

Once the nodal displacements have been determined, the secondary quantities such as 

stresses and strains may be calculated by application of Equations 4.6 and 4.8. 

4.2.8 Non-linear finite element theory 

In the previous sections, it has been implicitly assumed that on applying a change in the 

boundary conditions either in terms of displacements {i d} or loads {AR} the 

constitutive matrix and therefore the stiffness matrix remains constant throughout. 

However this is valid for a linear elastic material only. 

If soil behaviour is to be simulated more accurately it is likely that non-linear elastic or 

elastic-plastic constitutive models must be used, and in this case the constitutive matrix 
is no longer constant but varies with stress and/or strain during the analysis. To deal 
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with this the boundary conditions are applied in a series of increments and Equation 

4.15 takes the incremental form of Equation 4.16 (where the subscript i indicates the 

increment number) and the final solution is obtained by summing the results of each 
increment. 

Equation 4.16 [KG ]'{Od}Gnod 
5= 

{ARG }' 

However, the global stiffness matrix varies over each increment, and unless very small 
increments are used the results will be in error. The solution of Equation 4.16 is not 

straightforward and there are several solution strategies that can be employed e. g. 

tangent stiffness method, visco-plastic method, Newton-Raphson method. The analyses 

presented in this thesis are carried out using the modified Newton-Raphson method and 

thus this is explained in more detail below. 

Modified Newton-Raphson method 

The Newton-Raphson method solves Equation 4.16 for each increment using an 

iterative procedure, as schematically shown in Figure 4.3. In the first iteration, Equation 

4.16 is solved using a global stiffness matrix [KJO calculated using the current stress 

and strain state at the beginning of the increment. The method recognizes that due to the 

dependency of the stiffness matrix on the stress and/or strain state and their variation 

over the increment the solution is in error, and uses the predicted displacements from 

the first iteration Ad' to evaluate a measure of the error and the residual load vector `P1. 

Equation 4.16 is then solved again using the residual load vector LI'1 as the new right 

hand side vector, such that it can be rewritten in the following form: 

Equation 4.17 [KG]' ({/d }modes )' 
= 

{I//}'-' 

Notes: i denotes the increment number and j the iteration number. 

The process is repeated until the residual load is smaller than a pre-set tolerance. In 

ICFEP, the convergence criteria involves setting a limit to the size of the iterative 

displacement vector and the iterative residual load vector, expressed in terms of the 

scalar norms obtained by Equation 4.18 and 4.19 respectively. 

Equation 4.18 II ({Ad}' )' 1_ {Ad}' )' " 
({od}' Gnodes Gnodes Gnade, 

Equation 4.19 III 
= 

({t/ý}' T" {y/}' 
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Figure 4.3: Schematic representation of the modified Newton-Raphson method for a 

one-dimensional problem (Potts & Zdravkovic, 1999). 

The iterative quantities are compared with the respective accumulated and incremental 

values, and the default convergence settings in ICFEP (that are used in the analyses 

presented in this thesis) are that the iterative quantity is less than 2% of both the 

accumulated and incremental ones. When convergence is achieved, the incremental 

displacements are then obtained by summing the iterative displacements. 

In the original Newton-Raphson method, the incremental global stiffness matrix [KG ]r 

is recalculated and inverted at the beginning of each iteration, based on the stresses and 

strains estimated at the previous iteration. However, the modified Newton-Raphson 

method only calculates and inverts the global stiffness matrix at the beginning of the 

increment and uses it for all the iterations within that increment. This works because the 

method recognizes that the solution is in error and it is the iterative procedure that 

ensures that the constitutive equations are satisfied and the solution obtained is correct 

(or more correctly, contains an acceptable error). 

An important step in this method is the evaluation of the residual load vector. At the end 

of each iteration, the current estimate of the incremental displacements are used to 

evaluate the incremental strains at each integration point, after which the constitutive 

model is integrated along the strain path to obtain an estimate of the stress changes. The 

stress changes are added to the accumulated stresses at the start of the increment, which 

are then used to calculate the equivalent nodal forces. The residual load vector is the 
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difference between these forces and the nodal forces derived from the externally applied 
loads (boundary conditions). 

Given that the constitutive behaviour changes over the increment the evaluation of the 

stress change is not straightforward and there are several methods available in the 

literature to perform this integration, termed stress point algorithms. In the analyses 

presented in this thesis, a substepping algorithm with a modified Euler integration 

scheme has been used and therefore this is explained in more detail below. 

Having determined the incremental strains {Os} for each integration point, the objective 

of the stress point algorithm is to evaluate the associated incremental stresses. In a 

substepping algorithm the incremental strains are split into a number of smaller sub- 

steps and the main assumption is that the strains in each sub-step {A } are a 

proportion, AT, of the incremental strains {As,,, } as expressed by Equation 4.20. 

Equation 4.20 {A }= AT{As,.,,, } 

This implies that the ratio between the strain components in each sub-step is the same as 

that for the incremental strains. The strains are therefore assumed to vary in a 

proportional manner over the increment, which in general may not be true, and 

consequently introduces, potentially, small errors in the calculation. 

The calculation procedure starts by identifying any linear elastic region over which the 

determination of the stress changes could be performed by direct integration. The 

remaining incremental strains are then split into smaller sub-steps. To integrate the 

constitutive equation over a strain step {Osss }a modified Euler integration scheme is 

employed. Initially, the size of the sub-step, AT is assumed to be equal to one. The 

stress changes {Do-, }are evaluated using a constitutive matrix based on the stresses and 

strains at the start of the sub-step. Subsequently the stress changes {AO", } and respective 

change in the hardening parameters are used to evaluate the constitutive matrix at the 

end of the sub-step and the corresponding stress changes, {062 }. The true stress 

changes are assumed to be the average of the two values, and it can be shown that the 

error in the stress changes, E can be approximated by Equation 4.21 and the relative 

error, R by Equation 4.22. 
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Equation 4.21 E2 ({061 }- {0072 }) 

Equation 4.22 R=j 
IIEII 

Where bis the stress state at the start of the sub-step and d6 is the estimated stress change. 

Usually, the relative error R is checked against a pre-defined tolerance and if the error is 

larger than the tolerance, the size of the sub-step is reduced. The new size of the sub- 

step can be estimated based on the value of the relative error, R and the procedure is 

repeated until the sub-step is accepted. 

4.3 Pore pressures considerations 

In general terms it can be said that soil has two phases: the solid phase that constitutes 

the soil skeleton and the fluid phase, which fills the pores within the soil skeleton. If the 

soil is fully saturated the pore fluid is water, while if the soil is fully dry the fluid will be 

air. In an intermediate situation in which the soil is partially saturated the fluid is a 

mixture of air and water, but the consideration of such a case goes beyond the scope of 

the present work. 

If the soil is fully saturated, the stresses acting in the two phases can be related using the 

principle of effective stresses (Equation 4.23), and in the majority of the available 

constitutive models the soil deformation is related to the effective stress changes. 

Equation 4.23 {06} = 
{Do-, }+ {06 

f1 

The finite element method as presented in the previous section can only be applied to 

single phase continuous media, as it only provides information on one stress 

component. In Section 4.2.3, the constitutive behaviour was expressed in terms of total 

stresses by the following equation: 

Equation 4.24 {06}= [D]{DE} 

Where in plane strain conditions {A6} _ 
{06x, Ocy, 06y, it 

,} 
is the incremental total 

stress vector, {Os} = 
{Ac, z\c ,, 

0, Aye, } is the incremental total strain vector and [D] is 

the constitutive matrix that provides a relationship between these two vectors. 

This formulation can therefore be used in the following two cases only: 
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a) In fully drained problems in which there is no change in pore fluid pressure Auf 

and consequently changes in effective and total stress are the same i. e. 
{Dar}={L6'}. In this case the matrix [D] is expressed as a function of the 

effective stress stiffness parameters, e. g. in the case of an isotropic linear elastic 

model the drained Young's Modulus E' and drained Poisson's ratio, µ', or two 

other equivalent elastic parameters (see section 1.4). When employing the creep 

models described in the following chapter the matrix [D] is expressed as a 

function of the elastic bulk modulus K and a second elastic parameter either the 

elastic shear stiffness, G or the Poisson's ratio, µ that is input by the user. 

b) In fully undrained problems in which the constitutive matrix [D] is expressed as 

a function of the total stress parameters, e. g. in the case of an isotropic linear 

elastic model the constitutive matrix would be derived from the undrained 

Young's Modulus E� and undrained Poisson's ratio, µ,,. 

In a fully undrained analysis, if the material is saturated there will be no volume change, 

which would be ideally modelled in an isotropic elastic soil by setting the Poisson's 

ratio equal to 0.5. However, this causes some terms of the constitutive matrix to be 

evaluated as infinite, and so a value smaller than 0.5 needs to be specified. Potts and 

Zdravkovic (1999) show that once the Poisson's ratio exceeds 0.499 the value has little 

effect on the analysis predictions. 

When analysing fully undrained problems in this manner no information on the pore 

fluid pressures are obtained, and in addition the formulation puts a limitation on the 

constitutive model that can be used to reproduce the soil behaviour. In the following 

section, a more general methodology to perform the analysis of fully undrained 

problems considering the two phase nature of the soil is presented. 

4.3.1 Undrained effective stress analysis 

If information regarding the pore fluid pressure is required and/or it is required to 

specify the constitutive model in terms of effective stress (as happens in the models 

presented in this thesis and with most advanced constitutive models), it is necessary to 

express the changes in effective stress and pore fluid pressure separately. This can be 
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achieved by invoking the principle of effective stress (Equation 4.23) and using 
[D' I to 

express the relationship between effective stresses and strains, such that: 

Equation 4.25 {Aa) 
= 

{Aa' }+ {Dorf }= [D]{ts} 
+ 

{{6 
f} 

Where {D(y} is the vector that contains the incremental total stresses, {06'} the vector 

of the incremental effective stresses and {Auf} is the vector of the incremental pore 

fluid pressure that corresponds to an isostatic stress state, i. e. in plane strain 

conditions {06 
f 

}= {Au, Au, Du, O}. 

In undrained conditions it is assumed that there is no flow of water and so the solid and 

fluid phase deform together. Assuming that the two phases undergo the same strain 

increment Equation 4.24 implies that the total constitutive matrix [D] is the sum of the 

effective constitutive matrix 
[D] 

and the pore fluid stiffness matrix [Dr I as shown in 

Equation 4.26 [D] = 
[D] + [D 

f 

Where the effective constitutive matrix 
[D] is fully characterized by the elastic soil 

parameters e. g. for the creep models described in the following chapters the elastic bulk 

modulus K and a second elastic parameter either the elastic shear stiffness, G or the 

Poisson's ratio, µ that is input by the user. 

Noting that the fluid phase cannot transmit shear the pore fluid stiffness matrix JD 
fj 

has the form of Equation 4.27 in plane strain conditions, where Ke is a constant and its 

value is related to the bulk modulus of the pore fluid, Kf. 

1110 

Equation 4.27 [D ]= K1110 fe1110 

0000 

Potts and Zdravkovic (1999) show that in analysis involving saturated soils the analyses 

results are not sensitive to the actual magnitude of K. provided it is considerably larger 

than the soil skeleton bulk stiffness Kskel and they recommend setting Ke as a multiple of 

the soil skeleton bulk modulus, such that KQ =, 8. Kske! with j8 assuming a value 

between 100 and 1000. 
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Equation 4.26 can be combined with the finite element theory presented previously. The 

required input parameters enable the calculation of the effective constitutive matrix and 

the equivalent bulk modulus Ke separately, which are then combined to obtain the total 

constitutive matrix [D] of each element. After that, the calculation of the element 

stiffness matrix, the global stiffness matrix assembly and the solution of the equation 

system follows the procedure described in Section 4.2. Once the (unknown) nodal 
displacements have been calculated, the effective stresses can be evaluated using 
Equation 4.28 and the pore fluid pressures by using Equation 4.29. The total stresses 

can be calculated either by replacing 
[D] 

with the total constitutive matrix [D] in 

Equation 4.28 or through Equation 4.25. 

Equation 4.28 {Ov'}= [D]{A } 

Equation 4.29 I1t6 
f 

}= JD 
f 

]{Ac} 

4.3.2 Coupled consolidation analyses 

The formulation presented so far in this chapter deals with the situations when the soil 
behaviour is fully drained or undrained. Some geotechnical problems can be analysed 

using either of these extreme conditions, but in others it may be important to account for 

the time dependent pore pressure response, which is affected by the soil permeability, 

the rate of loading and the hydraulic boundary conditions. In this case, in addition to the 

equilibrium equations that govern the deformation of the soil skeleton due to loading, it 

is necessary to consider the equations governing the flow of the pore fluid through the 

soil skeleton, namely the equation for the continuity of flow and the generalized Darcy's 

law. The analysis is then said to be coupled, as in effect it couples or combines the pore 
fluid flow with the stress-strain soil behaviour. 

To model such behaviour the pore fluid pressure must be incorporated as a primary 

unknown, together with the displacements. In a similar manner to the displacement 

variation (Equation 4.4), the pore fluid pressure variation across an element can be 

expressed in terms of the nodal values by means of Equation 4.30. 

Equation 4.30 {Op}= INp j{Op}� 

where {gyp} is the pore pressure change, {Op},, is the pore pressure change at the nodes 

and 
[NP j is a matrix of the shape functions. 
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If each node of a consolidating element is attributed an incremental pore pressure 

degree of freedom, the matrix [N 
p] 

is identical to [NJ. In an 8-noded element this 

implies that both the displacements and the pore fluid pressure vary quadratically. 
However, if the displacements vary quadratically, the strains and therefore the effective 

stresses (for a linear elastic material) vary linearly, causing an inconsistency between 

the variation in effective stress and pore pressure across the element, which are linked 

by the principle of effective stresses. Although this is theoretically acceptable it is in 

general preferable that effective stresses and pore fluid pressures vary in the same way. 
In an eight noded quadratic element this can be achieved by assigning pore pressure 
degrees of freedom at the corner nodes only, and this is the approach used in the 

analyses presented in this thesis. 

To derive the equations that govern coupled consolidation analyses, the first step is to 

formulate the equations that describe the deformation of the soil allowing the solid and 

the fluid phases to deform independently. It has been shown above that the constitutive 
behaviour can be written as a relationship between increments of total stress and strain: 

Equation 4.31 {Ac} 
= 

[D]{Oc} 

Invoking the principle of effective stress the equation can be rewritten as: 

Equation 4.32 {06} = 
[D' ]{De}+ {Op 

f} 

Where JOp 
f}= 

tOp 
f, Op j, Op f , 0} in plane strain conditions and Ap f is the change in 

pore fluid pressure. 

In a similar way to the procedure described in Section 4.2.3 for the uncoupled 
formulation, the principle of minimum potential energy is employed. The incremental 

potential energy DEE is the sum of the incremental strain energy OW given now by 

Equation 4.33 and the incremental work done by the applied forces OL, which remains 

the same and is still given by Equation 4.11. 

Equation 4.33 0W =1 
J[ T[ II A. }+(Ap 

fý 
{0s}]" dVol 

Vol 

The principle of minimum potential energy states that the static equilibrium position of 

a loaded body is that which minimizes the total potential energy and so, to obtain the 

minimum of the quantity LEE the potential energy is differentiated and the result set 
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equal to zero, as outlined in Section 4.2.3. The element equations for all elements in the 

analysis domain are then assembled to form the global equilibrium equation. 

Equation 4.34 [KG ]{Od}Geodes + ILG ]l'Pf 
1Gnodes = 

{MG } 

Where [KG ]_ [KE ], 
= 

J[B]T [D' IB] 
"d Vol 

! =t ; _ý Vol 

[LcZ[LE], _I 
f {m}[B]T [Np]"dVol 

: =1 ! =l Vol 

{ARG }_ JV: {IRE }i =Z 
f[ 

( 
{OF'} 

"d Vol + J[N]T (AT I" dSurface 
! _l J=I Vol ! Surface 

{m}T =11 11 0} 

The subscript E indicates element quantities, i the element number and N the total number of 
elements in the analysis domain. 

However Equation 4.34 cannot be solved because it contains two unknowns the nodal 
displacements and the nodal pore pressure changes. Another equation is needed, which 

can be obtained by combining the equation of continuity of flow (which in plane strain 

conditions is given by Equation 4.35) and the generalized Darcy's law (Equation 4.36). 

Equation 4.35 
avX 

+ 
ý' 

-Q= 
a£° 

ax ay at 
where v,, and vy are the components of the superficial velocity of the pore fluid in the 

directions x and y, respectively and Q represents any sources or sinks. Darcy's law 

assumes the soil to be fully saturated and that both the pore fluid and the soil grains are 
incompressible. 

Equation 4.36 {v} = -[k]loh} 

where {v} is the vector of the pore fluid superficial velocities, [k] is the matrix that 

contains the permeability properties of the material (if the material has an isotropic 

permeability, k then k, IX kyY k and k,, y=0) and h is the hydraulic head given by: 

Equation 4.37 h=pr +(x"iGx+y"' 
Yf 
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where yf is the bulk unit weight of the pore fluid, x and y are the global coordinates and 

the vector {iG }= {1G, 
1Gy, 0} is a unit vector parallel but in the opposite direction to that 

of gravity. 

Applying the principle of virtual work, the continuity equation can be rewritten as: 

Equation 4.38 
vo 

f {v}T {V(Op 
f)}+ 

aJ-'_ {gyp 
f} dVol = {Q} {Op 

f} 

Substituting Equations 4.36 and 4.37 into Equation 4.38 and approximating 
ýt 

as 

L -S. - obtains: At 

Equation 4.39 

fk +AJ 

Jl [k]" {Opf}+{iG} (V(Opf)I-dt+Osv{Apf} dVo1={Q)- fApj}"Ot 

vo Ik Yf 

Rearranging Equation 4.39 by expressing the pore pressures changes {Op 
f} in terms of 

the nodal values ILp 
f 

}nodes 
and adding the equations for each element into a global 

equation, the following'global equation is obtained: 

'k +A' 

Equation 4.40 [L0 ]T {Od }cnodes -J[G J{P f 

Lodes 
dt = 

([nG ]+ {Q}}fit 
lk 

where [(DG [(DE ], =f 
[E]T [kIE] 

"d Vol 
=1 i=1 

lVol 
Y. % , 

NN 
[nc ]=± [nE ], =f [E]T [k]{iG }" dVol 

t=1 i=1 Vol 

[E]T 
- 

aNp 
+ 

aNp 

ax öy 

E indicates element quantities, G global quantities, i the element number and N the total 
number of elements in the analysis domain. 

The integral in Equation 4.40 can be approximated by: 
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Equation 4.41 

rk +er 
f[ 

G1f 

Les 
" 

dt [cG ]" OC 
" 

[({Pf 
Ld. )'k 

+A' 
+ (1 

- 
ý) 

`lý f 

ýGnodes 

/rk J 
rk 

Where ß is an integration parameter that is introduced to indicate how the pore fluid 

pressure varies over the increment At. Booker and Small (1975) suggest that ß should be 

larger than 0.5 to ensure the stability of the analysis process. In the analyses presented 

in this thesis, a value of ß equal to 0.8 is employed. Coupled consolidation analyses can 

be computed by using a time marching process and the following system of 

simultaneous equations, which combines Equations 4.34 and 4.40: 

Equation 4.42 

[KG ] [Lc ]1 1{Md }Geodes 1 1{ORG } 
[LG IT 

- ßht[OG l{Api 
Lodes qnG ]+ {' Q} + [(DG ]{ p(tk )}Gnodes }' of 

In coupled analysis, in addition to load or displacement boundary conditions it is 

necessary to specify the hydraulic boundary conditions along the mesh boundary. This 

takes the form of either nodal flow values that are included in the term OQ, and/or nodal 

pore pressures that affect the vector of the global nodal pore pressures {Op 
f 

}Gnodes 

reducing the number of unknowns. Once the boundary conditions have been specified, 

Equation 4.42 can be solved using the formulation described in Sections 4.2.7 and 4.2.8. 

4.4 Summary 

This chapter has described the main steps required in the formulation of the finite 

element method for static analysis: element discretisation, primary variable 

approximation, formulation of the element equations, assemblage of the element 

equations into a global equation, formulation of the boundary conditions and solution of 

the system of global equations. 

In addition, when the soil is described by a non-linear elastic or elastic-plastic 

constitutive model that causes the constitutive relations to be stress/strain dependent, 

and thus causes the stiffness matrix to change over an increment, the solution of the 

global equations becomes more complex. The non-linear solution method used in the 

analyses presented in this thesis consists of a modified Newton-Raphson method with a 
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substepping stress point algorithm and an error controlled modified Euler integration 

scheme, which has been shown to be robust, accurate and computationally cost effective 

when dealing with non-linear problems. 

The two phase nature of soil means that for a fully saturated soil three types of response 

are possible: a) the fully drained case in which there is no change in the pore fluid 

pressure; b) the fully undrained case (no volume change) and c) an intermediate case in 

which the pore pressure response results from combining the equations of the flow of 

the pore fluid with the equations that govern the soil skeleton deformability due to 

loading. The finite element method is able to deal with the above three situations and 

the procedures involved have been described. 
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5A TIME DEPENDENT CONSTITUTIVE MODEL BASED ON A 

LINEAR LOGARITHMIC CREEP LAW 

5.1 Introduction 

This Chapter describes the derivation, implementation and validation of a constitutive 

model that reproduces the time dependent behaviour of clays that derive from viscous 

effects. From the literature review presented in Chapter 2 it became apparent that most 

clays in the undisturbed state have isotach viscosity. The isotach viscosity is also 

appropriate to describe the rate dependent behaviour of soft reconstituted clays over the 

full stress range, and stiff overconsolidated clays and various transition soils in the 

small to medium stress range. 

The model presented subsequently results from the first steps that the author undertook 
in understanding the requirements of a constitutive model, in general, and those specific 

to a constitutive model that reproduces isotach viscosity, in particular. The model is 

based on an extension of the overstress theory by Perzyna (1963) and assumes that the 

soil deformation associated with a stress increment Eo is divided into an instantaneous 

and a delayed component. The instantaneous component is assumed to coincide with the 

elastic response and it is, in this case, characterized by a stress dependent bulk modulus 

and a second elastic parameter that is specified by the user, either the Poisson's ratio or 

the elastic shear stiffness. The delayed component is determined assuming that the soil 

response follows a unique stress-strain-strain rate relationship that corresponds to a 
linear logarithmic law. Hereafter, the constitutive model is referred to as Creep Model 1. 

The constitutive equations are first derived under isotropic stress state conditions. The 

extension to general stress space is then done assuming that the visco-plastic volumetric 

strain rate is constant on a given loading surface. This means that the volumetric visco- 

plastic strain rate at a stress state (p', J) is equal to that at the stress state (p'o, 0) where 

p'o is the mean effective stress at zero deviatoric stress on the loading surface that 

passes through the current stress point, which is assumed to have the Modified Cam 

Clay (MCC) model elliptical shape. The remaining strain components are obtained from 

a plastic potential surface, which is assumed to coincide with the current loading 

surface. In this form the model is found to correspond very closely to the model 
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described by Kutter & Sathialingam (1992) and to that employed by Gnanendran et al. 

(2006) to analyse the behaviour of the Sackville test embankment, the differences 

concern mainly the choice and definition of the model parameters and the calculation of 

the creep scalar multiplier when the model is extended to generalized stress space. 

The Modified Cam Clay (MCC) model ellipse has been adopted to describe the loading 

and the plastic potential surfaces of Creep Model 1 essentially for its mathematical 

simplicity allowing an easy manipulation of the model equations. This was especially 

relevant during the early stages of this research when the main focus was to obtain a 

conceptual understanding of time dependent models and their main requirements. It is 

noted that the choice of a surface rotated in relation to the KO stress axis, even without 

evolving anisotropy, would present benefits when modelling the behaviour of real soils 

e. g. predicting well the KO value during 1D compression. 

The model has been implemented in the finite element program ICFEP and the model 

performance assessed by means of single element analyses reproducing typical 

laboratory stress paths. The model is found to reproduce well the phenomena of creep, 

stress relaxation and strain rate effects under 1D compression. However when 

simulating undrained triaxial compression tests the model fails to predict critical state 

conditions - shearing at constant stresses and constant volume - even at very large 

strains. The model is then improved to reproduce the behaviour of soils at large stress 

levels, in particular the critical state condition. This is achieved by considering that a 

given loading surface is a locus of constant creep multiplier and not a surface of 

constant visco-plastic volumetric strains as assumed previously by the author and other 

researchers. 

5.2 Derivation of the constitutive equations 

Creep Model 1 assumes that the soil response can be divided into an instantaneous and a 

delayed component, such that a total strain increment ACT is given by: 

Equation 5.1 D£T = AEe! + D£vp 

where the elastic strain component O8`l is instantaneous and thus time independent, 

and the visco-plastic strain component Os"p is time dependent and irreversible. The 
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elastic strain component associated with an effective stress increment {0u'} can be 

evaluated by inverting Equation 5.2, where [D] is the elastic constitutive matrix. 

Equation 5.2 {06'} 
= 

[D] 
" 
{Asen } 

In the present case, the elastic response of the model is characterized by a stress 
dependent bulk modulus, K given by Equation 5.3, and a second elastic parameter, 

which can be either the Poisson's ratio µ or the elastic shear stiffness, G. 

Equation 5.3 K=V pý 
K 

where V is the specific volume, p' is the mean effective stress and x is the slope of the 

instant (elastic) line in V-1np'space. 

According to the visco-plastic theory proposed by Perzyna (1963), the visco-plastic 

strain component can be expressed as: 

Equation 5.4 OsJP = ((D(F)) 
" At " 

afa 

a6;; 

where ý(D(F)) = D(F) if F>0 

«D(F»=0 if F<_0 

At is the time increment, (D(F) is a function that represents the effects of strain rate on 

the material behaviour, and is a function of the quantity F, which is essentially the 

distance between the current dynamic loading surface fd and the static yield surface f 

(see Section 3.4.1) and the dynamic loading surfacefd is used as the plastic potential 

surface. 

In Creep Model 1, the quantity F and c(F) are calculated in relation to a reference 

loading surface, that is characterized by a finite value of plastic strain rate, and the 

function t(F) is evaluated, and visco-plastic strains are predicted, for stress states 

located on, above or below that reference loading surface. The visco-plastic strain 
increment can then be written as: 

Equation 5.5 Asp =(D " At " 
aP 

a07, 
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where 0 is a visco-plastic scalar multiplier, At is the time increment and P is the plastic 

potential function, which is, in principle, different to the current loading surface. In 

Creep Model 1 no limit line is defined and consequently, visco-plastic strains are 

always engaged and there is no region of pure elastic soil behaviour. 

The derivation of the creep strain vector 0e p or the visco-plastic scalar multiplier 0 is 

initially done for isotropic stress conditions, in which case the soil deformation is 

completely defined by the volumetric strain component. 

It is assumed that under isotropic compression at a constant volumetric strain rate the 

compression curve in the normally consolidated (NC) range plots as a straight line in V- 

ln p' space (where V is the specific volume and In p' is the natural logarithm of the 

mean effective stress), with a slope X. When compressing a soil element at a different 

strain rate it is assumed that a compression line parallel to the previous one is obtained. 

The offset between the two compression lines is assumed to vary linearly with the 

logarithm of the applied strain rate. 

This is in agreement with experimental observation that the pre-consolidation pressure 
increases with the logarithm of the applied strain rate as shown by Leroueil et al. (1985) 

and corresponds to the Equation 3.12 proposed by Leroueil and Marques (1996). It can 

be shown that this assumption implies that there is a linear relationship between the 

creep deformation and the logarithm of time. The formulation of the model is 

schematically shown in Figure 5.1, noting that the reference compression line is the 

compression line obtained when the soil element is strained at the reference volumetric 

strain rate value, s. 

Consider a soil element isotropically consolidated under a mean effective stress p, with 

a specific volume, V;, which is being consolidated at a constant volumetric strain rate 

svoi . The mean effective stress at the intersection between the instant line that passes 

through the current stress state and the reference compression line is denoted p; ef . 
The 

current specific volume V, can then be written by means of Equation 5.6. 
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Figure 5.1: Schematic time dependent behaviour under isotropic compression. 

Equation 5.6 Vf = VIf -2" In p; 

where Vj is the specific volume at unit mean effective stress on the compression line 

that corresponds to the strain rate value s 01. From Figure 5.1, the current specific 

volume Vi can alternatively be written as: 

Equation 5.7 V, = Vi, 
ef -A" In prel +K" [In 

p7ej - In p, 

where Viref is the specific volume at unit mean effective stress on the reference 

compression line. Combining the two above equations: 

Equation 5.8 Vi, - VI, 
ef = (2 

-)r) " In P; 

Pref 

Alternatively, Vlref and V1i can be written as a function of the reference strain rate s 
Vol 

and the current strain rate s'or : 

Equation 5.9 V,; - Vl7ef = yi In Egel 
£v i 

Substituting Equation 5.8 into Equation 5.9 (or vice-versa), it is possible to write the 

current strain rate value svol in terms of the distance of the current stress state to the 

reference line: 

R-K 

Equation 5.10 
Vol 

£= 
Vol 

Pý 

P, er 

instant line 
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And the visco-plastic volumetric strain component A--'P can be evaluated as: 

Equation 5.11 
'v1 =At iO 

Vol 

where At is the time interval. 

According to the model formulation, following an effective stress increment {i6'} the 

stress path moves instantaneously along the current elastic line (K - line in Figure 5.1) 

with an associated strain increment A. -" (Equation 5.2). With time, under constant 

effective stresses, the soil element develops delayed visco-plastic strains DE°p, the 

magnitude of which is evaluated by means of Equation 5.11, bringing the stress state to 

the appropriate compression curve. 

The extension of Equation 5.10 to general stress state is initially done, based on the 

experimental observations by Tavenas et al. (1978), assuming that the creep volumetric 

strain rate is constant on a given loading surface. The loading surface is a surface that 

passes through the current stress state (p, J) and it is characterized by the quantity po, - 

the mean effective stress at zero deviatoric stress on the current loading surface. The 

loading surface is assumed to have the elliptical shape of the MCC yield surface, given 

by the following equation: 

Equation 5.12 f= P°c 
-1 =0 

P Sýeý P 

Where the function g(O) is the inclination of the critical state line in p'-J space and is a 

function of the Lode's angle, 0 to account for the intermediate principal stress and to 

express the failure criterion in the deviatoric plane. In order to obtain a Mohr-Coulomb 

hexagon for the failure surface in the deviatoric plane, g(6) is: 

sin (p Equation 5.13 g(O) _ 
sin B" sin (pc'S 

cos B+ 

Where cps is the critical state angle of shearing resistance and 0 is the Lode's angle. 

ICFEP offers the user the alternative to specify the failure and plastic potential surfaces 

in the deviatoric plane by the general expression given by Equation 5.14, which has the 

advantage of simulating a wide range of shapes: 
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X Equation 5.14 g(B) _ (1+Ysin30)-Z 

where Y and Z are constants and input parameters and X =sin Spcs 

The creep volumetric strain rate is now given by Equation 5.15, where the quantities p, 

and peel in Equation 5.10 are replaced by the values of the current loading surface poi 

and the reference loading surface pOref, respectively. 

x-K 
i ref Poi Equation 5.15 -ývol 

Vol 
E-; 

0 ref 

Noting that Asv P= s'ol " At and AEvö = (D " At " 
aP 

the creep strain components can be 
P 

quantified as: 
A-K 

Poc w 
ref ývol 

Equation 5.16 0£,, p = cp . At . 
ap 

_ 
Poref 

Qt 
ap 

ä6; i ap a6fý 
apI 

In the denominator of the above equation, the introduction of the absolute value of the 

quantity aP/ap' ensures that the visco-plastic scalar multiplier b is always a positive 

number, even for stress states that are on the dry side of the critical state. 

Assuming that the virgin compression line in the MCC model corresponds to the 

reference compression line, the changes in the parameter po, ef 
(used in Equation 5.15) 

can be quantified with reference to the hardening rule of the MCC model and the 

change in po, ej can be evaluated as: 

Equation 5.17 Apo. 
ef = po, ef 'V A£v i 

where V is the current specific volume, A. -Vol the visco-plastic volumetric strain 

increment and A and x are the slope of the reference and instant time line, in V-Inp' 

space, respectively. 
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5.3 Modification of the visco-plastic scalar multiplier 

The model described in the previous section was implemented in the finite element 

program ICFEP. The model performance was investigated by means of single element 

analyses simulating typical laboratory stress paths. The model was found to simulate 

well the phenomena of creep, stress relaxation and strain rate effects under ID 

compression. However, the behaviour under undrained triaxial compression was 

somewhat anomalous. Figure 5.2 shows the stress paths predicted by Creep Model 1 

under undrained triaxial compression at three values of constant axial strain rate, on 

normally consolidated samples isotropically consolidated to 100 kPa. Figure 5.3 shows 

the respective stress strain curves. For comparison Figure 5.2 and Figure 5.3 also show 

the prediction given by the time independent MCC model. 

During undrained shearing of a reconstituted normally consolidated clay sample the 

response is expected to be contractive (reduction in mean effective stress) and the 

deviatoric stress is expected to increase steadily up to critical state (CS), where the peak 

undrained strength is attained. Once critical state is attained further shearing occurs at 

constant effective stress state (and volume, in drained conditions). Such behaviour is 

recovered well by the MCC model, 
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Figure 5.2: Stress paths predicted by Creep Model 1 under undrained triaxial 

compression at various values of constant axial strain rate, on normally 
consolidated samples (CSL = critical state line). 

Creep Model 1 is able to capture some rate dependency as the predicted peak undrained 

strength is found to increase with increasing strain rate. However, the peak deviatoric 

stress is reached at stress ratios, il (where q=J/p') considerably lower than the stress 
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ratio at critical state Mf. After peak, the stress paths tend asymptotically to the critical 

state line with reducing mean effective stress and deviatoric stress, converging towards 

the stress origin (p'=0, J=0). The analyses were extended up to 40% axial strain at 

which point true critical state conditions had not been reached and the stress path was 

still heading towards the stress origin. 
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Figure 5.3: Stress - strain curves predicted by Creep Model 1 under undrained 
triaxial compression at constant axial strain rate. 

The results shown in Figure 5.2 and 5.3 correspond to undrained triaxial compression 

tests at constant axial strain rate, during which the volumetric and deviatoric strain rate 

components can be evaluated as: 

Equation 5.18 Er°`°r `r +E°" =O Eel =-s Vol = ""Vol var Vol - Vol 

Equation 5.19 td total = Ed` + Ea 

In the normally consolidated range the elastic deviatoric component is much small than 

the visco-plastic one, and the following approximation can be made: 

Equation 5.20 td total Ed = sQ 

where sQ is the axial strain rate that is constant during the tests under discussion. On the 

other hand, based on Equation 5.16 the volumetric and the deviatoric visco-plastic strain 

rate can be written as: 

x-x 

W 
ref 

POc 
A-K E 

Vol 

Equation 5.21 vö _. 
aP 

_ 
Poret aP 

ELO, POC 
aP aP p Poref 

ap, 
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2-K 
ref 

POc 

Vol £Equation 

5.22 = cD " 
aP 

_ 
Poref äP 

a' öP äJ 

ap, 

Combining Equation 5.21 with Equation 5.22 gives: 

Evp ý Equation 5.23 EV = `°! aP 
d aP aJ 

apI 
It can be shown that the partial derivatives of the plastic potential function P (given by 

Equation 5.12) in relation to the mean effective stress, p' and the deviatoric stress, J can 

be evaluated as: 

Equation 5.24 
aP 

-1- 
SZ 

ap, p, 

Equation 5.25 
aP 

_ 
2S 

öJ PI 'g(B) 

where S is the stress level, S= 
J' 

and g(O) is the slope of the critical state line in 
P- g(O) 

p'-J space and p' is the mean effective stress. Substituting Equations 5.24 and 5.25 into 

Equation 5.23 gives: 

Equation 5.26 Eä =1_ SZS g(B) 
}o 

From Equation 5.20 the deviatoric visco-plastic strain rate, E remains constant during 

the test due to the applied boundary conditions. However from Equation 5.26 the ratio 

between the visco-plastic deviatoric and volumetric strain rate increases with increasing 

stress level, S and for E, to remain constant svö is forced to decrease. From 

inspection of Equation 5.21, and the underlying assumption that a loading surface is a 

locus of constant visco-plastic volumetric strain rate, a reduction in the volumetric 

visco-plastic strain rate is only achieved if the stress state moves inwards to a smaller 

loading surface (away from the reference line) such that the quantity 

Poc/Po, ef 
decreases. 
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At a critical state condition there is no effective stress change, which means from 

Equation 5.18 that the visco-plastic volumetric strain rate is zero. From Equation 5.21 

this condition is attained when the quantity p., is zero, and the current stress state is 

located at the stress origin. 

In this form, the model is now called Basic Creep Model 1. Gnanendran et al. (2006) 

describe the analysis of the Sackville test embankment employing two time dependent 

constitutive models, one of which they claim as being the model presented by Kutter & 

Sathialingam (1992). In the constitutive model description, they state that the quantity 

aP/ap' is calculated at the current stress condition, as in the Basic Creep Model 1, 

which is also the assumption employed by other researchers (e. g. Yin & Graham, 1999; 

Yin et al., 2002; Vermeer & Neher, 1999,2006; Borja & Kavazanjian, 1985). 

However, in their original paper Kutter & Sathialingam (1992) state that the quantity 

aP/ap' is instead evaluated at Ko stress conditions, as their reference line is defined 

from 1D oedometer tests, but note that to determine the stress state that corresponds to 

Ko stress conditions is not straightforward. 

In Basic Creep Model 1, the reference time line is assumed to correspond to an isotropic 

stress path and so it is more appropriate (and also convenient) to evaluate the quantity 

aP/ap' at the current equivalent isotropic stress state (poc, J=O). The visco-plastic 

scalar multiplier can then be evaluated as: 

2-K 

ref Poi 
Vol £P 

re Equation 5.27 =j 

ap ý_oý, 
In this form the model becomes very similar to the compression model for soft clays 

presented by den Haan & van den Berg (2001), the difference in the governing 

equations concerning the choice and definition of the model parameters. Noting that the 

plastic potential function P has the shape of the MCC model ellipse and is described by 

Equation 5.12, the partial derivative aP/Bp' can be evaluated as: 

130 



2 

Equation 5.28 
aP 

=1J aP pP2" g(eY 

At the current equivalent isotropic stress state (poi, J=O) this becomes: 

Equation 5.29 aP 
_i ap P=Poo Poc 

=U 

and Equation 5.16 can be rewritten as: 

A-K 

_"ow C Equation 5.30 D£ vp 
,i -sco . elf 'P Poc At - 

aP 

Po. ej 
ö6ýi 

which implies that a given loading surface is a locus of constant visco-plastic scalar 

multiplier (D. In this form, the model is referred to as Modified Creep Model 1 and an 

extensive investigation of the models performance is presented in Section 5.5. Figure 

5.4 shows the model predictions of an undrained triaxial compression test at 10%/day 

axial strain rate on a NC sample. It can be seen that the two formulations yield nearly 
identical predictions up to about 40 kPa deviatoric stress, after which the stress paths 
diverge. The Basic formulation attains peak strength at a stress ratio lower than that at 

critical state, and then moves leftwards and downwards with decreasing deviatoric and 

mean effective stress, moving asymptotically towards the critical state line and the 

stress origin. The Modified formulation on the other hand predicts a steady hardening up 

to the critical state line. 
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Figure 5.4: Comparison between the stress paths predicted by the Basic and the 
Modified Creep Model 1 under undrained triaxial compression at constant 
axial strain rate. 
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The difference between the two formulations is quantified subsequently. Simplistically 

the visco-plastic scalar multiplier 1 can be expressed as: 

Equation 5.31 (D =A"B 

ý-x 
w 

where A= svoý " 
P. ̀  and B=1 The difference between the two 

Po, ef öP 
ap, 

formulations consists in the choice of the stress condition where the quantity B is 

evaluated. According to the basic formulation, B is evaluated at the current stress state 
ý, J, ) such that a given loading surface is a locus of constant visco-plastic volumetric 

strain rate. Substituting the current stress state into Equation 5.28 gives: 

Equation 5.32 
aP 

=1" 
ý1- SZ 

aP ý_ý" Pr 

where S is the stress level, S=, 
J' 

and g(O) is the slope of the critical state line in 
P; - g(O) 

p'-Jspace. The value of B is then: 

Equation 5.33 Bbasic -A 1-S2 

In the modified formulation, B is evaluated at the current equivalent stress state (poi, 

J=0). Substituting in Equation 5.28 gives: 

Equation 5.34 
aP 1 

aP, ý_o ., Poi 

However from Equation 5.12 the value of po', can be written as: 

Equation 5.35 poC =p " 
(1 + S2 

And the value of B can then becomes: 

Equation 5.36 BMOd 
fed = pi " 

(1 
+ S2 

Figure 5.5a) shows the variation of the quantity B with stress level S at an arbitrary 

mean effective stress p,: =1 kPa according to the basic and the modified formulation. 
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Figure 5.5b) shows the difference in Bbasic in relation to Bfod fed with the stress level S, 

the logarithmic scale being employed to amplify the behaviour at small values of stress 
level. It can be seen that up to a stress level of about 0.7 the two formulations yield very 

similar values of B and consequently of visco-plastic scalar multiplier 1, in agreement 

with the results shown in Figure 5.4. It can be concluded that for stress states far from 

failure both formulations could potentially be used as they yield very similar 

predictions. However, the failure condition is only correctly captured by the modified 
formulation. 

The similarity between the predictions of the two formulations at stress levels less than 

0.7 leads the author to believe that the experimental data by Tavenas et al. (1978) that 

has been used to postulate that the limit state surface (and any homothetic loading 

surface) is a locus of constant volumetric strain rate may fit identically well the 

assumption that the limit state surface is instead a surface of constant visco-plastic 

scalar multiplier. This is especially true if one bears in mind the errors involved in any 

experimental work. In particular in this data set, estimated apparatus leakage that could 

cause significant errors during undrained tests, the reduced number of data points used 

to draw the isochrones of volumetric strain rate in triaxial stress space (p', J) and the 

fact that these isochrones correspond to a relatively short creep time (100 minutes) all 

combine to give potential errors in the measured strain rates. 
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Figure 5.5: Variation of the quantity B with stress level for the basic and modified 
formulations. 
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5.4 Considerations regarding the model parameters 

To fully define the model in triaxial stress space seven parameters are required, two in 

addition to those required for the modified Cam-Clay model, as follows: 

Vtref - the specific volume at unit pressure on the reference isotropic 

compression line (VIref>O. 0); 

X- the slope of the reference time line in V-lnp' space (X >0.0); 

K- the slope of the instant time line in V-lnp' space (K >0.0), which is assumed 

to coincide with the swelling line; 

p, G or G/ po - an elastic parameter that can be either the Poisson's ratio µ (- 

1.0 p< 0.5), the elastic shear modulus G (G>0.0) or the quantity G/ po 

(G / pý>0.0), in which case the elastic shear modulus varies linearly with po ; 

Secs - angle of shearing resistance at the critical state; 

yr -a creep parameter that defines the vertical spacing between compression 

lines per logarithmic cycle of strain rate (w >_0.0) in V- lnp' space; 

&` - Volumetric strain rate on the reference compression line (s >0). Vol Vol 

To define the model in general stress space, it is necessary to specify the shape of the 

failure and plastic potential surfaces in the deviatoric plane and consequently two to 

four additional parameters are required. As mentioned above in ICFEP the user has 

various options to perform this. The failure surface in the deviatoric plane can take the 

shape of a Mohr Coulomb hexagon in which case no additional parameters are required 

and the slope of the critical state line in p'-J plane (the value of the function g(6)) is 

calculated using Equation 5.13. Alternatively the shape of the failure surface in the 

deviatoric plane can be described by a general equation in the form of Equation 5.14 in 

which case two parameters are required. The shape of the plastic potential in the 

deviatoric plane is defined by Equation 5.14, which is a flexible expression that can 
describe a wide range of shapes by choosing appropriate values for the two constants. 

In addition, the user is required to input the overconsolidation ratio (OCR), which 

together with the initial stress conditions define the initial value of the hardening 
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parameter po, ej. 
The OCR is defined in relation to the reference compression line and it 

can be input either as a ratio of mean effective stresses or vertical effective stresses. In 

the first case the value of the hardening parameter po, ef 
is calculated directly: 

Equation 5.37 po', ef = OCR " p, 

where p, is the initial mean effective stress. More commonly, the value of OCR is 

defined in terms of vertical effective stress: 

6 
Equation 5.38 OCR 

6vr 

Where 6v, is the initial vertical effective stress and a' is the vertical effective stress at 

large scale yielding. It is then assumed that the coefficient of earth pressure at rest in the 

NC range can be evaluated by Equation 5.39, as proposed by Jaky (1944). 

