
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPENDABLE MAPREDUCE
IN A CLOUD-OF-CLOUDS

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE EM ENGENHARIA INFORMÁTICA

Pedro Alexandre Reis Sá da Costa

Tese orientada por:
Professor Doutor Fernando Manuel Valente Ramos

Professor Doutor Miguel Nuno Dias Alves Pupo Correia

Documento especialmente elaborado para a obtenção do grau de doutor

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/159130518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ul.pt
http://www.fc.ul.pt

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPENDABLE MAPREDUCE
IN A CLOUD-OF-CLOUDS

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE EM ENGENHARIA INFORMÁTICA

Pedro Alexandre Reis Sá da Costa

Tese orientada por:
Professor Doutor Fernando Manuel Valente Ramos

Professor Doutor Miguel Nuno Dias Alves Pupo Correia

Júri:

Presidente:

– Doutor Nuno Fuentecilla Maia Ferreira Neves, Professor Catedrático, Faculdade de Ciências da Universidade de
Lisboa

Vogais:

– Doutor Nuno Manuel Ribeiro Preguiça, Professor Associado, Faculdade de Ciências e Tecnologia da Universi-
dade Nova de Lisboa

– Doutor Mário Marques Freire, Professor Catedrático, Faculdade de Engenharia da Universidade da Beira Interior

– Doutor Nuno Fuentecilla Maia Ferreira Neves, Professor Catedrático, Faculdade de Ciências da Universidade de
Lisboa

– Doutor Francisco José Moreira Couto, Professor Associado com Agregação, Faculdade de Ciências da Universi-
dade de Lisboa

– Doutor Fernando Manuel Valente Ramos, Professor Auxiliar, Faculdade de Ciências da Universidade de Lisboa

Documento especialmente elaborado para a obtenção do grau de doutor

2017

http://www.ul.pt
http://www.fc.ul.pt

Aos meus pais.

Abstract

MapReduce is a simple and elegant programming model suitable for loosely

coupled parallelization problems — problems that can be decomposed into sub-

problems. Hadoop MapReduce has become the most popular framework for

performing large-scale computation on off-the-shelf clusters, and it is widely

used to process these problems in a parallel and distributed fashion. This frame-

work is highly scalable, can deal efficiently with large volumes of unstructured

data, and it is a platform for many other applications. However, the frame-

work has limitations concerning dependability. Namely, it is solely prepared

to tolerate crash faults by re-executing tasks in case of failure, and to detect file

corruptions using file checksums. Unfortunately, there is evidence that arbi-

trary faults do occur and can affect the correctness of MapReduce execution.

Although such Byzantine faults are considered to be rare, particular MapRe-

duce applications are critical and intolerant to this type of fault. Furthermore,

typical MapReduce implementations are constrained to a single cloud environ-

ment. This is a problem as there is increasing evidence of outages on major

cloud offerings, raising concerns about the dependence on a single cloud.

In this thesis, I propose techniques to improve the dependability of MapRe-

duce systems. The proposed solutions allow MapReduce to scale out compu-

tations to a multi-cloud environment, or cloud-of-clouds, to tolerate arbitrary

and malicious faults and cloud outages. The proposals have three important

properties: they increase the dependability of MapReduce by tolerating the

faults mentioned above; they require minimal or no modifications to users’ ap-

plications; and they achieve this increased level of fault tolerance at reasonable

cost. To achieve these goals, I introduce three key ideas: minimizing the re-

quired replication; applying context-based job scheduling based on cloud and

network conditions; and performing fine-grained replication.

I evaluated all proposed solutions in real testbed environments running typical
MapReduce applications. The results demonstrate interesting trade-offs con-
cerning resilience and performance when compared to traditional methods.
The fundamental conclusion is that the cost introduced by our solutions is
small, and thus deemed acceptable for many critical applications.

Keywords: MapReduce, Big Data, Fault-Tolerance, Cloud-of-Clouds

Resumo

O MapReduce é um modelo de programação adequado para processar grandes

volumes de dados em paralelo, executando um conjunto de tarefas indepen-

dentes, e combinando os resultados parciais na solução final. O Hadoop MapRe-

duce é uma plataforma popular para processar grandes quantidades de dados de

forma paralela e distribuída. Do ponto de vista da confiabilidade, a plataforma

está preparada exclusivamente para tolerar faltas de paragem, re-executando

tarefas, e detectar corrupções de ficheiros usando somas de verificação. Esta

é uma importante limitação dado haver evidência de que faltas arbitrárias ocor-

rem e podem afetar a execução do MapReduce. Embora estas faltas Bizantinas

sejam raras, certas aplicações de MapReduce são críticas e não toleram faltas

deste tipo. Além disso, o número de ocorrências de interrupções em infra-

estruturas da nuvem tem vindo a aumentar ao longo dos anos, levantando pre-

ocupações sobre a dependência dos clientes num fornecedor único de serviços

de nuvem.

Nesta tese proponho várias técnicas para melhorar a confiabilidade do sistema

MapReduce. As soluções propostas permitem processar tarefas MapReduce

num ambiente de múltiplas nuvens para tolerar faltas arbitrárias, maliciosas

e faltas de paragem nas nuvens. Estas soluções oferecem três importantes pro-

priedades: toleram os tipos de faltas mencionadas; não exigem modificações às

aplicações dos clientes; alcançam esta tolerância a faltas a um custo razoável.

Estas técnicas são baseadas nas seguintes ideias: minimizar a replicação, desen-

volver algoritmos de escalonamento para o MapReduce baseados nas condições

da nuvem e da rede, e criar um sistema de tolerância a faltas com granularidade

fina no que respeita à replicação.

Avaliei as minhas propostas em ambientes de teste real com aplicações comuns

do MapReduce, que me permite demonstrar compromissos interessantes em

termos de resiliência e desempenho, quando comparados com métodos tradi-
cionais. Em particular, os resultados mostram que o custo introduzido pelas
soluções são aceitáveis para muitas aplicações críticas.

Palavras Chave: MapReduce, Big Data, Tolerância a Faltas, Nuvem de Nuvens

Resumo Alargado

A computação em nuvem surgiu como um paradigma de infra-estruturas de

computação em larga escala que pode oferecer uma economia significativa de

custos através da alocação dinâmica de recursos (Armbrust et al., 2009). O

termo computação em nuvem reporta-se tanto às aplicações fornecidas como

serviços pela Internet tal como ao software nos centro de dados que disponi-

bilizam esta plataforma aos utilizadores. Para materializar este conceito, os

fornecedores de serviços de nuvem têm construído grandes centros de dados

que são muitas vezes distribuídos por várias regiões geográficas para atender

eficientemente à procura dos utilizadores. Estes centros de dados são construí-

dos usando centenas de milhares de servidores comuns, e usam a tecnologia de

virtualização para fornecer recursos de computação partilhado. O uso de com-

ponentes comuns expõe o hardware a falhas que acabam por reduzir a confiabi-

lidade e a disponibilidade do serviço. O desafio de construir nuvens confiáveis

e robustas é por isso um problema crítico que merece atenção.

