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Resumo

Atualmente, várias decisões importantes estão diretamente relacionadas com o conhecimento

e a análise de informação relativa a determinadas localizações ou ao movimento detetado sobre as

mesmas. Estas decisões podem ter um impacto significativo quer em contextos fundamentalmente

pessoais (e.g., que caminho seguir para determinado ponto de interesse?) como em contextos com

impacto social (e.g., será necessário expandir o serviço de táxis para aumentar a cobertura de uma

determinada região?). Por sua vez, este facto tem fomentado o interesse de várias comunidades

de investigação, que procuram perceber os efeitos e potencialidades da utilização de informação

georreferenciada de forma a melhorar a vida dos cidadãos/utilizadores em variados contextos.

Com a crescente popularidade associada a sistemas de computação móvel e tecnologias de

geoposicionamento, também a recolha de grandes quantidades de dados espácio-temporais se

tornou cada vez mais comum, eficiente e eficaz, sendo, consequentemente, cada vez mais co-

mum a análise de informação georreferenciada relacionada com as trajetórias de pessoas ao longo

do tempo.

Por definição, uma trajetória consiste na evolução da posição de um objeto ao longo do tempo.

Tipicamente, este tipo de dados são representados como uma sequência de pontos ordenados tem-

poralmente e complementados com informação temática, que descreve o objeto ou a localização

em função de vários atributos não espaciais ou temporais (e.g., velocidade ou meio de transporte).

Devido às propriedades espaciais associadas com dados de trajetórias, as técnicas baseadas em

mapas interativos são frequentemente consideradas como ferramentas essenciais para a visualização

destes dados. Em particular, mapas estáticos bidimensionais (2D) destacam-se como uma das

técnicas mais comuns para a representação de qualquer tipo de informação georreferenciada.

Tirando partido da manipulação das variáveis visuais (e.g., cor ou opacidade) associadas a mar-

cas, como pontos ou linhas, este tipo de técnicas suporta a visualização de vários eventos, padrões,

e relações associadas às trajetórias sobre um plano geográfico. Contudo, apesar das suas vanta-

gens, os mapas estáticos 2D tendem ainda a negligenciar a visualização dos dados num contexto

temporal. Para minimizar este problema, estas técnicas necessitam, geralmente, de utilizar uma

simbologia mais complexa ou visualizações adicionais.

Com o crescente desenvolvimento associado à computação gráfica, mapas tridimensionais

(3D) e, em particular, cubos espácio-temporais (space-time cube - STCs) têm sido considerados

como possı́veis alternativas para a visualização de trajetórias. Os STCs combinam as representações

de informação espacial e temporal na mesma vista, tipicamente, recorrendo à representação de
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informação espacial através dos eixos x e y, enquanto que o eixo z é usado para distribuir a

informação temporalmente. Apesar de se poder recorrer a estratégias de representação semel-

hantes à de mapas estáticos comuns (e.g., alteração de cores ou tamanhos de pontos e linhas), a

associação da terceira dimensão ao contexto temporal dos dados suporta, para além da representação

direta de informação temporal, a visualização do estado de um ou vários objetos em várias instâncias

de tempo diferentes.

Ainda que pudessem ser considerados mais tipos de técnicas de visualização baseadas em

mapas, a análise de mapas estáticos 2D e STCs engloba uma diversidade significativa em termos

de possı́veis representações para trajetórias. Consequentemente, a escolha de uma determinada

técnica de visualização pode ser considerada como um problema importante, por vezes até contro-

verso. Apesar do crescente número de aplicações presentes na literatura para a visualização deste

tipo de informação, a validação da utilidade e usabilidade destas tende a ser baseada em exemp-

los/casos de uso, frequentemente negligenciado o papel fundamental do utilizador (humano) no

processo de validação (e.g., será que o utilizador consegue perceber e utilizar com facilidade as

funcionalidades disponibilizadas?).

No contexto deste trabalho, consideramos que estes problemas são particularmente impor-

tantes e prováveis de se tornarem cada vez mais relevantes. Apesar da existência de regras de

design úteis para a criação de mapas, estas ainda são algo limitadas num contexto interativo.

Por outro lado, os resultados existentes do ponto de vista empı́rico são ainda demasiado espar-

sos e difı́ceis de generalizar. Nos últimos anos, tem havido um maior interesse em apresentar

informação espácio-temporal a mais utilizadores, refletido com a crescente popularidade de ferra-

mentas de monitorização pessoal em contextos reais e virtuais, baseadas na análise de informação

espácio-temporal. Por sua vez, ao contrário do que era comum, uma percentagem significativa dos

utilizadores destas aplicações são parcial a completamente inexperientes em termos de análise e

visualização de informação espácio-temporal, sendo, ainda assim, expostos ao papel de analista.

Neste trabalho pretendemos abordar estes problemas, pelo que foram delineados os seguintes

objetivos principais:

• Obter um conjunto de resultados quantitativos e qualitativos que permitam caracterizar

as vantagens e desvantagens de diferentes tipos de técnicas baseadas em mapas (mapas

estáticos 2D e STCs), para a visualização de dados de trajetórias;

• Obter um conjunto de resultados quantitativos e qualitativos que permitam averiguar a via-

bilidade de diversos melhoramentos em técnicas de visualização existentes (mapas estáticos

2D e STCs);

• Identificar um conjunto de guidelines para a seleção e concepção de mapas estáticos 2D e

STCs.

Nesta dissertação, apresentamos um estudo divido em quatro partes focado na comparação e

validação de abordagens para a visualização de conjuntos de dados referentes a trajetórias através

de mapas estáticos 2D e STCs.
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Numa primeira fase focámo-nos na análise das contribuições existentes na literatura mais rel-

evantes para esta investigação. Nesta etapa, foram analisadas as principais caracterı́sticas geral-

mente associadas a dados de trajetórias e os tipos de técnicas baseadas em mapas, para a visualização

deste tipo de dados, assim como os principais tipos de tarefas de análise visual de informação

necessários aquando da utilização de uma dada aplicação. Estas tarefas incluem, entre outras,

a localização de informação numa visualização, a identificação de informação baseada na sua

representação, a comparação de dados ou análise de padrões e associações. Adicionalmente, pro-

pusemos um modelo hierárquico de tarefas, de modo a simplificar e organizar as várias propostas

existentes na literatura, assim como simplificar a concepção de estudos de usabilidade baseado nas

tarefas descritas.

Com base neste modelo de tarefas, na fase seguinte abordámos a caracterização de mapas

estáticos 2D e STCs baseados na sua utilidade e usabilidade para a resolução de vários tipos

de tarefas. Para isso, comparámos protótipos baseados nas duas técnicas em estudos de usabil-

idade, cujos resultados obtidos sugerem, globalmente, que apesar de ambas as técnicas serem

usáveis por utilizadores inexperientes, os mapas estáticos 2D são mais adequados em tarefas

de localização e/ou focadas nos componentes espaciais dos dados, sendo também a técnica de

visualização preferida dos utilizadores. Por outro lado, STCs são mais adequados em tarefas de

associação e tarefas de comparação focadas numa análise espácio-temporal dos dados, ainda que

estejam dependentes da capacidade do utilizador em interagir com os mesmos.

Baseados nestes resultados, numa terceira fase procurámos minimizar as limitações detetadas

nestas técnicas, recorrendo a um conjunto de alternativas que incluem:

• Utilização de gráficos temporais focados na representação de informação temporal;

• Uso de pistas espaciais, no STC;

• Uso de um plano espacial móvel, dentro do STC;

• Uso de uma vista geral em 2D, dentro do STC;

• Combinação de mapas 2D com STCs através da justaposição e/ou transição entre ambas as

técnicas.

Através de um conjunto de estudos de usabilidade com estas abordagens, os resultados obtidos

permitiram-nos chegar às seguintes conclusões:

• Os utilizadores preferem STCs melhorados através da combinação com outras técnicas (i.e.,

com plano móvel e/ou vista geral em 2D);

• O desempenho dos utilizadores é superior com STCs melhorados, comparativamente com

STCs simples;

• A combinação de ambas as técnicas (por justaposição) é preferı́vel à utilização de qualquer

técnica individualmente;
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• A possibilidade de transformar uma visualização noutra é uma funcionalidade aceite (e

desejada) por utilizadores inexperientes;

• A combinação de ambas as técnicas minimiza o risco de comportamentos, por parte dos

utilizadores, que resultem num menor desempenho.

Finalmente, através dos resultados obtidos nos vários estudos relativos às fases anteriores,

identificámos um conjunto de boas-práticas relativas à escolha e concepção de mapas estáticos

2D e STCs. Globalmente, concluı́mos que a utilização de mapas estáticos 2D é sempre desejada,

ainda que este não seja o foco principal da visualização. Por outro lado, a escolha relativa à

utilização e combinação de STCs está dependente de três critérios principais:

• Relevância da informação temporal;

• Capacidade de interação;

• Espaço disponı́vel no ecrã.

Para além disso, sugerimos também um conjunto de funcionalidades a serem incluı́das aquando

da utilização destas técnicas, que incluem, entre outras, a customização da representação da

informação, controlos de granularidade temporal, alteração de projeções, e visibilidade constante

de referências temporais.

Palavras-chave: Trajetórias, Visualização de Informação, Cubo espácio-temporal, Mapa 2D,

Usabilidade, Design Guidelines
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Abstract

With the increasing popularity of location based services and mobile tracking technologies, the

collection of large amounts of spatio-temporal data became an increasingly common, easier, and

more reliable task. In turn, this has emphasized the possibility of analysing georeferenced infor-

mation, particularly associated with human trajectory data, to identify and understand movement

patterns and activities, ultimately, supporting decision making in various contexts.

In order to properly analyse and understand the spatio-temporal and the thematic properties

associated with these data, adequate visualization techniques are needed. Due to the spatial proper-

ties of trajectories, map-based techniques, such as 2D static maps or 3D space-time cubes (STCs)

are considered as essential tools for their visualization. However, despite the increasing number

of visualization systems, the study regarding their usability, alongside the role of the human user,

sometimes with a limited background in data visualization and analysis, are often neglected. In ad-

dition to the somewhat disperse, and sometimes even contradictory, results in the literature, these

factors, ultimately, emphasize the lack of knowledge to support the choice of particular visualiza-

tions, and their design, in different types of tasks.

This dissertation addresses these issues through three main sets of contributions, focusing on

inexperienced users, in terms of data visualization and analysis: i) the characterization of the

dis/advantages of existing map-based techniques (2D static maps and STCs), depending on the

types of visual analysis tasks and the focus of the analysis; ii) the improvement of existing vi-

sualization techniques, either through the inclusion of additional spatial cues within the STC, or

combining both types of techniques in various ways; and iii) the identification of design guide-

lines for trajectory data visualization, describing various considerations/criteria for the selection

of different map-based visualization techniques and their possible interactive features.

Keywords: Trajectory data, Information Visualization, Space-time Cube, 2D Map, Usability,

Design Guidelines
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Chapter 1

Introduction

With the prevalence of mobile computing systems and location based services, large amounts

of spatio-temporal data are nowadays being collected, representing the mobility of people per-

forming various activities in different contexts. However, despite the increasing interest in the

exploration of these data, there are still several open challenges, related with visualization and

human-computer interaction.

To support the extraction of relevant information from the spatio-temporal and the thematic

properties associated with human trajectories, it is crucial to develop and study adequate interac-

tive visualization techniques. In addition to the properties of the visualizations themselves, it is

important to take into consideration the types of information present within the data and, more

importantly, the types of tasks that a user might need to consider to achieve a given goal. The

understanding of these factors may, in turn, allow the identification of design guidelines, which

should, consequently, simplify the development and assessment of a given interactive visualiza-

tion.

The Ph.D. research described in this dissertation addressed these challenges. The following

chapter presents the main motivations regarding this work and its main research goals, followed

by the various contributions that were achieved and, finally, by an overview of this document’s

structure.

1.1 Motivation

Everything we do is intrinsically related to a location at any given time (Longley et al., 2005). As

such, unsurprisingly, many important decisions are directly related with the proper understanding

of information based on locations and the movement detected over those locations (Andrienko

et al., 2013; Dodge et al., 2008). Some of these decisions may have a significant impact over

society and business, like should a taxi service invest more money to expand its coverage of a cer-

tain location, or how can a large building be evacuated safely and effectively, while others may

only have interest on a personal level, e.g., should a person take a certain road to go home or

which route should a person take to pass through several points of interest. This has fostered the

1
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Figure 1.1: Sports applications with trajectory data visualization, namely a) Endomondo
b) Sports-Traker c) RunKeeper.

interest of researchers, who have been trying to understand the effects of location-based informa-

tion, particularly associated with human movement, as a means of improving the lives of users in

various contexts (Andrienko et al., 2013). In addition, the increasing popularity and accuracy of

mobile technologies has enabled a significantly higher quantity and quality of data. In particular,

Global Positioning Systems (GPS), cellular mobile telephony, and Radio-frequency identification

tags (RFID) allow people, animals, and objects to be located over long periods of time. This, in

turn, enables the creation of spatio-temporal and trajectory datasets (Lee and Krumm, 2011) and,

consequently, provide relevant data for researchers and non-researchers to analyse.

From a practical point of view, this interest is nowadays reflected by the increasing number

of studies focusing on the usage of spatial trajectories, like GPS taxi data, to assess the state or

improve the quality of various urban services (Ding et al., 2013; Gao et al., 2013; Bischoff et al.,

2015; Pu et al., 2013). Similarly, social and cellphone network data can also be used to exam-

ine spatial trajectories, as these can record their users’ locations whenever they perform relevant

actions (e.g., log-in, post a message, or take a picture). Consequently, these can, for example,

support the study of the effects of social events over the mobility in a city or the correlation of

discussion topics with given locations (Naaman, 2011; Girardin et al., 2008; Lorenzo et al., 2013).

An even more significant example consists in the increasing use of mobile exertion applications,

such as Endomondo (Endomondo LLC, 2007), Sports-Traker (Sports Tracking Technologies Ltd.,

2004), or RunKeeper (FitnessKeeper, 2009), that allow sports practitioners, often inexperienced

in terms of data visualization and domain analysis, to record and visualize their movements in the

form of spatial trajectories, as well as information extracted from that data (Figure 1.1).

By definition, a trajectory consists in the evolution of a moving object’s spatial properties over

time (Parent et al., 2012; Dodge et al., 2008). Typically, these data are represented as a temporally

ordered sequence of location points, complemented with thematic information, either derived from

the registered data (e.g., speed or transportation mode) or associated from other datasets (e.g.,

events happening at specific locations involved in the trajectories). Based on this information,
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it is possible to identify three main data components, namely: space (where?), time (when?),

and attributes (what?) (Peuquet, 1994), from which their analysis should allow the extraction of

valuable knowledge concerning the actions and events/activities that may occur in the observed

world (Andrienko et al., 2010; Neumann, 2005).

Several recent studies have proposed data mining methods to automatically extract valuable

information from raw spatio-temporal datasets (Keim et al., 2008; Zheng and Zhou, 2011). One

relevant area of research concerning with these is visual analytics, which proposes the combination

of the advantages of human cognitive and analytical abilities with computer data processing as

a means of developing knowledge, methods, and technologies (Andrienko et al., 2013). This

combination should give the user full control over the direction of the analysis along the various

tasks needed, while reducing the cognitive workload associated with it. In addition, the system is

expected to provide adequate tools to display and interact with the information (Andrienko et al.,

2010; Keim et al., 2008). Consequently, visual analytics is an integrating discipline that addresses

the issues with data processing and emphasizes the fundamental roles of visualization, as a medium

to communicate information to the user and human-computer interaction, as the process through

which the user communicates with the application and interprets the data (Andrienko et al., 2013;

Keim et al., 2008). Furthermore, visual analytics also suggests that automatic methods may not be

enough (Andrienko et al., 2013), due to the high complexity often associated with this data, i.e.,

large volumes of data, often composed by very different types of information, difficult to process

and associate.

Considering the spatial characteristics associated with trajectory data, interactive maps are

often regarded as important tools for their visualization. Although theoretically it is possible to

work out conclusions without maps, it is often unadvised to do so since, without them, it would be

extremely difficult to extract relevant geospatial information (Kraak and Ormeling, 2010).

Two-dimensional (2D) static maps are still one of the most used techniques to represent any

type of georeferenced information (Figure 1.2 a). Typically, these take advantage of the manipula-

tion of visual variables, like colour or size, associated to different visual marks (e.g, points, lines,

and areas) to display various types of information over a geographical plane, such as those present

in trajectories (Bertin, 1967). Even with a simple representation, it is still possible to use a map to

answer various questions concerning the location being depicted, like the distance between points

of interest, the position of locations in respect of each other, or the size of the areas occupied by

said points. In turn, these factors have lead this type of technique to be considered fundamental

in the representation of the spatial component associated with trajectories. Despite that, 2D static

maps still tend to undermine the representation of the data’s temporal component, as these usually

limit themselves by displaying a single snapshot in time (Kraak and Ormeling, 2010). To solve

this problem, there is often an increasing complexity of the visualization, such as when using more

intricate symbols over a map to depict the evolution of attributes through time, or when combining

the map with additional visualization techniques, such as time graphs (Andrienko and Andrienko,

2013).
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Figure 1.2: Map-based techniques for trajectory data visualization a) 2D static map b) 3D
space-time cube.

With the increasing advancements of computer graphics, three dimensional (3D) maps and,

in particular, space-time cubes (STCs) (Hägerstrand, 1970) (Figure 1.2 b) have been proposed as

viable options for the visualization of trajectories (Kjellin et al., 2010b; Kraak, 2008). Space-

time cubes represent both spatial and temporal information within a 3D view, where, similarly

to common 2D approaches, the x and y axes are used to represent spatial information (e.g., in

the form of latitude/longitude coordinates); however, unlike conventional 3D maps, which use the

z-axis to represent information like altitude or depth, STCs use the third dimension to represent

time (Hägerstrand, 1970). Similarly to 2D maps, trajectories can be displayed as a sequence of

symbols, graphically encoded to represent variations in the thematic attributes. However, since

time is represented as a spatial position, other visual variables become available to represent the

thematic attributes (Kjellin et al., 2010b). In addition, space-time cubes also allow the repre-

sentation of various layers of information, each one defined as a plane in the z-axis (Thakur and

Hanson, 2010; Tominski et al., 2005, 2012) representing the state of an object in different moments

in time. This implies that the higher (or lower, depending on the orientation of the temporal scale)

the data is within the STC, the most recent that information is. This allows answering to various

questions concerning the temporal aspects of the events detected over a location, like temporal

distance between events, their order, frequency, or duration.

Although other types of map visualization techniques could be listed, like animated or small-

multiple maps (Kraak and Ormeling, 2010), the analysis of these two categories (2D maps and

3D STCs) suggests already a significant diversity, in terms of data representation. Consequently,

the choice for an adequate visualization technique can be seen as an important and, sometimes, a

controversial challenge. Despite the increasing number of visualization applications, their empir-

ical validation and the study of their usability have been somewhat neglected (Chen, 2005). In the

recent years, this situation has been changing, with the publication of studies providing some type

of validation regarding their proposed visualizations. Nevertheless, as suggested by Elmqvist and

Yi (2012), some of these studies still follow the approach of validation through awesome example,

by often limiting themselves on case studies, thus often overlooking the role of the human subject

in the design and validation processes (Elmqvist and Yi, 2012; Roth, 2012).
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In addition, despite the existence of some studies which address some of the aforementioned

problems, several authors have already pointed out their uncertainty regarding the procedures

and the contexts used, due to a biased or unbalanced evaluation that, ultimately, benefits certain

visualization techniques over others (Tversky et al., 2002; Kristensson et al., 2009; Lobben, 2008;

Robertson et al., 2008).

In this work, it is advocated that the current lack of user studies validating the usefulness

of the proposed techniques, alongside the possible uncertainty associated to the already existing

studies, are important issues. Despite the existence of useful design rules in the areas related to

this work, such as cartography, there has been a limited research on the generation of geographic

insight based on the interaction with map-based applications, also known as cartographic inter-

action (Roth, 2013). Moreover, the available empirical evidence that may help minimizing these

issues is still considered too fragmentary and difficult to generalize (Andrienko et al., 2010; Roth,

2013). Consequently, alongside the existent uncertainty in terms of the results of previous studies,

these factors further emphasize the current lack of actual knowledge regarding the adequacy and

usability of existing map-based techniques for the acquisition of spatio-temporal insights, in the

different types of tasks. These also suggest the need to empirically assess and compare existing

types of (map) visualization techniques. However, more than just understanding the goals a user

may have when interacting with a certain visualization, it is fundamental to take into consideration

the types of visual analysis tasks that need to be addressed in order to achieve those goals (Valiati

et al., 2006).

In recent years, there has been an increasing interest in showing complex spatio-temporal

information to a wider population. This interest was first noticed with the growing popularity

of mapping APIs (Application Programming Interfaces), like Google Maps, or geotagging photo

features, that supported the use, and sometimes creation, of maps and geographical information

by individuals not necessarily interested in geography as a science (Flanagin and Metzger, 2008).

Nowadays, this interest is reflected and expanded by the increasing popularity of performance

monitoring tools, both in the analysis of spatio-temporal real life and virtual world scenarios.

Nevertheless, it is important to acknowledge the fact that the data presented to these (new) users,

even if not necessarily related to their professional lives, may still be relevant on a personal context.

More importantly, it should also be noticed that, given the popularity and availability of these data

and applications, a significant portion of these users are inexperienced in terms of data analysis

or visualization (Huang et al., 2015; Drachen and Schubert, 2013b). This fact is particularly

important since it suggests that any user, regardless of their background and experience, may be

put in the role of a spatio-temporal analyst (Andrienko et al., 2010) and, therefore, is a potential

user of techniques for the visualization of spatio-temporal data, even if in less complex scenarios.

This shows that, more than just conducting empirical evaluations of existing map techniques, it is

also important to take inexperienced users into account when conducting those evaluations.
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1.2 Research Goals

Existing literature in the relevant domains related to this research reveals some noticeable chal-

lenges associated to the areas of visualization and human-computer interaction. More specifically,

despite the observed growth in the number of visualization techniques for spatio-temporal and

trajectory data, there is still a significant lack of empirical support regarding the advantages and

disadvantages of the existing techniques. This lack of support is further emphasized by some

uncertainty associated to previous studies, which can be seen as a result of an unbalanced evalua-

tion, often resulting in a visualization being favoured over other(s). Alternatively, this uncertainty

comes also from a significant paradigm change in modern spatio-temporal data visualization and

analysis, with a stronger focus on the role played by the computer/technology and an expansion

of the community of potential users, usually lacking experience in terms of data visualization and

analysis.

The Ph.D. research here described addressed these challenges. However, considering the wide

range of possibilities provided by these issues, this work focused on the evaluation of the main

types of map techniques for the visualization of trajectory data by inexperienced users, in the role

of spatio-temporal data analysts, even if in a simplified context. The following sections describe

the main research objectives in more detail and a summary of the conducted research process.

1.2.1 Obtain Empirical Data to Support the Dis/advantages of a Given
Technique

As previously mentioned, there exists a significant lack of empirical data regarding the adequacy

of existing visualization techniques. Therefore, this work proposes the conduction of usability

studies for the comparison of the main groups of visualization techniques. Out of the four groups

of techniques mentioned above (2D maps, 3D STCs, animated maps, and small-multiples), the

focus of this research is on the comparison of 2D maps and 3D STCs. This decision will be

further discussed in the next chapter. In addition, although these techniques can be used for the

visualization of various types of data, this research focuses on the usage of these techniques for

the visualization of movement data describing human trajectories.

It is important to notice that several approaches for the representation of thematic attributes

are independent from the technique or dataset used. For instance, colours can be used to represent

a certain set of categories, regardless if they are used on a 2D or 3D display; similarly, said

categories can be associated with the types of transportation, the mover’s identification, or any type

of thematic data organizable into categories. Consequently, while acknowledging the importance

of thematic information in the representation and analysis of trajectory data, this research focused

mostly on the simultaneous representation of spatial and temporal information in 2D maps and 3D

STCs.

Furthermore, to properly conduct the proposed usability studies, it was fundamental to also

analyse the types of visual analysis tasks a user may need to perform to achieve a given goal.
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Although, several authors have already proposed various taxonomies of tasks (Wehrend and Lewis,

1990; Vasiliev, 1997; Roth, 2012), there exists a noticeable redundancy, which must be clarified

prior the conduction of any usability study.

1.2.2 Improve Trajectory Data Visualization Techniques

Based on the properties of the different groups of map visualization techniques, alongside the

results of previous studies, it is expected that certain techniques outperform others in specific

types of tasks. However, it is unlikely that the analysis of a given dataset will be always focused in

just one type of task. Therefore, while the previous research goal aims to help identifying which

scenarios are more adequate for certain visualization techniques, it is still important to understand

how to improve the capabilities of a given visualization technique to be usable in several types of

tasks. For that, following up the comparative evaluation of 2D maps and 3D prototypes, this work

proposes the assessment of possible improvements over these techniques and the analysis of their

adequacy and acceptance by an inexperienced population.

1.2.3 Identify Design Guidelines for Map-based Trajectory Data Vi-
sualization

Besides the problems that were already mentioned in the previous sections, it is noticeable a cur-

rent lack of design guidelines regarding cartographic interaction, and thus, trajectory data visu-

alization. Designers working with spatio-temporal data visualization have thus to face various

questions with uncertain and unsolved answers, including the types of visualization techniques

to be used and which features these should support. For that reason, another goal of this work

consists in identifying a general set of design guidelines regarding interactive maps for analysing

trajectory data.

Although it is important to acknowledge the importance of the results of previous related stud-

ies, alongside the knowledge obtained during the development of prototypes, the goal of this Ph.D

is focused on the results obtained through the usability studies conducted. This implies the analysis

not only of the users’ performance, in terms of efficiency and effectiveness, and their comments

during and after completing the tasks (i.e., subjective preferences), but also of an additional set

of metrics that, alongside the direct observation of the users’ actions, support the analysis of the

strategies applied by them during the tasks, when interacting with the different components from

the proposed map-based visualizations.

Based on the aforementioned objectives, five steps were identified describing the process of

this work. These are depicted in Figure 1.3. This figure will be revisited at the end of each chapter,

in which new information will be added, when appropriate, providing a schematic summary of the

contributions presented in the chapter, and its role in the scope of this work.

The first step implies the collection and analysis of previous works existing in the literature,

which, as described in the next chapter will also result in the identification of a simplified vi-
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Step 1: Related Work Analysis and Simplified Task Model (TM)

Step 3: Improve Existing Techniques

Step 2: Compare 2D Maps and 3D STCs

Step 4: Case Study

Step 5: Identification of Guidelines

Figure 1.3: Summary of the various steps of this research.

sual analysis task model. Steps 2 and 3 focus on the comparison and improvement of existing

techniques, particularly 2D maps and 3D STCs, and both will be composed by comparative user

studies, further described in Chapters 3, 4, and 5. As listed in step 4 and discussed in Chapter 6, it

was also considered necessary the analysis of a case study. In particular, the information obtained

in the previous steps is applied into the area of Visual Game Analytics, where a prototype, VisLol,

is described and compared to an already existing application. Finally, based on the information

acquired throughout the various steps, the most noticeable patterns are identified, in Chapter 7, as

a general set of design guidelines.

1.3 Contributions

The contributions of this Ph.D. research were divided into four main categories. Scientific contri-

butions consist of the most significant findings obtained through the various user studies, alongside

the direct outcomes from the analysis of the literature, the process and the results related with and

obtained in the context of this research. Software contributions include all tools and prototypes

developed to support the conducted experiments and achieve the research goals. Publications list

all published documents in scientific conferences and journals, associated to this Ph.D. research.

Finally, legacy refers to subsequent projects inspired by this research.

1.3.1 Scientific Contributions

Throughout the experiments conducted in the context of this Ph.D., it was possible to retrieve

evidences showing and suggesting that:

• Inexperienced users, in terms of the application domain and visual analysis, are able to

interact and work out conclusions with 2D maps and 3D STCs, despite their visual com-

plexity and lack of familiarity. This is addressed with more detail throughout the discussion

sections of the next chapters describing the usability studies.

• In their general form, 2D static maps are more adequate, in terms of efficiency and effec-

tiveness, than STCs, in tasks focused on the data’s spatial components. This is described
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with more detail in the second usability study of Chapter 3, in which the users took less

time to complete tasks and were generally more accurate when using the 2D static map

prototype, in location tasks.

• On the other hand, STCs are more adequate, in terms of effectiveness, than 2D static maps,

in tasks also dealing with the data’s temporal components and tasks requiring the analysis of

patters/relationships between data elements. This is primarily addressed in the same chapter

as the previous point, where users were significantly more accurate in associate tasks when

using the STC prototype.

• Despite acknowledging or praising the STC’s role in the prototypes, users prefer 2D static

maps as their main visualization component. In four of the experiments that were con-

ducted (from Chapters 3 to 6), users have rated 2D static map prototypes higher than STC

prototypes, according to their preferences the users have also attempted to convert the STC

prototypes into 2D static maps, and they used mostly the 2D static map, when both tech-

niques were available (particularly in tasks dealing with spatial information).

• Increasing the volumes of data to be displayed affects negatively the interaction with both

techniques. While 2D maps are more affected in temporal-based tasks, STCs are more

affected in location-based tasks. This factor is addressed in more detail in Chapters 3 to 5.

In these experiments, increasing the amount of data displayed during the usability studies

caused users to take more time and be less accurate with the prototypes. When just one

trajectory was displayed, no significant differences were detected, in terms of performance.

• The use of temporally focused representations, such as timelines, is an effective compensa-

tion to the lack of temporal representation in the 2D map and is considered as essential by

inexperienced users. It can also be useful when employed alongside an STC, although less

significantly. This is addressed with more detail in Chapter 5. The analysis of the users’

actions and comments related to the experiments that are there described revealed that they

interacted significantly more with timelines in temporal tasks, when used alongside 2D

static maps.

• Using additional spatial context cues over STCs, in the form of moveable map planes along-

side the STC’s height or in the form of a 2D data overview, significantly improves the us-

ability of STCs in location-based tasks, closing the gap between STCs and 2D static maps

in terms of effectiveness. This is addressed in the usability studies described in Chapters

4 and 5. In the first, the results have shown that both proposals for improving the STC

provided better results than a baseline STC. In the second, the results have shown that users

were not significantly more accurate when using the 2D static map comparatively to an

improved STC.

• Despite the increasing visual and interactive complexity, combining 2D static maps and

3D STCs is a viable approach for inexperienced users to visualize trajectory data. This is
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addressed in Chapters 4, 5, and 6. The first discusses the attempts of users to convert one

technique into the other to complete the tasks. The second shows how the use of a 2D map

overview supports a better performance, comparatively to a baseline STC. The third shows

how combining 2D static maps and 3D STCs is not significantly outperformed by other

simpler/isolated techniques, and how this is seen as an overall preferable approach by the

study participants.

Based on the analysis of previous works and also based on the combined results obtained in

the conducted experiments, the following high-level theoretical contributions were produced:

• A systematic survey was developed with relevant concepts addressing: i) the main charac-

teristics of trajectory data; ii) visualization/interaction tasks used to achieve a given goal;

and iii) the main types of map techniques for trajectory data visualization. Through this

analysis, a simplified hierarchical task model was developed, that once combined with the

other addressed components, can be applied in the evaluation of visualization techniques.

• A systematic set of usability tests was also developed comparing different approaches for

visualizing trajectory data with 2D static maps and 3D space-time cubes. The results were

analysed based on the record of user action logs, common performance metrics (e.g., effec-

tiveness, efficiency and preferences) and additional metrics including: number of actions,

ratio of visualization component used or 3D mitigation actions/visualization type transi-

tions.

• A set of general guidelines was produced regarding the design of 2D maps and 3D space-

time cubes for trajectory data visualization, focused on an inexperienced user population.

1.3.2 Software Contributions

To conduct the usability studies referenced in the previous sections, some software development

work was necessary. Consequently, the following tools were created:

• STCJS (Gonçalves, 2017a): API (Application Programming Interface) developed in HTML5,

over the THREE.JS library (Cabello, 2010), that supports the creation and interaction with

visualizations based on space-time cubes for the analysis of trajectory data.

• TRAJMAP2DJS (Gonçalves, 2017c): API developed in HTML5, over the THREE.JS li-

brary, that supports the creation and interaction with an information layer built with Google

Maps, for the visualization of trajectory data.

• TIMELINEJS (Gonçalves, 2017b): API developed in HTML5, over the THREE.JS library,

that supports the creation and interaction with timelines for the visualization of data from a

temporal perspective.

• Various prototypes using the aforementioned APIs, including:
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ST-TrajVis: Application displaying a 2D map and a STC for the visualization of a user’s

trajectories - this prototype is described in more detail in Chapter 3;

HTV-2DMap and HTV-STC (HTV - Human Trajectory Visualizer): Applications imple-

menting a basic 2D map and STC, respectively, alongside a basic timeline, for the visualiza-

tion of human (walking) trajectories from multiple subjects - these prototypes are described

with greater detail in Chapter 3, under the names of 2D Map and STC, respectively;

ImpSTC-P1, ImpSTC-P2, ImpSTC-P3: Applications implementing three variations of the

STC, the first with general improvements over HTV-STC, the other two implementing addi-

tional features to improve STCs in location-based tasks, namely additional moveable maps

and map overviews - these prototypes are described in more detail in Chapter 4, under the

names of P1, P2, and P3 respectively.

TTV-2DM, TTV-STC, TTV-3VC (Taxi Trajectory Visualizer): Applications implementing

a 2D map, an STC, and a combination of both techniques, respectively, alongside time-

line representations, for the visualization of taxi data - these prototypes are described with

greater detail in Chapter 5, under the names of 2DM, STC, and 3VC respectively.

VisLoL: Application implementing a combination of 2D maps and STCs, alongside timeline

representations, for the visualization of the trajectories and events associated to a set of

players in a League of Legends match - this prototype is described in more detail in Chapter

6.

1.3.3 Publications

This Ph.D. research originated the following publications, grouped by publication year:

2017

Pedro Vieira, Tiago Gonçalves, Ana Paula Afonso, and Maria Beatriz Carmo. Mapas Ani-

mados para a Análise do Desempenho Pessoal em Jogos. Encontro Português de Computação

Gráfica e Interação, EPCGI 2017, pgs. 12 (accepted for publication).

2016

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins, Why not both? - Combining 2D

maps and 3D pace-time cubes for human trajectory data visualization, Proceedings of 30th

British Computer Society Conference on Human-Computer Interaction Conference, HCI

2016, pgs. 10.

Tiago Gonçalves, Ana Paula Afonso, António Ferreira, Ana Rita Vieira. Trajectory Data

Visualization on Mobile Devices with Animated Maps, Proceedings of the 37th Annual

Conference of the European Association for Computer Graphics, EUROGRAPHICS 2016,

pgs. 4.
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2015

Tiago Gonçalves, Ana Rita Vieira, Ana Paula Afonso, António Ferreira. PATH - Visualização

de Percursos Pessoais com Mapas Animados em Dispositivos Móveis. INFORUM - Simpósio

de Informática 2015, pgs. 14.

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins. Cartographic Visualization of Human

Trajectory Data: Overview and Analysis. Journal of Location Based Services, 9(2):138-

166, 2015, pgs. 28.

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins. Combining and Assessing 2D Maps

and Space-Time Cubes for Trajectory Data. British Computer Society Conference on

Human-Computer Interaction, BCS HCI 2015, pgs. 2.

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins. Improving Spatial Awareness for

Human Trajectory Visualization in Space-Time Cubes. Human-Computer Interaction - IN-

TERACT 2015 - 15th IFIP TC 13 International Conference, pgs. 6.

2014

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins. Visualizing Human Trajectories:

Comparing Space-Time Cubes and Static Maps. Proceedings of the 2014 British Computer

Society Conference on Human-Computer Interaction, BCS HCI 2014, pgs. 6.

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins. Visualization Techniques of Trajec-

tory Data: Challenges and Limitations. Proceedings of the 2nd AGILE Ph.D. School 2013

CEUR Workshop, 1136, pgs. 10.

2013

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins, Daniel Gonçalves. ST-TrajVis: Inter-

acting with Trajectory Data. Proceedings of the 2013 British Computer Society Conference

on Human-Computer Interaction, BCS HCI 2013, pgs. 6.

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins, Daniel Gonçalves, Visual Exploration

of Human Mobility Datasets, Mobile Ghent 2013, pgs. 1 (extended abstract).

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins, Visual Analysis of Mobility Data.

International Conference on Mobile Data Management 2013, MDM 2013, pgs 4.

In addition to the aforementioned list, two additional contributions were published during the

course of this Ph.D. work, namely:

Tiago Gonçalves, Ana Paula Afonso, Maria Beatriz Carmo, Paulo Pombinho. Comparison

of Off-screen Visualization Techniques with Representation of Relevance on Mobile De-

vices. Proceedings of the 2013 British Computer Society Conference on Human-Computer

Interaction, pgs. 8.
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Tiago Gonçalves, Ana Paula Afonso, Maria Beatriz Carmo, Paulo Pombinho, Overview

vs Detail on mobile devices: a struggle for screen space. Proceedings of the 2012 British

Computer Society Conference on Human-Computer Interaction, BCS HCI 2012, pgs. 6.

Furthermore, at the time of this document’s writing, three additional papers, focused on the

most recent results and future work, await revision for a conference and two different scientific

journals, namely:

Tiago Gonçalves, Ana Paula Afonso, Bruno Martins. Cartographic Interaction with 2D

Maps and 3D STCs for Trajectory Data Visualization, pgs. 20.

Tiago Gonçalves, Paulo Pombinho, Nuno Carreiro, Ana Paula Afonso, Maria Beatriz Carmo.

VisLoL - The role of interactive maps in the performance assessment of MOBA players,

pgs. 12.

1.3.4 Legacy

In addition to the aforementioned contributions, this work has also inspired the creation of related

projects, also carried out at the University of Lisbon. In particular, three MSc thesis have benefited

from the tools that were developed, and from the results obtained through this research. More

specifically, these projects had the following contributions:

Visualização de Trajectórias Humanas em Dispositivos Móveis (Visualization of Human Tra-

jectories on Mobile Devices (Vieira, 2016)) - this MSc thesis addressed the usefulness and

usability of map-based techniques for trajectory visualization by inexperienced users, on a

mobile environment (e.g., using smarthphones or tablets), and was inspired by the growing

popularity of tracking applications. In particular, this work focused on the use of (simple)

animated maps and compared two possible approaches in animated representations with a,

more common, 2D static map (Gonçalves et al., 2016a, 2015d). This research was con-

ducted by Ana Rita Vieira and supervised by Prof. Dr. Ana Paula Afonso, by Prof. Dr.

António Ferreira, and by the author of this document, attaining a final grade of 16 out of

20.

Técnicas de Visualização para Melhorar o Desempenho em Jogos Online (Visualization Tech-

niques for Performance Improvement in Online Games (Carreiro, 2016)) - this MSc thesis

was inspired by the growing popularity of competitive online video games, such as MOBAs

(Massive Online Battle Arena) games, which are often dependant of a proper understanding

of the games’ spatial and temporal related attributes, as well as the increasingly common

collection of game-related spatio-temporal data, associated with the players. More specif-

ically, this work addressed the adequacy and the effects that map-based spatio-temporal

visualizations, such as 2D static maps and 3D space-time cubes, have over players’ under-

standing of the events recorded in a game. This work also addressed the issue of inexperi-

enced users, in terms of visualization and analysis, interacting with trajectory data. For that,
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it compared 2D static maps and 3D STCs with existing non map-based approaches, and it

took into account the users’ familiarity with the data and its effects over the analysis (Car-

reiro, 2016). This research was conducted by Nuno Carreiro and supervised by Prof. Dr.

Ana Paula Afonso, Prof. Dr. Maria Beatriz Carmo, and by the author of this document,

attaining a final grade of 17 out of 20.

Visualization of Spatio-temporal Information for Personal Performance Analysis in Games
- this MSc thesis consists of a direct follow up of this Ph.D. research, aiming to address

some of the challenges identified as future work in the previous MSc thesis, which in-

clude the study of the effects of domain knowledge and personal motivations over the data

analysis, while still studying techniques for spatio-temporal and trajectory data visualiza-

tion dedicated to inexperienced users. This research is currently being conducted by Pedro

Vieira and is being supervised by Prof. Dr. Ana Paula Afonso and by the author of this

document.

1.4 Document Structure

The remainder of this document is organized as follows:

Chapter 2 provides a review and detailed analysis of relevant existing work in the literature. In

particular, this chapter focuses on the main characteristics associated with trajectory data,

the main types of visual analysis tasks required to achieve a given goal, and it overviews

the main types of map-based techniques available for the visualization of trajectory data.

After that, it focuses on the most relevant comparative studies conducted with the various

techniques. This chapter also presents the first contribution of this research, namely a sim-

plified hierarchical organization of visual analysis tasks, which was used as the basis of the

user studies described in the subsequent chapters.

Chapter 3 presents two usability studies with three prototypes for the visualization of human

trajectory data, i.e., St-TrajVis, HTV-2DMap, and HTV-STC. The first study, conducted

with ST-TrajVis, helped analysing the reception of inexperienced users towards map-based

techniques for the visualization of trajectory data. The second study, conducted with the

remaining prototypes, focuses on the comparison of the main characteristics of 2D static

maps and 3D STCs.

Chapter 4 presents another comparative study, with three prototypes implementing variants of

the STC technique, namely ImpSTC-P1, ImpSTC-P2, and ImpSTC-P3. These were devel-

oped based on the results presented in the previous chapter, and focused on the analysis and

validation of possible improvements over the STC technique for location-based tasks.