Equation 5.39 Ko c =1- sin cos cwhere 

cpcs is the angle of shearing resistance at the critical state. The direct stress in the 

horizontal direction can then be evaluated as: 

Equation 5.40 6hy = Kö c"6, 
y 

Assuming that the direct stresses acting in the two horizontal cartesian directions are the 

same and the vertical and horizontal directions are principal directions, the values of p' 

and J associated with that NC stress state can be evaluated. These values are then used 
in Equation 5.12 to obtain the size of the corresponding loading surface, which is then 

the initial value of po, el. 
Once the value of pä, ej 

is known, the initial void ratio ei is 

calculated from Equation 5.41. 

Equation 5.41 e, _ 
(V,, 

ef -x in p; - 
(A 

- K) 1n po, ej) -1 

Before describing the derivation of the model parameters, it is of interest to note that the 

two time dependent parameters yr and s; oý are related and in some circumstances may 

become redundant. From Equation 5.9 yr is defined as: 

Equation 5.42 - 
AVl 

= 
Lei 

In svolz - In svorl A In Z-. 
Ol 
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If it is assumed that the value of the coefficient of secondary consolidation Cae is 

constant with time and thus that there is a linear relationship between void ratio (or 

strain) and the logarithm of time (see Chapter 2). Then the parameter m proposed by 

Singh & Mitchell (1968) is equal to unity. 

0loge_Alns_ 
Equation 5.43 m= A log t Amt 

1 

Substituting Equation 5.43 into Equation 5.42 and invoking the definition of the 

coefficient of secondary consolidation Cae (Equation 2.3) the value of yl can be written 

as: 

_e De C 
Equation 5.44 yi .=_", Amt In 10 " logo t In 10 

which gives a relationship between the model parameter y and the coefficient of 

secondary consolidation Cae . The volumetric creep strain predicted by a logarithmic 

law, at an instant t during secondary compression under KO stress conditions can be 

evaluated as: 

Equation 5.45 £vpr = Ev =_ae 1+e 
log 

-ý-Ll o, 

where t; is the time corresponding to the beginning of secondary compression. 
Differentiating Equation 5.45 with respect to time we obtain the volumetric strain rate: 

Equation 5.46 sYOl = 
Cae 1"1-=V"1 

- 1+eo ln10 t 1+eo t 

Equation 5.46 implies that for a given value of Cae or yf there is a unique relationship 

between the strain rate and time. Consequently, to characterize the reference time line 

either , v"' or a reference time value, to can be specified. The set of parameters (w, svZ ) 

is equivalent to the more common set of parameters (Cae , to). Essentially the parameter 

Cae or iV defines the amount of creep deformation per logarithmic cycle of time and the 

parameter s or to characterizes the reference line, which has been defined by the input 
Vol 

parameters VIr and X. 
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However the value of Cae is, in general, calculated from IL 24-hour oedometer tests, 

which are also used to define the normal compression line in engineering practice. If the 

reference compression line is specified to be an IL 24-hour oedometer compression 

curve then the value of to is by default always equal to 1 day = 24 hours, and the time 

dependent part of the model requires only one additional parameter in relation to the 

MCC model. 

It is noted that according to the model derivation the reference compression line that is 

characterized by the input parameters 7 and Viref corresponds to the compression of a 

soil element under isotropic stress conditions at the reference volumetric strain rate 

sv . However, in engineering practice the soil compressibility characteristics are more 

often investigated by means of 1D oedometer tests, which are found to yield 

compression curves with, theoretically, the same slope ? in V- lnp' space. The 1D 

compression curves are found to be offset in relation to those obtained under isotropic 

stress conditions, but according to the model formulation the absolute position of the 

reference compression line is not of primary importance, and so it is appropriate to 

evaluate the parameters X and Vj, ef from 1D oedometer tests. 

In addition, the axial strain rate at the end of each of the 24-hour load increments is 

found to be fairly constant for a given material and typical loading sequence (i. e. a load 

increment ratio equal to unity), such that the IL 24 hour compression curve may be 

assumed to be approximately a locus of constant volumetric strain rate. 

It is of interest to quantify the error that is introduced when the reference compression 
line and the reference volumetric strain rate are estimated based on oedometer tests, as 

Modified Creep Model 1 assumes the same compression line to correspond to an 
isotropic stress path. For a reference line corresponding to a 1D compression the 

parameter B in Equation 5.31 should be evaluated at Ko stress conditions, and the visco- 

plastic scalar multiplier 1 would then be: 

2-K 

rej Oc 
1 

Equation 5.47 
P 

= Vol 
s, 

Porej aP 
öp 

Ko 

During 1D compression 62 = 63 =0 so the following condition applies: 
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0Eä 2 
Equation 5.48 

T =73 A 
Vol 

where AE' and Os ol are the deviatoric and the volumetric total strain increments, 

respectively. The stress state under KO stress conditions 
V, 

, Jr, ) 
can be estimated 

assuming that the elastic incremental strains are much smaller than the visco-plastic 

ones and: 

L Ea 2 _E; P 
Equation 5.49 

AE= T 
ýý 

tip 
vol Y -' 

0£vol 

and A are the deviatoric and volumetric visco-plastic strain increments, Where AE' d Vol 

respectively. Invoking Equation 5.30 the above equation can be rewritten as: 

AE'P a/f 
=2 _ Equation 5.50 = AE' aPl- 13- 

P 

Where aP/aJ and aP/ap' are the partial derivatives of the plastic potential function P 

in relation to the deviatoric stress J and the mean effective stress p'. The above equation 

can be reworked such that it gives the value of the stress ratio at KO stress conditions 

17xo = 
J"° 

as a function of the stress ratio at critical state g(O). 
PK0 

Equation 5.51 '1 K=-3±3+4" 
g(By 

2 

For an angle of shearing resistance cp'=32° - the value used in the analyses presented 

subsequently in Section 5.5 - the stress ratio at critical state is 0.7431 giving a value of 

RK0 = 0.2751, this in turn corresponds to a stress level S of about 0.37. Figure 5.5b) 

shows that for a stress level of 0.37 the difference in evaluating the quantity aP/ap, in 

Equation 5.47 at the current stress state or at the equivalent isotropic stress state results 

in an error of only 2% in the value of the visco-plastic scalar multiplier (D. This error is 

considered to be negligible when compared with the scatter of any soil parameters 

measured experimentally, such as X, K, Cae ors in Equation 5.47. 
Vol 
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Based on the above discussion, the model parameters can be derived from conventional 

laboratory tests: one IL oedometer test and one, ideally two, consolidated undrained 

triaxial tests, one in compression and one in extension. The oedometer test will enable 

the direct determination of the values of A and ac, noting that the determination of the 

value of K requires the assumption that the value of the coefficient of earth pressures 

remains constant, while this is known to change during a swelling stage. From the 

undrained triaxial compression tests it is possible to calculate the angle of shearing 

resistance, cp' at the critical state and by having data both in compression and extension 

it is possible estimate roughly the shape of the failure surface on the deviatoric plane. In 

addition, the stress-strain curves from the undrained triaxial tests can be used to 

calculate the variation of the shear stiffness with shear strain, and a value of G should be 

selected having in mind the range of strains being attained in the particular boundary 

value problem being analysed. Assuming that the compression line obtained from the IL 

oedometer tests corresponds to the reference time line, the parameter Vlref can be 

extrapolated from the compression line and the parameter s'1 can be either measured Vol 
directly in the laboratory or evaluated using Equation 5.46 with t--to=24 hours. The 

parameter ii or Ca , can be evaluated from the consolidation settlement-time curves of 

the various load increments. 

5.5 Validation by means of single element analyses 

The validation of Modified Creep Model 1 consists of a series of finite element analyses 

to investigate the model performance under a variety of stress and strain paths. For 

simplicity, the analyses mimic common laboratory tests and the analysis results are then 

compared with observed trends, as reported in Chapter 2. The following stress paths 

will be considered: 

e) Incremental load 24 hours oedometer; 

f) Constant rate of strain oedometer tests at different values of strain rate; 

g) Step-wise change of strain rate oedometer test; 

h) A CRS oedometer test with a long creep and relaxation period; 

i) Isotropically consolidated undrained triaxial compression tests on normally and 

overconsolidated samples at constant axial strain rate. 
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The FE analyses are performed using the model parameters given in Table 5.1. These 

are justified below. 

Table 5.1: Model parameters for the validation analyses. 

(P K Vlref £ ref 
Vol 

w G 

(°) - - - h4 - kPa 

32 0.022 0.22 3.0 0.00036 0.01303 1700 

Notes: 
rp' = angle of shearing resistance; 
is = slope of the instant time line in V-In p' space; 
A= slope of the reference time line in V-In p' space; 
Vi, 

ef = specific volume at unit pressure on the reference line (See Figure 5.1). 

sv = visco-plastic volumetric strain rate on the reference line (see Figure 5.1). 

yr = creep parameter that corresponds to the variation of void ratio per natural logarithmic 
cycle of time during creep (see Figure 5.1). 
G= elastic shear modulus; 

The model parameters have been given values typical of soft clay. As shown in section 

5.4 the parameter yf can be related to the coefficient of secondary consolidation, C«e 

through Equation 5.44, and a value of Cae equal to 0.03 has been assumed -a value 

typical for soft NC inorganic clays. The value of the total volumetric strain rate on the 

reference line corresponds to a realistic value of the axial strain rate measured at the end 

of a load increment during IL 24 hour oedometer tests (1x10'7/s). In addition, it is 

assumed that in the deviatoric plane the failure surface is given by the Mohr-coulomb 

hexagon and the plastic potential surface is a circle. 

In clayey soil, the delayed excess pore water pressure dissipation during loading, either 

in the laboratory or in the field, is in general significant to the overall soil response. 
Despite this the FE analyses (with exception of the analyses mimicking undrained 

triaxial compression stress paths) are carried out assuming drained conditions, as the 

main interest of these analyses is to investigate the performance of the effective stress 

constitutive relationship. In addition, this assumption considerably simplifies the 

analysis procedure. 
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Incremental load 24 hours oedometer tests 

Figure 5.6 shows the model predictions of an IL 24 hour oedometer test with a load 

increment ratio Ac, /o equal to one, obtained by means of drained single element FE 

analyses, using the model parameters included in Table 5.1. In run 1 each load 

increment is simulated by a single analysis increment with a duration Et=24 hours. In 

run 2 each load increment is simulated using two analysis increments; the first with a 

very small duration Ot=O. 1 hour during which the incremental load Da, is applied and 

the stress path moves instantaneously along an instant elastic line (K - line), and then a 

second increment with a duration At=23.9 hours during which the sample is maintained 

at constant applied stress. The two simulations yield the same results at the end of each 

load increment as would be expected, showing that the model response depends only on 

the overall applied strain rate and not on how this is specified. 
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Figure 5.6: IL 24hours oedometer tests - model predictions. 

Constant rate of strain tests oedometer tests 

Figure 5.7 shows the Modified Creep Model 1 predictions of a set of constant rate of 

strain oedometer tests at four values of axial strain rate. In addition, Figure 5.7 shows 

the results of an analysis that simulates an oedometer test during which the strain rate 

was changed in a stepwise manner. The analysis results show that the model predicts a 

single stress-strain-strain rate relationship that is independent of the previous soil 

loading history. 
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Figure 5.7: Constant rate of strain and stepwise change of strain rate oedometer tests - 
model predictions. 

Drained creep tests under ID conditions 

Figure 5.8 shows the results of single element FE analyses of 1D oedometer tests 

performed at a constant rate of axial strain. During the otherwise monotonic loading, a 
long creep period is introduced, and the value of the maintained vertical effective stress 
during creep is indicated in Figure 5.8. Following the creep period the samples are 

reloaded at the previous value of axial strain rate and the compression curves are found 

to rejoin the compression curve appropriate to the current strain rate value. As observed 

experimentally, on reloading the soil response is initially stiff and then the soil 

gradually yields showing a yield stress well in excess of the stress that it has been 

subjected to during creep. 

Figure 5.8b) shows the variation of void ratio with time during the creep period. The 

change in void ratio at a given creep time t is found to increase with the value of the 

applied strain rate prior to creep. In addition, the rate of change in void ratio is found to 

decrease steadily with time in all cases. 

Figure 5.8c) shows the variation of void ratio with the logarithm of time, where the time 

origin is taken as the start of the creep period. The results show that there is a time delay 

between the start of the creep tests and the establishment of a linear relationship 
between the void ratio change and the logarithm of time, and that time delay is found to 

reduce for higher values of applied strain rate prior to creep. 
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Figure 5.8: Variation of void ratio during drained creep - model predictions. 

The intersection between the tangent passing through the linear-part of the De-log t 

curve and the time axis gives a value of time that is often called the intrinsic time ti (den 

Haan, 1994), such that the change in void ratio during a creep period at a time instant t 

>, r can be written as: 

Equation 5.52 De = C« 
e' 

log- 

When creep starts from a stress state located on the reference line, the intrinsic time is 

then equal to the reference time to and Equation 5.46 can be used to estimate its value: 

Equation 5.53 s'ef =1 Vol 1+eo to 

Giving a value of to=14.5 hours, which agrees well with the value deducted from Figure 

5.8c). In the two other cases, the applied strain rate prior to creep is 10 times larger and 

smaller than the axial strain rate on the reference line and from Equation 5.53 the 

intrinsic time is 10 times smaller and larger than to, respectively. 
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Figure 5.9 shows the decay of the of axial strain rate with natural time in a double 

logarithmic space. The analysis results eventually converge onto a line that corresponds 

to m=1 (as defined by Equation 5.43), which is characteristic of a linear logarithmic 

creep law. The time delay to reach the line m=1 is found to increase with decreasing 

applied axial strain rate prior to creep, in agreement with the results in Figure 5.8c). 
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Figure 5.9: Variation of the axial strain rate with time during creep as predicted by 
Modified Creep Model 1. 

Relaxation tests under ID conditions 

A set of analyses were carried out to investigate the model predictions during stress 

relaxation. The analysis details are similar to those described above, but instead of a 

creep period a stress relaxation period is introduced. Figure 5.10 shows the results in 

terms of the change (decrease) in vertical effective stress with time during the stress 

relaxation period. The axial strain rate value in the legend refers to the loading 

conditions prior to the stress relaxation period. As observed experimentally (e. g. 
Lacerda & Houston, 1973) there is a time delay (more obvious in the slowest test) 

between the start of the relaxation period and a significant reduction in effective stress. 
This time delay is found to increase for lower values of applied strain rate prior to the 

stress relaxation period. Following that, the vertical effective stress is found to decrease 

linearly with the logarithm of time. It is noted that during the relaxation phase the 

analyses consider 1-hour increments and thus the graph starts at a relaxation time equal 

to 1 hour. For the samples consolidated at higher strain rate values there is already 

significant reduction in the vertical effective stress after 1 hour. 
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Figure 5.10: Stress relaxation tests under one-dimensional conditions - model 
predictions. 

Consolidated undrained triaxial compression tests at constant axial strain rate 

Figure 5.11 shows stress paths predicted by Modified Creep Model 1 during constant 

rate of strain undrained triaxial compression tests on NC samples. The samples are 

initially consolidated to an isotropic effective stress of 100 kPa. 

Figure 5.12 shows the respective stress-strain curves and the development of excess 

pore water pressure with axial strain during the tests. An increase in the applied axial 

strain rate causes the model to predict a higher peak undrained strength. The critical 

state effective stress failure envelope, characterized by a stress ratio g(0)=0.743 

(qf=32°), remains unchanged in the three cases, and the observed increase in undrained 

strength is found to result from the fact that different excess pore water pressure are 

predicted. 

Figure 5.13 shows the stress path predicted by Modified Creep Model 1 during 

undrained triaxial compression tests on NC and OC samples. Two values of 

overconsolidation ratio (OCR) have been considered 1.5 and 4.0, the latter value aiming 

to investigate the model performance at stress states that are dry in relation to the 

critical state, and thus are expected to undergo plastic dilation and some post-peak 

softening during shearing. All tests start from an isotropic stress of 100 kPa, such that 

the pre-consolidation pressure p0, is 100,150 and 400 kPa for samples with an OCR 

equal to 1.0,1.5 and 4.0, respectively. Figure 5.14 shows the respective stress-strain 

curves and the development of excess pore water pressure with axial strain during the 

tests, but only for samples sheared at an axial strain rate of 10%/day. 
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Figure 5.11: Stress paths predicted by Modified Creep Model 1 during undrained 
triaxial compression tests on NC samples at various values of constant 
axial strain rate. 
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Figure 5.12: Stress-strain curves predicted by Modified Creep Model 1 during 

undrained triaxial compression tests on NC samples at various values of 
constant axial strain rate. 
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Figure 5.13 shows that with increasing applied strain rate there is an increase in the 

pseudo-elastic stress domain and on the peak undrained strength value. As explained 

above, the increase in undrained strength results from the fact that lower excess pore 

water pressures are predicted while the effective stress failure envelope remains 

unchanged. The NC and lightly OC (OCR=1.5) samples show, as expected, a steady 
increase in deviatoric stress, as the stress path bends leftwards with decreasing mean 

effective stress (increasing contractive excess pore water pressure) up to the critical 

state, and the critical state condition is found to coincide with the peak undrained 

strength. 
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Figure 5.13: Normalized stress path of undrained triaxial tests on NC and OC samples 
at various values of constant axial strain rate. 

The heavily OC samples (OCR=4.0) show an initial stiff response within which the soil 
behaviour is dominated by the elastic response and the deviatoric stress is observed to 

increase sharply with minimal or no change in mean effective stress (during which the 

sample develops contractive excess pore water pressure), reaching stress ratios well 

above that at critical state. The stress path then starts to bend rightwards (as the sample 
develops dilative pore water pressure changes), towards the critical state and the 

deviatoric stress is found to increase monotonically up to the critical state. The model is 

able to reproduce the observed fact that heavily OC samples under undrained shearing, 

reach stress ratios well in excess of the stress ratio at critical state. However, the model 

fails to predict a peak undrained strength at stress ratios higher than the critical state and 

subsequent post peak softening as the stress path tends to the critical state. 
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Figure 5.14: Variation of the deviatoric stress and excess pore pressures during 

undrained triaxial compression tests on NC and OC samples sheared at 
10%/day axial strain rate. 

From Figure 5.14 it seems that the soil response becomes softer with increasing OCR, 

however this is a distortion that results from the fact that the deviatoric stress has been 

normalized by the respective pre-consolidation pressure po'1. In the three cases, the 

elastic stiffness - that could be taken as the tangent to the initial part of the stress-strain 

curves - is the same, however the value of the axial strain at peak increases with OCR 

as the absolute value of the deviatoric stress at peak also increases. 

Figure 5.15 shows the position of the quantity po, during the undrained triaxial 

compression tests described above, in specific volume - lnp' space. The position of the 

current state 
(Vor, 

poi) - where p,,,, is the size of the current loading surface and 

VO, =V+Kl n(p'/ p'oc) is the current specific volume at the isotropic stress state - to the 

reference line, controls the magnitude of the visco-plastic scalar multiplier c, and thus 

of the incremental visco-plastic strains. Figure 5.15 shows that initially the stress path 
follows very closely an instant elastic line passing by the initial stress state until it joins 

the line that corresponds to the appropriate value of (D. Failure points of samples 

sheared at the same axial strain rate are found to define a line parallel to the reference 
line (and thus of equal 1 value), and these lines move rightwards for higher values of 
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applied strain rate. The initial pseudo-elastic range is seen to increase with the applied 

axial strain rate and OCR as an increase in the OCR means that the sample is further 

way from the reference line, located on a line characterized by a much smaller cb value. 

The results presented in Figure 5.13 and Figure 5.15 show that the Modified Creep 

Model 1 predicts that the critical state line (CSL) is unique in stress space but is rate 
dependent in void ratio - mean effective stress space. While the first is well 

corroborated by data published in the literature there is very little information regarding 

the uniqueness of the CSL in terms of void ratio. Sorensen (2006) suggests that the CSL 

for the NC reconstituted London Clay is unique and strain rate independent both in 

stress space and in terms of void ratio. In any case this is consistent with the fact that 

NC reconstituted London Clay was observed to have pure TESRA behaviour at large 

stress levels, showing no persistent strain rate effects at failure. 
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Figure 5.15: Variation of the po, with void ratio during undrained triaxial compression 

of NC and OC samples. 

On the other hand intact London Clay, which has isotach viscosity up to failure, is 

reported to have a unique CSL in stress space; nonetheless the uniqueness in terms of 

void ratio is not clear. Sorensen notes that the fact that the undrained strength is rate 
dependent (which was observed experimentally), explained by creep driven pore water 

pressures, would suggest that in fact the CSL is not unique in terms of void ratio, since 
for a given void ratio several failure stress states can be obtained during undrained 

shearing, depending on the applied strain rate. On the other hand it may be that such 

tests have been terminated prior reaching true critical state conditions and the referred 
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dependency of the undrained strength with strain rate corresponds instead to the rate 
dependency of the bounding surface rather than that of the CLS. 

In any case inspection of Figure 5.15 shows that the distance between the critical state 
lines per logarithmic cycle of strain rate is about 0.025. This value is very small, 

comparable to the error involved in the calculation of the value of void ratio in a 
laboratory test, suggesting that the experimental verification of the rate dependency of 

the CSL in terms of void ratio is a matter of achieving better accuracy in laboratory 

testing. 

5.6 Concluding comments 

This Chapter has described the development, implementation and validation of a simple 

elasto visco-plastic model that aimed to simulate the time and rate dependent behaviour 

of a material with isotach viscosity. The model assumes that the soil deformation 

associated with an effective stress increment {A6'} can be divided into an instantaneous 

elastic component and a time dependent visco-plastic component. The model is based 

on an extension of the overstress theory and visco-plastic (delayed) strains are predicted 

when the stress state lies on, above or below the reference loading surface. The 

magnitude of visco-plastic strain increment is defined by the visco-plastic scalar 

multiplier b that is essentially a function of the distance of the current loading surface 

to the reference surface. The quantity C ensures that the model response follows a 

unique stress-strain-strain rate relationship that is characterized by a linear logarithmic 

creep law. 

Similar to the approach followed by other researchers, the extension to general stress 

space was initially carried out, based on the experimental observation by Tavenas et al. 
(1978), assuming that a given loading surface was a locus of constant volumetric visco- 

plastic strain rate. However, in this case the model was not able to predict critical state 

conditions. This was shown to be a consequent of the above assumption and implies that 

many theoretical models described in the literature, which are based on this assumption, 

are flawed. The model was subsequently modified such that a given loading surface was 

instead a locus of constant visco-plastic scalar multiplier (D. The difference between the 

two approaches was shown to be significant only for stress ratio values larger than 
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about 0.7, but only the latter approach is able to appropriately simulate critical state 

conditions. 

The model has been formulated such that it requires two additional parameters in 

relation to the MCC model, yr and e. The parameter yf defines the vertical spacing Vol 
between lines of constant volumetric strain rate in specific volume - lnp' space and can 

be related to the coefficient of secondary consolidation C,, 
e 

by means of Equation 5.44, 

and the parameter sv is the volumetric strain rate associated with the reference line. 

The parameters yi and £L f are shown to be equivalent to the more common set of 

parameters Cae and to, where to is the time associated with the reference line. If the 

value of to is set equal to lday=24 hours, as the reference time line is usually defined 

based on IL 24hour oedometer tests, then the model only requires one additional 

parameter in relation to the MCC model. 

It has been shown that a very small error is introduced when the two additional 

parameters are derived from an IL 24 hour oedometer test, even though in the model 

formulation the reference line corresponds to an isotropic stress path. 

The Modified creep model 1 was shown to reproduce well the time dependent 

behaviour of soils associated with isotach viscosity. However, as a consequence of 

adopting a linear logarithmic creep law, the model would predict an infinite volumetric 

creep strain at an infinite creep time under constant effective stresses. The constitutive 

model presented in the following Chapter overcomes this problem by including a limit 

for the volumetric creep deformation, and the model can then reproduce a flexible non- 

linear creep law more in agreement with observed creep soil behaviour. The 

implications of the above two assumptions in practice are better demonstrated in 

Chapter 7 and 8 when considering the long-term settlement of preloaded footings. 
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6A TIME DEPENDENT CONSTITUTIVE LAW BASED ON A 

NON-LINEAR LOGARITHMIC CREEP LAW 

6.1 Introduction 

This chapter describes the development, implementation and validation of an elastic 

visco-plastic constitutive model for general stress space based on the concept of 

equivalent time, which was first defined by Yin & Graham (1989). 

The visco-plastic strain rate is evaluated using the concepts of instant and delayed 

compression and assuming a non-linear logarithmic creep law. Schematically the model 

may resemble the Bjerrum's framework for the 1D compression of clays (1967). 

However, as noted in Section 3.2.8, the decomposition of the soil deformation into an 
instant and delayed component is distinct in the two models; in Yin & Graham (1989) 

the instant deformation corresponds to the elastic time dependent soil response while in 

Bjerrum's model the instant deformations corresponds to the deformation that would 

take place simultaneously to the application of the effective stress increment, assuming 

that no hydro-dynamic lag occurs. 

In addition, Bjerrum (1967) proposes that the 1D compression behaviour of clays can be 

described by a set of compression lines in void ratio - vertical effective stress space, 

each corresponding to a different duration of loading. The virgin compression line, i. e. 

the locus of the normally consolidated stress states, is then a line associated with a 

reference duration of loading. On the other hand, Yin & Graham (1989,1994) have 

noted that more generally the compression of a soil element should be related to an 

equivalent loading time rather than to an absolute time or duration of loading, this being 

of particular significance to overconsolidated stress states. 

Based on the concept of equivalent time Yin & Graham (1989,1999) proposed a 1D 

constitutive equation that was able to reproduce the phenomena of creep, stress 

relaxation and strain rate effects under ID compression, according to a linear 

logarithmic law. Yin & Graham (1999) have extended the model to triaxial stress space, 

assuming that the visco-plastic volumetric strain rate was constant on a given loading 

surface and the remaining components were evaluated from a plastic potential function. 

Both the plastic potential and the loading surface were identical to the MCC ellipse. 
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Yin (1999) notes that the linear logarithmic creep law has a theoretical limitation that at 

infinite time an infinite creep strain (or settlement) is predicted, and proposes a 

hyperbolic function with a limit for the creep strain (which is attained at infinite time) to 

fit the non-linear logarithmic creep behaviour of soils. Yin et al (2002) developed an 

elastic visco-plastic constitutive model for general stress space incorporating the above- 

mentioned non-linear logarithmic law The model assumes that the visco-plastic 

volumetric strain rate is constant on a given loading surface and the remaining strain 

components are evaluated from a plastic potential function. In p'-J stress space, the 

plastic potential and the loading surface are each described by two complex functions, 

one applicable to the dry and one to the wet side of the critical state, respectively. The 

failure surface in the deviatoric plane is described by a smooth shape function, 

implemented with the aim of removing the singularities of the Mohr-Coulomb criterion 

at the hexagon corners. 

Within this research programme it was aimed to develop an overstress type elasto visco- 

plastic model, extended to general stress space, based on the equivalent time concept 

and incorporating the above mentioned non-linear logarithmic creep law. The 

equivalent time concept associated with a given creep law define completely the time 

dependent behaviour of a soil element under isotropic stress conditions. The extension S 

to general stress space is done assuming that the soil deformation under a general stress 

state (E,, oi, p', J) can be evaluated from an equivalent isotropic stress state and 

employing still the same isotropic relationship. Assuming, based on the findings 

reported in Chapter 5, that a given loading surface is a locus of constant scalar creep 

multiplier, the only piece of information needed to define completely the model in 

general stress space is a function to describe the loading and the plastic potential 

surfaces. 

The equation adopted to describe the loading and the plastic potential surfaces is that 

proposed by Lagioia et al. (1996) because it is very flexible and consequently can 

reproduce a wide range of shapes in the stress space p'- J. The extension to general 

stress space is done based on the Matsuoka-Nakai failure criterion. 

It is noted that the equivalent time equations completely defined the soil behaviour i. e. 

the elastic behaviour, the ration of elastic to visco-plastic strain increments, with failure 

being define by the plastic potential. Therefore the equivalent time equations could not 
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be used in combination with other, more sophisticated, soil models reported in the 

literature and available in the ICFEP soil model's library, such as the bubble or 
kinematic yield surfaces type models (Al-Tabbaa & Wood, 1989; Stallebrass & Taylor, 

1997; Grammatikopoulou, 2004) or the single and double surface Lade's models based 

on bounding surface plasticity (Lade, 1977; Kovacevic, 1994), the former being able to 

capture e. g. the small strain strong non-linearity of soils, the influence of the stress path 
direction on the soil response. 

Amongst the models available in ICFEP is that of Lagioia & Nova (1995), which was 
initially developed to model the behaviour of calcarite and is able to mimic the 

existence of an initial soil structure and the subsequent structure loss. Therefore the 

inclusion of the structure mechanism described by the above authors represented limited 

additional work and opened the perspectives of investigating the coupling between soil 

structure and viscosity in the same constitutive model. However, as it will be shown 
later in this thesis, the destructuration mechanism presents major shortcomings when 

applied to simulate the behaviour of structured clayey soils as the destructuration is 

made to occur associated with the development of volumetric strains only, and thus no 
loss of structure is predicted during undrained loading. It is recognized that it would be 

more appropriate to employ a formulation similar to that described e. g.; Rouainia & 

Muir Wood, (2000), Kostinen et al., (2002) or Baudet & Stallebrass, (2004), in which 

the soil structure is made to decay as a function of both the deviatoric and volumetric 

strain components and may account for the existence of a stable soil structure 

component. 

This chapter starts by describing the principle of equivalent time, which is then used to 

derive a general non-linear logarithmic creep law applicable to normally and 

overconsolidated stress states, as proposed by Yin (1999). The model is then extended 

to general stress space and the constitutive equations are presented in detail in Section 

6.3. To characterize the time dependent part of the model three parameters are required, 

and the physical meaning of the model parameters and their derivation is discussed in 

Section 6.4. The performance of the model is investigated by conducting a series of 
finite element analyses that simulate typical laboratory stress paths and the analysis 

results are compared with observed trends as described in Chapter 2. In addition, a set 

of finite element analyses are carried out that simulate laboratory tests on soft Hong 
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Kong marine deposits (HKMD) and the results are compared with the experimental 

results (Zhu, 2000) and numerical predictions reported by Yin et al. (2002). Finally, the 

Equivalent Time model is compared with the Modified Creep Model described in 

Chapter 5. 

6.2 The concept of equivalent time 

The concept of equivalent time was first introduced by Yin & Graham (1989) to 

overcome the problems that arise when the soil (delayed) compression is related to the 

real loading time and the real loading time needs to be introduced explicitly, as in 

Bjerrum's model. The above implies that the start of secondary compression is 

identified with a normally consolidated stress state and thus it cannot account for 

loading within the overconsolidated stress range and for strain rate effects. 

Yin & Graham (1989) note that the compression characteristics of a soil element can be 

described instead by reference to an equivalent loading time. The equivalent time of an 

isotropic state 
(svar 

m, p;,, 
) is defined as the time that a soil element would take to creep 

from a reference line to the current stress state under constant mean effective stress. In 

the normally consolidated range of IL oedometer tests, equivalent times are usually 

close to the duration of the load increments. However, in the overconsolidated range, 

equivalent times and load durations may be quite different. An equivalent time is related 

to a unique creep strain rate, with large equivalent times associated with smaller creep 

strain rates. The relationship between stress -strain - equivalent time is -unique and 
independent of the loading history as it is shown subsequently. 

Figure 6.1 shows schematically the basic elements required to define equivalent time in 

volumetric strain - mean effective stress space, namely lines of constant equivalent 

time, a reference time line, a limit time line and an instant time line, and where the 

subscript m denotes an isotropic stress state. 
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Figure 6.1: Schematic representation of equivalent time lines. 

Reference time line 

The reference time line is the locus of the soil states that corresponds to zero equivalent 

time. The equivalent time of states located below the reference time line are always 

positive and vary between 0 and infinity. Above the reference time line, the equivalent 

time varies between zero and the value -to, where to is a model parameter and 

corresponds to the real time associated with the reference time line (which is discussed 

in more detail in the following sections). The reference time line is mathematically 
defined by the following equation: 

ref Equation 6.1 Evol, 
m - £vo 

l, mO 
+ In 

pm 

V Pmo 

where the superscript ref denotes a quantity evaluated on the reference time line, and the 

subscript m denotes isotropic conditions, is the volumetric strain at an isotropic 

effective stress pm, sv mo is the volumetric strain at a reference isotropic effective 

stress p;,, 0 and is assumed here to be zero, and 2/V (where V is specific volume V=1+e) 

and p,, 0 are two model parameters. 

Limit time line 

The limit time line is the locus of the soil states that are attained after drained creep for 

an infinite time, and it is defined by the finite value of visco-plastic volumetric strain 

vö 
^Dm, r " 

The value of s, 'ä 
, m, DmjI is by definition an asymptotic value and thus cannot 
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be measured or identify directly in practice. The limit time line is associated with an 
infinite equivalent time and a creep strain rate equal to zero. Beyond this line, the 

behaviour of the soil is time-independent, and pure elastic behaviour is predicted. In a 
linear logarithmic creep law there is no limit to the amount of creep volumetric 

deformation i. e. c,, ,,, Limit is equal to infinity. 

Instant time line 

The instant time line defines the soils instant elastic deformation at any point in Figure 

6.1. The instant time line can be generically expressed as: 

el el Equation 6.2 Evo l, m - Evol, mu 
+V In 

P. 

where the superscript el denotes quantities evaluated on the instant line, völ, 
m 

is the 

volumetric strain at the isotropic effective stress p;,,; YOjmu is the volumetric strain at a 

reference mean effective stress p;, and x/V is a model parameter (where V is the 

specific volume V=1+e). There are an infinite number of instant time lines; the current 

instant time line is essentially a line passing through the current soil state 
(svol, 

m, Pm 

with slope x/V in svo! m- 
In pm space. 

Consider now Figure 6.1 and point 0 located on the reference time line. The application 

of a load increment Op; causes the stress state to move instantaneously along the instant 

time line to point 1. Point 1 is characterized by an equivalent time to smaller than zero as 
it is located above the reference time line. With time the soil element undergoes delayed 

visco-plastic deformation moving to point 1' and eventually to point 1". The equivalent 

time at point 1" is larger than zero and equal to the time that it has taken the soil 

element to creep from point 1' (on the reference time line) to point 1". The equivalent 

time at 1" is entirely defined by its position in relation to the reference time line and 
independent of how that stress state was reached, and thus it would be the same if the 

point 1" had been attained following a loading path along 0-2-2" and then instantaneous 

unloading along the new instant time line from 2" to 1". It is noted that the above 

considerations neglect the time dependent compression associated with hydraulic pore 

water pressure dissipation. 
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6.3 Formulation of the constitutive equations 

6.3.1 Derivation of an elastic visco-plastic constitutive equation for isotropic 

loading conditions 

Using the concept of equivalent time it is possible to derive a unique relationship 

between p;,,, svaým and te, which is able to express the time dependent behaviour of a 

soil element with isotach viscosity under isotropic conditions. Under isotropic 

conditions, the stress state is completely defined by the mean effective stress p,,,, and 

the volumetric strain, svoI, m . 
From Figure 6.1, the volumetric strain of a generic stress 

state can be written as: 

Volref Equation 6.3 £vol, 
m : --. 6 +c "P 

,m vo1, m 

Where svo1, m 
is the current volumetric strain, is the volumetric strain on the 

reference time line at the current mean effective stress p;,, and Eöm 
is the creep visco- 

plastic volumetric strain. 

Assuming that the visco-plastic strains are given by a linear logarithmic law: 

t0 + to 
Equation 6.4 ýVo 

,m=V 
In 

t 0 

where yr/V is a model parameter, to is the current equivalent time and to is the real time 

associated with the reference time line. The visco-plastic volumetric strain rate can then 

be obtained by differentiation of Equation 6.4 in relation to time t, where t=to+te: 

vpvo vpi, 

m ti. vo 
V/ 1 dsr, 

m 
d£ 

Equation 6.5 == svo 
,m_ dt dte v to + to 

Substituting Equation 6.4 into Equation 6.3 gives: 

Equation 6.6 £_ ref +Z In 
t° + to 

Vor, m vol, V to 

The above equation can be reworked to give the current equivalent time to as: 

Equation 6.7 to = -to + to " exp 
(£vor, 

», - £voi , 
)V 
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Substituting Equation 6.7 into Equation 6.5 the visco-plastic volumetric strain rate can 

be written as: 

Equation 6.8 sVo = ex p 
(s'ef 

-£V vol, m v" t0 vol, m vo(, m 

In numerical analysis, it is of interest to consider the constitutive equations in 

incremental form. Consider an infinitesimal load increment Op,, over a duration of time 

At. The associated incremental volumetric strain 'svor, 
m can be decomposed into an 

elastic and a visco-plastic component, such that: 

Equation 6.9 & =1XS + Os vp vol,. tiol, m vol, m 

Where Aj 
m and Asvö,,, are the elastic and the visco-plastic volumetric strain VO' 

increments, respectively. If the time increment At is sufficiently small, the visco-plastic 

volumetric strain rate svö 
,. 

may be considered constant over that time increment and: 

Equation 6.10 Osvö 
.. = At " Evö m 

It remains to evaluate the incremental elastic strain component, which is instantaneous 

and time independent. Again, if the load increment is sufficiently small that the elastic 

bulk modulus may be considered constant then the elastic volumetric strain increment 

associated with a load increment Ap;,, can be evaluated as: 

Equation 6.11 Ase" 
Apm 

vorm -K 

Where K is the elastic bulk modulus and can be shown to be K=Vp 
K 

Combining the above two equations gives a general equation for the time dependent 

behaviour of soil under isotropic stress conditions: 

Equation 6.12 OsvoI'm -VK, '' Pm +V' exP 
(£vool 

m- 
£vo/. 

m 

)V 
At 

pm to 
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The above constitutive equation is identical to that presented by Yin & Graham (1994) 

for one-dimensional stress conditions. Yin (1999) proposed a non-linear logarithmic 

function to describe the creep deformation of soils, as follows: 

o 
ýf0 

In 
t0 +1 

Vt 
Equation 6.13 svö m=o 

14 vf o In to + to Jvp V- £vo1, 
m, Limif 

t0 

Replacing quantity 
y° In t° t` by x the above equation can be rewritten as: 

(to 

Equation 6.14 s"P -x vol, m 1 

1+ x vp 
vol, m, Limu 

This corresponds to a hyperbolic function. The visco-plastic volumetric strain rate can 
be obtained by differentiating Equation 6.13 with respect to time t, where t=to+te. 

VVo 
o 

vp 

_ Equation 6.15 
dývl, 

m 
_ 

dEvol, 
m 

_, vVP 

V 

dt dte I'm to + to 

I 

+ 
Vf 

o In 
to + to 

vp ývol, 
m, Limil 

t0 

It is of interest to consider the meaning of the parameters in Equations 6.13 to 6.15. 

When the equivalent time to tends to infinity: 

Equation 6.16 £yol, 
m 

Ii_. 
= vol, m, Limzt 

The parameter Ev l, m, Limit 1S therefore the limit to the visco-plastic volumetric strain, 

which is attained under constant effective stress at infinite creep time. At the equivalent 

time to=0, the visco-plastic volumetric strain rate becomes: 

Equation 6.17 (e' 
,,, 

)! 

_! 0 
= 

Wo 
V"t 

Consequently the parameter yroIV together with to define the visco-plastic volumetric 

strain rate on the reference time line. The parameters yro /V and svö 
, m, Limit affect the 

variation of the visco-plastic strain with the logarithm of time. Equation 6.13 can be 

rewritten in the following form: 
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Equation 6.18 svö m=v 
In 

t0 + to 

t 0 

Vf o 

with =V V1+ +//o In to -F- to 
vp V £vol, 

m, Limlt 
to 

where the parameter yr/V corresponds to the parameter used in the linear logarithmic 

law (see Equation 6.4). However, in the non-linear logarithmic model the quantity yi/V 

is no longer a constant but decreases with equivalent time to and the parameter 

yro /V corresponds to the value of yr/V at time to 0. Substituting Equation 6.13 into 

Equation 6.3 gives: 

¶0 
In 

t0 +te 

Equation 6.19 Vvol m= £v im+V t0 

1+ y/0 In to + to Jvp V- £vol, 
m, Limit 

t0 

The above equation can be reworked to give the value of equivalent time to as: 

ref 
Equation 6.20 to = -to + exp 

£`°r'm - Evol'm 

ref Vf0 
1- 

£vol, 
m - Evol, 

m 
VP £vol, 

m, Limrt 

Substituting Equation 6.20 into Equation 6.15 the visco-plastic strain rate can be 

expressed as: 

_, 
ref 

Z 

Equation 6.21 °, P = 
VI0 1+ "°r'm - £. °1'm 

tiol, m V to £ VP 
vol, m, Limit 

ref £vol, 
m 

£vol, 
m 

"exp - ref V0 
1+ 

£vol, 
m - Evol, 

m 

VP £vol, 
m, Limit 

It is now possible to write a general incremental equation for the time dependent 

behaviour of soils based on a non-linear logarithmic law as: 
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Equation 6.22 

ref 
2 

AE =K+ 
VI0 

.1+ 
£vo[, 

m - £vol, 
m 

vol, m V 
pm 

V to EVP P, 
vol, m, Limit 

6.3.2 Extension to general stress space 

I Tý ref 
exp 

º" Evol, 
m - £vol, 

m At 

ý0 ref 
1+ 

£vol, 
m - £vol, 

m 

VP £vol, 
m, Limit 

The previous section has presented the derivation of two constitutive equations to 

describe the time dependent behaviour of soil with isotach viscosity under isotropic 

stress conditions. The first is based on a linear logarithmic creep law, while the second 
is based on a non-linear logarithmic creep law. The latter has the advantage that it is 

able to mimic the fact that there is a physical limit to the amount of volumetric creep 
deformation that a soil can sustain. 

This section shows how the above constitutive relationship, for isotropic stress 

conditions, based on the non-linear logarithmic creep law may be extended to general 

stress space. As noted above it is assumed that the soil deformation associated with a 

effective stress increment {06' } 
over a time increment At may be decomposed into an 

elastic and a visco-plastic part: 

Equation 6.23 {OET }_ {ztse' }+ {OEv" } 

where the elastic incremental strains 
{Ase' } 

are instantaneous and thus time 

independent, and the viscous-plastic incremental strains 
{Ac"} 

are time dependent and 

irreversible. The elastic incremental strains 
{Ösel } 

can be determined by inverting the 

following equation: 

Equation 6.24 {Aa') 
= [D] 

" 
{zge! } 

where 
{/t6' } is the effective stress increment and [D] is the elastic constitutive matrix. 

The elastic response is assumed to be isotropic and thus is fully characterized by two 

elastic parameters, a stress dependent bulk modulus (defined by Equation 6.25) and a 

second elastic parameter that can be either the Poisson's ratio u or the elastic shear 

modulus G. 
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Equation 6.25 K=Vp 
K 

According to the visco-plastic theory proposed by Perzyna (1963), the visco-plastic 

strain component can be expressed as: 

Equation 6.26 {O 
sf 

}= ((b(F)) " At " 
aP 

ac y 
where ((D(F)) = c(F) if F>0 

(D(F))=0 if F50 

D(F) is a function that represents the effects of strain rate on the material behaviour, 

and is a function of the quantity F, which is essentially the distance between the current 
dynamic loading surface to a static yield surface, and P is the plastic potential surface. 

In the present case, the quantities F and c(F) are evaluated in relation to a reference 

loading surface, characterized by a finite value of visco-plastic strain rate, and the 

function (D(F) is evaluated and visco-plastic strains are predicted for stress states, on, 

below and above the reference loading surface, provided that the stress states lies above 

the limit time line (that defines the region of pure elastic behaviour). Therefore the 

visco-plastic incremental strain can more generally be expressed as: 

Equation 6.27 {As? }= ((D} " At " 
aP 

acy 

where (i) = (D if the stress state lies above the limit line 

(D) =0 if the stress state lies on or below the limit line 

It remains to evaluate the value of the quantity (D. Yin et al. (2002) evaluate the visco- 

plastic scalar multiplier assuming that the visco-plastic volumetric strain rate is constant 

on a given loading surface. However, based on the results shown in Chapter 5, the 

current loading surface is instead assumed to be a locus of constant visco-plastic scalar 

multiplier. Consider a generic stress state 
(p', J, s,. a, 

), from Equation 6.27 the 

incremental visco-plastic volumetric strain can be evaluated as: 
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Equation 6.28 {Ac }= c1 " At " 
aP 

Vol P 

Comparing Equation 6.28 with Equation 6.22 the value of c can be evaluated as: 

Equation 6.29 

ref 2 ref 
_ 

V0 
1+ 

£vo/, 
m - Evo! 

m 
exp 

V £vol, 
m - £vol, 

m 
1 

V t0 £voVP ref 
l, m, Limit 

W0 
vol, m - £vol, 

m 
aP 

1+5 
tip 

a 
Evol, 

m, Limit 
p J_p " 

where 
aP 

is the absolute value of the partial differential of the plastic potential ap P, =P. J=O 

surface function P in relation to the mean effective stress, p', evaluated at the equivalent 

isotropic stress state 
(p;,,, J= 0) (noting that the absolute value function is introduced to 

ensure that the visco-plastic scalar multiplier is always a positive quantity), the quantity 

svö; m 
is the volumetric strain on the reference time line at the equivalent mean effective 

stress p; n and the quantity svol m 
is the associated volumetric strain which is evaluated 

as: 

Equation 6.30 s vrn, = svor +V In P. 

where sv01 is the current total volumetric strain, p' is the current mean effective stress 

and p;,, is the size of the current loading surface, and corresponds to the mean effective 

stress at zero deviatoric stress on the current loading surface (the calculation of p,,, is 

discussed in detail subsequently). The geometrical significance of the quantity SVOI,,, is 

illustrated in Figure 6.2. The problem of evaluating the visco-plastic incremental strains 

at a generic stress point 
(p', J) svo, 

) is reduced to evaluating the incremental volumetric 

visco-plastic strain, and thus the quantity 1, at the equivalent stress point 
(Pnl 

With reference to Figure 6.2 the condition for a stress point to be located above the limit 

line can be mathematically expressed as: 
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ref 

Equation 6.31 1+ 
6`'01, m - £vor, m )p 

£vol, 
m, Limii 

which implies that the limit time line is parallel to the reference time line. 