A computação em nuvem permite o processamento de enormes volumes de

dados que as técnicas tradicionais de base de dados e software têm tido difi-

culdade em processar dentro de tempos aceitáveis (Snijders et al., 2012). Estes

serviços que lidam com grandes quantidades de dados, big data, fornecem aos

utilizadores a capacidade de usar servidores comuns para efectuar processamento

distribuído. Um dos mais populares sistemas de processamento de dados dis-

tribuídos que é usado para analisar grandes quantidades de dados num ambiente

em nuvem é o MapReduce.

Em 2004, a Google apresentou este modelo de programação — o MapReduce —

e sua implementação (Dean & Ghemawat, 2004). O MapReduce é usado exten-

sivamente pela Google nos seus centros de dados para suportar funções essen-

ciais como o processamento de índices para os motores de busca. Este sistema é

muito bem sucedido, mas a implementação não está publicamente disponível.

Alguns anos mais tarde, uma implementação da plataforma MapReduce foi de-

senvolvida num projeto de código aberto da Apache chamado Hadoop (White,

2009). Esta versão é agora usada por muitas empresas de computação em nu-

vem, incluindo a Amazon, a IBM, a RackSpace e a Yahoo.

O termo MapReduce denomina tanto um modelo de programação como o res-

pectivo ambiente de execução. A programação em MapReduce envolve o de-

senvolvimento de duas funções: map e reduce — funções de mapa e redução.

Uma execução completa das funções de mapa e redução ocorrem numa unidade

de trabalho denominada de job. A execução do job é composta por várias fases

sequenciais. Cada arquivo de entrada é processado pelas tarefas de mapa (fase

de mapa), que produzem um resultado que é gravado num ou vários ficheiros

de saída. Estes dados de saída são particionados, transferidos e ordenados (fase

de shuffle e sort) para as tarefas de redução (fase de redução) que irão produzir

o resultado final. De acordo com Dean e Ghemawat, este modelo pode expres-

sar muitas aplicações do mundo real (Dean & Ghemawat, 2004). O modelo

generalizado do MapReduce e a variedade de aplicações que usam a plataforma

oferecem evidência clara da sua popularidade.

A plataforma MapReduce foi projetada para ser tolerante a faltas de paragem,

porque à escala de milhares de computadores e outros dispositivos (encaminha-

dores de rede e roteadores, unidades de energia), as falhas de componentes são

frequentes. O MapReduce da Google e o Hadoop usam essencialmente dois

mecanismos de tolerância a faltas: monitorização da execução das tarefas de

mapa e redução; e somas de verificação nos ficheiros gravados no sistema dis-

tríbuido para que as corrupções de arquivos possam ser detectadas (Ghemawat

et al., 2003; White, 2009).

Embora seja crucial tolerar faltas de paragem e corrupção de dados no disco,

outras faltas podem afetar o resultado do MapReduce. Estas faltas Bizantinas são

conhecidas por acontecerem raramente, mas devido ao crescimento do número

de centro de dados, há já evidência destas ocorrências, e há uma grande proba-

bilidade destas faltas acontecerem com maior frequência no futuro (Qiang Wu

& Mutlu, 2015; Schroeder & Gibson, 2007).

De facto, os servidores disponibilizados na nuvem são propensos a erros no

hardware que se podem propagar para o software (Li et al., 2008; Schroeder et al.,

2009), causando não apenas o abortar da aplicação, mas também causando fa-

lhas subtis que podem levar a erros nos resultados da computação. Esses erros

podem afetar a execução de processos que causarão o comportamento incorreto

do sistema. O MapReduce foi projetado para trabalhar em grandes centros de

dados onde esse tipo de erros tende a ocorrer (Nolting, 2012; Spectator, 2015)

e os mecanismos de tolerância a faltas do MapReduce original não podem lidar

com estas faltas arbitrárias ou faltas Bizantinas (Avizienis et al., 2004; Lamport

et al., 1982).

Um outro constrangimento do MapReduce em relação à confiabilidade é a exe-

cução ser limitada a um único centro de dados, ou seja, a uma única nuvem, o

que torna esta aplicação vulnerável à falha destas infra-estruturas. Nos últimos

anos, temos visto um aumento no número de ocorrências de erros relatados em

nuvens públicas que afetaram a disponibilidade dos serviços (Cerin et al., 2013;

Clarke, 2015; Dvorak, 2011; Raphael, 2014).

A solução que propomos nesta tese baseia-se no uso de múltiplas nuvens como

um ambiente para executar aplicações MapReduce, o que introduz várias vanta-

gens (Lucky, 2015). Primeiro, a capacidade de executar aplicações em diferentes

fornecedores de serviço tem o benefício de reduzir a dependência num único

fornecedor, o que melhora a posição do cliente na negociação de um acordo de

nível de serviço (SLA). Depois a capacidade de trocar facilmente de operado-

res significa que um cliente pode aproveitar ofertas mais atraentes a qualquer

momento sem ter problemas em usar plataformas diferentes. Em terceiro lu-

gar, a possibilidade de ter parte da computação executada em nuvens públicas

ou privadas com base em uma variedade de considerações (por exemplo, algu-

mas mais confiáveis que outras) pode aumentar a segurança. Além disso, esta

escolha permite colocar os serviços mais próximos da localização geográfica do

cliente, podendo resultar num melhor tempo de resposta. Finalmente, o uso

de múltiplas nuvens é uma técnica útil para melhorar a resiliência (Garcia et al.,

2011), o aspecto em que me centro.

Foram feitas recentemente algumas propostas no sentido de escalar o MapRe-

duce para várias nuvens (Jayalath et al., 2014; Wang et al., 2013). No entanto,

estas propostas centram-se na escalabilidade e não consideram tolerância a fal-

tas.

Como a adoção do MapReduce continua a proliferar em áreas críticas, torna-se

necessário lidar com modelos de falhas para além dos previstos pelo MapRe-

duce original. Motivados por tais aplicações críticas, as soluções que proponho

nesta tese visam obter uma execução eficiente do MapReduce num ambiente de

múltiplas nuvens de modo a conseguir tolerar faltas arbitrárias e maliciosas.