Chapter 5 builds upon the results of the previous experiments and addresses the issue of com-

bining 2D static maps and 3D STCs for trajectory visualization. For that, three prototypes
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were created, i.e., TTV-2DM, TTV-STC, and TTV-3VC, and evaluated in a comparative

user study. In addition to the analysis of the usefulness of combining both techniques, this

study helped further comparing 2D static maps and 3D STCs.

Chapter 6 presents VisLoL, a prototype developed in the context of a case study that takes advan-

tage of the problems addressed in the three previous three chapters, applied to the area of

video game analytics. More specifically, it presents a user study comparing the interaction

and analysis made with a map-based visualization, combining 2D maps and 3D STCs, with

an application not based on maps. This study also addresses the problem of the effects that

the familiarity with the dataset may have over the analysis, by an inexperienced user.

Chapter 7 reviews and discusses the results and contributions addressed in the previous chap-

ters. Based on the results of that complete analysis, this chapter identifies a set of design

guidelines for trajectory data visualizations, with a focus on an inexperienced population.

Chapter 8 finalizes this document by describing the main conclusions drawn from the various

steps of the Ph.D. research, presenting also the most promising and challenging research

opportunities for future work.



Chapter 1. Introduction 16



Chapter 2

Interactive Visualization of Trajectory
Data

This chapter fulfils two main roles. First the chapter presents the most relevant concepts associated

to this Ph.D. research, alongside the related work in the literature responsible or dedicated to them.

Then, to avoid unnecessary repetitions, the chapter presents the first contribution of this research,

namely a simplified hierarchical visual analysis task model, based on the study and systematization

of the aforementioned concepts. For that, this chapter is divided into six main sections. The

first provides an overview regarding the concept of cartographic interaction, and establishes the

context for the rest of the chapter. The next three sections present and analyse a relevant set of

concepts and the related work based on three main questions (Aigner et al., 2007), respectively:

What is presented: focused on the main components of trajectory data.

Why is it presented: focused on the types of user objectives and tasks that can be conducted

when using a given visualization, and followed by the proposal of a simplified view over

these types.

How is it presented: focused on the characterization of the most general types of map visu-

alization techniques to represent trajectory data, based on their properties and expected

dis/advantages.

Considering this research’s proposal for the conduction of comparative user studies of visual-

ization techniques, the fifth section describes and discusses some of the most relevant comparative

studies present in the literature. The chapter ends with a summary of the various points mentioned

above.

2.1 Cartographic Interaction

To extract useful information from human trajectory datasets, adequate representations are needed.

As a consequence of the inherent spatial properties of spatio-temporal data and trajectories, maps

are often considered important tools for the representation and analysis of these data (Kraak and

17
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Ormeling, 2010). However, due to the large volumes of data and the complexity generally asso-

ciated with mobility datasets, it is often difficult to produce a single and sufficient representation

of the data. Therefore, to enable a better understanding of this data, it is crucial that these repre-

sentations support interactive features that allow users to visualize the data, partially or entirely,

from different perspectives (Roth, 2013). This is directly associated to the concept of cartographic

interaction.

Overall, cartographic interaction is defined as the dialogue between a human user and a map

mediated through a computing device (Roth, 2013). This, in turn, implies the existence of three

main interconnected components, namely:

The user: usually responsible for the beginning of the interaction. The user may select different

map views depending on the visualization goals, usually implying some kind of change

over the map;

The map: presents information to the user, based on his/her actions with the computing device.

The current map may be changed depending on how effectively this helps the user achieving

his/her goal;

The computing device: responsible for the translation of the user’s actions/requests into a map

view, and the display of the same view back to the user.

For a better understanding of these components, the following paragraph presents a scenario

related to cartographic interaction with trajectory data:

A certain user recorded his/her trajectories, e.g., during jogging exercises, and wants to

analyse them to estimate where to go next time, in order to improve his/her performance. The

user visualizes the data in an application that displays the trajectories on a map, also allowing

the visualization of that data according to several thematic attributes (e.g., speed). The user starts

by loading the data into the application and locate the trajectories in the map. Then, the user

requests the application to display the recorded speed taken along the trajectory. The user may

explore the map, e.g., through panning and zooming operations, and may be able to identify how

fast he/she moved over certain locations. The user may then compare those same locations or

the instants in time during the exercise, in which he/she moved faster or slower. Based on the

analysis of the map and the path taken, the user may be able to associate his/her speed to the type

of path/street taken, and conclude, for example, that he/she was slower in busier parts of the city,

comparing to local parks or the outskirts of a city. Finally, based on the collected information, the

user concludes which areas of the city he/she will want to avoid next time.

Roth (2013) described the procedure associated with cartographic interaction based on the

stages of action model, originally proposed by Norman (2002), and which can also be used to

describe the aforementioned scenario. Overall, this consists of a cyclic model composed by seven

stages, namely:
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Forming the goal: requires developing a notion of what needs to be done. Typically, a goal

is poorly defined and domain specific (Roth, 2012). In the presented scenario, this stage

corresponds to the user deciding that he/she wants to analyse his/her data and the locations

in which he/she may practice exercise with a higher performance.

Forming the intention: requires determining the tasks/objectives needed to achieve a certain

goal. These objectives can be defined as the user’s cognitive input for the cartographic

interaction (Roth, 2012). In the presented scenario, this stage corresponds to the definition

of the tasks locate, identify, compare, and associate, which helped the user in the various

stages of the analysis.

Specifying the action: requires the determination of the actions that might be needed to perform

a certain task. Typically, these actions involve using the interactive features provided by the

computing device to request/change the state of the map view. In the presented scenario, this

stage corresponds to the user’s decision of interacting with the map, e.g., through panning

or zooming the map.

Executing the action: consists in the user’s input to the computing device, following the action(s)

defined in the previous stage. In the presented scenario, this stage corresponds to the user’s

request for information about movement speed, or when panning or zooming the map;

Perceiving the state of the world: consists in the user’s acknowledgement of a new state for the

map view, as a result of the actions performed in the previous stage.

Interpreting the stage of the world: consists in the user’s process to make sense of the data dis-

played. In the presented scenario, this stage corresponds to the user’s translation of what is

shown in the visualization into usable information, including the understanding of how fast

was the movement at certain places, or determining in which locations a slower movement

was recorded.

Evaluating the outcome: consists in the user’s decision on whether the information acquired is

enough to accomplish the goal created at the first step of the interaction. The outcome of

this evaluation may result in the end of the interaction, in the beginning of a new cycle

with the same goal (if the goal was not achieved), or in the beginning of a new cycle with

a new goal. In the presented example, this stage corresponds to the user’s conclusion that

the map allowed him/her to decide which areas of the city should be avoided, to improve

performance, thus ending the interaction with the map-application.

As previously mentioned, to properly develop and evaluate adequate visualization techniques

for trajectory data, it is important to take into account the capabilities of the users, particularly

when these are likely to be inexperienced, in terms of visualization and analysis. In addition,

it is also important to consider the various constraints related to the aforementioned stages. In

particular, although user goals may be poorly defined and domain specific (Roth, 2012), making it
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difficult to properly study them, the types of visual analysis tasks that might need to be completed

to achieve a certain goal are relatively well known, and have been the focus of several studies.

Throughout the literature, several taxonomies of interaction primitives have been proposed,

focused on the tasks, types of interactive actions, and data properties, associated with cartographic

interaction (Roth, 2012). The following sections of this chapter describe and analyse the most

relevant concepts and taxonomies associated to these topics.

2.2 Main Components of Trajectory Data

By definition, a trajectory consists in the evolution of a moving object’s spatial properties over

time (Dodge et al., 2008), often characterized by a set of stop and move features, depending

whether the object is stopped or in movement (Spaccapietra et al., 2008).

Typically, trajectories are represented as a temporally ordered sequence of location points

P = 〈xi, yi, zi, ti〉, that compose a trajectory T = {P1, P2, ...Pn}, where xi, yi, and zi represent

spatial coordinates (e.g., latitude, longitude, and altitude), and ti represents the time instant when

the spatial position was recorded. Furthermore, each trajectory point or the trajectory as a whole

can be further enriched with annotations or thematic attributes. These may represent any type

of information that adds knowledge to the trajectory and can provide a more detailed characteri-

zation of the moving object (Parent et al., 2012). More specifically, these attributes may include

both quantitative and qualitative information, derived from computations over the original raw

data (e.g., speed values or distance travelled), from the combination with other datasets (e.g., the

weather at given location or time), or inferred from the existing data (e.g., transportation mode

based on the speed during movement) (Schuessler and Axhausen, 2009; Xie et al., 2009; Yuan

et al., 2012).

Usually, trajectories involve large volumes of data, therefore making it difficult to constantly

keep and track records of movement data (Parent et al., 2012). In addition, several external fac-

tors, such as satellite triangulation issues or signal blocking, may create erroneous dataset entries.

Consequently, prior to the visualization and analysis of these data, several pre-processing methods

tend to be used to remove erroneous data entries (data cleaning), or reduce their size, either based

on a set of criteria (data filtering) or by merging/transforming entries with similar properties (data

smoothing and aggregation/clustering) (Deng et al., 2011; Heckbert and Garland, 1997; Wang

et al., 2009).

According to various studies in the literature, the application of these methods can support

the extraction of additional information, to better understand trajectories (Renso et al., 2012;

Schuessler and Axhausen, 2009; Xie et al., 2009; Andrienko and Andrienko, 2013). Consequently,

it is important to acknowledge the importance of pre-processing stages, prior to the visualization

of the data. Nevertheless, it is also important to mention that these methods are beyond the scope

and goals of this work, and thus this section will not enter in further details.

Ultimately, a trajectory consists in the path generated by an object over an area during a cer-
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tain amount of time. Consequently, and regardless if the pre-process of trajectories requires the

removal of erroneous locations or the inclusion of additional thematic attributes, it is possible

to identify three fundamental sets of information directly associated to these data, namely space

(where?), time (when?), and objects (what?) (Peuquet, 1994; Andrienko and Andrienko, 2005;

Neumann, 2005; Qian et al., 1997).

2.2.1 Space

Although in the majority of the literature the term space is usually associated with the Earth’s

surface and its geographical features, it can refer to several non-geographical contexts (Longley

et al., 2005; Drachen and Schubert, 2013b). In fact, space is a complex type of information that

can be structured based on several different properties, like coordinate-systems or hierarchic re-

lations between locations. Several types of geometric structures can be used to represent space,

including points, lines, areas, and volumes (Bertin, 1967; Andrienko and Andrienko, 2013; Kraak

and Ormeling, 2010). This, allows different spatial characteristics to be emphasized, such as dis-

tance between points/locations, altitude, slope of the terrain, or category of location, e.g., home,

work, entertainment or restaurant (Andrienko and Andrienko, 2013).

Depending on the context, space can be treated as a one-, two-, or three-dimensional property

of a given trajectory (Andrienko and Andrienko, 2013). Typically, when the understanding of

the distances between location points or their identification is sufficient, representing space as a

one-dimensional property may be enough. However, when it is important to understand how the

position of an object changes over time, or understand the possible relations between locations,

two- or three- dimensional representations of the data are more appropriate, which may influence

the choice of a visualization technique for that data.

In the context of this research, both geographical and non-geographical representations of

space were used throughout the various experiments. These include datasets containing (two-

dimensional) trajectories recorded from the following locations:

China (geographical) - data made available through the GeoLife Project. This dataset will be

further explained in the next chapter;

New York (geographical) - data made available by the Taxi and Limousine Commission of New

York City. This dataset will be further explained in Chapter 4 and 5;

League of Legends (non-geographical) - data made available by Riot Games, through their Riot

Games API. This dataset will be further explained in Chapter 6.

2.2.2 Time

Time is a complex type of data, which, similarly to spatial locations, can be described based

on several criteria, including scale, scope, arrangement, and viewpoint (Andrienko et al., 2010;

Aigner et al., 2007; Kaufman, 2004).
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In terms of temporal scale, time can be considered as ordinal, discrete, or continuous. An

ordinal scale implies relative order of relations between events (Aigner et al., 2007). A discrete

scale is usually associated to a complex hierarchical system of granularities that include seconds,

minutes, hours, or days (Andrienko et al., 2010). With a continuous scale, time can be mapped

into numeric values (Aigner et al., 2007).

It is also important to analyse the duration or focus of temporal data. Typically, two dimensions

are considered for this criterion, namely, time-points or moments and time intervals, depending

if the temporal extent defining the data is greater than zero (Vasiliev, 1997; Aigner et al., 2007;

Andrienko et al., 2010).

Temporal information also deals with cycles and re-occurrences that need to be taken into con-

sideration, regardless of their frequency (Vasiliev, 1997; Frank, 1998; Neumann, 2005; Andrienko

et al., 2010). As such, temporal information can be arranged into two categories, namely linear

and cyclic time, depending if time is perceived as a continuous sequence or a set of re-occurring

events, respectively.

Finally, the viewpoint of temporal information can be subdivided into ordered time, branch-

ing time, and multiple perspectives. Ordered time considers that events occur one after the

other (Aigner et al., 2007). Branching time is described as a metaphor to assist in the analysis

of alternative scenarios, and time with multiple perspectives considers the representation of more

than one point of view of an observed fact (Andrienko et al., 2010).

In the context of this research, the datasets used in the experiments can be described by this

criteria. Considering the focus on trajectory data recorded from real people (either in geographical

or virtual locations), it is important to take into consideration the order in which the various actions

took place (e.g., which location was visited, or which events happened, first?). As such, although

time can be represented in a continuous scale (e.g., timestamps), its analysis is made through an

ordered viewpoint. In addition, both time-points and periods can be considered when analysing

the data. For example, while the arrival of a person to a specific location occurs in a time-point, the

trip towards that location happens throughout a period of time. Moreover, although time related to

a trajectory is generally seen as a (linear) continuous sequence of events, it is possible that some

of those re-appear over time (e.g., a person visiting the same locations in various periods of time,

such as going to work or home every day).

2.2.3 Objects

In addition to the properties associated with space and time, it is also important to categorize the

objects/entities that create or are related to the trajectories. Objects are usually characterized by

various properties, describing non-location and non-temporal information (Qian et al., 1997), like

age, health condition, or mode of transportation. Naturally, the analysis of these attributes may

have an effect over the movement itself and, consequently, over how the user may understand the

data through a given visualization (Peuquet, 1994; Andrienko et al., 2008; Roth, 2012).

In the same way thematic properties can help understanding trajectories, objects can also be
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characterized in function of their relation with space and time. In particular, Andrienko et al.

(2013) classified objects into five general categories, namely:

Spatial objects: that can be characterized as having a location in space;

Events: that can be characterized as having a location in time;

Spatial events: that can be defined according to spatial and temporal positions;

Mover: a type of spatial object where its position changes over time;

Moving events: a type of event where its position changes over time.

As previously mentioned, a trajectory is defined as the evolution of the position of an object

over time. In addition, trajectories can be further characterized as a set of stop and move features,

depending on whether the object is stopped or in movement (Spaccapietra et al., 2008). Comparing

to the aforementioned categories, it is possible to see that these concepts are directly associated

to those of movers and spatial events, which are, in fact, often considered to be the most relevant

types of objects in trajectory data analysis (Andrienko et al., 2013).

In the context of this research, all datasets used are related with human trajectories. Therefore,

considering the aforementioned categories, a vehicle, a human, or even a human’s avatar in a

virtual environment can be considered a mover. Meanwhile, the actions caused by, or experienced

by, those movers can be considered as the spatial events, such as a person visiting a specific

location, a taxi dropping a passenger, or a video game character defeating an enemy in the map.

Despite their similarities, each type of mover and their trajectories can be characterized based on

different sets of information. For example, if the mover is considered to be the human, he/she

may be characterized in function of the mode of transportation. If the mover is a taxi, this may

be characterized based on its driver, its number of passengers, the profit it made, or the type of

payment received. If the mover is a virtual character controlled by a person, e.g., in a video game,

this may be described in function of its number of enemies killed or game related currencies

obtained.

2.3 User Objectives and Tasks

Each one of the three sets of information associated with spatio-temporal and trajectory data can

be characterized in terms of the other two (Andrienko et al., 2013). In addition to the previously

explained triad model, of space, time, and objects, Peuquet (1994) also describes three basic types

of relations based on the combinations between the different sets. This supports three different

types of questions over the data, namely:

When+where→ what: to state the properties of an object at a given time and location;

When+what→ where: to state the location(s) of object(s) at given time(s);
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Where+what→ when: to state the time or set of times when one or more objects were at a certain

spatial area.

Based on this framework, Andrienko et al. (2003) consider the relations between two search

targets and two search levels. The search targets consist of the spatio-temporal components to be

analysed, namely when and what+where, which can be known a priori. This categorization pro-

vides an additional emphasis to the temporal component and simplifies Peuquet (1994)’s approach.

Furthermore, the search levels correspond to the amount of features under analysis, i.e., analysing

one feature (elementary) or several (general). The combination between these two dimensions

results in four different categories:

Elementary When and What+Where: to describe the characteristics of an object at a given time

moment;

Elementary When and General What+Where: to describe the situation at a given time;

General When and Elementary What+Where: to describe the dynamics of the characteristics of

an object at a certain location over a period of time;

General When and What+Where: to describe the evolution of the overall situation over a period

of time.

Amini et al. (2015) propose a somewhat similar model based on the combination of three

dimensions that include: the search targets described by Peuquet (1994) (space, time, and objects);

two search levels, singular and plural, similar to those proposed by Andrienko et al. (2003);

and two levels regarding the knowledge of the data component, namely known and unknown,

depending on whether the information is explicitly given about a certain data component, or if

the user has to discover it, respectively. Although implicit in the previous models, by clearly

defining this third dimension (known/unknown), this framework has the potential to support the

characterization of more complex scenarios, depending on the types of components that may need

to be discovered, i.e., if there are unknown components, the more complex the scenario.

Roth (2012) emphasizes the importance of Andrienko et al. (2003)’s taxonomy for carto-

graphic interaction since the spatial data component is always taken into consideration and as-

sociated to the object. More specifically, space is either already known, and acts as a possible con-

straint, or it is a main component under consideration, with the other two acting as constraints (An-

drienko et al., 2003). Moreover, unlike other approaches, in addition to search levels and search

targets, this taxonomy also supports the concept of cognitive operations, defined as the visual

analytic processes applied to the representation. The authors propose two types of cognitive op-

erations, namely identify and compare. These operations are equivalent to the tasks/objectives

present in the forming the intention state, as described by Norman (2002) and Roth (2012), and

presented in Section 2.1. The inclusion of these tasks is particularly important, since they signifi-

cantly change the context of the aforementioned categorizations. For example, a comparison task
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in a general when elementary what+where context is different from an identification task in the

same context. Even if search levels and search targets may be the same, the objective regarding

them is different (e.g., finding if a driver did travel at an illegal speed, comparatively to stating the

locations where the driver travelled the fastest). As such, the way in which the user would analyse,

interact, and visualize the data will, necessarily be different if the user has to identify or compare

something. Consequently, exploring these tasks can help understanding trajectory data, including

the types of visualizations used to represent them.

Throughout the literature, several taxonomical approaches have been proposed to address the

possible types of tasks, present in the forming the intention state, associated with several domains

complementary to trajectory visualization, which include cartography, human-computer interac-

tion, and visual analytics. Figure 2.1 depicts the most relevant studies, grouped by the proposed

visualization objectives. Listed on the left side of the figure, each study is associated with a dif-

ferently coloured label. On the right side of the figure, each objective is labelled according to the

studies that refer it and is then scaled and ordered according to the number of studies referencing

it, i.e., the higher the number of studies referencing that objective was, the larger its representation.

As mentioned in the previous chapter, one of the main objectives of this Ph.D. research im-

plies the conduction of usability studies, which are dependent on the characterization of the tasks

described in this section. The analysis of the Figure 2.1 reveals some redundancy, since the same

objectives are being identified by several studies and similar or overlapping objectives are be-

ing described with different names. In addition, not only the total number of tasks proposed is

considerably high for an usability study, but it is also relevant to notice that the number of tasks

proposed by the various studies is extremely varied. Therefore, without a clear characterization,

using these tasks as a baseline for evaluation can be extremely difficult, if not impossible, due to

their redundancy and, most likely, overwhelming number.

To make sense of these contributions, this section presents a simplified view over the proposed

visualization objectives (Gonçalves et al., 2015a). For that the following criteria were used:

1. Merge the objectives with similar definitions, or that have the same outcome, keeping those

that differ the most among each other;

2. Distribute the remaining objectives into different levels. If an objective can be considered as

a specific instance from another, while still being identifiable from others, then this objec-

tive is moved to a lower level. If an objective is not adequate in the context of visualization

objectives, it is moved to the lowest level (orthogonal).

3. Repeat this process until all tasks are addressed.

Figure 2.2 depicts the result of this simplification. The application of the aforementioned

criteria resulted in a four level model, in which the highest level, on top of the figure, represents

the most general objectives. The two following levels list specific divisions of the objectives from

the levels above. The last level, at the bottom of the figure, lists orthogonal objectives that do not



Chapter 2. Interactive Visualization of Trajectory Data 26

Figure 2.1: List of Task/Objective-based taxonomies, grouped by the proposed objectives.

overlap with the others. To make sense of this model, the following sections describe each level

in more detail.
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Figure 2.2: Simplified model of proposed visual analytics objectives.

2.3.1 First level - Identify and Compare

The first level of this model is composed by the two most mentioned visualization objectives,

namely identify and compare. These consist of the basis for several taxonomies, including the

ones presented by Andrienko et al. (2003), Blok (2000), and MachEachren et al. (1999). They

also play an important role in more complex taxonomies, such as the ones presented by Wehrend

and Lewis (1990), Zhou and Feiner (1998), or Koua et al. (2006). Despite the small variations

between the existing taxonomies, identify is generally defined as the examination and description

of the characteristics of objects in the visualization. Compare is often defined as the detection and

measurement of similarity/difference relationships and changes between objects. These can, in

turn, be considered as the most general types of objectives, due to the wide scope and applicability

provided by their definitions.

2.3.2 Second level - Identify, Compare, Locate, and Associate

The second level of Figure 2.2 includes two additional objectives, namely locate and associate,

originated from the tasks identify and compare, respectively. These four objectives are the basis of

taxonomies such as the ones proposed by Knapp (1995) and Ogao and Kraak (2002). Typically,

locate is defined as the determination of the existence or position of an object within the visu-

alization, while associate is defined as the determination of relationships between two or more

objects.

The separation of identify from locate implies a relevant emphasis on the representation of

the data for the locate task (where? and when?, as further discussed in the next section), which

in a map visualization tends to coincide with the data’s spatial components. Comparatively, the
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identify task may be narrowed to other information (Ogao and Kraak, 2002), typically related with

thematic attributes (what?). This information can be already known and act as a possible constraint

in the location of an object(s) (Valiati et al., 2006; Ogao and Kraak, 2002), or it may need to be

identified, after the object(s) being located (Roth, 2012).

Based on the type of visualization, as discussed in Section 2.4, and how the data is organized,

the temporal component of the data can be addressed by location and identify objectives, depend-

ing on whether this information is used to position an object or event in time (e.g., an event e

occurred at 9h30), or if it is used to identify an object or event (e.g., the end of the work-shift).

On the other hand, the specification of the associate objective from the compare objective

implies an important distinction between detecting possible relationships or correlations and de-

termining similarity or differences between sets of data. For instance, analysing the trajectories of

a set of users and conclude that they are slower when they move together as a group (associate), in

contrast to analysing them and concluding that they move slower comparatively to other periods

of time (comparison).

2.3.3 Third level - Specific Cases

The third level of the figure depicts the least mentioned objectives in the literature, that usually

consist of special or specific cases of the objectives presented in the level above (identify, locate,

compare, and associate). This level highlights six additional objectives, namely: categorize, dis-

tinguish, rank, calculate/determine, cluster, and infer, present in taxonomies, such as the ones

proposed by Wehrend and Lewis (1990), Koua et al. (2006), Amar et al. (2005), Zhou and Feiner

(1998), and Valiati et al. (2006).

Typically, categorize is described as defining objects based on a given classification (Koua

et al., 2006), thus being equivalent to describing an object’s characteristic according to a specific

set of rules (e.g., categorizing a mover as slow based on the speed values that were identified).

Distinguish consists of the recognition of an object as different from one or several others,

while rank consists of the attribution of an order, according to some ordinal metric. These can be

considered two specific types of comparison objectives, depending if the data under analysis are

nominal or ordinal, respectively (Bertin, 1967).

Determine, proposed by Valiati et al. (2006), is defined as the calculation of precise values.

For a simplification of language, this objective will be addressed as Calculate. Although this type

of task may, actually, be seen better as an operator (Roth, 2012) (i.e., the actions executed to

complete a task), it is important to reference it due to its relation with the analysis of numeric

data, comparatively to the distinguish and rank objectives, that generally deal with nominal and

ordinal data, respectively. As evidenced in Figure 2.2, two types of calculate tasks are considered,

one related to the identify task, the other with compare. These depend on the type of values

being calculated. Calculate-identify deals with values solely based on an object’s attributes, which

results in the identification of a new attribute (e.g., calculating a movers’ average speed, based

on the size of the representation). Calculate-compare deals with values obtained through the
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properties of different objects, e.g., calculating the difference in speed between two movers at a

certain time, to compare how faster one was moving relatively to the other.

The objectives cluster and infer can be considered as specific cases of the associate objective.

Typically, cluster is defined as the detection of objects with similar attributes, which implies the

comparison of those objects and the consequent grouping due to their similarity. Infer is described

as the determination of cause/effect relationships between data components, also implying the

comparison of two or several objects, over certain conditions, and the consequent detection of a

pattern (e.g., detecting high movement speeds at certain hours of the day, over a period of time).

2.3.4 Fourth level - Orthogonal Tasks

The final level of Figure 2.2 lists a group of objectives that offer minimal overlap with the ones that

were previously described. Some of these tasks are present in a similar categorization described

by Roth (2012), aimed at organizing existing taxonomies based on visualization and cartographic

objectives. Roth (2012) justifies this similar disparity due to the fact that the majority of those

cases are better understood as operators, rather than cartographic objectives/tasks. Consequently,

even though these may not be considered as cognitive inputs over the visualization, they may still

affect the visualization.

In this level, some of the objectives that were proposed may actually precede the displaying

of the data itself, such as the operations that were identified by Qian et al. (1997), in a taxonomy

of spatio-temporal visualization and database operations. These operations are focused on the

manipulation of the data and include: union, difference, and intersection, to merge sets, and obtain

unique or common elements between sets, respectively; select, to obtain information sets, based on

certain constraints; transformation, to configure an element’s properties; and compose, to merge

several elements into a single complex one. In addition, compute derived value (Amar and Stasko,

2004) is described as the computation of an aggregate numeric representation of data sets.

Other objectives can be applied during the analysis of the displayed data. Some may be con-

sidered as abstract operations, like explore/visualize (Valiati et al., 2006; Yi et al., 2007) and

examine (Crampton, 2002), that consist of changing the parameters and inspecting a visualiza-

tion, respectively. Others are responsible for how to display the data on the visualization, like

encode/signify (Zhou and Feiner, 1998; Qian et al., 1997). In comparison, objectives such as

filter/suppress, extract, (re)configure, or abstract/elaborate are responsible for the control over

which sets of information are displayed. Filter (Amar and Stasko, 2004) and suppress (Crampton,

2002) are defined as the acquisition of information based on conditions set over data attributes.

Contrarily, extract (Crampton, 2002) is defined as the highlighting of specific features on a visu-

alization. Reconfigure consists in the arrangement or change of the visual characteristics used to

represent the data (Amar and Stasko, 2004; Yi et al., 2007). Abstract/elaborate is defined as the

request for information in more or less detail (Yi et al., 2007).

Finally, Zhou and Feiner (1998) proposed a set of objectives for which no definitions were

provided, namely background, emphasize, reveal, and switch.
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2.3.5 Omitted Objectives

As stated above, one of the criteria for the conception of this simplified view was the omission of

objectives considered to be overlapping with existing ones. It is important to emphasize that, by

omitting these objectives, they are not being labelled as useless. Nevertheless, this simplification

was a necessary step to prevent confusion and redundancy.

Find externum (Amar and Stasko, 2004) is defined as the identification of extreme attribute val-

ues, thus, being the consequence of a ranking task, that allows determining the order of attribute

values. In addition, operations such as retrieve value (Amar and Stasko, 2004) and (characterize)

distribution (Koua and Kraak, 2004; Wehrend and Lewis, 1990; Amar and Stasko, 2004) are de-

fined as the acquisition of an attribute from a known object, or a set of objects, respectively. Thus,

both operations are equivalent to the identify objective described in the previous sections. Finally,

the remaining objectives were considered similar to associate, since their function is typically

focused in the detection of relationships between objects (within/between relations, cause/effect,

correlate), the search for objects that go against those relationships (find anomalies), and objects

that share similar characteristics among themselves (generalize, membership, super-sets) or among

real life correspondents (interpret).

2.4 Types of Map Visualization Techniques

This section describes some of the most relevant techniques for map-based visualization of trajec-

tories. In particular, thematic maps are considered as an important method for the visualization

of trajectories given the spatial characteristics associated with the data. More than just present-

ing the topology of a given location, these provide an additional set of layers with information,

distributed over the mapped location, based on the temporal and thematic properties associated to

the moving object (Reichenbacher, 2007). This provides an effective, and often crucial, means

for summarizing and communicating complex georeferenced information (Kessler and Slocum,

2011), which helps answering to various spatio-temporal related questions (Vasiliev, 1997; Kraak

and Ormeling, 2010).

Although other visualization techniques may be used instead to work out conclusions re-

garding trajectory data, such as timelines/time-graphs representing variations of attribute values

in time (Andrienko and Andrienko, 2013), their isolated use is not recommended, since these

techniques tend to neglect and not fully represent the spatial component of the data (Andrienko

et al., 2011). This may significantly limit the ability to formulate and solve relevant spatial prob-

lems (Kraak and Ormeling, 2010). Nevertheless, these methods can still be used in conjunction

with map visualization techniques to provide additional points of view over the data (Riveiro et al.,

2008; Hurter et al., 2009; Pu et al., 2013).

Despite acknowledging the existence and importance of additional types of visual representa-

tions, this section is focused on map visualization techniques, particularly, in terms of visualizing

both spatial and temporal data simultaneously. Moreover, it is also important to mention that



Chapter 2. Interactive Visualization of Trajectory Data 31

these can either be the main feature of an application, or it can be one of many components of

the application, in the sense that it can be viewed alongside other map and non-map visualization

techniques (Andrienko and Andrienko, 2013; Hurter et al., 2009; Riveiro et al., 2008; Pu et al.,

2013).

Throughout the literature, several map-based techniques have been proposed for the visualiza-

tion and exploration of the spatio-temporal and thematic properties of trajectory data (Andrienko

et al., 2011; Andrienko and Andrienko, 2013). For the most part, these are the result of the pos-

sible combinations of the different types of visual variables from visual marks (i.e., points, lines,

areas, and volumes). Previous studies have already focused on the identification of the most rel-

evant types of visual variables, like position/location, shape, colour hue/value/saturation, or size,

among others (Bertin, 1967; Green, 1998; MacEachren, 1995). Each of these properties can be

further characterized based on their adequacy to represent certain types of information or capture

the users’ attention. For example, attributes like size or position are considered to be better to rep-

resent numerical data, while colour hue or shapes are better to represent ordered and categorical

data, respectively (Wolfe and Horowitz, 2004; Garlandini and Fabrikant, 2009; Mackinlay, 1986).

As previously mentioned, this research is focused on the differences between map-based vi-

sualization techniques and how these deal with the simultaneous representation of space and time.

For that reason, throughout the following sections and the remainder of this document, there is a

focus on a high-level categorization of four types techniques, which include, static maps, space-

time cubes, animated maps, and small-multiple maps (Kraak and Ormeling, 2010; Andrienko

et al., 2013; Gonçalves et al., 2014; Gonçalves et al., 2013a), and details the main characteristics

associated to these high-level types of visualization techniques, based on the existing literature.

2.4.1 Static Maps

For many years, paper maps were the only way to represent georeferenced information and, in

particular, trajectory data. These maps are still used today, which led users to become more famil-

iarized with static maps, particularly with two dimensional maps.

It is important to mention that, in this work, the term static maps is used in contrast with an-

imated maps. While the first type may use animated effects to emphasize static information, the

second effectively requires the use of animation to represent the evolution of an object’s move-

ment. Therefore, considering this research’s focus on interactive map visualization, animated

maps (that require animated features) should not be mistaken with interactive maps (Roth, 2013)

that provide features that may take advantage of animations to support the change in appearance

or contents within the map.

Typically, the most simple approach for representing the evolution of one or several movers’

trajectories consists in using lines or point symbols over the geographical representation. In turn,

spatial events may be represented as icons with a different shape (Vasiliev, 1997; Phan et al.,

2005). These symbols can be adapted to represent variations of the thematic attributes, through

the change of colours, shapes, sizes/widths, or any other visual variable (Kraak and Ormeling,



Chapter 2. Interactive Visualization of Trajectory Data 32

Figure 2.3: Minard’s static map representing Napoleon’s army campaign in Russia
(source: https://cartographia.wordpress.com/category/charles-joseph-minard).

2010; Bertin, 1967; Perše et al., 2009; Perin et al., 2013; Lucey et al., 2014; Wei et al., 2013; Tani

et al., 2014).

Figure 2.3 illustrates one of the most commonly referenced maps in the literature following

this style of representation, namely Minard’s 1869 map describing the campaign of Napoleon’s

army in Russia (Kraak and Ormeling, 2010). In this example, line marks are used, overlaying a

simplified topographic view, to represent the trajectory followed by Napoleon’s troops. Colour

is used to categorize the troops’ actions (attacking - cream; retreating - black). In addition, line

thickness is used to represent the number of troops, while several text symbols are used to identify

specific locations and to associate the width of the lines with the real number of troops. Finally,

this map also provides a small diagram representing the variation of the temperature over the

geographical area. Through this map, it is possible to easily understand the considerable decrease

in the number of troops, associated with the low temperatures of each region.

Considering the often large dimensions of trajectory datasets, more complex representations

might be needed to prevent issues, such as over-cluttering of information, or to support the visual-

ization of more complex information. A common approach consists of grouping similar, and fre-

quent, trajectories or events and showing them as one (Tobler, 1987; Andris and Hardisty, 2011; Pu

et al., 2013; Shao et al., 2016). This approach reduces the cluttering of trajectories, and although

these visualizations may not clearly reflect the temporal dimension of the data, they show cumu-

lative movements that occurred during a certain period of time (Andrienko et al., 2013). Similarly

to simple approaches, aggregated trajectories can be enhanced with thematic information, through

the manipulation of visual variables, for instance, in Figure 2.4 movements are represented as ar-

rows proportional to the number of objects that followed that trajectory (Tobler, 1987; Andrienko

and Andrienko, 2008)).

Another common approach consists of using 2D histograms or heatmaps, to show the fre-

quency of a certain type of spatial event. The colouring of these maps can, in an intuitive way,
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Figure 2.4: Trajectories represented by aggregated arrows (source: Andrienko and An-
drienko (2008)).

transmit the notion of which areas are more often used (Pingali et al., 2001; Goldsberry, 2012;

Pileggi et al., 2012; Andrienko et al., 2013). Similarly, density maps can also be considered as an

alternative for aggregated trajectory visualization. These maps consist of an aggregate overview

of the data, where wider density fields correspond to larger amounts of data, and their colour and

saturation variations may represent the instant in time or the variation of an attribute, for instance,

the average speed of the moving objects (Scheepens et al., 2011, 2012).

Although time is an inherent property of trajectory data, from the four aforementioned cat-

egories of techniques, static maps are the ones in which temporal information may be the most

easily overlooked. To prevent that, time can be represented similarly to a thematic attribute, for in-

stance, by using visual variables like transparency (Booker et al., 2007). Alternatively, additional

symbols can also be used, like: textual timestamps, explicitly showing the actual time when the

object passed through different landmarks; or cross-lines, orthogonal to the trajectory followed by

the object, in which, the closer the cross-lines, the slower the object was moving (Kjellin et al.,

2010b). Another alternative consists in the use of additional tables and graphs, inside or out-

side the map, to clearly represent the variation of attributes during time (Riveiro et al., 2008; Pu

et al., 2013). Andrienko and Andrienko (2008), for instance, suggest the representation of aggre-

gated movements with complex symbols, similar to tables (Figure 2.5), where the various cells are

coloured according to different thematic attributes and distributed by days of the week (columns)

and hours of the day (rows). On the other hand, works such as those of Ivanov et al. (2007); An-

drienko and Andrienko (2007); de Oliveira and de Souza Baptista (2012) and Thudt et al. (2013)

describe visualization systems with separated views for temporal information, to compensate the
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Figure 2.5: Mosaic diagrams showing the variation of the median speeds in spatial com-
partments by days of the week (columns) and hours of the day (rows) (source: Andrienko
and Andrienko (2008)).

analysis of spatio-temporal and trajectory data on 2D static maps. Consequently, through these

types of representations, time usually needs to be identified as a specific attribute in the map or in

its supplementary visualizations.

Despite the focus of this section in the representation of trajectories in 2D static maps, several

of the concepts described can also be applied over three-dimensional (3D) maps. However, given

the similarities between three-dimensional maps and space-time cubes, their characteristics are

presented in the next section.

2.4.2 Space-Time Cubes

With the advancements within the field of computer graphics, three dimensional visualizations

have become more common, and are continuously being seen as a promising way to represent

complex information (Kjellin et al., 2010b; Bleisch, 2012).

However, despite the similarity of the strategies used in 2D and 3D visualizations (e.g., similar

use of visual variables), 3D representations are not always considered as useful, due to the limita-

tions associated with human perception. With the existence of an additional spatial dimension, the

point of view within the visualization constitutes a critical factor, since it may affect the percep-

tion of the measurements. Consequently, 3D visualizations are often regarded as more adequate

in representing qualitative, rather than quantitative information (John et al., 2001; Kjellin et al.,

2010a,b; Seipel, 2013). Nevertheless, and despite the lack of general guidelines for the design of

efficient 3D visualizations (Kjellin et al., 2010b), several representations of trajectory data (and

spatio-temporal) can be found in the literature (Bach et al., 2014, 2016).

Like in 2D static maps, the simplest way for representing trajectories or spatial events, consists

in the use of points/lines graphically encoded to represent the variations of positions and thematic

attributes over time (Pingali et al., 2001; Kapler and Wright, 2004; Eccles et al., 2008; Ware et al.,

2006). Alternatively, more complex icons can also be used, ranging from simple cylinders, rep-

resenting stop locations (Buard and Brasebin, 2011), to more complex symbols, depicting human
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Figure 2.6: Trajectories represented on a space-time cube visualization (source:
http://www.aviz.fr/ bbach/spacetimecubes/figures/Kraak2003spacetimecube.png).

dynamics, e.g., icons with different shapes to represent various actions (Liu and Lai, 2009).

Also similarly to 2D static map approaches, time can be represented with the methods dis-

cussed in the previous section, like textual labels, to specifically describe the time an object passed

through a landmark, or the amount of time it stayed there (Liu and Lai, 2009). However, the

existence of an additional spatial dimension, which is sometimes not fundamental for the under-

standing of the data, can be used instead to better emphasize the spatio-temporal properties of

movement data. This type of approach is denominated space-time (Hägerstrand, 1970) and an

example is depicted in Figure 2.6.

In the context of trajectory data visualization, the space-time cube technique (STC) has been

considered a possible alternative to common 2D maps. This technique emphasizes the idea that

time and space are inseparable, by representing both spatial and temporal information within a

3D cube (Demsar and Virrantaus, 2010). Typically, two of its coordinates/axes (e.g., the x − y

axes) are used to represent spatial information (e.g., latitude and longitude positions) and the third

dimension (i.e., the z−axis) is used to represent time. Although with exceptions (Amini et al.,

2015), time usually increases alongside the STC’s height, implying that the higher the informa-

tion is within the cube, the more recently the event happened (Kjellin et al., 2010a). Figure 2.7

represents these concepts with a simple example. Assuming that the points I and II correspond to

events, it is possible to see that the x and y coordinates of the two events are the same, correspond-

ing to the location A; however, event II is higher within the cube. This means that although event

I and II occurred at the same location (A), event II is more recent than I.

Although somewhat similar to 2D maps for the representation of spatial and thematic data,

using the third dimension to convey temporal information minimizes the 2D map’s limitations in

representing time, and implies that time needs to be located within the STC, rather than identified,
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Figure 2.7: Representation of events at different time moments, but in the same location,
on a space-time cube.

like in the 2D map (i.e., time is conveyed by a location, instead of a colour or a sequence of

icons). This also allows the use of visual variables to represent other thematic attributes, instead

of using them to depict temporal properties in a 2D map (Kjellin et al., 2010b). More importantly,

representing time as a location supports the portrayal of several layers of information, each one

defined as a plane along the z−axis, representing the state of a geographical area during a specific

moment in time (Tominski et al., 2005; Tominski and Schulz, 2012; Thakur and Hanson, 2010).

Identifying movement features in one or several trajectories can be significantly facilitated

by an STC visualization. For example, when using a line to represent a certain trajectory, stop

locations will be represented by vertical lines, i.e., the location was the same during a period of

time; on the other hand, diagonal lines will represent movement, i.e., different locations visited at

specific times (Amini et al., 2015).

Since the third dimension is used to represent time, STCs may not be the most adequate

technique to represent 3D trajectories, like those of planes. In these situations, either a 3D static

map may be used, or the third spatial coordinate can be represented as a thematic attribute, e.g.,

by using different colours for different levels of altitude (Hurter et al., 2009).

Although it has been reported that users may show more certainty on their decisions when

using 3D visualizations (Seipel, 2013; Kveladze et al., 2015), some studies have reported that

users felt some discomfort after interacting with these visualizations (Seipel and Carvalho, 2012).