Evoi 
mO-0 

Eref 
vol, m 

Evol 

Evot, 
m 

Cvol, 
m 

nstant time line 

N 

ce time line 

Figure 6.2: Geometrical calculation of the quantity svO/ ,,, . 

6.3.3 Plastic Potential and Loading surface 

In triaxial stress space, the loading and the plastic potential surfaces are described by the 

flexible function proposed by Lagioia et al. (1996) that can simulate a wide range of 

shapes from the "bullet shape" used in the original Cam-Clay model to the tear shape 

employed in more recent models. The equation was obtained by integrating a postulated 

general variation of dilatancy, d (the ratio of volumetric to deviatoric plastic strain 

increments) with stress ratio il (i =J/ p'). From plasticity theory, the dilatancy d can 

be written as: 

aP 
Equation 6.32 d= 

ýE o° 
= 

ap 
=- DEa A 

aP dp' 

ai 
which can be rewritten as a function of p' and il as (see e. g. Potts and Zdravkovic, 

1999): 

dp' dry 
Equation 6.33 =__ 

p' d+q 

An appropriate dilatancy function should ensure that at the critical state when 11=g(O) 

dilatancy, d is zero (where g(O) is the stress ratio at the critical state) and that at i1=0 
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(isotropic stress conditions) dilatancy, d is infinite and only incremental plastic 

volumetric strains are predicted. The variation of dilatancy, d with stress ratio can be 

expressed by Equation 6.34 and is schematically shown in Figure 6.3. 

Equation 6.34 d =, u(g(O) -17) "a 
g(eý +1 

The parameter µ defines the slope of the d-rl curve over its linear range, a defines how 

close to the r1=0 axis the curve must start to bend towards d= oo and g(O) is the stress 

ratio at critical state. The parameter µ in Equation 6.34 should not be confused with the 

Poisson's ratio, µ and where confusion may occur the former is often characterized by a 

subscript f or g denoting a loading or plastic potential surface parameter, respectively. 

d=2g(©)µ(1-a) 

,, ,ý stress ratio i1=J/p' 

ag(O) 9( 
m1 
ýu II it 

Figure 6.3: Geometrical meaning of the loading and plastic potential function 

parameters. 

By substituting Equation 6.34 into Equation 6.33 and integrating the resultant equation, 
the following expression for the loading and plastic potential surface is obtained: 

K2 
(1-R)-(Kt -Kz ) 

Equation 6.35 f= p- KZ 

P, K1 

+ 
(1-1l)-(KI-K2) 

lý 
K1 

where K1 and K2 are constants given by: 

Equation 6.36 K112 _ 
2.11- aý 1+1_ 

4a 1- f[ 
2 (1 

And i is the generalized normalized stress ratio: 
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Equation 6.37 rJ = 
Jzij 

Jz, 
ý, failure 

where J27, is the stress ratio squared: 

2 

Equation 6.38 J211 =(j 
P 

and J2q failure is the square of the stress ratio at failure such that g(B)= JZn, failure 

JZq fa, 1�re can be obtained by solving the following cubic equation, which is based on the 

Matsuoka-Nakai criterion (Potts & Zdravkovic, 1999). 

Equation 6.39 
2 

sin(30) " 
(J2q 

failure)Y2 + (C 
- 3), JZn" failure - 

(C 
- 9) =0 

27 

in which C= 9_M2 
2M3_MZ+1 

27 3 

where M is the gradient of the critical state line in p'-q stress space under triaxial 

compression stress conditions (0=-30°) and can be related to the angle of shearing 

resistance cp' as follows: 

Equation 6.40 M=6 sin (p' 
3-sing, 

Four parameters are required to fully define the function given by Equation 6.35: M, A, 

a and p;,, .M has been defined above and it is the slope of the critical state line under 

triaxial compression stress conditions in p '-q stress space varying between 0 and 3; p,, 

is the size of the surface, that corresponds to the value of the mean effective stress at 

zero deviatoric stress, and is required to be larger than zero. µ and a define the dilatancy 

law and consequently the shape of the plastic potential surface (or loading surface) in 

p'-J stress space. There are various restrictions to the values that the parameters µ and a 

can take. The values of µ and a are required to be larger than zero and different from 

unity. In addition, if µ<I then µ must satisfy the following condition: 

Equation 6.41 ) 
4a 

ý1-a)2 +4a 
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Theoretically Equation 6.35 is valid for any value of µ except for µ=1. However in 

practice this equation can be used to reproduce the condition of µ=1 by adopting values 

very close to unity (e. g. 0.99999 or 1.00001). More details regarding the plastic 

potential and the loading surface function can be found in Lagioia et al. (1996). 

It is noted that two sets of parameters M, µ and a are required, one to characterize the 

loading surface and the other to characterize the plastic potential surface and they are 
denoted by the subscripts f and g respectively. If the same values are chosen for the 

loading surface and the plastic potential parameters such that Mf=Mg, µ1=µg and ajag 

then there is an associated flow rule. 

6.3.4 Soil Structure 

This thesis deals with the time dependent effects on clays that result from viscosity. 
While it is recognized that soil structure may, in most cases, be quite important to the 

overall soil time dependent response, the consideration of structure was beyond the 

scope of this thesis. However, the model described by Lagioia & Nova (1995) has been 

implemented by previous researchers in ICFEP, and so the inclusion of the structure 

mechanism described by the above authors represented limited addition work and 

opened the perspectives of investigating the coupling between soil structure and 

viscosity in the same constitutive model. 

According to the framework by Lagioia & Nova (1995), the contribution of structure is 

accounted for by considering that the quantity pm0 is decomposed into an intrinsic part 

and a transient part associated with the existence of soil structure such that: 

Equation 6.42 P,, o = P.; o + PS 

where p; �0 
is the mean effective stress on the reference time line of the natural material 

at stio, m =0; p;,,, 0 is the mean effective stress on the intrinsic reference time line at 

6vo,, m =0 and ps is the current contribution due to soil structure. The current value of 

p,, o is used in Equation 6.1 to evaluate the current value of ; ä; which in turn is used 

in Equation 6.29 to evaluate the value of the visco-plastic scalar multiplier. The value of 

the quantity ps varies during the analysis procedure, from an initial value po input by 
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the user to zero at a very large volumetric visco-plastic strain, according to the 

following hardening rule: 

Equation 6.43 Ops = -3.0 " ps " Ps " sä Osd 

where ps is a model parameter; ps is the current value of the structure contribution, 

sd =f 
Idsvö I and Osd is the incremental value of the quantity sd . In the above 

equation the constant 3.0 is somewhat redundant as it could be incorporated in the scalar 

model parameter ps . 

6.3.5 Plastic hardening / softening parameters 

The constitutive model, as described above, requires four plastic hardening parameters. 

At the start of an analysis, the plastic hardening parameters are initiated and their initial 

values are evaluated from the model parameters and initial stress conditions. During the 

analysis procedure, the values of the plastic hardening parameters are continuously up- 
dated, according to their respective hardening rule: 

Ed - Accumulated visco-plastic volumetric strain 

It is defined as sd = 
JI dcvö 1. At the start of an analysis this hardening parameter is set 

equal to zero and then during the analysis its change is evaluated as: 

Equation 6.44 Asd = 
IOsvo I= jAc V+ OgV + Aszp 

ps - The current increase in pn, o due to structure 

Its initial value is set equal to the model parameter p50. Then during the analysis the 

value is updated according to Equation 6.43. The soil structure decay is a function of the 

current value of ps, a model parameter ps and the accumulated and the incremental 

visco-plastic volumetric strain. 
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V- Current specific volume 

The specific volume is initiated as V, =1 + e, , where e; is the initial void ratio that is 

input in the initial stress file. The change in the current specific volume is equal to AV = 

Ae, where e is the void ratio. 

svoI - Current total volumetric strain 

The calculation of the initial value of cu,, is shown schematically in Figure 6.4. The 

quantity pm, is the size of the loading surface corresponding to the largest normally 

consolidated stress state that the soil element has experienced, and thus can be 

quantified from the initial stress state, the overconsolidation ratio and the model 

parameters. The time dependent nature of the model means that the apparent pre- 

consolidation pressure p�. or yield vertical effective stress c, is now a function of the 

applied strain rate and so, for simplicity, it is assumed that the input value of 

overconsolidation ratio is defined in relation to the reference time line. In ICFEP, the 

user has two options on how to input the OCR, either as a ratio of mean effective 

stresses or as a ratio of vertical effective stresses. In the first case, the value of pmc. is 

calculated directly as: 

Equation 6.45 p,,, ý = OCR " 
p, 

where OCR is the overconsolidation ratio and p, is the initial mean effective stress. 

When the OCR is assumed to be the ratio of the yield vertical stress and current vertical 

effective stress then: 

Equation 6.46 6' = OCR " o-,, i 

where 6;,, is the initial vertical effective stress and 6' is the vertical effective stress at 

(large scale) yield. It is assumed that the coefficient of earth pressure at rest in the 

normally consolidated range Kö C can be evaluated using Equation 5.31 as proposed by 

Jaky (1944) and the effective stress acting in the horizontal direction is evaluated as: 

Equation 6.47 ßhy = Kö c"6, 
Y 
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The values of p' and J associated with this NC stress state are evaluated assuming that 

the stresses acting in the two horizontal directions are the same and that the vertical and 
horizontal directions are principal directions. These values are then used in Equation 

6.35 to obtain the size of the corresponding loading surface, which is then the initial 

value of POnce the value of is known, the initial volumetric strain can be 
MC " p., v"r 

evaluated as: 

Equation 6.48 £voI'°r _v in P !C-x In ° 
V ; 

1.70 v pi 

where p; is the initial mean effective stress and p;,, 0 is the mean effective stress on the 

reference time line of the natural material at svoI,,, = 0. 

During the analysis the change in stiaý is evaluated as: 

Equation 6.49 AEvor = &x, + Asy + As., 

Evol, 
n 

nstant time line 

N 

eference time line 

Figure 6.4: Schematic diagram of the calculation of the initial value of scor 

6.4 Model parameters 

The model requires a total of 15 parameters, which are listed in Table 6.1. In addition to 

these model parameters, the user is required to specify the initial stress conditions, the 

initial void ratio, eo and the overconsolidation ratio, OCR so that the initial value of the 

plastic hardening parameters may be evaluated as described in Section 6.3.5. 
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In this section, the model parameters are described focusing on their physical meaning 

and the manner in which their values can be determined from common laboratory tests. 

Table 6.1: Equivalent time model parameters. 

Model Parameter Units Description 

kP 
Mean effective stress at oval m=0 on the intrinsic 

Pmio a 
reference time line. 

2/V - Slope of the reference time line in s, o, - 
In p' space. 

x/V - Slope of the instant time line on svol - In p' space. 

p or - 
A second elastic parameter that can be either the 
Poisson's ratio p, the elastic shear modulus G or the 

G or kPa 
normalized shear modulus G/p, 

c, which results in a G/p ,, 
stress dependent shear modulus. 

af - Loading surface parameter 

Pf - Loading surface parameter 

Mf 
- Loading surface parameter 

ag - Plastic potential parameter 

fug - Plastic potential parameter 

Mg 
- Plastic potential parameter 

Wo /V 
- Time dependent parameter 

Reference time; it should be expressed in the same 
to unit of time units as that used to define the analysis time 

increments and permeability (in coupled consolidation 
analyses only). 

EVP vol m Ltmit - 
Limit for the amount of volumetric visco-plastic 

, , strain. 

Initial increase in p,,, o due to structure, defining the 
pso kPa position of the reference time line of the natural 

material. 

ps - Parameter that controls the rate of destructuration 
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Parameters 2/V and fc/V 

The equivalent time constitutive model is formulated in S 01-lnp' space, assuming that 

2/V and K/V are model parameters and soil constants. In contrast, in many other 

critical state models the soil compressibility is determined in V -lnp' space assuming 

that A and K are constants. Therefore both options have been included during the 

model implementation and they are compared subsequently. Figure 6.5 and Figure 6.6 

show the compression curves obtained from constant rate of strain tests on two samples 

with different initial specific volumes, such that VOA > Voa for the two options, using 

small and large displacement theory, respectively. 

Considering first the case when small displacement theory is employed. When the 

parameter 2/V is constant then (2/V)A = (2/V)B = 2/V =constant and the compression 

curves of CRS oedometer tests are straight lines and coincide for the samples A and B 

in -, ol-lnp' space (Figure 6.5a). The change in specific volume or void ratio is then 

evaluated as: 

Equation 6.50 AV = De = Osvoi " 
(1 + eoý = AEvor " VO 

where VO is the initial specific volume (Vo=l+eo), and the compression curves in V-Inp' 

space are straight lines but with different slopes with 2A > AB as VOA > VOB (Figure 

6.5b). 

If instead A is taken as a constant then the compression curves of CRS tests on samples 

A and B in c,,,, -Inp' space are different, with an initial slope (2/V)OA <(2/V)OB (Figure 

6.5c). During compression, the void ratio decreases and the slope of the compression 

curves in -., -Inp' space (that is mathematically the current value of 2/V) increases as 

shown in Figure 6.5 c). The change in specific volume is calculated using Equation 6.50 

and the resulting compression lines in V-lnp' space are schematically shown in Figure 

6.5d). 
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Figure 6.5: Schematic compression curves from CRS oedometer tests assuming either 
2/V or A constant - small displacement theory. 

Considering now the case when large displacement theory is employed. If 2/V is taken 

as a constant value then the compression curves of CRS tests on samples A and B are 

straight lines with the same slope 2/V in svo, -lnp' space (Figure 6.6a). The change in 

specific volume is now given by: 

Equation 6.51 AV = Ae = As, 
O, " 

(1 + e) = De,, 
0, "V 

where e is the current void ratio and V is the current specific volume. During 

compression, with increasing applied stress, the specific volume decreases and so 

according to Equation 6.51 the change in specific volume associated to a given 

volumetric strain incrementAsva, decreases with increasing stress level. This leads to a 

decreasing slope of the compression curves in V-Inp' space as shown in Figure 6.5b). 

This is consistent with the fact that the condition of zero void ratio is approached 

asymptotically with increasing applied stress. 

If A is taken as a constant the behaviour will be qualitatively identical to that reported 

above when considering small displacement theory, and the compression curves of CRS 

tests on samples A and B will be curved concave downwards both in £, o, -Inp' and V- 

Inp' space. 
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Figure 6.6: Schematic compression curves from CRS oedometer tests assuming either 
2/V or % constant - large displacement theory. 

From the above discussion, it can be concluded that the option of considering 
2. /V constant should always be adopted, when using either small or large displacement 

theory, and that in the Equivalent Time model the parameter A does not have the same 

meaning as in other critical state type models, where A is the inclination of the critical 

state line in V-Inp' space. For compatibility, x/V should also be taken as a constant. 

The value of the parameters 2/V and x/V can be evaluated from an oedometer test, 

either a CRS or an IL test. When deriving the parameters from a test on an undisturbed 

sample, the parameters can be determined directly from the compression curve in sva, - 

lnp' space. The parameter 2/V is the slope of the compression curve in E , ol - lnp' 

space, in the normally consolidated range after full destructuration (i. e. the intrinsic 

value) and the parameter x/V should be determined as the average slope of an 

unloading - reloading loop. It is unadvisable to use the recompression data at the start 

of the test to determine the quantity Fc/V as at low stress levels the data is significantly 

affected by the apparatus compliance. 

If the parameters have to be derived from a reconstituted sample the user should be 

aware that the sample's initial void ratio may be much higher than that in situ. In this 

case it is recommended, as a first approximation, to evaluate the value of A and x from 
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the loading / unloading / reloading compression curve in V-lnp' space and then compute 

2/V and K/V using a specific volume representative of that in-situ (see Figure 6.5 a) 

and b)). 

Second elastic parameter 

The elastic part of the model is characterized by a stress dependent bulk modulus, K 

defined by Equation 6.25. To fully characterize the isotropic elastic response of the soil 

a second elastic parameter is required, and the user is free to input either the Poisson's 

ratio µ, the elastic shear modulus G or the normalized shear modulus G/p' (where p' is 

the current mean effective stress). If a value of Poisson's ratio, µ is prescribed then the 

current elastic shear modulus is computed as: 

Equation 6.52 G=K- 3 (1- 2i) 
2 (1 +, u) 

where K is the current elastic bulk modulus. 

Parameters af ag, p,., ug, Mfand Mg 

The parameters cc, p and M characterize the shape of the loading surface or plastic 

potential in general stress space. In principle, two sets of parameters giving a total of six 

parameters are required, one set referring to the loading surface and characterized by the 

subscript f and the other set for the plastic potential surface and characterized by the 

subscript g. If the parameters are set such that af= ag ,pf=p,, and Mf= Mg then the 

loading surface and the plastic potential are identical and the model is said to be 

associated. 

The parameter M is mathematically equal to the value of g(O) in triaxial compression 

(with 0=-30°) corresponding to the stress ratio at which the tangent to the loading or 

plastic potential surface is horizontal and thus parallel to the mean effective stress axis. 

The parameter M can be related to the angle of shearing resistance cp' through Equation 

6.40. 

The parameters a and p control the shapes of the loading and plastic potential 

surfaces in the J-p' stress space. The parameters are determined by fitting experimental 
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data, more specifically, the stress paths during undrained triaxial compression and 

extension tests, noting the restrictions to the parameter values mentioned in Section 

6.3.3. By suitable selection of the values of a and u, the model is able to reproduce a 

wide range of surfaces published in the literature (Lagioia et al., 1996), e. g. the MCC 

model ellipse is recovered by setting a =0.4 and u =0.9. 

Time dependent parameters to, yi0 /V and S 
,,, 

Limit 

The parameter to is the real time associated with the reference time line, and 

corresponds to the start of what is conventionally defined as secondary consolidation 
(see e. g. Equation 6.4 or Equation 6.18). Given that the reference time line is in general 

defined based on IL 24-hour oedometer tests the parameter to is then set equal to I day 

= 24 hours. The parameter to must be expressed in the same units as those used to 

describe the duration of the analysis increments and other soil properties. 

The parameter yroIV together with the parameter to define the visco-plastic volumetric 

strain rate on the reference time line as follows: 

Equation 6.53 (si 1,,, )1_10 
= V. to 

The above equation can be used to determine the value of the parameter yi0 /V (once 

the value of to has been determined) in cases when there are measurements of the strain 

rate at the end of the load increments in a IL oedometer test. However, given the scatter 
in strain rate measurements that are expected from commercial oedometer tests this 

procedure is not recommended, because a small scatter in terms of strain rate (maybe up 

to an order of magnitude) results in a wide range of values in the parameter vro IV. A 

more accurate approach is to derive the parameter yio /V from compression data 

obtained during a load increment in the normally consolidated range that, ideally, is 

extended beyond the-time t--to. The parameter y/0/V is then mathematically the slope 

of the consolidation curve in svo, -In(t) space at a time t= to. 

Considering the definition of the coefficient of secondary consolidation Cae and the 

fact that in engineering practice the value of Cae is in general determined from IL 24 
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hour oedometer tests - and thus evaluated close to the condition t= to - then the value of 

yro can be calculated as a function of Cae : 

De Ae _e V'0 Equation 6.54 C= 
ere log t2 - logt, A log t In 10 "A In t 1n 10 

Or in a different form: 

yro 
-Cý 

"ln10 Equation 6.55 
VV 

In Chapter 2, it was noted that there is a strong interaction between viscous effects and 

soil structure, with the degree of soil structure affecting the magnitude and the type of 

viscosity. Therefore, the above time-dependent parameters should be evaluated from 

oedometer tests on undisturbed samples. 

The parameter sv l, m, L,,,,; l 
is defined as the volumetric visco-plastic strain that is reached 

at infinite creep time under constant effective stress, and therefore ideally it should be 

derived from an infinite long creep test. Yin et al. (2002) suggest that in the absence of a 

long creep test the value of svö 
. m, L; m� can be evaluated as: 

e Equation 6.56 £vo 
,,,,, 

L1nýir 
O 

l+e0 

where eo is the initial void ratio. The value obtained from Equation 6.56 corresponds to 

the volumetric strain required to reach the situation when voids no longer exist in the 

soil. It is noted that if the parameter 6vö 
, m, Lim, t 

is given the value computed from 

Equation 6.56 then the non-linear logarithmic creep law yields predictions very similar 

to that of a linear logarithmic creep law, for time intervals of interest to engineering 

practice. To model the soil creep non-linearity the parameter - Limit must be given vol 

values considerably lower. In ICFEP, the parameter svl, m, L, m� can be defined in two 

different ways, either as a proportion of the value given by Equation 6.56 or as an 

absolute value of volumetric strain. 
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Parameters pm, 0 pso and ps 

The parameter p,,, o is the mean effective stress at svo, m=0 on the intrinsic reference 

time line, i. e. the reference time line of the reconstituted unstructured soil. Given that 

the model response is determined by the relative position of the current stress state to 

the reference line and not the absolute value of volumetric strain (see Equation 6.29) 

then the value of p,,, o may be considered arbitrary. This applies when the soil is 

assumed to have no structure (ps0 =0), in which case the reference time line of the 

reconstituted and natural material coincide (p;,,, 0 = p,,, 0) and the position of the 

reference time line does not change during the analysis procedure. 

When the soil is considered to have an initial structure then the position of the current 

reference time line is defined by the quantity pm0 = pm, 0 + ps where the value of ps 

varies during the analysis procedure (according to Equation 6.43) from the value p50 at 

the start of the analysis to a value close to zero attained at very large visco-plastic 

volumetric strains. Consider a soil element being isotropically consolidated along the 

reference time line; during compression in the NC range the soil element develops 

significant visco-plastic volumetric strains and the quantity ps decreases mimicking the 

soil destructuration. 

The soil structure may be evaluated as the distance between the intrinsic and the natural 

reference compression line in -lnp' (or V-lnp) space, or more commonly by the 

ratio between the stress on the natural compression line and that on the reconstituted 

material at a given void ratio or volumetric strain value. From Figure 6.7 that ratio can 

be computed as: 

Equation 6.57 Pn°rur°r 
= 

Pmo 
+ PS 

Plntr,, sr° Pm; o Pm, ° 

where pn°tura, is the mean effective stress on the reference time line of the natural 

material and p, n,,,,, s; c 
is the mean effective stress on the intrinsic time line at the same 

volumetric strain. Similarly, the volumetric deformation associated with the complete 
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loss of structure that occurs associated with the movement of the stress point from the 

natural to the intrinsic reference time line can be evaluated as: 

Equation 6.58 DEvol =A In 1+ ps 
V PM10 

P'mA P'.. =P,.. +P. in (p'. ) 
E. '". initial reference 

time line of undisturbed soil 

destructuration 
during compression) 

eEvol In(p'mo/p'mi0) 

\I XN intrinsic reference N-ý 
`ý ýol, m time time line ` 

Figure 6.7: Framework for the consideration of soil structure. 

Therefore, the initial soil structure is not characterized by the absolute value of pso but 

by the ratio pso lp. 
io . If the remaining model parameters have been previously defined 

then the values 'of pso and p3 can be determined by curve fitting a 1D oedometer 

compression curve obtained from a natural sample that has been consolidated up to full 

destructuration. 

The Equivalent Time model requires a total of 15 parameters, however if the loading 

surface is assumed to be identical to the plastic potential, as it is commonly done, then 

the number of model parameters is reduced to 12. In addition, if the soil structure is 

thought to be reasonably stable and/or not to dominate the soil compressibility and 

strength characteristics then the parameters p50 and ps can be set equal to zero. The 

model parameters can be derived from common laboratory tests preferably on 

undisturbed samples: one IL 24 hours oedometer test and one, ideally two, consolidated 

undrained triaxial tests, one in compression and one in extension. 

From the compression curve of the IL 24 hours oedometer test, it is possible to compute 

directly the value of the parameters 2/V and p;,,, 0. Ideally, the oedometer test should 

include an unloading - reloading loop from which the parameter x/V can be evaluated 
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and a longer load increment to extrapolate a reliable value of svo 
, m, L, m; l . Being a IL 24 

hour oedometer, the parameter to may be set equal to Iday = 24 hours and the 

parameter wo /V can be evaluated from the consolidation curves of the various load 

increments, and is mathematically the slope of the curve c,,, -In t space at t= to (as 

discussed previously it would be an advantage if this load step is extended, so that an 

accurate evaluation of gradient can be done). 

The parameter M (assuming M=M=Mg) can be determined directly from a consolidated 

undrained triaxial compression test and the parameters a (assuming a=a ag) and µ 

(µ=µfµg) can be determined by curve fitting of the respective stress path, so that the 

model predicts correctly the peak undrained strength in compression. It is noted that the 

shape of the failure surface and plastic potential in the deviatoric plane is predefined, 
following the Matsuoka-Nakai criterion. Therefore, if the model parameters a and .t are 

calibrated to recover the peak undrained strength in compression the value of undrained 

strength under other shearing modes (different 0 values) is then defined. Comparison 

between the model predictions and the laboratory data from a consolidated undrained 
triaxial extension test will enable the user to assess the error involved. If the constitutive 

model is to be employed in the analysis of a boundary value problem in which the soil is 

subjected mainly to unloading (e. g. excavation problem) then it is recommended to 

evaluate the parameter a and µ such that the model recovers well the undrained strength 
in triaxial extension. 

When analysing a boundary value problem, the initial void ratio (or specific volume) is, 

in general, found to vary with depth. To evaluate the influence of adopting a varying 
initial void ratio, within the same soil stratum, three samples with the following 

characteristics are considered: 

Sample A Sample B Sample C 

eo =1.5 eo =2.5 eo =2.5 

2/V =0.088 2/V =0.062857 2/V =0.088 

K/V =0.0088 K/V =0.0062857 K/V =0.0088 

The remaining ET model parameters are identical for the three samples. A set of single 

element FE analyses was carried out during which the three samples were subjected to 
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an IL 24 hour oedometer test with a load increment ratio 06v /a, equal to unity, and 

starting from a KO normally consolidated stress state with c,,, =10 kPa. The analysis 

results are shown in Figure 6.8 in £vo, -lnp' and e- In p' space. Another set of single 

element FE analyses was carried out during which the same three samples were 

subjected to undrained triaxial compression tests at a constant axial strain rate equal to 

10%/day, starting from an isotropic normally consolidated stress state with p'=100 kPa. 

The predicted stress paths in J-p' space are shown in Figure 6.9. From the above results 
the following can be observed: 

a) As the ET model is formulated in svoI -lnp' space a change in the initial void 

ratio of the soil has no influence on the model response (strength and stiffness) 

provided that the model parameters (including 2/V and x/V) and the initial 

stress conditions are the same - samples A and C. If the same void ratio is 

adopted throughout a soil stratum, the ET model will predict an increase of the 

undrained strength with depth, as the initial soil state at each depth is evaluated 
from the initial stress conditions (that will vary with depth) and the 

overconsolidation ratio. 
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Figure 6.8: ET model predictions of IL 24hour oedometer tests on samples A to C. 
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b) In some situations, it may be necessary to input a specific profile of void ratio 

with depth, e. g. when a void ratio dependent permeability is being employed. 

Then there is an apparent inconsistency as the compression curves obtained from 

oedometer tests on samples A and C are characterized by a different slope in V- 

lnp' space, and this is the format more commonly employed in the literature to 

describe the soil compressibility. However, according to the ET model the slope 

of the compression curve in V-Inp' space is not a soil constant, as it happens in 

most of the classical critical state models e. g. Cam Clay and Modified Cam Clay 

models, and instead will vary with the soil initial void ratio, for a given set of 

model parameters. 

c) The user may be tempted to change the values of the parameters A/V and x/V 

such that the slope of the virgin compression line in e-lnp' space is the same in 

samples A and B. This methodology may be appropriate to simulate samples 

within the same stratum with different initial void ratio under such simple stress 

paths as isotropic and 1D compression in V-lnp' space, as the compression 

curves predicted for samples A and B are found to be parallel and separated by 

the difference in initial void ratio. However, samples A and B have different 

model parameters and therefore will in principle yield 'a different response, for 

example when subjected to undrained triaxial compression, the sample B yields 

a undrained strength 10% higher than that of sample A. 
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Figure 6.9: ET model predictions of the stress path in J-p' space during undrained 
triaxial compression tests performed with an axial strain rate of 10%/day 

on samples A to C. 
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6.5 Validation 

The validation of the Equivalent Time (ET) model consists of a series of finite element 

analyses to investigate the model performance under a variety of stress and strain paths. 

In their majority, the analyses mimic common laboratory tests and the analysis results 

are compared with the observed experimental trends, as reported in Chapter 2. Such a 

comparison enables the strengths and weaknesses of the ET model, for describing the 

main features of the time dependent behaviour of clays, to be identified. In Section 6.6, 

the ET model is used to simulate a series of laboratory tests on Hong-Kong marine 

deposits, and the ability of the model to mimic the behaviour of a real soil is assessed. 

6.5.1 Model parameters 

The FE analyses presented in Section 6.5 are performed using the model parameters 

listed in Table 6.2. The model parameters have been given values typical of a soft clay 

and as a rule are identical or equivalent to those employed in the analyses reported in 

Chapter 5. 

Table 6.2: Model parameters for the validation analyses. 

co Mg Mg ? JV xN G yro/V k (3) 

- - - - kPa - m/s 

1.5 1.2872 0.088 0.0088 1700.0 0.00521 1x10"9 

to 
Evo 

, m, Limrt 
(1) 

ag of P-Llf P'mio Ps0 Ps 

day - - - kPa kPa - 
1.0 0.6/0.06 0.4 0.9 10.0 (2) (2) 

Notes: 
(1) If nothing stated to the contrary the analyses assumed svZL,,,,,, =0.6=ed(1 +eo). 

(2) If nothing stated to the contrary the analyses assume pso=0.0 and pr=0.0. 
(3) Only used in the coupled consolidation analyses. 

The parameter VOIV was calculated using Equation 6.55 with a value of Cae equal to 

0.03 typical of soft inorganic clays. Assuming that the reference time line was defined 

from an IL 24 hour oedometer test the reference time to is taken equal to 1 day (or 24 

hours), and the visco-plastic volumetric strain rate on the reference time line (calculated 
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using Equation 6.53) is equal to 0.005211/day. This is the main difference in relation to 

the model parameters employed in the analyses presented in Chapter 5, in which the 

value adopted for the volumetric strain rate on the reference time line (a model input 

parameter) was equal to 0.00864/day corresponding to Cea =0.03 and t0=14.5 hours. 

In the majority of the analyses presented subsequently the parameter svö m. Limit is set 

equal to 0.6, which corresponds to the quantity eo /(l + eo) that is the volumetric strain 

required to reach the condition of no voids in the soil. To investigate the influence of 

considering the soil creep non-linearity two analyses were carried out in which 

sýo 
,,,,, Lim,, is equal to 0.06, a value ten times smaller. 

The parameters p., o and ps characterize the initial structure of the soil and the subsequent 
loss of structure with volumetric visco-plastic straining, respectively. Most of the 

analyses presented in this section are carried out assuming these two parameters are 

equal to zero. In a separate set of analyses that mimic CRS oedometer tests the 

parameters pso and ps are varied independently in order to investigate the performance 

of the destructuration mechanism included in the ET model. 

In clayey soil, delayed excess pore pressure dissipation is in general significant to the 

overall soil response, both in the laboratory and in the field. However in most of the 

analyses shown subsequently in this chapter drained conditions are assumed, as this 

simplifies considerably the analysis procedure and is sufficient to investigate the 

performance of the effective stress constitutive relationship. The FE analysis mimic 

ideal laboratory tests, in which there is no end effects, no bulging or necking of triaxial 

samples during shearing or stress localization. Therefore if the soil behaviour is 

assumed to be drained or undrained the soil sample may be modelled using a single FE 

element as the stresses are uniform across the sample. 

In the analyses presented in Section 6.5.3, the effect of delayed pore water pressure 
dissipation is considered in which case coupled consolidation analyses are performed 

and the pore pressure response then results from the combination of the stress-strain soil 

behaviour and the equations that govern the pore fluid flow (Darcy's Law and the 

continuity equation, see Chapter 4 for details). In this case, the effective stresses across 

a sample will not be constant as the excess pore pressure dissipates faster closer to the 
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drainage boundary. The author has concluded that the analysis results become 

independent of the number of elements when the number of elements in the direction of 
flow is equal to or larger than 10 elements for a sample with a single drainage path 
direction. The permeability properties of the soil are characterized by an isotropic and 

constant permeability k equal to 1x10-9m/s. 

6.5.2 FE analyses of Ko stress paths of an unstructured soil 

Incremental load 24-hour oedometer tests 

Figure 6.10 shows the ET model predictions of a IL 24 hour oedometer test with a load 

increment ratio 06v /a, equal to unity, obtained by means of drained single element 

FE analyses using the model parameters given in Table 6.2. In run 1 each load 

increment is simulated by a single analysis increment with a duration At =24 hours. In 

run 2 each load increment is simulated using two analysis increments; the first with a 

very small duration At=O. I h, during which the load increment AC, is applied and the 

stress path moves instantaneously along the instant time line, and then a second 
increment with a duration Ot=23.9 h during which the sample deforms at constant 

applied stress. As would be expected, the two simulations yield the same results at the 

end of each load increment, showing that the model response depends only on the 

overall applied strain rate and not on how this is specified in the analyses. 
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Figure 6.10: Incremental load 24-hour oedometer tests - ET model predictions. 
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Constant rate of strain tests 

Figure 6.11 shows the ET model predictions of a set of CRS oedometer tests at four 

values of axial strain rate, which have been obtained by means of drained single element 

FE analysis, where i is equal to 0.00521/day and corresponds to the value of the 

visco-plastic volumetric strain rate on the reference time line (see Equation 6.53). In 

addition Figure 6.11 shows the results of a single element FE analysis that simulates an 

oedometer test during which the volumetric strain rate has been changed in a stepwise 

manner. The analysis results show that the ET model predicts a single stress-strain- 

strain rate relationship that is independent of the soil's previous loading history. 
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Figure 6.11: Constant rate of strain and stepwise change of strain rate oedometer tests 

- ET model predictions. 

Drained creep tests 

Figure 6.12 shows the results of a set of single element FE analyses that simulate CRS 

oedometer tests. During the otherwise monotonic loading, a long creep period has been 

introduced and the value of the maintained vertical effective stress is indicated in the 

legend of Figure 6.12, as well as the applied strain rate prior to the creep period. 
Following the creep period the samples were loaded at the previous axial strain rate, and 

the compression curves are found to rejoin the compression curve appropriate to the 

applied strain rate (Figure 6.12a). As observed experimentally, on reloading, the soil is 

initially stiff and then the soil gradually yields showing a yield stress well in excess of 

the magnitude of the stress that it had been subjected to during the creep period. 
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Figure 6.12: Drained creep tests under KO stress conditions - ET model predictions. 

Figure 6.12b) shows the change (decrease) in void ratio with time during the drained 

creep period, with the time origin being the start of the creep period. The change in void 

ratio at a given time t is found to increase with the value of the applied axial strain rate 

prior to creep. The change in void ratio increases monotonically with time, but the rate 

of change reduces with time. Figure 6.12c) shows the variation in void ratio with the 

logarithm of creep time. The results show that there is a time delay between the start of 

the creep period and the establishment of a linear relationship between void ratio change 

and the logarithm of creep time. This time delay is found to increase for lower values of 

applied strain rate prior to creep. It is noted that these analyses were carried out 

assuming sv j, m. c, mit =eo/(l+eo) and thus the model yields predictions very close to a 

linear logarithmic creep law, for the range of creep time values investigated, and those 

of interest to engineering practice (10 to 100 years). 

This can be better appreciated in Figure 6.13, which, in addition to the data of Figure 

6.12c), also includes FE results obtained when Evä m;,,,;, 
is taken equal to 0.06 (i. e. 10% 

of eo/(l+eo)) and the prediction of a simple linear logarithmic creep law characterized 

e'0=0.005211 axial strain/day 

** . ........ . ..... ...... 
% ......... 

. .. . 

................. 
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by a coefficient of secondary consolidation Cae equal to 0.03 and a creep time origin 

equal to 24 hours. 
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Figure 6.13: Change in void ratio with time during drained creep under Ko stress 
conditions: comparison between logarithmic and non-logarithmic creep 
laws. 

When the parameter evö 
, m,,,.,, 

is set equal to 10% of eo/(l+eo) then the model 

predictions are found to diverge significantly from the linear logarithmic creep law. The 

difference increases with increasing creep time as the current value of Cae (or Y//V) 

diverges from the value VOIV on the reference time line (t=to), according to Equation 

6.18. 

Relaxation tests under Ko stress conditions 

A set of FE analyses was carried out to investigate the model behaviour under stress 

relaxation. The analyses are similar to those described previously but instead of a creep 

period, a stress relaxation period was introduced by preventing the vertical deformation 

of the sample. Figure 6.14 shows the change in vertical effective stress with time during 
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the stress relaxation period. In a similar manner to the behaviour observed during creep, 
during stress relaxation there is a time delay between the start of relaxation and the 

occurrence of significant changes in the soil element vertical effective stress. 
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Figure 6.14: Change in vertical effective stress with time during stress relaxation. 

As observed experimentally by Lacerda & Houston (1973), this time delay decreases for 

higher values of applied strain rate prior to stress relaxation and then, following this 

time delay, the effective stress changes linearly with the logarithm of time. During 

stress relaxation tests, the total volumetric strain and strain rate are zero, such that the 

following condition applies: 

Equation 6.59 svol = svö 

where sv ý is the visco-plastic volumetric strain rate evaluated by means of Equation 

6.27, and eV'!, the elastic volumetric strain rate. From Equation 6.59 the effective stress 

change predicted during a stress relaxation period depends both on the soil time 

dependent parameters and the elastic parameters. The ET model uses an elastic bulk 

modulus that varies linearly with mean effective stress, and correspondingly the slope of 

the linear portion of the Ao-v -log t curves are found to increase with the applied vertical 

effective stress at the start of the stress relaxation period. 

6.5.3 Coupled consolidation FE analysis of IL 24 hour oedometer tests on 

unstructured soil 

This section presents ET model predictions of a IL 24 hour oedometer test obtained by 

means of coupled consolidated FE analyses. The loading history is identical to that 

employed in the analyses presented in Figure 6.10. The coupled consolidation analyses 
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mimic an oedometer test with drainage from the top only, and the condition of no flow 

at the remaining boundaries, implying the existence of a porous stone at the bottom 

where the excess pore water pressures during the test can be monitored. As mentioned 

earlier, in coupled analyses the oedometer sample is simulated with 10 elements in the 

direction of the flow (vertically). The analyses simulate 2cm high samples- the height 

of conventional oedometer samples - and thicker samples 10 and 20 cm high. 

In Figure 6.15, the analysis results are presented in terms of the sample's equivalent 

vertical effective stress and equivalent void ratio. The equivalent vertical effective stress 
is calculated assuming a parabolic variation of excess pore water pressure across the 

sample, such that: 

Equation 6.60 6v, e4 
= 6� - 0.667 " ub 

where 6v eg 
is the equivalent vertical effective stress, o is the total vertical effective 

stress and Ub is the pore water pressure at the base. The equivalent void ratio is 

calculated from the sample's vertical deformation at the top. In the coupled analysis 

each load increment is simulated using a total of 11 increments; the first with a very 

small duration Ot=0.1 hour during which the load increment Ao is applied and the 

remaining 10 increments each with a duration At=2.39 hours during which the sample 

consolidates and deforms under constant applied stress (making a total of 24 hours per 
load increment). Figure 6.15 also shows the results obtained from a drained analysis, in 

which case each load increment is simulated using a single analysis increment with a 

duration At=24 hours. 

For the thin sample (2cm) the equivalent void ratio at the end of each load increment 

lies consistently very close to that predicted by the drained analysis, at the same 

equivalent vertical effective stress (implying full excess pore water pressure dissipation 

in 24 hours) and only at slightly lower void ratio. The resulting compression curve is 

almost identical. For the 20cm high sample the location of the end points after each load 

increment, in relation to the compression curve predicted by the drained analysis, varies 

with stress level during the test, but in general they lie above and to its left (as can be 

seen from the location of the unloading - reloading loop data) indicating that the excess 

pore water pressure dissipation is not complete when the next load increment is applied. 
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ET model - coupled analysis h=2cm 

---"-"-"-"-"-"-- ET model - coupled analysis h= 20cm 
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Figure 6.15: Compression curves obtained from coupled consolidated and drained 

analyses simulating an IL 24 h oedometer. 

Figure 6.16 shows the variation of the pore water pressure predicted by the ET model at 

the base of the samples 2,10 and 20 cm high, following the application of a vertical 

stress increment equal to 40 kPa, from a previous KO normally consolidated state 

characterized by a vertical effective stress equal to 40 kPa. Figure 6.16 also shows 

predictions obtained from similar coupled consolidated analyses in which the soil is 

modelled using the time independent MCC constitutive model, and the predictions that 

are obtained by application of Terzaghi's solution for one - dimensional consolidation. 

The Terzaghi equation for 1D consolidation requires a single parameter, the coefficient 

of consolidation c, defined as: 

Equation 6.61 cv = 
k, 

7. *MV 

where kv is the soil permeability in the direction of the flow (in this case, in the vertical 

direction), y,, is the bulk unit weight of the pore water and my is the coefficient of 

volume compressibility. The results of the Terzaghi equation presented in Figure 6.16 

correspond to a value of c,, equal to 5.6x10"8 m2/s (=1.766 m2/year) which has been 

obtained by curve fitting the MCC results. This value is however very close to the value 

determined from Equation 6.61 with the soil parameters used in the analyses. For details 
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on the Terzaghi solution of 1D consolidation please refer elsewhere e. g. Terzaghi and 
Peck (1967). 
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Figure 6.16: Variation of pore water pressure at the base of the sample with time 
following the application of a load increment Aa',, =40kPa. 

From Figure 6.16 the following observations can be made: 

a) The variation of excess pore water pressure predicted by the ET model is very 

similar to that given by the Terzaghi solution for the 20cm sample; 

b) For the 2cm sample the variation of excess pore pressure at the base predicted by 

the ET model is found to be quite different from that predicted by the Terzaghi 

solution during most of the consolidation period, except close to the end of 

consolidation. 

c) The variation of excess pore water pressure at the base with time predicted by 

the ET model shows a change in curvature early on during the consolidation for 

the 2 and 10 cm samples (indicated by arrows in Figure 6.16), a feature that is 

not predicted by the Terzaghi solution or the MCC model. 

d) From the analyses with the ET model, the End of primary consolidation (EOP), 

defined as 95% degree of pore water pressure dissipation is found to occur at 
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about 138 minutes (2.3 hours) for the thin sample and at 23500 minutes (about 

16 days) for the 20cm sample. 

L 

e) Both the MCC and the ET model are able to predict the Mandel-Cryer effect that 

corresponds to an increase in pore water pressure, above that initially set up by 

the loading, before a subsequent decay, in an element away from the drainage 

boundary. Mandel (1953) and Cryer (1963) have shown that this may occur 

when consolidation is governed by the Biot equations (i. e. considering the 

equations of force equilibrium, the soil skeleton deformation and the flow 

continuity in three perpendicular directions). They estimate that the additional 

excess pore pressure can be up to 20% of the initial excess pore water pressure 

generated due to loading alone, for a Poisson's ratio of about 0.3, a typical value 
for soils. As consolidation starts, the equivalent overall Poisson's ratio at the 

drained boundary drops from its undrained value, close to 0.5, to a drained 

value. Away from the drained boundary, where excess pore pressure dissipation 

has not yet commenced, undrained conditions prevail and the equivalent overall 
Poisson's ratio remains close to 0.5. This discrepancy causes the soil away from 

the drained boundary to temporarily attract load, producing an increase in total 

mean stress and an associated increase in pore pressure. It is thought that the 

consideration of the time dependent nature of soils may aggravate this effect. If 

the soil permeability is sufficiently low such that undrained conditions (no 

volume change) operate at a certain distance away from the drained boundary, 

when the soil attempts to creep the soil is compelled to develop further 

contractive excess pore pressure (a phenomena also referred to as undrained 

creep). 