Como primeira contribuição, desenvolvi um sistema BFT MapReduce, que é

capaz de tolerar faltas arbitrárias através do uso da técnica de replicação. O de-

safio foi executar as tarefas de mapa e redução eficientemente sem a necessidade

de executar 3 f + 1 réplicas para tolerar f faltas, o que seria o caso com a repli-

cação de máquinas de estado (por exemplo, Castro & Liskov (2002); Clement

et al. (2009a); Veronese et al. (2009)). A solução desenvolvida usa várias téc-

nicas para minimizar a replicação. Para garantir o bom desempenho do sis-

tema, desenvolvi dois inovadores algoritmos de escalonamento, especulativo e

não-especulativo, que têm como objetivo melhorar o desempenho das execuções

no MapReduce. Avaliei pormenorizadamente o desempenho do sistema num

ambiente de teste real, mostrando que tem um custo aceitável em comparação

com soluções alternativas.

Uma limitação desta primeira solução é considerar um ambiente numa única

nuvem, o que a torna incapaz de tolerar interrupções na nuvem. Assim, a se-

gunda contribuição explora a idéia de ambientes virtuais compostos por múlti-

plas nuvens para evitar a incorreção ou a indisponibilidade de computação de-

vido a faltas arbitrárias, maliciosas e a interrupções na nuvem.

Ressalva-se que o uso de múltiplas nuvens para o MapReduce não é em si novo.

A novidade deste trabalho decorre do uso de um ambiente multi-nuvem não

apenas para paralelizar a computação, mas também para tolerar de forma trans-

parente este tipo de faltas. Esta solução, denominada Medusa, aborda vários

desafios não triviais. Em primeiro lugar, o Medusa é uma solução transparente

para os utilizadores, que podem correr as suas aplicações MapReduce sem ne-
cessitarem de alterações. Em segundo lugar, dado que o Medusa não exige mod-
ificações no código-fonte do Hadoop, a solução é compatível com várias versões
da plataforma. Em terceiro lugar, o Medusa propõe alcançar este nível de tol-
erância a faltas com um custo mínimo de replicação para garantir um desem-
penho aceitável. A extensa avaliação experimental realizada em ambientes reais
permite demonstrar que estes desafios foram concretizados.

Esta solução tem, no entanto, uma limitação: apenas tolera faltas ao nível do
job. Numa situação comum em que se executa um job composto por múltiplas
tarefas, uma única falha numa tarefa exige que todo o trabalho seja re-executado.
Assim, a terceira contribuição propõe um sistema, o Chrysaor, baseado num
esquema de replicação de granularidade fina que permite recuperar de faltas ao
nível da tarefa e não do job. Embora esta nova solução tenha o mesmo objectivo
que o Medusa, existem diferenças claras a nível da arquitectura. O desafio de
alcançar esta granularidade fina é exponenciado por um dos nossos requisitos:
não alterar o código-fonte do Hadoop MapReduce. Para atingir este objectivo,
o Chrysaor propõe uma nova abstração denominada de “job lógico”.

A avaliação extensa que fiz do sistema na Amazon EC2 demonstra que a gra-
nularidade fina melhora a eficiência na presença de faltas. Isto é alcançado sem
incorrer numa penalidade significativa para o caso comum (ou seja, sem falhas)
na maioria das execuções.

Em conclusão, as soluções inovadoras que proponho nesta tese - e que partilho
em forma de código aberto 1 - permitem melhorar a confiabilidade do sistema
MapReduce, sem comprometer o seu desempenho. Deste modo, acredito que
estas soluções possam ser uma contribuição importante para os utilizadores
destas plataformas, em particular no contexto de aplicações críticas.

Palavras Chave: MapReduce, Big Data, Tolerância a Faltas, Nuvem de Nuvens

1 O código fonte do Hadoop MR BFT encontra-se disponível em https://bitbucket.org/
pcosta_pt/hadoop-bft/, o código fonte do Medusa encontra-se disponível em https://
bitbucket.org/pcosta_pt/medusa e o código fonte do Chrysaor encontra-se disponível em https:
//bitbucket.org/pcosta_pt/chrysaor.

https://bitbucket.org/pcosta_pt/hadoop-bft/
https://bitbucket.org/pcosta_pt/hadoop-bft/
https://bitbucket.org/pcosta_pt/medusa
https://bitbucket.org/pcosta_pt/medusa
https://bitbucket.org/pcosta_pt/chrysaor
https://bitbucket.org/pcosta_pt/chrysaor

Acknowledgements

First and foremost, I want to acknowledge my advisor, Professor Fernando M.
V. Ramos, and co-advisor, Professor Miguel Pupo Correia. Their support and
guidance were crucial to the success of this doctoral work, and I am appreciative
of the confidence and freedom they have indulged me throughout this journey.
I also appreciate their professionalism, time, support, wise advises, motivation,
and patience. They have been an inspiration for pursuing perfection and for
becoming a better academic researcher. My deepest and heartfelt regards!

I would also like to acknowledge that the research that was developed during
the Ph.D. was only possible with the support of the current and past members
of the Navigator group, and the support of INESC-ID.

I want to acknowledge the Universidade de Lisboa. This institution has shaped
and formed many men and women since its birth in 1911. Based on the motto
ad lucem, this institution lead its students to the light of knowledge. This has
been my home for more than a decade and is not without a misty eye and
saudade that I now leave. I would like to thank a few notable individuals from
this community, in particular, from the Department of Informatics (DI) at Fa-
culty of Sciences, for their invaluable assistance, expertise, and friendship: Pro-
fessors Miguel Pupo Correia, Fernando Ramos, Marcelo Pasin, Nuno Neves,
António Casimiro, Alysson Bessani, Ibéria Medeiros, Luís Correia, and Paulo
Veríssimo.

I must thank our colleagues of project FTH-Grid for many discussions on to-
pics: Luciana Arantes, Olivier Marin, Pierre Sens, Fabrício Silva, and Julien
Sopena.

I am deeply grateful to Yahoo Research and to Xiao Bai for the opportunity to
do an internship at their Barcelona lab from April 2nd to June 30th 2013.

A very special and kindly regards to all my past and present colleagues at the
Large-Scale Informatics Systems Laboratory (LaSIGE) research laboratory, for
their friendship and tireless support. We have discussed and shared research
ideas, they have helped me to organize the Smalltalks and the NavTalks, and
have given me support to the Navigators cluster. In particular, thank you very
much to Vinícius Cogo, Diego Kreutz, Max Alaluna, Bruno Vavala, Ricardo
Pinto, André Nogueira, Ricardo Fonseca, Tulio Ribeiro, Luis Brandão, and
many others.