Furthermore, it is also expected that STCs are affected by the limitations of human perception with

three dimensional environments. More specifically, the adequacy of this technique depends on

whereas the properties of the structures under analysis are invariant under affine transformations,

i.e., if the scale and other visual properties of the displayed information are preserved or when,

for instance, the STC’s rotation changes (Kjellin et al., 2010a). Moreover, similarly to 2D maps,

previous studies argue that STCs are also negatively affected when a large number of trajectories
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is on display, given the possibility of over-plotting and over-cluttering (Scheepens et al., 2012).

Demsar and Virrantaus (2010), for instance, argue that 10 trajectories are enough to make the STC

an unsatisfactory approach. Interestingly, previous studies have also suggested a possible effect

of gender over the usage of 3D visualization techniques, which consequently is likely to affect

STCs (Vecchi and Girelli, 1998). Particularly, male users have shown a better performance when

dealing with tasks and visualizations related to a 3D view, comparatively to female users who may

excel in using/analysing (2D) static approaches.

Several methods have been proposed to mitigate the aforementioned issues, including inter-

action, filtering, data transformation, and data aggregation techniques. The simplest approach

consists in providing navigation methods that allow the user to change the point of view within

the visualization. These allow the user to obtain more information from different points of view,

some of which may be more favourable to the visualization of the data (Kjellin et al., 2010b).

On the other hand, Kraak (2008) suggests the interactive adjustment of the STC’s spatial plane

to facilitate the location of objects in space and time. Demsar and Virrantaus (2010) propose the

aggregation of trajectory data and their visualization on density maps over the STC technique.

Similarly, previous studies have also proposed the use of stacking symbols to represent the evolu-

tion of certain thematic attributes from aggregated trajectories and spatial events over time, e.g.,

through methods like 3D pencil/helix icons (Tominski et al., 2005), data vases (Thakur and Han-

son, 2010), or trajectory walls (Tominski et al., 2012). In addition, Drecki and Forer (2000) and

Andrienko et al. (2013) suggest the use of time transformation techniques for the visualization of

multiple trajectories in the STC. In this case, the transformation is achieved through the manipula-

tion of the temporal references within the trajectories, to facilitate comparisons, e.g., by providing

common start or end times for the different trajectories.

2.4.3 Animated and Small-Multiple Maps

Despite their differences in presentation, animated and small-multiple maps follow a similar ap-

proach in terms of how the data is handled. Both techniques support the visualization of various

maps or various different states of the same map. However, animated maps display those maps in

a sequence and in a single view (Harrower and Fabrikant, 2008). In comparison, small-multiple

maps display those maps consecutively and juxtaposed to each other (Andrienko et al., 2003). Fig-

ures 2.8 and 2.9 depict examples of each technique. In the first, the visualization is composed by

several maps, each one displayed once at a specific time moment. In the second, each juxtaposed

map represents one day of registered movement.

In the context of this characterization for animated maps, this section focuses on temporal

animations (Harrower and Fabrikant, 2008; Kraak and Ormeling, 2010). More specifically, these

deal with the representation of events, dynamically, in a chronological order (e.g., a moving sym-

bol representing the trajectory of an object). These should not be confused with non-temporal

animations, which can represent changes of attributes of a dynamic phenomenon, with no direct

relation with world time (e.g., the use of blinking symbols to attract attention to certain objects).
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Figure 2.8: Representation of an animated map.

Figure 2.9: Representation of a small-multiples map visualization.
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Unlike static approaches, animated maps have an additional dimension that can be used to

present information and which, in theory, allows the use of other visual variables to represent

thematic information, similarly to STCs. This also supports the existence of additional parameters,

specific for animated displays, that can be used to help on the presentation and exploration of

information (Robertson et al., 2002). These include, among others: animation speed, step (i.e., the

interval between successive time moments), and smoothness (i.e., creation of intermediate frames

through interpolation) (Andrienko et al., 2003).

Each map (or frame) within an animated map represents a time moment, and, as a result, time

is perceived in function of the direct relation between display and real time (e.g., faster objects in

the animation correspond to the faster ones in reality). On the other hand, each map in a small-

multiples visualization represents the state of a phenomenon at a different time instant or period.

Changes are perceived through the analysis of the succession of individual maps, and their visual

characteristics. Consequently, time is represented as a spatial sequence that the user needs to

follow to properly understand the temporal variation of the data (Kraak and Ormeling, 2010).

Preliminary research studies suggest that animated displays can be particularly useful for pre-

sentation and exploration purposes (Ogao and Kraak, 2002) and that they can help revealing spatio-

temporal patterns that are not evident with common static representations (MachEachren et al.,

1998). For presentation proposes, animations should be simple enough to properly convey the

intended message. On the other hand, for exploration purposes, it is advised to provide tools that

help manipulating or controlling the visualization of the spatio-temporal properties of the data,

such as a time-slider, to support a faster navigation through the data and to detect relevant infor-

mation (Andrienko and Andrienko, 2007; de Oliveira and de Souza Baptista, 2012). Furthermore,

the amount of data to be presented increases with the duration of the animation. Even with the

addition of interactive controls that allow users to control the animation, one frame will not always

be visible on the display. These factors may, in turn, raise some cognitive and perceptual limita-

tions, since the longer the animation, the less likely all relevant information will be memorized by

the user (Harrower and Fabrikant, 2008).

In opposition, each small multiple map is always visible to the user, allowing the visualization

of two (or more) time moments simultaneously (or periods, depending on the amount of time rep-

resented on each map) (Andrienko et al., 2003). Considering the ephemeral nature of features in

animations, small multiple maps may have a smaller overload in the users’ memory, in comparison

to animated maps (Griffin et al., 2006). Consequently, small multiple approaches have been con-

sidered an adequate method to detect changes and repetitions, identify behaviours, and compare

different phenomena at different periods of time (Tufte, 1997; Andrienko et al., 2003; Demissie,

2010). Nevertheless, although each map represents less information than a conventional static

map or STC, considering the limited size of the visualization, the dimension of each map and the

symbols used to present the information will be smaller as the number of maps increases, which

may lead to a loss of detail (Ostermann, 2010). Another limitation is related to the fact that, al-

though a movement along a trajectory represents a continuous scenario, small multiples are not
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continuous spatial representations. To properly perceive the continuity of the movement, users

need to combine the information from each individual map into a single event. This task may

require a significant effort when a considerable number of maps are used (Kraak and Ormeling,

2010; Tufte, 1997). Even so, some authors state that the effort required with this technique is not

significant comparing with animated representations (Griffin et al., 2006).

2.5 Comparative Studies

Despite one of the motivations behind this research being the lack of user studies and empirical

data regarding the different types of map representations for spatio-temporal and trajectory data

visualization, it is important to acknowledge the already existing studies. Although limited, some

studies comparing STCs, static, animated and small-multiple maps have already been reported.

These consist of user studies based on the analysis of user performance and subjective preferences,

and case studies analysing the characteristics of the techniques. Section 2.4 focused, for the most

part, on the main conclusions regarding the second group of studies. As such, and considering that

the goals of this work are dependent on the empirical comparison of the existing techniques, this

section focuses on the results of the most relevant comparative user studies.

Table 2.1 summarizes some of the most important studies, identifying the types of techniques

compared, and their most relevant conclusions. Although initially intended for it to also include

the types of tasks used, several studies lacked a proper description of them. This, in turn would

lead to several empty cells in the table, thus, potentially interfering with its analysis. It is impor-

tant to mention that, despite this research being focused on the interactive visualization of human

trajectory data, there is still significant knowledge to be acquired from studies applying these tech-

niques in other spatio-temporal related contexts. Notable examples include authors like Cutler

(1998) or Robertson et al. (2008) which compared animated with static and small multiple dis-

plays, respectively, regarding their capabilities in making users recall information, and in being

used to present and analyse spatio-temporal data. Slocum et al. (2004) aimed at examining cogni-

tive issues associated with the display of a dynamic geographic phenomenon, taking into account a

population with varying levels of experience in geographic analysis and visualization. Griffin et al.

(2006) studied user performance and the overall cognitive workload involved in reading animated

maps to detect moving clusters. Kjellin et al. (2010a) and Seipel (2013) compared two different

STC approaches, based on their levels of 3D, and contribute to this analysis by suggesting the

similarities between weak 3D and 2D maps. These levels, weak and strong 3D, depend on the

technique being a static monocular or a head-tracked stereoscopic visualization, respectively.

The analysis of Table 2.1 highlights some important characteristics of these techniques. Over-

all, STCs are considered to be an effective technique for the analysis of spatio-temporal patterns

and to have a generally small learning curve (Kjellin et al., 2010a,b). Despite that, the useful-

ness of this technique appears to be related with the projection used. Kjellin et al. (2010a) did

not find any significant differences between weak and strong 3D STC approaches. Contrarily,
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Table 2.1: Comparison of static maps, space-time cubes, animations, and small multiples.

Study Techniques Conclusions

Koussoulakou and
Kraak (1992)

Animation,
Small multiples

Animated maps better than small multiples to detect
moving clusters

Patton and Cammack
(1996)

Animation,
Static cloropleth map

Animation has better performance

Cutler (1998) Static map, Anima-
tion

Animation has lower performance

Slocum et al. (2004) Animation,
Small multiples

Animation is adequate for identifying general trends;
Small multiples are adequate for comparing time
points

Griffin et al. (2006) Animation,
Small Multiples

Animation is better to detect moving clusters

Robertson et al.
(2008)

Animation,
Small multiples

Animation is confusing, but fun to use and more effec-
tive for presentation proposes; Small multiples have
better performance in analysis tasks

Kristensson et al.
(2007, 2009)

Static map, Space-
time cube

Static Map is adequate for elementary questions;
Space-time cube is efficient for general questions and
has a small learning curve

Demissie (2010) Static map, space-
time cube, anima-
tion, small-multiples

Animation is the most adequate to count movement
features (stops, returns, speed changes)

Kjellin et al. (2010a) Strong and weak
space-time cubes

Effective visualization technique; No performance
differences between strong and weak 3D approaches

Kjellin et al. (2010b) Static map, Space-
time cube, Anima-
tion

Static map is beneficial when dealing with metric
properties; Space-time cube is beneficial when deal-
ing with ordinal information; Interactive techniques
are important; Animation is, overall, ineffective

Willems et al. (2011) Static Density map,
Space-time cube, an-
imation

Density maps are good for detecting stop features;
Space-time cubes are good for detecting busy loca-
tions, however, are the least scalable; Animation is
good for detecting fast moving objects; Least robust
to clutter

Seipel (2013) Static map, Strong
and weak 3D space-
time cubes

Static maps have a similar performance with weak 3D
STC; Strong 3D approaches lead to more errors

Bisantz et al. (2014) 2D map and STC,
with animated con-
trols

No significant differences between 2D and 3D rep-
resentations; Increased workload with 3D representa-
tions; Meta information regarding locations should be
provided

Amini et al. (2015) 2D map and Space-
time cube, with ani-
mation controls

STC is efficient in cluster-based question; STC was
picked over 2D, even if considered busy and messy;
STC is beneficial in examining sequences of events to
identify complex behaviours

Kveladze et al.
(2015)

Static map, Space-
time cube

Domain experts are better than non-domain experts to
solve tasks; Although, both techniques were highly
valued, 2D views were always considered necessary
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Seipel (2013) claim that strong 3D levels may lead the users to be less accurate, while weak 3D

approaches may be considered similar to 2D maps (Seipel, 2013; Bisantz et al., 2014). Other

studies present results that go somewhat against these conclusions. Kristensson et al. (2009), for

example, claim that space-time cubes are efficient for complex spatio-temporal tasks. Similarly,

Amini et al. (2015) state that this technique is useful for the examination of sequences of events to

identify complex behaviours. Additionally, Kjellin et al. (2010b) praise the STC for its ability to

help users in analysing some movement characteristics, namely the order or arrival of objects to

certain places. Likewise, Willems et al. (2011) and Amini et al. (2015) state that this technique is

good for detecting which locations are the most busy and answer to cluster-based questions (i.e.,

questions involving the meetings of multiple objects), respectively.

Small-multiples and single static map approaches are among the most used when compar-

ing with other techniques, particularly animated representations. The results of previous studies

suggest that static maps are beneficial for elementary tasks and when dealing with metric prop-

erties (Kristensson et al., 2009). In addition, the use of aggregation techniques prior to the visu-

alization, such as in density maps, alongside the manipulation of their visual variables, such as

colour, to represent temporal and thematic attributes, is considered to be adequate to help finding

stop features (Willems et al., 2011). Moreover, the studies addressing the small-multiples map

technique suggest its adequacy in analysis tasks, comparatively to animated representations, and

when comparing information on different points in time (Slocum et al., 2004; Robertson et al.,

2008).

Although the same argument can be applied to the STC technique, the analysis of the previ-

ous studies addressing animated representations suggests some mixed, if not contradictory results.

Robertson et al. (2008) state that although animated techniques may be considered confusing, they

still seem to be well accepted by the users and to be adequate for presentation purposes. Similarly,

other studies concluded that animated maps are better than other representations for the identi-

fication of moving trends and the detection of moving clusters (Koussoulakou and Kraak, 1992;

Slocum et al., 2004; Griffin et al., 2006; Demissie, 2010; Willems et al., 2011). These conclusions

make sense considering that movement/animation is considered a pre-attentive visualization at-

tribute (Wolfe and Horowitz, 2004), thus making information represented by this technique more

noticeable to the users. However, authors like Cutler (1998) and Kjellin et al. (2010b) argue that

these techniques are generally ineffective, with lower performance, and that static approaches may

support an acquisition of knowledge as good, if not better, than animated approaches. This fact

was already noted by some authors, like Tversky et al. (2002), Lobben (2008) and Robertson et al.

(2008), who suggest the possibility of biased or unbalanced evaluations that, ultimately, benefit

certain visualization techniques over others.

It is important to acknowledge the fact that these studies cover a wide period of time and that

the technology available for the creation of interactive displays was, comparatively to the date of

this document’s writing, more limited. Nevertheless, both the contradictory nature of some of the

results presented above, alongside the uncertainty associated with them, emphasizes one of the
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current limitations within this research subject - the lack of empirical knowledge regarding the

existing types of techniques.

Another important detail that must be taken into account is related with the possibility of

combining the different types of visualization techniques. This is a very important topic in this

research and it will be addressed with more detail in future chapters. Assuming the results of the

previous studies to be valid, they ultimately suggest that different techniques are more useful in

specific types of tasks or applications. Therefore, it is plausible to assume that combining the

different types of techniques may help minimizing the expected limitations from their individual

components. Interestingly, some studies published during this research somewhat address this

idea, thus emphasizing the motivations discussed in Chapter 1. Kveladze et al. (2015) present a

visualization application that allows the user to switch between a 2D static map and a 3D space-

time cube, by using an interactive menu option, and applied it on a user study, comparing the

capabilities of domain and non-domain experts in spatio-temporal data visualization. Based on the

analysis of interviews conducted with the participants, the results suggest that both groups were

receptive towards this feature. This idea is also supported by Amini et al. (2015), who propose

the ability to switch between 2D and 3D map visualization techniques to allow the exploration of

the data from different points of view. In addition, Amini et al. (2015) and Bisantz et al. (2014)

combine the basic concepts of animated maps with 2D static map and the 3D STC techniques.

Despite not reporting any user study, Bach et al. (2014) generalize the concept of STC into a

conceptual representation that helps to think about temporal data visualization techniques. From

this generalization, the authors identify various operations that support the extraction of infor-

mation in the form of other visualization techniques, including 2D maps, namely through time

cutting and time flattening operations. These operations will be addressed in the next chapters,

when discussing the effects of using interactive map planes and time granularity controls in the

STC technique, respectively. Despite the valuable contributions of these works, particularly in the

context of this research, these studies are considerably more focused in distinguishing the differ-

ent map-based visualization components rather than exploring the actual consequences of their

combination.

Finally, despite the fact that the majority of the existing works use animated or small-multiple

maps in a 2D context, as suggested by the aforementioned studies, each frame from an animated

and a small-multiple map can be represented in the form of a 2D static map or in the form of a

3D space-time cube. However, by applying animated features into these techniques, users will

necessarily have to spend more time looking at the data, to visualize the animation, at least in their

first interaction. On the other hand, as previously mentioned, the existence of animation supports

the use of additional controls, such as pause or speed controls, to interrupt, and to in- or decrease

the animation’s speed. Therefore, the addition of animated features or the separation of a single

map into various representations can significantly change how the data is represented temporally,

and thus how the data is explored.
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2.6 Summary

Trajectory data have become the focus of several studies, given their importance in decision mak-

ing by various groups of users. As a consequence, it is fundamental to study and develop adequate

techniques for the visualization of this type of data.

This chapter addressed the main concepts associated to this issue, based on five main sections.

The first provided an overview regarding the concept of cartographic interaction, and established

the context over which the following sections are related. The second looked into the definition

and the main components related with trajectory data, namely the concepts of space, time, and

objects. The third section focused on the main types of visual analysis tasks a user might need to

perform to achieve a given goal. The results of this analysis highlighted some agreement between

existing studies, since they identified similar tasks, but also some redundancy, since various iden-

tical tasks were presented with different names. As such, this chapter also presented a simplified

and hierarchical model of tasks, based on their level of specificity and adequacy as visual analysis

tasks. This simplified task model will be used in the following chapters as one of the basis for com-

parative user studies. The fourth section described the main types of techniques used to visualize

trajectory data. Due to the spatial properties associated with this type of data, the target of this

analysis was in high-level types of map-based techniques, particularly: static maps, space-time

cubes, animated maps, and small-multiple maps. Finally, the fifth section described and discussed

some of the most relevant comparative studies related to these techniques present in the literature.

Despite the various studies addressing the visualization of trajectory and spatio-temporal data,

there are still several important challenges and open issues that need to be addressed. The analysis

of the literature provides several examples of applications to visualize spatio-temporal and tra-

jectory data; however, there is still a significant lack of empirical data to evaluate the usability of

various approaches and to support the benefits of certain visualization and interaction features over

others. Furthermore, although some studies have already been conducted, there is still some un-

certainty regarding their results, due to somewhat contradictory findings and, sometimes, uneven

procedures followed, which can give an advantage to certain visualization approaches over others.

In addition, when evaluating a certain visualization, several usability studies tend to be addressed

in ad hoc manner, not fully taking into consideration the different types of visual analysis tasks,

and being either limited to case studies or focused on the most experienced users of the system

under analysis. However, as previously stated, this type of data and visualizations are becoming

increasingly available to a wider population of users, often inexperienced, yet interested, in vi-

sualizing and exploring this data in personal contexts (e.g., improving health, or sports/gaming

performance).

This Ph.D. research aims to help minimizing these issues, by focusing on three different as-

pects: i) obtain empirical data to support the dis/advantages of existing techniques; ii) identify

possible improvements; and iii) identify design guidelines for trajectory data visualization tech-

niques. In particular, out of the four aforementioned types of map techniques, this work is focused

on the usage of 2D static maps and 3D space-time cubes by inexperienced users in terms of data
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Step 1: Related Work Analysis and Simplified Task Model (TM)

Ch2. Interactive Visualization of Trajectory Data
Results: See Figure 2.2.- For Task Model (TM) separated by 4 levels (lvl 1-4)

Step 3: Improve Existing Techniques

Step 2: Compare 2D Maps and 3D STCs

Step 4: Case Study

Step 5: Identification of Guidelines

Figure 2.10: Summary of this research and the contributions of Chapter 2.

visualization and analysis. While 2D static maps are among the most well known approaches, the

STC is a still lesser known approach that, despite its antiquity (Hägerstrand, 1970), raises several

questions, generally associated to its 3D properties. Furthermore, animated and small-multiple

maps can be applied over 2D or 3D/STC maps. Therefore, it is important to conduct more usabil-

ity studies with these techniques, before considering the inclusion of animated or small-multiple

features.

Figure 2.10 depicts the evolution of the scheme presented in Chapter 1 (Figure 1.3) alongside

the role of the contributions of this chapter. These contributions address the first step of this

research. The next chapter describes the first set of comparative studies between 2D static map

and 3D space-time cube approaches with inexperienced users, which were used to obtain some

preliminary feedback regarding the users’ capabilities in using these techniques and to compare

their adequacy in the aforementioned tasks for the visualization of trajectory data.
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Chapter 3

Comparing 2D Static Maps and 3D
Space-Time Cubes

It is important to evaluate existing map-based techniques for the visualization of trajectory data,

taking into account the types of visual analysis tasks a user might need to address and the capa-

bilities of inexperienced users in terms of data visualization and analysis. In the previous chapter,

several map-based approaches to visualize trajectories have also been described alongside the in-

terest towards two-dimensional (2D) static maps and three-dimensional (3D) space-time cubes

(STCs).

This chapter describes the first two approaches addressing these challenges. The next section

presents and evaluates ST-TrajVis, a prototype for the visualization of trajectory data, through the

use of a 2D static map and a 3D STC. Based on the results obtained with ST-TrajVis, showing that

inexperienced users may indeed be able to extract information from these map-based visualization

techniques, the section after it presents a follow up study comparing two different prototypes based

on 2D static map and 3D STC visualization techniques, to identify the types of tasks in which each

technique is more adequate.

3.1 ST-TrajVis: Interacting with Trajectory Data

This section focuses on the design and evaluation of the ST-TrajVis prototype (Gonçalves et al.,

2013b). The main goals of this study consisted in the preliminary assessment of the ability of

inexperienced users to explore and analyse human trajectory data, alongside the identification of

possible factors of interest to take into the following steps of this research. These include the dif-

ferent approaches users may adopt when interacting with these techniques, and the possible com-

bination of these different types of maps. The following sections describe the trajectory dataset

used by the ST-TrajVis and its main features in terms of visualization and interaction, followed by

the procedure adopted for the user study, and ends with the analysis and discussion of the results.

47
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3.1.1 The Data

The data used for the development and evaluation of ST-TrajVis consists of a subset of the trajec-

tory dataset released as part of the GeoLife project (Zheng et al., 2008, 2009, 2010). The com-

plete dataset contains, approximately, 17.621 trajectories of 183 users, recorded between 2007

and 2012. The trajectories were recorded by different GPS loggers and GPS-phones, with each

point having a spatial or temporal distance of, approximately, 5 to 10 meters and 1 to 5 seconds,

respectively. The various points recorded represent the locations associated to the users’ outdoor

movements during their daily routines. The majority of these trajectories were recorded in China,

particularly in Beijing.

In the context of this experiment, the subset used was composed by the trajectories (approxi-

mately 40) of one randomly selected anonymized user, during the period of one month (November

of 2008). Each entry in the original data is represented as a set of coordinates, namely latitude,

longitude, and altitude (spatial information), with a timestamp associated to the moment in time in

which those coordinates were recorded (temporal information). Based on these components, the

dataset was further enriched with derived information regarding the mover’s approximated speed

and the estimated stop locations of the mover (i.e., the geographical locations where the user spent

more time without moving). From a total of 49680 location points, the dataset was then simplified

using a Douglas-Peucker algorithm (Douglas and Peucker, 1973) to approximately 8368 points.

3.1.2 ST-TrajVis Prototype

Figure 3.1 depicts a usage example of ST-TrajVis. As it can be observed, the prototype is divided

into four main interactive components, namely a 2D static map, a 3D space-time cube, a data

querying component, and a data enhancement component.

2D Static Map and 3D Space-Time Cube

ST-TrajVis combines an interactive two-dimensional map with a space-time cube visualization to

represent the spatio-temporal and thematic properties of the data.

Each point’s coordinates are represented through the visual variable location and are mapped

to their correspondent position within the map and the STC’s x− and y−axis. Similarly, in the

STC visualization, time is mapped as a location over the z−axis, with data recency being directly

proportional to the STC’s height. Therefore, the most recent events are located higher within the

STC.

Due to the expected unfamiliarity of the users’ with the application, a simple, yet representa-

tive, visual style was used to depict the trajectories. Each consecutive trajectory point is connected

by a line, emphasizing the evolution of the mover’s position over time. In addition, due to the

known limitations of 2D maps in representing information from a temporal perspective, and even

though this data component is already depicted in the STC, ST-TrajVis represents both the time

periods of the day and data recency in the maps. To better emphasize the different periods of
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Figure 3.1: ST-TrajVis prototype. a) 2D map b) Space-time cube c) Data query compo-
nent d) Data enhancement component.

the day, four categories were used, based on the hours of the day (0h-6h, 6h-12h, 12h-18h, and

18h-0h). Considering that colour is considered an useful visual variable for the representation

of categories and the fact that people often associate meanings to specific colours (Bertin, 1967;

Green, 1998), each point/line is coloured according to each of the four categories, where the pe-

riods during the day (6h-12h to 12h-18h) are represented with warm colours generally associated

with the sun (orange and red, respectively) and the periods during the night (18h-0h and 0h-6h)

are represented with cold colours generally associated with it (dark and light blue, respectively).

In contrast, data recency is represented through the points’ and lines’ transparency, where less

transparent (i.e., more visible) points and lines represent more recent data. This way, it should be

easier for the user to identify, in the 2D map component, which locations were visited earlier than

others, being also able to focus on the most recent information while having an overview of the

previous movements displayed. The user can also de/activate this representation by using the data

enhancement component. In addition, considering the usefulness of the visual variable size for the

representation of numeric values (Bertin, 1967; Green, 1998), the approximated speed detected

on each trajectory segment was represented with the point size/line thickness, where wider lines

represent higher values and, consequently, faster movements.

For the representation of the mover’s stop locations, ST-TrajVis uses point symbols, differently

coloured from the trajectory lines, to capture the users’ attention (Figure 3.2). In addition to their

approximated location, each point also represents the estimated number of times the mover stayed

at that location, where the larger the point, the more often that location was visited. In the STC,

that information is displayed with vertical lines, whose length is proportional to the amount of

time spent at that location. This information could be de/activated with the aforementioned data

enhancement component.

Both visualizations provide interaction techniques based on panning and zooming. To min-
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Figure 3.2: Visualization of stop locations with ST-TrajVis.

imize possible perspective issues with the STC, this technique supports also the rotation of the

cube, changing its point of view (Kjellin et al., 2010b), and the change of the STC’s temporal

granularity, through the rescaling of the STC’s height, using a slider on the left-side of the STC

component.

Finally, both visualizations are linked with highlighting techniques. Specifically, when one

point is selected in the STC, line indications will be drawn pointing towards the spatial and tem-

poral locations associated to that point (highlighted with red rectangles in Figure 3.1 b). In addi-

tion, regardless of the map in which a point is being selected, the other visualization will highlight

the corresponding point, providing additional information about it in a pop-up window pointing

towards the selected location. If the selected feature is a trajectory point, ST-TrajVis describes its

absolute position, date, and the approximated speed of the mover (highlighted with red rectangles

in Figure 3.1 a). Consequently, no data was lost when converting some of the numerical properties

of the data into categories. If the selected feature is a stop location, the prototype displays a list

of the time intervals in which the mover visited that location (highlighted with red rectangles in

Figure 3.2).

Data Querying and Enhancement

The data query component (Figure 3.1 c and Figure 3.3 a) allows filtering the dataset according

to spatial and temporal properties before visualizing it. More specifically, by selecting the option

Data Box and then drawing a rectangular area within the 2D static map component (Figure 3.1

a) the user is able to delimit the geographical area to visualize the trajectories (i.e., any location

visited outside the defined area will not be represented). The user can also delimit the period of

time in which he/she is interested, by defining the start and end dates of movement, alongside the

period of hours to be visualized (e.g., visualize the trajectories between 12h and 17h).

The data enhancement component (Figure 3.1 d and Figure 3.1 b) supports the extraction and

representation of additional information, in the form of movement speed and stop locations, as
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Figure 3.3: ST-TrajVis a) Data query component and b) Data enhancement component.

well as the customization of some visual properties of the trajectories presented in both map-

based visualization techniques. Regarding the mover’s speed, the user is able to select how many

categories of transparency should be used (e.g., 3 categories, where the first is fully visible, the

second is one-third transparent, and the third is two-thirds transparent). Regarding the search for

stop locations, the user is able to define the search parameters of maximum radius (in meters)

and minimum stop-time (in seconds) – i.e., the minimum time spent within an area of a given

radius. Regarding the thematic information of speed, the user can de/activate its representation

(explained in the previous section). This component also supports the visual smoothing of the

trajectories, based on the temporal and spatial distances between points, for instance, display the

visited locations at a minimum distance of 20 meters from each other and at a minimum temporal

distance of 5 minutes.

3.1.3 User Study

A usability study with ST-TrajVis was conducted with the participation of 5 volunteers, aged

between 23 and 28 (Av: 25.6, SD: 2.5). All participants were experts with computer applications

and were familiar with map-based applications, such as Google Maps to search and visualize

trajectories for specific points of interest, or Google Earth, for the visualization of points of interest

on a 3D perspective. Despite that, none of the participants had any significant experience with

the location displayed (China-Beijing) nor with spatio-temporal data analysis and visualization.

Consequently, the results of the study should not be affected by the participants’ possible bias or

previous knowledge.

Tasks

Considering the dataset used for the experiment, ST-TrajVis should support the description and

the comparison of the dynamics of the represented mover’s characteristics through time. For that,



Chapter 3. Comparing 2D Static Maps and 3D Space-Time Cubes 52

the participants were asked to conduct 6 tasks. The first two tasks aimed to assess the participants’

ability to interact with the main search mechanisms to obtain the necessary trajectories for analy-

sis. These tasks consisted in obtaining all trajectories between a start and end days (T1), and all

trajectories from a certain hour of the day to another, within a start and end days (T2).

The four remaining tasks aimed to assess the participants’ ability to explore and interpret the

different types of information provided by the visual methods being used. Considering the fact

that this is the first study in the context of this work and that it is expected that the participants

either identify or compare the various visual features presented in the maps to extract information,

these tasks belong to the first level of visual analysis tasks, described in Section 2.3 (Figure 2.2).

In the third task (T3), the participants had to discover in which days the represented mover had

the most activity. The fourth task (T4) required the participants to find the regions in which the

represented mover had spent the most time over. In the fifth task (T5), the participants were asked

to list the days in which a faster movement was detected. Finally, in the last task (T6), participants

had to discover in which hours of the day the mover had been the most active.

The participants were also asked to answer to a small survey, with 8 questions, to collect their

opinions. More specifically, they were asked to classify certain sentences on a 0 to 10 scale (0

being not useful, 10 being crucial), namely:

Q1: how useful were the application’s features, overall, for the completion of the tasks;

Q2: how useful was the representation of periods of the day (colour);

Q3: how useful was the representation of data recency (transparency);

Q4: how useful was the representation of speed (line thickness);

Q5, Q6: and how useful were the 2D map and the STC for the completion of the tasks.

In addition, the participants were also given open questions about: (Q7) the most appreciated

features; and (Q8) any additional features they thought would help them completing more easily

the tasks.

Procedure

All participants performed the tasks and answered to the questionnaire individually in a controlled

environment.

At the beginning of the experiment, the participants were informed about the objectives of the

study. After that, all of ST-TrajVis’ features were demonstrated and explained. Then, each partic-

ipant had some time to practice with the features of the application, get used to them, and clarify

any doubts. After the practice session, each participant performed the six tasks and answered to

the questionnaire. During the execution and at the end of the tasks and experiment, the participants

were invited to think-aloud and share their opinions.

To measure the results, in addition to the participants’ comments, the following dependent

variables were recorded:
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Figure 3.4: Mean task completion times for each task.

Figure 3.5: Mean participant scores, for the first six questions of the questionnaire.

Task completion times: to measure how efficiently the participants complete the tasks;

Task accuracy: to measure how effectively the participants complete the tasks;

Questionnaire answers: to analyse the participants’ acceptance towards the prototype’s features

and discuss possible ways of improving them.

Results

Given the small number of participants, only simple statistical analyses were possible to be con-

ducted over the results. Figures 3.4 and 3.5 display the participants’ mean completion task times,

and the mean scores given in the questionnaire at the end of the tasks.

All participants, except one, completed the tasks successfully and accurately. Given the feed-

back of the participant that did not finished the tasks, it was concluded that he was not able to finish

tasks T3 and T5 due to technical performance issues and, consequent, perspective issues with the

STC component. More specifically, the computer had a slower performance overall, which af-

fected the application and made it interacting with the STC less responsive and noticeable.

From the analysis of Figure 3.4 and the results of tasks T1 and T2, it can be argued that

the prototype was intuitive for the configuration and request of trajectory data. Furthermore, the
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results also suggest an overall increasing performance from task T3 to T6, as the participants were

able to complete the tasks generally faster from task to task. This result suggests that, despite the

differences between the tasks, there may have been a learning effect, that alongside the knowledge

obtained in the training stage, helped the participants performing more easily the tasks. This

is also supported by the comments of three participants, which mentioned that, in addition to

consider the interface’s features easy to use, there was an overall small learning curve associated

to the prototype’s features.

The analysis of the participants’ scores for the first six questions (Figure 3.5) suggests an

overall positive feedback towards the application’s features, even if less expressive in question Q3

(How useful was transparency for the representation of the trajectories’ recency?). Overall, these

results suggest that, out of the various visual variables, the use of a colour classification code for

the representation of temporal periods was the most useful (Q2-Q4).

In addition, despite the small difference in scores, three participants have shown a higher

preference for the STC over the 2D map (Q5-Q6), commenting that the STC was their main

visualization to perform the tasks, and that the 2D map, although useful, was mostly used as a

complementary tool.

Finally, the participants mentioned that the features they appreciated the most were the display

of stop locations, followed by the optional representation of speed, and the filtering and smoothing

methods (Q7). Nevertheless, they also commented being interested in having more tools to filter

the data and interact more with the map visualizations (Q8).

3.1.4 Discussion

Even with the small number of participants, the results of this study highlight some relevant aspects

and issues associated with the application and its features.

Despite the difficulties felt by one of the participants with the STC, this technique received

a very positive feedback by all others, even being preferred by some over a 2D map. This result

is both interesting and unexpected, given the aforementioned disadvantages often associated with

this technique, alongside the participants’ unfamiliarity with STCs and the 2D map’s popularity

for representing georeferenced data.

In addition to the small learning curve associated with the application, the results suggest the

usefulness of the STC for the visualization of trajectory data. Nevertheless, it is plausible to as-

sume that the results may have been influenced by the fact that ST-TrajVis provided also a 2D

map, which may have improved the value of the STC to the participants. This is supported by the

comments of some participants, which mentioned using each map differently, as with the STC as

their main visualization and the 2D map as their secondary visualization technique. Ultimately,

the results further encourage the conduction of additional comparative studies, to explore the dif-

ferences between these two techniques and, by learning how adequate they are individually in the

different types of tasks, to assess how they can benefit one another.

Another interesting result is related to the features that were used or suggested. Overall,
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participants have shown interest in dynamically changing the visualization, namely through the

de/activation of the representation of some attributes. However, in comparison, the controls related

to the spatio-temporal smoothing features, the use of transparency to represent the data’s recency,

and the STC’s temporal granularity were rarely used. This could suggest that the participants did

not feel the need to use them, or that these features must be presented in a more intuitive way.

It should be noted that the dataset used in this experiment describes the trajectories of one

mover. This factor is particularly important, since one of the reasons presented by the participants

regarding their preference for the STC was the uncluttered visualization of the trajectories, in com-

parison to the 2D map. However, if the STC displayed the trajectories of more movers, detected at

the same time, there would, necessarily, be some visual cluttering. As such, this feedback empha-

sizes the need to compare these techniques with a larger volume of trajectories and with different

complexities, to assess their scalability.

Following the results and feedback obtained in this experiment, the following section describes

a second user study focused on the comparison of separated 2D map and 3D STC prototypes for

the visualization of trajectory data.

3.2 Visualizing Human Trajectories: Comparing Space-
Time Cubes and Static Maps

This section describes a comparative study between two prototypes based on a 2D static map and a

3D STC for the visualization of trajectories (Gonçalves et al., 2014). The main goals of this study

consisted in assessing the usability of these techniques with an inexperienced population, detect

possible interaction barriers with these techniques and, ultimately, compare how adequate they are

in different types of visual analysis tasks. The following sections address the dataset used in the

study and the prototypes developed together with their most relevant features. This is followed by

the description of the user study conducted with the prototypes. This section ends with an analysis

and discussion of the results obtained in this experiment.

3.2.1 Dataset

Similarly to the previous study, the data used in this experiment consists of a subset of the tra-

jectory dataset released as part of the GeoLife project (Zheng et al., 2008, 2009, 2010). How-

ever, in this study, the subset was composed by the trajectories of 32 movers randomly selected,

recorded during the period of one year (2008-2009). In addition to the spatial and temporal loca-

tion attributes associated with each trajectory point, some of the recorded trajectories also have a

transportation mode associated, namely: walk, bike, bus, car/taxi, train, and airplane. Based on

these attributes, the dataset was enriched with additional information, by estimating the movers’

speed, at each point. Consequently, based on the average speed obtained along the trajectories, the

transportation mode associated to each trajectory point was estimated, when that information was
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Figure 3.6: HTV prototypes used for the comparative study. a) Control panel b) Space-
time cube visualization, c) 2D static map visualization, and d) Interactive timeline.

unknown. Comparatively to the subset used in the previous experiment, the one used in this study

was composed by, approximately, 88862 points.

3.2.2 Prototypes

To compare the differences between 2D maps and 3D STCs, in terms of how these techniques help

users solving general analysis tasks, two prototypes, called HTV-2D Map and HTV-STC (HTV -

Human Trajectory Visualizer), were developed, supporting the visualization and interaction with

the data that was previously presented. Both prototypes were developed in HTML5, by taking

advantage of the following main libraries:

TRAJMAP2DJS - a JavaScript API developed in the context of this work to help the visualiza-

tion of spatio-temporal and trajectory data on 2D static maps. This API takes advantage

of the Google Maps (Google, 2005) and three.js (Cabello, 2010) APIs to display informa-

tion, by supporting the creation of additional layers over Google maps based on WebGL,

allowing the representation of larger volumes of information comparatively to what Google

Maps normally supports.

STCJS - a JavaScript API developed in the context of this work for the visualization of spatio-

temporal data in STC, which also takes advantage of the three.js API. Similarly to other

APIs for map visualization, this supports the creation of various layers of information, and

the attribution of visual styles to the features representing information in those layers (e.g.,

colour and size). Furthermore, similarly to TRAJMAP2DJS, this API also supports the

notification of user interaction events, such as when a user selects a map feature or changes

the STC’s properties (e.g., height rescaling or map pan/zoom).

Figure 3.6 depicts the interface of the two prototypes, and the two types of maps used. Specif-

ically, both prototypes are divided into three main sections: a control panel, a map visualization,

and an interactive timeline. The control panel section (Figure 3.6 a) provides a set of features to

select which data will be visualized according to temporal and thematic attributes. Specifically, the
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user can filter the data based on the start and end dates (and hours) of movement, the identification

of the movers’, a speed interval, and the movers’ estimated means of transportation. The control

panel also allows the estimation of stop location events from the observed trajectories (i.e., loca-

tions with a given radius, where movers spent a given amount of time). In addition, the user is able

to customize how the data is represented, by associating specific visual variables to data attributes,

in turn, determining what should be the focus of the visualization. These attributes include: the

movers’ identification, the time periods of the day in which was detected movement, the movers’

estimated speed, the estimated transportation mode, and the number of visits and time spent at a

stop location.

Depending on the prototype, the visualization section is composed by either a 3D space-time

cube or a 2D static-map (Figures 3.6 b and c, respectively). Similarly to the previous study, due to

the expected lack of expertise from the test participants in analysing trajectories, it was necessary

to provide simple representations of the data, while still making the prototypes representative of

the corresponding groups of techniques and avoiding the inclusion of too many features. This

way, the objective consisted in minimizing the cognitive workload associated to the understanding

and feature memorization of the prototypes. In addition, though this approach, the analysis of

the users’ performance is significantly more dependent on the most relevant properties of each

visualization rather than on the use of external features.

In both visualizations, the trajectories of movers are represented with sequences of circular

points connected with lines, coloured according to the temporal or thematic attributes selected

in the control panel section. Considering the fact that colour is considered to be an adequate

visual variable for the representation of categories (Bertin, 1967) and due to the possible repeti-

tions of coloured objects across the spatial and temporal representations, it is plausible to assume

that representing these attributes categorically may help users to detect movement patterns and

cyclic behaviours more easily. On the other hand, stop location events are represented as squares,

coloured differently from the trajectory points. Since object size is considered as an adequate

variable for the representation of quantitative information (Bertin, 1967), stop location points are

also scaled according to the attributes selected in the control panel, i.e., the higher the attribute

value, the larger the point. Figure 3.7 depicts an example of the visualization of attribute data and

stop locations on both map components. In both visualizations colours represent the time period

of the day the points where detected (orange: 6h-12h, red: 12h-18h, blue: 18h-24h). On the left,

in the 2D static map visualization, the light blue squares overlaying the trajectory points represent

the estimated stop locations from the observed mover (scaled according to the number of visits to

each location), which correspond to the vertical line segments of the movement depicted on the

space-time cube visualization (on the right).

Considering the limitations generally associated with static maps in the representation of tem-

poral information (Andrienko et al., 2011), the 2D map visualization lacks support for the rep-

resentation of the temporal dimension of the data, even if with the optional representation of the

time periods of the day. This way, the 2D map and the 3D STC could not be considered as in-



Chapter 3. Comparing 2D Static Maps and 3D Space-Time Cubes 58

Figure 3.7: Visualization of attribute data and estimated stop location points.

formationally equivalent, i.e., it would not be possible to extract the same information from both

visualizations (Tversky et al., 2002). This could compromise the validity of the results obtained

from the comparison of both techniques. To prevent that, both prototypes provide a timeline repre-

sentation to emphasize the temporal dimension of the data and to represent the activity of movers

over time (Figure 3.6 d). Each mover and stop location event is represented as a dashed line, where

each gap represents a period of inactivity, i.e., when no movement was detected.