Points a) to c) may be explained with reference to Figure 6.17, which shows the state 

path of a FE element located at the base of the oedometer sample in terms of 

svo,,,,, - In pm during consolidation, where p;,, is the size of the current loading surface 

(i. e. the current equivalent isotropic effective stress) and SVOJ , 
is the corresponding total 

volumetric strain (Equation 6.30). The distance of the current stress state 
(svo1 

m, p,, 
) to 

the reference time line determines the magnitude of the visco-plastic scalar multiplier, 

and therefore the visco-plastic strain rate. The FE elements located at the base of the 

sample are expected to be those undergoing the slowest changes in effective stress (and 
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thus to experience lower strain rates) as they are located further away from the drainage 

boundary. 

In the 2cm sample, the drainage path is the shortest and a smaller period of time is 

required to reach full dissipation of the excess pore water pressure. Consequently the 

strain rate operating on the sample during consolidation is expected to be higher in the 

2cm sample than in the thicker samples. This is shown in Figure 6.17 as the 

ýYOr, m - 
In p,, curve for the thin sample lies further above of the reference time line, than 

those of the 10 and 20 cm samples. 

0.10 

---------- ET model - thick sample 20cm 

---------------- ET model - medium sample 10cm 

------------------ ET model - thin sample 2cm 

reference time line 

s 
0.12 

0.14 

0.16 

ö 0.18 

n )n 
20 30 40 50 60 70 80 90100 

equivalent mean effective stress, p', 

Figure 6.17: State path of an FE element at the base of the oedometer sample during 

consolidation in svoi, m - In p'm space. 

The svo,,,, - In p; M curve of the sample 20 cm high lies very close to the reference time 

line during most of the consolidation time, such that the strain rate acting at the base of 

the sample is very close to the strain rate on the reference line (see Equation 6.53). This 

is thought to be the reason why the predictions of the ET model for the 20cm sample are 

very close to those given by the MCC model and the Terzaghi solution, but not for the 

thinner samples. 

Further, the change in curvature in the ub - log t curves predicted by the ET model for 

the 2 and 10cm high samples are found to coincide with the yielding of the respective 

compression curves in sVOJ,,, - In p,,, space (i. e. indicated by the arrows in Figure 6.17), 
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and corresponds to a change in the soil behaviour from the domain in which its 

behaviour is dominated by the elastic and the visco-plastic components. 

Figure 6.18 shows the variation of the equivalent vertical strain with time as predicted 

by the ET model for the 2,10 and 20 cm high samples, during the same consolidation 

period. The equivalent vertical strain is derived from the sample settlement at the top. 

Figure 6.18 also includes the MCC model predictions for the 2 cm and 20 cm high 

samples. The MCC model being a time independent model predicts soil deformation 

while there is an increase in the soil effective stress. However, once all the excess pore 

water pressure has dissipated no further deformation is predicted. The ET model instead 

is able to predict both the primary and the secondary consolidation phases. 

The variation of equivalent vertical strain with time predicted for the 20cm sample by 

the ET model and the MCC model are very similar up to about 15000 minutes. Again 

this is thought to result from the fact that the strain rate acting on the 20 cm high sample 

is very close the strain rate on the reference line. On the other hand, for the thin sample 

the equivalent vertical strain predicted by the ET model, at an instant t during primary 

consolidation, is consistently smaller than that predicted by the MCC model. As the 

sample is strained at an average strain rate considerably higher than that on the 

reference line the ET model predicts that the soil exhibits a smaller volumetric strain (or 

void ratio) at the same effective stress than the MCC model. 

---------- ET model - thick sample 20cm 

---------------- ET model - medium sample 10cm 

------------------ ET model - thin sample 2cm 
MCC model 
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Figure 6.18: Variation of the equivalent vertical strain with time following the 

application of a vertical stress increment equal to 40kPa. 

thin 
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The points that correspond to 95% degree of excess pore water pressure dissipation (that 

is assumed to coincide with the EOP) are indicated by arrows in Figure 6.18. The ET 

model predicts that the strain at the EOP depends on the thickness of the consolidating 
layer, increasing with the layer thickness, as predicted by the viscous approach 
discussed in Chapter 2. 

Figure 6.19 shows the variation of the degree of settlement and excess pore pressure 
dissipation with time predicted by the ET model during the same consolidation period 

for the 2cm and the 20 cm samples. The degree of settlement Us is determined as: 

Equation 6.62 UsW= S' 
SEOP 

where s, is the settlement at an instant t and SEOP is the settlement at the end of 

primary consolidation, as defined above. 

The degree of pore water dissipation Upwp at an instant t is calculated as: 

h 
fu(t, z). dh 

Equation 6.63 Upwp 00 
A6v h 

where h is the sample height, 06v is the vertical stress increment and equal to the 

excess pore water pressure generated in the soil immediately after the application of the 

load increment and u(t, z) is a function that describes the variation of the excess pore 

water pressure at any instant t, at a distance from the drainage boundary, z. 

Also included in Figure 6.19 is the variation of the degree of consolidation with time as 

predicted by the Terzaghi solution, according to which the degree of settlement is equal 

to the degree of excess pore water pressure dissipation. This is valid when the soil 
behaviour is time independent. For the 20 cm sample, which is strained at a strain rate 

very close to the strain rate on the reference line, the degree of excess pore water 

pressure dissipation and the degree of settlement predicted by the ET model are not that 

dissimilar, and they are in turn similar to the Terzaghi degree of consolidation. 
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Figure 6.19: Evolution of the degree of settlement and excess pore water pressure 
dissipation with time. 

In the more general case, as observed for the 2cm sample, the degree of settlement 

predicted by the viscous approach (ET model) is well recovered by the Terzaghi degree 

of consolidation, but the degree of excess pore water pressure dissipation is different. 

The difference is expected to increase as the average strain rate acting in the 

consolidating soil diverges from the strain rate on the reference line, and for a thick 

layer consolidating in the field (where due to the length of the drainage path the soil 

deforms at rates much lower than those experienced in the laboratory), the degree of 

excess pore water pressure dissipation is expected to be smaller than the degree of 

settlement, an issue of major importance, e. g. in staged construction of embankments. 

6.5.4 FE analyses of CRS oedometer tests on structured soil 

This section presents the results of single element FE analyses that mimic CRS 

oedometer tests on KO normally consolidated samples of a structure soil. The soil is 

simulated using the ET constitutive model and the model parameters included in Table 

6.2, with the exception of the parameters p50 and ps which are varied as described 

below. 
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Figure 6.20 shows the results of a set of FE analyses that simulate CRS oedometer tests 

performed at 0.005211/day axial strain rate, in which the value of p,, 0 is set equal to 

10 kPa and the value of ps is varied between 500 and 4000, in terms of svo,,,, - In p,,, 

(Figure 6.20a) and in terms of e-ln p' (Figure 6.20b). Figure 6.21 shows the results of a 

set of similar FE analyses in which both the value of ps0 and ps are varied. 
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Figure 6.20: CRS oedometer compression curves of a structured soil predicted by the 
ET model - influence of the parameter ps; a) in In p, M space and b) 

in e -In p' space. 

In svoý m- 
In p, '� space the location of the reference time line is defined by the value of 

the mean effective stress at zero total volumetric strain, such that the intrinsic reference 

time line is characterized by the parameter p; o (which is kept constant and equal to 

lOkPa in all the analyses) and the reference time line of the natural structured soil is 

characterized by the quantity p; �0 = pm; o + ps . The soil is assumed to be initially 

normally consolidated and thus the initial stress state is located on the appropriate 
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reference time line that lies above that of the reconstituted soil, the distance increasing 

with the value of p30 (see Figure 6.21a)). In both Figures 6.20 and 6.21, in 

svoj m- 
In p,, space, the compression curves start at a value of volumetric strain 6vol, 

different from zero, which is taken as a soil state parameter. The volumetric strain 
developed during the analysis due to the soil compression at a given mean effective 

stress p' can be calculated as the difference between the current volumetric strain and 

the initial volumetric strain value. In the ET model, the initial void ratio is equal to the 

value input in the initial stress file, and has been set equal to 1.5 in all analyses, and so 

in e- lnp' space the reference time line of the natural soil is made to pass through the 

same initial soil state 
(eo, 

p; 
) 

where eo is the initial void ratio and p; is the initial mean 

effective stress. 
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Figure 6.21: CRS oedometer compression curves of a structured soil predicted by the 
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Figure 6.20 shows that for a given value of p, 0 the increase in the parameter pS causes 

the loss of structure to become more abrupt, that is, the destructuration is completed 

over a smaller stress interval. For very large values of p, the model may even predict a 

temporary reduction in mean effective stress with decreasing void ratio as observed for 

the data corresponding to ps =4000. Figure 6.21 shows that an increase in p30 causes 

an increase in the soil structure, as it increases the distance between the reference time 

line of the natural structured soil and that of the reconstituted soil. In addition, an 
increase in the value of p50 , while p3 is kept constant, is found to cause the 

destructuration process to become more abrupt. 

6.5.5 FE analyses of triaxial compression stress paths of an unstructured soil 

This section investigates the shearing behaviour predicted by the ET model under 

triaxial compression stress conditions, both for the drained and undrained case. 

Undrained triaxial compression 

Figure 6.22 shows the stress paths in J-p' space predicted by the ET model during 

undrained triaxial compression tests on normally consolidated samples isotropically 

consolidated to 100 kPa sheared at various values of axial strain rate. The data has been 

obtained from single element FF analysis using the model parameters given in Table 6.2 

and assuming the soil to have no structure. Figure 6.23 shows the respective stress strain 

curves and the variation of pore water pressure with axial strain during the analyses. 

As would be expected, for NC samples the behaviour during shearing is contractive and 

there is a monotonic increase in deviatoric stress with decreasing mean effective stress 

up to the critical state line, such that the peak strength is equal to the CS strength. The 

model is able to recover the strain rate dependency of the soil's undrained strength, with 

the undrained strength increasing with the applied axial strain rate. However, the 

effective stress critical state envelope remains unchanged with the differences in the 

predicted undrained strength resulting from differences in the predicted excess pore 

water pressure. 
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Figure 6.22: Effective stress paths during undrained triaxial compression tests on NC 

samples sheared at constant axial strain rate. 

1 
0. 

N 
N 
N 

N 

U 

O 
N 

O 

m 
a 

a, 

f/) 
N 
N 
d 
N 
0 

CL 
U) a, U 
X 
u) 

60 

50 

40 

30 

20 

10 

0 

10 

20 

30 

40 

50 

60 

70 

100%/day axial strain 
-"-"-"-"-"-"-"-" 10%/day axial strain 
7--- -- -""- 1 %/day axial strain 

'ý1 

048 12 16 20 

axial strain (%) 

Figure 6.23: Stress - strain curves and the development of excess of pore water 
pressures during undrained triaxial compression tests on NC samples 
sheared at constant axial strain rate. 

Figure 6.24 shows the normalized effective stress paths in J/ po, -p 'l po, space 

predicted by a series of FE analyses that simulate undrained triaxial compression tests 

performed at constant axial strain rate on normally and overconsolidated samples with 
OCRs equal to 1.0,1.5 and 4.0 and isotropically consolidated to 100kPa. Figure 6.25 

shows the respective normalized stress - strain curves and the variation of normalized 
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excess pore water pressure with axial strain during the same tests, for the samples 

sheared at 10%/day axial strain. In both figures, the normalizing quantity is the initial 

pre-consolidation pressure that is equal to 100,150 and 400 kPa, for the samples with 

an OCR equal to 1.0,1.5 and 4.0, respectively. 
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Figure 6.24: Effective stress paths of undrained triaxial test on NC and OC samples at 
constant axial strain rate. 

As noted with reference to Figure 6.22 and Figure 6.23, during undrained shearing 

normally consolidated samples show a contractive behaviour with the development of 

positive excess pore water pressures (decrease in mean effective stress) as the deviatoric 

stress increases monotonically up to the critical state line. 

The heavily overconsolidated samples (OCR=4.0) follow initially a vertical effective 

stress path, corresponding to the phase during which the behaviour is essentially elastic. 

During this initial phase, the soil element develops positive excess pore water pressure 

and the stress state reaches stress ratios well above that at critical state. The stress path 

then bends rightwards towards the critical state line with a monotonic increase in the 

deviatoric stress, and the peak undrained strength is again attained at CS. During this 

phase the soil develops incremental negative pore water pressures. The stress ratio at 

which the stress path bends to the right is found to increase with the value of the applied 

axial strain rate. 

The behaviour of lightly overconsolidated samples (OCR=1.5) depends on the applied 

strain rate, with the end of the pseudo elastic stress path finishing at a stress ratio above 

or below the stress ratio at critical state. The samples sheared at the slowest strain rates 

show a behaviour similar to that of the NC samples, while the sample sheared at 

100%/day axial strain follows the same pattern as the heavily overconsolidated samples. 
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Figure 6.25: Stress - strain curves and development of excess pore pressures during 

triaxial compression tests on NC and OC samples sheared at 10% axial 
strain per day. 

Figure 6.26 shows the state paths during the above undrained triaxial compression tests 

in svol, m - 
In p;,, space, where p;,, is the size of the current loading surface and svor, m 

is 

the associated total volumetric strain. The position of the current state 
(stior,,,, 

p,,, 
) in 

relation to the reference time line defines the magnitude of the visco-plastic scalar 

multiplier (and thus the magnitude of the visco-plastic strain increment). Initially the 

stress state is seen to follow very closely the instant time line that passes through the 

initial state until it joins the line that corresponds to the appropriate value of 

the visco-plastic scalar multiplier for the applied strain rate. The final states of the 

samples sheared at the same applied strain rate are found to define a line that is parallel 

to the reference time line, and these lines move towards the right for higher values of 

applied strain rate. The initial pseudo elastic range is seen to increase with the 

overconsolidation ratio and the applied strain rate, noting that higher initial OCR value 

means that the stress state is located further away from the reference time line, and thus 

is characterized by a much lower value of visco-plastic scalar multiplier. 
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Figure 6.24 and 6.26 show that according to the ET model the CSL is unique in stress 

space but is rate dependent in terms of void ratio. A discussion on the experimental 

evidence of this has been carried out in Section 5.5. 
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Figure 6.26: State paths predicted by the ET model during undrained triaxial 

compression tests on NC and OC samples in syo1,,,, -Inp'm space. 

Drained triaxial compression 

Figure 6.27 shows the stress-strain curves obtained from a series of single element FE 

analyses that simulate drained triaxial compression tests on normally and 

overconsolidated samples isotropically consolidated to lOOkPa, and sheared at three 

values of axial strain rate. Figure 6.28 shows the variation of total volumetric strain with 

total axial strain, for the samples sheared at 10%/day axial strain rate. The analyses 

show that the ET model mimics strain rate dependency during drained shearing in the 

pre critical state range, but that the critical state condition is time and rate independent 

and a function of the initial stress conditions and the angle of shearing resistance only. 

Normally and lightly overconsolidated samples show a contractive behaviour with a 

monotonic increase in deviatoric stress up to the critical state, which is attained at very 
large strains (i. e. about 40% axial strain). In the pre-failure stress range, the stress-strain 

curves are found to move upwards with increasing applied strain rate and 

overconsolidation ratio, as result of an increase in the pseudo elastic range. 
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Figure 6.27: Stress-strain curves from drained triaxial compression tests on NC and 
overconsolidated samples sheared at constant axial strain rate. 
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Figure 6.28: Variation of volumetric strain with axial strain during drained triaxial 
compression tests on NC and OC samples sheared at 10%/day axial strain 
rate. 

The heavily overconsolidated samples (OCR=4.0) show an initial contractive phase up 

to peak strength, which is well in excess of the strength at critical state, and the peak 

strength value is found to increase with applied strain rate. After peak, the behaviour 
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becomes dilatant and the deviatoric stress decreases to the rate and time independent 

critical state strength, which is attained at very large strains. 

Figure 6.29 shows the state path of the above consolidated drained triaxial compression 

tests in svoý,,, - In p',,, space. The ultimate states (critical state) of samples sheared at the 

same axial strain rate value are found to correspond to a single point in stioý m- 
In p', � 

space (i. e. indicated with a small circle in Figure 6.29). Failure points associated with 

different strain rates lie on the same vertical (same effective stress condition) but the 

points move upwards, further away from the reference time line, with increasing applied 

strain rate. 
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Figure 6.29: State paths predicted by the ET model during drained triaxial 

compression tests on NC and OC samples in evoi, m -lnp'm space. 

6.6 Simulation of laboratory tests on Hong-Kong marine deposits 

Yin et al. (2002) present an elasto-visco plastic constitutive model based on the 

equivalent time concept, and employ the model to simulate a series of laboratory tests 

on reconstituted samples of Hong Kong Marine Deposits (HKMD). Yin et al. (2002) 

derive their model parameters using test data from an isotropic consolidation test and 

consolidated undrained triaxial compression tests. 

In this section the same laboratory test data are reproduced using the ET model 

described in Section 6.3 and the differences between the two models and consequent 

model predictions are investigated. One of the main differences concerns the definition 

of the creep scalar multiplier. 
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In the formulation described by Yin et al. (2002) the creep scalar multiplier is 

determined assuming that a given loading surface is a locus of constant volumetric 

visco-plastic strain rate; but while the results described in Chapter 5 show that such 

assumption implies that true critical state conditions cannot be reached, the results 

reported by Yin et al. (2002) suggest the model reproduces well critical state conditions 
(as it will be seen in validation exercises 1 and 2). The author is uncertain about the 

formulation employed by Yin et al. (2002) and assumes there are inaccuracies in the 

description of the model. 

The other main differences between the two model formulations regards the function 

adopted to describe the loading surface and the plastic potential in J-p' space and in the 

deviatoric plane. In Yin et al. (2002), the loading surface in J-p' space is described by 

two functions, one valid for the wet side and the other for the dry side of the critical 

state. In the deviatoric plane, the loading surface is described by a shape function 

proposed by Xin (1988) that follows very closely the Mohr coulomb failure criterion but 

removes the singularities at the corners. 

From the data presented by Yin et al. (2002), the author has understood that the shape of 

the loading surface adopted to characterize the HKMD under triaxial compression stress 

conditions is as shown in Figure 6.30. In order to produce a good match to this surface, 

two different sets of parameters a and µ are employed to simulate the loading surface, 
depending on whether the stress path being tested engages the dry or the wet side of the 

loading surface, as indicated in Figure 6.30. Figure 6.30 also includes the MCC ellipse 

associated to the same critical state stress ratio, showing that the MCC is likely to over 

predict the undrained strength of the soil. 

The remaining parameters are the same in the two model formulations and the values 
derived by Yin et al. (2002) are adopted. The following paragraphs describe a series of 

single element FE analyses obtained using the ET model parameters given in Table 6.3. 

The FE analyses mimic a wide range of laboratory tests on reconstituted samples of 
HKMD and the analysis results are compared with the laboratory data and the numerical 

predictions reported by Yin et al. (2002). 
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Table 6.3: ET model parameters for the HKMD. 

eo m )/V x/V µ Wo/V 

1.504 1.265 0.0793 0.0025 0.3 0.00521 

to ag=af P'mio 

hours - - - kPa 

24.0 0.6 0.18 
0.001 

0.54 
0.95 

15.2 

Validation test 1 

The first validation exercise consists of reproducing a series of consolidated undrained 

triaxial compression tests on reconstituted samples of HKMD isotropically and 

normally consolidated to 400 kPa. The samples are sheared at values of axial strain rate 

of 0.15,1.5 and 15%/hour, respectively. Figure 6.31 a) shows the effective stress paths 

in q/o, - p' /o space obtained from the numerical simulations and experimentally in 

the laboratory. Figure 6.31 b) show the respective stress strain curves. In both figures, 

the stress quantities q and p' have been normalized by the pre-consolidation pressure 

6, equal to 400 kPa. The agreement between the ET model predictions and the 

experimental data is in general good with the value of the undrained strength being well 

recovered, especially for the samples sheared at 0.15% and 1.5%/hour. There are 
however some discrepancies: 
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a) Experimentally the samples develop larger pore water pressures during the early 

stages of shearing, with the respective stress paths lying in general to the left (at 

a lower mean effective stress) than that predicted by the ET model. 

b) The experimental stress-strain curves show a stiffer response within the small 

strain range than that predicted by the ET model. 

c) The ET model seems to mimic a larger increase of undrained strength per 
logarithmic cycle of strain rate than that observed experimentally, but this may 
be exacerbated by the errors introduced during the data digitalisation from the 

original publication. 
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Figure 6.31: Undrained triaxial compression tests on NC samples at different values of 
constant axial strain rate; a) effective stress path; b) stress-strain curves. 

The differences between the ET model predictions and those reported by Yin et al. 
(2002) are in general small, and are due to the differences in the adopted loading 

surfaces. 
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Validation test 2 

The second validation exercise consists of reproducing a series of consolidated 

undrained triaxial compression tests on normally and overconsolidated samples of 

reconstituted HKMD, sheared at a constant axial strain rate equal to 1.5%/hour. The 

normally consolidated sample was sheared from an initial isotropic effective stress 

p'=400 kPa, while the overconsolidated samples with an OCR equal to 2 and 4 were 

sheared from an isotropic stress state p'=100kPa. Figure 6.32a) shows the effective 

stress paths in q/ o- - p' /a, space obtained from the laboratory tests and predicted by 

the numerical simulations. Figure 6.32 b) shows the respective stress-strain curves. 

0.8 
v 
(0 U) 
U)9 

0.6 

I 
0.4 

N 0.2 

F- 
0 0.0 

,ý v ýý vý 
vý 

v 

v 
v 

a) 
--- ------------------ wu- vv--r. v 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

normalized mean effective stress p'/6 

300 

co a- 

200 

. 'ý vv vvv 

o° 

U, N 
N 

100 
O 
f0 

N 

==-b- ff . _. Q.. a_. {}_. ß.. o_"_ 

vvv OCR=1.0 

QQQ OCR=2.0 

o0o OCR=4.0 
Predictions 
(Yin et at, 2002) 

---------- ICFEP OCR=1.0 

-"-"-"-"-"-"-"-" ICFEP OCR=2.0 
------------------ VI C= nro-A n 

b) 

vvv OCR=1.0, a, =400kPa 

ooQ OCR=2.0, a, '=200kPa 

o0o OCR=4.0, a, =400kPa 
Predictions 
(Yin et al., 2002) 

---------- ICFEP OCR=1.0 

-"-"-"-"-"-"-"-" ICFEP OCR=2.0 

-""-""-""-""-"--"" ICFEP OCR=4.0 
0369 12 

axial strain (%) 

0 
15 
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In both figures, the stress quantities q and p' are normalized by the respective pre- 

consolidation pressure, that is equal to 400,200 and 400 kPa, for the samples with an 
OCR equal to 1.0,2.0 and 4.0, respectively. The ET model is found to yield in general 

good predictions, in particular it recovers well the peak undrained strength of both 

normally and overconsolidated samples. There are however some discrepancies in the 

shape of the effective stress path prior to reaching the critical state, in particular for the 

sample with an OCR equal to 4.0. 

Validation test 3 

The third validation test consists of the simulation of three undrained triaxial creep tests 

on samples of reconstituted HKMD. The samples were initially normally consolidated 

to an isotropic stress state of 400kPa. The samples were then loaded instantaneously 

with a deviator stress q equal to 134,189 and 243 kPa, respectively, and restrained from 

undergoing any volume change while the applied stresses were kept constant. 

Figure 6.33 compares the experimental data with the numerical predictions in terms of 

the variation of the axial strain and excess pore water pressures with time, where the 

time origin corresponds to the application of the deviator stress. From Figure 6.33a) the 

ET model seems to recover reasonably well the variation of axial strain with time for all 

cases, including that at the highest deviatoric stress, in which case it underestimates the 

time that it took the sample to fail. 

Figure 6.34 shows the data presented in Figure 6.33a) plotted in axial strain - natural 

time space, in which case the slope of curves is mathematically the current axial strain 

rate. For the samples subjected to 134 and 189 kPa deviator stress it is observed that 

following the application of the deviator stress there is a jump in axial strain, after 

which the axial strain rate decreases monotonically until the end of the test, and this 

behaviour is well recovered by the ET model analyses. The sample subjected to 243 kPa 

deviator stress, has a similar behaviour to the samples at lower deviator stress up to 

about t=500 hours, at which point the strain rate starts to increase, increasing 

monotonically until the sample failure and the end of the test. The ET analyses predicts 

that following the application of the deviator stress and a jump in the axial strain, the 

strain rate decreases monotonically, at a slower rate than observed experimentally, 

reaching a stable and constant value of axial strain rate just after t=500 hours. 
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Figure 6.33: Undrained triaxial creep tests at different stress levels; a) variation of 
axial strain with logarithm of time; b) variation of excess pore water 
pressure with time. 

The fact that the ET model is not able to mimic accelerating creep strain rate (tertiary 

creep phase) is a result of the formulation of the overstress theory, in which the model is 

based. According to the overstress theory an increase in the visco-plastic (creep) strain 

rate leads to an increase in the soil's undrained strength. During an undrained creep test 

the applied deviatoric stress remains constant throughout the test and at failure an 
increase in the axial strain rate would imply an increase in the soil's undrained strength, 

which would inhibit failure. 

Regarding the variation of excess pore water pressure with time the ET model is found 

to overestimate the experimental results for the lower values of applied deviator stress 

and underestimate the experimental data for a deviator stress equal to 243 kPa. 
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Figure 6.34: Variation of axial strain with time during undrained triaxial creep tests at 
different stress levels. 

Validation test 4 

The last validation exercise consists of predicting an undrained triaxial compression test 

during which the applied axial strain rate was changed in a stepwise manner and 

combined with stress relaxation periods. The sample was initially isotropically 

consolidated to 300 kPa and the test procedure is indicated in Figure 6.35. Figure 6.35 

compares the experimental data with the numerical predictions in terms of the variation 

of the deviator stress with axial strain. 
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The ET model predictions approximate well the experimental data. However the 

experimental data shows a stiffer response within the small strain range and during the 

unloading - reloading loop, suggesting that ideally a stiffer elastic response should have 

been assumed. This is in agreement with the fact that the ET model slightly 

underestimates the stress change during stress relaxation. 

Overall the ET model is found to capture well the behaviour of the HKMD under a 

variety of stress conditions. Most of the discrepancies may be attributed to the fact that 

the elastic part of the ET model is characterized by a stress dependent elastic and shear 

module and therefore cannot incorporate the soil's strong non-linearity at small strains, 

and the progressive yielding of the soil, as observed experimentally. It is noted that 

because the shape of the yield and plastic potential surfaces in the deviatoric plane are 

pre-set in the ET model, and the model parameters have been derived to reproduce the 

undrained strength under triaxial compression, the ET model is likely to give poor 

predictions of the undrained strength under other modes of shearing e. g. triaxial 

extension. 

Differences between the ET model predictions and those reported by Yin et al. (2002) 

can be in general considered minor and result from the differences in the adopted 

loading surface and/or a misinterpretation of Yin et al. (2002) work. 

6.7 Comparison between the Equivalent Time and the Modified 

Creep Model 

This section compares the formulation of the Equivalent Time and the Modified creep 

model (presented in Chapter 5), and considers the differences in the model predictions 

under some simple stress paths. In both models, it is assumed that the soil deformation 

associated with a stress increment {06} over a time increment At may be decomposed 

into an elastic and a visco-plastic part: 

Equation 6.23 {AgT }_ {Ael }+ {A " 

where the elastic incremental strains 
{Ase! } are instantaneous and thus time 

independent, and the viscous-plastic incremental strains 
{1 i} are time dependent and 
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irreversible. The elastic incremental strains 
{Ase' } 

can be determined by inverting 

Equation 6.24: 

Equation 6.24 {Ao }= [D] 
" 
{Osel } 

where {06} is the stress increment and [D] is the elastic constitutive matrix. The elastic 

response is assumed to be isotropic and thus is fully characterized by two elastic 

parameters, a stress dependent bulk modulus and a second elastic parameter that can be 

either the Poisson's ratio µ or the elastic shear modulus G. The first difference between 

the two models concerns the definition of the elastic bulk modulus, K that is defined by 

Equation 6.25: 

Equation 6.25 K= p' "V 
K 

In the Modified Creep model both the specific volume V and the mean effective stress 

p' vary during an analysis. In contrast, in the ET model the quantity V/K is a soil 

constant and during an analysis the elastic bulk modulus will only vary with the mean 

effective stress. 

The visco-plastic incremental strains are in both cases calculated based on an extension 

of the overstress theory proposed by Perzyna (1963) and can be expressed by Equation 

6.27: 

Equation 6.27 {q }= (D - At " 
aP 

ac ii 
The value of the visco-plastic scalar multiplier D is assumed to be constant on a given 

loading surface and the difference between the two models concerns the definition of b. 

In the ET model, the value of c is essentially a function of the vertical distance between 

the current volumetric. strain at the equivalent isotropic stress state, and the 

volumetric strain on the reference line at the same mean effective stress stio,, n, and how 

this difference compares to the limit to the amount of volumetric creep strain s1O,,, Limit 

and it is given by Equation 6.29: 
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Equation 6.29 

J2 ref yf0 
1+ vol, m - £vol, 

m ex p 
Evol, 

m 
1 ref 

V t0 VP 
p 

vfo £vol, 
m - £vol, 

m 1+ 
vp , £vol, m, L, mrt 

aP ý_o m 

If the value of is set equal to infinity - the underlying assumption in the 

Modified Creep model - then the above equation reduces to: 

) 
__ 

1 v Equation 6.64 (D= V ýo " exp 
lyo ýsv 

m- £vol, ml ap 
ap J=ö ,� 

Consider a general stress state 
ý', J) that lies on a loading surface characterized by the 

quantity p;,, C. 
From Figure 6.36 the value of svo, m and svor,,, can be written as: 

Equation 6.65 c'ef = In pm° 
vol, m V pmo 

where p;,, 0 is the mean effective stress at zero volumetric strain on the reference time 

line. 

V 
Equation 6.66 

vol, m _ Vol +y In 
y 

In Pef 
- In 'ef 

P. o P., 

where p7ej is the mean effective stress at the intersection of the current elastic line with 

the reference time line. Substituting Equation 6.65 and Equation 6.66 into Equation 

6.64, and considering the definition of the volumetric strain rate on the reference time 

line given by Equation 6.53 gives: 

A-K 

w1 
Equation 6.67 = 

(Evö ). 
o "p "` 

ap p=o "' 
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Figure 6.36: Schematic diagram of the framework of the Equivalent time model. 

That is similar to Equation 5.19, used in the Modified Creep Model to evaluate the 

value of (D. So in principle when the ET model is made to collapse into a linear 

logarithmic law, by setting the parameter -,, 
,,,,, L,,,,;, to a large value (i. e. a value equal to 

or larger than the volumetric strain to reach the condition when there is no longer any 

voids in the soil), the two formulations are identical, and provided that the same shape is 

adopted for the loading and plastic potential surfaces the models should yield identical 

predictions. 

In the next paragraphs, the models performance is compared using the results of single 

element FE analyses that mimic common laboratory tests. The ET model predictions are 

obtained using the model parameters given in Table 6.2, assuming the soil to have no 

structure and setting s, 1, 
m, Limit equal to 0.6. For the Modified Creep model, the model 

parameters are given in Table 5.1 with the exception of s which is set equal to 
Vol 

0.005211/day so that the time dependent parameters adopted for the two models are 

comparable. 

Figure 6.37 shows the model predictions under 1D compression in e-Inp' space for an 
IL 24 hour oedometer test with a stress increment ratio equal to unity (Figure 6.37a) and 

a CRS oedometer test performed at 0.005211/day axial strain rate (Figure 6.37b). 

The initial void ratio is slightly different for the two models as in the Modified Creep 

model the initial void ratio is calculated from the initial stress state and the model 

parameter Vlref, X and K, while in the ET model, the initial void ratio is input in the 

initial stress file. However, the more striking feature is the divergence between the two 
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models at large stress values. The CRS compression curve predicted by the ET model is 

a straight line while that predicted by the Modified Creep model curves downwards, 

although in the MCM the reference time line and lines of constant volumetric strain rate 

have been postulated to be straight in V-lnp' space. The reason for the curvature was 

found to be related to the hardening rule given by Equation 5.18. 

Equation 5.18 Apo. 
ef = Po, ef 

VK'A. 
-VP 

where the V is the current specific volume both when employing small and large 

displacement theory. 
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Figure 6.37: Comparison between the ET and the Modified Creep model under 1D 

compression a) IL 24 hour oedometer test; b) CRS oedometer test. 

Therefore when employing small displacement theory a given volumetric strain 

increment Osvö will progressively yield a smaller change in the mean effective stress 

on the reference line pO, ef as the value of specific volume decreases, causing the 

reference time line (and thus any line of constant volumetric strain rate) to become 

curved). If the same analyses are repeated using large displacement theory it is found 

that the MCM model predicts that the CRS compression line is a straight line in e-lnp' 

space and the Equivalent Time model predicts that the CRS compression line is concave 

upwards (as shown in Section 6.4, Equation 6.6b). The two models give coinciding 
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predictions if the value of specific volume V in Equation 5.18 is replaced by its initial 

value V; during analyses employing small displacement theory. 

Figure 6.38 shows the model predictions during a drained creep period and a stress 

relaxation period under KO stress conditions, following compression at a 0.00521/day 

axial strain rate. Figure 6.38 a) shows the change in void ratio with time during a 

drained creep period predicted by the two models and that calculated using a linear 

logarithmic creep law with a coefficient of secondary consolidation equal to 0.03, and 

considering the start of the secondary compression to occur at t=24 hours. 

The ET model predicts a change in void ratio very close to that given by the linear 

logarithmic creep law, the small difference resulting from the in-built non-linearity in 

the model. The Modified creep model predicts a change in void ratio larger than that 

predicted by the linear logarithmic law, with the difference increasing with time. This 

results from the curvature of the reference time line in e-lnp' space as discussed above, 

that causes the horizontal distance between the current state point and the reference line 

to be less than that required for the establishment of a linear logarithmic creep law. 

Figure 6.38 b) shows the variation in vertical effective stress with time during a stress 

relaxation period and the predictions from the two models are very similar. It is noted 

that in this case the differences in curvature of the reference line in e-Inp' space does not 

affect the results as during undrained loading the specific volume remains constant and 

it is therefore irrelevant if in Equation 5.18 the current or the initial value of specific 

volume is employed. 

From the above discussion the formulation of the two models is in the essence very 

similar, and the two models will yield similar predictions for the case in which the 

parameter svö 
, Limit in the ET model is given a value equal to or larger than the 

volumetric strain required to bring the soil to a state when there are no voids left, and 

the yield and plastic potential functions in the ET model are set to give the shape of the 

ellipse of the MCC model. The difference between the predictions of the two models 

will increase with the magnitude in mean effective stress change prescribed during the 

analysis procedure. 
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Figure 6.38: Comparison between the ET and the Modified creep model under a) a 
drained creep period and b) stress relaxation under KO stress conditions. 

6.8 Concluding remarks 

This Chapter has presented the development, implementation and validation of an 

elastic visco-plastic constitutive model based on the overstress theory that aimed to 

simulate the time and rate dependent behaviour of a material with isotach viscosity. 

The model assumes that the soil deformation associated with an effective stress 

increment {06'} can be divided into an instantaneous elastic component and a time 

dependent visco-plastic component. The instant component is derived from the elastic 

model parameters, which consist of a stress dependent bulk modulus and a second 

elastic parameter that can be either the Poisson's ratio, µ or the elastic shear modulus, 

G. Under isotropic stress conditions the delayed component is calculated assuming an 
hyperbolic creep law, with a limit for the amount of visco-plastic volumetric strain that 

can be developed during creep at constant effective stress. Based on the findings 

reported in Chapter 5 the extension of the model to generalized stress space was done 

assuming that a given loading surface was a locus of constant visco-plastic scalar 

multiplier and the various visco-plastic strain components are given by a plastic 

potential function. The loading and plastic potential surfaces are described by a flexible 

function that can reproduce a wide range of shapes in J-p' stress space. The influence of 

the intermediate principal stress is accounted for using the Matsuoka-Nakai failure 

criterion. 
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The model was subsequently validated through a series of simple finite element 

analyses, and the validation procedure can be divided in three main parts: 

  Single element analyses that mimic common laboratory stress paths where the 

analysis results are compared with observed experimental trends as described in 

Chapter 2. The ET model is found to reproduce the phenomena of primary and 

secondary compression, stress relaxation and persistent rate effects on the stress- 

strain soil response under KO and triaxial stress conditions. Due to its 

formulation the ET model is not able to mimic accelerating creep and thus 

cannot reproduce appropriately undrained creep rupture. 

 A set of single element analyses that simulate laboratory tests on soft Hong 

Kong marine deposits (HKMD). The analysis results are compared with the 

experimental results (Zhu, 2000) and numerical predictions reported by Yin et 

al. (2002). Overall the ET model is found to capture well the behaviour of the 

HKMD under a variety of stress conditions, with most of the discrepancies being 

attributed to the fact that the elastic part of the ET model cannot reproduce the 

soil's strong non-linearity at small strains, and the progressive yielding of the 

soil, as observed experimentally. Differences between the ET model predictions 

and those reported by Yin et al. (2002) can be considered minor and are likely to 

result from the differences in the adopted loading surface. 

 A series of finite element analysis that mimic the consolidation of three 

oedometer samples with different thickness, 20,10 and 2 cm, respectively, when 

subjected to a vertical stress increment 06v =40 kPa. The ET model predicts 

that the vertical strain at the end of primary consolidation depends on the 

thickness of the consolidating layer, increasing with the layer thickness as 

predicted by the viscous approach. The implications are that when estimating 

vertical strain (or deformation) of a consolidating layer in the field, which will 
be much thicker than the element of soil investigated in the laboratory, the non- 

consideration of the rate effects may lead to a substantial underestimation of the 

magnitude of the settlement at EOP. In addition, the Terzaghi's solution for 1D 

consolidation is adequate to evaluate the average degree of settlement, 
independently of the consolidating layer thickness, however the degree of pore 

water pressure dissipation is in principle different, and for a consolidating layer 
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in the field the degree of excess pore water pressure dissipation is expected to be 

smaller than the degree of settlement. 

When comparing the ET model with the Creep Model 1 it was concluded that the 

formulation of the two models was essentially very similar and that the two models 

would give close predictions provided that the ET model is made to collapse into a 
linear logarithmic creep law (by adopting a large value for the limit for the visco-plastic 

volumetric strain during a creep period) and setting the loading and plastic surfaces to 

give the ellipse of the MCC model. The predictions given by the two models will 
diverge as the mean effective stress change imposed by the considered stress path 
increases. The ET model presents advantages in relation to the Creep model 1: a) it can 

consider both linear and non-linear creep laws and b) incorporates a flexible function to 

describe the loading and plastic potential surfaces in J-p' stress space such that both the 

drained and undrained soil strength can be correctly captured. The above aspects make 

the ET model more flexible to model the behaviour of natural clays and therefore it is 

the model employed in the analyses of the boundary value problems presented in the 

subsequent chapters of this thesis. 
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7 BEARING CAPACITY OF PRE-LOADED FOOTINGS ON 

SOFT CLAYS 

7.1 Introduction 

The design of shallow foundations on both clay and sand soils is usually performed 

using well-established analytical and empirical bearing capacity formulae. These 

solutions can take into account the foundation shape, size and depth, the load inclination 

and eccentricity, and assume the soil strength parameters to be either constant or to vary 
in some simple way with depth. An updated summary of available solutions can be 

found e. g. in Randolph et at (2004). The design of new foundations is therefore 

relatively simple and for clay soils the short term undrained bearing capacity is the most 

critical (except for heavily overconsolidated clays). 

However, the situation is not so clear if extra load is to be added to an existing 
foundation on clay, which has been in place for a period of time. This is because there 

has been a change in undrained shear strength due to the dissipation of the excess pore 

pressures, generated during construction and initial loading. The resulting distribution 

of undrained shear strength below the foundation will be complex, and conventional 

solutions for determining the current bearing capacity will be inappropriate. In practice, 

such a situation arises when extra load needs to be added to an existing foundation e. g. 
installation of additional equipment in a building, construction of new floors or the 

reuse of old foundations for a new building. 

Bransby (2002) examined the effect of vertical preload on the capacity of surface 
footings under combined vertical and horizontal undrained loading, a situation of 

particular relevance to offshore foundations, by means of a series of finite element 

analyses. The foundation soil was modelled using the Cam Clay constitutive model and 
both a constant and a linearly increasing undrained strength with depth were considered. 
It was shown that larger increases occur in the horizontal capacity, compared to that in 

the vertical capacity. 

Jackson et al (1997) and Zdravkovic et al. (2003) have investigated the increase in 

undrained bearing capacity under pure vertical load of pre-loaded strip foundations by 

means of coupled finite element analyses. In these studies, the soil foundation was 
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modelled using the time independent Modified Cam-Clay (MCC) constitutive model 

and ground profiles and model parameters, typical of both soft and stiff clays, were 

considered. 

The general methodology was: a) define the initial undrained bearing capacity of the 

footing; b) pre-load footings to a percentage of the initial bearing capacity, namely, 
20%, 40%, 60%, 80% and 100%; c) allow full consolidation of the foundation soil 

under constant applied load and d) load the footings to failure under undrained 

conditions. 

In these analyses, the increase in undrained bearing capacity, or increase in the 

undrained strength of the foundation, is produced by the increase in effective stress in 

the foundation soil concurrent with the dissipation of the (contractive) excess pore water 

pressures generated during the initial loading. Therefore, once full consolidation has 

occurred, the increase in the undrained strength of the foundation is a direct measure of 

the magnitude of the contractive pore water pressures generated during first loading. 

However, once all the excess of pore water pressures have dissipated and the effective 

stresses in the foundation are constant no further increase in undrained strength is 

predicted (nor secondary consolidation settlement, if the serviceability of the footing 

was under consideration). On the other hand, it is well documented in the literature (e. g. 
Bjerrum, 1967) that soils, in particular soft normally consolidated clays may experience 

a significant amount of secondary consolidation settlement and ageing - apparent 
increase in strength and stiffness characteristics with time at constant effective stresses. 
The mechanisms responsible for the development of ageing are not yet entirely 

understood but it is thought that ageing derives from the development of both creep and 

structure. 

This Chapter presents a study of the bearing capacity, under pure vertical load, of a pre- 
loaded strip footing taking into account the effects of consolidation and the soil 
hardening associated with the development of creep strains. The foundation soil is 

modelled with the Equivalent Time (ET) Model described in Chapter 6, which has been 

shown to mimic primary and secondary consolidation, stress relaxation, persistent strain 

rate effects on the stress-strain response under KO and general stress states conditions 

and of particular relevancy to this study, to reproduce an increase in the yield stress and 
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in the pseudo elastic stress range, on subsequent loading, following a period of drained 

creep. It is emphasized that the development of structure is not considered in this study. 

Both the MCC and the ET constitutive models predict an increase in the foundation's 

undrained strength due to the dissipation of the excess pore pressures generated during 

the initial loading. The use of the time dependent ET model in this study means that 

both during and after the dissipation of the excess pore pressures there will be an 

additional increase in the foundation's undrained strength due to the development of 

visco-plastic strains and associated soil hardening that occurs even under constant 

effective stress. The results of Zdravkovic et al. (2003), which do not account for such 

creep strains, are then likely to under predict the undrained bearing capacity of a pre- 
loaded strip foundation. 

It seems appropriate to summarise the relevant outcomes of the work by Zdravkovic et 

al. (2003). Figure 7.1 shows the ultimate bearing capacity (Q), expressed as a proportion 

of the initial undrained bearing capacity (Q; ), plotted against the level of preload, for 

2m and 10 m wide strip footings on soft clay with a surface crust. 

It is found that the gain in bearing capacity is highest for the 10 m wide rough footing as 

the condition of no horizontal displacements at the base of the footing pushes the failure 

mechanism deeper, involving a larger amount of normally consolidated soil. The gain 
for the 10 m wide smooth footing is slightly smaller because the failure mechanism is 

slightly shallower. 
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Figure 7.1: Gain in bearing capacity due to pre-load for strip footing on soft clay with 
a surface crust (Zdravkovic et al, 2003). 
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The failure mechanism of the 2m wide footing is controlled by the presence of the 2m 

deep surface crust, which has a strength reducing with depth, and the failure 

mechanisms of both rough and smooth footing are forced to pass through the weakest 

soil at the base of the crust and, consequently, yield the same bearing capacity. 

In the case of the 2m wide footings, the failure mechanisms involve a smaller 

proportion of the normally consolidated clay than the 10 m wide footings, and a greater 

proportion of the surface crust that has a higher overconsolidation ratio. Consequently 

for a given value of preload the contractive excess pore pressures generated will be 

relatively smaller for the 2m wide footings, compared to the 10 m wide footings, and so 

is the gain in bearing capacity. 

The gain in bearing capacity is found to increase significantly with the level of preload, 

for all cases considered in Figure 7.1. For a 2. Om wide footing, the gain in bearing 

capacity can reach about 50%, at 100% preload. In practice, given that shallow 

foundations are designed with a factor of safety on load of at least 2 (50% preload), the 

available gain in bearing capacity would be at the most 15%. 