A heartfelt appreciation to my parents, João Sá da Costa and Teresa Sá da Costa,
who have been the foundation of my character, and without them, I would not
be here today. I do not forget my brother, João Sá da Costa, who we have grown
together, played a lot and studied in the same schools. I also do not forget the
support of my faithful friends, Ema and Vasco.

Not repeating, but reinforcing, a very special appreciation, and expressing my
sincere gratitude, to Fernando and Miguel. All this work would not exist wi-
thout them.

Finally, I gratefully acknowledge the funding sources that made this doctoral
work possible. The work developed in the PhD was partially supported by
the European Commission FP7 through project ICT-257243 (TClouds), the
SUPERCLOUD project (ref. H2020-643964), by the Fundação para a Ciência
e Tecnologia (FCT) and EGIDE (Programme PESSOA) through FTH-Grid
project, by the FCT through the project CloudFIT, and by funding of LaSIGE
Research Unit (ref. UID/CEC/00408/2013), and INESC-ID (ref. UID/CEC/
50021/2013).

I warmly thank the Grid’5000 team for the support that was given of the testbed.
This testbed is being developed under the INRIA ALADDIN development ac-
tion with support from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.fr).

Contents

Abstract i

Resumo iii

Resumo Alargado v

List of Figures xv

List of Tables xviii

List of Notations and Acronyms xxi

List of Publications xxiii

1 Introduction 1

1.1 Problem and Motivation . 2

1.2 Objective . 6

1.3 Contributions . 7

1.4 Structure of the Thesis . 11

2 Background and Related work 13

2.1 MapReduce and related models . 13

2.1.1 Architecture . 15

2.1.2 Fundamentals of MapReduce . 18

2.1.3 Enhanced MapReduce frameworks . 20

2.2 Cloud-of-clouds systems and applications . 24

2.2.1 Cloud-of-clouds MapReduce . 25

2.3 Arbitrary fault tolerance . 27

2.4 Scheduling . 31

2.4.1 MapReduce Scheduling . 32

xiii

CONTENTS

2.4.2 Scheduling in Distributed Environments 34
2.5 Summary . 37

3 Dependable MapReduce in a Single Cloud 39
3.1 Introduction . 39
3.2 System model . 41
3.3 Byzantine fault-tolerant MapReduce algorithm 42

3.3.1 Overview . 42
3.3.2 The algorithm in detail . 45
3.3.3 The prototype . 53

3.4 Evaluation . 54
3.4.1 Analytical evaluation . 54
3.4.2 Experimental evaluation . 57

3.5 Summary . 64

4 Cloud-of-Clouds Dependable MapReduce 67
4.1 Introduction . 68
4.2 System model . 70

4.2.1 Fault model . 72
4.2.2 Problem formulation . 73

4.3 Medusa: a cloud fault-tolerant MapReduce . 73
4.3.1 Overview . 73
4.3.2 Medusa proxy in a nutshell . 74
4.3.3 The Medusa scheduler . 76

4.4 Evaluation . 80
4.4.1 Experimental setup . 80
4.4.2 Experimental performance . 83

4.5 Summary . 89

5 Fine-Grained Cloud-of-Clouds Dependable MapReduce 91
5.1 Introduction . 91
5.2 System model . 93

5.2.1 Problem formulation . 95
5.3 Chrysaor . 96

xiv

CONTENTS

5.3.1 Chrysaor overview and the logical job abstraction 96
5.3.2 Chrysaor operation . 97
5.3.3 Chrysaor implementation . 100

5.4 Evaluation . 102
5.4.1 Experimental setup . 103
5.4.2 Experimental performance . 104
5.4.3 Analytical evaluation . 113

5.5 Summary . 116

6 Conclusions and Future Work 117
6.1 Conclusions . 117
6.2 Future Work . 120

6.2.1 Improvements on Medusa and Chrysaor 120
6.2.2 Exploring network programmability . 122
6.2.3 Improving security properties . 123

Bibliography 124

xv

List of Figures

2.1 Hadoop MapReduce architecture. (White, 2009) 15
2.2 Hadoop 1.X vs Hadoop 2.X. 16
2.3 Example of WordCount execution in Hadoop MapReduce. (White, 2009) . 18

3.1 Flowcharts of (a) non-speculative and (b) speculative executions. 43
3.3 Makespan of total execution time of the six GridMix2 benchmark applica-

tions varying the number of splits. 59
3.4 Percentage of data-local tasks in three of the GridMix2 benchmarks varying

the number of splits. 61
3.5 Total size of map and reduce outputs in two of the GridMix2 applications

with different number of splits. 62
3.6 Makespan of the webdatasort benchmark with fault injector enabled. 63
3.7 Makespan varying the parallelism without faults. 64

4.1 Medusa interacting with several MapReduce runtime in a multi-cloud system. 71
4.2 Phase 1: Vanilla MapReduce execution. 75
4.3 Phase 2: Global MapReduce execution. 76
4.4 Execution time of WordCount, WebdataScan, and MonsterQuery (no faults). 84
4.5 Percentage of cloud usage with both schedulers. 86
4.6 Throughput measured between multiple cloud instances. 87
4.7 Job makespan with one fault injected (WordCount). 88

5.1 Chrysaor interacting with several MapReduce runtime in a multi-cloud sys-
tem. 95

5.2 Chrysaor executing a job in two clouds without faults 98
5.3 Chrysaor executing a job in two clouds with a map task re-execution in

another cloud due to a fault . 100
5.4 Detail of job execution without faults . 105
5.5 Detail of job execution with arbitrary faults . 108

xvii

LIST OF FIGURES

5.6 Detail of job execution with malicious faults . 109
5.7 Detail of job execution with different input split sizes (without faults) . . . 111

xviii

List of Tables

1.1 Summary of contributions . 10

2.1 Summary of scheduling algorithms . 37

3.1 Analytical comparison between MapReduce systems without faults. 56
3.2 Effect of a single faulty map task in the makespan for all MapReduce systems. 57

5.1 Number of jobs to launch depending on f . 115

6.1 Summary of the contributions of the thesis . 118

xix

List of Notations and Acronyms

BFT Byzantine Fault Tolerant

DAG Directed Acyclic Graph
DIMM Dual In-line Memory Model
DoS Denial of Service
DRAM Dynamic Random-Access Memory