Similarly to ST-TrajVis, both visualizations provide common interactive features, such as pan-

ning and zooming. In particular, the STC also supports the rotation of the cube, along any of its

axes, allowing the user to change its point of view. It is also possible to rescale the cube’s height,

which allows manipulating the temporal representation of the data (similar to a temporal zoom).

Contrarily to what had been suggested in previous works (Kraak, 2003), in this study the STC does

not allow moving the spatial plane along the temporal axis. Although, in theory, moving the plane

may help users obtaining more easily spatial information about a given point, it will necessarily

overlap all data below that point. Consequently, the same effect can be obtained by filtering the

data temporally (i.e., showing only the trajectory points since a given date). In addition, further

empirical studies, as addressed in Chapter 4, should be conducted regarding this feature to evaluate

its effects on the interaction with a STC.

The map visualization techniques and the timeline are connected through highlighting mech-

anisms (Robinson, 2011). By selecting any representation in the maps, the corresponding time

moment (or period, if a stop event is selected) is highlighted over the timeline. Similarly, when the

timeline is selected, the maps will highlight the data corresponding to that time. Figure 3.8 depicts

an example of this action, where a line between two trajectory points (approximately at the same

location) is being highlighted in the STC and, since no movement seems to have been detected

during that period, the corresponding period of time is also highlighted in the timeline.

The timeline representation also supports a quick interactive filtering of the data, with a bi-

directional drag bar, at the top of the representation, which allows the delimitation of the time
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Figure 3.8: Example of a line between two trajectory points being higlighted a) in the
STC; b) in the timeline; and c) the available information about the highlighted feature.

period to be visualized in the timeline and in the map. Finally, whenever a visual feature in

the map or the timeline is selected, a description of all information associated to that feature is

displayed (e.g, where and when was the feature detected, alongside its thematic attributes), bellow

the control panel section and the map legend (Figure 3.8 c).

3.2.3 User Study

To assess how adequate 2D static maps and 3D space-time cubes are in helping inexperienced users

completing general visual analysis tasks, a usability study was conducted using the aforementioned

HTV prototypes to compare the user performance and acceptance towards the techniques.

The study had the participation of 16 volunteers, aged between 19 and 47 (Av: 23.33, SD:

7.7), in which four participants were Ph.D. students, while the others were undergraduate students

in computer science. Despite their expertise with computer applications, and their familiarity with

applications to search for directions towards specific points of interest (e.g, Google Maps/Earth),

none of them were familiar with trajectory data analysis. Moreover, none of the participants

were familiarized with the geographical locations displayed, which in turn prevented any previous

knowledge regarding the locations from adulterating the study’s results.

Based on the features of each prototype and the characteristics of the selected population, this

study’s hypotheses were the following:

H1 Participants will prefer the 2D static map visualization, due to the high probability of being

most familiarized with this technique;

H2 For the same reason, and considering the limitations in human perception of 3D graphics,

the 2D map visualization will be more effective; and
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H3 Due to the smaller number of points/lines displayed, elementary tasks, i.e., tasks that focus

in just one mover or just one time moment, will have a better performance and will be easier

to solve.

Tasks

As previously stated, the different types of visualization objectives can significantly change the

context of a given usage scenario. Based on the previous analysis of this factor (see Figure 2.2),

the objectives present in the second level were selected as the basis of this experiment (i.e., locate,

identify, compare, and associate). For a full comparative study, the third, and most detailed,

level of objectives could be used. However, this would imply that a large number of objectives

would have to be combined with the different visualizations, and additional independent variables.

That would significantly increase the number of tasks and the cognitive workload associated with

the experiment, which could cause a higher fatigue to the participants and adulterate the results.

In addition, the first level of aforementioned simplified model (i.e., composed by the objectives

identify and compare) would be too general in the context of this study, given the importance of

distinguishing the ability of users finding and interpreting information. This can be associated to

the ability of distinguishing space from other attributes in cartographic visualization (i.e., within

locate and identify tasks).

To prevent an overwhelming number of tasks in this experiment, the four categories of queries

associated with spatio-temporal data, presented by Andrienko et al. (2003), were adapted for this

study. Specifically, two search levels (elementary and general) and two search targets (what+where

and when) are considered, supporting four views over the trajectory data, namely the analysis of

one or several trajectories, in a time moment or a time period. It is important to notice that, un-

like Andrienko et al. (2003) or Andrienko et al. (2008), these search levels are being considered

as directly related to the number of elements involved, thus being more adequate and easier to

control in the context of this study, comparatively to, for instance, a data-mining analysis context.

Ultimately, combining the different types of objectives with these four spatio-temporal cate-

gories provides a list of tasks to be completed by the participants. Table 3.1 lists some examples of

those tasks. As a consequence of this combination and simplification of factors, and as depicted in

Table 3.1, the visualization objectives compare and associate were not considered in the elemen-

tary when elementary what+where category. By considering the elementary search level as the

visualization of an individual data feature, elementary when elementary what+where tasks refer,

necessarily, to a single trajectory in a time moment, thus making it impossible to establish any

association or comparison with other features. In order to do that, it would be necessary to either

analyse more trajectories (general what+where) or analyse more instances of the same trajectory

during a time period (general when).

Procedure

In this experiment, two independent variables were considered:
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Table 3.1: Examples of tasks addressing spatio-temporal data categories and visualization
objectives.

Spatio-temporal Visualization Example
Category Objectives
Elementary When Locate Where is mover 1 at 9 AM?

Elementary Identify Which mover was at region X at 9 AM?
What+Where

General When Locate Where was mover 1 between 9-10 AM?

Elementary Identify How fast was mover 1 travelling between 9-10 AM ?
What+Where

Compare Which transportation mode did mover 1 take the most?

Associate Is there a relation between the mover’s speed and the day
hours? If so, how?

Elementary When Locate Where are most movers located?

General Identify Who stayed outside region X?
What+Where

Compare Who travelled the fastest?

Associate Is there any relation between the movers’ speed and the
type of road? If so, how?

General When Locate Where are the most visited locations?

General Identify Who travelled outside region X?
What+Where

Compare Did mover 1 travelled more often than mover 2?

Associate Is there a relation between the number of visits at region X
and the day of the week? If so, how?

Visualization Technique (Vt), with two levels, corresponding to the previously described proto-

types, 2D map and STC;

Query Category (Qc), with four levels: Elementary what+where elementary when (EE);

Elementary what+where general when (EG);

General what+where elementary when (GE), and

General what+where general when (GG).

The experiment followed a within subjects design and all participants carried out each task

individually, in a controlled environment. At the beginning of the study, subjects were briefed

about the objectives of the experiment, and they viewed a demonstration of the interfaces. Before

carrying out the tasks, they were asked to interact with the applications, and encouraged to clarify

any doubts.

After the the training phase, the participants performed the tasks (locate, identify, compare,

and associate) under the different categories, as exemplified in Table 3.1. At the beginning of

each task, and whenever the data was updated with the control panel, the visualizations would



Chapter 3. Comparing 2D Static Maps and 3D Space-Time Cubes 62

display all available data, i.e., all trajectories would be visible on-screen, to prevent unnecessary

interaction to search for off-screen information. In particular, for the STC technique, the view

would always be presented with the same initial point of view (similar to Figure 3.8). To mitigate

sequence effects, the order of the tasks and the type of visualization technique was counterbalanced

based on a latin-square design. At the end of the experiment, each participant performed a total

of 28 trials: (2 visualization techniques) x (4 locate + 4 identify + 3 compare + 3 associate).

To measure the results, a common set of dependent variables employed in usability evaluation

were considered, which are derived from the ISO standard of usability 9241 − 11 (ISO, 1998),

namely:

Task completion times: to measure the participants’ efficiency in completing the various tasks.

This variable was measured in seconds, since the user started the task until a final answer

was given.

Task accuracy: to measure the participants’ effectiveness in completing the tasks, based on the

their answers to the questions. Each answer was classified with a 0-10 scale, depending

on the accuracy and detail of the participants’ answer. For example, in location tasks, an

answer with the correct location point of a given trajectory would be ranked higher than a

point in the vicinity, which would, in turn, be ranked higher than an approximated area of

the correct location point; on the other hand, in association tasks, an answer that showed all

the areas of the city visited and the corresponding days of the week would be ranked higher

than one that failed to point out all relevant areas or simply pointed out the most usually

visited locations.

Subjective preferences: to analyse the participants’ personal preferences and opinions regarding

the techniques. This variable was recorded based on the users’ preferred technique and

based on their comments throughout and after completing the tasks, as participants were

encouraged to think aloud, and share their suggestions and opinions about the techniques.

Results

This section describes the results obtained in terms of the participants’ efficiency, accuracy, and

subjective opinions.

Task Completion Times For the comparative analysis of the participants’ task completion

times, the results were subjected to the Shapiro-Wilk test of normality. Since no data transfor-

mation could provide a normalized dataset, a non-parametric approach was used by applying the

Aligned Rank Transform (ART) method, followed by a full factorial ANOVA (Wobbrock et al.,

2011). When significant effects were detected, the Bonferroni test for pairwise comparisons was

applied.

Figure 3.9 shows the participants’ mean completion times for all tasks, with all combinations

of the two independent variables. In the locate task, the tests revealed a significant effect from
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Figure 3.9: Mean participants’ task completion times, with the two visualizations, and in
all configurations.

Vt (F (1) = 4.991, p = 0.041) and from Qc (F (3) = 5.321, p = 0.003) on task completion times.

The pairwise comparisons test revealed significant differences between the level Qc(GE) and the

Qc(EE) and Qc(EG) levels (p = 0.005 and p = 0.006, respectively). A significant interaction

between Vt and Qc was also detected (F (3) = 2.811, p = 0.05). In the identify task, the tests

revealed a significant effect of the Qc level on task completion time (F (3) = 10.135, p<0.001),

in particular, between the level Qc(EE) with all others(p = 0.001, comparing with Qc(EG) and

Qc(GE), and p = 0.01, comparing with Qc(GG)). On the contrary, no significant effects were

detected on the compare and associate tasks.

Task Accuracy To compare the participants’ accuracy throughout the experiment, a Fried-

man’s test was used. When significant differences were detected, it was conducted a Wilcoxon

Signed Rank test with a Bonferroni correction, for pairwise comparisons. Table 3.2 displays the

average scores obtained by the participants in the various tasks. The tests revealed significant re-

sults in the locate task (X2(7) = 56.593, p<0.001), where the participants were generally more

accurate with the 2D map visualization, and in the associate task (X2(5) = 29.446, p<0.001),

in which, conversely, the participants were more accurate with the STC visualization. Table 3.3

shows the most statistically significant differences that were detected, and those close to be con-

sidered as such (i.e., not significant, but still with a low p-value), between the various factors, in

pairwise comparisons tests.
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Table 3.2: Mean participants’ accuracy in the various tasks, with the two visualizations,
and in all configurations.

Locate Associate

EE GE EG GG GE EG GG

2D Map 9.56 8.94 9.38 9.31 6.25 6.19 6.47

STC 9.13 7.50 7.44 7.75 7.59 7.06 8.06

Identify Compare

EE GE EG GG GE EG GG

2D Map 9.56 9.44 8.63 8.94 8.81 8.50 9.19

STC 9.81 9.31 8.56 9.31 8.88 8.94 8.94

Table 3.3: Most significant pairwise comparisons regarding the participants’ accuracy in
the locate and associate tasks.

Locate Associate

STC EG STC GE STC GG STC EG STC GE STC GG

2D Map EE Z = −3.13 Z = −3.20 Z = −3.06 - - -
p = 0.002 p = 0.001 p = 0.002

2D Map EG Z = −2.69 Z = −2.36 Z = −2.47 Z = −2.95 - Z = −3.21
p = 0.007 p = 0.019 p = 0.014 p = 0.003 p = 0.001

2D Map GE Z = −3.10 Z = −3.33 Z = −3.26 - Z = −2.04 Z = −2.96
p = 0.002 p = 0.001 p = 0.001 p = 0.042 p = 0.003

2D Map GG Z = −3.09 Z = −3.24 Z = −3.24 - - Z = −3.38
p = 0.002 p = 0.001 p = 0.001 p = 0.001

STC EE Z = −3.26 Z = −3.24 Z = −2.65 - - -
p = 0.001 p = 0.001 p = 0.008

Subjective Preferences A similar procedure was applied over the results to compare the dif-

ferences between the participants’ opinions after each task and at the end of the experiment.

Although no significant differences were found between the participants’ opinions throughout

the tasks, at the end of the experiment the majority shown a significantly higher preference (Z =

−3.384, p = 0.001) towards the 2D map (Av: 8.38/10) over the STC visualization (Av: 7/10).

3.2.4 Discussion

The results obtained in this experiment support this study’s hypotheses and highlight relevant

aspects regarding 2D static maps and 3D space-time cubes.

Despite the participants’ lack of experience in terms of trajectory data analysis, all tasks were

completed in a generally small amount of time and with a high accuracy. In addition to the positive
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feedback given by the participants regarding both prototypes and their features, these results high-

light the adequacy of these techniques for the visualization of trajectory data by an inexperienced

population. Nevertheless, it is important to notice that, despite the STC’s positive results, at the

end of the experiment the majority of the participants have shown a significantly higher prefer-

ence towards the 2D map visualization. These results support the first hypothesis, H1: participants

would show a higher preference for the 2D map visualization.

The participants were able to complete the locate tasks with a higher performance using the

2D map rather than the STC visualization, with the exception of the Qc(EE) level. Consequently,

these results sustain the second hypothesis, H2: participants would be more effective with the 2D

map visualization. However, contrary to the initial expectations, the participants were significantly

more accurate with the STC visualization in associate tasks, when searching for possible relations

between the data components. Regarding this particular situation, some participants pointed out

that, despite not being familiarized with the STC, they considered that its third dimension helped

them understanding better what the movers have done, when, and how often they did it.

It can be argued that these results are in agreement with previous research suggesting that,

while 3D visualizations enable a better understanding of objects’ shapes, 2D visualizations are

more appropriate in location-related tasks (John et al., 2001). As previously discussed, not only

location tasks can be considered as being strongly related to the spatial components of trajectory

data, but static maps, by themselves, also emphasize this component over time, which may justify

the users’ superior performance in these tasks with this technique. By comparison, due to their

3D properties, STCs can be heavily dependent on interaction techniques, like view rotation or,

as further discussed bellow, the cube’s height adjustment, to allow the user to properly visualize

the data. Consequently, regardless of how the view is first presented, this may force an STC user

to spend more time interacting with this technique than with a 2D map, which is in agreement

with the obtained results. In addition, although STCs may suffer from perspective issues, due to

their 3D properties, they share the same visual variable (position) to represent two different data

components, space and time. Therefore, considering that the shapes presented in the STC (i.e.,

trajectory lines and event points) represent information, including the relation between the spatial

and temporal components of the data, it is plausible to assume that users will be more effective in

understanding that information and find more easily associations between data components with

STCs.

Regarding the identify and compare tasks, the results did not reveal any significant differences

between the techniques. These results can be justified given the fact that, in both visualization

techniques, the data was encoded with the same visual variables (i.e., the same colours and sizes

to represent the same categories and values).

Concerning the query categories, the results revealed that the participants were significantly

slower in the location tasks with the Qc(GE) level, when compared to the Qc(EE) and Qc(EG)

levels. It is plausible to assume that the existence of several points representing different movers

spread throughout a map (GE) required more time to be analysed than just one point (EE) or a
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Figure 3.10: Interactive strategies with the STC visualization. a) Look at the data from a
bird’s eye view; b) Rescale the cube’s height into a plane

sequence of points from the same mover (EG). Similarly, in the identify task, the participants were

significantly faster in the Qc(EE) level, when compared with the other tasks. Although further

studies are required, these results partially support the third hypothesis, H3: participants would

have a better performance in elementary tasks.

Finally, the analysis of the participants’ interaction strategies and comments suggests that 2D

static maps and 3D STCs should actually be combined into the same visualization. This hypothesis

is supported by 2 particular strategies applied by participants in locate tasks, in order to acquire

a deeper understanding of the spatial distribution of the data (see Figure 3.10). The first strategy,

performed by 7/16 participants, consisted in looking at the data from a bird’s eye view perspective,

as an apparent attempt to visualize the data as in a 2D static map (Figure 3.10 a). The other strategy

was performed by 8/16 participants and consisted in the rescaling of the space-time cube’s height,

to compress all temporal information into a plane, thus effectively transforming the visualization

into a common 2D static map (Figure 3.10 b), even if displayed on a 3D view. Nevertheless,

further studies must be conducted to assess the adequacy of this combination (this will be further

addressed in Chapters 5 and 6).

3.3 Summary

This chapter described two user studies comparing and assessing how an inexperienced population

solves general tasks regarding the visualization of trajectory data with 2D static maps and 3D

space-time cubes. The firsts study presented and evaluated ST-TrajVis, an application displaying

both a 2D static map and a 3D STC enabling the visualization of the trajectories of one mover. This

study consisted of a preliminary assessment of the ability of inexperienced users to explore and

analyse trajectory data. The second study presented and compared the HTV prototypes, which
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also supported the visualization of the trajectories of several users, simultaneously. Each HTV

prototype implemented a different map-based visualization technique, one a 2D static map, the

other an STC. This study was conducted to compare how users interact with both techniques and

explore which ones are most adequate for which types of visual analysis tasks.

Although more noticeable in the second study, both took into account the characteristics asso-

ciated with trajectory data and, more importantly, the general types of tasks that might be needed

to achieve a given goal, based on the simplified task model proposed in the previous chapter.

The results of these studies can be supported by the findings of previous research and, more

importantly, they also emphasize relevant aspects regarding the studied visualizations and the types

of tasks they may be the most useful, which are directly related to the goals of this research. More-

over, these results also highlight important challenges for the next steps of this research (presented

in more detail in the next chapters). In particular, the results suggest that inexperienced analysts

are able to make use of both techniques, to explore and extract information from trajectory data,

while having a general positive experience with them. Nevertheless, the results have shown a

higher preference from the users towards 2D static maps, which was also reflected in a higher

effectiveness in locate tasks. Contrarily, STCs have been shown to be more useful in associate

tasks, to help users detecting relations between the data. Based on this information and the feed-

back obtained by the participants, the results suggest that combining these two techniques can be

useful for the visualization of trajectories over different types of tasks.

Although some of the obtained results may be considered expected, the positive reception by

the participants towards these techniques, particularly the STC, is considerably surprising, spe-

cially when considering the limitations usually associated with 3D views. According to the results

of the second study, STCs are more limited in locate tasks and, based on the participants’ interac-

tive strategies with this technique, they consider necessary to use a different visualization instead.

This suggests the need to further improve this technique and analyse users’ strategies when inter-

acting with a given visualization. Indeed, as implied by these results, a possible improvement that

should be explored consists in the use of an additional 2D map. However, previous studies have

already suggested other alternatives, in particular, allowing the users to change the location of the

map plane located at the base of the cube (Kraak, 2003). Nevertheless, no empirical evidence has

been given support to the actual adequacy of this method and how it may change the interaction

with this technique. The next chapter addresses these issues, by presenting a comparative user

study focused on the STC technique and its adequacy in locate tasks.

Finally, Figure 3.11 depicts a schematic summary of the contributions of this chapter in the

scope of the research reported on this dissertation.
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Step 1: Related Work Analysis and Simplified Task Model (TM)

Ch2. Interactive Visualization of Trajectory Data
Results: See Figure 2.2.- For Task Model (TM) separated by 4 levels (lvl 1-4)

Step 2: Compare 2D Maps and 3D STCs

Ch3. Comparing 2D Static Maps and 3D Space-Time Cubes

Study #1 (5 participants)

Preliminary assessment of inexperienced users’ ability to analyse

trajectory data

Method:

• Task solving with ST-TrajVis

• Data source: GeoLife (1 mover: Nov. 2008)

• Tasks: Identify and Compare (TM-lvl1)

• Logged data: Time, Accuracy, and Preferences

Results

• Small learning curve

• Combining a 2D map with an STC was well received

• Different roles: Main visualization vs supportive map

• Varied between users

• Interest in quick visual filtering mechanisms

Study #2 (16 participants)

• Compare how adequate 2D maps and STCs are for visualization

task solving by inexperienced users

Method:

• Compare 2 prototypes using map visualizations 

(2D map or STC) and a timeline

• Data source: GeoLife (32 movers: 2008-2009)

• Tasks: Identify, Locate, Compare, Associate (TM-lvl2)

• Query categories: (elementary/general) when, (elementary/general) 

what+where

• Logged data: Time, Accuracy, and Preferences

Results:

• Higher preference towards 2D map

• 2D map more effective on location tasks

• STC more effective on association tasks

• Higher performance on elementary tasks

• Additional comments on combining 2D map and STC

• Attempts of converting STC into 2D map

Step 3: Improve Existing Techniques

Step 4: Case Study

Step 5: Identification of Guidelines

Figure 3.11: Summary of this research and the contributions of Chapter 3.



Chapter 4

Improving Spatial Awareness in
Space-Time Cubes

The experiments presented in the previous chapter were successful in two specific aspects. First,

they showed a high acceptance from inexperienced users towards 2D static maps and 3D space-

time cubes (STCs) for trajectory data visualization. Second, the results also showed the types of

visual analysis tasks in which each technique is more useful. In particular, the STC technique was

shown to be, potentially, more adequate than 2D static maps, in terms of effectiveness, in associate

tasks. Nevertheless, it still showed significant limitations in locate tasks and it was shown to be

the least preferred approach by the participants.

The previous chapter also discussed the importance of studying the different types of interac-

tive strategies used by the participants to acquire information, as a means of better comparing the

different types of techniques. In particular, two types of strategies were used by the participants

to somewhat convert an STC into a 2D map, by either manipulating the visualization’s temporal

granularity, or looking at the data from a birds-eye view.

Taking advantage of these results, the next two chapters change the focus of this research into

another objective. Specifically, the goal consists in analysing possible improvements over existing

visualization techniques and their effects over the interaction. As seem in Chapter 2, the analysis

of previous studies reveals a significant volume of research conducted with 2D static maps. How-

ever, the same cannot be found about the STC, particularly when considering an inexperienced

population as its primary target. In addition, considering the results from this research’s previous

studies, the STC can be considered as the most adequate for improvements.

To prevent the interference of additional factors into the results, in the previous chapter, a

baseline STC was used in both studies. However, previous authors, such as Kraak (2003), have

already proposed possible improvements to this technique, by allowing the manipulation of the

position of the STC’s spatial plane. In addition, the results shown in the previous chapter suggested

that using 2D maps alongside STCs may be helpful for the users to analyse the data. Consequently,

this chapter describes a new user study, comparing three different approaches corresponding to

variations of the STC technique (Gonçalves et al., 2015c), and aims to: i) identify strategies that

users may adopt to obtain spatial information when using an STC; ii) identify possible interactive

69
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techniques to help obtaining spatial information; and iii) assess the users’ experience with those

methods, while at the same time empirically comparing them.

The following sections present the various steps towards this study. First it describes the

dataset used in the experiment, followed by the different visualization prototypes, their most rel-

evant features, and their expected dis/advantages. After that, follows a description regarding the

user study conducted with the prototypes, including the procedure, the study’s results, and a de-

tailed discussion regarding the effects of the results in relation to the objectives of this work.

4.1 Dataset

The data used for the development and evaluation of the three STC prototypes consists of a

subset from the dataset made available by the Taxi and Limousine Commission of New York

City (NYC TLC, 2017). This subset was composed by the information regarding the pick-up and

drop-off locations of 10 taxis, randomly selected, during the period of one month (January of

2013). Each entry in the dataset represents a trip from a taxi and is composed by: two sets of coor-

dinates (latitude, longitude), representing the pick-up and drop-off locations of the trip; two sets of

timestamps, in both numerical and textual formats, representing the instants in time in which the

trip started and ended; additional thematic information containing the identification of the taxi and

its driver, the total number of passengers, the duration of the trip, its distance, the profits acquired,

the type of payment, and a set of values regarding fare taxes, tips, and tolls. In total, the dataset

was composed by, approximately, 13460 taxi trips.

As understandable by the aforementioned data description, this dataset is significantly differ-

ent from the one used in the previous experiments. Although both datasets represent trajectories,

the locations in which the data was recorded is different (the first being Beijing, China, the current

one being New York, United States). More importantly, the type of movers is also considerably

different. Although in both cases trajectories were generated by humans, in this dataset, the movers

can be considered the taxis, instead of their drivers. Consequently, the type of thematic informa-

tion associated with this dataset is dataset is also different and, arguably, more diverse. The usage

of this new dataset brings considerable advantages to this work. First, even if the target users of

this experiment are not familiar with the location from which the data was collected, they should

be able to understand better the map in which the data is displayed. In the previous experiment,

some locations (e.g., streets) were labelled with chinese characters, which raised some confusion.

Second, even though it is not the focus of this research, the existence of more types of thematic

data allows the creation of more visual appealing and informative trajectory maps. Third, and per-

haps more important, this change allows the analysis of whether these visualization techniques and

the previously obtained results are compatible or comparable with different datasets, in different

trajectory visualization contexts.
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Figure 4.1: ImpSTC prototypes and their components: a) Control Panel; b) Representa-
tion Panel; c) Information Panel; d) Legend; e) P3 STC with overview; f) P1 basic STC;
g) P2 STC with moveable spatial plane.

4.2 Prototypes

The prototypes developed, named ImpSTC (Improved STC), integrate variants of the STC tech-

nique and allow the visualization of the taxi trajectories, described above. The prototypes were

developed in HTML5, as local web applications, by taking advantage of the following main li-

braries and frameworks:

Node.js - a JavaScript runtime environment for developing a diverse variety of tools and appli-

cations (Dahi, 2009). Alongside NW.js (KDE, 2015), this library supports the creation of

(local) web-applications as well as the reading and writing of files, which in the context of

this study allowed the manipulation of the dataset previously mentioned and the recording

of user interaction logs.

STCJS - an updated version of the same JavaScript API described in the previous chapter, in

Section 3.2.2. In addition to various changes in the source code, unrelated to the goals of
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this work, the API was updated to support the features provided by the prototypes described

below.

Figure 4.1 depicts an example of one of the ImpSTC prototypes, showing also the other STC

alternatives. As in the last study, the prototypes were designed as similarly as possible, to ensure

that the differences detected between the STC alternatives were the result of the differences be-

tween the techniques, and not the result of external variables related to the prototypes’ aesthetics.

As depicted in the Figure 4.1, the prototypes were composed by five main components. The

first component, the control panel (Figure 4.1 a), allows users to select which data to visualize.

This selection can be done through various filters, which include:

the dates of movement, i.e., when movement started and ended;

the number of passengers, based on their minimum and maximum values;

trip distance, time and profits, similarly to the filter above;

the payment type, i.e., with money, credit card, or notes of credit;

the location types, i.e., pick-up or drop-off; and

the taxi and driver identifications, since one taxi can have several drivers in different periods of

time.

With the second component (Figure 4.1 b) users are able to customize how the information

is presented, by associating specific attributes to the visual variables of colour, shape, and size;

consequently, supporting several combinations between the data attributes. Similarly to what was

discussed in the previous chapter, and considering the usefulness of visual variables of colour

and shape to represent qualitative/categorical information (Andrienko and Andrienko, 2005), each

colour and shape can be used to represent location types (pick-up/drop-off), payment types, and

the periods of the day (i.e., four colours/icons representing periods of six hours each, similarly to

what was applied in the previous study). Colour can also be used to represent the identification

of the taxi or the drivers. Since size is considered an useful variable for the representation of

ordered and quantitative information, in the context of these prototypes, this variable can be used

to display information regarding the number of passengers or trip fares (larger icons representing

higher values). Figure 4.2 depicts some examples of using this functionality with the same subset

of data. In the first example (Figure 4.2 a), it is possible to compare the service of two different

drivers and conclude, for example, that the first driver made the trips with the highest profit. The

other two examples emphasize the visualization of the data from a temporal perspective and allow

the user to conclude, for instance, that the trips with the highest profit happened before 6 am (red),

but the taxi carried a higher number of passengers after that (Figure 4.2 b and c, respectively).

The third component (Figure 4.1 c) displays all of the aforementioned attributes that are as-

sociated to any given feature highlighted in the STC. On the other hand, the fourth component

(Figure 4.1 d) provides a legend describing the meaning of each visual variable illustrated in the
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Figure 4.2: STC prototype with different visual variable configurations. a) Colour: driver
ID, size: trip profit; b) Colour: time periods, size: trip profit; c) Colour: time periods,
size: number of passengers.
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STC, and a quick filtering mechanism that allows un/viewing sub-sets of the data, based on those

variables.

The last component consists of an STC visualization, as depicted in the Figures 4.1 e, f, and g,

depending on the prototype. In all three prototypes, the STC is composed by a 2D map plane, at the

bottom of the cube, providing spatial information, and by several labels along the cube’s height,

providing temporal information. Similarly to the previous studies, trajectories are depicted as a

sequence of points connected with lines, coloured and scaled according to the attributes selected

in the representation panel.

All prototypes support common interactive features, such as panning and zooming, for the

entire 3D view or just the 2D map displayed at the bottom. To pan the view, the user needs to

drag the STC with the right mouse button, horizontally or vertically. Scrolling with the mouse or

clicking in the respective buttons at the left-upper corner of the STC will allow the user to zoom-in

or zoom-out the view. In comparison, to pan or zoom the map displayed at the bottom of the STC,

the user would need to click the buttons on the left side menu of the STC, similarly to what is

already done with other map-based applications. Furthermore, each visualization also allows the

user to rotate the STC along its horizontal and vertical axes, with the left mouse button, and to

rescale its height, with the first slider located at the STC’s left corner. These, in turn, enable users

to, respectively, change the point of view and manipulate the temporal granularity of the data.

As emphasized in Figure 4.1, the differences between the three prototypes are focused in

this specific component, namely in how the spatial-component of the data is represented or em-

phasized. In the first prototype (Figure 4.1 f – P1), representing the most simple STC variant,

selecting an object in the view will display the time moment in which the object was detected,

with a thick line pointing at the object’s location in the map plane.

Despite some differences, this approach is mostly similar to the STC used in the last exper-

iment. Specifically, in addition to the prototypes’ aesthetics, this new version of the STC makes

the temporal granularity controls more visible and supports additional interactive features over the

STC’s map plane (see Figure 4.3).

In the second prototype (Figure 4.1 g – P2), based on the most well known (yet not validated)

proposal to improve spatial awareness on STCs (Kraak, 2003), in addition to the previously men-

tioned methods, a copy of the map plane is displayed at the same height as the selected object.

Highlighting the temporal scale of the STC, by hovering the mouse on it, will also move the addi-

tional map. Although this approach should simplify how users locate information within the STC,

adding a plane to a certain height will, necessarily, occlude all data located bellow the selected

object.

Finally, following the results of the previous study, the third prototype (Figure 4.1 e – P3)

aims to combine the advantages of 2D and 3D views by displaying a 2D map overview, at the

right-bottom corner of the visualization. This additional map view displays all information con-

tained within the STC’s boundaries, focusing on the spatial location of the data, thus continuously

providing some spatial context to the user. Moreover, the selection of an object within any of
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Figure 4.3: Additional interactive controls for the STCs a) from the previous study and b)
from the current one.

the views will highlight the corresponding one in the other and, similarly, changing the visual

representation of the information within the STC, through the representation panel, or with the

left-corner controls, will change the corresponding representations within the 2D overview. Nev-

ertheless, this approach will, necessarily, result in some redundancy, since the same data is being

represented in two similar views, and may also lead users to divide their attention between the

views (Baudisch et al., 2002).

4.3 User Study

Using the described ImpSTC prototypes, a user study was conducted to compare the usability of

the different variants of the STC technique. A total of 20 participants volunteered to the study,

aged between 19 and 34 (Av:26.6, SD:4.1). Similarly to the previous experiments, all participants

were knowledgeable with computer applications and geographic information systems to search for

directions towards specific points of interest. Nevertheless, none of the participants were experts

with trajectory data analysis, nor were familiarized with New York’s geography, thus preventing

previous knowledge over the location to adulterate the study’s results.

Considering the properties of each prototype, alongside the characteristics of the participants,

the hypothesis of this study were the following:

H1 Participants will prefer the prototypes with complementary spatial information (P2 and P3);

H2 Despite their disadvantages, the additional spatial-context aids provided by P2 and P3 will

enable the participants to complete tasks with a higher performance; and

H3 Similarly to our previous study, participants will perform better in elementary tasks, i.e.,

tasks that focus in just on object or time moment, due to the lesser amount of information

displayed.
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4.3.1 Tasks

The experiment conducted in Chapter 3 followed the second level of tasks depicted in Figure 2.2;

however, since no significant differences between the techniques were detected the identify and

compare tasks of this level, it can be argued that the most relevant results of that study came

only from the locate and associate tasks. In addition, as previously stated, these tasks can be

generalized into a higher level of tasks, composed by more general identify and compare tasks.

For those reasons and for a matter of coherence with the aforementioned analysis and terminology,

this user study was conducted based on the two tasks, depicted in the first level of Figure 2.2. The

first task, identify, required participants to find taxis or locations within the STC according to

some spatio-temporal and thematic constraints. The second task, compare, required the analysis

of similarity and difference relations between data elements in the STCs.

In the context of this study, two independent variables were considered:

Visualization technique (V t), with three levels, corresponding to the three prototypes, P1, P2,

and P3; and

Query category (Qc), with four levels adapted from the spatio-temporal data queries identified

by Andrienko et al. (2003), namely:

elementary what+where, elementary when (EE);

elementary what+where, general when (EG);

general what+where, elementary when (GE); and

general what+where, general when (GG).

These categories determine whether the focus of the task is in just one (elementary) or

several (general) moving objects (what+where?) in a specific time moment (when?) or

across a time period.

Table 4.1 provides some examples of the task conducted by the participants.

4.3.2 Procedure

The experiment followed a within-subjects design and all participants carried out each task indi-

vidually, in a controlled environment. At the beginning of the study, subjects were briefed about

the objectives of the experiment, and they viewed a demonstration of the prototypes. Before car-

rying out the tasks, they were asked to interact with the applications, as a means of getting used to

the STCs’ interactive controls. They were also encouraged to clarify any doubts. After the training

phase, the participants performed the two tasks, taking into account the different visualizations and

query categories. To mitigate sequence effects, the order in which the independent variables were

presented was counterbalanced based on a latin-square design. However, since comparison tasks

require necessarily more than one data item (either from the same or from different trajectories),

the level elementary what+where elementary when (Qc(EE)) was not considered for these tasks.

Consequently, each participant performed a total of 21 trials: (3V t) x (4 identify + 3 compare).
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Table 4.1: Examples of tasks conducted by the participants.

Query Category Tasks Example

Elementary What+Where Identify Where was taxi 1 at 8am?
Elementary When

Elementary What + Where Identify Which drivers dropped passengers in airports,
with taxi 1?

General When Compare Which drivers served the most people outside
Manhattam?

General What+Where Identify Which taxis were in service around Broklyn, at
4pm?

Elementary When Compare To where were heading the taxis with most pas-
sengers, by 12am?

General What+Where Identify Which taxis picked up passengers in Queens?

General When Compare Which taxis picked the most passengers in the
centre of Manhattan?

To assess the hypotheses of this study, the following dependent variables were recorded:

Subjective preferences: at the end of the tasks, participants were asked to rate the ease of use of

each prototype, on a scale between 0 and 10. This variable allows to evaluate the partici-

pants’ acceptability towards each prototype individually and comparatively to each other;

Task accuracy: to measure the participants’ effectiveness in completing the tasks, the responses

for each task were rated between 0 and 10, depending on the detail given by the participants

(e.g., saying that a taxi was heading to New York is less detailed than Manhattan, which is

less detailed than Central Park);

Task completion time: to measure the participants’ efficiency in completing the tasks, the amount

of time (in seconds) from the moment the participant started the task until the prototype

confirming that his/her answer was recorded;

Number of interactive actions: recorded and calculated during the tasks, this variable takes into

account various actions, such as map and view panning/zooming operations, rescaling the

STC’s height, or highlighting information. This variable can be considered as an additional

metric of complexity, allowing to analyse the tasks and prototypes in which the participants

required to interact the most to extract information;

3D mitigation strategies: as observed in the previous study, some participants tried to convert the

STC into a 2D static map, which, in addition to the participants’ needs for the completion of

the tasks, may be also related with their preferences between the techniques. In particular,

two strategies were used, which consisted of reducing the STC’s height to its minimum

(FlatV) and looking at the data from a birds-eye view perspective (BEV). By recording the
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Table 4.2: Statistic test results for the participants’ subjective preferences. n.s.s. stands
for not statistically significant.

Identify Compare

Friedman X2(2) = 14.8, p = 0.001 X2(2) = 11.7, p = 0.003

Wilcoxon S.R:

P1 – P2 Z = −3.42, p = 0.001 n.s.s.
P1 – P3 Z = −2.98, p = 0.001 Z = −2.96, p = 0.003
P2 – P3 n.s.s. Z = −2.56, p = 0.010

evolution of the positions and rotations of the STCs’ point of view, it is possible to estimate

when and how often each of these strategies were used.

The information regarding the last two variables were recorded automatically by the proto-

types, during the execution of the tasks. In addition, during the study, specially at the end of the

experiment, participants were encouraged to think aloud, and share their opinions regarding the

prototypes.

4.3.3 Results

The following sections present the results obtained in the study according to the considered depen-

dent variables. For a matter of readability, the following sections will focus on the most statistically

significant results or those close to be considered as such.

Subjective Preferences

To compare the differences between the participants’ opinions after each set of tasks, a Friedman’s

test was used. When significant differences were detected, the data was subjected to a Wilcoxon

Signed Rank test with a Bonferroni correction for pairwise comparisons. Table 4.2 depicts the

results of these tests.

Overall, the results revealed significant differences in both tasks. Specifically, in the identify

task, participants have shown a higher preference towards V t(P3) (7.3/10) and V t(P2) (6.5/10)

over V t(P1) (5.5/10). In the compare task, participants have also shown a significant higher

preference for V t(P3) (7.2/10) over V t(P1) (6/10) and V t(P2) (6.5/10).

Task Accuracy

To compare the participants’ accuracy with the visualizations and in the different categories, it was

used a similar procedure to the one previously described.

Table 4.3 displays the average scores obtained in the various tasks by the participants, while

Table 4.4 shows the results of the statistical analysis conducted over that data. In the identify task,

the tests revealed significant differences both in terms of visualization technique (V t) and Query

category (Qc). Further pairwise comparison tests confirmed significantly less accurate results with
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V t(P1) comparatively to the other two STCs. Participants were also significantly less accurate in

Qc(GE) tasks, comparatively to all others.

In the compare task, the tests revealed somewhat similar results, where participants were sig-

nificant less accurate in Qc(GE) tasks comparatively to Qc(EG) tasks.

Table 4.3: Mean participants’ results in terms of task accuracy.

Identify Compare

Accuracy [0-10] EE EG GE GG EG GE GG

P1 8.05 8.30 6.40 7.50 7.45 8.05 8.13
P2 8.40 9.20 7.55 8.35 7.75 8.83 7.83
P3 8.65 8.70 7.45 8.63 8.25 9.50 8.85

Table 4.4: Statistic test results for the participants’ accuracy. n.s.s. stands for not statis-
tically significant.

Identify Compare
Friedman (V t) X2(2) = 9.796, p = 0.007 n.s.s.

Wilcoxon S.R.

P1 – P2 Z = −2, 72, p = 0.006 n.s.s.
P1 – P3 Z = −2.54, p = 0.011 n.s.s.
P2 – P3 n.s.s. n.s.s.

Friedman (Qc) X2(3) = 26.154, p < 0.001 X2(2) = 8.54, p = 0.014

Wilcoxon S.R.

GE – EE Z = −3.57, p < 0.001 n.s.s.
GE – EG Z = −4.81, p < 0.001 Z = −2.83, p = 0.005
GE – GG Z = −2.787, p = 0.005 n.s.s.

Task Completion Times

To compare the participants’ results in terms of task completion times, their data was subjected

to the Shapiro-Wilk test of normality. After that, a repeated measures ANOVA test was used,

followed by Bonferroni tests for pairwise comparisons, when significant effects were detected.

Table 4.5 shows the mean results, in terms of task completion times, for all tasks with all

combinations of the two independent variables. In the identify task, the tests revealed a signif-

icant effect from Qc over the results (F (2.5) = 6.671, p = 0.001). The pairwise comparison

tests allowed to confirm significantly lower completion times in the least demanding type of task

(Qc(EE)), comparatively to the remaining three (with p ≤ 0.05 in all cases). No significant

differences were detected in terms of visualization technique, nor in the compare task.
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Table 4.5: Mean participants’ results in terms of task completion time.

Identify Compare

Time (sec) EE EG GE GG EG GE GG

P1 122.90 166.55 203.71 176.33 141.40 116.26 122.38
P2 126.24 168.55 193.24 174.36 152.48 123.10 146.52
P3 127.93 180.05 178.81 142.64 156.17 121.57 107.07

Table 4.6: Mean participants’ results in terms of number of interactive actions.

Identify Compare

N◦ Actions EE EG GE GG EG GE GG

P1 26.65 31.95 41.80 51.25 35.20 38.80 46.65
P2 22.85 28.10 35.90 40.15 34.55 32.95 46.55
P3 22.55 45.65 41.45 44.55 34.80 35.35 38.00

Number of Interactive Actions

A similar procedure was used to compare the participants’ results in terms of the number of actions

performed to complete the tasks.

Table 4.6 shows the mean number of actions performed by the participants, for all tasks with

all combinations of the two independent variables. In the identify task, significant effects were

detected from both Qc and V t (F (2.57) = 10.464, p < 0.001 and F (1.68) = 3.260, p = 0.05,

respectively). The pairwise comparison tests also revealed a significantly lower number of actions

in Qc(EE) tasks (p ≤ 0.013, comparing to all cases), and a generally significantly lower number

of actions of V t(P2) comparatively to V t(P1) (p = 0.046). No significant results were detected

in the compare task.