The present study examines the case of a2m wide rough strip footing on soft clay with 

a surface crust. The reasons that lead to the choice of this case are as follows: 

a) Soft normally consolidated clays develop, in general, larger secondary 

consolidation settlements, compared with stiff clays, both in absolute value and 

as a proportion of the primary consolidation settlement and, therefore, the 

additional gain in bearing capacity to be predicted is likely to be more 

significant. 

b) According to the results presented by Zdravkovic et al. (2003), shown in Figure 

7.1, a 10 m wide footing, either smooth or rough, yields a larger increase in 

bearing capacity than a2m wide footing, for a given value of preload. It is 

expected that the analyses with the ET constitutive model will show a similar 

trend, and thus it is on the safe side to analyse a narrow footing and eventually 

apply those results to a wider one. 

c) The condition of rough interface at the foundation base is more likely to occur in 

practice than that of a smooth interface. 
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Figure 7.2: Normalized bearing capacity of a circular (D=2m) and a strip (B=2m) 

preloaded footing on a soft clay with a surface crust (Randolph et al., 2004) 

Randolph et al. (2004), using the same methodology as that employed by Zdravkovic et 

al. (2003), have compared the effect of preload on the bearing capacity of circular (2 in 
diameter) and strip (2 in wide) surface footings for the case of a ground profile 

consisting of soft clay with a surface crust. The results are shown in Figure 7.2 in terms 

of the normalized bearing capacity against the value of preload. The effect of preload is 

almost identical for the circular and the strip footing, being slightly larger for the 

circular footing, especially at large preload values. The applicability of the results of the 

present study on a strip footing to circular footings is discussed later in this Chapter. 

7.2 Ground profile 

The ground profile adopted for this study is the "soft clay" case described by 

Zdravkovic et al. (2003) that corresponds to the ground conditions encountered on a site 
in Grimsby, Yorkshire (Mair et at., 1992). The ground conditions and the model 

parameters shown in Table 7.1, with the exception of the time dependent parameters to, 

v0/V and sv l, m, L, m� , 
have been determined by means of in-situ and laboratory test data. 

The derivation of the time dependent parameters is discussed in Section 7.4. 

At this site, the ground profile consists of normally consolidated clay (overconsolidation 

ratio of 1) below a depth of approximately 2 m, with a stronger crust at the surface. The 

water table is 2m below ground level, and the soil above this level is assumed to be 

saturated and able to sustain tensile pore water pressures. 
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Table 7.1: Model parameters. 

cp' x/V 7W G y k 

(°) - - kPa kN/m3 m/s 

32 0.0088 0.088 1700 17.0 5.10'10 

0 to V/0 V `' Erol^bmil af-ag 11, =pg 

- day - - - - 

2.5 1.0 
0.00521 
0.00174 

0.6 
0.06 

0.4 0.9 

Notes: 
V' = angle of shearing resistance; 
KVV= slope of the instant time line in eon-ln p' space; 
2VV = slope of the reference time line in t. 0, -ln p' space; 
The option of constant x/V and A/V has been adopted, for details please refer to Chapter 6. 
G= elastic shear modulus; 
k= permeability; 
y= bulk unit weight of the soil; 
Vo =initial specific volume; 
to, y/p /V and ' ýo 

, m, Limii are time dependent parameters, see section 7.4. 

afand cj = model parameters that define the shape of the loading surface in the p'-Jspace; 
ag and ug = model parameters that define the shape of the plastic potential function in the p'-J 
space. 

The initial undrained strength profile has been estimated based on undrained triaxial 

compression tests, and is shown in Figure 7.3. The model parameters for both the MCC 

and the ET models are effective stress parameters and the undrained strength cannot be 

input directly. 

In the case of the MCC model, the undrained strength can be derived from the basic 

model parameters, the overconsolidation ratio (OCR) and the initial stress state (Potts 

&Zdravkovic, 1999). Consequently the coefficient of earth pressures at rest (Ko) and the 

overconsolidation ratio (OCR) have been varied to give a realistic distribution of 

undrained strength above the water table, as shown in Figure 7.3 (a). The resulting 
distributions of OCR and Ko are shown in Figure 7.3 (b). 

In the ET model, the undrained strength will be, in addition, a function of the shearing 

rate and no closed form solution exists. It is noted that the mobilized undrained shear 

strength will be a function of the foundation loading rate and, as a rule, different to that 

predicted by the MCC model. 
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Figure 7.3: a) Undrained triaxial compression laboratory data (from Mair et al., 1992) 

and undrained strength profile predicted by the MCC model for triaxial 

compression conditions b) variation of OCR and Ko with depth. 

7.3 Problem Geometry and Boundary Conditions 

Plane strain analyses modelling a2m wide rough strip footing have been performed. 
The analyses presented are, as rule, coupled consolidation analyses with full (3x3) 

integration, with a few exceptions when it is stated so. The finite element mesh is shown 
in Figure 7.4. Due to symmetry considerations only half of the problem domain needs to 

be discretized and considered in the analyses. The mesh consists of eight noded 
isoparametric elements with four pore pressure degrees of freedom at the corner nodes, 

and two displacement degrees of freedom at both corner and mid-side nodes. 

The displacement boundary conditions are shown in Figure 7.4; the nodes at the base of 

the mesh are prevented from moving in the vertical and horizontal directions, while the 

vertical sides of the mesh are fixed in the horizontal direction only. 

The footing itself was not discretized in the finite element mesh. The loading of a rough 

rigid footing is simulated by applying increments of equal vertical displacement and 

zero horizontal displacement to the nodes on the boundary below the position of the 
footing, and the load being carried by the footing is then the sum of the reaction forces 

on those nodes. During the consolidation periods, these nodes are forced to move 

vertically by the same amount, using the tied degree of freedom concept. Consequently 
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the resulting displacement is not prescribed but instead is a result of the analyses. 

During this process the total load carried by the footing remains constant. 

Figure 7.4: Finite element mesh and displacement boundary conditions. 

The seepage boundary conditions are to allow no flow of water at the base of the mesh, 
immediately beneath the footing and on the left hand boundary of the mesh, which 
forms the vertical plane of symmetry through the footing. On the right hand boundary of 

the mesh, pore water pressures are kept equal to their initial values, as determined by 

the water table 2m below ground level. Along the ground surface, next to the footing 

no flow of water was allowed during the loading stages of the analyses, aiming to 

maintain overall undrained conditions, while in the consolidation periods the pore water 

pressures have been set equal to their initial values, prior to footing construction. 

7.4 Constitutive Model and Model Parameters 

This chapter examines the effect of soil hardening due to the development of creep 

strains on the bearing capacity of pre-loaded strip footings. The foundation soil is 

modelled using the Equivalent Time constitutive model described in Chapter 6. 

The model parameters have been derived based on in-situ and laboratory testing data 

and, therefore, correspond to a real soil. The model parameters are given in Table 7.1. 

The first six parameters are equal or equivalent to the parameters required by the MCC 
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model and take the values used by Zdravkovic et al. (2003). The three parameters, to, 

V/0 IV and svö 
, m, L, m; f 

describe the time and rate dependent response of the model, and 

they have been determined to have a practical meaning. 

In engineering practice, the time dependent behaviour of soil is commonly characterized 
by the coefficient of secondary consolidation, Cae calculated from IL 24h oedometer 

tests, and assuming a linear logarithmic creep law between time and void ratio (or 

settlement). 

Mesri and Castro (1987) reported that the value of Cae/Ce, where CCe is the compression 

index (defined in the normally consolidated range by Equation 7.1 and related to the 

value of X by Equation 7.2), is equal to 0.04±0.01 for most inorganic soft clays. For a 

value of X equal to 0.22 that corresponds to values of Cae between 0.0 15 and 0.025. 

Equation 7.1 CCe = 
Ae 

A log cZ 

e =void ratio; o.. '= vertical effective stress 

Equation 7.2 CCe =A" In 10 

When estimating long-term settlements of foundations or other geotechnical structures, 

the conservative approach is to consider a high value of Cae as this implies that larger 

settlements are predicted. However, when considering the ultimate bearing capacity, the 

use of a larger value of Cae is non-conservative. Adopting a high value of Cae implies 

that more creep strains are predicted, and consequently a larger increase in the soil 

undrained strength. In this study two values of Cae are considered: 0.01 and 0.03. 

To relate Cae to the model parameters to, VO /V and svmj; m� that characterise the model 

time dependent response, some assumptions are required, as the parameter Cae is based 

on a linear logarithmic creep law and the ET constitutive model incorporates non-linear 
logarithmic creep function. However, if the limit for the amount of visco-plastic 

volumetric strain cvö, m. Limit , is prescribed a value that corresponds to the volumetric 

strain required to attain the condition when voids no longer exist in the soil, (eo /1 + eo , 

where eo is the initial void ratio), the model yields predictions close to a linear 

logarithmic creep law, at least for the time intervals considered in this study. Smaller 
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values of 8vä ,,, Limit will cause the soil's creep response to be noticeably more non-linear 

logarithmic. 

In the sets of analyses A, B and D to be described subsequently the parameter svö 
, m, Lrmi1 

is assumed to be equal to eo /1 + eo , with an initial void ratio of 1.5. As emphasized in 

Chapter 2, the creep behaviour of geomaterials is in general non-logarithmic, however, 

in these analyses the ET model is made to collapse onto a nearly logarithmic law 

because that is the assumption frequently made in practice, when analysing the long- 

term behaviour of engineering structures. The implications of such assumption are 

investigated in the set of analyses C where svö 
, m, L, m; 1 

is set to 10% of eo /1 + eo , 
i. e. 

equal to 0.06. 

Given that the parameter Cae is usually determined from 24h oedometer tests, the 

reference time to is set equal to 24hour =1 day. 

The remaining parameter, V10 /V 
, can be determined from the condition that the 

volumetric visco-plastic strain rate predicted by the logarithmic law with the prescribed 

C"e value and that predicted by the equivalent time model at the reference time to are the 

same. Based on the above condition, it was shown in Chapter 6 that the value of /I0I V 

is related to the coefficient of secondary compression by the following equation: 

Equation 7.3 ¶0 
= 

C"e 

V V"ln10 

Using Equation 7.3 with V=2.5 the parameter yro /V is evaluated equal to 0.00174 and 

0.00521 for values of Cue of 0.01 and 0.03, respectively. 

In total four sets of analyses have been considered, aiming at investigating: 1) the effect 

of different values of C,, (sets A and B); 2) the influence of adopting a markedly non- 

logarithmic law (set C) and 3) the influence of the foundation loading rate (set D). A 

summary of the parameters adopted in each set of analyses is given in Table 7.2. 

The shape of the loading and plastic potential surfaces in the p '-q plane are set nearly 
identical to the MCC model ellipse by setting the parameters a and µ equal to 0.4 and 

0.9, respectively. The extension to generalized stress space is done based on the 
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Table 7.2: Summary of the sets of analyses 

Set of 
Model parameters 

analyses to VP Svol, 
m, Limit 

, 
Y' 0 

/V 
Creep law/ Equivalent Cae 

A I day 0.6 0.00521 Nearly log law; 0.03 

B 1 day 0.6 0.00174 Nearly log law; 0.01 

C 1 day 0.06 0.00521 Non-log law; 0.03 

D I day 0.6 0.00521 Nearly log law; 0.03 

Matsuoka-Nakai failure criterion, as described in Chapter 6. In contrast the analyses 

presented by Zdravkovic et al. (2003) using the MCC model assumed that the yield and 

plastic potential surfaces in the deviatoric plane are given by a Mohr Coulomb hexagon 

and a circle, respectively. Such differences in the plastic potential in the deviatoric 

plane, in plane strain problems, can cause a significant discrepancy in the predicted 
failure loads (Potts and Gens 1984). 

Due to the differences in the models formulation in the deviatoric plane any comparison 
between the results of this study and those of Zdravkovic et al (2003) can only be done 

in terms of the proportional increase in bearing capacity observed in each case. 

7.5 Description of the analyses 

7.5.1 Definition of the initial load-displacement curve 

The time dependent nature of the ET model implies that the footing loading rate affects 

the soil's undrained strength and the visco-plastic strain rates operating in the 

foundation soil at the end of loading. While the former can be dealt with by using the 

same loading rate in first loading and subsequent reloading, the latter can only be 

accommodated by choosing a realistic loading rate. 

In the absence of a specific loading history, the footing is assumed to be loaded to 

failure under a constant displacement rate over a period of six months, as this is 

believed to be the average time taken for the construction of the over-ground structure 

of a medium/ small building, where the choice of surface foundations on soft clay may 
be appropriate. This was the assumption in the set of analyses A to C. In set D, aiming 

at investigating the effect of the adopted footing displacement rate on the analyses 
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results, the footing is loaded to failure in about three days, a situation that is likely to 

occur during a foundation load testing, and the fastest static loading rate likely to occur 

in engineering practice. 

Due to the development of visco-plastic strains and consolidation, which become 

significant when the footing is loaded over a period of six months, the load sustained by 

the footing does not have a well-defined limit value. Therefore, the displacement rate 

that causes the footing to fail within six months - hereafter referred to as the reference 
displacement rate - is defined on the basis of a pure undrained analysis, in which any 
increase in the load sustained by the footing at large displacements is due to the viscous 

component of the soil model. The reference displacement rate is chosen such that the 

increase in the load sustained by the footing between a foundation displacement S, after 

six months, and a foundation displacement four times S, is smaller than 5%, as 

schematically shown in Figure 7.5. 

undrained analyses 
reference displacement rate 

TS /0 
ýCýtmthe 

coupled consolidated 
analysis at ref displ rate 

it 

8 at 6 months 46 

Figure 7.5: Definition of the reference displacement rate and the initial bearing 

capacity, Q. 

The initial loading curve is the load-displacement curve obtained in a coupled 

consolidation analysis when the footing is loaded, from the initial conditions, at the 

reference strain rate, and the initial bearing capacity is the load sustained by the footing 

at the end of six months. The reference displacement rate and the initial bearing 

capacity are, as rule, different for each set of analyses. The values of the reference 
displacement rate and initial bearing capacity are included in Table 7.3, and the initial 

load-displacement curves are shown in Figure 7.6. Figure 7.7 shows the incremental 

displacements of the foundation soil predicted by undrained and coupled analyses at 

failure (after 6 months for sets A to C, and after 2.7 days for set D). 
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Table 7.3: Initial bearing capacity and reference displacement rate. 

Set of 
analyses 

Q6months Or Q2.7days 

undrained analyses 
(kN/m) (*) 

Reference 
displacement 
rate (m/day) 

Initial bearing 
capacity, Q; 

(kN/m) 

Consolidation time before 
reloading 

A 82 0.002 72 1,10,100 years & 95% PWP 

B 90 0.0025 82 1,10,100 years & 95% PWP 

C 86 0.002 74 1,10,100 years & 95% PWP 

D 105 0.2 98 10 years and 95% PWP 

(*) In set A to C failure is attained in 6 months while in set D failure is attained in 2.7 days. 

The undrained analyses are found to predict a better defined failure mechanism when 

compared with coupled analyses (as the footing also approaches a better defined failure 

load). Due to the faster rate of loading in set D, coupled and undrained analyses give 

very similar predictions. As there are no noticeable differences between the failure 

mechanisms predicted by each set of analyses, the changes in bearing capacity should 

correspond to proportional changes in the soil's undrained strength. In set of analyses A 

and D, the same model parameters have been adopted, thus the difference in bearing 

capacity is due to the time dependent response of the ET model. This is especially true, 

if we consider the undrained analyses, where the effect of consolidation has been 

removed. Based on the bearing' capacity values given by the undrained analyses, an 
increase in bearing capacity of about 14% per logarithmic cycle of displacement rate is 

predicted. 
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The difference in the initial bearing capacity between sets A and B, from 72 to 82kN/m 

(or from 82 to 90 kN/m in terms of Q6months) cannot be explained by the difference in 

displacement rate from 0.002m/day to 0.0025m/day, and results mainly from the 

differences in the adopted model parameters. Set A assumes a value of Ca of 0.03, 

compared to 0.01 in set B, the former corresponding to a higher volumetric visco-plastic 

strain rate at the reference time, to. Therefore, even if the same displacement rate was 

used in both cases, a larger bearing capacity would be predicted in set B, because the 

visco-plastic strain rates acting in the foundation would be, relative to the reference 

value, higher in set B than in set A. 

Once the initial load-displacement curve, for each set of analyses, has been defined a 

series of analyses is performed in which the footing is loaded from initial conditions, at 

the respective reference displacement rate, to a percentage of the initial bearing 

capacity, namely 20,40,60,80, and 100%. 

The load is then held constant while the excess pore water pressures are allowed to 

dissipate. The end of consolidation is assumed to correspond to the dissipation of 95% 

of the excess pore water pressures developed during the first loading, based on the pore 

water pressure profile along the footing axis, where the largest excess pore water 

pressures developed. The footings are subsequently reloaded at the respective reference 
displacement rate, at various time intervals after the end of first loading, in general, 1, 

10 and 100 years, and at the end of consolidation, as defined above. 

7.5.2 Definition of the condition of failure on reloading 

On reloading, similarly to the initial loading, the load - displacement curves do not give 

a well-defined failure load, showing a steady increase in sustained load even at large 

displacements, due to the continuous soil hardening associated with both the process of 

consolidation and the development of visco-plastic strains that would occur even at 

constant effective stresses. Figure 7.8 shows the load-displacement curves on reloading 
for consolidation times of 1,10 and 100 years, for the set A. 

From the load-displacement curves shown in Figure 7.8, a trend can be identified, that 

the reloading curves, at very large displacements, become steeper as the consolidation 

time increases. 
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To investigate if such behaviour is a consequence of the constitutive model formulation 

or, instead, of the interaction between the phenomenon of consolidation and shearing, 

the footing was reloaded under purely undrained conditions, for some combinations of 

preload and consolidation time values, for set of analyses A. The respective load- 

displacement curves are shown in Figure 7.9. 
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Figure 7.9: Load-displacement curves on reloading, set A: coupled consolidation 
versus undrained analyses; a) effect of preload; b) effect of the 

consolidation time. 

As would be expected, when the foundation soil is considered undrained, the load- 

displacement curves at large displacements are flatter than those obtained from coupled 

consolidation analyses, as there is no soil hardening associated with pore pressure 
dissipation and concurrent increase of the foundation mean effective stress. In addition, 

the slope of the load-displacement curve at large displacements is apparently 

independent of the preload and consolidation time values, supporting the hypothesis that 
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differences in the load-displacement curve at large displacements in the coupled 

analyses, are a consequence of the interaction between the processes of consolidation 

and shearing. 

To investigate this further, the stress path of a soil element is shown in Figure 7.10, for 

several combinations of preload and consolidation time. For clarity, only the reloading 

path is shown. The soil element being considered is located at the footing axis, about 
1m below ground level, within the surface crust. From Figure 7.10, the following 

observations can be made: 

a) During undrained reloading, the effective stress path (ESP) moves initially 

vertically, and then bends to the left, reaching the CSL quite early on during the 

reloading process. 

b) In the coupled consolidation analyses, the ESP initially follows that observed in 

the undrained analysis, but then bends to the right, away from the CSL. 

c) At very large displacements, the ESP moves nearly parallel to the CSL (bending 

very slightly away from the CSL) and there is a continuous increase in the 

sustained deviatoric stress. The ESP is found to lie further to the right as the 

level of preload and the consolidation time increases. 
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d) Noting that the loading and plastic potential surfaces are identical and nearly 

equal to the MCC ellipse in the p '-q plane, the fact that the ESP lies further to 

the right, at lower stress ratios, implies a large volumetric component of strain 

relative to the deviatoric component which then results in larger soil hardening, 

and steeper load-displacement curves. 

When the footing is loaded under undrained conditions excess pore water pressures are 

generated in the soil. These excess pore water pressures can be considered to have two 

components; the first component - also called the spherical part Mph - is associated 
(and has the same sign) with the change in mean total stress; the second, is due to the 

increase in deviatoric stress, Dude,,. The deviatoric component can be either positive or 

negative, and both its sign and magnitude depend, in general, on the stress level, the soil 

type and its overconsolidation ratio. For normally consolidated and lightly 

overconsolidated clays, in the range of OCR values present in this boundary value 

problem, the deviatoric component Dude� will be in general positive. 

Figure 7.11 shows the excess pore water pressures plotted against the change in mean 

total stress developed during reloading, for a few combinations of preload and 

consolidation time values, at the same finite. element, located at the footing axis 1m 

below ground level. 
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During undrained and coupled reloading, and up to approximately a mean total stress of 
20 kPa, the excess pore water pressures are equal to the change in mean total stress, 
indicating that the deviatoric component, DUdevi is nearly zero due to the very small 

plastic strains being predicted in that stress range. From then on, the behaviour of 

undrained and coupled analyses diverge. In the undrained analyses, the excess pore 

water pressures become larger than the changes in the mean total stress, indicating that 

the deviatoric component Dude� is also positive. 

In the coupled consolidation analyses, due to the relatively slow loading rate, there is 

the occurrence of significant consolidation (pore water pressure dissipation) concurrent 

with shearing, and the resulting excess pore water pressures become smaller than the 

change in mean total stress. 

As shearing progresses, the change (decrease) in pore pressures due to consolidation 
becomes larger than the positive pore pressures generated due to contractive shearing 

and increasing mean total stress, resulting in incremental negative pore water pressures. 
At this point, it is the consolidation, rather than shearing, that governs changes in pore 

water pressures within the foundation soil. Footing failure on reloading has been 

identified with the onset of incremental negative pore water pressure immediately below 

the footing. Figure 7.12 shows contours of the incremental pore water pressures at 
failure, when loading the footing from the initial conditions, for set of analyses A to D. 

It is found that the failure points on first load support quite well the failure condition 
defined for reloading. 
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7.6 Results of the analyses 

7.6.1 Consolidation settlements 

Figure 7.13 shows the development of the footing settlements with time, for sets of 

analyses A to C, where the time is counted from the end of initial loading. In the same 

graphs are also indicated the points corresponding to the end of consolidation, defined 

as the dissipation of 95% of the excess pore water pressures, based on the pore water 

pressure distribution at the footing axis. The time at end of consolidation is found to 

vary between 63 and 290 years, and as a rule to decrease as the amount of preload 
increases. 

Figure 7.14 compares the delayed settlements predicted by set A to C and with those 

predicted using the MCC model (Zdravkovic et al., 2003) for values of preload equal to 

40,60 and 100% (where the preload is expressed as a percentage of the initial bearing 

capacity, Q; ). 

From Figure 7.13 and Figure 7.14 it can be said that, for a given value of preload, set A 

predicts the largest settlements, and set B the smallest. The predictions of set C lie 

somewhere in between those of sets A and B. This behaviour is in accordance with what 

would be expected as sets A and B are based on a nearly constant coefficient of 

secondary consolidation, with values of 0.03 and 0.01 respectively, and set C is based 

on a decreasing coefficient of secondary consolidation with an initial value, at the 

reference time, equal to 0.03. With increasing consolidation time the predictions of set 
C diverge from those of set A, as the current coefficient of secondary consolidation 
diverges (decreases) from the value of 0.03. This can be better appreciated in Figure 

7.14. After the dissipation of the excess pore water pressures, assuming that one 
dimensional conditions prevail below the footing, the current value of the coefficient of 

secondary consolidation, Cae, is mathematically related to the slope of the curve of the 

foundation settlements with time, by the following equation: 

Equation 7.4 AH =H" 
Ae 

and Ae = C« " log 
1o 

Notes: IH= settlement 
H= layer thickness 
de= change in void ratio 
t; = time origin 
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The last part of the settlements curves, say after 100 years of consolidation for sets A 

and B, are found to be linear, denoting the adoption of a near constant value of Cae with 

time, with set A showing a larger slope than that of set B. In set C, instead, no sign of a 

linear range can be identified and the slope of the curves of settlement vs. time decrease 

continuously, indicating the adoption of a non-linear logarithmic creep law. 

In the analyses using the MCC model, the delayed settlement (or the increase in 

undrained bearing capacity) is a result of the increase in mean effective stress in the 

foundation soil, concurrent with the dissipation of the excess pore water pressures 

generated during first loading. Therefore, once all the excess pore water pressures have 

dissipated no further settlement or increase in the soil undrained strength is predicted. 

In the analyses using the ET model, the increase in the footing settlement derives both 

from the dissipation of the excess pore water pressures and from the development of 

visco-plastic strains (that occur even at constant effective stress) with time. 

However, due to the interaction between the processes of consolidation, creep and 

shearing it is not possible to separate the two components contributing to the total 

footing settlement. When comparing the delayed settlements predicted by each set of 

analyses in Figure 7.13 and Figure 7.14 it should be noted that: 

a) The excess pore water pressures generated during initial loading are, in general, 

even for the same amount of preload, different, for each set of analyses; 

b) The initial bearing capacity is different for each set of analyses, therefore the 

magnitude of the stresses being applied is different; 

c) For a given consolidation time, the degree of excess pore water pressure 

dissipation is also different; 

d) It is thought that the differences in displacement rate between set A, B and C are 

negligible, and consequently the visco-plastic strain rates acting in the 

foundation's soil, at a given level of preload, immediately after loading, are 

identical in the three sets. 

Despite what was said above, it is found that for a consolidation time of 100 years (after 

which any contribution from the excess pore water pressure dissipation to the 

foundation settlement will be quite small), the additional settlement predicted by 
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analysis set B, in relation to that predicted by the MCC model, is between 35% and 39% 

of the additional settlement predicted by set A, not far from the ratio 0.01/0.03. 

It is noted that preload values of 40% and 60% correspond to an initial design of the 

footing to a factor of safety on load between 2.5 and 1.67, respectively, and thus are 

cases of particular relevance for engineering practice. 

At these values of preload, the consideration of secondary consolidation (or creep) using 

a linear logarithmic creep law increases the long-term settlements (at about 100 years) 

between 2.2 and 2.8 times that predicted by a time independent model for a value of Ca, 

of 0.01 and between 6 and 4.2 times for a value of Ca of. 0.03. Using a non-linear 

logarithmic creep law reduces the total long-term settlements by about one third. 

Figure 7.15 shows the development of delayed settlements with time as predicted by set 

of analyses D. For comparison, the predictions from set A are also included. As 

mentioned above, differences between sets A and D derive from the rate dependent 

model response and its interaction with the process of consolidation. 
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In set D, the foundation is loaded at a rate 100 times faster than in set A, and thus the 

strain rates operating in the foundation soil at the end of first loading are much larger. 

This explains the larger delayed settlements predicted in set D at 20%, 40% and 60% 

preload. 

At 80% and 100% preload, the settlement vs. time curves deviate from the trend 

observed at lower values of preload and in set A, both in terms of shape and magnitude 

reached. The exaggerated amount of delayed settlements predicted at 80% and 100% is 

thought to result from the development of large deviatoric visco-plastic strains as a large 

proportion of the foundation soil has failed. 

7.6.2 Ultimate bearing capacity 

Figure 7.16 shows the load-displacement curves on reloading for sets of analyses A to 

D, and a consolidation time of 10 years. In the same plots are also included the failure 

points defined using the criterion described in section 7.5.2. The reloading curves for all 

the cases considered in this study can be found in Appendix A. 

Table 7.4 lists the ultimate bearing capacity, for all the cases studied. 
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Table 7.4: Ultimate bearing capacity of a preloaded strip footing after different 

consolidation periods - set A to D. 

Set A 

Preload 

Time between end of 1s` 

1 year 10 years 

loading and reloading 

100 years End of cons. 

20% 72.5 77.5 93.5 98.6 

40% 74.7 85.2 107.6 113.3 

60% 78.8 97.8 125.5 130.4 

80% 84.1 111.6 143.4 147.2 

100% 92.2 127.5 162.8 163.8 

Note: Preload is expressed as a percentage of the initial bearing capacity, Q, =72 kN/m. 

Set B 

Preload 

20% 

40% 

60% 

80% 

100% 

Note: Q, =82 kN/m. 

Time between end of 1°t 

1 year 10 years 

loading and reloading 

100 years End of cons. 

82.1 84.8 89.7 90.5 
84.2 91.4 98.7 99.4 

88.9 102.0 112.6 113.1 

94.5 117.0 130.3 129.5 

103.6 132.1 148.7 146.3 

Set C 

Preload 

Time between end of 1" 

1 year 10 years 

loading and reloading 

100 years End of cons. 

20% 74.7 78.9 87.7 88.3 

40% 76.7 85.2 97.0 97.3 

60% 81.0 96.3 112.4 112.4 

80% 86.9 110.2 128.7 127.9 

100% 94.8 124.8 145.4 143.8 

Note: Q; =74 kNIm. 

Set D 

Preload 

Time between end of 1°` loading and reloading 

1 year 10 years 100 years End of cons. 

20% - 108.8 - 144.5 

40% - 130.7 - 173.3 

60% - 153.3 - 200.6 

80% - 176.3 - 227.9 

100% - 195.5 - 247.3 

Note: Q, =98 kN/m. 
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Given the differences in the initial bearing capacity for each set of analyses, the ultimate 
bearing capacity values shown in Table 7.4 have been normalized by the respective 
initial bearing capacity, Q. This normalization allows the results of the four sets of 

analyses to be compared between each other, and with the results from Zdravkovic et al. 
(2003). 

Figure 7.17 plots the normalized ultimate bearing capacity against the level of preload, 
for sets of analyses A to D. In the four sets of analyses, the normalized ultimate bearing 

capacity is found to increase significantly with the amount of preload and consolidation 

time. In addition, for consolidation times equal or higher than 10 years the results of 

Zdravkovic et al. (2003) using the time independent MCC model are found to under 

predict the current bearing capacity of preloaded strip footings, for the conditions 

analysed. 

In set D, despite the atypical settlement predictions at 80% and 100% preload, the 

ultimate bearing capacity on reloading at these preload values follows the trend 

observed at lower preload values and in the other analysis sets. This emphasizes that the 

large predicted settlements result from the development of large deviatoric visco-plastic 

strains, as a large proportion of the foundation soil has failed, and has not influenced 

significantly the process of soil hardening (that is related to the volumetric strain 

component). In any case, it is suggested to use these values with care. 
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Figure 7.17: Normalized bearing capacity of a preloaded strip footing after different 

consolidation periods as a function of the amount of preload - set A to D. 
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Figure 7.17: Normalized bearing capacity of a preloaded strip footing after different 

consolidation periods as a function of the amount of preload - set A to D. 
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Figure 7.18: Normalized bearing capacity of a preloaded footing at the end of 
consolidation 

Figure 7.18 presents the normalized ultimate bearing capacity of a preloaded footing at 

the end of consolidation for sets of analyses A to C. The main aim of determining the 

footing bearing capacity at the end of consolidation was to somehow quantify the effect 

of soil hardening due to creep by comparison with the results of Zdravkovic et al 
(2003), which correspond to the end of consolidation and include no secondary 

consolidation. 

However, as mentioned in section 7.6.1, due to the interaction of the phenomena of 

consolidation, creep and shearing, it is not possible to separate the two components 

contributing to the soil hardening. In addition, it is found that the time to the end of 

consolidation varies from 63 to 290 years, depending on the preload value, the model 

parameters and the loading rate adopted, and so each data point will correspond to a 
different consolidation time. 

In any case, the ultimate bearing capacity at the end of consolidation is, as a rule, very 
similar to that obtained after 100 years of consolidation. The exception is set A, where 

the end of consolidation gives values up to about 5% higher, with this difference 

decreasing at larger values of preload. 
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Figure 7.19: Normalized bearing capacity of preloaded strip footing after 10 and 100 

years of consolidation. 

It is of interest to analyse how the values of normalized bearing capacity relate to the 

observed footing settlements, at a given consolidation time. Both models predict that the 

soil's hardening - increase in soil's undrained strength and/or apparent pre- 

consolidation pressure - is an exponential function of the predicted plastic / visco-plastic 

volumetric strain, and thus the same plastic volumetric strain increment is expected to 

produce a larger soil's hardening at higher stress levels. 

Figure 7.19 compares the normalized bearing capacity of a preloaded strip footing as 

predicted by sets of analyses A to C after 10 and 100 years of consolidation time. 

After 100 years of consolidation, the consideration of creep given by a constant 

coefficient of secondary consolidation equal to 0.03 (set A) causes an additional 

increase in the normalized bearing capacity, in relation to that predicted using the MCC 

model, of 38% at 40% preload and 53% at 60% preload. This corresponds to an 
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additional increase of about 39% on the normalized bearing capacity as result of 
increasing its preload from 40% to 60%. In contrast, in terms of foundation settlements, 

there is an increase of about 22%, from 0.456 to 0.558 m of additional delayed 

settlement in relation to that predicted using the MCC model. 

When comparing the relative effect of creep to the soil hardening between 60% and 
100% preload it is found that there is a relative increase of about 41% (from an 

additional increase of 53% to 75%) in terms of bearing capacity and of about 33% in 

terms of delayed settlements (from 0.558 m to 0.741 m). The proportionally higher 

increase in footing settlements at 100% preload arises from the larger contribution of 
deviatoric strains to the footing settlements, but not to the soil hardening. 

In any case, it is found that for a given consolidation time, the larger the predicted 

settlements the higher the predicted bearing capacity. Therefore, identically to the 

behaviour observed in terms of delayed settlements, it is found that for the analyses 

performed using the ET model set A predicts the highest normalized bearing capacity 

values and set B the smallest for a given value of preload and consolidation time. The 

predictions given by set C lie somewhere in between and they diverge from those of set 
A as the consolidation time increases. The results corroborate that the adoption of a 
higher value for the coefficient of secondary consolidation is conservative in terms of 

settlements but is unsafe when considering the ultimate bearing capacity of preloaded 
footings. 

For a preload of 100% and C 0.03 the consideration of soil hardening associated with 

creep is found to cause the long term (say at 100 years) ultimate bearing capacity to 

reach a value over twice the initial one. For more practical values of preload, say at 
50%, the consideration of creep may increase the normalized bearing capacity from 1.15 

times Q; (predicted using the MCC model) to a value between 1.3 and 1.6 times Q; 

depending on the amount of secondary consolidation considered. 

Figure 7.20 shows the evolution of the ultimate bearing capacity of a preloaded strip 
footing with time for 40 and 60% preload for sets A and B. It has been noted that 40% 

and 60% preload are cases of particular relevance in engineering practice as they 

correspond to an initial factor of safety on load between 2.5 and 1.67, respectively. 
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Figure 7.20 can be used as a design tool to do a preliminary estimate of the available 
bearing capacity of an existing footing. 

Effect opting a non-logarithmic creep law 

In sets of analyses A and B, the ET model is made to reproduce a linear logarithmic 

creep law, as this is the assumption commonly made in engineering practice when 

considering the long-term behaviour of soils. However, the creep behaviour of 

geomaterials is known to be in general non-linear in semi-logarithmic space, showing a 

progressive decrease in the current coefficient of secondary consolidation, C", with 

time. In set C, the effect of adopting a non-linear logarithmic creep law is examined. 

As observed in Figure 7.19 the ultimate bearing capacities predicted by set C lie 

somewhere in between those predicted by set A and B, and deviate progressively from 

set A, as the consolidation time increases. The effect of the creep law non-linearity is 

found to be more pronounced as the consolidation time increases; for example at 40% 

preload (equivalent to a factor of safety of 2.5) the normalized bearing capacity 
decreases from 1.18 to 1.16 at 10 years, compared to a change from 1.49 to 1.32 at 100 

years. 
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Figure 7.20: Normalized bearing capacity of a preloaded strip footing versus 
consolidation time, for 40 and 60% preload. 
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Effect of the footing loading rate 

As mentioned above the time dependent nature of the ET model causes the footing 

loading rate to affect both the value of soil's undrained strength and the visco-plastic 

strain rates acting in the foundation at the end of loading. The former has been dealt 

with by normalizing the ultimate bearing capacity by the respective initial value and 

using the same loading rate during first loading and subsequent reloading. The influence 

of the applied loading rate on the magnitude of the strain rates acting in the foundation 

at the end of the application of the preload is taken into account by choosing a realistic 
loading rate and in sets A to C the footing is assumed to be taken to failure under a 

constant displacement rate over a period of 6 months. 

In set D, the footing is taken to failure in about 3 days, and it was expected that due to 

the higher strain rates acting in the foundation soil immediately after loading, larger 

settlements and gains in bearing capacity would be predicted, and in terms of bearing 

capacity such an assumption is obviously unsafe. 

Figure 7.21 shows the predicted normalized ultimate bearing capacities after 10 years 

and at the end of consolidation for all sets of analyses. Even disregarding the results of 

set D at higher preload values (80 and 100%), it is evident from the data at lower 

preload values that the assumption that the footing is taken to failure over about 3 days 

is unsafe as it leads to a considerable over estimation of the footing ultimate bearing 

capacity. It is assumed that the choice of a realistic loading rate is a necessary, but also 

sufficient, condition to ensure that reasonable predictions of soil hardening are 

recovered. 

7.6.3 Mechanism of failure 

Figure 7.22 and Figure 7.23 show the incremental displacements at failure on reloading 
for selected combinations of preload and consolidation time for sets A and B, 

respectively. For the cases examined there are no significant changes in the failure 

mechanism of the preloaded footings, in relation to that observed on first loading, 

resulting from variations in the amount of preload or consolidation time. 
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consolidation and at the end of consolidation. 

It was initially expected that the soil hardening associated with pore pressure dissipation 

and creep would cause the failure mechanisms to extend deeper into the soil mass to 

avoid the shallower areas that have undergone more significant hardening. However, the 

presence of the surface crust in the top 2 in and the small dimension of the footing when 

compared with that of the crust create the conditions for this not to happen. 

During initial loading, the larger stress changes occur within the surface crust in the top 

2 m. Given that the soil at that level is medium to slightly overconsolidated the amount 

of contractive excess pore water pressures generated are significantly lower than if the 

material was normally consolidated, and the soil hardening associated with 

consolidation process is correspondingly limited. 
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Once a preload has been applied, the soil adjacent to the footing that was previously 

overconsolidated becomes normally consolidated, and the soil hardening associated 

with the development of creep strains is expected to be almost uniform with depth, 

possibly slightly larger at shallow depth were larger strain rates have been imposed. 

The undrained strength profile with depth is therefore expected not to have changed 

much in shape (just in value) with the weakest zone remaining at about 2m depth, and 

the failure mechanism is forced to pass through here. 

7.7 Concluding Remarks 

This chapter presented a parametric study on the effect of soil viscosity and associated 

soil hardening on the bearing capacity of preloaded surface footings. The case 

considered is a2m wide rough strip footing on a ground profile consisting of a soft 

normally consolidated clay with a surface crust in the top two meters. Both the ground 

profile and the model parameters have been derived based on in-situ and laboratory 

testing data on a real soil. 

The problem was previously examined by Zdravkovic et al. (2003) considering the 

effects of soil hardening due to consolidation only. - This chapter has shown that the 

consideration of soil hardening associated with the development of creep strains 

significantly increases the predicted current bearing capacity of preloaded footings. 

The predicted long term bearing capacity of a surface footing with an initial factor of 

safety on load of 2 (equivalent to 50% preload) is about 1.15 times the initial one, when 

only the effect of consolidation is taken into account. When, in addition, the 

development of creep strains is considered, the predicted bearing capacity is found to be 

then between 1.3 and 1.6 times the initial one, the value depending on the amount of 

secondary compression considered. 

It has been shown that the adoption of a large value of secondary compression, 

quantified by the parameter Ca, may be conservative when estimating the long term 

settlement of an engineering structure, however it is unsafe when considering the soil 

hardening, in this study expressed as the current bearing capacity of a preloaded footing. 
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The adoption of a non-linear logarithmic creep law becomes more significant at larger 

consolidation times, and in particular when considering serviceability states. For the 

case examined, the total long-term settlement is found to reduce by a third when the 

creep behaviour non-linearity is taken into account. 

How realistic it is to apply this study to engineering practice will depend mainly on how 

the site conditions approximate those assumed in this study, mainly in terms of the 

ground profile and the dimension of the footing in relation to that of the crust. Based on 

the work shown by Randolph et al. (2004) (see Figure 7.2) it is anticipated that the 

results obtained on this study on a strip footing could be applied to footings of similar 
dimensions but different geometry. Analyses have been carried out to examine the 

effect of the soil hardening associated with creep on a preloaded circular footing. A 

methodology identical to that presented here was followed. The results in terms of 

undrained bearing capacity have shown a similar pattern with the bearing capacity 
increasing with the amount of preload and consolidation time. However, in a circular 
footing the drainage path is considerably reduced and so is the time to the end of 

consolidation. This exacerbates the problem of defining the failure condition during the 

footing reloading and it has been preferred not to include this set of data. 

It is noted that for the case examined, the failure mechanism is very much influenced by 

the presence of the surface crust, which has a reducing undrained strength with depth. 

Such a condition forces the failure mechanism to extend down to intercept the weakest 

soil at the base of the crust. This implies that the failure mechanism involves a relatively 

small proportion of normally consolidated clay, and consequently more soil hardening 

could potentially be predicted for other footing/crust dimension ratio, for which the 

failure mechanism intercepts a larger proportion of normally consolidated soil, as 

normally consolidated soils develop the largest positive (contractive) excess pore 

pressures. 

The following chapter aims to recover the behaviour of two footings on Bothkennar 

Clay and given the broad similarities in the ground profiles and footing/crust 

dimensions it is expected to further validate this study. 
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8 NUMERICAL ANALYSES OF TWO SURFACE FOOTINGS ON 

BOTHKENNAR CLAY 

8.1 Introduction 

This Chapter describes the numerical analyses of the loading tests performed on two 

rigid footings at the Bothkennar clay test site (Jardine et al., 1995; Lehane & Jardine, 

2003). Footing A, 2.2 mx2.2 m square, was loaded to failure in July 1990 over 4 days, 

reaching a net bearing pressure of 138 kPa. One month later Footing B, 2.4 mx2.4 m 

square, was loaded over three days to 89 kPa, about 2/3 of the bearing capacity proven 
in footing A, and left to consolidate under a constant applied load for about 11 years. In 

July 2001, due to the imminent closure of the Bothkennar research site, the preloaded 
footing was loaded over three days to 204 kPa, at which point severe tilting of the 
footing prevented the test from continuing. 

Considering the two footings to have the same initial bearing capacity, the increase in 

bearing capacity due to the preload over 11 years of consolidation was over 48%. 

According to Zdravkovic et al. (2003) the expected increase in bearing capacity due to 

the preload would be about 25%. 

The parametric study described in Chapter 7 shows that the consideration of soil 
hardening due to the development of creep strains may account for a significant increase 

in the ultimate bearing capacity of preloaded footings. Applying the results of the 

parametric study to the Bothkennar case, one would predict an increase in bearing 

capacity between 30% and 45% depending on the amount of creep strain that had 

developed, which is close to the value observed at Bothkennar. 

From the monitoring data, it is concluded that most of the excess pore pressure 

generated during the application of the initial load dissipated in less than a year (Jardine 

et al., 1995), and consequently the settlement developed during the observation period, 

after the first year, is associated with creep. 

In Chapter 7, the ET model was applied to study the effect of soil ageing on a generic 

pre-loaded strip footing resting on a soft clay stratum, and the model was shown to 

reproduce qualitatively well the soil ageing associated with the development of creep 
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strains with time and the consequent increase in the stiffness and strength 

characteristics. 

It is therefore relevant to analyse the footings at the Bothkennar research site in order to 

assess the model's performance in describing the behaviour of a real soil in a boundary 

value problem where the consideration of the time dependent nature of the soil is 

important and consequently validate the outcomes of the parametric study shown in 

Chapter 7. 

The Bothkennar case presents the additional advantage of being very well documented 

with a wide range of data available in the literature regarding the soil characterization 

and the footing's behaviour. The general methodology adopted was to derive the model 

parameters based on the extensive laboratory and in-situ test data available, then use the 

observed behaviour of footing A to confirm the model parameters and ground profile 

adopted, which are subsequently used to analyse footing B. 

The load tests are studied by means of coupled consolidation axi-symmetric finite 

element analyses performed using ICFEP (Imperial College Finite Element Program) 

and using the Equivalent Time (ET) constitutive model, described in Chapter 6, to 

mimic the foundation soil behaviour. 

8.2 The soft clay test site at Bothkennar, Scotland 

8.2.1 Introduction 

The Bothkennar soft clay test site was bought in 1987 by the former Science and 

Engineering Research Council (SERC, now EPSRC) with the intent of creating a site 

for the development of soil investigations including, sampling, laboratory testing and 

large to full-scale tests on soft clay. The primary intent was to support academic 

research but the site was also available to industry, and collaborative studies between 

academics and industry were encouraged. 

The Bothkennar site is located approximately midway between Edinburgh and 

Glasgow, on the south side of the River Forth, as shown in Figure 8.1. The site has an 

area of approximately 11 ha and a soft clay stratum up to about 20 m deep - the main 

criteria set for the selection of the research site. The soil profile consists essentially of a 

deep soft clay stratum with a surface crust 2 to 3m thick that enables the use of heavy 
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plant at the site. The relatively simple soil profile was expected to simplify the back 

analysis and the interpretation of field experiments. 

Figure 8.1: Location of the Bothkennar site. 