EBS Elastic Block Store
EC2 Elastic Compute Cloud

HDFS Hadoop Distributed Filesystem

IaaS Infrastructure as a Service

mappers Map tasks
MQ Message Queuing Service
MR MapReduce

reducers Reduce tasks

SDN Software Defined Network
SGX Software Guard Extensions
SLA Service Level Agreement
SQL Structured Query Language

TCP Transmission Control Protocol
TF-IDF Term Frequency Inverse Document Frequency
TPM Trusted Platform Module

xxi

List of Publications

Journal Papers

CostaPBC13 Pedro Costa, Marcelo Pasin, Alysson Bessani, Miguel Correia. On the Per-
formance of Byzantine Fault-Tolerant MapReduce, IEEE Transactions on Depend-
able and Secure Computing, 2013

CostaPBC17 Pedro A. R. S. Costa, Fernando M. V. Ramos, Miguel Correia. On the De-
sign of Resilient Multicloud MapReduce, IEEE Cloud Computing, 2017

Conference Papers

Costa:2016 Pedro A. R. S. Costa, Xiao Bai, Fernando M. V. Ramos, Miguel Correia.
Medusa: An Efficient Cloud Fault-Tolerant MapReduce, Proceedings of the 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2016

Costa:2017 Pedro A. R. S. Costa, Fernando M. V. Ramos, Miguel Correia. Chrysaor:
Fine-Grained, Fault-Tolerant Cloud-of-Clouds MapReduce, Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2017

Workshop paper

Correia.12.SRDS Miguel Correia, Pedro Costa, Marcelo Pasin, Alysson Bessani, Fernando
Ramos, Paulo Verissimo. On the Feasibility of Byzantine Fault-Tolerant MapReduce
in Clouds-of-Clouds, IEEE Symposium on Reliable Distributed Systems, 2012

xxiii

1
Introduction

Cloud computing has emerged as a popular paradigm of large-scale computing infrastruc-

tures that can offer significant cost savings by allowing resources to be scaled dynamically

(Armbrust et al., 2009). Cloud computing refers to both the applications delivered as ser-

vices over the Internet and systems software in the datacenters that provide those services.

Service providers have been building massive datacenters that are distributed over several

geographical regions to meet the demand for these cloud services. These datacenters are

built using hundreds of thousands of commodity servers and use virtualization technology

to provision computing resources. The use of commodity components exposes the hard-

ware to failures that reduce the reliability and availability of the cloud service. Therefore,

fault tolerance in cloud computing platforms and applications is a crucial issue to the users

and to cloud providers. As such, the challenge of building dependable and robust clouds

remains a critical research problem.

Cloud computing has enabled computation of massive volumes of data that traditional

database and software techniques had difficulty in processing within acceptable time bounds

(Snijders et al., 2012). These services that deal with big data provide users the ability to use

commodity infrastructures to process distributed computation across multiple datasets.

One of the most popular distributed data-processing systems that is used to analyze big

data in a cloud environment is MapReduce. In 2004, Google presented this programming

model and implementation for processing large data sets in a datacenter (Dean & Ghe-

mawat, 2004). MapReduce is used extensively in its datacenters to support core functions

such as the processing of indexes for its web search engine. This system is very successful,

1

1. INTRODUCTION

but its implementation is not openly available. A few years later, an implementation of
the MapReduce framework was adopted by an Apache open source project named Hadoop
(White, 2009). This version is now used by many cloud computing companies, including
Amazon, IBM, RackSpace, and Yahoo!.1 Other competing versions also exist, e.g., Mi-
crosoft’s Daytona (Barga, 2011) and the Amazon Elastic MapReduce (Amazon, 2015).

The term MapReduce denominates both a programming model and the corresponding
runtime environment. Programming in MapReduce involves developing two functions: a
map and a reduce. A full execution of the map and reduce functions happens in a job.
A job execution is composed of several phases. Each input file in a job is first processed
by the mappers (map phase), then the map outputs are partitioned, transferred and sorted
(shuffle and sort phase) to the reducers to be processed by a reduce function (reduce phase).
According to Dean and Ghemawat, this model can express many real world applications
(Dean & Ghemawat, 2004). Indeed, the widespread use of MapReduce since its inception
and the array of applications that use this framework offer clear evidence of this fact.

Google’s MapReduce platform was designed to be fault-tolerant because, at scales of
thousands of computers and other devices (network switches and routers, power units),
component failures are frequent. Dean reported the thousands of individual machines,
hard drive and memory failures in the first year of a cluster at a Google datacenter (Dean,
2009). The original MapReduce from Google and Apache Hadoop use essentially two fault
tolerance mechanisms: they monitor the execution of map and reduce tasks and reinitialize
them if they stop; and they add checksums to files with data so that file corruptions can be
detected (Ghemawat et al., 2003; White, 2009).

1.1 Problem and Motivation

Although it is crucial to tolerate crashes of tasks and data corruptions in disk, other faults
that can affect the correctness of results of MapReduce are known to happen, and will pro-
bably happen more often in the future (Qiang Wu & Mutlu, 2015; Schroeder & Gibson,
2007). A 2.5-year long study of DRAM errors in numerous servers in Google datacenters
concluded that these errors are more prevalent than previously believed, with one third of
the machines and over 8% of DIMMs affected by errors yearly, even if protected by error
correcting codes (Schroeder et al., 2009). A Microsoft study of 1 million consumer PCs

1http://wiki.apache.org/hadoop/PoweredBy

2

1.1 Problem and Motivation

showed that CPU and core chipset faults are also frequent (Nightingale et al., 2011). They

have noticed that the number of hardware crashes increases after the first occurrence and

that 20% to 40% of machines suffer intermittent faults, including 1-bit DRAM error fai-

lures. The authors also claim that 70% to 80% of the uncorrectable errors are preceded

by correctable errors, so replacing a DIMM based on the presence of correctable errors is

attractive for environments that cannot tolerate downtime. Nevertheless, there remains

a substantial number of uncorrectable errors that are not preceded by correctable errors,

requiring the investigation of other solutions. Moreover, a study performed at Facebook

datacenters over a fourteen month period analyzed memory errors from their entire fleet of

servers and observed that higher chip densities of DRAM lead to an increase in the failure

rate by 1.8 over previous generations (Qiang Wu & Mutlu, 2015).