3D Mitigation Strategies

To analyse the strategies used by the participants to trying to convert the STCs into 2D static maps,

the data referring to the ratio of time spent in a specific view (i.e., birds-eye view - BEV, and fully

compressed STC - FlatV) was compared, following a procedure similar to the analysis of the

participants’ accuracy. Nevertheless, this analysis was focused on the BEV approach, considering

that only 7 participants used a FlatV approach and without any clear pattern.

Table 4.7 shows the mean ratio of time spent by the participants with a birds-eye view approach

and Table 4.8 provides an overview of the results of the statistical tests. In the identify task, the

tests revealed significant differences when comparing the visualization techniques (V t) and the

query categories (Qc). Regarding the first variable, the pair-wise comparison tests confirmed a

significantly higher usage of the BEV approach with the STCs without the 2D map overview (i.e.,

V t(P1) and V t(P2)). In regards to the second variable, the results also suggest a significantly

lesser usage of the BEV approach in Qc(EE) tasks, comparatively to QC(GE) and Qc(GG), but

a significantly higher usage of BEV in Qc(GG) tasks, comparatively to Qc(EG) tasks.
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Table 4.7: Mean participants’ results in terms of the ration of time spent by the partici-
pants in a birds-eye view.

Identify Compare

Ratio BEV (%) EE EG GE GG EG GE GG

P1 8.64 32.18 14.03 62.8 19.07 67.55 42.88
P2 8.81 31.55 8.82 64.0 7.88 58.50 39.68
P3 8.53 16.63 7.90 42.8 8.93 43.01 26.03

In the compare task, the results suggest significant differences in terms of Qc, by confirming

a significantly lesser usage of the BEV approach in Qc(GE) tasks, comparatively to Qc(EG) and

Qc(GG) tasks.

Table 4.8: Statistic test results for the participants’ accuracy. n.s.s. stands for not statis-
tically significant.

Identify Compare
Friedman (V t) X2(2) = 16.27, p ≤ 0.001 n.s.s.

Wilcoxon S.R.

P1 – P2 n.s.s. n.s.s.
P1 – P3 Z = −3.80, p ≤ 0.001 n.s.s.
P2 – P3 Z = −2.79, p = 0.005 n.s.s.

Friedman (Qc) X2(3) = 28.04, p ≤ 0.001 X2(2) = 25.09, p ≤ 0.001

Wilcoxon S.R.

EE – GE Z = −3.27, p = 0.001 n.s.s.
EE – GG Z = −4.27, p ≤ 0.001 n.s.s.
EG – GG Z = −2.98, p = 0.003 n.s.s.
GE – EG n.s.s. Z = −4.13, p ≤ 0.001
GE – GG n.s.s. Z = −3.40, p = 0.001

4.4 Discussion

Overall, the obtained results support the main hypotheses of this study.

According to the first hypothesis (H1), it was expected a higher preference towards the proto-

types with additional spatial cues (i.e., P2 and P3). As seen in the results of both tasks, P3 was

always among the preferred techniques, immediately followed by P2.

In the second hypothesis (H2), it was also expected a higher performance with the improved

visualizations. Some results point towards a lower accuracy with P1 (the simplest approach),

comparatively to the others. In addition, although no significant results were found in terms of task

completion times, the analysis of the number of actions performed by the participants suggests a

significantly lower number, which implies a lower effort when interacting with P2, comparatively

to P1.
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In the case the third hypothesis (H3), a higher performance in elementary tasks was expected,

i.e., tasks focused on the analysis of one time moment or just one mover. The results support

this hypothesis, by suggesting a lower accuracy in tasks with a higher visual noise. This was

particularly true in GE tasks, in which the participants need to focus on the data from several

movers in one specific time moment, implying the need to focus on a single temporal plane,

while ignoring or filtering others. In terms of task completion times and number of actions, the

participants were significantly faster and performed a lower number of actions in tasks with less

information to analyse, namely EE tasks, which focused on the analysis of one mover in a specific

time moment.

In addition, the analysis of the participants behaviour and comments also provided interesting

insights about the different visualizations. Throughout the experiment, it was possible to detect

some attempts to minimize the 3D aspects from the STC and obtain a more detailed spatial con-

text. Similarly to the previous study, the participants focused on two particular strategies, either,

more commonly, by looking at the data from a birds-eye view (BEV), or by using the temporal

granularity controls to flatten the STC. The results shown a more frequent usage of these tech-

niques (BEV in particular) with P1, followed by P2, and in tasks that required the analysis of

data in a large period of time (i.e., GE and GG tasks). These results suggest that the use of an

additional map overview, in addition to improving location accuracy, also minimized the negative

effects from 3D visualizations. However, it is unclear if these had any effect over the participants

accuracy, as no correlations between the data were detected. Moreover, it is also relevant to notice

that although the results show a less frequent usage of these approaches with P3, they did not

completely prevented them, which is somewhat surprising, considering the existence of the 2D

map overview.

Overall, a quantitative analysis over the results points towards the fact that approaches P2 and

P3 are indeed improvements over the STC technique. However, it is also important to take into

account the participants’ comments. At the end of the study, they mentioned that using a moveable

plane, or a 2D map overview on the STC, was helpful to acquire spatially-related information

more easily, although, under different circumstances. Regarding the auxiliary moveable plane,

the participants mentioned that they considered it more helpful to find the locations of specific

points or to analyse the evolution of locations visited over time from a given taxi. Despite these

positive comments, as expected, some participants stated that, sometimes, the moveable plane

would occlude information, conditioning the interaction. In fact, this situation was particularly

problematic when participants moved the plane to a certain height and then looked at the STC

from a birds-eye view, to better analyse a certain location. In these situations, several users asked

if the information had disappeared, not having realized, at first, that the information was still there,

just bellow the auxiliary map. Figure 4.4 depicts two examples of this scenario when the STC is in

a normal perspective (Figure 4.4 a), in which time and space are visible, and when the information

is visualized from a birds-eye view perspective (Figure 4.4 b). Regarding the 2D map overview, the

participants stated that it was helpful to have a better overall perception of the geographical space,
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Figure 4.4: Moveable map plane overlapping existing information. a) in a normal per-
spective; and b) in a birds-eye view perspective.

and that, alongside the STC, allowed them to focus better on spatial and temporal information

simultaneously. Despite that, some participants expressed their interest in having more control

over the 2D map overview, given their familiarity with 2D maps. Although the participants were

able to select or highlight information in this overview, the remaining of the interactive controls

were associated to the rest of the STC view.

These later comments are particularly important, since they emphasize the need to further

study the combination of 2D static maps with 3D STCs, instead of turning one of the techniques

into a complement of the other. Besides, they also emphasize the critical role of interactivity in the

visualization of trajectories. This fact can help justifying why some participants, despite having a

2D overview of the map, still tried to look at the STC’s data from a birds-eye view. Despite helpful,

its interactivity was rather limited, which may have encouraged the participants to sometimes pay

more attention to the STC, when using the 2D overview would have been more helpful.

4.5 Summary

This chapter is a direct follow up from the previous one, in the sense that, while the focus of

the Chapter 3 consisted in understanding the main limitations with 2D static maps and 3D space-

time cubes, from an inexperienced user perspective, the current one aimed at minimizing those

limitations. In particular, two variations of the STC visualization were studied, to improve the

adequacy of this technique in location-based tasks, which have been shown as the ones users may
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complete with a lower performance. The first improvement, adapted from previous (not validated)

work (Kraak, 2003), consisted in using an additional map plane that the user could move anywhere

along the STC’s height, to help in the location of information. The second followed the premise of

somewhat combing 2D maps and 3D STCs, to complement each other, by using a 2D static map

overview over a normal 3D space-time cube. These approaches were compared with a baseline

STC approach, taking into consideration some of the main types of visual analysis tasks and

trajectory data categorizations, already described in Chapter 2 and used in Chapter 3.

In addition to the comparative analysis of these approaches, this chapter also addressed the

importance of taking into account the users’ general strategies and actions, when evaluating the

visualizations. In particular, the number of actions performed by the participants was taken into

consideration, as an additional measure of effort to complete the tasks, alongside the occurrence

or persistence of actions focused in trying to convert 3D STCs into 2D static maps.

The results of this experiment suggest that both approaches are well received by the users,

as they were preferred over simpler approaches, and they also significantly improve the users’

performance, particularly in identify tasks. In addition, combining the space-time cube with a 2D

static map overview is likely to reduce the attempts at looking at the data in a space-time cube from

a birds-eye view perspective. Nevertheless, as discussed in the previous experiment (Section 3.2.4),

the volume of data under analysis shown a negative effect over the users’ performance, and despite

their positive comments towards these improvements, they may have caused some confusion, by

hiding information through the moveable plane, or by lacking interactivity (2D overview).

Figure 4.5 depicts a schematic summary of the contributions of this chapter in the scope of the

research reported on this dissertation.

Ultimately, the results of this experiment highlight two important aspects. The first is that,

as suggested in the first chapter, the improvement of 2D maps and 3D STCs can be achieved by

combining both techniques. However, it is necessary to understand the role of each technique in

the interaction. Second, the usage of the participants’ interactive actions as an evaluation metric,

from a qualitative and quantitative point of view, has a critical role in the understanding of the

issues and capabilities of the various techniques.

The next chapter continues to address the overarching issue of improving these visualization

techniques, by focusing, in particular, on a more robust combination between 2D maps and 3D

STCs alongside the evaluation of the effects over the interaction and performance of this combi-

nation, comparatively to using the techniques individually. For that, three new prototypes were

developed, implementing a 2D map, a 3D STC, and a combination of both techniques.
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Step 1: Related Work Analysis and Simplified Task Model (TM)

Ch2. Interactive Visualization of Trajectory Data
Results: See Figure 2.2.- For Task Model (TM) separated by 4 levels (lvl 1-4)

Step 3: Improve Existing Techniques

Ch4. Improving Spatial Awareness in Space-Time Cubes
Study #3: (20 participants)

• Identify strategies used to obtain spatial information on an STC

• Identify interactive techniques to help obtaining spatial information

• Compare user performance with those methods

Method:

• Compare 3 STC prototypes 

(P1: simple; P2: moveable plane; P3: map overview)

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: Same as before

• Logged data: Same as before + Nº actions and 3D mitigation 

strategies

Results:

• Higher preference towards P2 and P3
• Higher performance with P2 and P3

• Lower performance in tasks with more visual noise
• P2 is good for finding locations and study one mover

• P2 can interfere with the interaction, due to occlusion

• P3 provides a better geographical overview

• Additional comments regarding the combination of both maps

• Attempts at converting STCs into a 2D map: 

Birds-eye view (BEV) and flattening the STC’s height (FlatV)

Ch5. Combining 2D Static Maps and 3D Space-Time Cubes
Study #4 (30 participants)

• Expand existing knowledge regarding using 2D maps and STCs

• Explore if it makes sense to combine both techniques

• Empirically validate the combination of these techniques

• Analyse the types of strategies used to acquire information,

alongside user performance and acceptance.

Method:

• Compare 3 prototypes using map visualizations 

(2D map, STC, and 3VC: using both techniques) and a timeline

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: spatial and spatio-temporal

• Density of information: 1 or 10 movers

• Logged data: Same as before + % of component use

Results:

• Combining both techniques is useful

• 2D Map is faster and less interactive demanding on spatial
identification tasks, but not significantly more accurate then STC

• STC is better on spatio-temporal tasks

• 3VC is preferred in spatio-temporal comparison tasks

• 3VC reduces the need to transform STCs into 2D maps

• FlatV is a better approach than BEV

Step 2: Compare 2D Maps and 3D STCs

Ch3. Comparing 2D Static Maps and 3D Space-Time Cubes

Study #1 (5 participants)

Preliminary assessment of inexperienced users’ ability to analyse

trajectory data

Method:

• Task solving with ST-TrajVis

• Data source: GeoLife (1 mover: Nov. 2008)

• Tasks: Identify and Compare (TM-lvl1)

• Logged data: Time, Accuracy, and Preferences

Results

• Small learning curve

• Combining a 2D map with an STC was well received

• Different roles: Main visualization vs supportive map

• Varied between users

• Interest in quick visual filtering mechanisms

Study #2 (16 participants)

• Compare how adequate 2D maps and STCs are for visualization

task solving by inexperienced users

Method:

• Compare 2 prototypes using map visualizations 

(2D map or STC) and a timeline

• Data source: GeoLife (32 movers: 2008-2009)

• Tasks: Identify, Locate, Compare, Associate (TM-lvl2)

• Query categories: (elementary/general) when, (elementary/general) 

what+where

• Logged data: Time, Accuracy, and Preferences

Results:

• Higher preference towards 2D map

• 2D map more effective on location tasks

• STC more effective on association tasks

• Higher performance on elementary tasks

• Additional comments on combining 2D map and STC

• Attempts of converting STC into 2D map

Step 4: Case Study

Step 5: Identification of Guidelines

Figure 4.5: Summary of this research and the contributions of Chapter 4.
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Chapter 5

Combining 2D Static Maps and 3D
Space-Time Cubes

As discussed in the previous chapters, inexperienced users in terms of data visualization and anal-

ysis are able to work out conclusions related to the visualization of trajectory data, when using

map-based techniques, such as 2D (static) maps and 3D space-time cubes (STCs). However, as

suggested by the different characteristics of these techniques and later emphasized by the results

presented in Chapter 3, the adequacy of a given map technique to visualize trajectories is signifi-

cantly dependent on the types of visual analysis tasks required to achieve a given goal.

Nevertheless, it is unlikely that the analysis of trajectory data will depend on just one type of

task. This motivates the need to understand how to improve existing techniques by minimizing

their known limitations. As analysed in Chapter 4, even the inclusion of simple additional spatial-

related cues in STCs (e.g., a moveable map plane) supports a significant performance increase by

the participants in location-based tasks. More importantly, the results presented in Chapter 4 also

highlight the possibility of improving both techniques through their direct combination.

This particular topic has already been somewhat addressed in some studies, by suggesting the

ability to switch between 2D and 3D maps to enable the exploration of the data from different

points of view (Amini et al., 2015), or by reporting a positive reception from domain and non-

domain expert users towards using both 2D maps and STCs to visualize spatio-temporal data (Kve-

ladze et al., 2015). Despite the valuable contributions of these works, they are still mostly focused

in distinguishing the different map components, rather than exploring the actual consequences of

their combination in terms of performance and interaction strategies.

This chapter continues to address the challenges, first mentioned in the previous two chapters,

that were related to the comparison and improvement of 2D maps and STCs for the visualization of

trajectory data, in particular by focusing on the issue of combining both visualization techniques.

For that, a new user study is presented, comparing three interactive map prototypes, this time how-

ever, with one using a 2D map, one using a 3D STC, and one implementing both techniques in the

same visualization (Gonçalves et al., 2015b, 2016b). Specifically, this study was conducted to: i)

expand the existent knowledge that distinguishes the benefits of using 2D maps compared to STCs

(including the results obtained in Chapter 3); ii) explore whether it makes sense to combine both
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techniques and analyse the dis/advantages of combining both techniques, comparatively to using

them separately; iii) empirically validate the combination of these techniques to help the interac-

tion, taking into account the types of visual analysis tasks a user might need to perform to achieve

a given goal; and iv) understand and analyse the types of strategies used by inexperienced users to

acquire information with the different techniques, alongside their performance and acceptance.

As described in Chapter 2, the results of some studies suggest also a possible effect of gender

over user performance (Vecchi and Girelli, 1998). Although this factor is beyond the scope of this

research, the analysis of the results of this study take also this variable into account. Similarly,

considering the results of the experiments presented in the previous chapters, the volume of infor-

mation on display has also a significant effect over user performance. For that reason, this variable

is also taken into consideration for this study.

The remainder of this chapter is organized as follows: the next section describes the dataset

used, followed by the prototypes developed in the context of this study, the user study and the

results obtained with the prototypes. The chapter concludes with a detailed discussion of the

results, and their effect in relation to the objectives of this work.

5.1 Dataset

Similarly to the experiments presented in Chapter 3, in which the second study was a direct follow

up of the first, the study presented in this chapter can also be considered as a follow up of the

study presented in Chapter 4. Even though with distinctive approaches, one of their main goals

consists on the optimization of map-based visualization techniques. In addition, the dataset used

in these experiments was considerably useful for an efficient creation of the prototypes as well as

the design of the various tasks. As such, in this chapter, for a matter of coherence and simplicity,

the data used for the development and evaluation of the prototypes consists, again, in a subset of

the data made available by the Taxi and Limousine Commission of New York City (NYC TLC,

2017).

Similarly to the previous study, this subset was composed by the information regarding the

pick-up and drop-off locations of 10 randomly selected taxis, different from those used in the pre-

vious study, during the period of one month (January of 2013). In total, the dataset was composed

by, approximately, 13430 taxi trips. In addition to the spatio-temporal and thematic properties

associated with the data, which were described in the previous chapter (section 4.1), to further

optimize the users’ recognition of the observed locations, this dataset was enriched with more de-

tailed results from reverse geocoding the stop location coordinates (i.e., acquiring the name of the

locations based on their geographical coordinates).
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Figure 5.1: TTV prototypes a) 2D map prototype; b) STC prototype; c) 2D map + STC
prototype; d) Control panel; e) Representation panel; f) Legend; g) Information panel; h)
Timeline; and i) Spatial highlight reflected in both maps.
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5.2 Prototypes

To achieve the goals presented in this chapter, it was necessary to compare 2D static maps (Fig-

ure 5.1 a), 3D STCs (Figure 5.1 b), and their combination (Figure 5.1 c). As such, three prototypes,

called Taxi Trajectory Visualizer (TTV), were developed and then compared, integrating different

interactive map-based visualization techniques. The three prototypes were developed in HTML5,

as local web applications, and took advantage of the following main libraries and frameworks:

Node.js and NW.js - as described in the previous chapter, in Section 4.2;

STCJS - an updated version of the JavaScript API described in the previous chapters, in Sec-

tions 3.2.2 and 4.2. In addition to updated interactive controls, such as the ones depicted

in Figure 5.1 j, and further explained below, this version supports various performance up-

grades.

TRAJMAP2DJS - an updated version of the JavaScript API described in Section 3.2.2. Similarly

to the one above, this version supports additional visualization options (Figure 5.1 j) and

various performance upgrades.

TIMELINEJS - a JavaScript API developed over the three.js library, that supports the creation

and interaction with timelines for the visualization of data from a temporal perspective.

This API was developed based on STCJS and TRAJMAP2DJS to simplify the development

of the prototypes and, thus, it supports the creation of various layers with information,

represented with customizable styles (e.g., colour and size settings). Consequently, this

API also supports the notification of various user interaction events, such as when a user

selects a time point/period feature or changes the timeline’s properties (e.g., pan and zoom).

Figure 5.1 displays the three prototypes and their main components. As previously stated, an

important detail regarding the comparison of these visualization approaches is to ensure that the

prototypes are informationally equivalent, i.e., it is possible to extract similar information from

the different techniques. Therefore, as observed in Figure 5.1, all three prototypes are composed

by six main components, sharing a similar visual style and interactive controls, ultimately having

the map-based visualizations as their distinguishing factor.

The first component (Figure 5.1 d and Figure 5.2 a), the control panel, provides temporal and

thematic filters that support the selection of the data subset that is to be visualized. In particular,

the user can select the data based on: the time period of movement, expressed in terms of days and

hours/minutes of the day; the maximum/minimum values of time, distance, number of passengers,

and profit obtained in each trip; and the identification of the taxi or the driver, since it is possible

for one taxi to be used by several drivers in different periods.

The second component (Figure 5.1 e and Figure 5.2 b), the representation panel, allows users

to associate the thematic attributes described above to a set of visual variables (i.e., colour, shape,

and size), in the map-based visualization(s) and in the timeline (explained below). Colour can be
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Figure 5.2: Control (a) and Representation (b) panels common on all three prototypes.

used to represent sets of categorical data, including: the time periods of the day (i.e., four colours,

each representing a period of six hours), the location type (i.e., pickup/droop-off), the type of

payment (i.e., cash, credit card, or note of credit), and the taxi or driver identifiers (i.e., one colour

for each identifier). The point shape/symbol can be used to emphasize the same types of attributes

described above, with the exception of the taxi and driver identifiers. Size can be used to represent,

essentially, quantitative information, namely the number of passengers, the distance, duration, or

the profit associated to each trip. The higher the value associated to the attribute, the larger/thicker

the points and lines used to represent the data.

The third component (Figure 5.1 f and Figure 5.3 a) consists simply of an interactive legend,

that informs the user about the meaning of the visual variables being used (e.g., which colour

corresponds to which taxi). This component also allows users to quickly toggle the visibility of

subsets of the data associated to those variables (e.g., hide/show the trajectories of a given taxi).

The fourth component (Figure 5.1 g and Figure 5.3 b) consists of a textual information panel,

where all data associated to a single location or to the pickup/dropoff locations associated to a

trip are displayed, depending on what was selected within the visualizations. That information

includes: the name of the location (where?), the temporal instant for when the taxi passed through

the location (when?), and the thematic information regarding the number of passengers, duration,
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Figure 5.3: Legend panel (a) and Information panel (b) common on the three prototypes.

distance, and profit associated to a trip (what?).

The fifth component (Figure 5.1 h and Figure 5.4), the timeline, consists of a chart focused

on displaying data from a temporal perspective. As seen in Figure 5.1 h and Figure 5.4 a, the

timeline is composed by several rows, each one representing the movement data of one taxi. Each

row contains several area icons, distributed horizontally, to indicate the periods of time in which

movement was detected. In these icons, the larger the area, the longer the duration of the trip.

However, this can be changed with the representation panel, where the user can select points (i.e.,

one per detected pickup and dropoff location) instead of area icons. This feature can be particularly

helpful when the user is just interested in visualizing the temporal distribution of a certain type of

location. The user can also associate quantitative thematic attributes to the timeline, like number

of passengers, distance, duration, or profit associated to a trip, to visualize their evolution through

time, in an alternative timeline view (Figures 5.4 a and b). Regardless of the type of view used,

it is important to mention that the representation styles used for the time points and periods are

similar to the ones used in the map-visualizations described below. Moreover, similarly to the

study presented in Chapter 3, the inclusion of this component was considered necessary for two

main reasons: first, the timeline provides an additional, and often neglected, point of view over the

data (time); second, due to the objective of this research in making the prototypes informationally

equivalent, this component was also included to compensate the limitations with the 2D map in

representing time. Indeed, temporal information can be acquired through the legend component

or when the time periods of the day are represented on the map; however, these methods can

still be considered limited compared to a timeline that also provides an overview of the temporal

distribution of the recorded events.

The last component consists of the map visualization technique, which can either be a 2D map,

a 3D STC, or a visualization using both techniques side-by-side, depending on the prototype being

used (Figures 5.1 a, b, and c, respectively). The approach followed by the prototype combining

both techniques is comparable to ST-TrajVis, presented in Chapter 2. However, despite their

similarities in terms of how the techniques are displayed (i.e., one STC juxtaposed with a 2D map),

this prototype provides an additional set of interactive controls, further explained below, that do

not exist in ST-TrajVis and that support a more adequate interaction with both views separately
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Figure 5.4: Alternative timeline views with the data of one taxi a) Display of event
trips and their duration; b) Display of the event trips, their duration, and variations on
quantitative thematic information.

or together. Furthermore, since this study focuses on the visualization and analysis of trajectories

by inexperienced users, it was necessary to use data representations that should be both simple

to use and understand. In all prototypes, the pickup and drop-off locations are represented with

point icons, where their colour, size, and shape are directly related to the attributes selected in the

representation panel, described above. In addition, to better illustrate the evolution of the taxis’

positions, the points can also be connected with lines using the representation panel. Similarly to

the point icons, line colour and thickness is determined according to the attributes that are selected.

Specifically, lines connecting a pick-up and a drop-off locations, representing a trip, are coloured

and sized according to those attributes, and lines connecting a drop-off to pick-up locations (i.e.,

when the driver is looking for passengers) are represented in a faded grey colour with minimum

thickness. Figure 5.5 depicts an example of this representation, where a non-trip line is being

selected in the STC and further highlighted in the timeline, with a similar representation.

To support interaction with the prototypes, both the map visualization and the timeline compo-

nents allow the users to pan and zoom their views. In particular, the 2D map uses similar controls

to common map-based applications (i.e., Google Maps) and allows the user to pan and zoom the

map view with the left-mouse button and the mouse wheel, or the interactive buttons located at

the bottom-right corner of the map, respectively. On the other hand, the STC and the timeline,

require the right-mouse botton to pan and also the mouse-wheel to zoom the views (similarly to

already common 3D design applications). Using the control panel located at the edge of the view,

it is also possible to zoom the STC view and to pan/zoom the map displayed at the STC’s base

(see Figure 5.1 j). In addition, given its three dimensional properties, similarly to the prototypes

described in the previous chapter, the STC also allows the user to rotate the visualization along its

horizontal and vertical axes, with the left mouse button.

As shown in the previous figures, particularly Figures 5.5 and 5.6 a and b, the STC component

used in this experiment is considerably different from those used in previous studies of this work,
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Figure 5.5: Selection of segment of a trajectory representing the search for a passenger
in the STC (a), further highlighted in the timeline (b).

most noticeably in regards to its interactive control menu. Overall, the STC controls used in this

experiment present some stylistic changes, now grouping the various interactive options around

the same space and allowing the user to hide/reveal them if needed. Nevertheless, despite the new

presentation style and some new interactive controls, this menu still incorporates the same features

described in previous STCs. In particular, the user is able to zoom in/out the point of view in the

STC or, pan/zoom the map plane displayed on the STC’s base, or to rescale the STC’s height.

As discussed in the previous chapters, this later feature has been shown to be useful to the users,

in the sense that it is comparable to an additional zoom operation. However, this type of zoom

is focused on the representation of the STC’s temporal dimension by allowing the manipulation

of the temporal granularity of the data. In addition to help visualizing temporal information with

a customizable level of detail, this feature can also help minimizing problems with information

overlap, e.g., when stretching the STC to better distinguish different locations close in space and

time.

Regarding the new types of controls, to improve the users’ understanding of the spatial com-

ponent of the data, the STC also provides an additional map plane, that can be dragged and locked

anywhere along the STC’s height. This feature was made optional, since, as discussed in the pre-

vious study, some users have shown some confusion when using it or did not consider it always

necessary for the analysis of the data.

Furthermore, in both map components, the users are able to request the additional drawing of

shadows or heatmaps over the map plane, such as depicted in Figures 5.5 and 5.7 a and b. This

feature has two main purposes: first, it can show the areas with a higher density of information

(such as what is, usually, intended when using a heatmap); second, in the STC view, it can be

used as an additional spatial cue, since the highlighted information within the map plane will be

located directly bellow the object within the STC. For a matter of simplicity and to minimize the
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Figure 5.6: Evolution of the additional controls used in the STCs a) in Chapter 4 and b)
current experiment.

possibility for a higher visual noise, this feature is deactivated by default.

Double clicking on the map plane of the prototypes allows the user to draw points/lines or

areas inside the map views, based on the geographic location(s) selected (Figure 5.1 i). Overall,

these can be used as a spatial reference when analysing the data or, more importantly, to minimize

the risk of inexperienced users loosing their location, when changing the map view through pan-

ning or zooming operations. It must be acknowledged the fact that this feature could be used to

support a more complex system for selecting and filtering information. However, in addition to

being outside of the scope of this study, it could also significantly increase the complexity of use

of the prototypes.

As usual in applications with multiple views, the selection of a trip or location point, in any

of the map views or in the timeline, will highlight the correspondent data element in the other

views. For instance, selecting a pick-up location in the map will highilight the corresponding time

moment and trip in the timeline, and vice versa. Similarly, in the prototype combining both the 2D

map and the STC techniques, any change or selection made to one map is immediately reflected

in the other, further emphasizing the combination of both techniques and, expectedly, enabling an

easier transition between views. In particular, panning/zooming the map or drawing a reference

point or area, will cause the other map to be panned/zoomed or have a reference point/area drawn

into the correspondent geographical area (see Figures 5.1 i, and 5.5). Nevertheless, the synchro-

nization between the two maps can be deactivated through the representation panel, allowing the

user to further customize how to visualize the data in the two different views.
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Figure 5.7: Heatmap functionality over the a) STC and b) 2D map.

5.3 User Study

To evaluate the viability of combining 2D static maps and 3D space-times cubes in the same vi-

sualization and to compare the differences in user performance and interaction strategies of when

using a combined approach, against both visualization techniques individually, a user study was

conducted with the participation of 30 volunteers (20 male, 10 female), aged between 19 and 40

(Av: 25.6, SD: 4.9). All participants were knowledgeable with computer applications to search

for directions towards specific points of interest (e.g., Google Maps) and with applications that

used 3D as a means of conveying or manipulating information (e.g., mapping applications, such

as Google Earth, computer assisted design and modelling applications, such as Blender, and most

commonly video games). Among all participants, four mentioned that despite being knowledge-

able, they were not fully comfortable with 3D graphic applications. Finally, no participant was

familiarized with New York’s geography, nor had any significant experience with spatio-temporal

nor trajectory data analysis. Consequently, all users were exposed to a similar context, since the

possible effects of subjective bias and prior knowledge over the location were minimized, which

could interfere in how users would look for information within the visualizations and, conse-

quently, unbalance the results.

Based on the characteristics of the studied techniques and on the overall objectives of the

experiment, this study’s hypothesis were the following:

H1 It was expected a significant preference towards the prototype combining the 2D map and

the STC visualizations. Despite the visual similarities with the other prototypes, and the

redundancy of the data being displayed (i.e., same data in two similar maps), this prototype

provides more choices to the participants, in terms of visualization and interaction, which

could affect their preferences;

H2 A higher performance and a more significant usage of the 2D map in spatial tasks was also

expected. This hypothesis is supported by previous studies that point towards the more
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advantageous use of 2D maps for these types of tasks, in addition to the fact that 2D maps

are widely known and used visualization techniques, even by users with no experience with

Geographic Information Systems (GIS);

H3 A higher performance with the STC is expected in tasks that require the analysis of the

data’s temporal component. Although the 2D map prototype also provides temporal infor-

mation, through the use of the timeline component, the participants need to change their

focus between the two different views, which, in turn, may affect their analysis. The STC,

on the other hand, combines spatial and temporal components within the same view, ex-

pectedly allowing an easier analysis;

H4 It was expected an overall lower performance when more trajectories were displayed, due to

the increasing data to be visualized and, consequently, the complexity of the visualization.

5.3.1 Tasks

Similarly to the previous experiment, to test these hypotheses the participants were asked to per-

form two tasks, identify and compare, which are based on the most common types of cartographic

visualization objectives described in the literature (Roth, 2013), and correspond to the first level

of tasks described in Figure 2.2. Comparatively to the previous experiments, both tasks were di-

vided into two categories: spatial and spatio-temporal, depending on the main types of constraints

associated with the task. This division was considered necessary for two main reasons. First, as

initially described in Chapter 2, one of the most distinguishing factors between 2D maps and 3D

STCs consists in how temporal information is presented. This may affect how the data is anal-

ysed, including spatial information, such as discussed in the results of Chapters 3 and 4, in which

participants were less accurate at locating information with STCs and often transformed the STC

based on their temporal representation to better visualize spatial information. Second, as observ-

able from the results of Chapters 3 and 4, the most relevant differences between the techniques

were detected in conditions where the the user had to analyse data recorded in a time period or

focused on the search and analysis of a location. Consequently, this subdivision results into four

types of tasks, described as follows:

Spatial identification: required participants to detect information (e.g., point of interest or taxi/driver

id) in which one or several taxis performed a certain action (e.g., drop a passenger), based

on a spatial restriction (e.g., which drivers dropped passengers outside of New York?);

Spatio-temporal identification: required participants to identify information based on a spatio-

temporal constraint (e.g., which driver was the first to drop a passenger outside of New

York, in a certain day?);

Spatial comparison: required participants to analyse relations, similarities, or differences be-

tween data elements based on a spatial constraint (e.g., which driver covered a wider geo-

graphical area? or which points of interest were the most visited?);
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Spatio-temporal comparison: required participants to analyse relations, similarities, or differ-

ences between data elements based on a spatio-temporal constraint (e.g., which taxi had the

most service in New York during a given time period? or in which time periods was a given

location visited the most?).

Furthermore, for each task, two independent variables were considered, namely: Visualiza-

tion technique (Vt), with three levels, corresponding to the three previously described prototypes,

namely 2D map, STC, and 2D map + STC; and number of moving objects (Nt), with two levels,

1 and 10 objects (taxis). Although in this experiment the variable query category is not explicitly

considered, which would determine the focus of the task on different numbers of objects in a time

moment or period, given the results of the previous studies, it was still considered important to

analyse the effects of the volume of information over the user’s analysis.

5.3.2 Procedure

The experiment followed a within-subjects design and all participants carried out each task individ-

ually, in a controlled laboratory environment. At the beginning of the experiment, the participants

were briefed about the objectives of the study and the types of visualization techniques being used.

Then, they viewed a demonstration of the prototypes that covered all of their functionalities. Af-

ter that, the participants were asked to interact with the prototypes, in order to get used to the

interactive controls, and were encouraged to clarify any doubts.

After the training phase, the participants were asked to perform the two tasks, first the identify

and then the compare tasks. This order was decided based on two main factors: first, as a result

of their characteristics, a higher difficulty in compare tasks was expected, since more than just

detecting information, the participants would also have to analyse it; second, in order to compare

different data elements it is usually necessary to identify those elements first. For instance, to

detect which point of interest in New York was the most visited, it may be necessary to iden-

tify/locate where New York is and what is each point of interest. Consequently, this could produce

a negative effect over the results, due to an over-simplification of the identify tasks.

Nevertheless, to mitigate sequence effects, the order in which the independent variables and

the type of task (spatial or spatio-temporal) were presented was counterbalanced based on a latin-

square design. As a result, each participant performed a total of 24 trials: 2 tasks x 2 task types x

3 Vt x 2 Nt.

In addition, to measure the results and assess the hypothesis, the following dependent variables

were recorded:

Subjective preferences: at the end of each task, the participants were asked to rate each prototype

on a 0 to 10 scale, based on their preferences regarding the use of each prototype for that

specific task. Similarly to the previous study, this variable allows the evaluation of the

participants’ acceptability towards each visualization, individually and comparatively to

the others;
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Task accuracy: each task was rated on a 0 to 5 scale, based on the correction and level of detail

of the answers given by the participants (e.g., if the task was to name the taxis that visited

a certain location, the score assigned would be lower if the participant did not mention

all taxis or named incorrect ones in the answer). The analysis of this variable allows to

evaluate the participants’ effectiveness and, thus, verify if they are able to reach satisfactory

responses for the various tasks;

Task completion time: measured in seconds, this was recorded from the moment the participant

started the task (by pressing a START TASK button) until selecting the option to save a final

answer;

Number of actions: these were recorded automatically from the moment the participant would

start the task until the task was finished and included map and view panning/zooming oper-

ations, rescaling the STC’s height, highlighting information, or changing any other property

in the visualization (e.g., filter a given subset of information). Alongside task completion

time, these variables allow to evaluate the complexity of each task and how the prototypes

help in their completion;

3D mitigation strategies (specifically for the prototypes using the STC component): based on

the current view rotation of the STC and its height, two different strategies were taken

into account for the mitigation of the STC’s third dimension. These consist of the same

strategies identified in the previous studies, specifically looking at the data from a bird’s

eye view (BEV) and reducing the STC’s height to its minimum, effectively, converting it

into a plane/flat view (FlatV). Similarly to the previous study, this variable allows to analyse

when or how often the participants may feel the necessity to convert the STC into a 2D map.

More importantly, however, this also allows to verify if participants considered necessary

to apply these strategies even if with a fully functional 2D map already available;

Ratio of use of the visualization components (specifically for the third prototype): it consists in

the ratio between the total number of actions and the number of actions on each visualization

component (2D map, STC, or timeline). This variable can also be used when analysing the

first two prototypes, since these contain a timeline component which can be the focus of

attention from the user when analysing time. However, the main focus of this study is

related to the map component and thus, this variable, like the one above, allows to analyse

the participants’ visualization needs throughout the tasks and learn if or when one map

component is used more than the other.

With the exception of the first two, all of the dependent variables described above were au-

tomatically recorded by the prototypes, during the execution of the tasks. In the context of this

study, all prototypes generated log files representing the various user’s interactive actions during

the tasks. These actions included any specific operation over the views, such as resizing the STC,
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Table 5.1: Mean participants’ results in terms of subjective preferences.

Identify Compare

S. Pref [0-10] Sp SpT Sp SpT

2DM 7.97 7.20 7.40 6.77
STC 5.40 6.10 6.27 6.83
3VC 7.97 8.23 8.03 8.20

panning/dragging, zooming (in/out), or rotating the views, and selecting (either by clicking or hov-

ering) any feature with information within any of the views. Each recorded action was associated

with a set of additional information, including, the mouse position within the application, times-

tamps (both in real-time and in relation to the beginning of the task), and information specific to

the event, like the identification of the item selected within the view, or the position and rotation of

the camera used when dragging or rotating the STC. Moreover, during the study, specially at the

end of the tasks, the participants were encouraged to think aloud, share their opinions regarding

the prototypes and answer to some questions depending on their actions, such as: which features

they preferred the most, or in which situations they considered a certain feature, or a specific ac-

tion they did, as being more useful or needed. These answers were registered manually during the

study.

5.3.3 Results

This section describes the results obtained in the user study, particularly focused on the most statis-

tically significant results and those close to be considered as such (i.e., not statistically significant

but still with a low p-value). For a matter of simplification and readability, in the remainder of this

chapter, the prototypes that implement the 2D map, the STC, and both techniques simultaneously

will be, respectively, addressed as 2DM, STC, and 3VC. In addition, throughout the various tables

depicting the results of this study, the type of task, spatial and spatio-temporal, will be, separately,

addressed as Sp and SpT. The factors of the variable number of moving objects will be addressed

as Nt(1) and Nt(10), referring to 1 and 10 objects (taxis), respectively.

Subjective preferences

To compare the differences between the participants’ subjective preferences, a Friedman’s test

was used, followed by a Wilcoxon Signed Rank test, using a Bonferroni correction, for pairwise

comparisons (see Table 5.1 and Table 5.2).

In both the spatial identification and comparison tasks, significant differences were detected,

in particular a lower preference towards Vt(STC) over Vt(2DM) and Vt(3VC). In both spatio-

temporal tasks, significant differences were also detected, as the results reveal a higher preference

towards Vt(3VC) over Vt(2DM) and Vt(STC).
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Table 5.2: Statistic test results for the participants’ subjective preferences. n.s.s. stands
for not statistically significant.

Identify Compare

Sp SpT Sp SpT

Friedman X2(3) = 38.697, X2(3) = 28.625, X2(3) = 25.59, X2(3) = 19.049,
p < 0.001 p < 0.001 p < 0.001 p < 0.001

Wilcoxon S.R:

2DM - STC Z = −4.24,
p < 0.001

n.s.s. Z = −3.30,
p = 0.001

n.s.s.

2DM - 3VC n.s.s. Z = −3.02,
p = 0.003

n.s.s. Z = −3.38,
p = 0.001

STC - 3VC Z = −4.32,
p < 0.001

Z = −4.58,
p < 0.001

Z = −3.64,
p < 0.001

Z = −3.64,
p < 0.001

Table 5.3: Mean participants’ results in terms of task accuracy.

Identify Compare

Sp Sp SpT SpT Sp Sp SpT SpT
Accuracy [0-5] Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10)

2DM 4.67 4.20 4.17 3.07 4.60 4.00 4.13 3.73
STC 4.73 3.80 4.53 4.17 4.73 3.83 4.53 4.37
3VC 4.77 4.27 4.40 4.00 4.60 4.00 4.43 4.40

Task Accuracy

A similar procedure was used to compare the differences in terms of the participants’ accuracy

(see Table 5.3 and Table 5.4).

In both the spatial identification and comparison tasks, the tests reveal a significantly lower

accuracy in conditions with more trajectories (Nt(10)) when using Vt(STC), comparatively to con-

ditions with just one (Nt(1)). On the other hand, in the spatio-temporal tasks, the results suggest

a lower accuracy with Vt(2DM) comparatively to the Vt(STC) and Vt(3VC). In particular, in the

spatio-temporal identification task, the test results reveal also a lower accuracy from participants

in Nt(10) conditions, when using Vt(2DM).

Task completion time

To assess the differences in terms of the amount of time taken by the participants to complete the

various tasks, the data was subjected to a repeated measures ANOVA, followed by Bonferroni tests

for pairwise comparisons (see Tables 5.5 and 5.6). In the spatial identification and comparison

tasks, significant effects were found in the number of trajectories (Nt), in the visualization tech-

nique (Vt), and in both factors. In the spatio-temporal identification task, significant effects were

also detected from Nt and Vt.

In all tasks, pairwise comparison tests revealed longer completion times with Nt(10) condi-
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Table 5.4: Statistic test results for the participants’ accuracy. n.s.s. stands for not statis-
tically significant.

Identify Compare

Sp SpT Sp SpT

Friedman X2(5) = 31.16 X2(5) = 51.38 X2(5) = 34.37 X2(5) = 19.20
p < 0.001 p < 0.001 p < 0.001 p = 0.002

Wilcoxon S.R.

Vt in Nt(10):
2DM - STC n.s.s. Z = −2.63,

p = 0.009
n.s.s. Z = −2.37,

p = 0.018
2DM - 3VC n.s.s. Z = −2.66,

p = 0.008
n.s.s. Z = −2.62,

p = 0.009

Nt(1) - Nt(10):
with 2DM n.s.s. Z = −2.90,

p = 0.004
n.s.s. n.s.s.

with STC Z = −3.33,
p = 0.001

n.s.s. Z = −3.03,
p = 0.002

n.s.s.