Following the establishment of the site, the SERC launched a project for the detailed 

characterization of the soil properties of the clay stratum at Bothkennar. The project 
included a research programme on methods of field sampling and laboratory testing of 

soft saturated clays. Figure 8.2 shows a plan of the Bothkennar site with the indication 

of the site investigation undertaken. The outcomes of this project were collected and 

published in the Geotechnique Symposium In Print (Institution of Civil Engineers, 

1992). 

In addition, the SERC supported projects to improve the understanding of engineering 

on soft clay. In particular, tests on rigid footings (Jardine et al., 1995; Lehane & Jardine, 

2003), some of them instrumented, and an instrumented pile test programme (Lehane & 

Jardine, 1993) have been carried out in the area indicated as BRE test area in Figure 8.2. 

This chapter focuses on the load tests performed on two instrumented rigid footings 

between June 1990 and July 2001. A description of the footings construction and 
loading is presented in Section 8.3. 
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Figure 8.2: Plan of the Bothkennar site with the location of the site investigation 

performed during the initial investigation and subsequent characterization 
project (after Hight et al., 1992). 

8.2.2 Local geology 

The Bothkennar site is located on the south side of the Firth of Forth in Scotland as 
shown in Figure 8.1. The River Forth crosses the Carboniferous Coal Measures and 
Millstone Grit, and strata of the Lower Devonian age. The Lower Devonian consists of 

conglomerates, fluvial and lacustrine sandstones. The Carboniferous rocks are mostly 
limestones with some coals and sandstones. 
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The geological conditions encountered in Scottish estuaries differ from those in the 

Severn and the Thames regions, as during the late Devensian age, parts of the Midland 

Valley are thought to have been covered by 1500 to 1800 m of ice. It is thought that the 

area was free of ice by 13000 years before present (BP), with the exception of a minor 

glaciation - the Loch Lomond Readvance - that occurred between 11000 and 10300 BP. 

It is thought that glacial erosion caused the excavation of a trench up to 180 m beneath 

the present estuary. The exposed bedrock was subsequently infilled by deposits of 
diverse grain sizes and under varying depositional environments. The changeable 
depositional conditions resulted from the simultaneous worldwide change in sea level 

resulting from glacial melting (eustatic rise) and the depression / elevation of the land as 

a result of the periodic loading and reloading of the ice (isostatic movements). This 

combination of eustatic and isostatic movements of differing magnitudes and rates 

increased the complexity of the depositional history. 

The engineering geology of the Forth estuary has been studied by a number of 

researchers e. g. Sissons et al. (1966), Browne et al. (1984). The general Late and 

Postglacial Quaternary stratigraphy of the area, shown in Figure 8.3, consists of a buried 

gravel stratum (the Bothkennar Gravel), above which lie the clayey Letham and Claret 

Beds that form the soft clay sequence of the Carse Clay. This sequence is in part 

overlain by clayey silts of the Grangemouth Beds, and at the margins of the estuary is 

completed by modem intertidal deposits. The deposits below the Bothkennar Gravel 

consist of further silty clays, which overlie till, which in turn lies on bedrock. 

The site lies within the outcrop of the Carse Clay, which comprises the main sequence 

at the site, and is described subsequently. 
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(Browne et al., 1984). 

a) Sediment description 

The Carse clay deposits above the Bothkennar gravel show a thickness between 14 and 
22 m across the site and can be subdivided into four facies: bedded, laminated, mottled 

and weathered. Figure 8.4 shows a generalized facies sequence at Bothkennar and a 

correlation with the local stratigraphy. 

The bedded facies is a silty clay to clayey silt in which the original sedimentary 

structures from quiet water tidal deposition are still present. The laminated facies 

corresponds to more energetic depositional conditions giving rise to the occurrence of 
interbedded silt laminae typically about I to 2 mm thick and 30 to 50 mm apart. In 

general the laminated facies can be interpreted as a development from the bedded facies, 

in which a higher proportion of silty clay beds are separated by laminae rather than 

being in direct contact. 

The mottled facies is mainly a silty clay in which bedding and laminations are poorly 
defined or even absent. The principal feature of the mottled facies is the presence of 

mottles varying in size from a few millimetres to I-2 cm, which are thought to result 
from the reworking of the sediment by burrowing organisms, at times when the 

depositional rates were reduced. 
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The weathered facies occurs about 4m from the surface and corresponds to the zone 

that has been affected by desiccation and oxidation. This causes the material to undergo 

a gradual change in colour from the characteristic very dark grey to black of the intact 

material to dark grey to greyish brown. This altered material corresponds to the surface 

crust, but also includes a sub-crust transition zone. Details on the facies persistence, 

stratigraphy and structure can be found in Paul et al. (1992). 

The Carse Clay is overlain by modern deposits of the reclaimed tidal flats, with a 

marked unconformity. At the site this unconformity is identified by a bed of shells, 

many of which are paired and articulated, denoting that this may have been their 

position in life. It is thought that some limited erosion may have taken place at the 

surface of the Carse Clay before the deposition of the modem sediments. 
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b) Mineralogy 

Paul et al., (1991) found that the mineral composition of the clay stratum was quite 
homogenous throughout being dominated by quartz and feldspar flour, kaolinite, illite, 

and quartz. 

c) Pore water chemistry 

The pore water of the Carse Clay at Bothkennar has an average total salts content of 

approximately 21 g/l, very similar to the adjacent estuary water. This had a number of 

consequences for the site characterization project: i) errors in measuring the specific 

gravity and void ratio as the salts deposit on the soil particles when dry; ii) water with 

identical composition had to be used during laboratory testing; iii) corrosion of 

sampling tubes that were not stainless steel. 

8.2.3 Geotechnical characterization of the Carse Clay at Bothkennar 

This section presents a brief description of the Carse Clay at Bothkennar, focusing on 

the geotechnical aspects of soil behaviour that are particularly relevant for the 

understanding of the footing tests described in Section 8.3 and the numerical analyses 

that are presented subsequently. 

A detailed characterization of the Carse Clay can be found in the Symposium in Print 

(ICE, 1992) that summarises the outcomes of the characterization research project 

sponsored by the SERC. 

8.2.3.1 Index tests 

Figure 8.5 shows the description of the ground profile, in terms of index tests, at 
borehole D1 located next to the test footings. Borehole D1 was undertaken as part of an 

initial site investigation carried out before the purchase of the site, to ascertain its 

suitability. Later investigations have confirmed the findings of borehole D1. 

a) Organic content 

The Carse clay at Bothkennar has an organic content of between 3% and 8%, which 

consists mainly of the remains of marine organisms, and therefore is, in general, higher 

in the mottled facies. 
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Figure 8.5: Ground profile at borehole D1 (after Nash et al., 1992a); soil description; 

moisture content and Atterberg limits determined on natural samples; unit 
bulk weight; particle size distribution. 

b) Plasticity 

The results of Atterberg limits on natural untreated material lead to the Carse clay to be 

classified as a high plasticity clay, with an average plasticity index (PI) of 40%. After 

removal of the organic material the PI reduces to an average value of 18% that 

corresponds to a clayey silt of intermediate plasticity, more consistent with the high 

angles of shearing resistance and turbulent shear observed in laboratory testing. 

The activity of the clay after removal of the organic material lies in general between 0.5 

and 0.75, consistent with the clay mineralogy of illite and kaolinite. The influence of the 

organic material in the determination of the Atterberg limits is discussed in detail in 

Paul et al. (1992). 

c) Water content and bulk unit weight 

The water content shows a well-defined trend with depth; the water content increases 

with depth up to 7 m, from about 35% at 1m to approximately 80 % at 7 m. Below this 

the water content decreases with depth, reaching about 45% just above the Bothkennar 

Gravel. 
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d) Grading 

In terms of particle size distribution the overall mean grain size is found to increase 

from bottom to top in the profile, and the clay sized fraction is, in global terms, between 

35 to 50% of the material. Sediment from the bedded facies has an average size of 4- 

5 µm and a clay sized content of 35-40%. Sediment from the mottled facies is in general 

slightly finer, with an average particle size of 3 pm and a clay sized content of 40-50%. 

In the laminated facies the individual laminae are composed of well-sorted medium to 

coarse silt interbedded with mottled clayey silts. In the bottom 2 in of the Carse clay, 

above the Bothkennar gravel, the material is less well sorted but has a similar average 

size and clay content. The material above the shelly layer in the top 1.2 in of the ground 

profile is a rather different material formed of silt with some clay (clay fraction of 20- 

30%). 

8.2.3.2 In-situ stresses 

Piezometers placed in the clay and in the gravel indicate the piezometric profile at the 

Bothkennar site to be hydrostatic with the ground water level between 0.5 and 1. Om 

below ground level (BGL). The characterization area (and the area where the footings 

were constructed) is located away from the estuary and suffers minimal influence of the 

tides, with tidal fluctuations of only 0.01 m. 

For the purposes of the analyses shown in this Chapter, the pore water pressures in the 

ground are calculated assuming a hydrostatic profile with the ground water level at 
0.9 in BGL, in agreement with conditions encountered during summer when the loading 

tests took place. 

The total vertical stress was estimated based on the variation of the bulk unit weight 

with depth shown in Figure 8.5. The horizontal effective stresses were estimated on the 

basis of self-boring pressumeter data, dilatometer test data and spade cells, and Figure 

8.6 shows the resulting variation of the coefficient of earth pressures at rest, KO with 
depth, where KO is defined by Equation 8.1. 

Equation 8.1 KO = 6tio /o 

where Cho and o are the in-situ horizontal and vertical effective stresses, 

respectively. 
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Figure 8.6: Variation of the coefficient of earth pressures at rest with depth. 

Figure 8.6 also includes the value of coefficient of earth pressures at rest that is obtained 

by application of the expression proposed by Jaky (1944) (Equation 8.2) using an angle 

of shearing resistance equal to 34°. 

Equation 8.2 K0=1-since' 

Note: gyp' is the angle of shearing resistance at critical state. 

8.2.3.3 One-dimensional compression 

The one-dimensional behaviour of the intact Carse Clay was extensively investigated by 

means of oedometer tests of the following three types: i) conventional incremental load 

(IL) tests using 24 h loading stages and small load increments close the vertical yield 

stress; ii) continuous load tests at constant rate of strain (CRS) and iii) restricted flow 

tests (RF). 

Figure 8.7 shows the one-dimensional compression curves from CRS tests at 

0.005 mm/min on specimens from various depths. The samples from the crust, at 1.2 m, 

and the transition zone, at 2.3 m, show a different behaviour from the remaining 

samples, with an initial softer response and no well defined yield stress. The remaining 
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samples follow a consistent trend, with the compression curves moving to the right as 

the depth of the sample increases. 

The stress - strain curves in one-dimensional compression are non-linear both pre and 

post large scale yield, and in both arithmetic and semi-logarithmic plots. Therefore it is 

not possible to describe the compressibility of the intact clay by means of a single value 

of either CCe or X, which are defined by Equations 8.3 and 8.4, respectively. 

Equation 8.3 C- 
Ae 

ýe -A log 6v 

Equation 8.4 2= Ae 
A in(p) 

where e is the void ratio, 6,, ' is the vertical effective stress and p' is the mean effective 

stress. 

Equations 8.3 and 8.4 are defined in the normally consolidated (NC) range, during 

which the coefficient of earth pressures, KO is almost constant and so Cc and ? can be 

related approximately by Equation. 8.5. 

Equation 8.5 2=C. 
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Figure 8.7: Variation in 1D compression behaviour of the intact Carse Clay with depth 
(CRD test at 0.005 mm/min on Laval samples), after Hight et al. (1992). 
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Figure 8.8 shows compression curves obtained from oedometer tests on natural and 

reconstituted samples. The natural state of the intact Carse clay lies, in general, well 

above the intrinsic compression line (ICL), indicating the existence of structure. The 

compressibility of the intact clay is highest immediately after large-scale yielding, 
decreasing progressively, until, depending on the specimen fabric, the 1-D compression 
line joins or remains parallel with the ICL. 

Nash et al. (1992b) report average values of C, between 1.2 and 0.8 on intact samples of 
Carse Clay and between 0.56 and 0.46 on reconstituted samples. 
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Figure 8.8: Oedometer tests on natural and reconstituted samples (Nash et al., 1992b). 

a) Yield stress ratio 

Figure 8.9 shows data on the variation of the yield stress ratio (YSR) with depth as 
determined from oedometer tests and the in-situ dilatometer test. Figure 8.9 also 
includes the YSR profile that would be generated by an overconsolidation of 15 kPa, a 

value that has been put forward as the maximum probable mechanical overconsolidation 

undergone by the Carse Clay over its geological history. 

The oedometer tests on high quality samples indicate YSR values between 1.4 and 1.6 

over the full depth of the clay (except the crust), which are significantly higher than any 

credible value of true overconsolidation, even considering extreme fluctuations in the 

ground water level. 
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Figure 8.9: Variation of the yield stress ratio with depth at the Bothkennar site. 

b) Effect of strain rate 

The effect of strain rate was studied by means of constant rate of displacement 

oedometer tests at two depths, with displacement rates varying between 0.00015 and 

0.015 mm/min, which correspond to strain rates between 1x10'7 and 1x10"5/s (Nash et 

al., 1992b). The authors report an increase in the YSR with increasing strain rate, 

similar to that described by Leroueil et al. (1983) for the Champlain clays, as shown in 

Figure 8.10. Figure 8.10 also includes the YSR obtained from IL'tests, in which case the 

corresponding strain rate is that occurring at the end of the relevant load increment. 

Nash et al. (1992b) report typical axial strain rates at the end of the load increments (in 

IL tests) between 5x10-8 and Ix10-7/s. 
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Figure 8.10: Variation of the yield stress ratio with axial strain rate in oedometer tests. 

c) Creep behaviour 

Nash et al. (1992b) have determined the value of the coefficient of secondary 

consolidation, Ca at the end of each load increment from IL oedometer tests on natural 

samples, where Ca, is defined by Equation 8.6. The authors found that there is a linkage 

between creep and the structural breakdown at large scale yield, with the value of the 

ratio of the coefficient of primary consolidation Cc and the coefficient of secondary 

consolidation, Ca remaining fairly constant at about 0.03-0.05, over the whole stress 

range examined. 

Equation 8.6 C, = 
Ae 

aA log(t) 

8.2.3.4 Undrained strength 

Figure 8.11 shows profiles of undrained strength estimated on the basis of in-situ vane 

tests and laboratory test data. The vane test data in Figure 8.11b) emphasize the soil 
brittleness, with the soil showing a very significant strength loss from peak to the 

remoulded state. 
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Figure 8.11: Undrained strength profile with depth at Bothkennar site based on 
laboratory tests and in-situ data. 

The data included in Figure 8.11 a) correspond to values of undrained strength at peak 

obtained on samples that were previously consolidated to the estimated in-situ stress 

state. The data shows the influence of the intermediate principal stress on the measured 

undrained strength, with the ratio of the peak undrained strength in compression and in 

extension being well in excess of 2. Direct shear tests give undrained strength values 

somewhere in between those obtained in triaxial compression and extension. 

For a given mode of shearing, say triaxial compression, there is a wide range of 

measured undrained strength values. This scatter is the result of differences in the level 

of structure in the sample, determined by the disturbance undergone during sampling, 

transport and specimen preparation, the reconsolidation stress path and the rate of shear 

(Smith, 1992). 
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8.2.3.5 Effective stress strength parameters 

Allman & Atkinson (1992) report critical state angles of shearing resistance of 34° in 

compression and 37° in extension, based on triaxial tests on reconstituted samples. 
These values form the lower bound to the data at large strains for the intact material. 

Smith (1992) found that for undrained triaxial compression tests on intact material the 

mobilized angle of shearing resistance at axial strains between 15-20% varied between 

36° and 45°, being especially high in specimens from the bedded and laminated facies. 

In triaxial extension, the effect of necking prevents the sample from being taken to very 
large strains. 

The peak strength values obtained in laboratory tests are strongly dependent on the level 

of previous disturbance undergone by the sample. The envelope to peak strengths in 

triaxial compression, based on high quality samples from different depths, can be 

approximated to c'=4 kPa and cp'=37°. In triaxial extension, the peak strength envelope 

corresponds to a shear angle between 42° and 60° for a c'=O. The very high angles of 

shearing resistance both at peak and critical state are thought to result from the high 

angular silt content and low clay particles content, that is corroborated by the turbulent 

mode of shearing. 

The lowest value of cp' equal to 27° is obtained in shear box tests in which the failure is 

forced along the horizontal plane that on natural samples coincides with the preferred 
direction of the clay particles. 

8.2.3.6 Small strain stiffness 

a) Undrained stiffness characteristics 

Figure 8.12 shows the variation of Young's Modulus with shear strain during 

consolidated undrained triaxial compression and extension tests on samples from 5.3 to 

6.2 m depth. The data demonstrates the strong soil non-linearity prior to large scale 

yielding and that the small strain stiffness is influenced by: 

a) The reconsolidation path: all the samples, with exception of LCU2, have been 

consolidated to the in-situ stresses with a small load-unloading loop to simulate 
the recent stress history of the sediment. The reproduction of the sediments 
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recent stress history prior to shearing seems to be able to erase the effects of 
disturbance during sampling and specimen preparation, and Sherbrooke and 

Laval samples are found to yield similar stiffness; 

b) The shearing mode: the Carse clay is found to be stiffer in triaxial compression 

than extension, but the stiffness decays more quickly in triaxial compression. 

c) The shearing rate: an increase in the strain rate is found to move the stiffness 

curves upwards, even if only by a small amount. 
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Figure 8.12: Variation of the normalized tangent Young's modulus with shear strain 
from undrained compression and extension tests (Smith et al., 1992). 

Smith (1992), based on tests on samples consolidated to stresses close to or beyond the 

yield stress, show that there is a progressive reduction in stiffness with increasing 

straining and/or amount of destructuration undergone prior to shearing. 

Rolo (2003) reports measurements of elastic shear stiffness at the in-situ stresses (which 

are reached using a load-swelling loop) on high quality samples of Carse clay from 5.9 

to 6.2 m depth, obtained using bender elements. Rolo (2003). reports values of shear 

stiffness between 14.6 and 16.8 MPa depending on the direction considered, the higher 

stiffness values being found in the horizontal plane. These values correspond to a 

normalized shear stiffness G/p' between 409 and 470 or normalized Young's Modulus, 
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E�/p' between 1230 and 1410, in good agreement with the data shown in Figure 8.12. 

The relationship between the shear stiffness and the Young's Modulus during undrained 

shearing is given by Equation 8.7. 

_ Equation 8.7 G. =G' =E 
+, u�) 

E. 
2" l+, u 2"(l 

E. 
3 

Rolo (2003) found that these values agreed quite well with the shear stiffness calculated 
from the initial pseudo linear region of the stress - strain curves from both drained and 

undrained consolidated triaxial tests. 

A pressumeter test gave information on the variation of the secant shear stiffness, Gp 

with depth. It was concluded that the values of stiffness derived from the pressumeter 

correspond to values of stiffness at 0.1% shear strain obtained on consolidated 

undrained triaxial tests. The data suggest that the shear stiffness increases proportionally 

with the mean effective stress, and thus varies roughly linearly with depth. 

b) Drained stiffness characteristics 

Smith (1992) performed a series of triaxial tests in which the samples were previously 

consolidated to the in-situ stress state following a load-unload cycle to retrace the soil's . 
light overconsolidation, and then subjected to continuous drained probing tests, starting 

from the in-situ stress state, at different angles 0 in the p'- q plane, 0 being defined as 

6= tan' (Oq/Op'). Figure 8.13 shows the variation of the normalized shear and bulk 

stiffness during the drained probing tests. 

The data demonstrates once again the strong non-linearity of the Carse clay prior to 

large scale yielding and the influence of the recent stress history and the stress path 
direction on the measured stiffness characteristics. 

The normalized bulk modulus shows a wide scatter with the largest values of bulk 

stiffness occurring along paths where the deviatoric stress is constant (0=0° or 1800) 

and smallest when changes in deviatoric stress dominate (0= 70° or 110°). Regarding 

the shear stiffness data, the trends are not so well defined. 
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Figure 8.13: Variation of the tangent normalized shear and bulk stiffness during 
drained probing tests (Smith, 1992). 

Rolo (2003) also gives evidence of the dependency of the elastic bulk stiffness on the 

adopted stress path and reports values of bulk modulus of about 23 MPa under axial 

straining and 15 MPa under radial straining, which correspond to values of K'/p' of 

about 644 and 420, respectively. Rolo (2003) derived values of Poisson's ratio between 

0.22 and 0.29 with an average value of 0.26. 

8.2.3.7 Soil structure 

The behaviour of a natural clay is in general different from that of the same soil after it 

has been reconstituted because both the depositional conditions and the post- 

depositional processes to which both soils have been subjected are different, leading to 
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differences in fabric and inter-particle bonding. The term structure has been adopted in 

the literature to refer to the additional components of strength and stiffness of the 

natural soil, in relation to the reconstituted one, which cannot be accounted for by void 

ratio and stress history alone (Burland, 1990; Leroueil & Vaughan, 1990). The degree 

of structure in a natural clay can be evaluated in terms of: 

a) State, by comparing the void ratio of the natural clay and reconstituted material 

at the same stress state (e. g. Figure 8.8); 

b) Strength, by comparing the strength of intact and remoulded soil (e. g. Figure 

8.11); 

c) Yield stress, by comparing the apparent overconsolidation ratio or the YSR with 

that caused by mechanical overconsolidation (e. g. Figure 8.9). 

Smith et al. (1992) have investigated the effect of destructuration on the stress - strain 

response of Carse clay under triaxial conditions, by testing samples that were previously 

consolidated to stresses close to or above the yield stress. The structural components of 

resistance in the Carse Clay reduce progressively with the development of volumetric 

and/or shear strains and destructuration causes the behaviour of the soil to shift towards 

that of the reconstituted material. 

Clayton et al. (1992) and Smith et al. (1992) have concluded that sample disturbance 

during sampling was least when using the Sherbrooke sampler, followed by the Laval 

sampler, and in both cases samples were able to reveal the existence of structure. The 

Piston sampler recovered the lowest quality samples, which were not suitable for 

reliable measurements of the yield stress or peak strength. 

In general terms the combined effect of disturbance during sampling, specimen 

preparation and reconsolidation was to reduce the mean effective stress in the specimen, 

to shrink the initial bounding surface and therefore reduce the yield stress and peak 

undrained strength. In terms of compressibility, the effect of sample disturbance was to 

increase pre large-scale yield compressibility and decrease compressibility post-yield. 

The susceptibility of the Carse clay to destructuration due to sample disturbance may 

have increased the scatter in the laboratory testing data, especially in the peak strength 

and yield stress data. The other consequence of sample disturbance was to accentuate 
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eventual differences between the behaviour of different fabric types, as different fabrics 

are affected differently during sampling. 

8.2.3.8 Permeability 

Figure 8.14 shows the variation of the vertical and horizontal permeabilities at the in- 

situ void ratio with depth, based on laboratory and in-situ tests. The vertical 

permeability data from different laboratories and test types show very good agreement. 
The variation of vertical permeability, ko with depth follows the trend observed in the 

water content (Figure 8.5), with permeability increasing up to 7m depth, from 1x10-9 

m/s at 1m to about 2x10"9 m/s at about 7 m. Below 7m depth, the vertical permeability 

decreases with depth, reaching the value of 5x10'1° m/s at 15 m. 
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Figure 8.14: Profiles of vertical and horizontal permeability at the in-situ void ratio, 
(after Hight et al., 1992). 

The horizontal permeability has been estimated based on laboratory and in-situ tests. 

Leroueil et al. (1992) showed that of the in-situ measurements those derived from the 

self-boring pressumeter are the most representative, as they are not so affected by 

smearing and reconsolidation as pushed in place devices. The in-situ measurements 

included in Figure 8.14 have been multiplied by a factor of 1.5 to allow for the higher 
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temperature (and consequently lower viscosity of the pore water) in the laboratory tests. 

The range of horizontal permeability values that are obtained at a certain depth depends 

on the size of the specimen size in relation to the soil fabric, and a detailed analysis of 

the permeability data can be found in Leroueil et at. (1992). 

Values of the anisotropy ratio, rk = kho/ko have been calculated from the data shown in 

Figure 8.14, and the values of rk are found to vary between 1.1 and 1.6 in the top 12 m. 

Leroueil et al. (1992) and Little et al. (1992) have shown that under compression the 

variation of permeability, either in the vertical or horizontal direction, follows 

approximately a logarithmic law with void ratio, up to 25% vertical strains. The value 

of the permeability change index, Ck= tie/A log (k) was found to be approximately 0.5 

times the initial void ratio, eo, as previously found for other natural clays. 

8.3 Description of the load tests 

In June 1990, two reinforced concrete footings were constructed at the Bothkennar site, 
in order to investigate both the small and the large stress - strain behaviour of soft clay 
foundations under loading. 

Footing A was loaded to failure over a period of 4 days, while footing B was loaded to 

about two thirds of the failure load of footing A, monitored over a period of over 11 

years, and only then loaded to failure (denominated herein Test Q. 

8.3.1 Footing geometry 

The footings were located in the south - west corner of the Bothkennar research site, 

shown in Figure 8.2 as BRE test area. Footing A was approximately 2.2 mx2.2 m 

square and footing B 2.4 mx2.4 m square, giving equivalent diameters of 2.48 m and 

2.71 m, respectively. The footings were about 0.8 m thick, with the base at 0.8 m BGL. 

Based on a schematic drawing from Gildea (1990) the footings are just over 8m apart 

centre to centre, about 6m edge to edge. No further data was found in the literature 

regarding the spacing between the two footings 

When casting the footings, a 0.6 m square hole was left in the centre of the footings in 

order to accommodate the instrumentation that was to be installed subsequently (Figure 

8.15). 
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Figure 8.15: Construction of the test footings (after Gildea, 1990). 

Footing A was loaded to failure in July 1990, about 40 days after the pouring of the 

concrete, which was considered sufficient for the concrete to cure fully. The loading of 
footing B started one month later. 

8.3.2 Monitoring equipment 

The instrumentation adopted for footings A and B is shown in Figure 8.16. The loading 

tests of footings A and B aimed to give complementary and partially overlapping sets of 

information, and the monitoring plan for the footings has been designed accordingly. 

Test A intended to give data on the short-term behaviour up to failure, and also involved 

a more detailed survey of the surrounding ground surface movements. Test B was 
designed to provide higher resolution data on ground strains at low loads, subsurface 

radial movements and data on the behaviour under maintained load. 

Most of the instrumentation was installed two and a half weeks after the footings were 

cast. Initially the central opening was cleaned out and levelled off. The boreholes 

required for the installation of individual devices were formed by hand augering, with a 

250 mm or 100 mm diameter auger. 

The pneumatic piezometers (9), spade cells (6, combined with pneumatic piezometer 

units), inclinometers (2) and magnetic extensometers (3) were manufactured by Soil 

Instruments and Geotechnical Instruments. All transducers and read-out systems were 
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recalibrated before use. The spade cell readings were corrected assuming that the initial 

radial stresses matched the sum of the undisturbed in-situ profile of horizontal effective 

stress, given by Hight et al. (1992) and pore water pressures. 

The extensometer installed under footing A was read using a tape measuring system that 

gave a nominal accuracy of 1 mm. For footing B, the measuring system was improved 

using fixed indexed brass bars and verniers and the system was shown to have a 

repeatability of about 0.1 mm. In addition, the magnetic access tubes were levelled 

regularly to identify and measure any movement of the relatively shallow base. 

Ground surface settlement targets were installed in a total of 26 positions; locating 8 

targets on the concrete pads, one at each mid-side of the footings, and 18 more into the 

surrounding ground. The surface settlements were monitored with a precise level, with a 

nominal resolution of 0.1 mm. Finally a temporary benchmark was constructed close to 

the test area. Its position was considered to be sufficiently distant from the loading tests 

not to be affected by ground movements, but at the same time close enough so that 

regular checks could be performed. 

To enable a comparison between tests A and B, the measurements are often identified 

by the current mobilized load factor Lf = gi/qL"'ax , where gLma" is the ultimate bearing 

capacity proven in test A and qL is the current bearing pressure. 

In July 2001 during the loading of footing B to failure (herein Test C), only part of the 

instrumentation remained operational and the elevation of the operational spade cells 
(SC2, SC3, SC4) and pneumatic piezometers (PZ2) was corrected based on the 

extensometer data. Both the two inclinometers and the two extensometers were fully 

functional, but as a consequence of the agreed safety criteria the monitoring of the two 

inclinometers and the extensometer on the edge of the footing (EXT2) had to be 

abandoned once the applied load reached 175 kPa. The extensometer at the centre of the 

footing (EXTI) was monitored up to failure. Precise levelling of the footing settlement 

was done remotely using graduated scales clamped to each of the levelling targets 

embedded in the footing. 

It is noted that if nothing is stated to the contrary the data regarding the field behaviour 

and the monitoring data during tests A and B is from Jardine et al. (1995) and the data 

concerning test C is taken from Lehane & Jardine (2003). 
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8.3.3 Loading sequence 

Figure 8.17 shows the variation of applied load and footing settlement with time, during 

tests A and B. The kentledge consisted of concrete blocks and iron railway tracks 

packed into rectangular bundles, which were previously weighed and then placed by 

crane. It was agreed that placing of loading would cease overnight and whenever the 

settlement rate exceeded 8mm/h. Before the start of the testing, and to prevent the 

kentledge blocks from touching the ground surface, a trench approximately 0.5 m deep 

was dug around the footings. 

The loading test A was performed between 10th and 14th July 1990. As the applied load 

reached 138 kPa, the load - settlement curve approached an asymptotic value and just 

before unloading the average footing settlement amounted to about 180 mm, 8% of the 

equivalent diameter of the footing, conditions identified with failure. Footing A settled 

uniformly until a load factor, Lf of about 0.8, showing just before unloading a maximum 

differential settlement of about 50 mm. 
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Figure 8.17: Variation of applied load and settlement of the footings with time, Test A 

and B. 
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Figure 8.18: Footing A at failure (after Gildea, 1990). 

The footing was subsequently unloaded in two stages over a period of 3 hours with 

continuing monitoring over this period and for the following two days. The unloading 

of the footing caused minimal rebound suggesting that most of the settlement developed 

during loading resulted from plastic deformation. Figure 8.18 shows the footing A at 

failure, just before unloading. 

The loading of footing B started one month later. At the start of the test, a small load - 

unloading cycle was performed to investigate the ground response at small strains. The 

loading of footing B was completed using the same criteria described above (not to 

exceed a settlement rate of 8 mm/h) up to 89 kPa, about 65% of the ultimate bearing 

capacity proven in footing A. 

From quite an early stage, corresponding to a load factor of about 0.35, footing B 

showed a noticeable tilting and the footing rotated up to 0.6° as loading continued, even 

though some of the remaining weights were placed eccentrically to counteract the tilt. 

Later piezocone tests were not able to identify any local variation in the ground 

conditions that could explain the development of tilt from so early on. Regarding the 

magnitude of the tilt during test B the only information is the account given by Jardine 

et al. (1995), as there is no information on the individual measurements of settlements at 

the mid-sides of the footing. 
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Figure 8.19 shows the load-displacement curves for tests A and B. Despite the different 

pattern of tilting the agreement between the two tests in terms of bearing pressure - 

settlement response is very good, for the complete loading range of test B. Note that 

footing A did not tilt significantly up to a load factor of 0.8, that is about 110 kPa, and 

so the value of mean and maximum settlement are almost identical up to that load. 
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Figure 8.19: Load - displacement curves for tests A and B. 

In 2001, due to the imminent closure of the Bothkennar research site it was decided to 

load and take to failure footing B, and in this way obtain information on the foundation 

stiffness and strength after such a period of preload. This experiment is herein referred 

to as test C. Footing B was under a constant bearing pressure of 89 kPa for more than 11 

years, developing a total settlement of 230 mm by July 2001. Figure 8.20 shows the 

development of the footing settlement with time during the period July 1990 to July 

2001. 

At the start of Test C, the footing was unloaded from 89 kPa to 60 kPa to remove some 

less regularly shaped weights and prepare a stable loading surface. The loading of the 

footing was done using steel kentledge following similar loading rates to those applied 
in tests A and B. 

Figure 8.21 shows the variation of applied load and footing settlement with time during 

test C. Figure 8.21 indicates that the footing started to tilt from an applied load of about 

150 kPa, and that this tilt became progressively more noticeable as loading continued up 

to 205 kPa, even though some kentledge blocks were placed eccentrically to counteract 
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it. Just before unloading, the maximum differential settlement and the mean settlement 

of the footing both amounted to about 220 mm, about 9.2% of the equivalent footing 

diameter. 
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Figure 8.20: Long term settlement of footing B (July 1990 to July 2001). 

Continuing to add load would have aggravated the tilting of the footing and eventually 

put in danger the safety of the test, and so the test was terminated at this point. Lehane 

& Jardine (2003) note that the settlement rate reduced quickly during the last night 
break and suggest that the footing was still relatively stable and could possibly sustain 
further load. 
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Figure 8.21: Variation of applied load and footing settlement with time, Test C. 
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8.4 Finite element analysis 

8.4.1 Problem geometry and boundary conditions 

The footings were analysed by means of axi-symmetric finite element analyses, 

considering circular footings of equivalent diameter, D*. Potts and Zdravkovic (2001) 

show that the bearing capacity of a circular footing is just 2.3% higher than that of a 

square footing with the same area, and the numerical calculations are considerably 

simplified by using an axi-symmetric analysis instead of a full three dimensional 

analysis. 

Figure 8.22 illustrates the finite element mesh used in the analysis of footing A, which 

consists of 843 eight-noded solid elements, with a total of 2642 nodes. Due to symmetry 

considerations only half of the problem needs to be analysed and the left hand boundary 

constitutes the symmetry axis. The finite element mesh employed in the analyses of 

footing B is identical to that shown in Figure 8.22, except that the footing diameter has 

been changed from 2.48 in to 2.71 in. The dimensions of the mesh were defined based 

on previous experience such that they would not influence the analyses results. 

Figure 8.22 shows schematically the displacement and the pore pressure boundary 

conditions specified along the mesh boundaries. The bottom of the mesh was prevented 

from moving in the horizontal and vertical directions, the lateral boundaries were 

prevented from moving in the horizontal direction only, and the ground surface was a 

stress free boundary. 

The footings were not simulated using solid elements; instead their weight was 

simulated by applying an equivalent uniform stress along the boundary BC. The 

horizontal movements along the boundary BC were set equal to zero and the vertical 

displacements are made to have the same magnitude, thus mimicking the behaviour of a 

rough rigid footing. 

The latter condition was achieved by using the tied degrees offreedom concept in which 

the movements in a particular direction, along a certain boundary, can be set to have the 

same magnitude, however this magnitude is not specified but is a result of the analysis. 

Following the excavation and the casting of the footings (grey area), the boundary AB is 

prevented from moving in the horizontal direction. 
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Figure 8.22: Finite element mesh for footing A indicating the displacement and pwp 
boundary conditions. 

The analyses of the footings presented in this Chapter all involve coupled consolidation 

and therefore it is required to specify appropriate pore pressure boundary conditions. In 

ICFEP the default pore pressure boundary condition is that of no flow of water and this 

was applied to the left hand boundary. The bottom and right hand boundaries were 

considered to be at a sufficient distance from the footing to have no change in pore 

pressure. 
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Given the nature of the crust material it was thought that the soil was able to sustain 

negative pore water pressures (suction) and it was further assumed that there was no 

change in the pore water pressures along boundary AD. 

Boundary AB was thought to allow free flow of water as the footings were cast within a 

wooden frame (and not directly against the soil) and a small trench was excavated 

around the footing to prevent the kentledge from being supported by the surrounding 

ground (which is not represented in the finite element mesh). A condition of no pore 

water pressure change was therefore specified along AB. 

The base of the footing was initially thought to be an impervious boundary. However 

the piezometers placed at shallow depths registered very small pore water changes 
during the loading of the footing up to failure. In addition, Jardine et al. (1995) when 
hypothesizing a pore water profile with depth during loading based on the piezometer 
data assumed the base of the footing to be a drained boundary (no change in pore water 

pressure). The field behaviour indicates that the base of the footing has behaved as a 
drained boundary, and consequently this was the assumption made in the analyses 

presented subsequently. 

The analysis of Test C'was performed using the same mesh as for Test B. Given that the 

analyses are based on small displacement theory the additional embedment (from 0.80 

to 1.05) due to the footing settlement over the 11 years of maintained load, is not taken 

into account. 

8.4.2 Geotechnical profile adopted 

The geotechnical ground profile relevant for the numerical analysis of the footing tests 

is defined based on the extensive characterization data available for the Bothkennar 

research site, which was summarized in Sections 8.2.2 and 8.2.3. The ground profile is 

divided into four geotechnical units, as shown in Table 8.1. 

Unit I consists of modem deposits of the reclaimed tidal flats. Its thickness varies 

throughout the site and is about 1m thick near the footings location. Unit II corresponds 

to the layer of "shells within a matrix of clay" about 30 cm thick that marks the 

unconformity between the Carse Clay sequence and the modem deposits above. There 
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are no specific laboratory test data for these materials, consequently they are assumed to 
be similar to the Carse Clay stratum. 

Table 8.1: Geotechnical units: depth, soil description, bulk modulus and permeability. 

Unit Depth (m) Soil description Bulk unit Permeability 
Top-Bottom weight (kN/m3) (m/s) 

I 0.0-1.0 Weathered clayey silt 18.0 5.0x10"9 
crust 

II 1.0-1.3 Shelly layer 17.0 1.0x10"$ 

III 1.3-2.2 Soft clayey silt with 17.0 5.0x10'9 
some shell fragments 

Soft black silty clay 
IV 2.2-18.0 with fine mottling and 16.0 2.0x10"9 

occasional silt laminae 

Unit III corresponds to the weathered facies in the top of the Carse Clay sequence and it 

is about 0.9 m thick. This material is assumed to be similar to the main Clay sequence, 

as the mineralogy, composition and depositional environment are likely to be the same, 

and the effect of weathering on the soil response is expressed by means of appropriate 

values of KO and YSR. Unit IV comprises the Carse Clay sequence and includes in the 

top a transition zone of lightly weathered material. 

The profile of pore water pressures with depth is assumed to be hydrostatic with the 

ground water level (GWL) at 0.9 m depth and assuming the soil to be able to sustain 

negative pore water pressure above the GWL. 

In the numerical analyses shown subsequently, the foundation soil is modelled using the 
Equivalent Time (ET) model. The basic model parameters for the foundation soil are 

assumed to be identical within the four units defined above, with the variation in the 

stiffness and strength with depth being expressed by means of appropriate values of KO 

and YSR. The derivation of the model parameters is presented in Section 8.4.3. 

Figure 8.23 shows the profile of the coefficient of earth pressures at rest and the yield 

stress ratio adopted in the analyses. For comparison the laboratory and in-situ test data 

previously shown in Figure 8.6 and Figure 8.9 are also included. 

Based on in-situ and laboratory tests at the in-situ void ratio, the ratio of horizontal to 

vertical permeability is between 1.1 and 1.6 in the top 12 m of the clay stratum. This 
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permeability anisotropy was regarded to be quite small and consequently was not 
introduced into the numerical analyses. The values of (the isotropic) permeability 

adopted for each geotechnical unit are included in Table 8.1 and have been defined 

based on the data included in Figure 8.14, and assuming that the permeability obtained 
from samples may be different, in general lower, than that of the soil mass. 

KO yield stress ratio, YSR 
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Figure 8.23: Profile of the coefficient of earth pressures at rest and yield stress ratio 
adopted in the analyses. 

The initial effective stresses in the foundation soil are calculated using: i) the 

distribution of bulk unit weight with depth included in Table 8.1; ii) a hydrostatic pore 

water pressure profile with the GWL at 0.9 m depth and iii) the adopted Ko profile 

included in Figure 8.23. The resultant profiles of vertical and horizontal effective 

stresses with depth are shown in Figure 8.24. 
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Figure 8.24: Profile of initial vertical and horizontal effective stress with depth. 

8.4.3 Derivation of the model parameters for the Carse Clay at Bothkennar 

8.4.3.1 Definition of the parameters values 

The ET model parameters for the Carse Clay are derived based on the laboratory test 

data that were mostly carried out as part of the characterization project for the 

Bothkennar site launched by the former SERC. The samples are mainly from 5.3 to 

6.2 in depth. The ET model parameters for the Carse Clay are summarized in Table 8.2, 

and their justification is described in the following paragraphs. 
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Table 8.2: Model parameter adopted in the numerical analyses. 

OCR (") eo cp' ? JV icN µ WON k ("") 

- - - - - - m/s 

1.55 1.85 36 0.0842 0.0105 0.26 0.00378 2x10'9 

to 
vol, m, Limit 

ag of -µf P'mio [ßs0 Ps 

day - - - kPa kPa - 
1.0 0.065 0.05 0.85 10.0 30.0 1500 

Notes: 
eo = initial void ratio; 
V' = critical state shear angle in triaxial compression; 
. 1/V = slope of the reference time line in E,. - In p' space; 
tdV = slope of the instant time line in ev - In p' space; 
p= Poisson's ratio; 
ViolV = creep parameter; 
k= permeability; 
to = time on the reference time line 

svö 
,,,,, L;,,, rl = Limit for the amount of visco plastic volumetric strain 

of uy = parameters that characterize the shape of the loading surface in p'-q plane. 
ag, fig = parameters that characterize the shape of the plastic potential in p '-q plane. 
p,,,;,, = mean effective stress on the intrinsic reference time line at zero volumetric strain in s� - 
In p'space 
pso = initial increase in p', �, o due to structure 
ps = destructuration parameter 

() In the top 4m of the ground profile the OCR is larger than 1.55 as result of e. g. weathering, 
fissuring, seasonal variations in the ground water level. The profile of OCR adopted in the 
analyses is shown in Figure 8.23. 

The permeability value adopted for each geotechnical unit is shown in Table 8.1; the value 
of 2x10" m/s corresponds to the value in Unit IV. 

a) Critical state angle o shearing resistance in triaxial compression 

Based on undrained triaxial compression tests on reconstituted samples Allman & 

Atkinson (1992) report a critical state angle of 34°. However, Smith (1992) notes that 

on natural samples the mobilized shear angle at large strains between 15-20% varies 

between 36° and 45°, depending on the samples facies. The value of 36° is adopted 
here. 
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b) Poisson's ratio 

Rolo (2003) performed consolidated drained triaxial tests with local strain 

measurements on high quality samples of Carse Clay from 5.9 to 6.2 m depth. From the 

initial pseudo-linear range of the stress-strain curves the author deduced values of the 

elastic parameters and obtained Poisson's ratio values between 0.22 and 0.29, with an 

average value of 0.26. 

c) Slope of the reference time line, A/V 

Based on IL oedometer tests on reconstituted samples from various depths Nash et al. 

(1992b) report values of the coefficient of primary consolidation C, of about 0.55 at 

depths ranging from 5 to 6.5 m. This corresponds approximately to a value of a, of 0.24. 

It is shown in Chapter 6 that the ET model should be formulated using 21V and KN 

constant such that the reference time line and the instant time line are straight lines in 

the cv - In p' space. With an initial void ratio of 1.85, X/V comes equal to 0.0842. 

d) Slope of the instant time line, x/V 

The slope of the instant time line was estimated based on the first unloading increment 

of IL oedometer tests and a value of K equal to 0.03 is adopted. Assuming an initial void 

ratio eo equal to 1.85 this corresponds to a value of KN equal to 0.0105. 

As explained in Chapter 6, the elastic part of the ET model is characterized by a stress 

dependent bulk modulus, given by Equation 8.8 and a second elastic parameter that can 

be input in several ways. The second elastic parameter is set to be the Poisson's ratio 

and equal to 0.26, and then the elastic shear stiffness is calculated by means of Equation 

8.9. 

Equation 8.8 K= 
Vp 

x 

where p' is the current mean effective stress and xN is the slope of instant time line in 

c, -In p' space. 

Equation 8.9 G'=K' . 
3. (1- 2, c) 
2" (l+u) 
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where µ is the Poisson's ratio. 

e) Time at the reference time line 

The time at the reference line was taken to be one day, as the reference time line is 

made to correspond to that obtained in IL oedometer tests with 24 hours load 

increments. 

Creep parameter '&V 

The creep parameter TON is related to the visco-plastic volumetric strain rate on the 

reference time line by means of Equation 8.10. Considering a visco-plastic volumetric 

strain rate on the reference line equal to 5x10"8 m/s, (note that according to Nash et al., 

1992b this was the typical value of axial strain rate at the end of the load increments), 

and the values of a, and x defined above, the parameter TON is found to be 0.00432. 

Equation 8.10 sVo =Vt 
0 

On the other hand, the parameter 'I'ON can be related to the coefficient of secondary 

consolidation, Cue by means of Equation 8.11. Nash et at. (1992b) reported that the ratio 

of CadCCe (mathematically equivalent to yr° /A) was fairly constant, and varied 

between 0.03 and 0.05 around the pre-consolidation pressure stabilizing in the NC range 

after full destructuration at about 0.045. This gives a value of Cae about 0.025 that in 

turn corresponds to a value of TON of about 0.0378, the value employed in the 

following analyses. 