In conclusion, hosts in the cloud are prone to soft and hard errors in the hardware

that can propagate to the software running atop (Li et al., 2008; Schroeder et al., 2009),

causing not only the crash of the application but also causing subtle failures that violate

their correctness. These uncorrectable errors can affect the execution of processes causing

the system to behave erroneously. Unfortunately, MapReduce is designed to work on large

clusters where this type of errors tends to occur (Nolting, 2012; Spectator, 2015), and the

fault tolerance mechanisms of the original MapReduce cannot deal with such arbitrary or

Byzantine faults (Avizienis et al., 2004).

Another limitation of MapReduce with respect to dependability is its design based on

a single datacenter1 (i.e., on a single cloud), which makes this framework vulnerable to

malicious attacks and cloud outages.

Malicious attacks, which include security attacks that compromise the virtual machine

(VM) or the entire server, as well as Denial of Service (DoS) attacks that can make a server,

switch, or router to become unavailable. Cloud providers can increase the security of the

cloud by replicating the service in independent hardware components. However, if an at-

tacker compromises some replicas inside a cloud, it could use them as agents of a distributed

DoS attack. Therefore, replicas located on the same cloud have a similar risk of failure by a

DoS attack, even if they are running in independent components (Deshmukh & Devadkar,

2015; Guerraoui & Yabandeh, 2010). According to the Cloud Security Alliance, distributed

1We use the terms cloud, cluster and datacenter interchangeably, while acknowledging their dif-
ference.

3

1. INTRODUCTION

DoS is one of the top nine threats to cloud computing environments (CloudSquare, 2015)
and the rate of the attacks is growing at a fast pace (Ventures, 2017).

In the last few years, we have seen an increase in the number of error occurrences re-
ported in public clouds, impacting service availability for hours (Kraft, 2017; Tsidulko,
2015). In 2015, Microsoft Azure service was down in 63 occasions, and Google had its ser-
vices down 102 times. A cloud outage in these large cloud providers can cause extensive
damage. For instance, an outage of Google cloud-based services caused a 40% drop in In-
ternet traffic during a five-minute window (Mack, 2013), or, recently, a five hour outage
crashed services belonging to major financial institutions (Dawn-Hiscox, 2017). The num-
ber of occurrences has increased, and this trend will continue to grow. In 2016, Salesforce
has lost some data due to a “successful site switch” from its primary datacenter, after power
supply problems (Sharwood, 2016). The conjunction of a database failure introduced by a
file integrity issue and an out of date backup were the cause for the data loss. A few months
ago, Amazon has also suffered an outage with great impact on the Internet (Blodget, 2017).
One incorrect command sent accidentally by an employee took more servers offline than
intended. As result, some clients could not access the service and have lost parts of data that
could not be recovered due to an inconsistent snapshot that worked as a backup. These real
incidents show that it is necessary to go beyond single-cloud solutions and explore new
avenues.

Indeed, using multiple clouds as an environment to run MapReduce applications presents
several advantages (Lucky, 2015). First, the ability to deploy applications on different cloud
providers has the benefit of reducing dependency on a single provider. The resulting lower
level of lock-in improves the customer position in obtaining a better Service-level agreement
(SLA). The ability to easily switch operators means that a customer can take advantage of
the most attractive offers available at any given time. It is also possible to have some appli-
cations that run on both private and public clouds, based on a variety of considerations,
such as security, performance or cost optimization. Moreover, deploying applications on
a cloud that is closer to the customer’s geographical location can result in better response
time and performance. Finally, and most significantly in our study, using multi-cloud di-
versity is a useful technique to improve fault tolerance (Garcia et al., 2011; Lacoste et al.,
2016).

Initial work in scaling out MapReduce to multiple clouds has been recently proposed
(Jayalath et al., 2014; Wang et al., 2013). However, these proposals focused on scalability and

4

1.1 Problem and Motivation

have not considered fault tolerance. For MapReduce to execute geo-distributed operations

to cope with the requirement of big data processing, while simultaneously tolerating Byzan-

tine faults and cloud outages, the system needs to not only be scaled to multiple clouds, but

new techniques have to be developed to tolerate such faults.

Byzantine fault tolerant (BFT) replication techniques are a clear candidate for this pur-

pose, but they are considered expensive as one expects these faults to be rare. However,

as explained before, these types of faults are not rare and have, in fact, caused high losses

to several companies (Cerin et al., 2013; Clarke, 2015; Raphael, 2014). More importantly,

for very critical applications that are heavily dependent on data, such as bioinformatics or

finance, any kind of errors and unavailability are unacceptable (Dai et al., 2012; O’Dowd,

2015).

For bioinformatics studies, clouds are crucial for data analysis and knowledge discovery,

and delivering a correct computation result is of utmost importance (Truong & Dustdar,

2009). MapReduce is currently being used as a replacement of traditional techniques to

speed up several biomedical tasks like identifying unproven cancer treatments or classify-

ing biometric measurements (Ferraro Petrillo et al., 2017; Kohlwey et al., 2011; Mohammed

et al., 2014). Financial institutions are also using big data analysis to improve customer’s in-

telligence, reduce risk, and meet regulatory objectives in their solutions (O’Dowd, 2015).

The algorithms used for these computations are implemented in MapReduce to make fi-

nancial predictions such as the future value of stock markets using historical data (Dubey

et al., 2015; Mukesh, 2015; Sharma, 2016).

The adoption of MapReduce is continuing to proliferate in critical areas, as these two

examples, and the requirement of having to deal with fault models beyond crash failures

is becoming of high importance to avoid unintended outcomes. For example, a malicious

insider in a cloud that hosts an epidemiological surveillance system who tampers patient’s

reports may lead to disastrous consequences (Claycomb & Nicoll, 2012). Moreover, tem-

porary unavailability of the financial system in one cloud (due to a cloud outage) may dra-

matically influence the investment decisions and cause huge financial loss (Blodget, 2017).

Motivated by such critical applications, the cost of replication becomes acceptable in order

to guarantee that rare faults with devastating consequences do not occur. Moreover, the

design approach to follow should aim to minimize this cost.

5

1. INTRODUCTION

1.2 Objective

Motivated by the above, we address the referred MapReduce dependability limitations —

inability to deal with arbitrary faults and cloud outages — by fulfilling the following re-

quirements: (i) scale out MapReduce to multiple clouds, (ii) enable MapReduce to tolerate

arbitrary and malicious faults, and cloud outages, while (iii) guaranteeing acceptable per-

formance.

Scaling out MapReduce computation to multiple clouds is not, in itself, new. The frame-

work has been used over several clouds for large-scale data processing, from the construc-

tion of indexes in multi-site web search engines (Baeza-Yates et al., 2009) to the execution of

multi-cloud BLAST computations for bioinformatic applications (Matsunaga et al., 2008).