Table 5.5: Mean participants’ results in terms of task completion times.

Identify Compare

Sp Sp SpT SpT Sp Sp SpT SpT
Time (sec) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10)

2DM 96.23 120.85 103.53 183.55 71.52 117.32 112.33 144.23
STC 142.13 262.80 106.62 230.23 70.85 171.75 139.33 131.33
3VC 143.62 155.43 104.80 174.42 76.70 130.57 130.52 107.72

tions, comparatively to Nt(1). On the other hand, in the spatial tasks, particularly with a higher

number of trajectories, the results show significantly faster completion times with Vt(2DM), com-

paratively to Vt(STC).

Number of actions

To analyse the differences in terms of the number of interactive actions used in each task by the

participants, a similar procedure to the one used in the previous section was applied (see Tables 5.7

and 5.8).

In both spatial and spatio-temporal identification tasks, similar differences were detected. In

particular, the results show a significant effect from Nt, where participants performed a signifi-

cantly higher number of actions in Nt(10) conditions. The results have also shown a significant

effect from Vt. Pairwise comparison tests revealed a significantly smaller number of actions con-

ducted by participants using Vt(2DM), comparatively to the other visualizations. An identical

result also was detected in the spatio-temporal comparison task, with the pairwise comparison

tests revealing a significantly smaller number of actions with Vt(2DM), comparatively to Vt(3VC).
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Table 5.6: Statistic test results for the participants’ task completion times. n.s.s. stands
for not statistically significant.

Identify Compare

Sp SpT Sp SpT

Nt F (1, 29) = 15.61, F (1, 29) = 56.9, F (1, 29) = 44.51, n.s.s.
p < 0.001 p < 0.001 p > 0.001

Vt F (2, 53) = 10.71, F (2, 53) = 3.43, F (2, 58) = 3.040, n.s.s.
p < 0.001 p = 0.043 p = 0.05

2DM-STC p < 0.001 n.s.s. p = 0.048 n.s.s.

Nt x Vt F (2, 51) = 15.61, n.s.s. F (2, 43) = 44.51, n.s.s.
p < 0.001 p = 0.014

Table 5.7: Mean results in terms of the number of interactive actions performed by the
participants to conduct the tasks.

Identify Compare

Sp Sp SpT SpT Sp Sp SpT SpT
N◦ Actions Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10)

2DM 18.43 40.43 21.87 45.37 21.60 41.07 22.80 29.50
STC 55.03 93.03 46.83 105.43 32.67 71.00 90.80 71.90
3VC 51.80 71.10 43.83 92.47 33.27 60.53 29.50 59.03

3D mitigation strategies

To study the use of 3D mitigation strategies by the participants and the differences between them in

spatial and spatio-temporal tasks, when using Vt(STC) and Vt(3VC), the time spent in BEV(bird’s

eye view) and in FlatV(flat view) was recorded and used for the conduction of a repeated measures

ANOVA, followed by Bonferroni tests for pairwise comparisons (see Tables 5.9 and 5.10).

Regarding the use of BEV with Vt(STC), the results show a significant effect on both tasks

from Nt and the type of task, where participants used this strategy significantly more in conditions

with more trajectories (Nt(10)) and in spatial tasks, respectively.

With respect to the use of FlatV with Vt(STC), the tests reveal similar results, with a significant

effect on both tasks from Nt and the type of task.

On the contrary, no significant differences were detected regarding the use of any of these

strategies with Vt(3VC).

Based on that information, followed an analysis of the differences in accuracy, based on the

strategies used by the participants, when using Vt(STC), on each task (see Table 5.11). For that, a

Mann-Whitney U Test was conducted, which revealed significant differences in the spatial identi-

fication task with the condition Nt(10) (U = 29, p = 0.01), where participants were significantly

more accurate when taking advantage of a FlatV approach over a BEV one.
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Table 5.8: Statistic test results for the participants’ number of actions.n.s.s. stands for
not statistically significant.

Identify Compare

Sp SpT Sp SpT

Nt F (1, 29) = 15.49 F (1, 29) = 24.88 F (1, 2) = 14.48 n.s.s.
p < 0.001 p < 0.001 p = 0.001

Vt F (1.7, 49.2) = 8.74 F (1.9, 55.1) = 8.20 F (1.6, 48.9) = 4.05 F (1.4, 42.87) = 5.32
p < 0.001 p < 0.001 p = 0.030 p = 0.015

2DM-STC p = 0.006 p = 0.004 p = 0.027 n.s.s.
2DM-3VC p = 0.006 p = 0.004 p = 0.049 p = 0.019

Table 5.9: Mean participants’ results in terms of a) time spent in BEV b) time spent in
FlatV during the completion of the tasks.

Identify Compare

Sp Sp SpT SpT Sp Sp SpT SpT
Time spent (%) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10)

a) BEV
STC 65.88 189.83 22.55 84.60 39.12 91.72 24.28 35.35
3VC 29.07 6.63 5.12 6.77 6.92 1.45 3.22 4.00

b) FlatV

STC 37.60 84.55 13.30 38.35 24.43 57.92 10.27 12.75
3VC 11.85 4.43 0.0 0.0 0.0 0.0 0.0 1.03

Ratio of use of the visualization components

To understand which visualization components were the most used by the participants during each

task, an ANOVA test was conducted over the results, followed by a Bonferroni test for pairwise

comparison (see Tables 5.12 and 5.13).

The tests revealed significant differences in both spatial tasks, where participants used the 2D

map component generally more often than the STC and timeline components. Contrarily, in both

spatio-temporal tasks, the results reveal that participants used the STC component more often than

the 2D map and timeline components.

Gender comparison

Comparatively to the previous experiments, this study had the participation of a higher percentage

of female subjects (30%). In addition, as addressed in Chapter 2, previous research suggests

that the gender of the user can have an effect over the interaction, particularly when visualizing

information in a 3D view (Vecchi and Girelli, 1998). As such, although not being the focus of this

study, it was decided to complement its analysis by comparing the differences of results between

male and female participants.

Table 5.14 shows the average accuracy results obtained by the participants. The data was

subjected to Mann-Whitney U Tests over each task condition for the two genders. The results
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Table 5.10: Statistic test results for the participants’ time spent when flattening the STC
(FlatV) or looking at the data from a birds eye view perspective (BEV), using Vt(STC).
TT stands for the factor task type. n.s.s. stands for not statistically significant.

FlatV BEV

Identify Compare Identify Compare

Nt F (1, 29) = 9.70 F (1, 29) = 9.73 F (1, 29) = 13.51 F (1, 29) = 8.51
p = 0.004 p = 0.004 p = 0.001 p = 0.007

TT F (1, 29) = 12.25 F (1, 29) = 4.53 F (1, 29) = 52.23 F (1, 29) = 9.11
p = 0.002 p = 0.042 p < 0.001 p = 0.005

Nt x TT n.s.s. n.s.s. F (1, 29) = 4.61 n.s.s.
p = 0.04

Table 5.11: Mean participants’ results in terms of accuracy (0 to 5 scale) obtained with
both strategies with the STC.

Identify Compare

Sp Sp SpT SpT Sp Sp SpT SpT
Accuracy [0-5] Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10)

STC - BEV 4.54 3.20 4.50 4.38 3.85 4.86 4.86 4.38
STC - FlatV 4.92 4.05 4.33 3.91 3.75 4.25 4.25 4.43

Table 5.12: Mean results in terms of the ratio of use of the visualization components by
the participants, when interacting with Vt(3VC).

Identify Compare

Sp Sp SpT SpT Sp Sp SpT SpT
Comp. use (%) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10)

2DM 57.23 54.77 21.19 27.56 41.45 52.51 17.81 19.08
STC 25.42 12.42 39.73 49.07 15.03 15.60 47.51 51.62
Timeline 14.64 6.25 28.78 11.23 3.43 5.47 25.65 21.26

of the tests revealed a significantly higher accuracy from male participants in spatial comparison

tasks, when using Vt(STC) (Nt(1): U = 80, p = 0.042; Nt(10): U = 54.5, p = 0.030). No

statistically significant results were detected when comparing task completion time, number of

actions, nor subjective preferences.

5.4 Discussion

This section addresses the results presented above, commenting the relation with the hypothe-

sis they support, the results of previous studies (Section 2.5), and, more importantly, how the

results highlighted relevant aspects regarding the visualization techniques studied and the interac-

tion strategies used with them.



Chapter 5. Combining 2D Static Maps and 3D Space-Time Cubes 106

5.4.1 Hypotheses and Independent Factors Analysis

The results obtained in this study support the first hypothesis (H1), in which a higher preference

towards Vt(3VC) was expected. As seen in the results, Vt(3VC) was constantly among the preferred

techniques by the participants, both from the analysis of average values and the results of the

statistical difference analysis. Although not significantly different from Vt(2DM) in spatial tasks,

Vt(3VC) was the preferred visualization in spatio-temporal analysis tasks.

With the second hypothesis (H2), a higher performance and usage of Vt(2DM) in spatial tasks

was expected. For both cases, the results partially support this hypothesis. Analysing task comple-

tion times and number of actions in spatial tasks shows that the participants were able to complete

the tasks faster and with a smaller number of actions using Vt(2DM), even though this fact had no

significant effect over the participants’ accuracy. The analysis of the component usage on Vt(3VC)

shows that for spatial tasks, the 2D map component was the most used by the participants. These

results are particularly interesting when compared to those of the second experiment, presented

in Chapter 3, in which participants using the STC prototype were significantly less accurate in

location tasks. Although the argument can still be made that 2D maps are preferable to STCs in

location-based tasks, the lack of evidence towards one being better than the other in terms of ac-

curacy, further emphasizes the results presented in the previous chapter, after the study of possible

improvements over the STC technique, which resulted in an overall better performance than when

using a simple STC.

In the case of the third hypothesis (H3), it was expected a higher performance and usage of

Vt(STC) in spatio-temporal tasks. Similarly to the previous case, the results also go in agreement

with this hypothesis. Despite the fact that the participants had to perform a higher number of

actions to complete the tasks with Vt(STC), analysing the results in terms of accuracy shows that

they were, generally, more accurate in both spatio-temporal tasks, yet, not significantly slower as

in spatial tasks. In addition, the analysis of the component usage on Vt(3VC) also shows that the

STC component was used more frequently in spatio-temporal tasks.

Table 5.13: Statistic test results for the participants’ technique/component usage in
Vt(3VC). n.s.s. stands for not statistically significant.

Sp Sp SpT SpT
Nt(1) Nt(10) Nt(1) Nt(10)

Identify F (2, 84) = 20.16, F (2, 84) = 53.75, F (2, 84) = 3.16, F (2, 84) = 14.01,
p < 0.001 p < 0.001 p = 0.048 p < 0.001

2DM - STC p < 0.001 p < 0.001 p = 0.049 p = 0.006
2DM - Timeline p < 0.001 p < 0.001 n.s.s. n.s.s.
STC - Timeline n.s.s. n.s.s. n.s.s. p < 0.001

Compare F (2, 84) = 6.14, F (2, 84) = 36.67, F (2, 84) = 6.99, F (2, 84) = 10.55,
p = 0.003 p < 0.001 p = 0.002 p < 0.001

2DM - STC n.s.s. p < 0.001 p = 0.002 p < 0.001
2DM - Timeline p = 0.003 p < 0.001 n.s.s. n.s.s.
STC - Timeline n.s.s. n.s.s. p < 0.013 p < 0.001
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Table 5.14: Mean participants’ results in terms of accuracy, separated by gender.

Identify Compare

Sp Sp SpT SpT Sp Sp SpT SpT
Accuracy [0-5] Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10) Nt(1) Nt(10)

2DM - M 4.65 4.35 4.40 3.15 4.60 4.20 3.95 3.85
2DM - F 4.70 3.90 3.70 2.90 4.60 3.60 4.50 3.50

STC - M 4.75 4.10 4.80 4.30 4.99 4.10 4.70 4.25
STC - F 4.70 3.20 4.00 3.90 4.20 3.30 4.20 4.60

3VC - M 4.70 4.50 4.45 4.10 4.80 4.05 4.55 4.45
3VC - F 4.90 3.80 4.30 3.80 4.20 3.90 4.20 4.30

In addition to the type of task (spatial or spatio-temporal), the results allow to discuss the

scalability of the different techniques, as they point towards the fact that increasing the number of

trajectories (Nt) has an effect on the interaction with the techniques. Expectedly, in terms of task

completion times and number of actions, the results show that, with more trajectories, participants

took more time and had to perform more actions to complete the tasks. More interestingly, how-

ever, in terms of accuracy, the effects of this variable were not only noticeable in Vt(STC) in spatial

tasks, but also in Vt(2DM) in spatio-temporal identification tasks. These results thus support the

fourth hypothesis (H4), where it was expected a higher performance in tasks with less trajectories

displayed.

As previously stated, although it was not the focus of this study, it was also considered rel-

evant to compare the results obtained in terms of gender. Interestingly, the results only show

significant differences in the spatial comparison task, where male participants were more accurate

than female participants with Vt(STC). By association, looking at the average results suggests the

possibility of male participants being, generally, more effective in these tasks, particularly with

3D visualizations like Vt(STC). However, it is important to acknowledge that the compared groups

were unbalanced (20 males, 10 females), thus preventing from taking any definitive conclusion,

but still allowing to highlight the possible differences.

5.4.2 Interaction Strategies and Feedback

To further illustrate the results presented above and comment on the participants’ strategies and

feedback, several heatmaps were generated representing the distribution of all participants’ inter-

active actions, during the spatial and spatio-temporal tasks, respectively, for all three prototypes.

For the remainder of this document these will be referred to as interaction maps, in opposition to

the the heatmaps available in the prototypes.

The comparison of both interaction maps obtained with Vt(2DM) (see Figure 5.8) shows a

noticeable higher usage of the timeline component in spatio-temporal tasks. This goes in agree-

ment with the the participants’ feedback, who commented that it was more difficult to work with

the 2D map when temporal information was necessary and, for that reason, they considered that

the timeline component was very useful to compensate the map’s limitations. Consequently, in
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Figure 5.8: Interaction maps regarding Vt(2DM) in all spatial (left) and spatio-temporal
tasks (right).

Figure 5.9: Interaction maps regarding Vt(STC) in all spatial (left) and spatio-temporal
tasks (right).

spatio-temporal tasks, it was possible to observe that participants switched often between the two

components. While some would focus first on the analysis of a geographical area, with the 2D

map, and then try to understand it temporally with the timeline, others focused mostly on analysing

the timeline and then looked for confirmation in the 2D map. These last participants mentioned

that, due to the fact that highlighting one view would highlight the others, and that the data was

temporally ordered within the timeline, they were able to understand better the movement of the

taxi/driver(s). These last comments can also help explaining the fact that, as visible in Figure 5.8,

the timeline component was also used in spatial tasks, even if less noticeably. Although the tasks

did not require a precise understanding of time (e.g., knowing the date of a certain event), the

linear representation provided by the timeline associated to the highlight of the map component

and the sequential nature of trajectories can make the timeline a simpler and more apelative tool

to interact with, allowing the user to follow the movements of one or several taxi/driver(s).

The analysis of the interaction maps obtained with Vt(STC) (see Figure 5.9) emphasizes the

dependency of STCs towards proper interaction mechanisms, as these are noticeably more disperse

and have areas with a higher concentration of events.

Comparing both types of tasks shows, once again, that the timeline was used more often

in spatio-temporal tasks, while the STC’s map controls (i.e., pan and zooming mechanisms at

the right-side of the STC) were used more often in spatial tasks. Such as before, the timeline
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Figure 5.10: Interaction maps regarding Vt(3VC) in all spatial (left) and spatio-temporal
tasks (right).

component was used in both types of tasks, which can be surprising, considering the fact that

the STC already displays information from a temporal perspective. However, in addition to the

reasons presented above regarding the use of the timeline from Vt(2DM) in spatial tasks, some

users have mentioned that dealing with third dimension of the STC, although useful, could be

challenging, particularly when a larger number of trajectories was displayed.

Another important set of features highlighted by these interaction maps refers to STC’s con-

trols regarding its additional map plane and temporal granularity. Regarding the additional map

plane, the participants praised this feature, since it allowed them to focus it on a specific time loca-

tion or slide it up/downwards to understand better the evolution of the taxi/driver(s) position over

time. Regarding the temporal granularity controls, the participants justified its usefulness based

on the fact that it allowed them to visualize, with more detail, variations of information in close

periods of time and, as previously discussed, to convert the 3D STC into a 2D plane. This later

strategy was mostly used in spatial tasks; however, some participants have also used it in spatio-

temporal tasks, alternating between a flattened STC view and a normal one, depending on their

interest on spatial or temporal information, respectively. This usage can be also seen, to a certain

extent, in the interaction maps, in which the controls (buttons) referring to the STC’s height were

noticeably more used in spatial tasks (see Figure 5.6 for reference).

The analysis of the interaction maps with Vt(3VC) (see Figure 5.10) further emphasizes how

the 2D map component was used the most in spatial tasks, while the STC and the timeline com-

ponents were used more often in spatio-temporal tasks. Despite the predominance of specific

components for different types of tasks, it is worth noticing that both maps were used.

In both types of tasks, it is also possible to see that the STC controls were used less than with

Vt(STC). More relevant, however, is the representation regarding the usage of the STC’s temporal

granularity controls. It is possible to see that in spatial tasks, the slider controlling the STC’s

height is mostly highlighted on its lower half, showing that the majority of the interaction with

that control consisted in reducing the STC’s height (see Figure 5.11). Comparatively, in spatio-

temporal tasks, a wider area around these controls is highlighted, suggesting that users did not just

reduce the STC’s height or visualized it with a very low scale.
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Figure 5.11: Interaction maps with Vt(3VC), particularly with the STC controls in spatial
(left) and spatio-temporal tasks (right).

Another important component highlighted by the various interactions maps refers to the leg-

end component and, by extension, the customizable representation features. Through these mech-

anisms, the participants often used the following strategies:

1. quickly remove all information, to analyse or find a specific geographical area;

2. filter the data from one mover and compare it with another or a group of movers;

3. remove information considered to be irrelevant after an analysis (e.g., trajectories/locations

that after being analysed were considered to go against some criteria used to solve a task);

4. insert information, previously removed after an analysis (e.g., compare the geographical

distribution of two movers by alternating their visibility); or

5. emphasize certain aspects of the data the participant considered useful for the completion

of the task, even if in a redundant way (e.g., set visual variables to represent temporal

information to help comparing different time periods).

The participants also mentioned that being able to customize how the data should be displayed,

helped them highlighting information they considered relevant and, more importantly, made them

feel more control over the interaction.

Finally, the participants also appreciated the possibility of highlighting a specific geographical

area (Figure 5.1 i), having used this feature to mark an area of interest as relevant during the anal-

yses. The participants mentioned that this feature was more helpful in Vt(STC) than in Vt(2DM),

since it helped minimizing the negative perspective effects of the third dimension, while not losing
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Figure 5.12: Example of the combination of the auxiliary map plane and the spatial area
highlighting features.

temporal information, ultimately, helping them understanding better how the information was dis-

tributed over the geographical area. Interestingly, some participants combined this functionality

with the auxiliary moveable plane, when trying to limit the information they wanted to focus on,

while still having an overview of the remaining data (see Figure 5.12). They also mentioned appre-

ciating this functionality in Vt(3VC), since they could highlight an area in the 2D map component

and then analyse the correspondent area in the STC, further helping them transitioning between

one component to the other.

5.4.3 Combining 2D maps and STCs

The results of this study point towards the advantages of Vt(3VC). First, as discussed above, the

participants have shown a higher preference towards this technique. Throughout the study, the

participants have justified their preference based on the fact that they considered that the 2D map

helped overcoming the STC’s limitations when analysing spatial information. As expected, some

participants have also praised the fact that this prototype provided more choices to analyse the data.

In addition, they mentioned that the synchronization between the two maps was helpful, since it

allowed them to easily change the focus between views. Despite being given the possibility to

deactivate this synchronization, none of the participants considered necessary to do it, highlighting

the usefulness of combining both techniques.

Analysing the results in terms of task accuracy also shows that this prototype was never sig-

nificantly outperformed by the others, suggesting that, at worst, this visualization is as useful as

the better technique from Vt(2DM) and Vt(STC).

As discussed above, the analysis of the component usage on Vt(3VC) shows that the partic-

ipants have used both maps in the various tasks, suggesting the interest and necessity of having

both techniques available to the user in scenarios where the focus of the task may vary between

spatial and temporal information. The analysis of the 3D mitigation strategies used also help sup-

porting this claim, since, in spatial identification tasks, participants that flattened the STC were

more accurate than those that tried to identify the data from a bird’s eye view perspective. In turn,

these results further emphasize the advantages of being able to switch between both visualizations,
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the advantages of extracting 2D information from a 3D STC, and how that can be achieved.

Based on the differences that were detected in terms of gender, it may be appropriate to provide

both techniques to the users as a means of minimizing the possible effects of this factor over

the interaction. Nevertheless, further studies should be conducted to properly access this new

hypothesis.

It is important to notice, however, that combining 2D maps and STCs will increase the com-

plexity of the visualization, possibly requiring users to perform a higher number of actions to

complete a given task. Interestingly, as evidenced by the results, particularly in terms of subjective

preferences, users may still feel more comfortable with this combined approach, comparatively to

just using one technique. In addition, combining the two techniques, as seen in this study, will

also support a somewhat significant redundancy in the visualization. Despite their differences, 2D

maps and STCs still share several visual similarities (e.g., the spatial map plane). Although the

majority of the participants did not find that redundancy detrimental for their interaction, 3 partic-

ipants raised their concern towards this factor in less complex tasks, such as identification tasks

focused on one trajectory.

Finally, the results of this experiment suggest the interest in further studying different ap-

proaches to combine 2D maps and STC visualizations, like those suggested by Kveladze et al.

(2015), which shows an application that supports the user switching between a 2D map and a 3D

STC by pressing a button external to the map view. Arguably, an identical approach was already

used with Vt(STC), as the temporal granularity controls allow the user to flatten the STC into a 2D

plane. However, as seen in this study, the consequence of this functionality was not clear to all par-

ticipants, as several did not use it, preferring or only considering necessary to look at the data from

a birds-eye perspective. This suggests that this functionality should either be better emphasized to

the user or a different approach should be explored.

5.5 Summary

This chapter continued to address the challenges of improving existing map-based techniques for

the visualization of trajectory data. In particular, this chapter was focused on the study the ade-

quacy of combining 2D static maps with 3D space-time cubes within the same visualization, un-

der the hypothesis that using both techniques would make one technique minimize the limitations

found over the other. To achieve this goal, three prototypes were developed, one implementing

a 2D static map, another implementing a 3D space-time cube, and a third combining both tech-

niques in the same view. All prototypes included an interactive timeline, also connected to the

map visualizations. Moreover, all prototypes supported various interactive features, in part, based

on the results of the studies presented in Chapters 3 and 4.

The three prototypes were compared in a user study, focused on an inexperienced population in

terms of trajectory data analysis. Considering the most distinguishing difference between 2D maps

and 3D STCs consists in their temporal representation, the study took into account the main types
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of visual analysis tasks and the effects of focusing on the spatial or spatio-temporal components

of the data. In addition to the analysis of the users’ performance and opinions regarding each

visualization, the various strategies and sequences of actions performed were also considered to

evaluate the prototypes when completing the tasks.

Overall, the results of this experiment address the objectives presented at the beginning of

this chapter, namely to: i) expand the existent knowledge that distinguishes the benefits of using

2D maps compared to STCs; ii) explore whether it makes sense to combine both techniques; iii)

empirically validate the combination of these techniques; and iv) understand and analyse the types

of strategies used by inexperienced users to acquire information with the different techniques.

Despite being focused on the combination of both techniques, this experiment allowed to

further support and increase the knowledge of the differences between 2D static maps and 3D

space-time cubes. The results point, once again, towards 2D maps being preferred over STCs and

being, generally, more adequate in tasks heavily focused on the spatial components of the data. In

comparison, STCs were shown to be more adequate in tasks that also with temporal information.

Interestingly, some of the results, namely in terms of accuracy, were less significant or expressive

than those of previous experiences, further suggesting the importance of the STC improvements

addressed in Chapter 4.

The obtained results also suggest that combining 2D maps and STCs can be a successful

improvement over just using one of the techniques. Not only this approach was always among the

preferred by the participants, it was also never significantly outperformed by the other two. The

analysis of the participants’ actions also support this achievement. Notable examples include the

users’ attempts at converting the STC prototype into a 2D map, similarly to what was discussed

in the previous chapters, or the usage of the different maps depending on the focus of the task,

namely spatial or spatio-temporal information. Nevertheless, these results also suggest the study

of additional ways to combine these techniques, particularly by being able to switch between them,

alternatively to having them both visible at the same time (as used in this study).

Based on the participants’ comments and their interactive actions, the results of this exper-

iment also support the usefulness of various interactive features and components present in the

prototypes, including: the timeline component, which helped the participants in tasks dependent

on the analysis of temporal information, particularly with the 2D map prototype; the ability to

highlight specific geographical areas, particularly with the prototypes implementing the STC tech-

nique; and the interactive controls in the STC prototypes, particularly related to the additional

spatial cues and temporal granularity control.

Figure 5.13 depicts a schematic summary of the contributions of this chapter in the scope of

the research reported on this dissertation.

Ultimately, the experiments described throughout this and the previous two chapters provide

a set of relevant results that clarify and expand on the existing knowledge associated to 2D static

maps and 3D space-time cubes. In particular, these results address the main similarities and differ-

ences between the two techniques, based on various metrics, their adequacy in different types of
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tasks, and, perhaps more importantly, various types of interactive features and controls to improve

their adequacy.

Nevertheless, it is important to acknowledge the fact that, throughout these studies, no specific

context of use was considered. This decision was taken based on two main reasons. First, to

better focus on the study of these techniques in terms of their spatial and temporal representations.

Second, to avoid a possible bias effect from the study participants, which could adulterate the

results. The next chapter addresses this lack of a specific context of use and advances the study

of these techniques. By taking advantage of the knowledge acquired so far, a new user study

is described, assessing the adequacy of using 2D static maps and 3D space-time cubes for the

visualization of game-related trajectory data, by players likely inexperienced in terms of trajectory

data analysis, yet interested in understanding their own data.
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Step 1: Related Work Analysis and Simplified Task Model (TM)

Ch2. Interactive Visualization of Trajectory Data
Results: See Figure 2.2.- For Task Model (TM) separated by 4 levels (lvl 1-4)

Step 3: Improve Existing Techniques

Ch4. Improving Spatial Awareness in Space-Time Cubes
Study #3: (20 participants)

• Identify strategies used to obtain spatial information on an STC

• Identify interactive techniques to help obtaining spatial information

• Compare user performance with those methods

Method:

• Compare 3 STC prototypes 

(P1: simple; P2: moveable plane; P3: map overview)

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: Same as before

• Logged data: Same as before + Nº actions and 3D mitigation 

strategies

Results:

• Higher preference towards P2 and P3
• Higher performance with P2 and P3

• Lower performance in tasks with more visual noise
• P2 is good for finding locations and study one mover

• P2 can interfere with the interaction, due to occlusion

• P3 provides a better geographical overview

• Additional comments regarding the combination of both maps

• Attempts at converting STCs into a 2D map: 

Birds-eye view (BEV) and flattening the STC’s height (FlatV)

Ch5. Combining 2D Static Maps and 3D Space-Time Cubes
Study #4 (30 participants)

• Expand existing knowledge regarding using 2D maps and STCs

• Explore if it makes sense to combine both techniques

• Empirically validate the combination of these techniques

• Analyse the types of strategies used to acquire information,

alongside user performance and acceptance.

Method:

• Compare 3 prototypes using map visualizations 

(2D map, STC, and 3VC: using both techniques) and a timeline

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: spatial and spatio-temporal

• Density of information: 1 or 10 movers

• Logged data: Same as before + % of component use

Results:

• Combining both techniques is useful

• 2D Map is faster and less interactive demanding on spatial
identification tasks, but not significantly more accurate then STC

• STC is better on spatio-temporal tasks

• 3VC is preferred in spatio-temporal comparison tasks

• 3VC reduces the need to transform STCs into 2D maps

• FlatV is a better approach than BEV

Step 2: Compare 2D Maps and 3D STCs

Ch3. Comparing 2D Static Maps and 3D Space-Time Cubes

Study #1 (5 participants)

Preliminary assessment of inexperienced users’ ability to analyse

trajectory data

Method:

• Task solving with ST-TrajVis

• Data source: GeoLife (1 mover: Nov. 2008)

• Tasks: Identify and Compare (TM-lvl1)

• Logged data: Time, Accuracy, and Preferences

Results

• Small learning curve

• Combining a 2D map with an STC was well received

• Different roles: Main visualization vs supportive map

• Varied between users

• Interest in quick visual filtering mechanisms

Study #2 (16 participants)

• Compare how adequate 2D maps and STCs are for visualization

task solving by inexperienced users

Method:

• Compare 2 prototypes using map visualizations 

(2D map or STC) and a timeline

• Data source: GeoLife (32 movers: 2008-2009)

• Tasks: Identify, Locate, Compare, Associate (TM-lvl2)

• Query categories: (elementary/general) when, (elementary/general) 

what+where

• Logged data: Time, Accuracy, and Preferences

Results:

• Higher preference towards 2D map

• 2D map more effective on location tasks

• STC more effective on association tasks

• Higher performance on elementary tasks

• Additional comments on combining 2D map and STC

• Attempts of converting STC into 2D map

Step 4: Case Study

Step 5: Identification of Guidelines

Figure 5.13: Summary of this research and the contributions of Chapter 5.
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Chapter 6

Case Study: Visualization of Trajectory
Data from Online Games

The previous chapters allowed to retrieve a set of relevant results associated with 2D static maps

and 3D space-time cubes (STCs), from the perspective of an inexperienced population in terms of

trajectory data analysis.

As pointed out in Chapter 1, despite acknowledging the importance of thematic information in

the representation and analysis of trajectory data, this work is essentially focused on the simulta-

neous representation of the spatial and temporal information. Consequently, the studies presented

in the previous chapters cannot be considered as being particularly focused on a specific context

of use. This is reflected by the fact that the datasets used throughout the previous experiments

have always been different, even if some came from the same source. Nevertheless, this approach

has some advantages since, in addition to help validating these techniques with different types of

datasets, this approach also helped preventing possible bias effects that the participants could have.

Regardless of that bias being over the data or the tasks, ignoring this possibility could adulterate

the validity of the results.

Despite these factors, it is still necessary to validate the knowledge and results acquired in the

previous studies using a more specific application-based context. As such, it was decided to apply

this knowledge into the area of visual-game analytics, specifically associated with the visualization

of trajectories generated in games of the MOBA genre (Multiplayer Online Battle Arena), such as

League of Legends (LoL) (Riot Games, 2009) .

The following sections will expand upon these topics. Section 6.1 presents some background

and motivation for the selection of this context as the case study. Section 6.2 describes the LoL

game alongside its importance and validity for this research. Section 6.3, describes VisLoL, a

prototype created based on the results obtained in the studies presented in the previous chapters.

Following this description, Section 6.4 describes the user study conducted with VisLoL, which

aimed at: i) studying if inexperienced users are able to reach meaningful conclusions by using 2D

static maps and 3D space-time cubes when visualizing personal trajectories, in a game-related con-

text, similarly to what is expected with already existing tools; ii) understanding how the analysis of

the data differs from using a map-based application and already existing tools, e.g., which different
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metrics and interactive strategies are used; and iii) studying the possible effects of knowing whose

data is being visualized over the analysis, due to the possible personal motivations associated with

the interaction. Section 6.5 presents a discussion of the results obtained in the study.

Finally, it is important to acknowledge that part of this work was developed in the context of

an MSc work (Carreiro, 2016), already introduced in Chapter 1 (see Section 1.3.4).

6.1 Visual-Game Analytics Background

In recent years, competitive online video games have become one of the main sources of enter-

tainment for both active and passive users, i.e., players and spectators. In particular, the MOBA

genre is among the most popular, having registered an increasing participation in both player base

and event viewership (Riot Games, 2014; Walker, 2016), such as in games like League of Legends

(LoL) (Li et al., 2017).

The increasing complexity associated with video games has also been accompanied by various

technical improvements, which has made the collection of information from a given session a

much more simple, common, and reliable task (Wallner and Kriglstein, 2013). Nowadays, large

volumes of data are recorded daily, including spatio-temporal data related to the game, such as

the players’ trajectories over the game environment, the spatio-temporal events in which they

participated, and the actions they performed throughout the game.

Similarly to more common applications, such as traffic analysis, in order to properly extract

relevant knowledge from these, often voluminous, datasets it is fundamental to explore adequate

interaction and visualization mechanisms.

Fortunately, the information captured by players’ movements in a virtual environment is not

entirely dissimilar to the information obtained with the movement of real people (Zheng et al.,

2010), cars or even boats (Riveiro et al., 2008), and has already been the subject of several studies,

as discussed in Chapter 2.

Although, moving in the physical world is considerably different from doing the same in a

virtual world, location-based information and, by consequence, movement play a very important

role in both contexts. Most modern games, ranging from simple 2D platform games to more com-

plex 3D open world games, are dependent of movement, which constitutes one of the fundamental

aspects from which gameplay derives and, thus, one of the basic elements in the playing experi-

ence (Drachen and Schubert, 2013b). Both contexts use necessarily a set of coordinates to classify

space, regardless if they are geographic latitude, longitude, and altitude values or the x/y/z coor-

dinates of the screen. It is also important to notice that the gaming sessions do not occur in an

isolated point in time and that the order of the players’ actions or the occurrences of specific game

events can also affect and help analysing the playing experience. As such, the temporal aspects

of the data can be also significantly relevant for the analysis of the players’ activities (Miller and

Crowcroft, 2009; Drachen and Schubert, 2013a), as these can be compared to those made in the

physical world (e.g., moving from one point of interest to the other, or revisiting a specific location
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to acquire something).

The challenges related with the analysis of video-game data can be associated to those faced

in sports analytics and, consequently, in the analysis of geographic spatio-temporal data. This

fact is particularly true when considering MOBA games, as these can also be considered as team

sports. Consequently, the spatio-temporal information associated to these contexts is considered

extremely important, since the comprehension and analysis of this data can be significantly advan-

tageous for various groups of users, including players, spectators, developers, and analysts (Pingali

et al., 2001; Hoobler et al., 2004).

Although the most significant body of work presented in the literature is dedicated to game de-

velopers, there has been an increasing interest in showing spatio-temporal data to players (Wallner

and Kriglstein, 2013), the user group focused in this study. These users, despite knowledgeable

in regards to a specific game, in some cases even experts, are often inexperienced in terms of

trajectory data visualization and analysis. Nevertheless, they may still be interested in analysing

their personal data, even if in a less complex and casual scenario (Huang et al., 2015; Pousman

et al., 2007), to improve their gameplay performance and, consequently, their experience. This

growing trend has already been addressed in several projects, including in professional contexts.

Researchers, such as Drachen and Schubert (2013b), have already identified the lack of software

tools to support the visualization of spatio-temporal data by inexperienced users as a relevant open

issue in the area of visual-game analytics. In addition, some game developers and independent

groups have also showed interest in providing visualization tools and APIs that grant, nearly any

user, access to player generated data (Wallner and Kriglstein, 2013). Notable examples include

the Sc2gears (Belicza, 2017), OPGG (2017), LoLKing (2017), and the Rockstar Games Social

Club (Rockstar Games, 2016), which provide general game statistics referring to the players’ per-

formance or a gaming session. Although some of these applications provide complex map or

graph-based visualizations depicting the evolution of a gaming session, the majority is focused on

the display of aggregated statistics, which makes the detection of valuable spatio-temporal details

difficult, if not impossible (Li et al., 2017) .

Ultimately, the objectives of this Ph.D. research go in agreement with some of the most rel-

evant challenges associated to this area, namely the current interest in showing spatio-temporal

information to a wider (inexperienced) population, associated with the uncertainty regarding the

usefulness of existing map visualization techniques.

To address these objectives, the game League of Legends was used as a case study. This

choice was motivated by three main reasons. First, out of all explored official data sources, the one

provided by Riot Games (developers of LoL) was one of the few that included detailed information

regarding to the players’ spatio-temporal positions alongside their most relevant game activities.

Second, MOBAs in general, and LoL in particular, are games in which the positioning of players

throughout the matches is extremely important. Finally, among the various MOBAs, LoL is ranked

among the oldest and most popular in the genre, thus, providing a representative case study for

this work. The following section describes in detail this game and the data extracted.
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Figure 6.1: League of Legends map (source: https://i.imgur.com/HRgupVM.jpg).

6.2 Overview on League of Legends

League of Legends is a game that features the most common characteristics associated to the

MOBA genre, involving two opposing teams, traditionally of 5 players each. At the start of the

game, each team begins at one side of the map, and the objective of the game is to destroy the other

team’s base, located at the opposite side of the map (see Figure 6.1). The game world is composed

by three main pathways connecting both team bases, usually known as lanes, or top, mid and bot

lanes, depending if they are at the top, middle, and bottom of the map, respectively (Figure 6.1).

Automatic defensive structures, known as turrets or towers, are placed along the lanes and need

to be destroyed by the players, before they can reach the enemy’s base (Figure 6.1). Non-player

character (NPC) units, also known as minions, are created periodically from the beginning of

each team’s base and move along each lane towards the enemy’s base, helping the players in the

destruction of the enemy’s structures. Between those lanes, the players can also conquer various

points of interest, jungle camps (Figure 6.1). Out of the various camps available in the jungle, 2

of them, the baron and the dragon, are labelled as special (Figure 6.1) since these provide more



Chapter 6. Case Study: Visualization of Trajectory Data from Online Games 121

valuable rewards than the remaining camps.

To facilitate these goals, each player will have to control one game character and collect var-

ious bonuses, in the form of experience and gold points, to improve their character’s abilities

and equipment, thus maximizing its capabilities in helping their team winning the game. During

the match, the players will be rewarded according to various actions performed, which include,

among others: killing or help killing a character controlled by the enemy team or various NPCs;

or destroying the mentioned structures. Furthermore, in addition to various in-game items that the

players can acquire at their bases, given a set amount of experience and gold points, they can also

acquire temporary improvements (buffs) to their characters or their team, by destroying certain

creatures/NPCs located at the jungle camps.

Each player is given a specific role in the team, such as Attack Damage Carrier (ADC) or

Support, which will often determine where the player needs to be or move to. Therefore it is

expected that some players, at least in the early stages of the game, roam in a specific lane or move

between the lanes (rotate) to help their teammates. In order to access this information, the game

allows any player to place certain items in the map, wards, which will temporary monitor a limited

area and warn the players, and their teammates, about any enemy passing through that location.

Although a match does not have a time limit, players and analysts tend to identify three specific

periods within a match: early, mid, and end-game, which go, approximately, until the 10, 20

minutes, and the end of a match, respectively.

Finally, to provide a more balanced experience to its players, League of Legends ranks each

player with a 7-scale categorization, according to their performance and win-rate. These rankings

include: bronze, silver, gold, platinum, diamond, master and challenger.

Based on this general description, it is possible to affirm that spatial and temporal information

have a critical role in analysing and understanding this game. Similarly to a real-world scenario,

where monuments or shopping centres would be considered points of interest, in this context, these

would be the defensive structures or the various jungle locations that grant buffs to the players.

Similarly, whereas in real-world scenarios important events to consider would be, for example,

when/where a taxi driver dropped a passenger, or when/where a football player scored, in this

context, important events depict character deaths or the destruction of structures. Consequently,

these facts can affect the player’s mobility throughout the match, forcing them to decide between

safer, but most likely longer, routes (i.e., the lanes) or shorter routes, possibly much more danger-

ous and with lesser visibility (i.e., the jungle). Based on this information, several types of analysis

questions can be made that, when answered, can help the player improve his/her performance for

future matches.
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6.3 VisLoL Prototype

In the context of this study, the VisLoL prototype was created to support the visualization of

spatio-temporal game data for players likely familiar with the domain knowledge (the game),

yet inexperienced in terms of data analysis, specifically, video-game analytics. As previously

mentioned, data from the game League of Legends was used for this study, obtained through the

Riot Games API (Riot Games, 2016c).

Comparatively to the previous experiments, this study is focused on a more specific, and some-

what unexplored context of use, the visualization of personal game-related data. As such, it was

necessary to further interact with the main target users of this prototype. Considering the expected

experience from the users regarding the game, it was also expected a possible biased view over the

data, particularly when regarding the player. Therefore, prior to the development of the prototype,

a questionnaire was released into League of Legends forums and Reddit (Riot Games, 2016a,b), to

gather information regarding the players’ perception of the importance of their spatio-temporal in-

formation in their games alongside the types of metrics and functionalities they consider the most

necessary to understand what happened in a match. The following section provides an overview

regarding this questionnaire’s structure and results.

6.3.1 Questionnaire

The questionnaire was composed by 3 main sections. The first consisted of a set of profiling ques-

tions, e.g., types of games similar to LoL that the user plays, in-game ranking, or how often the user

plays LoL. The second section was composed by a set of affirmations regarding the importance

of various spatio-temporal factors during the match (e.g., positioning of players and events). The

user would need to rank them, in a 5 point scale, according to their level of agreement. The third

section inquired the users about their interest in studying the game (e.g., watching other players,

inspecting their status in dedicated web-pages) and the types of information they extract from this

task.

A total of 270 players volunteered to answer the questionnaire, distributed by 8 specific game-

specific ranking categories (34 Unranked, 33 Bronze, 62 Silver, 56 Gold, 48 Platinum, 28 Dia-

mond, 5 Challenger, and 4 Master players). Out of all participants, 85% played LoL daily.