Equation 8.11 V/0 
Cc 

In 10 

g) Parameter p', �; o 

The parameter p'mio is the value of the mean effective stress at zero volumetric strain on 

the intrinsic reference time line and it is given a value of 10.0 kPa. 

h) Parameters p', o and 
_ 

The parameter p'SO corresponds to the initial increase in p'mo (the mean effective stress 

at zero volumetric strain on the reference time line of the natural material) due to 
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structure and therefore together with p'mio defines the distance between the intrinsic and 

the in-situ reference time line. The parameter pS defines the decay in ps with the 

development of volumetric plastic strains by means of Equation 8.12. Based on the IL 

oedometer tests on natural samples the two parameters p'so and ps are estimated to be 

30 kPa and 1500, respectively. 

Equation 8.12 Ops =-3.0 "p' ps ' Eä ' D£d 

ps = current increase in p mo due to structure; 
DEd = 

IDEx 
+ A. - + DEzp 

where AcT" is the visco-plastic strain increment in the i direction; 
I 

£d =f "'Ed 

0 

i) Limit for the amount of volumetric visco-plastic strain, £vä 
, m, Limit 

The parameter svo 
, m, Limit corresponds to the value of the volumetric visco-plastic strain 

attained at infinite creep time and in the absence of a long-term creep test, is often taken 

to be eo /1 + eo which corresponds to the situation when voids no longer exist in the soil. 

This value causes the ET model to collapse onto a nearly linear logarithmic creep law 

within engineering time intervals. Smith (1992) reports creep tests on natural samples of 

Carse Clay that demonstrate a strong non-linearity of the creep behaviour. Based on 

these test results the value of Eö 
, m, Limi! is set equal to 0.065 (10% of eo /1 + eo ). 

j, ) Parameters a and p 

The parameters a and µ define the shape of the plastic potential and the loading surface 
in p'-J stress space. In this case, the plastic potential and the yield surface are given the 

same shape in p'-J stress space and aq of and pq µf. The value of a and µ are selected 

such that when assuming the model parameters included in Table 8.2 and the initial 

stress conditions and overconsolidation ratio described in Section 8.4.2, the model 

predicts the required values of peak undrained strength. Based on the consolidated 

undrained triaxial compression tests on samples from 5.3 to 6.2 in reported by Smith 

(1992) the values of a and µ are set equal to 0.05 and 0.85, respectively. 
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8.4.3.2 1D compression behaviour 

Finite element analyses of laboratory tests were performed to validate the derived model 

parameter values. Figure 8.25 shows an IL oedometer test on a reconstituted sample of 

Carse Clay from about 5.2 m by Smith (1992) and the ET model predictions. The results 

shown in Figure 8.25 are obtained using the parameter values shown in Table 8.2, 

except for the initial void ratio that is set to 2.4, to reflect the reconstituted nature of the 

soil, and the parameters related with structure are set to zero. The values of X/V and x/V 

are set such that the condition of X=0.24 and K=0.03 are still verified, so that a good 

agreement is obtained when comparing the data in void ratio - In p' space. Figure 8.25 

also includes the results of an IL oedometer test on a reconstituted sample reported by 

Nash et al. (1992b), showing the repeatability of the results from Smith (1992). 

2.6 

2.2 

g°. 1.8 

°> 1.4 

1.0 

0.6 

IL(R); 5.3m depth 
13 13 (Smith, 1992) 

.................. 
IL (R) 9A-5; 5.2m depth 
(Nash et al., 1992) 
ET model 

IL = incremental load oedometer test with 24h load increments; R= reconstituted sample 

Figure 8.25: Incremental load oedometer tests on reconstituted samples of Carse clay; 
laboratory data and model predictions. 

The finite element analyses of the IL oedometer tests invoke coupled consolidation so 

that the effect of consolidation is taken into account. The finite element mesh is 

therefore required to have the real dimensions of the sample and to have several 

elements in the direction of flow (vertically) so that a reasonable profile of pore water 

pressure across the sample is predicted. The author has checked that in a single drainage 

oedometer about 10 elements are needed in order for the number of elements not to 

influence the analysis results. In the model predictions, the void ratio at the end of each 

increment is calculated from the vertical displacement of the top of the sample, 

identically to the procedure in the laboratory. 
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a) Natural samples - structure and destructuration 

Figure 8.26 shows two 24 hours IL oedometer tests on natural samples and the model 

predictions. The finite element analyses of the IL oedometer tests shown in Figure 8.26 

are coupled consolidation analyses as discussed above, and were performed using the 

parameter values included in Table 8.2, with exception of the initial void ratio, eo that is 

set equal to 1.875 and 1.775 to match those of the Sherbrooke and Laval samples, 

respectively. The values of X/V and x/V have been set such that the conditions of 

X=0.24 and K=0.03 are still verified. The Laval and Sherbrooke samples are from 5.3 in 

and 6.2 m depth and the estimated in-situ vertical effective stresses are about 43.8 and 

49.1 kPa, respectively. The FE analyses assume that the samples have an 

overconsolidation ratio of 1.45 in relation to the in-situ stresses, slightly reduced from 

the in-situ value of 1.55 due to disturbance caused during sampling, transportation and 

specimen preparation. 

2.0 
IL (R); 5.3m depth 

1.8 IL Sherbrooke; 6.2m depth 

13 B IL Laval; 5.3m depth 
1.6 

------ ---- ET model (Sherbrooke) 

1.4 
"` ------------------ ET model (Laval) 

1.2 
Gi- 

ý.. 1.0 

0.8 

0.6 
10 100 1000 

log(6, '), kPa 

Figure 8.26: IL oedometer tests on natural samples of Carse Clay: laboratory data 
from Smith (1992) and model predictions. 

Figure 8.26 shows a good agreement between the FE analyses predictions and the 

laboratory compression curves during the initial loading steps during the 

overconsolidated stress range. During the intermediate loading stages the FE analyses 

predictions are found to produce a more abrupt destructuration than that observed in the 

laboratory curves and from about 160 kPa on the FE analyses cease to predict any 

further destructuration and the predicted compression curves remain parallel to, and 

above, the laboratory intrinsic compression curve. This behaviour is in contrast to that 
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observed in the laboratory compression curves on natural samples that are found to join 

the intrinsic compression curve at about 1000 kPa vertical stress. 

This behaviour derives from the fact that in the ET model the intrinsic and the natural 

compression lines are defined and their location fixed in r, -lnp' space, and thus a 

change in the initial void ratio causes the intrinsic and the natural reference time line to 

move vertically when the results are plotted in void ratio -1np' space. Therefore, rather 

than looking at the absolute value of void ratio at a certain stress value one must 

consider the changes in void ratio during compression. The soil structure can be 

quantified as the distance between the intrinsic compression line and a parallel line 

passing through the yield point of the compression curve on a natural sample, noting 

that in the case of the FE analysis the intrinsic curve of a given soil element is a tangent 

to the last part of the respective compression curve. Using this definition, the model 

predictions shown in Figure 8.26 under predict the amount of initial structure when 

compared with the laboratory test data by Smith (1992). 

2.2 

1.8 

0 
Z5 

.D1.4 
0 

1.0 

0.6 

IL(R) 24h; 5.3m depth (Smith, 1992) 

---------- Laval 9A-3, IL 24h, 5.2m depth 

---------------- Laval 9B-1B, CRS 0.015mm/min, 5.4m depth 

----------------"- 9A-5, IL(R) 24h, 5.2m depth 
ET model (Sherbrooke) 

---- 

10 100 1000 
Iog(6, '), kPa 

Notes: when not stated the data is this Figure is from Nash et al. (1992b). 

Figure 8.27: IL oedometer on Carse Clay samples: laboratory data and model 

predictions. 

Figure 8.27 shows oedometer tests on natural samples of Carse Clay reported by Nash 

et al. (1992b) and the model predictions are found to fit the general trend of the 

laboratory test data. Although Nash et al. (1992b) undertook an extensive study on the 
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1D behaviour of the intact Carse Clay, the tests from Smith (1992) are preferred as a 

comparison with the FE analyses, as it is only for these tests that information regarding 

the value of the load steps is available. 

Finally it is noted that the destructuration mechanism included in the ET model was 
initially derived by Lagioia & Nova (1995) to reproduce the behaviour of a calcarenite 
in which structure occurs mainly due to cementing. In comparison, in Carse clay the 

structure results mainly from particle bonding and the destructuration process is found 

to be gradual. The limitations of the destructuration mechanism to reproduce the 

behaviour of the intact Carse Clay are discussed subsequently. 

b) Long-term creep test 

Figure 8.28 shows the variation of void ratio with time during creep tests on natural 

samples of Carse Clay. The laboratory procedure was to consolidate a triaxial sample 

under KO conditions and a constant axial strain rate of 1%/day up to a mean effective 

stress of 100 kPa, at which point the sample was allowed to creep at constant effective 

stress. 

The model predictions are obtained from a coupled consolidation FE analysis using the 

model parameters in Table 8.1. In the FE analysis, the sample is assumed to have no 
initial structure, as at 100 kPa the sample is at an intermediate state, between intact and 
fully unstructured. If this structure had been accounted for, then during the creep stage 

the ET model would have predicted further structure loss associated with the 

development of volumetric visco-plastic strains, while in reality the soil structure is 

expected to remain stable or even to increase. 

Figure 8.28 shows that, in the overall, the FE analysis predictions agree well with the 

two laboratory tests. The FE analysis slightly overpredicts the amount of creep during 

the early stages of the creep period but fits quite well the creep deformation (or void 

ratio change) and the creep rate at the end of the creep period, in particular for test 

SUD 1. The initial softer response predicted by the FE analysis when compared with the 

laboratory data is thought to result from the different pore pressure response. Smith 

(1992) reports that the end of consolidation defined at 95% excess pore pressure 
dissipation is about 19 hours after the start of the creep, while in the FE analyses there is 

virtually no excess pore pressure developed during consolidation. 
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Figure 8.28: Void ratio change with time during creep: laboratory data (Smith, 1992) 

and model predictions. 

c) Strain rate effects on the yield stress ratio 

Figure 8.29 shows the variation of the yield stress ratio with the applied axial strain rate 
from oedometer tests on natural samples of Carse Clay and compares the laboratory 

data with the model predictions. The model predictions have been obtained by means of 
drained single element finite element analyses of constant rate of strain oedometer tests, 

assuming the model parameters given in Table 8.2. The ET model is found to reproduce 

well the variation of the YSR with strain rate of the intact Carse Clay. 
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Figure 8.29: Variation of the yield stress ratio with strain rate: laboratory test data 
(Nash et al., 1992b) and model predictions. 
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8.4.3.3 Consolidated undrained triaxial tests 

Peak undrained strength 

Figure 8.30 shows the effective stress paths of consolidated undrained triaxial tests on 
intact samples of Carse Clay. The Laval and Sherbrooke samples were from 5.3 and 
6.2 m depth, respectively. The samples were consolidated to the estimated in-situ 

effective stress state following a swelling loop to mimic the recent stress history of the 

in-situ material. The specimens were then sheared either in compression or extension at 

1%/day constant axial strain rate in tests LCU1 and LCU3 and 4.5%/day in the 

remaining tests. The model predictions are obtained by means of undrained FE analyses 

using the model parameters given in Table 8.2. 
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Figure 8.30: Effective stress paths of consolidated undrained triaxial tests on intact 
Carse Clay samples: laboratory data and model predictions. 
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When reproducing the Sherbrooke and Laval samples YSR values of 1.55 and 1.5 were 

adopted, respectively, assuming that the Sherbrooke samples produced marginally less 

disturbance during sampling. As noted previously, the parameters a and .t were 

estimated by matching the peak undrained strengths in compression. In the ET model 

the extension to generalized stress space is by default done using the Matsuoka-Nakai 

failure criterion and it is not possible to control the shape of the loading surface and the 

plastic potential in the deviatoric plane. Consequently, once the undrained strength has 

been matched in triaxial compression the value of undrained strength under other 

shearing modes is set, and the ET model is found to overpredict the undrained strengths 

in extension. 

Although the samples have an initial structure and the ET model incorporates a 

destructuration mechanism, the model does not predict destructuration as observed in 

the laboratory tests with significant loss in deviatoric and mean effective stress post 

peak during undrained shearing. This arises because the formulation of the 

destructuration mechanism in the ET model is a function of the visco-plastic volumetric 

strain component only. During undrained shearing the total volumetric strain is zero, 

implying that the elastic and the visco-plastic components have the same magnitude but 

opposite signs. Given that the changes in mean effective stress are small both the elastic 

and visco-plastic components are expected to be very small and the magnitude is not 

enough to produce any noticeable change in the value of ps. 

The ET model is found to capture quite well the rate dependent response in undrained 

shearing, as it provides a good fit to both the test data of LCU1 and LCU4. 

Figure 8.31 shows the stress-strain curves for the same consolidated undrained triaxial 

tests. The model is found to fit reasonably well the value of the axial strain at peak, 

however it is not able to simulate the stiffer initial response observed in the laboratory 

tests, as the elastic part of the model is based on a stress dependent Bulk modulus and a 

constant Poisson's ratio. 
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Figure 8.31: Stress - strain curves and evolution of excess pore water pressures during 

consolidated undrained triaxial tests on intact Carse Clay samples: 
laboratory data and model predictions. 

8.4.3.4 Undrained strength profile 

Figure 8.32 shows the profile of peak undrained strength in triaxial compression 

predicted by the ET model together with the laboratory data. In the ET model, the 

undrained strength, S� cannot be obtained directly from the current stress state and the 

model parameters as S� is also a function of the applied strain rate. The profile of peak 

undrained strength with depth was obtained by means of undrained FE analyses 

simulating consolidated undrained triaxial compression tests at 4.5%/day axial strain, at 
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various depths. Each FE consolidated undrained triaxial test is performed with the 

appropriate initial effective stresses given in Figure 8.24 and the respective value of 

YSR shown in Figure 8.23. 

The S� profile predicted by the ET model fits well the laboratory data in the top 8 in. 

Below this depth, where there is some divergence, the strength values are unlikely to 

have a significant effect on the footing behaviour. 
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Figure 8.32: Profile of undrained strength in triaxial compression: laboratory data 

and model predictions. 

8.4.4 Analyses of the footing tests with soil structure 

Footing tests A and B are simulated by means of axi-symmetric coupled consolidation 
finite element analyses, considering the finite element mesh presented in Figure 8.22 

and the model parameters defined in Section 8.4.3. The analyses simulate the 

excavation for the footing, the casting and the waiting time until the start of the loading 

test. Loading histories identical to those shown in Figure 8.33 (and Figure 8.17) were 

applied to the footings in the analyses. 
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Figure 8.33: Variation of applied load and settlement with time during test A and B. 

It is noted that the applied load provided by Gildea (1990), Jardine et al., (1995) and 

Lehane & Jardine (2003) has been interpreted as being a net bearing pressure, gnet as 

shown schematically in Figure 8.34, and considering the bulk unit weight of the 

concrete equal to 24 kN/m3. 

Figure 8.33 shows the applied load history and the variation of footing settlement with 

time, and compares the FE analyses predictions (series ICFEP) with the field data. The 

agreement between the FE analyses and the average measured settlement is in general 

excellent. In both tests, the FE analyses slightly overpredict the footing settlements 
during the early loading stages up to about 65 kPa and underpredict at intermediate 

loads between 75 and 120 kPa. 
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Figure 8.34: Definition of net and gross bearing pressure. 
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Figure 8.35 shows the incremental displacement vectors just before footing A was 

unloaded as predicted by the FE analysis and indicates that at the end of Test A, the FE 

analysis is able to predict a concentration of the plastic creep deformations immediately 

below the footing. 

11 Lýsýv. 
... 

{.... 

Figure 8.35: Incremental displacement vectors at failure just before the footing 

unloading - test A. 

No data on the evolution of the footing settlement rate during test A have been found in 

the literature but approximate values may be deduced from the time-settlement curves 

shown in Figure 8.33. The field settlement rates derived in this manner are shown in 

Figure 8.36, but due to the errors involved in the their calculation these values should be 

viewed with caution. 
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Figure 8.36: Variation of foundation settlement rate with time during test A. 
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The data show a wide scatter as the values vary considerably between the four targets, 

or footing sides, towards the end of the test due to the tilting of the footing. For 

example, immediately after the application of the last load increment the settlement rate 
is found to vary between 18 mm/h and 7 mm/h (with an average of 10.5 mm/h) 
depending on the target considered and during the night shift the settlement rate falls to 

about 1 mm/h. 

Figure 8.36 includes the variation of the footing settlement rate during test A predicted 
by the FE analysis. The FE analysis predictions show large oscillations in particular up 

to t=60 hours as result of the reduced number of analysis increments, noting that each 
data point in Figure 8.36 corresponds to the average settlement rate over a given 

analysis increment. The FE analysis predicts that the settlement rate immediately after 

the application of the last load increment is about 11 mm/h decreasing to 2.6 mm/h at 

the end of the night shift. The analysis results are thought to agree well with the field 

data. 

Figure 8.37 shows the variation of the settlement of footing B between July 1990 and 
July 2001, and compares the field data with the analysis predictions. The FE analysis 

predicts that the footing B fails during consolidation, about 1200 days after the start of 

the test. 
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Figure 8.37: Long term settlement of footing B- field data and model predictions. 

According to the FE analysis, the settlement starts to stabilize (decreasing slope of the 

settlement - time curve in semi-logarithmic space) between 300 and 700 days, but then 
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unexpectedly the footing settles a further 200 mm further between 1000 and 1200 days 

preceding the footing failure. Figure 8.38 shows the incremental displacement vectors at 

failure, which indicate a punch-through type of mechanism. 

The sudden increase in the footing settlement at 1000 days and the subsequent failure 

can be understood by examination of Equation 8.13, which describes the change in the 

soil structure, ps during the analysis. 

Equation 8.13 4p,. = -3.0 " p,. " p, " s; " Os, 

p, = current increase in p'mO due to structure; 
4'-d _ 

jAc' + Os + 4sý'ý Where Ae; '° is the visco-plastic strain increment in i direction; 

E, l =f AE, 
0 

'.:. ýy. 

Figure 8.38: FE analysis of test B assuming soil structure - incremental displacement 

vectors at failure, about 1200 days after start of the test. 

The change in ps - the parameter that quantifies the current soil structure - is a function 

of the volumetric visco-plastic strain component only. It is noted that according to the 

ET model formulation, on applying a stress increment the model predicts instantaneous 

elastic deformations only, and the plastic deformations develop subsequently with time. 

In addition the foundation soil behaves quasi-undrained, at least within most of the 

foundation soil with the exception of a superficial layer, and most of the footing 

settlement at the end of loading originates from shear strains associated with the 

foundation yielding. Therefore in the short term, during the footing loading, the amount 
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of volumetric visco-plastic strains developed is likely to be relatively small, and to 

produce minimal or no significant change in ps. 

With time there is continuous soil deformation associated with both dissipation of the 

excess pore water pressure and creep. Dissipation of the excess pore water pressure 

generated during the footing loading is found to be mostly complete in about 200 days, 

and during this period the footing is found to be stable even if the predicted settlements 

and the settlement rate are larger than those observed in the field. The subsequent 

development of creep strains is thought to cause the value of the visco-plastic 

volumetric strain component to assume values at which there is a significant decrease in 

ps, and thus loss of structure. This in turn produces exacerbated volumetric visco-plastic 

strains as the soil tends to the intrinsic state, and strength loss causing the footing to fail. 

In reality, the foundation soil is likely to experience loss of structure during the footing 

loading, after which the structure is stable or even partly recovered as the soil ages 

under a new stress state. It is therefore concluded that the destructuration mechanism 

incorporated in the ET model does not describe correctly the change in structure 

occurring in the foundation during the footing tests, and in the following analyses it is 

preferred to consider the foundation soil to have no structure. 

It is noted that due to the model formulation the prof He of undrained strength with depth 

predicted by the ET model at a given shearing rate is the same regardless if the structure 

parameters are set to zero or the soil is assigned to have an initial structure, because the 

latter corresponds simply to a shift in the location of the reference time line. The fact 

that the soil is assigned an initial structure implies that the soil has scope for structure 

and consequent strength loss. Therefore, for the same set of model parameters the 

consideration of soil structure causes the ET model to predict that the soil, following 

destructuration, is weaker than the unstructured soil. The author is aware that this is in 

contrast with the common perception that the behaviour of a structured soil is stronger 

than that of the reconstituted one. 
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8.4.5 Analyses of the footing tests without soil structure 

8.4.5.1 Footing test A 

a) General load - displacement behaviour 

Test A is simulated by means of an axi-symmetric coupled consolidation finite element 

analysis, considering the finite element mesh presented in Figure 8.22 and the model 

parameters defined in Section 8.4.3, with the exception of the parameters that control 

the soil structure and the destructuration process, ps and ps, that are set to zero The 

analysis simulates the excavation for the footing, the casting of the footing, and the 

waiting time until the start of the loading test. 

A way of simulating the additional compressibility due to the loss of structure during 

the footing loading is to consider a higher value of ?- the slope of the reference time 

line. The value of ? adopted is in the upper bound of values obtained in oedometer tests 

on reconstituted samples of Carse Clay between 5.2 and 6.5 m depth (within 

geotechnical unit IV), and this value has been adopted throughout the soil profile, 
inclusive in the geotechnical units I to III that are expected to be stiffer. Therefore the 

value of ? equal to 0.24 adopted in the analyses is thought to be a good approximation 

to the average operational compressibility of the foundation soil. 

Figure 8.39 shows the variation of applied load and footing settlement with time during 

test A as predicted by the FE analysis. For comparison the predictions presented in 

Section 8.4.4 are also included. 

In a similar fashion to the analysis presented in Section 8.4.4, the FE analysis without 

soil structure overpredicts the footing settlement during the early stages of loading up to 

about 65 kPa and underpredicts at intermediate applied stresses between 75 and 12OkPa, 

but in general the FE analysis predictions are thought to approximate well the field data, 

in particular when considering the average of the four settlement measurements at the 

mid-sides of the footing. The initial softer behaviour predicted by the FE analyses is 

thought to result from the adoption of an elastic bulk and shear stiffness, dependent on 

stress level only, that cannot reproduce the strong soil linearity at small strains. 
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Figure 8.39: Variation of applied load and footing settlement with time during test A: 
field measurement and model predictions. 

The variation of footing settlement with applied load predicted by both analyses is 

identical up to an applied stress of about 100-kPa and at failure, just before footing 

unloading, the consideration of soil structure accounts for an additional settlement of 

only 20mm, about 10% of the total footing settlement. 

Figure 8.40 shows the variation of the foundation settlement rate with time, derived 

from the field settlement-time curves, and compares the field data with the FE analyses 

predictions. The consideration of soil structure in the FE analysis is found to have a 

minimal effect on the footing settlement rate throughout the loading test, with the 

analysis with structure yielding slightly higher settlement rates at the end of the test and 
during the night break before the footing was unloaded. As noted previously, the FE 

analysis yields large oscillations on the predicted footing settlement rate, in particular 

up to t=60 hour as a result of the reduced number of analysis increments. In any case, 

the agreement between the FE analysis predictions and the field data is thought to be 

good, particularly during the latter stages of the load test. 
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Figure 8.40: Variation of foundation settlement rate with time during test A. 

Figure 8.41 shows the incremental displacement vectors occurring in the foundation soil 
just before the footing unloading. The FE analysis is able to reproduce a concentration 

of plastic deformation immediately below the footing but fails to predict a well-defined 
failure mechanism. In any case, the good agreement between the FE analysis and the 

field data in terms of the load-displacement curve and the footing settlement rates at the 

end of the test confirm that the FE analysis recovers well the overall behaviour of 
footing A. 

, t3, 
1ý 

Figure 8.41: Incremental displacement vectors at failure just before the footing 

unloading - Test A. 
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b) Investigation of the failure condition of ooting A 

The FE analysis of test A has shown no convergence problems throughout. Therefore 

despite the good agreement with the field measurements in terms of the overall 

behaviour of the footing, it was of interest to investigate the bearing capacity predicted 
by the FE analysis and the shape and extent of the associated failure mechanism. 

FE analyses simulating the application of further load to footing A were performed, and 

the respective load - settlement curves are shown in Figure 8.42. Series (a) corresponds 

to a coupled consolidation FE analysis during which the footing is loaded at 6 kPa/hour 

(a loading rate similar to that applied during hour 70 and 80, see Figure 8.39) after the 

last night break. The FE analysis fails to predict a well-defined failure load, and the 

footing is able to accommodate further loading even at very large displacements. Figure 

8.43a) shows the incremental displacement vectors predicted by the FE analysis when 

the accumulated settlement of the footing amounted to about 800 mm. 

Another analysis (not shown in Figure 8.42) was performed in which the additional load 

was applied immediately after the last load increment, not simulating the last night 
break. This analysis predicted no significant differences in the subsequent footing 

response, and the load-displacement curve was found to join that predicted by series (a) 

after 30 kPa of additional applied load. 

The continuous increase of the footing bearing pressure even at very large 

displacements was observed in Chapter 7 when analysing strip footings using the ET 

constitutive model. It was postulated that this behaviour derives from the continuous 

soil hardening associated with the process of consolidation and the development of 

creep strains that occurs simultaneously with the footing loading. 

In an attempt to define the footing ultimate bearing capacity an extreme situation is 

considered, in which the footing is further loaded after the last night break, but now 

under undrained conditions, such that any increase in the load carried by the footing 

results from the soil hardening due to the development of volumetric visco-plastic 

strains, only. In series (b) the footing is further loaded at 6kPa/hour and in series (c) at 

12 kPa/hour. The respective load - settlement curves are shown in Figure 8.42. 
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Figure 8.42: Load - displacement curves on further loading footing A. 

The load-displacement curve predicted by series (b) is very similar to that predicted by 

series (a), with series (b) predicting a slightly larger load at the same footing settlement. 
This indicates that the soil hardening associated with the process of consolidation is not 

relevant to the observed continuous increase in the load sustained by the footing. 

When in series (c) the footing is loaded under undrained conditions at double the 

loading rate of l2kPa/hour the resulting load-settlement curve is found to lie above the 

previous two, and the footing shows a stronger response. This indicates that the inability 

of the analyses to predict a well defined failure load results from the formulation of the 

ET model. As failure is approached the application of a given load increment AQ will 

produce gradually larger footing settlements, which implies an increase in the average 

strain rates acting in the foundation soil and so, according to the ET model formulation, 

an increase in the soil undrained strength is predicted. Application of a higher loading 

rate will result on the analyses predicting a higher undrained strength, and thus the 

footing is able to sustain a higher load at the same settlement value. 

The continuous cycle of higher strain rate leading to higher soil undrained strength, 
leading back to higher strain rate is responsible for the continuous increase in the load 

accommodated by the footing. This is related to the fact that the ET model is not able to 

reproduce accelerating creep, and thus it is not possible for an increase in strain rate to 

occur at constant stresses. 
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Figure 8.43: Incremental displacement vectors at large settlements predicted by a 
coupled consolidation FE analyses (series a). 

This implies that the ET model cannot predict failure in the same way as classical 

plasticity theory, associated to plastic flow along a surface where the soil strength has 

been fully mobilized (and remains constant with further straining and time). When using 

the ET model, failure should be defined in a manner similar to that used in engineering 

practice, as a threshold value of displacement or displacement rate. However, this 

serviceability type failure condition will, in principle, be distinct for different 

geotechnical structures. On the other hand, the loading conditions specified in the 

analysis need to be comparable to those being applied to the geotechnical structure 

during its construction and lifetime. 

In any case, it is noted that, since the ET model is unable to reproduce the post peak 

strength loss and it is unrealistic to consider that the peak undrained strength is 

mobilized simultaneously throughout the foundation soil, the average mobilized 

strength in the foundation in the field, at or close to the footing failure, is likely to have 

been substantially lower than that estimated from laboratory tests on good quality 

samples at peak, and which corresponds closely to that predicted by the ET model 
(shown in Figure 8.32). 

c) Pore water pressures and radial total stresses 

Figure 8.44 shows the variation of pore water pressures and radial stresses during test A 

as measured in the in-situ piezometers and spade cells that were installed at the footing 
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centreline. The piezometer PZ1A shows minimal pore water pressure changes up to the 

footing failure due to the high permeability of the superficial silty layers (crust). The 

behaviour of piezometers PZ2, PZ3 and SC! P show a very similar pattern, with modest 

excess pore water pressure being generated up to about 120 kPa applied load, and then, 

as failure is approached, the most superficial devices where larger total stress changes 

occur, record larger increases in pore water pressure. 

The piezometer attached to the stress cell SC2 (SC2P), is only 20 cm deeper than 

piezometer PZ3 but registers much larger pore water pressures, right from the early 

stages of loading. It is not clear if this abnormal behaviour results from localized 

variations in the soil characteristics or a malfunction of the monitoring device. 

Regarding the total radial stress measurements it is noted that the spade cell SC2 

registers larger increases in radial stress than spade cell SC1 located at a shallower 

depth. This is quite surprising, as one would expect the larger stress changes to occur at 

shallower depth. 
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piezometer attached to the spade cell (pore pressure reading). 

Figure 8.44: Variation of radial stress and pore pressure at the footing centreline 
during load test A- field measurements. 
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Figure 8.45 a) shows the variation of the pore pressure in the piezometers PZl PZ2 and 
PZ3 during test A and the analysis predictions. The FE analysis consistently 

overpredicts the excess pore pressure generated in the foundation. The difference 

between field measurements and analysis predictions decreases with the depth of the 

piezometer, both because the changes in total stress (and therefore the potential pore 

water pressure changes) are smaller and the drainage path increases. 
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The depth of the piezometers and spade cells are from Gildea (1990). PZ = pneumatic 
piezometer; SC = spade cell (total radial stress reading) and when followed by P denotes the 
piezometer attached to the spade cell (pore pressure reading). 

Figure 8.45: Variation of pore pressure and total radial stress at the footing centreline 
during test A: field measurements and analysis predictions. 

Figure 8.45 b) shows the variation of pore pressure and total radial stress at the two 

spade cells during test A and the FE analysis predictions. The FE analysis predicts 
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reasonably well the pore pressure and total radial stresses in the spade cell SC1 up to 

about 80-90 kPa applied load, but it overpredicts the field measurements at larger 

applied loads. The FE analysis considerably under predicts the field measurements of 

spade cell SC2, but that is thought to result, in part at least, to its abnormal behaviour. 

When comparing the FE analysis and the piezometer readings a trend can be identified 

that the FE analysis systematically overpredicts the excess pore pressures generated in 

the foundation during loading. This discrepancy is thought to derive from the adoption 

of lower permeability values, in the superficial layers, than those operating in the field 

causing the analysis to predict a response closer to undrained. 

d) Centreline settlements with depth 

Figure 8.46 shows the profile of settlements with depth at the footing centreline for 

various values of applied load during test A, and compares the field measurements with 

the FE analysis predictions. The FE analysis gives reasonable predictions of the 

settlement at the base of the footing, even if slightly lower than the field measurements, 
but fails to reproduce the shape of the profile of settlement with depth. 
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Figure 8.46: Centreline settlements during loading test A: field measurements and 
analysis predictions. 
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The settlement profile obtained from the FE analysis is much wider and extends 

considerably deeper than that measured in the field. This is thought to derive from the 

fact that the elastic part of the constitutive model adopted for the foundation soil is 

based on a stress dependent stiffness and cannot account for the strong soil non-linearity 

at small strains. 

e) Ground surface settlements 

Figure 8.47 shows the variation of ground settlement, 8 with normalized distance from 

the centre of the footing, x/D* for various values of applied load, and compares the field 

measurements with the analysis predictions. 

The ground settlements are normalized by the maximum settlement. For the field 

measurements this is taken as the settlement of the footing. In the FE analysis the 

footing is not modelled with solid elements, instead its weight is simulated by 

equivalent nodal forces which are applied at the base of the footing, and the vertical side 

of the footing (boundary AB, see Figure 8.22) is restrained from moving in the 

horizontal direction and assumed to be smooth (free movement in the vertical direction). 

This implies that the settlement of the footing is different from that of point A (see 

Figure 8.22), the point at the ground surface adjacent to the footing'but in the soil mass. 

Figure 8.47 shows the FE results using two normalizations: (1) the settlement trough is 

normalized by the settlement of point A; (2) the normalization quantity is the average 

footing settlement, in which case the quantity S/Sm is less than unity at the edge of the 

footing (x/D*=0.5). When analysing the field data there wasn't this difficulty as the 

settlement trough around the footing was estimated on the basis of individual targets 

points. So the normalization (2) is thought to be the more appropriate and to be valid 

except for the region close to the footing (values of x/D* close to 0.5). In both cases, the 

settlement trough predicted by the FE is found to be wider than that in the field. 

Addenbrooke et al. (1997) show the importance of incorporating the strong soil non- 

linearity at small strains to correctly predict the ground movements above tunnels. In 

particular the adoption of a linear elastic model to describe the soil behaviour at small 

strains is shown to produce a wider and flatter settlement trough. 
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Figure 8.47: Ground surface settlements during loading test A: field measurement and 

analysis predictions. 

8.4.5.2 Footing test B 

a) General load- displacement behaviour during noting loading 

Test B was simulated by means of an axi-symmetric coupled consolidation FE analysis 

using the model parameters defined in Section 8.4.3, with the exception of the 

parameters that characterize the soil structure and the destructuration mechanism, ps and 

ps, which were set to zero. The analysis simulated the small load - unloading cycle 

applied to footing B at the start of the loading test to evaluate the footing and foundation 

soil behaviour at very small loads. 

Figure 8.48 shows the variation of applied load and footing settlement with time during 

test B, and compares the field measurements with the FE analysis predictions. For 

comparison the FE analysis predictions presented in Section 8.4.4 that consider soil 

structure are also included. In test B, the footing is loaded up to 89 kPa, about 2/3 of the 

bearing capacity proven in test A and then left to consolidate. Over this load range the 

effect of loss of soil structure during loading is insignificant and both FE analyses 

provide a good match to the field data. 
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Figure 8.48: Variation of the applied load and footing settlement during test B- field 

measurements and model predictions. 

Figure 8.49 shows the variation of footing settlement with applied load during tests A 

and B. The general load - settlement behaviour of tests A and B during loading is 

similar, and as a result what has previously been noted for test A is applicable to test B 

at the same load factor, Lf values. Consequently, when presenting the results of the FE 

analysis of test B particular attention is given to the long-term behaviour. 
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Figure 8.49: Applied load versus footing settlement during test A and B. 
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b) Long-term settlements 

From the settlement-time curve it is not possible to identify a period of primary 

consolidation (or pore water pressure dissipation), and the curve of footing settlement 

with time (in semi-logarithmic space) shows a fairly constant slope throughout. From 

about 60 days on, the field data shows a slight tendency for the settlement rate to 

decrease, which is well recovered by the FE analysis. The last two readings are over 9 

years apart and the Bothkennar research site was abandoned for most of that period, 

therefore the last field reading, that deviates considerably from the trend, should be 

treated with caution. 
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Figure 8.50: Long term settlements of footing B. 

c) Pore water pressures in the foundation 

Figure 8.51 shows the variation of pore water pressure. and total radial stress in the 

foundation soil, from the end of loading until the Bothkennar site was decommissioned 

nearly two years later, recorded by the pneumatic piezometers and spade cells installed 

in the foundation on the footing axis. According to the field measurements most of the 

excess pore water pressure dissipation took place within the first 1000 hours (about 42 

days), and full dissipation after about 10000 hours. 

At the end of the monitoring period when the pore water pressure readings are stable 

there are still discrepancies between the field measurements and the FE analysis data. 

The equilibrium pore water pressures of the FE analysis correspond to a hydrostatic 

profile with the ground water level at 0.9 m depth. The differences in relation to the 
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field data may derive from seasonal variations of the ground water level (which is 

unlikely to affect the piezometers at depth) or calibration errors of the instruments. 
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Figure 8.51: Variation of the pore water pressures and total radial stress in the 
foundation soil at the footing axis, since the end of test B until the site was 
decommissioned. 

Therefore comparisons between the field data and the FE analysis predictions should be 

done in terms of excess pore pressure, assuming the equilibrium value to be that 

obtained at the end of the monitoring period. Figure 8.52 presents the data of Figure 

8.51 in terms of excess pore water pressure and changes in radial stress in relation to the 

stresses in repose, prior to the footing loading. 

Two opposite factors influence the amount of excess pore water pressure generated at 

the end of the footing loading, at a certain depth. At shallow depth there are larger total 
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stress changes and therefore the potential pore pressure changes are larger. However a 

soil element located at shallower depth is closer to the drainage boundary, and the field 

data shows that the soil at shallow depth behaved nearly in a drained manner suggesting 

that at that level the soil is quite permeable. It is noted that according to the piezometer 

readings the time for excess pore pressure dissipation increased with depth i. e. with the 

distance from the drainage boundary. 

Piezometer PZ6, located about 6.6 m below ground level, indicates that the excess pore 

pressure generated at this depth are minimal and this is recovered by the FE analysis. 

According to Jardine et al. (1986), the change in vertical total stress at this depth (z/D*= 

2.1) is less than 10% and the change in radial total stress is practically insignificant. 
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Figure 8.52: Incremental pore water pressures and total radial stress in the foundation 

soil at the footing axis, since the end of test B until the site was 
decommissioned. 
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Piezometer PZ5 (4.8 m BGL) registers about 12 kPa of excess pore pressure at the end 

of loading, a value that is underestimated by the FE analysis. In piezometers PZ2 and 

PZ3 the excesses pore pressure at the end of loading are identical and around 22 kPa. In 

piezometer SC3PB (2.2 m BGL), the excess pore pressure is the highest and about 
28 kPa at the end of loading. In piezometers PZ4 and SC4PB, the excess pore pressure 

at the end of loading are minimal, being dominated by the relatively high permeability 

at that level and the closeness to the drainage boundary. 

The FE analysis systematically overestimates the excess pore pressure at the end of 
loading in the piezometers located in the top 2.5 m, the difference being larger at 

shallower depth. This can be better appreciated in Figure 8.53, which shows the profile 

of excess pore pressures (normalized by the applied load, equal to 89 kPa) with depth at 

the footing axis, at the end of loading and at two instants during the consolidation 

period. 

The FE analysis predicts that the time for the dissipation of most of the excess pore 

water pressure is between 4000 and 5000 hours, about 4 to 5 times longer than in-situ. It 

is apparent that the FE analysis predicts the foundation soil response to be more 

undrained than that observed in the field. 
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Figure 8.53: Profile of excess pore pressure with depth during consolidation - test B. 
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Further evidence of the exacerbated undrained conditions produced by the FE analysis 

are the predictions for piezometers PZ2, PZ3 and SC3PB (and to a lesser degree PZ5) 

that show a time delay between the end of loading and the occurrence of the maximum 

excess pore water pressure. This phenomenon, known as the Mandel - Cryer effect, has 

been reported by several authors to occur e. g. under embankments on soft soil. Mandel 

(1953) and Cryer (1963) have shown that when consolidation is governed by the Biot 

equations, it is possible for a rise in pore pressure to occur, above that set up by the 

loading, before the subsequent decay, in a soil element away from the drainage 

boundary, where undrained conditions prevail. As discussed in Chapter 6 the 

consideration of the time dependent nature of soils may aggravate this effect. 

Comparison of the field data and the FE analysis prediction suggests that the in-situ 

operational permeability, up to about 5 in depth, was much higher than that used in the 

FE analysis. The permeability value adopted for the Carse Clay is in the upper bound of 

values obtained from laboratory and in-situ tests, and an increase in relation to this 

value may be attributed to the local occurrence of silty layers or other geological 
features not intercepted in the measurements mentioned above. However it is 

recognized that no measurements were available within the modern tidal deposits and 

the superficial weathered Carse Clay and the values of permeability for units Ito III had 

to be set based on experience with similar materials. 

d) Radial total stresses in the foundation 

Regarding the radial total stress data, it should be noted that the interpretation of spade 

cell data is complex. In particular, the coefficient of earth pressures at rest, Ko is very 
difficult to measure resulting in uncertainties in the values of (initial) radial stress at 

rest. The profile of the coefficient of earth pressures at rest used in the FE analysis is 

based on in-situ test data (obtained from dilatometer tests, self-boring pressumeter tests 

and spade cells) and simultaneously it is defined in such way as to produce, in 

conjunction with the remaining model parameters, an appropriate undrained strength 

profile. The initial total radial stresses assumed in the field measurements and in the FE 

analysis are therefore in general different and they are indicated in Figure 8.51. 

At the end of loading, the field data gives an increase in total radial stress of about 19 

and 25 kPa, in spade cell SC4B and SC3B, respectively. However, the values of total 
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radial stress are found to reduce during the consolidation period reaching values of total 

radial stress change (in relation to the value at rest) of about 0 kPa and 8 kPa, at SC4B 

and SC3B, respectively. These values are thought to be very low for the load values 

being applied to the footing and the depth of the spade cells. 

At the end of loading, the FE analysis predicts an increase in total radial stress of about 

30 and 18.5 kPa, at SC4B and SC3B respectively. During the consolidation period the 

radial total stresses are predicted to increase before converging again to a value close to 

that at the end of loading. This behaviour is associated with the Mandel-Cryer effect 

mentioned previously, with a larger additional increase in total radial stress being 

predicted at SC3B because it is further way from the drainage boundary. 

e) Horizontal movements in the foundation soil 

Figure 8.54 shows profiles of horizontal movements within the foundation during test B 

and the consolidation period, registered by the inclinometers 11 and 12. Comparison of 

the data from the two inclinometers demonstrates the accentuated tilt of the footing that 

developed from the early stages of loading, with horizontal movements being much 

smaller in inclinometer 11 than 12, at comparable times. 

Figure 8.54 also includes the FE analysis predictions, which are taken at the vertical 

profile passing through the edge of the footing. The FE analysis predictions give a good 

match to the maximum horizontal displacement, overpredicting the measurements at 11 

and underpredicting those at 12. However, when considering the whole profile of 

horizontal movements with depth there are significant discrepancies between the FE 

analysis and the field measurements. 

It is recognized that the location of the profile adopted to take the FE analysis 

predictions does not exactly match the location of the inclinometers that are at a finite 

distance from the footing. In this respect, it is noted that all the profiles of horizontal 

movements predicted by the FE analysis have a common point, with zero movement at 

z=0.8 m, because of the displacement condition imposed at the base of the footing. 
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Figure 8.54: Horizontal movements in the foundation at inclinometer 11 and 12 during 
test B and consolidation. 

In general terms it can be said that the bulb of horizontal movements predicted by the 

FE analysis is shallower than that recovered from the field measurements. The field 

measurements indicate that the horizontal movements increase steadily from a modest 

value (in general non zero) below the footing up to about 3 in BGL where they reach 

their maximum. Below 3 in BGL, the horizontal movements decrease becoming almost 
insignificant (less than 4 mm) at about 4m BGL during loading and at about 5.5 in 

BGL during the latter stages of consolidation. 
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In contrast, the profile of horizontal movements given by the FE analysis is 

characterized by large horizontal movements (about 2/3 of the maximum) just 20 mm 
below the footing and the maximum occurs at about 2m BGL. The movements become 

almost insignificant below 3 in BGL during loading and below about 4m during the 

latter stages of consolidation. 

It has been shown in Figure 8.53 that the FE analysis considerably overpredicts the 

excess pore water pressures generated during loading in the top 2.5 m (Z*/D* of about 
0.7) of the foundation, which is thought to result from considering a permeability lower 

than that in-situ. Despite the undrained conditions prevalent below 2.5 in up to about 
5 in, and demonstrated by the pore pressure predictions (accentuated Mandel-Cryer 

effect), the FE analysis considerably underestimates the excess pore pressure generated 

at this level. Examining together the data on radial stress, pore pressures and horizontal 

displacements it seems that the relatively low excess pore pressures generated between 

2.5 and 6.0 in reflect in fact smaller total stress changes. The FE analysis seems to 

concentrate most of the stress changes in the top 3.5 in, and the critical horizon is 

identified to be about 2.0 m BGL, corresponding to the larger excess pore pressure and 
horizontal movements. 

The field data indicates significant stress changes up to about 4.5 to 5.0 m BGL and the 

maximum horizontal movement is at about 3.0 m BGL perhaps indicating the location 

of a pre-failure mechanism. Examining the profile of undrained strength predicted by 

the ET model in Figure 8.32 the minimum value of undrained strength is predicted to 

occur between 2.5 and 3.0 m depth. However the gradient of the undrained strength is 

quite small between 2 and 3 m, and this may cause the failure mechanism associated 

with the lowest resistance to pass about 2.0 m BGL. In addition, the ET model does not 

recover the post peak strength loss, which while it would be minimal in the materials 

that constitute the modern tidal deposits and the superficial weathered Carse Clay, it is 

expected to be important in the competent unweathered soft Carse Clay. The post peak 

strength loss may cause the weakest horizon to move deeper and to about 3.0 m BGL. 

0 Centreline settlements 

Figure 8.55 shows the profile of settlements with depth at the footing axis, for two 

values of applied load, for test A and B, demonstrating that despite the accentuated 

338 



tilting of footing B from the early stages of loading the behaviour of test A and B during 

loading is still comparable. Figure 8.55 also includes the FE analysis predictions for test 

B, that are found to give a good match for the settlement at the base of the footing but 

fail to recover the distribution of settlements with depth. 
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Figure 8.55: Profile of settlements with depth at the footing axis during loading - 
comparison between test A and B. 