More recently, a series of works were proposed (Jayalath et al., 2014; Wang et al., 2013)

to perform a sequence of MapReduce jobs across multiple datacenters. All these works

have ignored the fault tolerance aspect. The novelty of our proposal arises from the use

of a multi-cloud environment not only to parallelize computation but also to achieve fault

tolerance. 1

The arbitrary faults we address in our work cannot be detected using file checksums, so

they can silently corrupt the output of any map or reduce task, corrupting the result of the

MapReduce job. As explained, this can be problematic for critical applications. However,

it is possible to mask the effect of such faults by executing each task more than once, compa-

ring the outputs of these executions, and disregarding the non-matching outputs. Sarmenta

proposed such an approach in the context of volunteer computing to tolerate malicious vo-

lunteers that returned false results of tasks they were supposed to execute (Sarmenta, 2002).

In contrast to our setting, the authors considered only bag-of-tasks applications, which are

simpler than MapReduce jobs. A similar but more generic solution consists in using the

state machine replication (SMR) approach (Schneider, 1990). This approach is not directly

applicable to the replication of MapReduce tasks and applies only to replicate jobs. With

SMR, each replicated job, which is represented by a process, starts in the same initial state

and executes the same requests in the same order. In the end, the determinism of the pro-

cesses will produce the same output. If we assume that each failure only affects one job in

the case of arbitrary faults, it is necessary to combine at least 3f+1 outputs produced by

1We use the term multi-cloud as synonym of cloud-of-clouds.

6

1.3 Contributions

the job replicas to guarantee that a majority of the outputs remains correct even after f fai-

lures. This solution offers poor performance, which makes it unattractive when we want

to tolerate this type of faults. We could use another simple scheme that would consist in

executing jobs sequentially until f+1 identical outputs were obtained, ensuring the correct

result. However, MapReduce is slow in loading a job and reading the input data (Shi et al.,

2015) so sequential execution would accumulate these delays. Moreover, each fault would

lead to a new job execution, increasing, even more, the execution time. Our objective is

to tolerate arbitrary faults while minimizing the replication cost. In addition, we want to

replicate the execution across clouds to tolerate the disruption of a cloud service.

Our third goal is to make MapReduce tolerate the faults mentioned above with little im-

pact on performance. By minimizing the number of replicas to execute, as stated above, we

aim to improve performance when faults do not occur. To further improve performance,

we investigate fine-grained replication techniques and novel MapReduce scheduling algo-

rithms.

As a general goal to foster the adoption of our solutions, we aim for designs that lead to

solutions that are transparent to users and that minimize or avoid changes to the MapReduce

framework.

1.3 Contributions

To fulfill the goals stated before, we make the following contributions in our work:

(i) We start by exploring the notion of replication of computation in order to tolerate

arbitrary and malicious faults. We propose a Byzantine fault-tolerant MapReduce frame-

work that increases the dependability of the framework by replicating MapReduce tasks

and distributing them efficiently. The challenge is to do this efficiently, without the need to

run 3 f +1 replicas to tolerate at most f faults, which would be the case with state machine

replication (e.g., Castro & Liskov (2002); Clement et al. (2009a); Veronese et al. (2009)).

We use several techniques to reduce the overhead to improve performance, such as run-

ning fewer tasks in the scenario with no faults, replicating tasks only when necessary, and

offering modes of execution that explore speculation.

We thoroughly evaluated the proposed solution in a real testbed, showing that it uses

around twice the resources of the original Hadoop MapReduce, instead of the alternative

7

1. INTRODUCTION

that triples the number of resources. This work was published in IEEE Transactions on

Dependable and Secure Computing (Costa et al., 2013). 1

(ii) The first solution is limited to a single cloud, so our second contribution proposes

a multi-cloud setting. The ability to deal with the new types of faults introduced by such

settings, such as the outage of a whole datacenter or an arbitrary fault caused by a malicious

cloud insider, increases the endeavor considerably. To tackle this, we propose a system,

Medusa, that is able to deal with the new types of faults introduced by cloud environments,

such as the outage of a whole datacenter and arbitrary or malicious faults. The system is

configured with two parameters f and t : f is the maximum number of faulty replicas that

can return the same erroneous result given the same input, and t is the number of faulty

clouds that the system tolerates before the service becomes unavailable.

Our solution fulfills four objectives. First, it is transparent to the MapReduce applica-

tions written by the users. Secondly, it does not require any modification to the Hadoop

framework. Thirdly, despite no changes to the original Hadoop, the proposed system

goes beyond the fault tolerance mechanism offered by MapReduce, by tolerating arbitrary

faults, cloud outages, and even malicious faults caused by corrupt cloud insiders. Fourth,

it achieves this increased level of fault tolerance at a reasonable cost.

We have performed an extensive experimental evaluation in the ExoGENI (Baldine

et al., 2012) testbed in order to demonstrate that our solution significantly reduces execu-

tion time when compared to traditional methods that achieve the same level of resilience.

This work was published in the 16th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing conference 2.

(iii) The previous contribution favors transparency over performance by replicating

MapReduce jobs. Replicating jobs is, however, a coarse-grained solution that limits per-

formance in case of faults. By performing fine-grained detection at the task level, we can

improve the overall performance of the system in case of task failure. As such, our third con-

tribution, Chrysaor, employs an innovative fine-grained replication scheme to tolerate faults

by re-executing only the tasks that were affected in case of failures. Similar to Medusa, this

system is configured with the parameters f and t .

1IEEE Transactions on Dependable and Secure Computing is a journal with impact factor of 1.351.
2IEEE/ACM CCGRID is a core A conference in cluster, cloud, and grid computing with Google h-

index=38. The acceptance rate is around 20%.

8

1.3 Contributions

This solution has three important properties: it tolerates arbitrary and malicious faults,
and cloud outages at a reasonable cost; it requires minimal modifications to the users’ ap-
plications; and it does not involve changes to the Hadoop source code.

We performed an extensive evaluation of this system in Amazon EC2, showing that
our fine-grained solution is efficient in terms of computation by recovering only faulty
tasks without incurring a significant penalty for the baseline case (i.e., without faults) in
most workloads.

This work was published in the 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing conference and won the Best Student Paper Award.

In summary, we show in Table 1.1 the characteristics of our contributions. These so-
lutions increase Hadoop MapReduce dependability but employ different system models.
BFT MapReduce deals with Byzantine faults in a single cluster, and Medusa and Chrysaor
deal with Byzantine faults and cloud outages in a multi-cloud environment.