In regards to the importance given by the players to spatio-temporal events, 88%, 90%, and

81% of the players considered, respectively, that their own positioning, the one of their team, and

of the enemy team were Important or Very Important (the two highest ranks in the questions’ clas-

sification). Similarly, 27% and 62% of the players also considered Important and Very Important

the position of deployable items into the game environment that notify the player’s team regarding

the enemy’s movement in the map. In addition, 65% and 88% of the participants answered that

they regularly visit web pages/applications that report their performance in LoL and watch other

players’ matches, respectively, to improve their performance at the game. Among the most men-

tioned metrics of interest when watching or inspecting these past games, players have mentioned
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Figure 6.2: VisLoL prototype. a) Player 1 event map; b) Player 2 event map; c) Informa-
tion panel; d) Legend panel; and e) Timeline.

kill/death/assists (79%), team strategies (66%) and positioning (62%).

Based on this questionnaire, in addition to the confirmation of the metrics seen as relevant by

the players, it is understandable that this community of users is interested in analysing their own

spatio-temporal information, which goes in agreement with the main motivations of this Ph.D., in

general, and this study, in particular.

6.3.2 Data and Prototype Features

Based on the results of the questionnaire, alongside the analysis of previous experiments of this

work, it was developed the VisLoL prototype (see Figure 6.2). Similarly to the prototypes de-

scribed in the previous chapters, VisLoL was developed in HTML5, as a local web application,

taking advantage of code already developed for the TTV prototypes described in the Chapter 5,

while also using the following libraries and frameworks:

Node.js, NW.js - as described in the previous chapters, these support the creation of (local) web-

applications;

STCJS - an updated version of the JavaScript API described in the previous chapters. In addition

to various performance upgrades, the STCs created by this API allows the user to convert

this visualization into a 2D map (further explained below);

TIMELINEJS - an updated version of the JavaScript API described in the previous chapter, with

various corrections and performance upgrades.

All data used by the VisLoL prototype was made available thanks to the aforementioned Riot

Games API and a custom Python application to request and store the data locally. This data is

composed by five lists of spatio-temporal information associated to each match, which include:
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Player position and attributes: recorded at every minute since the beginning of the match, each

entry is composed by the spatio-temporal locations of the players, alongside other player

attributes like, gold, experience points, and NPCs killed;

Player kills: each entry is composed by the spatio-temporal locations of the event and the identi-

fications of the players involved, namely, who died, who the kill was attributed to, and who

assisted/helped;

Special jungle monsters killed: each entry is composed by the spatio-temporal location of the

event, alongside the identification of the player responsible for its destruction;

Tower destruction: similarly to the events above, it is composed by the spatio-temporal locations

of the towers destroyed and the identification of the players involved;

Ward placement: composed by the time when a ward was placed, and the identification of the

player that did it. Based on this information, an approximated location where the ward was

placed is estimated, through the linear interpolation of the player’s movement and event

data.

All of this information is depicted in VisLoL through the use of three main sections; the map

component (Figures 6.2 a and b), the timeline component (Figure 6.2 e), and a textual information

and legend components (Figure 6.2 c and d). These components are described with more detail in

the following sections.

Map Component

The map component is composed by one or two map visualizations, depending on the number of

players under analysis (see Figure 6.2 a and b). Using two dropdown buttons, located at the top of

the views, the user is able to select the player(s) that wants to visualize. If the user selects None,

in the second map, the corresponding map view will not be displayed and this component will be

filled by expanding the other map (see Figure 6.4 c).

Both maps display the trajectory and the events associated to each player, using simple, yet rec-

ognizable visual representations, since despite they unfamiliarity with the application, these users

should be considerably knowledge regarding the game, and its symbology. In particular, the loca-

tions visited by the player throughout the match are represented as simple point symbols, coloured

according to the player’s team (i.e., red or blue). The events in which the player participated are

represented with a similar symbology as the ones used in the game and already existing tools, e.g.,

skulls to represent deaths, towers to represent the destruction of towers. All location points and

events directly related to the player’s location are connected with lines, coloured accordingly. An

important distinction is made between the events where the player provided assistance and those

that he or she directly participated. Although both types of events are likely to be relevant to the

player, the visualization emphasizes direct participations over assistances, representing these with

full visibility, i.e., with no transparency applied. Since in assistance events the player was not the
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Figure 6.3: Player 1 event map and controls (highlight from Figure 6.2 a).

ultimate responsible, e.g., the player did not deliver the killing blow, so the opponent could still

have escaped, their representations are displayed with a reduced visibility, i.e., symbols with a

higher transparency.

Although Figure 6.2 depicts two 2D static maps, the user can also work with 3D space-time

cubes. Comparatively to the previous experiments, in which both types of maps were displayed

side-by-side, VisLoL applies a different approach. Considering that, throughout the previous stud-

ies, 2D maps were shown as being the preferred by the participants, by default, the map component

displays a 2D map (see Figure 6.3). However, by rotating the view vertically, the user can trans-

form this map into a 3D space-time cube (see Figure 6.5). It is important to mention that this

default approach is different from simply looking at the data from a birds-eye view (BEV). Con-

trarily to the STCs implemented in the previous studies, when the STC is rotated into a BEV,

the application will switch the map’s projection from perspective to orthogonal, implying that the

symbology used to represent information will not be affected by the third-dimension. It can be

argued that the same result could be achieved by using the temporal granularity controls, such

as it was used before. However, based on the results of the previous studies, it is important to

notice three factors: first, this strategy may not be always used; second, analysing the data from a

birds-eye view can hinder user performance; and third, this perspective takes barely any advantage

of the third dimension to visualize time.

Timeline Component

Similarly to the prototypes presented in the previous experiment, VisLoL also provides a timeline

component, which consists of an interactive point/line chart focused on displaying data from a
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Figure 6.4: VisLoL map component (in detail). a) Sync Views option; b) Player selection
menus; c) Map view as a 2D static map; d) Map control panel; e) Temporal slider.

Figure 6.5: VisLoL - STC map visualization a) Player 1; and b) Player 2 event maps.

temporal point of view (see Figure 6.2 e). The implementation of this component was considered

necessary due to the fact that it provides an additional point of view (often neglected) over the

data. However, this was also motivated by the considerably positive feedback received from the

previous study, particularly when combined with the 2D static map.

Considering that the players’ position is retrieved at each minute and the player is always ex-

pected to be in movement (unless his/her character is killed), this component focuses mostly on

the visualization of the players’ events, their gold and experience points. This is different from the

timeline representations from the previous experiments, which were focused on displaying when

movement was detected, or the duration in which a trip took place. By default, this view is com-

Figure 6.6: VisLoL event timeline (highlight from Figure 6.2 e).



Chapter 6. Case Study: Visualization of Trajectory Data from Online Games 127

Figure 6.7: Timeline component as a value line graph, showing the evolution of the
players’ experience over time.

posed by several rows, each one associated to a specific type of event, such as player and enemy

deaths, or towers destroyed. On each row, various icons are distributed horizontally to indicate

the specific moments in which they were detected during the match (see Figure 6.6). In order to

simplify the transition of the user’s attention between the map and the timeline components, the

symbols used in the timeline are similar to those used in the map component. Furthermore, using

a dropdown menu, located below the timeline, it is possible to select a different quantitative at-

tribute, namely: gold earned, minions killed, experience, and total wards placed during the match.

This will change the representation of the timeline into a common x − y value line chart (see

Figure 6.7).

Information Components

The third component consists of panels with textual information and a legend (see Figure 6.2 c

and d and Figure 6.8 a and b). Whenever a user selects an event from the timeline or the map

component, regardless if it is a 2D map or an STC, all data associated with that event is displayed

on the first container. Specifically, this information includes: the coordinates and timestamp of

the event, the player responsible for it, the player’s team, and the type of event. If the event

involves multiple players, their character names are also displayed. On the other hand, the legend

component explains the meaning of each icon on the map and timeline components.

Interactive Controls

The interaction with VisLoL is fundamentally done through mouse controls, and considering its

use of APIs and frameworks similar to those used in the previous experiments, several interactive

controls are the same.

Both map and timeline components provide common pan and zoom operations. As described

before, the map component also allows the user to rotate the view horizontally and vertically,
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Figure 6.8: VisLol components a) Information and b) Legend panels (highlight from
Figure 6.2 c and d).

thus controlling the point of view within the STC, and even switch between a 2D map and a 3D

STC. When using the STC, it is also possible to control its temporal granularity, by changing

its height, with the control panel displayed at the right-side corner of the map (Figure 6.3). To

minimize the STC’s limitations in location-based tasks, this technique provides an additional map

plane, controllable by the user, that can be dragged and locked anywhere along the STC’s height.

However, this feature was, once again, made optional to the user, given the results of the previous

studies have reported some confusion when using this type of approach.

Comparatively to the previous experiments, VisLoL can use two maps representing different,

but complementary, information about the same overarching event (the game). As such, follow-

ing similar concerns from the previous studies, it was necessary to emphasize the direct relation

between the different components. Therefore, when the map component consists of two map

views, any change made to one map is immediately reflected into the other (e.g., rotating the map

or rescaling the STC’s height). This functionality can, however, be de/activated, by toggling the

option Sync Views, located on top of the map component (see Figure 6.4 a). In a similar way,

hovering an event point in the map view or in the timeline, will highlight the correspondent data

element in the other views, e.g., selecting a kill event in the map will highlight the matching time

moment in the timeline and on the other map. Moreover, VisLoL also supports the heatmap and

spatial point/area highlight selection features, described in the previous chapter. Finally, below the

map component, a temporal slider (Figure 6.4 e) allows the user to filter information based on a

specific period of time, on both maps and the timeline components.

6.3.3 Application Scenario

This section describes the analysis of the events from a match conducted with VisLoL. Figures 6.2,

6.5, and 6.6 depict the same game played by two members of opposing teams in the ADC (Attack

Damage Carry) role. By looking at the 2D maps (Figure 6.2) it is possible to understand that,

although both players spent the majority of the time in the bot lane, the player from the blue

team (left map) covered a higher geographical area, and participated in more events throughout

the game. Then, analysing the data with the timeline component (Figures 6.2 e and 6.6) allows
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to complement the previous information and verify that, no significant events were recorded, in

the first 6 minutes of the game (approximately). However, after an approximated period of 10

minutes, in which various confrontations resulted in several deaths, the blue team proceeded to

destroy all enemy structures and win the game.

Converting the map into an STC (Figure 6.5) allows to see, for example, the advantage gained

by the player of the blue team, due to being able to participate in the deaths of two opponents in

the enemy’s side of the map, one of them the player’s direct opponent in lane. Approximately 4

minutes later, despite being killed, the player contributed again in the deaths of two enemy players,

around the same location and, once again, one of them was the player’s direct opponent. Later,

particularly from minute 16 onwards, the user is able to see the player from the red team covering

a smaller area with its movements, whereas the player from the blue team is covering more. This

fact also coincides with the destruction of the red teams’ defensive structures mentioned earlier.

6.4 User Study

A user study was conducted to address the objectives of this chapter, which include: understand-

ing if inexperienced users, in terms of visualization and analysis, are capable of reaching mean-

ingful conclusions with VisLoL, and if so how, comparatively to already existing tools. The study

compared the VisLoL prototype with the official match-history web-page used by Riot Games to

present information to LoL players regarding the various matches they participated. An example

of this application can be found in Figure 6.9.

Comparatively to VisLoL, the match-history web-page is not focused on the representation of

the spatio-temporal information associated with the players but rather their thematic information,

e.g., items bought, or the total amount of gold collected or minions killed. In addition, while

VisLoL focuses on the visualization of just one or two players, the web-page supports the vi-

sualization of individual and aggregated information regarding the two teams. Unlike VisLoL,

however, the web-page does not depict any information regarding the player’s movement, their

approximated ward placement, nor associates this information with the other game-related events.

Despite that, both applications display similar types of information and use similar types of vi-

sualizations, namely a map displaying player deaths, and a timeline displaying player generated

events or gold collected over time.

It is important to notice that the objectives of this study do not encompass the comparison

of VisLoL with the match-history page to analyse which one is better. Instead, the objective

consists in comparing both visualizations to learn how differently people analyse the data, to

better understand the importance given to spatio-temporal data by players, and learn the role these

techniques may have in the data analysis. In addition, contrarily to the studies presented in the

previous chapters, it was expected that the participants were familiarized with the game and, thus,

had a significant domain knowledge. This is likely to cause some bias effects over the results,

particularly if the participants analyse their own game data. To minimize the impact of this factor,
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an additional objective of this experiment consists in studying the possible effects over the analysis

from a user’s knowledge of the data that is being visualized.

A total of 21 participants volunteered to the study. All participants played League of Legends

frequently and were, at least, familiarized with existing applications to review and analyse their

performance after matches, such as the official web-page, or other independent web-pages such

as op.gg (OPGG, 2017). Out of all participants, their ranking distribution was as follows: 4 were

ranked in bronze, 7 were ranked in silver, 3 in gold, and 7 in platinum. No diamond nor master &

challenger players, i.e., ranks above platinum, were available to participate in this study.

6.4.1 Tasks

A common motivation towards the use of applications like the official match-history web-page

and, ultimately, VisLoL consists in the willingness for the players to improve their performance.

This implies the understanding of the relation between their actions and their outcome. In addition,

due to the competitive nature of the game, comparisons between players or the same player through

different moments are fundamental. For these reasons, in the context of this experiment, the

participants were asked to perform two different tasks, namely associate, and compare. These

are correspondent to the second level of the hierarchy of tasks, described in Section 2.3, with the

omission of the identify and locate tasks.

In the associate task, the participants were asked to evaluate and classify, between 0 and 10, the

performance of a given player in the match, based on any set of criteria they considered relevant.

The participants were also asked to justify that classification based on their selected criteria. This

task aims to simulate one of the most common tasks performed by players, for example after a

match, in which they are able to visualize a set of statistics describing the various results.

In the comparison task, the participants were asked to evaluate the performance of two players,

from opposing teams, on a similar role. Similarly to the association task, the participants were

free to select any criteria they considered appropriate and, at the end of the task, they were asked

to classify both players, between 0 and 10, and justify those scores. Considering the competitive

nature of MOBAs, this task simulates a common practice both by casual players and even in

professional environments, in which players on the same role are compared.

It is important to acknowledge that, unlike the previous experiments, presented in Chapter 3,

that used this level of tasks, the ones proposed in this study do not include the tasks locate and

identify. The primary reason for this is related to the significantly different design of VisLoL,

comparatively to the web page, alongside the different sets of information displayed or focused by

the applications. For instance, while VisLoL shows the positions of players throughout the game,

the web-page shows the players’ equipment. Even though it would be possible, it is important

to notice that the comparison of these applications in terms of how specific types of information

are located or identified is not relevant towards the objectives of this study. In addition, it can

be argued that, in order to compare or associate information, the user will still need to locate or

identify it first (e.g., comparing two different movers, implies that those movers were first located
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Figure 6.9: Example of the official match-history web-page from Riot Games’ League of
Legends (source: http://tinyurl.com/h9568gu).
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and that their properties were identified). Consequently, although not necessarily relevant as the

main tasks of this study, these are still eligible for the training phase of this study, described in the

next section.

In addition to the aforementioned tasks, two independent variables were also considered,

namely:

Application (App) - this variable is composed by two levels, corresponding to the prototype Vis-

LoL and the official match-history web-page provided by Riot Games (web-page);

Target Analysis (TA) - this variable is also composed by two levels. In the first, the player is told

that the displayed data is from one of their matches. In the second, the player is told that

the information displayed is not theirs (even though it is).

6.4.2 Procedure

The experiment followed a within-subjects design and all participants carried out each task in-

dividually. At the beginning of the experiment, the participants were briefed about the nature

of the study and the applications being used. Then, they performed a tutorial with VisLoL that

covered all of its functionalities and, in particular, included a set of identification and location

training tasks, requiring the participants to detect specific sets of information, based on spatial or

spatio-temporal constraints. These questions include:

Was the player part of the destruction of any game objective?

Where did the player die for the last time during the match?

Indicate a location where the player killed an enemy player; and

Where and when did the player used his first ward?

The participants were then encouraged to further interact with the prototype, so they would get

used to the interactive controls and be able to clarify any doubts. This stage took, approximately,

between 15 to 20 minutes.

After the training phase, the participants were asked to perform the two tasks, first the asso-

ciation and, then, the comparison task. This was decided due to the increasing complexity of one

task to the other and neglecting this factor could produce a negative effect over the results, due to

an over-simplification of the association task.

During the training tasks, VisLoL displayed anonymized data from one of the most recent

matches from one professional LoL player. For the associate and compare tasks, anonymized

data was also displayed; however, recorded from games of the study participant. It is important

to mention that the data visualized in the VisLoL prototype and in the official web-page was

from the same match; however, the player was never informed about that. To avoid possible

sequence effects, the order in which the independent variables were presented in both tasks was
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counterbalanced based on a latin-square design. As a result each participant performed a total of

8 trials: 2 App ∗ 2 TA ∗ 2 tasks.

The following dependent variables were considered to measure the study’s results:

Task completion time: recorded from the moment the user was instructed to begin the task until

s/he gave a final answer. This variable is used as a common metric to compare the perfor-

mance between applications;

Ratio of component interaction time: recorded when using VisLoL, it is the ratio of time spent

interacting with the map and the timeline components, comparatively to the total amount of

time spent completing the task. This variable is an additional measure of task complexity,

allowing the comparison of the users’ interactive needs with the application and with its

core components;

Ratio of map mode interaction: recorded when using VisLoL, it is the ratio of time spent inter-

acting with the map component, as a 2D map or a 3D STC view, comparatively to the total

amount of time spent completing the task. This variable is used to understand which type

of map-visualization technique the users prefer on each task and, consequently, to better

understand how users interact with VisLoL;

Coherence of ratings: consists in the comparison of the ratios of participants that increased, de-

creased, or kept the players’ ratings after analysing the data with both applications. This

variable is used to help comparing the conclusions reached by the users’ analyses with the

different applications when these are or not informed of whose data they are analysing;

Coherence of decisions: used in the comparison task, it is the ratio of participants that gave simi-

lar ratings when using both applications, e.g., ranking one player better than the other using

VisLoL and doing the same with the web-page, even if with different values. Similarly to

the previous variable, this metric allows the study of the users’ analyses; however, while the

above focuses on the individual values provided by the users, this variable focuses on the

overall conclusion reached with those values, e.g., player A performed better than player B;

Similarly to the prototypes described in the previous chapters, VisLoL generated log files

recording the task completion times, both interaction ratios, and representing the various user’s

interactive actions during the tasks. These actions were the same as those recorded from the

last study, which include any specific operation over the views, such as resizing the STC, pan-

ning/dragging, zooming (in/out), or rotating the views, and selecting (either by clicking or hover-

ing) any feature with information within any of the views.

In addition to these variables, the various criteria used by the participants to rate and compare

players in the associate and compare tasks were also listed.

At the end of the tasks, the participants were invited to answer to a small questionnaire cover-

ing their opinions regarding the VisLoL prototype, its features, and when the participants consid-

ered them more useful or difficult to work with.
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Table 6.1: Mean participants’ task completion times (in seconds), in the association and
comparison tasks with both applications and target analysis (TA) configurations.

Association Comparison
Unknown Known Unknown Known

VisLoL 274,60 284,95 352,90 303,74

Web-page 212,00 225,67 211,57 197,29

6.4.3 Results

The following sections describe the main results obtained in the study. For a matter of simplifica-

tion and readability, these focus on the most statistically significant results obtained, those close

to be considered as such, or that may reveal important patterns.

Task Completion Times

To compare the differences in terms of task completion times in the different conditions of the

associate task, the results were subjected to the Shapiro-Wilk test of normality. Since no valid

data transformation could provide a normalized dataset, a non-parametric approach was used by

applying the Aligned Rank Transform (ART) method, followed by a full factorial ANOVA (Wob-

brock et al., 2011). Although the mean participants’ completion times suggest that participants

took longer to complete the task using VisLoL, no statistically significant results were detected

(see Table 6.1).

A similar procedure was used to analyse the results in the comparison task. The tests revealed

a significant effect of App over the results (F (1, 80) = 11, 4; p = 0, 001), as participants took

longer to complete this task when using VisLoL, comparatively to when using the official web-

page (see Table 6.1).

No significant results or detectable patterns were found in regards to player ranking and target

analysis configuration.

Ratio of Component Interaction Time

The results in terms of the ratio of component interaction time were also subjected to the Shapiro-

Wilk test of normality. Since no data transformation could provide a normalized dataset, non-

parametric approaches were used to analyse the results.

For the context of this variable, the results obtained from the participants’ training period were

also included, and labelled as identification tasks. For those, a Wilcoxon Signed Rank Test shows

significant differences, where there was a higher usage of the map component, comparatively to

the timeline component (Z = −3, 77; p < 0, 001). In the association and comparison tasks, the

application of the ART method, followed by a full factorial ANOVA did not reveal any significant

results (see Table 6.2).
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Table 6.2: Mean participants’ ratio of interaction time (%) when using the map and the
timeline component, for all task configurations.

Identification Association Comparison
(training) Unknown Known Unknown Known

Map 62,44 44,91 37,96 36,64 39,92

Timeline 16,12 36,66 37,96 38,15 30,33

Table 6.3: Mean participants’ ratio of map mode interaction time (%) when using the
map as a 2D or as a 3D STC, for all task configurations.

Identification Association Comparison
(training) Unknown Known Unknown Known

2D 48,16 64,95 72,29 71,92 67,29

STC 51,84 35,05 27,71 28,08 32,71

Ratio of Map Interaction Time

A similar procedure to the one previously described was applied over the results in terms of ratio of

map interaction time. While no significant differences were detected in the identification tasks, the

tests revealed a significant effect from App in the remaining tasks (associate: F (1, 19) = 8, 591;

p = 0, 009; compare: F (1, 20) = 9, 833; p = 0, 005). In both tasks, the results allowed to confirm

that participants spent more time using the map component as a 2D view, rather than an STC view

(see Table 6.3).

Coherence of Ratings

To analyse the coherence of ratings, it was necessary to compare the classifications given to the

players by the study participants, after (unknowingly) analysing the same match data with VisLoL

and the official web-page. The results were categorized into three groups, depending if the partic-

ipant gave a higher, lower, or kept the same rating with the web-page comparatively to VisLoL.

Tables 6.4 and 6.5 show the distribution of results throughout the association and comparison

tasks, respectively, taking into account the different target analysis (TA) configurations.

Although the results can be considered inconclusive in the association task, in the comparison

task they suggest that, after analysing the data with both applications, a higher percentage of

participants changed their classifications when they were not informed that one of the players

under evaluation was him/herself. By contrast, when participants were informed that they were

visualizing their data, the majority kept the same classifications.

Based on this observation, a Chi-Square test was used to assess the possible relation between

these patterns and the participants’ knowledge on whom they were evaluating (TA). Regardless of

the target of the observation (i.e., the player or the opponent), both tests suggest an association

between knowing whom the data belongs to and the coherence of the ratings (Rating the player:
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Table 6.4: Distribution of participants (%) that reduced, kept, or increased the player’s
ranking, after visualizing the data with both applications, in the association task.

Unknown Known

Reduced 23,81 38,10

Kept 38,10 33,33

Increased 33,33 23,81

Table 6.5: Distribution of participants (%) that reduced, kept, or increased the two play-
ers’ ranking, after visualizing the data with both applications, in the comparison task.

TA Unknown Known
Player Opponent Player Opponent

Reduced 42,86 52,38 19,05 23,81

Kept 9,52 19,05 61,90 57,14

Increased 47,62 28,57 19,05 19,05

X(2) = 12, 56; p = 0, 002; Rating the opponent: X(2) = 6, 65; p = 0, 036).

Coherence of Decisions

To analyse the coherence of decisions, it was necessary to first compare the ratings given to both

players. The results were, then, compared based on the type of application used (i.e., VisLoL

or the official web-page). Table 6.6 illustrates the coherence of the decisions. The results show

that, regardless of being told who was being analysed, 81% of the participants that considered

one player’s performance better than the other with VisLoL, had the same opinion when using the

web-page.

6.5 Discussion

The quantitative results obtained, alongside the participants’ subjective feedback highlight some

relevant aspects regarding the VisLoL prototype, its components, and the way participants inter-

acted with it.

In terms of task completion times, the results suggest that users may take more time to analyse

information with VisLoL, comparatively to the official web-page from Riot Games. This differ-

ence, however, was only shown to be significant when comparing different players. These results

were actually expected since, in addition to the novelty of the application, the VisLoL prototype

encourages the user to interact more with the data (e.g., through map zooming, or view rotation

operations), comparatively to common web-pages that focus on the display of general aggregated

statistics. Nevertheless, despite the possibility of taking more time to compare the performance

of different players with VisLoL, ultimately, the participants’ main conclusions in terms of who
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Table 6.6: Distribution of the participants’ coherence (%) in judging one player better
than the other in the comparison task.

Unknown Known

Different 19 19

Same 81 81

performed better were mostly the same, regardless of the application.

These results suggest that, at least, VisLoL may support the same conclusions as existing

tools, thus making it, at worst, an acceptable alternative. However, the study of the participants’

comments alongside their strategies and metrics used in the tasks provide further relevant infor-

mation. With both applications, the participants tried to use similar metrics, including: KDA (i.e.,

number of opponent kills, own deaths, and assists/participation in opponent kills), objective taking

(i.e., the destruction of points of interest that benefit the player’s team), and player farming (i.e.,

the ability to acquire in-game resources faster than other players). However, although the metrics

used and the conclusions reached by the participants were generally similar, the process in which

these were used was considerably different. When using the web-page, the participants focused

mostly on commenting the values of the various metrics at the end of the match, rarely taking into

consideration the temporal evolution of the values of those metrics. Based on that information,

some participants would also propose hypothesis to explain the game results. On the contrary,

when using VisLoL, participants often looked at the evolution of the various metrics in time and,

more importantly, at their spatial distribution.

Based on this, it is possible to conclude that when using the web-page, participants tried to

hypothesize some details, from a data overview; however, when using VisLoL, most participants

tried to tell a story, describing the state of the match during the early, mid, and late-game periods.

This a very important difference, since it suggests that the first approach is dependent on the

players’ previous experience with the game and their own ability to hypothesize something, while

the second approach is essentially based on observed facts, ultimately, providing more believable

conclusions.

Considering the preponderance of the map and timeline components of the VisLoL prototype,

it makes sense that the participants gave considerable importance to the spatio-temporal data that

was presented, when analysing the information. However, it is important to notice that, although

some of the information was also available in the web-page (e.g., a timeline describing important

events, or a map with the spatial distribution of player deaths), the participants did not use this

information as much, if at all.

At the end of the experiment, all participants have shown their interest towards VisLoL, hav-

ing answered that they would like to have VisLoL’s functionalities present in the web-pages they

already use to study their performance. The participants also justified this preference based on

them considering that the spatio-temporal information displayed was useful and that the visual-
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ization components allowed them to learn what happened during the game and, more importantly,

understand why something happened (e.g., the participant understanding that a player died since

s/he had no map visibility, through wards).

The analysis of the remaining results highlights how participants have used VisLoL for the

completion of the various tasks. In terms of ratio of component interaction, the results have only

shown a significantly higher usage of the map component, comparatively to the timeline, in the

training tasks. This result was expected, due to the spatial constraints associated with these tasks.

On the other hand, the association and comparison tasks had more open ended answers, which

allowed the participants to look for and provide more information not necessarily restricted by, but

still related with, spatial constraints. Therefore, the lack of empirical evidence showing a higher

usage of a particular component suggests that the participants considered necessary to interact

with both components to extract information.

In terms of ratio of time spent in map mode, the results showed that in the association and

comparison tasks the participants used the map component mostly as a 2D map view, rather than

a 3D STC. Once again, this result was not completely unexpected, since it goes in agreement with

some of the conclusions reached in the previous chapters, namely, that users tend to prefer 2D

static maps over 3D STCs. Interestingly, during the tasks, the direct observation of the partici-

pants’ actions and the analysis of their interaction logs supported the identification of 3 high-level

strategies used to extract information from VisLoL, which include:

2D map + Timeline : Some participants focused their interaction on these two components, only

using the STC occasionally. A possible justification for this may be the fact that, by default,

the map was shown in a 2D view. This, alongside the familiarity towards this type of

representation, may have led participants to not consider necessary or remember to switch

to a different view. Some participants have justified their reduced or lack of interaction

with the STC component due to their familiarity with the 2D map, which resembles the

mini-map present in the game;

2D map then STC: Some participants focused their attention on the map component and avoided

using the timeline. In these scenarios, after obtaining an overview of the data in the 2D view,

the participants would switch the view into a 3D STC in order to obtain more detailed in-

formation, taking into account specific events in time and space. Some participants justified

this behaviour saying that, by visualizing the spatio-temporal distribution of their related

events, they considered the STC view better to understand the evolution of the players’

position in space and time, and the impact they had in the game;

Timeline to 2D map and STC: In alternative, a third group of participants focused their attention

on the timeline to guide their analysis with the map visualization. These participants would

either limit the amount of visible information based on a temporal window, or select specific

game events, and then visualize that information with more detail with the map component

as a 2D map or 3D STC view.
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Finally, the results of this study also suggest a possible effect of the participants’ knowledge of

whom the data under analysis belongs to. During the tasks, when informed that the data displayed

was from one of their games, some participants mentioned that they were trying to remember

that particular match. In a similar context, the analysis of the results in terms of the coherence

of classifications given by the participants suggests that they had a higher tendency to keep the

same answers, from one application to the other. Even with the possibility of this tendency for

coherence being derived from the players remembering their analysis from previous tasks, this

last observation is still particularly relevant, since it suggests a possible bias effect over the par-

ticipants’ evaluation. Due to the limited sample size, it is difficult to evaluate the amplitude of the

effect caused by participants being sure that they were analysing their own data. However, it is

plausible to assume that, by knowing that it was their own data being analysed, the participants

may have been more motivated to conduct a more detailed or assertive analysis. More importantly,

this result goes in agreement with the responses of the aforementioned questionnaire, prior to the

development of VisLoL, and, thus, it further emphasizes the interest (and perhaps even need) that

players have towards the understanding of their own spatio-temporal data.

6.6 Summary

This chapter continued the study of the possible combination of 2D static maps and 3D space-time

cubes for trajectory data visualization by an inexperienced population, in terms of data analysis and

visualization. More importantly, the knowledge and results acquired from the previous chapters

were applied on a more specific context of use.

Given its increasing popularity, both in the academia and in personal usage applications, this

chapter focused in the context of video-game analytics, particularly the visualization of player

trajectories and spatio-temporal events generated in virtual worlds, in the game League of Legends.

A questionnaire was released into League of Legends’ forums and a comparative user study

was conducted to assess the importance given by the players to their spatio-temporal information

during or after the game, their interest towards visualization techniques for that context, and the

types of metrics they use to evaluate their performance.

In this user study, the official match-history web-page from Riot Games was compared with

the VisLoL prototype. The first provides general aggregated statistics to the players regarding their

matches, based on various thematic attributes and events occurred during the game; these include,

among others, game characters death or gold/experience accumulated. The second, VisLoL, im-

plements a map visualization that allows the user to switch between a 2D static map and a 3D

space-time cube view for the visualization of the players’ trajectories and the events they (or their

team) participated, alongside a timeline component, focused on the representation of the informa-

tion from a temporal perspective. Through this study, it was also possible to compare the types of

strategies used in both applications and explore how the results of an analysis may be affected if

the users are aware of the origin and context of the observed data (namely, knowing that they are
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analysing their own data).

Overall, the results obtained can be considered positive. In both the questionnaire and the user

study, the participants have shown a noticeable concern regarding their spatio-temporal informa-

tion. In addition, they have also expressed their interest in having access to that information and

being able to properly visualize and analyse it, as a means of improving their game performance.

More importantly, it was possible to verify a considerable acceptance towards VisLoL and its

functionalities, focused on the representation of their spatio-temporal data. Although the metrics

employed may be similar to those used when interacting with existing tools, the techniques used in

VisLoL helped keeping an historic context of the game and, consequently, supported an analysis

more focused on observable facts rather than on hypothesis derived from the players’ past experi-

ences. Consequently, the participants commented that, by using VisLoL, they were able to know

what happened in a game and, more importantly, they were able to understand why something

happened.

These results are very important, since they further emphasize one of the main motivations

of this work, i.e., the interest towards the visualization of personal trajectory and spatio-temporal

information, by inexperienced users. Moreover, they also emphasize the acceptance and capability

of 2D static maps and 3D space-time cubes for the visualization of these data, by this type of users.

In particular, these results suggest the adequacy of combining both 2D static maps and 3D STCs,

by allowing the user to switch between both views.

An important difference from this study to the previous ones consists in the fact that these

participants had a significant domain knowledge associated with the data and context of use of

the application, since they were already familiarized with the game itself, the various concepts

and attributes associated with it, and had also to analyse their own data. Regarding this particular

factor, the results obtained point towards an effect of this knowledge over the analysis; however,

not necessarily in terms of accuracy and impartiality (e.g., being more benevolent towards the own

player’s errors), but instead, when knowing that they were analysing their own data, the players

may be encouraged to perform a more assertive analysis. Interestingly, despite the detection of

this possible effect, the types of interactive strategies used, during the tasks, with the 2D maps and

STCs, alongside their comments at the end of the tasks, were not significantly different from those

obtained in the previous studies. Thus, further emphasizing the results presented in Chapters 3 to

5.

Figure 6.10 depicts a schematic summary of the contributions of this chapter in the scope of

the research reported on this dissertation.

Ultimately, by the end of this study, a significant amount of knowledge was collected regard-

ing: the differences between 2D static maps and 3D space-time cubes; possible ways of improving

them, including through their combination into the same visualization; and their adequacy to rep-

resent different types of trajectory datasets and in relevant contexts of use, such as visual game

analytics. Based on this knowledge, the next chapter will address the remaining main research

goal of this work and take the lessons learned with these studies to present a set of general design
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guidelines.
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Step 1: Related Work Analysis and Simplified Task Model (TM)

Ch2. Interactive Visualization of Trajectory Data
Results: See Figure 2.2.- For Task Model (TM) separated by 4 levels (lvl 1-4)

Step 3: Improve Existing Techniques

Ch4. Improving Spatial Awareness in Space-Time Cubes
Study #3: (20 participants)

• Identify strategies used to obtain spatial information on an STC

• Identify interactive techniques to help obtaining spatial information

• Compare user performance with those methods

Method:

• Compare 3 STC prototypes 

(P1: simple; P2: moveable plane; P3: map overview)

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: Same as before

• Logged data: Same as before + Nº actions and 3D mitigation 

strategies

Results:

• Higher preference towards P2 and P3
• Higher performance with P2 and P3

• Lower performance in tasks with more visual noise
• P2 is good for finding locations and study one mover

• P2 can interfere with the interaction, due to occlusion

• P3 provides a better geographical overview

• Additional comments regarding the combination of both maps

• Attempts at converting STCs into a 2D map: 

Birds-eye view (BEV) and flattening the STC’s height (FlatV)

Ch5. Combining 2D Static Maps and 3D Space-Time Cubes
Study #4 (30 participants)

• Expand existing knowledge regarding using 2D maps and STCs

• Explore if it makes sense to combine both techniques

• Empirically validate the combination of these techniques

• Analyse the types of strategies used to acquire information,

alongside user performance and acceptance.

Method:

• Compare 3 prototypes using map visualizations 

(2D map, STC, and 3VC: using both techniques) and a timeline

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: spatial and spatio-temporal

• Density of information: 1 or 10 movers

• Logged data: Same as before + % of component use

Results:

• Combining both techniques is useful

• 2D Map is faster and less interactive demanding on spatial
identification tasks, but not significantly more accurate then STC

• STC is better on spatio-temporal tasks

• 3VC is preferred in spatio-temporal comparison tasks

• 3VC reduces the need to transform STCs into 2D maps

• FlatV is a better approach than BEV

Step 2: Compare 2D Maps and 3D STCs

Ch3. Comparing 2D Static Maps and 3D Space-Time Cubes

Study #1 (5 participants)

Preliminary assessment of inexperienced users’ ability to analyse

trajectory data

Method:

• Task solving with ST-TrajVis

• Data source: GeoLife (1 mover: Nov. 2008)

• Tasks: Identify and Compare (TM-lvl1)

• Logged data: Time, Accuracy, and Preferences

Results

• Small learning curve

• Combining a 2D map with an STC was well received

• Different roles: Main visualization vs supportive map

• Varied between users

• Interest in quick visual filtering mechanisms

Study #2 (16 participants)

• Compare how adequate 2D maps and STCs are for visualization

task solving by inexperienced users

Method:

• Compare 2 prototypes using map visualizations 

(2D map or STC) and a timeline

• Data source: GeoLife (32 movers: 2008-2009)

• Tasks: Identify, Locate, Compare, Associate (TM-lvl2)

• Query categories: (elementary/general) when, (elementary/general) 

what+where

• Logged data: Time, Accuracy, and Preferences

Results:

• Higher preference towards 2D map

• 2D map more effective on location tasks

• STC more effective on association tasks

• Higher performance on elementary tasks

• Additional comments on combining 2D map and STC

• Attempts of converting STC into 2D map

Step 4: Case Study

Ch6. Case Study: Visualization of Trajectory Data from Online Games

Study #5 (21 participants)

• Understand how the analysis of the data differs from using a map-

based application and already existing tools

• Study the effects of knowing whose data is being visualized

Method:

• Compare VisLoL with LoL’s official match-history web-page

• Data source: Riot Games (1 or 2 movers)

• Tasks: Identify, Locate, Compare, Associate (TM-lvl2)

• Target analysis: the user is told if the data displayed is theirs

• Logged data: Time, Ratio of component interaction, Ratio of map

mode, Coherence of grades and decisions, and Preferences

Results:

• Analysis with VisLoL is slower

• Metrics used and conclusions reached are similar with both

applications

• Web-page: analysis based on hypothesis and previous experience

• VisLoL: analysis based on the data displayed (tell a story)

• 2D Map is more used than the STC

• Participants were more coherent when told that they were
analyzing their own data

Step 5: Identification of Guidelines

Figure 6.10: Summary of the various steps of this research and the contributions of Chap-
ter 6.



Chapter 7

Discussion and Design Guidelines

Throughout the previous chapters, several user studies were conducted with prototypes imple-

menting 2D static maps and 3D space-time cubes (STCs). Through these experiments a relevant

set of results was collected regarding: i) the differences between 2D maps and STCs, particularly

their adequacy based on different types of visual analysis tasks; ii) the possible improvements that

can be applied over 2D maps and STCs, including the addition of supplementary visual compo-

nents or visual cues (e.g., timeline or moveable map planes), or even their combination into the

same visualization; and iii) the adequacy of 2D maps and STCs to represent and interact with

different types of trajectory datasets, for an inexperienced population in terms of visualization and

analysis.

This chapter identifies a set of general design guidelines regarding these two techniques and

aims to minimize the effort and time in the design process. The identified guidelines are based

on: the overall discussion of the results of previous studies; the direct observation of the partic-

ipants’ behaviour during the various studies; and the analysis of the results obtained, throughout

the experiments, both from a quantitative (e.g., differences in accuracy or interaction times) and a

qualitative (e.g., participants comments) point of view. These guidelines are organized in four cat-

egories addressing: relevant criteria that should be taken into consideration prior to the selection of

a given technique, particularly user domain knowledge and interactivity capabilities, discussed in

the next session; the reasons to select a given technique over another (Section 7.2); and the types

of interactive features that may be appropriate to include in said technique(s) from a temporal

(Section 7.3) and spatial perspective (Section 7.4).

7.1 Domain Knowledge and User Control

As suggested by the results from the study with the VisLoL prototype, alongside some results

existing in the literature (Kveladze et al., 2015), it is important to consider the effects of the users’

knowledge in regards to the domain and the source of the displayed data. Despite their possible

limited knowledge in terms of data analysis, if the user is familiar with the domain regarding the

data displayed, the more likely for him/her to conduct a better analysis. Similarly, although it may

143
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not significantly affect the users’ performance, the awareness of whom the data displayed belongs

to may affect how the analysis is conducted, particularly if the data displayed belongs to the actual

user. This fact is supported by the results of the previous chapter, in which participants have shown

a higher coherence in terms of the results of their analysis when they were informed that the data

displayed was generated by them.

Considering that, in the context of this research, the expected users are likely to be inexperi-

enced in terms of data visualization and analysis. It is also expected that the domain and the data

used is of interest to the user on a personal level. Nevertheless, regardless of the map visualiza-

tion used, it is important to emphasize the personal aspects of the data and to provide tools and

explanations to the users, as a means of minimizing the negative effects of their limited knowledge

over the analysis. A very simple example of this consists in the inclusion of tutorials/instructions

regarding the visualization and its features, e.g., describing a feature’s use when the user hovers it.

A somewhat similar example, implemented in VisLoL, consists of the inclusion of extended map

legends providing additional explanations regarding the represented information.

In addition, it is also important to consider how to access and control the data displayed.

Nowadays, regardless of the context of use and the target users, data filtering mechanisms are

widely popular. Naturally, throughout the previous studies, the participants often gave a positive

feedback towards the existence of these features in the prototypes. However, and more interest-

ingly, they have also shown a considerable appreciation towards data customization mechanisms.

These features allowed the user to associate a specific visual variable (e.g., colour, size or shape)

to a specific temporal or thematic attribute (e.g., time period or speed). The participants of these

studies have stated that, in addition to help them focus more easily on relevant information (or at

least, information that they considered relevant), these functionalities also made them feel more

in control of the interaction and analysis. These later comments are particularly interesting and

relevant, specially considering the personal motivations that the user may have already when inter-

acting with the data. As such, in addition to already common querying and filtering mechanisms,

it is important to consider the design of interactive controls that support the customization of data

representations.