The profile obtained from the FE analysis is wider and extends significantly deeper than 

that measured in the field. As discussed when presenting the data for test A, this is 

thought to result mainly from the fact that the elastic part of the ET model is based on a 

stress dependent stiffness and cannot account for the strong soil non-linearity at small 

strains. Therefore the FE analysis is expected to diverge from the field measurements 

particularly within the zones of the foundation that have undergone small stress 

changes, in which the soil behaviour is dominated by the elastic component. 

Figure 8.56 shows the profile of settlements with depth at the footing axis since the end 

of loading and during the consolidation period, for about 210 days, and compares the 

field measurements with the FE analysis predictions. Again the FE analysis is able to 

give a good prediction of the settlement at the base of the footing but cannot recover the 

shape of the settlement profile with depth. 
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Figure 8.56: Profile of settlement with depth at the footing axis during consolidation - 
test B. 

The field measurements indicate that during loading the settlements are almost 
insignificant below Z*=1.5 to Z*= 2.0 m, where Z* is the depth below the base of the 

footing. In contrast during the consolidation period most of the additional settlement 

occurs between Z*= 2.5 in and Z*=5 m, contributing at the end of the monitoring period 

about 80 mm, about 44% of the total settlement at the ground surface. 

The FE analysis is not able to recover this behaviour and predicts minor settlements 
below Z*=3 m. In the FE analysis, the same model parameters are used throughout the 

profile; in contrast the field measurements indicate that most of the delayed settlement 

occurred below Z*=2 m and therefore it would be relevant to adopt distinct parameters 
for the superficial units I to III especially those which control the time dependent 

behaviour and stiffness. It is noted that the predicted response is consistent with the 

observation that the FE analysis predicts minimal stress changes below 3m BGL and 

therefore there is little scope for the development of delayed settlements. 
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8.4.5.3 Footing test C 

a) General load - displacement behaviour 

Test C corresponds to the loading to failure of footing B in July 2001, which had been 

under maintained load since July 1990. Test C was simulated by means of an axi- 

symmetric coupled consolidation finite element analysis using the same finite element 

mesh and model parameters employed in the analysis of test B described in Section 

8.4.5.2. 

The initial conditions for test C is the stress - strain distribution obtained in the analysis 

of Test B at the end of the consolidation period. The FE analysis simulates the 

unloading of the footing from 89 kPa to about 70 kPa for the rearrangement of the 

kentledge blocks, and this gave the chance to access the behaviour of the foundation at 

small strains after a period of 11 years of consolidation. 

Figure 8.57 shows the variation of footing settlement and applied load with time during 

test C, and compares the field measurements with the FE analysis predictions. The 

footing settlement series "North", "East", "West" and "South" refer to the 

measurements at the mid sides of the footing at the respective orientation, and the, large 

differences between the four series indicate the accentuated tilt of the footing since the 

very early stages of loading. 

The FE analysis predicts about 160 mm of footing settlement just after the last load 

increment was applied, increasing during the night to about 260 mm, just before the 

footing was unloaded, which is about 9.7% of the equivalent diameter of the footing (a 

condition usually identified with failure). The FE analysis recovers the general load - 

settlement behaviour of the footing when compared against the average of the 

measurements at the four mid sides. In particular, the FE analysis is able to recover the 

observed field behaviour that indicates that during the initial unloading - loading loop 

the footing settlement is completely reversible, and that up to about 160 kPa the footing 

response is stiff, identical to that observed during the initial stages of test A and B. 

This can be better appreciated in Figure 8.58 which shows the variation of the footing 

settlement with applied load during test A, B and C, and compares the field 

measurements with the FE analysis. The response predicted by the FE analysis is still 
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softer than that observed in the field during the early stages of loading, up to about 

160 kPa, where the soil response is dominated by the elastic component. This derives 

from the fact that the elastic part of the ET model is based on a stress dependent 

stiffness only and cannot account for the strong soil non-linearity at small strains. 
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Figure 8.59 shows the variation of the footing settlement rate with time during test C 

and compares the field measurements (from Lehane & Jardine, 2003) with the FE 

analysis predictions. The agreement between the two data sets is very good, in particular 

towards the end of the test from t=2500 minutes onwards. The FE analysis recovers the 

variation and magnitude of the settlement rate during the latter stages of loading, 

predicting a maximum settlement rate of about 16 mm/h immediately after the 

application of the last load increment. According to the field data the settlement rate 

reduced to about 3.6 mm/h at the end of the night shift, a value that compares well with 

the value 5.5 mm/h predicted by the FE analysis. 
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Figure 8.59: Variation of the foundation settlement rate with time during test C. 

Figure 8.60a) shows the incremental displacement vectors in the foundation soil just 

before the footing was unloaded indicating that there is a concentration of plastic 
deformation below the footing, but no signs of a well defined failure mechanism. 

It is remembered that the loading of the footing came to a halt due to the severe tilt of 

the footing that jeopardized the safety of the test. Lehane & Jardine (2003) when 

summarizing the loading test data concluded that the foundation could sustain 

marginally more load, based on the rapid decay of the footing settlement rate during the 

last night shift. 

However, when comparing the field settlement rates during tests A and C, it is 

concluded that higher settlement rates are recorded in test C during the last loading 

stages, and that the settlement rate decay during the night break is similar in the two 

tests (marginally faster in test A) which is recovered by the FE analyses (Figure 8.61). 

Thus, it is anticipated that the stability conditions at the end of the loading tests are 
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similar in the two cases, with test C being marginally less stable. To investigate the 

stability conditions of the footing at the end of test C and assess how they compare with 

those at the end of test A, FE analyses simulating the application of further load on 

footing C have been carried out. 
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Figure 8.60: Incremental displacement vectors predicted by the FE analysis: a) just 
before the footing unloading; b) after further loading at very large 

settlements. 
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Figure 8.61: Comparison of the footing settlement rate during test A and C. 

Figure 8.62 shows the load-displacement curve predicted by a couple consolidated FE 

analysis when additional load is applied to the footing at a rate of 6 kPa/hour after the 

last night break. Similar to the behaviour predicted in Section 8.4.5.1 when applying 

additional load to footing A (series (a) in Figure 8.42), the FE analysis fails to predict a 
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well-defined failure load for footing C. When comparing the load-displacement curves 

predicted by the FE analyses on applying further load to footings A and C, it is 

noticeable that the initial response of footing C at identical values of additional load is 

softer than that of footing A, indicating that the former footing is less stable. Figure 

8.60b) shows the incremental displacement vectors predicted by the FE analysis at very 

large settlements, denoting an insipient punch-trough type mechanism. 
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Figure 8.62: Load-displacement curves on further loading of footing A and C. 

b) Pore pressures and total radial stresses in the foundation 

Figure 8.63 shows the variation of pore pressures and total radial stresses with time 

during test C at the footing axis, and compares the field measurements with the FE 

analysis predictions. It is noted that during the consolidation period, especially since the 

Bothkennar site was decommissioned, some of the monitoring devices became faulty 

and therefore there is relatively less data during test C than test B. 

Piezometer PZ2 registers a systematic increase in pore pressure from the start of 

loading, reaching about 70 kPa of excess pore pressure just before the unloading of the 

footing. The FE analysis recovers quite well the behaviour of piezometer PZ2 

throughout the test. The field measurements indicate that at the location of the 

piezometer SC3P there are very small excess pore pressure throughout the test, reaching 

a maximum of about 15 kPa just after the application of the last load increment. This 

behaviour has been attributed to the existence of silty layers at shallow depth with 
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relatively high permeability, such that the conditions at this level during loading are 

partially drained. As discussed in the previous section, the FE analysis is not able to 

recover the significant drainage within the upper 2.5 m and large excess pore pressure 

are predicted by the FE analysis at SC3P. 

Regarding the radial total stress measurements, the FE analysis is found to predict 

reasonably well the field measurements at SC4 and SC3 throughout the test. The 

differences between FE analysis predictions and field measurements increase towards 

the last stages of loading but they are regarded as reasonable, taking into account the 

uncertainties associated with the reading and interpretation of the spade cells devices. 
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Figure 8.63: Variation of pore water pressure and radial total stresses in the 
foundation at the footing axis during test C. 

c) Centreline settlements 

Figure 8.64 shows the profile of settlement with depth at the footing axis, at several 

times during test C, and compares the field measurements with the FE analysis. The 

field measurements indicate that above an applied load of 172 kPa the soil is in tension 

between Z*=1.5 m and Z*=2.5 m (being Z* the depth below the base of the footing), 

which is clearly illogical. Lehane & Jardine (2003) suggest that these measurements 
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have been affected by the distortion of the access tube as the foundation tilt increased or 

deterioration of the target anchors over time, and therefore they should be disregarded. 
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Figure 8.64: Profile of settlement with depth at the footing axis during test C. 

In any case, the field measurements indicate that as failure is approached most of the 

footing settlement (at Z*=0) results from straining between Z*=2.5 in and Z*=5 in, and 

the vertical strains remain relatively small in the upper 2 in. This contrasts with the 

behaviour observed in test A at failure (see Figure 8.46) in which the straining is limited 

to the upper 2 in, and becomes insignificant below that. 

However, as predicted by Zdravkovic et at. (2003), pre-loading causes a gain in strength 

especially in the upper layers where larger stress changes have occurred, and therefore 

on further loading there is a shift of the bearing capacity mechanism downwards in 

order to intercept the weakest layers. 

The FE analysis predicts reasonably well the settlement at the base of the footing 

(Z*=0) during test C, but fails to recover the distribution of settlements with depth. 

According to the FE analysis, vertical straining occurs mainly between 1 and 3.5 m, at 

much shallow depths than observed in the test, and the FE analysis is not able to recover 

the differences between the settlement profile at failure in test A and test C. The 

overprediction of settlements during the early stages of loading, say at q=161 kPa, 
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demonstrates the inability of the model to recover the strong soil non-linearity at small 

strains. 

d) Horizontal movements in the foundation 

Figure 8.65 shows the profile of horizontal displacements with depth during test C as 

recovered by the inclinometer 11 and 12, and compares the field measurements with the 

analysis predictions. The horizontal movements, Y are normalized by the respective 

maximum, Y,,,. and the values of maximum horizontal displacements are plotted against 

the mean footing settlement in the small graph inset. Lehane & Jardine (2003) report 

that despite the severe tilting of the footing the two inclinometers located 0.15 m to the 

east and the west side of the footing indicate very similar lateral displacements up to an 

applied load of about 176 kPa when measurements of the inclinometers had to be 

abandoned due to safety reasons. 

The field measurements indicate that the shape of the profile of lateral displacements 

with depth does not change with the level of applied load. The maximum lateral 

displacement occurs at Z*= 1.2 m (about 2m BGL). The lateral displacement then 

decreases to about 20% of the maximum value at about Z*=4 m. 
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Figure 8.65: Profile of horizontal movements with depth in the foundation at the 
inclinometers location during test C. 
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The FE analysis recovers reasonably well the maximum horizontal movement and the 

shape of the profile of horizontal movements with depth during test C, up to an applied 

load of 176 kPa. However given the large vertical strains that developed in the 

foundation below Z*=3 m, close to failure (see Figure 8.64), it is thought that the 

profiles shown in Figure 8.65 are not representative of the behaviour at failure. 

Figure 8.66 compares the profile of undrained strength available on the footing axis just 

before test C with the in-situ values available before tests A and B, both predicted by 

the ET model under triaxial compression at 4.5%/day axial strain. The increase in 

foundation undrained strength during the consolidation period is associated both with 

the dissipation of the excess pore pressures generated during the initial loading and the 

development of creep strains. The FE analyses predict a significant increase in the 

available undrained strength to about 4 in BGL. The profile of undrained strength just 

before test C is characterized by an almost constant value of undrained strength of about 

33 kPa in the top 2 in, decreasing to about 23 kPa at 4.5 in BGL where it attains its 

minimum. Below 5 in BGL there is no significant change in the available undrained 

strength in relation to the initial value. 
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Figure 8.66: Profile of undrained strength in undrained compression predicted by the 
ET model at the footing centreline just before test C (at an axial strain rate 
of 4.5%/day). 

The field measurements indicate that on taking to failure the preloaded footing, the 

failure mechanism has moved downwards with most of the vertical straining occurring 
between Z*=3 and Z*=5 m close to failure, which coincides with the horizon with the 
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lowest undrained strength values as predicted by the FE analyses. However, according 

with the FE analysis data presented regarding settlements and horizontal movements in 

the foundation the lowest resistance horizon seems to remain at about Z*=2 m, 

suggesting that the gradient in undrained strength between 2 and 4m BGL is not 

sufficient to move the failure mechanism downwards. 

This implies that the profile of in-situ available undrained strength before test C is 

different from that shown in Figure 8.66 derived from the FE analyses. Discrepancies 

are thought to result from: 

a) During test B (application of preload) the FE analysis predicts that most of the 

stress changes are confined to the upper 3.5 m (see Figure 8.53); in contrast the 

field measurements indicate significant stress changes to larger depth; 

b) During the consolidation period the FE analysis failed to predict the large 

vertical straining between Z*=2.5 m and Z*=5 m at the footing axis that was 
identified in the field. The zone where larger delayed vertical straining has 

occurred is expected to have the largest gains in undrained strength. 

c) The ET model is not able to mimic the post peak strength loss associated with 

the soil destructuration during shearing which is likely to be most significant 

within the unweathered Carse Clay (below 2.5 m BGL). During the initial 

loading (test B), the foundation soil is likely to have undergone significant 
destructuration, which would not be (completely) recoverable during the 

consolidation period. If that is the case, the available undrained strength in the 

foundation is lower than that predicted by the FE analysis. 

d) The ET model is an isotropic model and the state boundary surface predicted by 

the model is always symmetric in relation to the mean effective stress axis. 
Smith (1992) has performed an extensive programme of laboratory triaxial tests 

and mapped the state boundary surface of the intact Carse clay, concluding it to 

be strongly anisotropic. In-situ, the soil's state boundary surface is in general 

approximately symmetric in relation to the I(0-stress axis and when consolidated 
to a different stress state the state boundary surface is found to rotate towards the 

new stress state (a phenomenon often called evolving anisotropy). This causes 

the state boundary surface to expand around the current stress state. In the 

preloaded footing this means that there would be an additional increase in the 
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foundation undrained strength associated with the rotation of the state boundary 

surface in relation to the new stress state imposed by the preload, which can not 
be captured by the ET model. It is noted that when calibrating the ET model 

against the laboratory data on Carse Clay the parameters were selected such that 

the model would best predict the soil behaviour at the in-situ stresses. 

8.4.6 Consideration of non-linear behaviour at small strains 

The results from the FE analyses presented in the previous section show, in general, 

good agreement with the field measurements, in terms of the overall load-displacement 

behaviour of the footings. However, when looking at the displacements within the 

foundation soil there are discrepancies. Some of them have been attributed to the fact 

that the elastic part of the ET model is based on a bulk stiffness dependent on mean 

stress only and a constant Poisson's ratio value, and cannot reproduce the soil's strong 

non-linearity at small strains. In principle, this could be overcome by incorporating a 

small strain stiffness model, which then describes the elastic part of the ET model. 

One such model is the small strain stiffness model proposed by Jardine et al. (1986) in 

which the tangent bulk and shear modulus are described by trigonometric functions and 

vary both with stress' level and strain values, and are given by Equation 8.14 and 
Equation 8.15, respectively. 

Equation 8.14 
K=R+S" 

cos(8 " YN 
S"S"p" Yl, u-'1 sin(S " Y"ý 

with 
p1 2.303 

Y= login 
(Evart 

T 

R, S, Tbp are model parameters 

GAB B"a X('"-')sin(a"XT) Equation 8.15 -=-+-cos(a " xr)- y with 
p' 336.909 

X=1oglo E (V3 

C 
A, B, C, a, yare model parameters 

The model parameters can be derived from degradation curves of the bulk and shear 

stiffness during drained and undrained triaxial tests provided there is data in the small 

strain range, i. e. axial, shear or volumetric strain less than 0.1%. 
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However, it was soon realized that such a model could not be combined with the ET 

model formulation, at least when implemented as described in Chapter 6. In the ET 

model the visco-plastic multiplier, 1 that determines the magnitude of the visco-plastic 

strain increment is given by Equation 8.16 which requires the calculation of the 

quantities sv. and , ref 

Equation 8.16 

2 
ref ref 

= 
Vo 

-1+ 

£vol, 
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The value of sv,,, is calculated by Equation 8.17, which corresponds to moving the 

current stress point (pi') JJ) to the equivalent stress state (p,,, ', 0) along the elastic wall. 

According to the initial formulation of the model the quantity x/V is constant, and thus 

the elastic or instant line is a straight line in s,,, l - lnp' space. This is compatible with the 

elastic response of the model that is described by the bulk modulus, K' given by 

Equation 8.18 and a second elastic parameter in this case chosen to be the Poisson's 

ratio, µ, such that the shear stiffness is given by Equation 8.19. 

Equation 8.17 svm = sv +v" In P. 

Pr 

Equation 8.18 K' =VP 
K 

Equation 8.19 G= 
K' "3"(1-2, u) 

2"(l+, u) 

The adoption of a small strain stiffness model of the type described above causes the 

quantity K'/p' to be strain dependent. If Equation 8.17 is still employed to evaluate the 

quantity Evm then there are two options, to use either the quantity K/V that has been 

introduced in the input parameters of the ET model or the current value ('c/V)equ; 
vthat 

is 

related to the current bulk modulus by Equation 8.18. 

The use of Equation 8.17 assumes that the elastic line is a straight line in eoi- Inp' 

space. This is no longer true when using a small strain stiffness model, as the quantity 
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(x/V)equ, 
v 

is a function on the current accumulated volumetric strain and so to obtain the 

true value of E, m the integral in Equation 8.20 must be evaluated. 

Equation 8.20 
P 

dsv = e,, - E,. 
P. dp' jTKf 

P; 
(p', £vor 1J 

The implications of using Equation 8.17 can be better appreciated in Figure 8.67. The 

difference in -, m arising from using either of the two previous options may seem small 

however it becomes important for stress states close to the reference time line when this 

difference is of the same order of magnitude as the quantity (svm -e), that controls the 

magnitude of the visco-plastic multiplier. 
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Figure 8.67: Schematic calculation of the value of cvm: a) in the basic formulation of 
the ET model with stress dependent only bulk modulus; b) with an elastic 
small strains stiffness model. 
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8.5 Concluding remarks 

This Chapter presents numerical analyses of the loading tests performed on two 

instrumented surface footings at the Bothkennar research site. The loading tests 

highlight the importance of incorporating the viscous time dependent behaviour of soils 

to correctly predict the long-term settlement and the increase in bearing capacity of 

preloaded footings. 

In the numerical analyses presented herein, the foundation soil is modelled using the 

Equivalent Time constitutive model that is described extensively in Chapter 6, and 

which has been shown to reproduce well the phenomena of primary and secondary 

creep, stress relaxation and the effect of strain rate on the stress-strain soil response, 

associated with isotach viscosity. 

The time dependent part of the model requires three parameters which are derived 

ideally from a one-dimensional oedometer test (or isotropic consolidation tests), either 

of the incremental load or constant rate of strain type, and a long creep test. The 

remaining parameters can be determined from undrained triaxial compression and 

extension tests on samples consolidated both on the dry and wet side of the critical state. 

The numerical analyses show, in general, good agreement with the field measurements 
in terms of the overall load displacement behaviour of the footings. The agreement is 

particularly good regarding the long-term settlements of the preloaded footing. However 

when looking at the displacements within the foundation soil there are discrepancies, 

which are thought to derive from the following aspects: 

a) The same stiffness and time dependent characteristics are assumed throughout 

the soil profile, as there is no specific characterization data within the superficial 

materials; the model parameters are derived from data on competent 

unweathered Carse Clay, which is expected to be softer and more prone to the 

development of time delayed strains/movements; 

b) The elastic part of the ET model is characterized by a bulk modulus dependent 

on mean effective stress only and a constant Poisson's ratio value, and it cannot 
reproduce the strong stiffness non-linearity at small strains; when trying to 

incorporate a small strain stiffness model to describe the elastic part of the ET 

354 



model it was soon realized that it is not compatible with the model formulation, 

at least as the model is implemented at present. 

c) The mechanism that is incorporated in the ET model to describe soil structure 

and the destructuration process with plastic straining has been initially derived to 

describe a calcarenite (Lagioia & Nova, 1995) and is best suited to mimic the 

soil structure associated with cementing, in which the loss of structure is quite 

abrupt and loading conditions are drained. Therefore, it cannot adequately 
describe the soil structure of clayey soils that derives mainly from particle 
bonding, in which the loss of structure tends to be gradual, with the full 

destructuration requiring large plastic strain values, and therefore no structure 
has been considered in the analyses. In addition, the ET model cannot describe 

the increase in soil structure, associated with either bonding or cementing, 
during a creep period. The materials more prone to post peak strength loss and 
destructuration due to plastic straining are within the competent unweathered 
Carse Clay, which occur below 2.5 m to 3m BGL, and this is likely to have 

caused the lowest operational undrained strength to move slightly downwards in 

relation to the profile of undrained strength in-situ, following the application of 

preload. 

d) The ET model is an isotropic model and therefore cannot mimic the rotation of 

the state bounding surface during consolidation under a new stress state. This is 

likely to be significant when analysing the final loading of the preloaded footing 

(Test C) as the preload has imposed considerable levels of strength mobilization 

within the foundation. 

To investigate the importance of considering the soil creep non-linearity an additional 

analysis of footing B was carried out, exactly as the analysis described in Section 

8.4.5.2 with the exception of the parameter sv i. m. L; »,;, that was set equal to 0.6, which is 

the volumetric strain required to bring the soil to a state when there are no voids left. It 

has been shown that the adoption of such value causes the ET model to yield predictions 

very close to a logarithmic creep law. 

The results of the analysis in terms of the variation of the footing settlement with time, 
during both the application of the preload and the 11 years of consolidation are shown 
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in Figure 8.68, and is denoted as ICFEP (2). Figure 8.68 also includes the field data and 

the predictions presented previously in Figure 8.50 that assume a value of ö 
, m, Limii 

equal to 0.06 derived based on the laboratory test data. 

It can be seen that the two analyses yield very similar predictions up to about 100 days, 

recovering very well the field data. After t=100 days the predictions given by the two 

analyses diverge. The analysis that accounts for the soil creep non-linearity recovers 

well the field data (the exception being the last field measurement, whose accuracy is in 

any case dubious as previously discussed) while the analysis that assumes a linear creep 

law overestimates the footing settlements. After 11 years of consolidation the difference 

between the two analyses is about 55 mm, about 25% of the footing total settlement. 

This emphasizes the need to incorporate the soil creep non-linearity if good predictions 

of the long-term settlements of geotechnical structures are to be made. 
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Figure 8.68: Long term settlement of footing C- influence of adopting a non-linear 
logarithmic law. 

Analyses were carried out to evaluate the undrained bearing capacity of footing A 

predicted by the ET model. However, it was concluded that due to its formulation the 

ET model is not able to predict failure as it is defined in plasticity theory - plastic flow 

along a surface where the soils strength has been fully mobilized (and remains constant 

with further straining or time). This derives from the fact that the ET model is not able 

to predict accelerating creep and thus it is not possible for an increase in strain rate to 

occur at constant stresses. 
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When using the ET model the failure condition should be defined in a similar way to 

that done in engineering practice, i. e. as a threshold value of settlement or settlement 

rate. It would be of interest to evaluate the ultimate bearing capacity that would be 

predicted by an analysis of the same boundary value problem that uses instead a 

conventional plasticity model e. g. Modified Cam Clay model, and consider how this 

value compares with the load predicted by the ET model at settlement and settlement 

rates identified in practice with failure. However, the user should be aware that this 

serviceability type failure condition will be, in principle, distinct for different boundary 

value problems, and thus experience needs to be gained in analysing other boundary 

value problems. 
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9 CONCLUSIONS AND RECOMMENDATIONS 

9.1 Introduction 

The research presented in this thesis can be divided into two main parts. The first part 
involved the development of two generalized elastic visco-plastic constitutive models to 

describe the viscous behaviour of clays. The main difference between the two models 
lies in the adopted law to describe the variation of the creep deformation with time. The 

models were implemented in the Imperial College Finite Element Program (ICFEP) and 

validated through a series of simple finite element analyses simulating common 

laboratory tests. 

The second part of the research comprises the application of one of the models (the 

Equivalent Time model) to a typical engineering problem. The model was first 

employed in a parametric study to evaluate the bearing capacity of a2m wide 

preloaded strip footing. The study considers different values of the coefficient of 

secondary compression, the effect of creep non-linearity and the effect of the adopted 
loading rate. Comparison of the results of this study with those reported by Zdravkovic 

et al. (2003), who investigated the same problem but modelled the foundation soil with 

the time independent Modified Cam-Clay model, highlights the significance of 

considering the time dependent nature of soils in engineering practice, and in particular, 

in the design of shallow foundations. 

The constitutive model was then employed in the numerical analyses of the loading tests 

performed on two rigid footings at the Bothkennar clay test site (Jardine et al., 1995; 

Lehane & Jardine, 2003), for which there is a large amount of data regarding both the 

footings performance during the tests and the soil characterization. The results of the 

analyses are compared with the monitoring data published in the literature, and the 

capabilities and limitations of the model to mimic the behaviour of this real boundary 

value problem investigated in detail. 

The conclusions from this research are presented in more detail in the following 

sections. 
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9.2 Two generalized time dependent models for saturated clays 

Two elasto visco-plastic constitutive models were developed during this research and 

were presented in this thesis. The two models are based on the overstress theory as 

described by Perzyna (1963) and the concept that the total deformation of a soil element 

can be divided into an instant and a delayed component. The instant strain component is 

elastic, reversible and time independent and can be calculated from the models elastic 

parameters. The delayed strain component is irreversible and rate dependent. The 

models differ essentially in the calculation of the delayed component, in particular on 

the adopted law to describe the variation of creep deformation with time. 

Creep Model 1 is based on the Modified Cam Clay model and assumes a linear law for 

the variation of the visco-plastic volumetric strain with the logarithm of time during a 

drained creep period under constant effective stresses, i. e. a constant coefficient of 

secondary compression. 

Using a similar approach to that followed by other researchers, the extension to general 

stress space was initially carried out assuming, based on the experimental observation 

made by Tavenas et al. (1978), that a given loading surface was a locus of constant 

volumetric visco-plastic strain rate and that the remaining strain components could be 

calculated from a potential surface. In this form the model is referred to as the Basic 

Creep Model 1. However, when adopting the above assumption it was found that the 

model was not able to predict critical state conditions. This was shown to be a 

consequence of the above assumption and implies that many theoretical models 
described in the literature, which are based on this assumption, are flawed. 

The formulation of the model in general stress space was subsequently modified such 

that a given loading surface is a locus of constant visco-plastic scalar multiplier. In this 

form the model is referred to as the Modified Creep Model 1. It was shown that the 

above two formulations yield very similar predictions for stress levels below about 0.7, 

however only the latter approach is able to simulate critical state conditions. 

The loading and plastic potential surfaces are assumed to have the ellipse shape of the 

Modified Cam Clay model in J-p' stress space. This means that once the effective stress 

strength parameters (i. e. the angle of shearing resistance at critical state) are set the 

undrained strength predicted by the model at a given stress state and strain rate is fixed. 
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To account for the influence of the intermediate principal stress in the deviatoric plane 

the loading surface can be described by either the Mohr Coulomb hexagon or by a 
flexible function that can describe a wide range of shapes. The plastic potential is also 
described by the above flexible function. This means that after specifying the stress ratio 

at critical state under a given shearing mode, say triaxial compression, the user has 

various options on how to specify the value of the critical state stress ratio under 
different shearing modes. 

The parameters of the Creep Model 1 can be derived from one IL 24 hour oedometer 

test and one, ideally two, consolidated undrained triaxial tests, one in compression and 

the other in extension. The model requires two additional parameters in relation to the 

MCC constitutive model, y and ;f The parameters yr and s; f are shown to be 

equivalent to the more common set of parameters Cae and to, where CRe is the 

coefficient of secondary compression defined in terms of void ratio and to is the real 

time associated with the reference line. If the value of to is set equal to 1day=24 hours, 

as the reference time line is usually defined based on IL 24hour oedometer tests, then 

the model only requires one additional parameter in relation to the MCC model. 

The, model was implemented in ICFEP and was then validated by means, of single 

element analyses simulating common laboratory tests. Regarding the model's 

performance under common laboratory stress paths the following was observed: 

  The model simulates primary and secondary compression under 1D conditions, 
however it cannot reproduce the tertiary compression phase that corresponds to 

an increase in the value of the current coefficient of secondary compression with 

time, and which has been observed experimentally by some authors (e. g. den 

Haan, 1994). 

  The model reproduces a reduction in the soil's vertical effective stress during a 

period of stress relaxation under 1D stress conditions, reproducing well the 

relaxation phenomenon in soils as reported by Lacerda & Houston (1973). 

  The model predicts that the compression behaviour under 1D conditions is rate 
dependent and the effects of strain rate are persistent, replicating isotach type 

viscosity. 
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  In undrained triaxial compression tests, the model predicts an increase in the 

soil's undrained strength with increasing applied axial strain rate. The 

differences in the predicted undrained strength are associated with differences in 

the predicted excess pore water pressures as the effective stress failure envelope 

remains unchanged. The model is able to mimic the shearing behaviour of 

samples that are on the wet and on the dry side of the critical state. Normally and 

lightly overconsolidated samples are contractive and the stress ratio is seen to 

increase monotonically up to the critical state. Heavily overconsolidated samples 

are initially contractive, reaching a stress ratio well in excess to that at critical 

state, and then the behaviour becomes dilative as the stress state tends to the 

critical state line. An increase in the OCR value and the applied strain rate 

results in an increase of the soil's pseudo-elastic stress range. 

The Modified Creep Model 1 was shown to have good predictive capabilities. However 

the fact that the model includes a linear logarithmic creep law is, in particular when 

predicting the long-term creep settlements under an engineering structure, a significant 

limitation. The creep behaviour of soils is found to be in general non-linear logarithmic 

(corresponding to a reduction of Ca with time) and the use of a linear logarithmic creep 

law results in that case on a significant overestimation of soil's settlement. This problem 

is overcome by the Equivalent Time model, which includes a limit to the magnitude of 

the volumetric creep deformation, and can therefore capture the soil's creep non- 

linearity. 

The Equivalent Time Model described in this thesis includes a hyperbolic law to 

describe the variation of the visco-plastic volumetric strain with the logarithm of time 

during an isotropic drained creep period, described by Yin et al. (1999). 

Based on the findings reported in Chapter 5 the Equivalent Time model is extended to 

general stress space by assuming that a given loading surface is a locus of constant 

visco-plastic scalar multiplier. The loading and the plastic potential surfaces are defined 

by a flexible equation that can reproduce a wide range of shapes, in J-p' stress space. 

This means that once the effective stress strength parameters are set, the user can adjust 

the shape of the above surfaces so that the model yields the required value of undrained 

strength, under a particular shearing mode. 
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The influence of the intermediate principal stress on the shapes of the yield and plastic 

potential surfaces in the deviatoric plane is accounted for using the Matsuoka-Nakai 

failure criterion. This means that after specifying the stress ratio at critical state under a 

given shearing mode, say triaxial compression, the stress ratio at critical state under 

other shearing modes is fixed. When analysing a boundary value problem the user 

should ensure that the model recovers well the soil strength under the mode of shearing 

that is likely to dominate in that particular problem (i. e. in an excavation problem the 

model should predict well the soil strength in triaxial extension, and data from extension 

tests are should be used to determine the model parameters M, µ and a). 

The model requires 13 parameters to completely characterize an unstructured soil; six of 

these parameters are related to the definition of the loading and plastic potential surfaces 
in J-p' stress space and can be derived by fitting an undrained triaxial compression 

stress path, three are time dependent parameters and can be derived from an IL 24 hour 

oedometer test for which there is consolidation data, and which ideally has one longer 

creep period, and the remaining parameters are analogous or equivalent to parameters of 

the MCC model and can be derived from the above two laboratory tests. The model was 
implemented in ICFEP and was then validated by means of simple finite element 

analyses. The validation can be divided into three parts: 

a) Simulation of common laboratory tests 

The conclusions given above regarding the performance of the Modified Creep Model 1 

also apply to the Equivalent Time Model. In addition: 

  The ability of the ET model to predict a non-linear logarithmic law for the 

variation of creep deformation with the logarithm of time was investigated. If 

the model parameter svol Limit - the limit for visco-plastic volumetric strain - is 

given a value close to or larger than the volumetric strain that causes the soil to 

have no voids left, then the model yields predictions very close to those given by 

a linear logarithmic creep law, for time intervals of interest to engineering 

practice. Smaller values of the parameter c ;, m, Limit cause the model to predict a 

non-linear logarithmic creep law, the non-linearity increasing as E I, m, um!! 

decreases. 
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  The model is able to mimic the behaviour of samples that are on the wet and on 

the dry side of the critical state, sheared under drained conditions. Samples at the 

same initial effective stress state are found to reach the same critical state shear 

strength, independently of their initial state (dry or wet in relation to the critical 

state). Normally consolidated and lightly overconsolidated samples are predicted 

to have contractive behaviour and a monotonic increase in the shear stress up to 

critical state, which is reached at very large strains. Heavily overconsolidated 

samples show an initial contractive phase up to peak strength, which is well in 

excess of the strength at critical state, and then the behaviour becomes dilative as 

the deviatoric stress decreases to the rate and time independent critical state 

strength, which is attained at very large strains. Again an increase in OCR and 

the applied axial strain rate causes an increase in the sample's pseudo-elastic 

stress range. 

b) Consolidation o samples with different thickness 

The consolidation curves predicted by the ET model for three oedometer samples with 

different thicknesses, 20,10 and 2 cm respectively, subjected to a load increment 

06;, =40 kPa were compared. The ET model predicts that the vertical strain at the end 

of primary consolidation (defined as 95% degree of pore water pressure dissipation) 

depends on the thickness of the consolidating layer, increasing with the layer thickness. 

The implications are that when estimating the vertical strain (or deformation) of a 

consolidating layer in the field, which will be much thicker than the element of soil 

investigated in the laboratory, the non-consideration of the rate effects may lead to a 

substantial underestimation of the magnitude of the settlement at EOP. In this respect, 

as noted in Chapter 2, the effects of the difference in the temperature between the field 

and the laboratory, and sample disturbance, will have the opposite effect on the 

magnitude of predicted settlements and may partially mask the role of rate effects. 

In addition, it is noted that Terzaghi's solution for 1D consolidation can be used to 

evaluate the average degree of settlement, independently of the consolidating layer 

thickness. However, the degree of pore water pressure dissipation is in principle 
different. For a thick layer consolidating in the field (where due to the length of the 

drainage path the soil deforms at rates much lower than those experienced in the 

laboratory), the degree of excess pore water pressure dissipation is expected to be 
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smaller than the degree of settlement, an issue of major importance, e. g. in staged 

construction of embankments. 

c) Simulation of laboratory tests on Hon- Kong marine deposits 

Overall the ET model is found to capture well the behaviour of the Hong Kong Marine 

Deposits under a variety of stress conditions. Most of the discrepancies may be 

attributed to the fact that the elastic part of the ET model is characterized by stress 

dependent elastic bulk modulus and therefore cannot incorporate the soil's strong non- 

linearity at small strains, and the progressive yielding of the soil, as observed 

experimentally. The analyses of undrained triaxial creep tests have highlighted the 

limitation of the overstress theory in general, and of the ET model in particular, that it 

cannot mimic tertiary (accelerating) creep, and therefore cannot reproduce undrained 

creep rupture. 

Although it has been stated that the consideration of structure was beyond the scope of 

this thesis a structure mechanism as described by Lagioia & Nova (1995) was 

incorporated in the Equivalent time model, providing the possibility of investigating the 

coupling between soil structure and viscosity in the same constitutive model. To 

characterize a structured soil two additional parameters are required, which can be 

derived by fitting the compression data from an oedometer test on a natural sample. One 

parameter characterizes the soil initial structure and the other the destructuration rate. 

However, because the destructuration is a function of the visco-plastic volumetric strain 

component only very little loss of structure is predicted during undrained conditions. 

Finally a comparison between the two models has shown that the two formulations can 

be made to be equivalent by a suitable choice of parameters. However the ET model 

presents advantages in relation to the Modified Creep Model 1, and is therefore the 

model employed for the analyses of the boundary value problems described in the 

thesis. Two of these advantages are: 

  The ET model has a limit to the amount of visco-plastic volumetric strain during 

creep at constant effective stress. Therefore, the model can reproduce the soil 

creep non-linearity that has been reported by some researchers, Aboshi (2004). 

Simultaneously, if required, the ET model can mimic a linear creep law for 

limited creep periods, which is often relevant to engineering practice. 
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  In the ET model the loading and the plastic potential surfaces are defined by a 

flexible equation that can reproduce a wide range of shapes, in J-p' stress space. 

In contrast, in the Creep Model 1 the loading and plastic potential surfaces are 

given by the ellipse shape of the MCC model. This means that in the ET model 

once the effective stress strength parameters are set, the user can adjust the shape 

of the above surfaces so that the model yields the required value of undrained 

strength, under a particular shearing mode. 

9.3 Influence of considering the soil viscous effects in the analysis of 

geotechnical structures 

9.3.1 Shallow foundations 

In this thesis the influence of the viscous effects on the behaviour of shallow 

foundations was investigated through two series of finite element analyses. 

The first series consisted of a parametric study to evaluate the bearing capacity of a2 in 

wide preloaded strip footing. Following on from the study presented by Zdravkovic et 

al. (2003) which investigated the increase in bearing capacity of a pre-loaded strip 

footing due to consolidation, this study considers the bearing capacity of the same pre- 

loaded strip footing when, in addition, the soil hardening associated with the 

development of creep strains is taken into account. The study considers the effect of the 

value of the coefficient of secondary compression, the creep non-linearity and the 

adopted loading rate. From this study the following conclusions can be drawn: 

  The study highlights the importance of considering soil viscous effects in the 

design of geotechnical structures, and in particular the design of preloaded 

shallow foundation. The long term bearing capacity of a surface footing with an 

initial factor of safety on load of 2 is about 1.15 times the initial one, when only 

the effect of consolidation is considered (Zdravkovic et at., 2003). When, in 

addition, the development of creep strains is considered, the predicted bearing 

capacity is found to be between 1.3 and 1.6 times the initial one, the value 

depending on the amount of secondary compression considered. 

  The adoption of a large coefficient of secondary consolidation C,., may be 

conservative when estimating the long term settlement of an engineering 
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structure, however it is unsafe when considering the soil hardening with time, 

which in this study is directly related to the current bearing capacity of the 

preloaded footing. 

  The adoption of a non-linear logarithmic creep law becomes more significant at 
larger consolidation times, and in particular when considering serviceability 
limit states. For the case examined, when the creep law non-linearity is taken 

into account, the total long-term settlement (after about 100 years) is found to 

reduce by up to a third. 

  Based on the work of Randolph et al. (2004), and some additional analyses not 
included herein, it is anticipated that the results obtained in this study on a strip 
footing could be applied to footings of similar dimensions but different 

geometry. 

  The study considered a typical soft clay soil profile, two values for the 

coefficient of secondary consolidation and various consolidation times relevant 

to engineering practice. The study is sufficiently general to enable the results to 

be directly incorporated in the design of existing foundations. 

The second study comprised numerical analyses of the loading tests performed on two 

rigid footings at the Bothkennar test site (Jardine et al., 1995; Lehane & Jardine, 2003). 

The model parameters were derived based on the large amount of laboratory and in-situ 

test data published in the literature and the analyses results were compared with the 

available monitoring data. From this series of analyses the following conclusions can 
be drawn: 

  The results of the numerical analyses highlight the importance of incorporating 

the effect of soil hardening associated with the development of creep strains to 

correctly predict the increases in bearing capacity of preloaded footings, and it 

validates the application of the parametric study in engineering practice. 

  The numerical analyses show, in general, good agreement with the field 

measurements in terms of the overall load displacement behaviour of the 

footings. The agreement is particularly good regarding the long-term settlements 

of the preloaded footing. 
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  However, when looking at the displacements within the foundation soil, there 

are discrepancies that are related to the following aspects: a) the same basic 

model parameters were adopted throughout the soil profile, for the competent 

unweathered Carse Clay, the weathered Carse Clay and the recent deposits at the 

surface; b) the ET model cannot incorporate the non-linearity of stiffness at 

small strains; c) the destructuration mechanism included in the ET model can 

not appropriately describe the gradual loss of structure associated with both 

volumetric and deviatoric straining and d) the ET model being an isotropic 

model cannot mimic the rotation of the state bounding surface during 

consolidation under a new stress state, that would be of particular relevance for 

the analyses of footing C. 

  When investigating the failure conditions of footing A it was concluded that due 

to the ET model formulation the model is not able to predict failure as it is 

defined in conventional plasticity theory. This derives from the fact that the ET 

model is not able to predict accelerating creep and thus it is not possible for an 
increase in strain rate to occur at constant stresses. When using the ET model the 

failure condition should be defined in a similar way to that done in engineering 

practice, i. e. as a threshold value of settlement or settlement rate. 

  The elastic part of the ET model is characterized by a bulk modulus dependent 

on mean effective stress only and a constant Poisson's ratio value, and it cannot 

reproduce non-linearity of stiffness at small strains; when trying to incorporate a 

small strain stiffness model to describe the elastic part of the ET model it was 

soon realized that it is not compatible with the model formulation, at least as the 

model is implemented at present. 

  The analyses emphasize the importance of considering the creep soil non- 
linearity to correctly predict the long-term settlements of geotechnical structures. 
The adoption of a constant coefficient of secondary compression is likely to 

overestimate the magnitude of the long-term settlements. 

9.3.2 Embankments 

Though not shown in this thesis, the ET model was employed by Losacco (2007) to 

analyse the behaviour of two instrumented test embankments built on the river Thames 
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estuary. The analysis of one of the embankments focused on the prediction of the long- 

term settlements and the FE analyses were found to recover well the field 

measurements. The other embankment had been taken to failure and the analysis 

focused on the simulation of the embankment failure and the various options for 

reconstruction and raising of the embankment, once failure had occurred. Similarly to 

that reported in this thesis regarding the analysis of the footings at the Bothkennar test 

site, Losacco (2007) was not able to predict the failure conditions of the embankment, 

as a well defined ultimate embankment height associated with a very large and 

accelerating horizontal displacement at the toe. 

9.4 Recommendations for further research 

9.4.1 Constitutive modelling 

Based on the above discussion it is thought that the predictive capabilities of the 

Equivalent Time constitutive model could be improved in the following respects: 

  Incorporate a flexible function to describe the failure and plastic potential 

surfaces in the deviatoric plane, similarly to that included in Creep Model 1. 

This would allow mimicking the soil strength under various shearing modes, 

simultaneously. 

  Most existing constitutive models are based on the behaviour of isotropically 

consolidated soils. However, in most cases in practice, soils are anisotropically 

consolidated and the in-situ soil's yield surface is found to be rotated in relation 

to the KO stress axis. This implies that both the yield and the plastic potential 

surfaces should be rotated in J-p' stress space, and the model should be able to 

reproduce the rotation of the yield and plastic potential surfaces due to further 

loading. 

  Modify the model formulation such that the ET model can be combined with a 

small strain stiffness model to describe the elastic part of the model. 

  Following the formulation used by other researchers (e. g.; Rouainia & Muir 

Wood, 2000; Kostinen et al., 2002; Baudet & Stallebrass, 2004) incorporate a 

structure mechanism in which the destructuration law is a function of both the 
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deviatoric and the volumetric visco-plastic strain component, so that structure 

loss is predicted both during drained and undrained stress conditions. 

9.4.2 Numerical studies 

The implementation of the above two models into the ICFEP allowed the analysis of 

shallow foundations and embankments, taking into account the viscous properties of the 

soil. Further work could include: 

  Further research into the definition of failure of shallow foundations when the 

ET model is employed. It has been suggested that when using the ET model the 

failure condition should be defined in a similar way to that done in engineering 

practice, i. e. as a threshold value of settlement or settlement rate. It would be of 
interest to evaluate the ultimate bearing capacity that would be predicted by an 

analysis of the same boundary value problem that uses a conventional plasticity 

model (e. g. Modified Cam Clay model) and consider how that value compares 

with the load predicted by the ET model at settlement and settlement rates 
identified in practice with failure. 

  Extend the above study to other geotechnical structures, and in particular 

embankments, where the application of the ET model is seen as advantageous 

e. g. the analyses of staged construction, construction and long term settlements. 

  Within this thesis the soils modelled with the ET model were exclusively soft 

normally consolidated clays. This was the case as soft normally consolidated 

clays are more prone to viscous effects i. e. undergo larger delayed settlements 

and have larger rate effects on the stress-strain response. However, it would be 

of interest to use the ET model to mimic the behaviour of other soils types that 

show isotach viscosity. 
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APPENDIX A 

Settlement - load curves obtained on reloading for all the cases investigated in the 

parametric study 
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