7.2 Techniques for Trajectory Data Analysis in Visual Anal-
ysis Tasks

Throughout the previous experiments, there has been a focus on two-dimensional spatial data,

i.e., not considering spatial attributes like altitude/depth; however, there is no reason to believe

that 2D static maps or 3D space-time cubes would not be able to represent three-dimensional data.

As already discussed in Chapter 2, this can be achieved by converting altitude into a thematic

attribute and using visual variables like colour, or icon shape, to represent this attribute, instead of

position (Gonçalves et al., 2016a).

The results of the previous studies have also shown that user performance is significantly af-
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fected by the volume of information displayed. With a limited amount of information or when the

focus of the task is dependent or limited to a small subset of the data, test participants were able to

perform the tasks adequately with both techniques. However, increasing the volume of informa-

tion will emphasize each techniques’ limitations. Consequently, this shows that the selection of a

given technique is, at least in part, dependent on the type of expected tasks that may need to be

conducted with them.

Overall, considering the results obtained regarding 2D static maps, it can be argued that the

question is not necessarily if, but rather when this type of technique should be used. Based on

the types of tasks, suggested in the literature and confirmed here, the 2D map technique should be

used when the expected tasks are of a spatial nature. As supported by the results of Chapter 5,

although this type of technique was not significantly better than the other approaches, in terms of

accuracy, participants were generally faster at completing the tasks and were able to perform those

tasks in a smaller number of steps/actions. In addition, users have also shown a higher preference

towards 2D maps comparatively to STCs. This happened both directly, when asked about their

preferences, and indirectly, when they converted the STCs into a 2D map or used the 2D map as

their primary visualization component in spatial tasks.

By comparison, the STC should be used when the expected tasks require the analysis of time,

and its relation with the geographical area. As discussed in Chapters 3 and 5, the STC is more

helpful to users, than common 2D maps, on comparison and association (spatio-temporal) tasks.

In fact, despite not being preferable to common 2D maps, the test participants’ comments were

often positive, given the STCs’ ability to provide both spatial and temporal information in the

same shape. However, despite these advantages, it is important to acknowledge the fact that a STC

should only be used with interactive controls. As evidenced by the results of Chapters 4 to 6, and

further emphasized in the remainder of this chapter, the STC technique is significantly dependent

on various interactive features, including, the rotation of the STC, or the ability to highlight its

information. If this technique is expected to be used in a context that does not ensure the means

for a user to properly interact with it, a different approach should be considered instead (e.g., 2D

map with additional temporal views).

Moreover, when the analysis of both spatial and temporal information is needed, a combina-

tion of the two techniques is a viable option, similarly to the approaches used in Chapters 4, 5,

and 6. As evidenced by the results, this approach is generally preferred by users and effectively

supports the completion of spatio-temporal tasks. Nevertheless, despite the positive results with

this approach, it is important to acknowledge the increase in visual and interactivity complexity.

The following sections address these issues, focusing on various types of interactive necessities

and strategies that can be included.
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7.3 Interactive Features for Temporal Visualization of Tra-
jectory Data

When time is a relevant metric, it should be visible as often as possible, regardless of the type of

map being used.

When using a 2D map this can be a challenging issue, since this technique is limited in rep-

resenting temporal information. Nevertheless, it is possible to mitigate this issue, for example, by

representing time similarly to a thematic attribute, or using additional views, within or outside the

map. Throughout the experiments presented in the previous chapters, both approaches were used

in two distinctive ways. First, by allowing the customization of visual variables, namely colour

and shape, of the displayed trajectories in function of the time period of the day and, second, by

providing interactive time graph visualizations, like timelines, alongside the map view. Based on

the interaction logs recorded throughout the various tasks, it was possible to see the frequent usage

of these features in tasks that required the analysis of the temporal dimension. Moreover, based

on the participants’ feedback, it is possible to see that these features are useful to, in the case of

the visual variable customization, emphasize repetitions/patterns of movement in space and time.

In the case of the timeline, this feature was useful to constantly display temporal information,

that would otherwise be too confusing, if not impossible to represent on just a 2D map plane. It

is important to consider that using multiple separated views to display similar or complementary

information can make users having to divide their attention between the different components of

the visualization (Baudisch et al., 2002). As such, should a timeline be used, it is important to use

a similar representation to the ones used in the map visualization(s), as a means of supporting a

better transition of the user’s attention from one view to the other.

When using an STC visualization, distributing information in the third dimension allows users

to quickly recognize which events happened before others. However, position by itself can-

not properly display more precise information, like how many days are being represented, or

where/when does one day starts and other ends. The most common solution would be to place

textual labels along the STC’s height, together with timestamp information. However, this infor-

mation can be occluded if the user zooms in the view too much or significantly changes the point

of view over the visualization. As such, any type of temporal representation should always be

visible, for example, by constantly updating the textual labels positions, assuring that at least one

is always visible on screen. This particular functionality was implemented in the most recent STC

visualizations described in the Chapters 5 and 6, being praised by the participants that noticed

it. Specifically, they mentioned that dynamic labels allowed them to understand when something

happened and, more importantly, to regain context operations over the STC that would change the

visual state of the map, namely pan, zoom, and STC rotations.

Similarly to what was discussed regarding the 2D static map technique, customizable temporal

representations can also be useful when interacting with STCs. As discussed in Chapter 5, despite

having a visualization technique displaying information from a temporal point of view, some par-
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ticipants considered useful to emphasize temporal information within the STC (i.e., display the

time periods of the day), to emphasize spatio-temporal patterns. This is particularly interesting,

considering the argument presented by the literature (Kjellin et al., 2010b) regarding the existence

of at least one additional visual variable to represent thematic information, since time is already

being represented as a location within the STC. Although this is true, this argument can be further

expanded by emphasizing instead the enhanced temporal perception provided by STCs, due to the

possibility of being able to use, at least, one more visual variable to represent time.

In addition, when using the STC technique, it is important to provide controls over the tempo-

ral granularity of the data and to make it noticeable to the user. These controls can be compared

with common geographic zooming techniques present in most map applications, although in this

case dealing with temporal information. The approach followed in this work consisted of chang-

ing the STC’s height. As previously discussed, this functionality was included in all prototypes

using the STC technique. In addition, throughout the evolution of the prototypes implementing

this technique, there was an effort into making this functionality noticeable enough or more un-

derstandable to the users. Figure 7.1 depicts the evolution of the STC’s additional controls used

throughout the experiments described in the previous chapters. Considering the irregular usage of

these controls in the studies presented in Chapter 3 (Figure 7.1 a), in addition to some small stylis-

tic changes, labels were included describing the function of each feature (Figure 7.1 b). This was

also necessary, given the inclusion of more controls, visually similar, such as the map zoom slider.

After the results of Chapter 4, in which more features were added (extra plane, shadows/heatmaps,

and location or region highlights), it was necessary to further compact and group these controls,

so that they would not take too much space, but would still be visible (Figure 7.1 c). Considering

the possibility that some users could consider using these controls unnecessary, or even intrusive,

it was also implemented the ability to hide these controls.

Ultimately, considering the participants’ comments and actions, this was considered a very

important feature. Throughout the experiments, several participants commented on the usefulness

of these controls to improve their understanding of the data’s temporal dimension. In spatio-

temporal tasks, this functionality allowed participants to analyse smaller periods of time in more

detail, when increasing the STC’s height, or progressively compress data temporally, when reduc-

ing the STC’s height.

7.4 Interactive Features for Spatial Visualization of Tra-
jectory Data

As evidenced by the results of the previous studies, particularly those from Chapter 4, when using

an STC, it is important to provide additional spatial context cues, to improve the analysis of this

dimension, particularly in location based tasks.

During this work, different approaches to minimize this problem were implemented in the

various STC prototypes. The simplest approach consisted in drawing lines pointing towards the
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Figure 7.1: Evolution of the STC’s additional controls throughout the various experi-
ments described in a) Chapter 3; b) Chapter 4; and c) Chapters 5 and 6.

location in the map, located at the base of the STC, whenever an object was highlighted/selected

in the view. Although helpful, this strategy is not enough, as shown in the results from Chapters 3

and 4, in which test participants using the prototypes implementing only this type of representation

performed worse in location-based tasks.

To solve this problem, Chapter 4 studied the use of an additional map plane that can be moved

along the STC’s height at any point of the interaction (Kraak, 2003; Gonçalves et al., 2015c).

This functionality allows users to complete tasks with a higher performance than when using a

simpler STC. Nevertheless, this approach still caused some confusion, due to the possibility of

this plane occluding information, depending on the point of view within the STC (see Figure 4.4).

Moreover, in the study described in Chapter 5, some participants deactivated this functionality in

various tasks, and mentioned that they considered this less useful when they were more interested

in the temporal dimension of the data. As a consequence, these results also suggest that the aux-

iliary map plane in the STC should be made an optional feature. However, if this functionality is

implemented, it is important to take into consideration the effects it may have over the visualiza-

tion when combined with other features, namely when changing the temporal granularity of the

data. If the user decreases the data’s temporal granularity, the auxiliary plane will necessarily be

moved closer to the STC’s base, since it will, most likely, be associated to a specific time moment.

As a consequence, this can effectively hide all information located bellow it. In some scenarios,

this may be easily solved by simply rotating the STC; however, if the map plane is too close to the

STC’s base, it will become impossible to see it (Figure 7.2 a). It is plausible to assume that ex-

pert analysts already familiar with STCs or that become familiarized with this functionality may

actually use it as a quick visual filtering mechanism. However, such behaviour is not expected

from inexperienced users, who are more likely to be confused by this, similarly to what already

happened when using the moveable map plane. Another possible approach to minimize this prob-
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Figure 7.2: Examples of using an auxiliary map plane to highlight a given location, while
adjusting the STC’s temporal granularity controls, through height change: a) the auxiliary
plane remains visible; b) the auxiliary plane is hidden after resizing the STC.

lem consists in (optionally) disabling the auxiliary map plane when it approaches the STC’s base

map given a certain threshold (Figure 7.2 b). In this work, it was used a threshold of 5% of the

STC’s original height; nevertheless, future implementations should support the customization of

this value, through the use of an additional menu option.

An additional approach consists of combining the STC with a 2D map. Three possible al-

ternatives were studied in this work, namely: i) providing a 2D overview of the data presented

in the STC (Figure 7.3 a), such as in the P3 prototype described in Chapter 4; ii) juxtaposing an

interactive 2D map (Figure 7.3 b), present in the 3VC prototype described in Chapter 5, and iii)

allowing the user to switch between the techniques (Figure 7.3 c), present in the VisLoL prototype

described in Chapter 6.

The first two alternatives are similar, in the sense that both of them require additional screen

space to display the auxiliary map. However, they differ in the role they have in the visualization

and in how the user is able to interact with them. Overall, the 2D map overview is comparable

to common mini-maps, present in traditional large screen map applications or even games, thus,

implying this map to be, generally, smaller than the STC. As such, with a 2D map overview, the

STC is implied to be the main map visualization and, thus, the main focus of the user’s attention

and interaction. Comparatively, by juxtaposing both map techniques, the user has the opportunity

of choosing which one should be the focus of their attention/interaction, even if it may take more

screen space than the previous alternative. Considering the generally higher preference towards

2D maps over STCs, if the designer can use enough screen space for both types of maps, a design

guideline should be to use juxtaposed maps.

On the contrary, if it is impossible to adequately accommodate more than one map view within

the same visualization, an additional alternative consists of supporting the conversion of one tech-

nique into the other. In Chapter 3, two types of strategies were identified, applied by the partici-

pants trying to achieve this feature. In particular, they rotated the STC to look at the data from a
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Figure 7.3: Examples of combinations between 2D static maps and 3D space-time cubes
a) 2D map overview; b) map juxtaposition; and c) conversion between techniques.

bird’s eye view (Figure 7.4 a), or reduced the temporal granularity to its minimum, compressing

the data into the STC’s base plane (Figure 7.4 b). Consequently, and due to the stylistic similar-

ities between the two maps used, e.g., the same map planes, the same symbols to represent the

same information, the approach followed in this work consisted in converting one technique into

the other by automatically changing projections when the user rotates the STC to look at the data

from a bird’s eye view. In addition to not taking more screen space to represent both techniques,

an important advantage of this alternative consists in the natural way in which the conversion is

made. As discussed in Chapters 5 and 6, looking at the data within an STC from a bird’s eye

view perspective does not take advantage of the map’s third dimension to represent time. In fact,

during the experiments, participants that applied this strategy were usually not interested in this

dimension. The results of this research’s studies have also suggested that this strategy can have a

negative effect over the analysis, as the significant results detected show that the participants that

used this approach performed, generally, worse than those that compressed the STC’s temporal

dimension. Although flattening the STC into a plane provided better results, it can be argued that

this is not an intuitive approach, as not all participants considered using it, in addition to also

requiring, at least, an additional interaction step. As such, an important design guideline, when
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Figure 7.4: Perspective change on an STC when looking at the data from a birds-eye view
a) no change; b) change to an orthographic perspective.

using an STC, even if already complemented by a 2D static map, is to include the possibility of

transitioning between an STC and a 2D map, when looking at the data from a birds-eye view. In

addition, this functionality should be noticeable, otherwise users may forget about its existence,

particularly when interacting with the visualization for the first times.

Nevertheless, regardless of the approach to combine the STC and the 2D map, it is important to

consider the effects of the interaction with one technique over the other. Namely, an important de-

sign guideline is to use of similar controls for the different types of map techniques. Traditionally,

as seen in common map view applications (e.g., Google Maps), in a keyboard+mouse interac-

tion context, the left mouse button is used to pan the map view. However, common 3D design

applications (e.g., Maya (Corporation, 1998)) use this button to rotate the view. These analogies

were used to decide the controls for the 2D map and STC visualizations and, when using the STC

separately, these controls did not brought up any detectable problem. However, when using this

technique alongside a 2D map, it was noticeable that participants often tried to drag/pan the STC

the same way they did with the 2D map, therefore, implying the necessity to use similar controls.

In addition, if both map visualization techniques are visible, another guideline is to keep both

map views synchronized or, if the views are alternated, to preserve/translate the state of interaction

when transitioning between the map views. Based on the interaction logs recorded during the tasks

and the feedback provided by the participants, they never deactivated the synchronization between

the 2D map and the STC views, having also praised this feature for making it easier to transition

from one view to the other. In fact, this guideline is also applied when using additional views or

maps representing different sets of data from the same event, such as the timeline and the second

player map implemented in the VisLoL prototype, described in Chapter 6.
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7.5 Summary

In this chapter, a set of general guidelines were proposed regarding the design of 2D static maps

and 3D space-time cubes, to be used by an inexperienced population in terms of visualization and

analysis of trajectory data.

In particular, this chapter focused on the lessons learned throughout the various experiments,

by taking into consideration the quantitative differences in the results obtained throughout the

different tasks with the various prototypes (e.g., differences in task completion times, or number

of actions), the various comments made by the participants of the studies, and the various strategies

applied by them when interacting with the techniques.

The guidelines were divided into four overarching topics addressing: important factors that

should be taken into account independently of the technique chosen, relevant criteria when choos-

ing a technique, and features that should be included in the visualization techniques from a tem-

poral and spatial perspective, respectively.

Figure 7.5 provides an overview of the proposed guidelines. As understandable by the analysis

of the figure, regardless of the criteria used, a 2D static map representation of the data is always

advised. There may be some scenarios in which the analysis of the data’s spatial components may

not be necessary; however, these are out of the scope of this research work. In addition, despite

the suggestion of using an STC in a limited screen space interaction, it is still important to support

the visualization of the data from a 2D map perspective.

By comparison, the scenarios in which the STC technique may be used and how it should be

used is significantly more diverse. If time is an irrelevant metric for the visualization or, even if

it is, the developer cannot ensure a proper interactive environment to the user (e.g., software or

hardware limitations), then there is no clear advantage in using the STC technique. On the other

hand, if time is a relevant metric and it is possible to interact with the visualization with enough

screen space, juxtaposing both techniques is the most adequate approach. If that is not possible,

however, the developer may consider an alternative in which the 2D map is less emphasized but

still visible simultaneously to the STC, or simply allowing the conversion between one view into

the other. Furthermore, whenever time is a relevant metric, it is also advised the use of additional

temporal graphs, such as the timelines used in the aforementioned experiments. Although this is

mostly an optional measure when an STC is also used, this feature can be particularly helpful,

when a user is more focused in visualizing the data with a 2D map.

In addition, using an STC also implies the consideration of various features to simplify user

interaction from both a spatial and temporal perspective, including among others, the use of tem-

poral granularity controls or auxiliary moveable map planes. Nevertheless, regardless of which

technique the users focus their attention the most, it is important to take into account how they are

used and how the data is displayed, to support an easier transition between them and, consequently,

maximize the users’ attention, experience, and performance.

Finally, Figure 7.6 finishes the summary of the contributions of this research, first introduced

in Chapter 1 (Figure 1.3).
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Figure 7.5: Overview of the guidelines presented in Chapter 7.
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Step 1: Related Work Analysis and Simplified Task Model (TM)

Ch2. Interactive Visualization of Trajectory Data
Results: See Figure 2.2.- For Task Model (TM) separated by 4 levels (lvl 1-4)

Step 3: Improve Existing Techniques

Ch4. Improving Spatial Awareness in Space-Time Cubes
Study #3: (20 participants)

• Identify strategies used to obtain spatial information on an STC

• Identify interactive techniques to help obtaining spatial information

• Compare user performance with those methods

Method:

• Compare 3 STC prototypes 

(P1: simple; P2: moveable plane; P3: map overview)

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: Same as before

• Logged data: Same as before + Nº actions and 3D mitigation 

strategies

Results:

• Higher preference towards P2 and P3
• Higher performance with P2 and P3

• Lower performance in tasks with more visual noise
• P2 is good for finding locations and study one mover

• P2 can interfere with the interaction, due to occlusion

• P3 provides a better geographical overview

• Additional comments regarding the combination of both maps

• Attempts at converting STCs into a 2D map: 

Birds-eye view (BEV) and flattening the STC’s height (FlatV)

Ch5. Combining 2D Static Maps and 3D Space-Time Cubes
Study #4 (30 participants)

• Expand existing knowledge regarding using 2D maps and STCs

• Explore if it makes sense to combine both techniques

• Empirically validate the combination of these techniques

• Analyse the types of strategies used to acquire information,

alongside user performance and acceptance.

Method:

• Compare 3 prototypes using map visualizations 

(2D map, STC, and 3VC: using both techniques) and a timeline

• Data source: New York Taxis (10 movers: Jan. 2013)

• Tasks: Identify, Compare (TM-lvl1)

• Question categories: spatial and spatio-temporal

• Density of information: 1 or 10 movers

• Logged data: Same as before + % of component use

Results:

• Combining both techniques is useful

• 2D Map is faster and less interactive demanding on spatial
identification tasks, but not significantly more accurate then STC

• STC is better on spatio-temporal tasks

• 3VC is preferred in spatio-temporal comparison tasks

• 3VC reduces the need to transform STCs into 2D maps

• FlatV is a better approach than BEV

Step 2: Compare 2D Maps and 3D STCs

Ch3. Comparing 2D Static Maps and 3D Space-Time Cubes

Study #1 (5 participants)

Preliminary assessment of inexperienced users’ ability to analyse

trajectory data

Method:

• Task solving with ST-TrajVis

• Data source: GeoLife (1 mover: Nov. 2008)

• Tasks: Identify and Compare (TM-lvl1)

• Logged data: Time, Accuracy, and Preferences

Results

• Small learning curve

• Combining a 2D map with an STC was well received

• Different roles: Main visualization vs supportive map

• Varied between users

• Interest in quick visual filtering mechanisms

Study #2 (16 participants)

• Compare how adequate 2D maps and STCs are for visualization

task solving by inexperienced users

Method:

• Compare 2 prototypes using map visualizations 

(2D map or STC) and a timeline

• Data source: GeoLife (32 movers: 2008-2009)

• Tasks: Identify, Locate, Compare, Associate (TM-lvl2)

• Query categories: (elementary/general) when, (elementary/general) 

what+where

• Logged data: Time, Accuracy, and Preferences

Results:

• Higher preference towards 2D map

• 2D map more effective on location tasks

• STC more effective on association tasks

• Higher performance on elementary tasks

• Additional comments on combining 2D map and STC

• Attempts of converting STC into 2D map

Step 4: Case Study

Ch6. Case Study: Visualization of Trajectory Data from Online Games

Study #5 (21 participants)

• Understand how the analysis of the data differs from using a map-

based application and already existing tools

• Study the effects of knowing whose data is being visualized

Method:

• Compare VisLoL with LoL’s official match-history web-page

• Data source: Riot Games (1 or 2 movers)

• Tasks: Identify, Locate, Compare, Associate (TM-lvl2)

• Target analysis: the user is told if the data displayed is theirs

• Logged data: Time, Ratio of component interaction, Ratio of map

mode, Coherence of grades and decisions, and Preferences

Results:

• Analysis with VisLoL is slower

• Metrics used and conclusions reached are similar with both

applications

• Web-page: analysis based on hypothesis and previous experience

• VisLoL: analysis based on the data displayed (tell a story)

• 2D Map is more used than the STC

• Participants were more coherent when told that they were
analyzing their own data

Step 5: Identification of Guidelines

Ch7. Discussion and Design Guidelines
Results: See Figure 7.5. – For summary of guidelines

Figure 7.6: Summary of the various steps of this research and the contributions of Chap-
ter 7.



Chapter 8

Conclusions and Future Work

The Ph.D. research reported in this dissertation addressed the study of various properties of 2D

static maps and 3D space-time cubes (STCs) for the visualization of trajectory data, particularly

focused on their utilization by an inexperienced population, in terms of data visualization and

analysis.

The main objectives proposed for this research were three-folded:

• Obtain empirical data supporting the dis/advantages of a given technique;

• Propose improvements to existing techniques focusing on inexperienced users, and the

dis/advantages of combining different techniques;

• Identify design guidelines for map-based trajectory data visualization, based on the two

points above.

To address these goals, in addition to the analysis of related work described in the literature,

several prototypes were created, implementing variants of techniques based on 2D static maps

and 3D STCs to support the visualization of different trajectory datasets. These prototypes were

subjected to usability tests, to compare the different sets of variants and evaluate their adequacy

in representing movement data. Consequently, a series of quantitative and qualitative results were

obtained, which support the basis of the various contributions.

The following sections revisit and discuss the most significant contributions presented and

address relevant and unexplored challenges in the context of this research.

8.1 Primary Contributions

The primary contributions of this work can be divided into four main topics, further discussed

bellow.

8.1.1 Simplified Task Model - Literature Analysis

Based on the proposed objectives, it is possible to understand that this research is directly associ-

ated with multiple disciplines, such as human-computer interaction, visualization and cartography.

155
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Consequently, a requirement for this work consisted in the analysis of various relevant sources ex-

isting in the literature, associated to these areas of knowledge, as seen in Chapter 2. This analysis

was focused on three main factors: i) main components and characterizations associated with

trajectory data; ii) types of user objectives/tasks that can be conducted when using any given vi-

sualization; and iii) characterization of the most general types of map visualization techniques to

represent trajectory data.

The analysis of the second factor (visual analysis tasks) revealed a significant redundancy

in the various models/taxonomies present in the literature. By one hand, the same tasks were

identified by several different studies, which shows some agreement between the various sources.

However, several similar or overlapping tasks were given different denominations. Considering

the dependency of this research on the identification and understanding of these tasks to study

which map-based techniques are the most adequate, it was necessary to clarify and organize the

already existing lists os tasks. Therefore, the main contribution presented in Chapter 2 consisted

in the organization of the most significant types of visual analysis tasks present in the literature.

This contribution is particularly important due to three main reasons. First, this systemati-

zation provides a much needed compilation and simplification of the proposed tasks, making it

usable as a possible reference for future research. Second, this model acknowledges the inherent

hierarchy existing in the various proposed tasks, in terms of their specificity. Finally, as a result of

the previous two reasons and as shown throughout this document, it was possible to conduct var-

ious (successful) usability studies using these tasks as one of the basis for comparing the various

developed approaches.

8.1.2 Comparisons Between Map-based Visualization Techniques

After the study of the main properties related with trajectory data and the most relevant types of

tasks associated with data visualization, the second main contribution from this work addressed

the comparative evaluation of various map-based prototypes supporting the visualization of tra-

jectory datasets. This contribution was primarily addressed in Chapter 3 and, based on the results

obtained, they were also followed up between Chapters 4 to 6. The focus of this contribution

consisted in the comparison of 2D static maps and 3D STCs. The literature also supports the exis-

tence of other techniques, namely animated and small-multiple maps. However, it was decided to

exclude them from the focus of this work, based on the observation that exists an inherent depen-

dency between these techniques and the former, since both animated and small-multiple maps can

be displayed over 2D maps and 3D STCs.

It was hypothesized that the participants’ unlikely familiarity with STCs, associated with the

known limitations in human perception of 3D graphics, would cause the 2D static map prototypes

to be favoured by the participants and to support a higher performance. Through the conduction of

usability studies, the main conclusions drawn from the experiments associated to this topic were

the following:

• Inexperienced users in terms of data visualization and analysis are, indeed, able to interact
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and work out conclusions, regarding the analysis of trajectory datasets, with the help of 2D

static maps and 3D STCs;

• Both techniques are adequate in general visual analysis tasks, particularly tasks in which

the analysis is focused on one trajectory or on one specific moment in time;

• Users prefer 2D static map visualizations;

• 2D static map visualizations support a higher performance in locate tasks and tasks focused

on the spatial components of the data;

• STC visualizations support a higher effectiveness in associate tasks and comparison tasks

dependent on the analysis of temporal information;

• STC-based visualizations require a higher degree of interactivity, e.g., a higher number of

actions, to conduct various tasks.

2D static map prototypes were always among the preferred approaches by the participants.

This was one of the most consistent results across the various experiences, as 2D static maps, or

other prototypes supporting 2D static map features were often ranked higher, in terms of prefer-

ences, than other approaches (sometimes, regardless of the participants’ performance).

Despite not being the preferred technique, the STC visualizations received, overall, positive

feedback from the participants and were shown to be more adequate than 2D static maps, typi-

cally in temporal-related tasks. Even though some previous works partially support these results,

these positive findings obtained with the STC are considerably particularly surprising and worth

discussing.

Regardless of the expected advantages of STCs, given their combined representation of spatial

and temporal information in 3D, and despite the concerns in providing some practice time to the

participants, prior to the beginning of the user studies, it is important to acknowledge the fact

that the participants’ familiarity with this technique was significantly lower than the one they

had with 2D static maps. In turn, it was expected that this factor could have a stronger effect in

the participants’ abilities in interacting with the technique and analysing the data, which could

ultimately be reflected in the results. As further discussed in the next section, although these

results also emphasized some of the limitations present in STCs they also open new and interesting

opportunities for the use of this technique.

8.1.3 Improvements over Existing Techniques

The comparative analysis of 2D static maps and STCs, addressed by the aforementioned studies,

helped exposing some relevant limitations associated with these techniques. Consequently, as

detailed throughout Chapters 4 to 6, the objective was to explore different ways to improve these

techniques.
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Overall, the results obtained suggest that STC visualizations were less adequate in tasks deal-

ing with the location of information and spatial data. Comparatively, the 2D static map visual-

izations were less adequate in tasks that required a more detailed analysis of the data’s temporal

dimensions. In addition, throughout some of the experiments, several participants have mentioned

their interest in not having to chose between either technique but, rather, have access to both of

them. More interestingly, based on the analysis of the participants’ interactive strategies, it was

possible to notice that, throughout some of the experiments, several participants tried to some-

what convert the 3D space-time cube into a 2D static map. Ultimately, this fact emphasizes the

limitations associated with STCs and the willingness of being able to use both techniques.

When studying possible improvements over the existing techniques, this research focused

on two main approaches. First, by studying possible representational and interactive features to

improve spatial awareness in STC visualizations. Second, by studying the adequacy and the con-

sequences of combining 2D static maps with STCs. To achieve this goal the following alternatives

were compared:

• the continuous inclusion of time-graph visualization components to be used alongside the

map visualizations, particularly those implementing 2D static maps;

• the use of simple spatial cues (e.g., points and lines), pointing towards the location of any

highlighted/selected information within the STC;

• the use of an additional moveable map plane, to help reducing possible perspective issues,

when examining information within the STC;

• the use of a 2D overview of the information present in the STC;

• the juxtaposition of interactively/logically connected 2D static maps with STCs;

• the transition between a 2D static map and an STC, through the alteration of the visualiza-

tion’s projection (orthogonal into perspective).

It was hypothesized that both user performance and satisfaction would increase with these im-

provements, despite their possible disadvantages. The conduction of usability studies, the analysis

of the obtained results and the participants’ behaviour allowed to conclude that:

• Users have a higher preference towards improved STCs, i.e., with a moveable map plane

feature and a 2D overview, comparatively to more simple approaches;

• User performance is generally higher with the improved STCs, comparatively to more sim-

ple approaches;

• The use of an additional moveable map plane, within the STC, is more likely to help users

finding specific locations and analysing the evolution of one specific mover. However, the

occlusion caused by this feature can interfere with the user interaction;
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• The use of a 2D map overview, within the STC, is more likely to provide a better synopsis

of the geographical distribution of the data;

• Although outclassed by 2D static maps, in terms of (temporal and interactivity) efficiency,

improved STCs may not differ significantly from these techniques, in terms of accuracy;

• The combination of 2D static maps with STCs is a viable approach for inexperienced users

to visualize spatio-temporal data, as it was never outperformed by other approaches focused

on just one of the visualizations;

• The combination of both techniques (through juxtaposition) is preferred in spatio-temporal

comparison tasks, comparatively to (isolated) 2D static maps and STCs. Similarly, the

ability to convert one technique into the other is well accepted by inexperienced users (even

if with prior knowledge over the data);

• The combination of both techniques (through juxtaposition) minimizes the tendency of

users trying to convert STCs into 2D static maps;

• Out of the two strategies identified to ignore/minimize the third dimension in STCs, namely

look at the data from a bird’s-eye view and reduce the STC’s height/temporal granularity to

its minimum, the second approach supports a better performance than the first.

As explained throughout the previous chapters and considering the motivations of this research

in regards to this topic, the obtained results make sense. However, it is particularly interesting to

analyse the positive results that were obtained, in terms of subjective preferences, regarding the

combination of both visualization techniques through juxtaposition. An important limitation asso-

ciated to this approach consists in the redundancy resultant of showing both maps, i.e., somewhat

similar techniques, displaying some common data. Furthermore, given the inclusion of an STC

component in the visualization, this approach will, most likely, require a larger amount of in-

teractivity by the user to properly analyse the data. Consequently, and considering the reduced

experience from the participants, in terms of data visualization and analysis, it would be plausible

to assume that these would prefer a simpler or minimalistic design, which was not the case. Al-

though further exploration is advised, these results open the possibility for developers considering

the usefulness of more complex visual approaches in more casual/personal visualization contexts.

8.1.4 Design Guidelines

The quantitative and qualitative results of the usability studies conducted throughout this research,

described in Chapters 3 to 6, alongside their development process, allowed to identify several

patterns. These support and suggest the existence of a series of best practices when designing

applications for the visualization of trajectory data, based on 2D static maps and 3D space-time

cube visualizations, for inexperienced users.
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Based essentially on this information, Chapter 7 described a set of design guidelines, address-

ing three main subjects. First, it was discussed the importance of considering the effects of the

users’ previous knowledge regarding the data alongside their possible motivations over the analy-

sis. Although further studies should be conducted, current results suggest a more assertive research

when the users are aware that they are analysing their own data. In addition, given their constantly

positive feedback, alongside their interactive strategies, it was also discussed the interest and pos-

sible advantages of enabling the customization of the data representations by the users, both as a

means of improving their analysis of the data and to make them feel in control over it.

Secondly, the focus changed to various criteria needed for deciding which visualization tech-

nique should be implemented. Overall, the results of the studies allowed to conclude that a 2D

static map should be always included in the visualization, even if not as the primary map compo-

nent. On the other hand, the main decisions are related to the usage of an STC and how it should

be incorporated alongside the 2D static map. For these decisions, the analysis of this work allowed

to identify three main factors: i) Relevance of temporal information over the analysis – if there

is none, the STC is, most likely, unnecessary; ii) Ability to interact – if the users are limited in

how they can interact with the visualization, the STC is not advisable; and iii) Screen space –

depending on the available space on screen, this can determine the use of an STC convertible into

a 2D static map (no space), an STC with a 2D overview (limited space), or the simultaneous use

of both techniques in the same view.

Finally, this contribution ended with the discussion of various interactive features and prac-

tices that should be taken into account when using these techniques, from a spatial and temporal

perspectives. The most significant ones include:

• Temporal information visible (e.g., timeline, dynamic time labels);

• Similar representation between views;

• Similar interactive controls between views;

• Synchronized views and conserved/translated state at visualization transition;

• Optional moveable map plane on STCs;

• STC temporal granularity controls (e.g., STC height resize);

• Support of orthographic projection with STC.

A significant number of the proposed features are directly associated to STC visualizations.

Although this can, in part, be justified by the relevance that this technique had in the aforemen-

tioned studies, it also significantly emphasizes the critical role of interactivity when using this

technique. Despite its various advantages, this type of visualization still has several drawbacks

that can be minimized through adequate interactive features.
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8.2 Complementary Contributions

In addition to the results described in the previous sections, the development and evaluation stages

of the conducted usability studies provided an additional set of contributions.

Given the necessity of creating several different prototypes based on the same base techniques,

three complementary APIs were developed for the creation of HTML 5 applications for the visu-

alization of trajectory data on interactive 2D static maps, 3D space-time cubes, and timelines.

Overall, the creation of these APIs significantly simplified the development process of the various

prototypes, allowing for a better focus on the remaining components of the work.

On the other hand, even at the early stages of the research, it became clear that common

usability metrics, namely task completion time, accuracy, and subjective preferences, would not

be enough to properly evaluate the various visualization techniques. As such, it was necessary to

adopt additional metrics to complement the analysis, including:

Number of actions: considering the already mentioned importance of interactivity with some

of these approaches, being able to understand the amount of actions necessary to answer

to spatial or temporal related questions can work as a complementary metric to time, to

analyse how complex a given task may have been to the user;

Ratio of visualization used: considering that the developed approaches often involved using more

than just one visualization component, such as the timelines or the additional map views,

this metric allowed to analyse (and confirm) which components were the most used (or

when they where used) during the various tasks;

3D mitigation actions/visualization type transitions: considering the perceptual limitations as-

sociated to 3D visualizations, alongside the, later, possibility of converting one map tech-

nique into another, similarly to the previous case, this metric supported the analysis and

confirmation of the need and usefulness of specific interactive features for the STC (e.g.,

temporal granularity controls or projection conversion).

8.3 Future Work

Despite the various results and contributions that were obtained, there are still several topics related

to those addressed by this work that should be further investigated. The following sections list

relevant and promising topics for future investigation.

8.3.1 The Role, Effects, and Interactivity Requirements of Animated
and Small-multiple Maps

The focus of this research consisted in the study of visualization techniques based on 2D static

maps and 3D STCs. However, such as discussed in Chapter 2, the literature presents additional
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types of techniques that can be taken into consideration, namely animated and small-multiple

maps.

Existing works in the literature show some contradictions in regards to the actual usefulness of

animation for data visualization and analysis (Tversky et al., 2002). Nevertheless, they have shown

the interest and the necessity in expanding the knowledge on this type of technique (Harrower and

Fabrikant, 2008), and suggest a generally high user acceptance towards the use of animated tech-

niques (Robertson et al., 2008). Considering the focus of this research on inexperienced users, in

terms of data visualization and analysis, it is plausible to assume that the contexts in which appli-

cations for trajectory data visualization are used are mostly personal or informal. Consequently,

even if not significantly better than static approaches, providing the user with a visualization con-

sidered to be more fun and appellative can lead to promising results.

In addition, the results of this research emphasize significantly the role of interactivity when

dealing with these techniques, particularly with STCs, alongside the advantages and disadvantages

of combining different types of visualization techniques. As addressed in Chapter 2, animated

maps can be projected over 2D static maps or STCs. However, while STCs are significantly

dependent on interaction, considering the inherent properties of animated maps, it is plausible to

assume that an animated map would promote a somewhat more passive interaction (Gonçalves

et al., 2016a).

Consequently, future work will address the study of animated maps for trajectory data visual-

ization, also focused on an inexperienced population and exploring:

• The role of animated maps in the visualization, depending on the type of technique into it

is projected, e.g., if animation is used over a 2D map or a 3D STC;

• The types of tasks in which this technique may support a better performance, similarly to

what had been conducted in this research with 2D static maps and STCs;

• The users’ appreciation towards this type of visualization, alongside the results of their

analysis with them;

• The type of interactive controls required to control the flow of the animation and, thus,

explore the data.

At the time of this documents’ writing, some of these issues are already being addressed by

one of the Legacy projects, described in Section 1.3.4. In particular, the last project, Visualiza-

tion of Spatio-temporal Information for Personal Performance Analysis in Games, is studying the

adequacy of using animated 2D maps for the representation of trajectory data to video-game play-

ers, likely familiar with the domain associated with the data, but highly inexperienced in terms of

spatio-temporal data visualization and analysis.

To a certain extent, the use of this technique was also addressed in the first project of the

same section, Visualization of Human Trajectories on Mobile Devices (Vieira, 2016). Although

focused on the visualization of data on a mobile device context and, despite the small sample of
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users approached, the results of this research suggest that animated 2D maps may be less interac-

tivity demanding and more appellative to the users, while not differing significantly, in terms of

effectiveness, from static map alternatives.

Similarly, small-multiple maps are also a visualization approach promising of interesting re-

sults. Some of the approaches followed in this work considered the use of more than one map

visualization, either by displaying two different map techniques with similar information (see

Chapter 5), or multiple instances of the same technique, but displaying different sub-sets of data

regarding the same event (see Chapter 6). Considering that small-multiple maps follow the same

overall principle, it would be interesting to evaluate how the conclusions and guidelines obtained

are applicable over this technique. However, it is important to notice that, in this work, at max-

imum, only two maps were displayed simultaneously, while small-multiple maps are likely to

require a higher number.

As discussed in Chapter 2 and later shown in Chapter 7, when deciding on the type of map

approach to use, screen size is also an important factor to consider. This factor is also particularly

important when working with small-multiple maps, thus making it also an important topic for

discussion regarding this technique.

Consequently, in addition to the study of animated maps, it is also important to study small-

multiple map approaches for trajectory data visualization, in order to understand:

• The effects of screen-size and number of maps over the visualization (i.e, analyse how much

the complexity of the visualization can scale in function of the users’ data and visualization

capabilities);

• The role of small-multiple maps in the visualization, depending on the technique into it is

projected (i.e., displaying various 2D static maps or STCs);

• The types of tasks in which this technique may support a better performance;

• The type of interactive controls required to properly connect the information between the

various views.

Moreover, alongside the various additional controls implemented with the studied visualiza-

tions, the previous experiments also allowed the user to customize how the information was dis-

played over the maps. According to the comments from the study participants, this is a very

important feature and supports one of the identified design guidelines. Although no noticeable

differences were detected when comparing and analysing 2D static maps and 3D STCs, it is still

important to take into consideration how users may work with this functionality to visually codify

the displayed information and to study how this may change in function of the task and, more

importantly, the visualization technique.
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8.3.2 User Bias and Context Studies

Throughout this work, one of the main concerns with the design of the various studies and pro-

totypes was to avoid any prior knowledge and personal subjective effects over the data and ap-

plications that were to be used. This allowed to focus better on the study of these techniques in

terms of their spatial and temporal representations. Moreover, this also prevented the effects of

preconceived notions over the various analyses conducted by the users.

As previous discussed, although lacking experience in terms of visualization and analysis, it is

plausible to assume that interested users in this type of visualizations are, at least, knowledgeable

in terms of the domain or the data they are exploring. As discussed in Chapter 6, although this

factor does not seem to affect how users interact with the visualization techniques, it may have

an effect on the final conclusions obtained through the analysis. As such, it is necessary to study

the possible effects of personal bias over the analysis and how to prevent or take advantage of

them, depending on their negative or positive effects, respectively. In particular, it is important to

consider that the target audience is likely to have a significantly varied level of domain expertise,

such as observed in the study discussed on Chapter 6.

In addition, as discussed in Chapter 6, the users’ awareness of whom the data being visualized

belongs is likely to affect the users’ analysis, in terms of assertiveness and interest. This fact

supports one of the identified design guidelines, namely to emphasize the personal aspects of the

data. To a certain degree, this issue is closely related to the challenges faced by the research

areas focused on social networks and persuasion, in the sense that both take advantage of the

users’ personal information, whether it is public or private, to capture the users’ interest towards

specific applications, to optimize their social interactions, or change/improve on old habits. As

a consequence, it will be advantageous to study and understand how the knowledge acquired in

these areas of research can be applied to improve the users’ capabilities with tools for personal

analysis, particularly with spatio-temporal data.

Moreover, this research used the area of (personal) video-game analytics as a case study, a

topic with increasing relevance due to its combination of traditional visual analytics research

practices with the interests of various groups of typically non-data analysts. As such, future work

should include the continuous application of the results associated to these techniques into this

context of use, while not ignoring others in equally relevant domains, such as the analysis of per-

sonal training exercises (e.g., running or biking) and other information associated with personal

health (e.g., propagation of diseases, social networking). Although these areas share similar con-

cepts (space/time/objects), it is important to compare how the different personal contexts may

affect the analysis and the types of visualization techniques and their interactive features.
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Gonçalves, T., Afonso, A. P., and Martins, B. (2014). Visualizing human trajectories: Compar-
ing space-time cubes and static maps. In Proceedings of 28th British BCS Human Computer
Interaction Conference, pages 207–212.
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