9

1. INTRODUCTION

Ta
bl

e
1.

1:
Su

m
m

ar
y

of
co

nt
ri

bu
tio

ns

C
ha

pt
er

Sy
st

em
N

am
e

E
xe

cu
tio

n
E

nv
ir

on
m

en
t

R
ep

lic
at

io
n

le
ve

l
Fa

ul
ts

to
le

ra
te

d
D

efi
ni

tio
n

of
f

an
d

t

3
BF

T
M

ap
R

ed
uc

e
a

Si
ng

le
cl

ou
d

Ta
sk

s
A

cc
id

en
ta

la
nd

By
za

nt
in

e
fa

ul
ts

f
=

m
ax

.n
um

be
r

of
fa

ul
ty

ta
sk

re
pl

ic
as

th
at

re
tu

rn
w

ro
ng

ou
tp

ut
.

4
M

ed
us

a
b

C
lo

ud
-o

f-
cl

ou
ds

Jo
bs

A
cc

id
en

ta
l,

m
al

ic
io

us
,a

nd
By

za
nt

in
e

fa
ul

ts
+

cl
ou

d
ou

ta
ge

s
f=

m
ax

.n
um

be
r

of
fa

ul
ty

ta
sk

re
pl

ic
as

th
at

re
tu

rn
th

e
sa

m
e

w
ro

ng
ou

tp
ut

;t
=

m
ax

.n
um

be
r

of
fa

ul
ty

cl
ou

ds
.

5
C

hr
ys

ao
r

c
C

lo
ud

-o
f-

cl
ou

ds
Ta

sk
s

A
cc

id
en

ta
l,

m
al

ic
io

us
an

d
By

za
nt

in
e

fa
ul

ts
+

cl
ou

d
ou

ta
ge

s
f=

m
ax

.n
um

be
r

of
fa

ul
ty

ta
sk

re
pl

ic
as

th
at

re
tu

rn
th

e
sa

m
e

w
ro

ng
ou

tp
ut

;t
=

m
ax

.n
um

be
r

of
fa

ul
ty

cl
ou

ds
.

a So
ur

ce
co

de
av

ai
la

bl
e

at
h
t
t
p
s
:
/
/
b
i
t
b
u
c
k
e
t

.o
r
g
/
p
c
o
s
t
a
_
p
t
/
h
a
d
o
o
p
-
b
f
t
/

b So
ur

ce
co

de
av

ai
la

bl
e

at
h
t
t
p
s
:
/
/
b
i
t
b
u
c
k
e
t

.o
r
g
/
p
c
o
s
t
a
_
p
t
/
c
h
r
y
s
a
o
r
/

c So
ur

ce
co

de
av

ai
la

bl
e

at
h
t
t
p
s
:
/
/
b
i
t
b
u
c
k
e
t

.o
r
g
/
p
c
o
s
t
a
_
p
t
/
m
e
d
u
s
a
/

10

https://bitbucket.org/pcosta_pt/hadoop-bft/
https://bitbucket.org/pcosta_pt/chrysaor/
https://bitbucket.org/pcosta_pt/medusa/

1.4 Structure of the Thesis

1.4 Structure of the Thesis

The dissertation is organized as follows:
Chapter 2 provides the context in which the thesis appears and presents the related

work.
Chapter 3 presents a Byzantine fault-tolerant MapReduce that can mask arbitrary faults

by executing each task more than once, comparing the outputs of these executions, and
disregarding non-matching outputs.

Chapter 4 describes a solution, Medusa, for scaling out MapReduce to multiple clouds
and, simultaneously, tolerating the new faults introduced by such multi-cloud environ-
ment.

Chapter 5 presents a solution, Chrysaor, that is based on a fine-grained replication
scheme that tolerates faults at the task level, contrary to Medusa.

Finally, Chapter 6 concludes the thesis and discusses some future work.

11

2
Background and Related work

This section provides background on the problem at hand, mainly by introducing the nec-

essary concepts and discussing relevant work done in the area. Section 2.1 introduces the

MapReduce programming model and implementation as well as different enhancements

to the framework that try to improve specific features to solve particular problems or to

adapt it to specific environments. In Section 2.2, we outline the challenges of having ser-

vices running in multiple clouds and describe the frameworks that successfully make use

of this environment in order to improve reliability and resiliency. Section 2.3 explores

arbitrary fault-tolerant techniques to achieve this level of resiliency. Finally, as the perfor-

mance of the computations is very dependent on the scheduling algorithms, in Section 2.4

we describe several schedulers for MapReduce and for multi-cloud environments.

2.1 MapReduce and related models

Over the years, many systems have been proposed to parallelize computation automatically

(Blelloch, 1989; Gao et al., 2007). One common characteristic of these works was their

restricted programming models, which make them impracticable and unsuitable for typical

applications.

In 2004, Google presented the MapReduce programming model and implementation

for processing large data sets in a datacenter (Dean & Ghemawat, 2004). Since then, MapRe-

duce (MR) has been attracting a lot of interest as a convenient tool for processing massive

13

2. BACKGROUND AND RELATED WORK

datasets, as it adapts well to large real-world computations, scaling to thousands of proces-
sors and offering fault tolerance for a variety of applications.

A few years later, an implementation of the MapReduce framework was created as an
Apache open source project named Hadoop (White, 2009). This distribution is presently
used by many cloud computing companies, including Amazon, IBM, RackSpace, and Ya-
hoo!.1 The popularity of Hadoop MapReduce comes from several reasons. First, it is an
open source framework that can process big data in inexpensive commodity servers. Sec-
ond, it is an easy to use, highly scalable framework. Third, the myriad side projects have
turned Hadoop into an ecosystem for storing and processing big data (Lee et al., 2012).

The research community also contributed to the framework popularity by exploring it
and publishing various MapReduce algorithms, extensions, and components to solve spe-
cific problems or improve performance. Since its origin, it has been used for a variety of
tasks, from page ranking (Bahmani et al., 2011) to climate research (Novet, 2013), from
genome analysis (Menon et al., 2011) to high-energy physics simulation (Wang et al., 2013).
Commercial versions of the framework also started to appear, e.g., Amazon Elastic MapRe-
duce (Amazon, 2015) and Microsoft Daytona (Barga, 2011).

MapReduce is a paradigm that combines distributed and parallel computation with dis-
tributed data storage and retrieval. This programming model enables programmers to write
distributed applications without having to worry about the underlying distributed comput-
ing infrastructure. A user just needs to analyze data that resides in a distributed file system
using two types of functions: map and reduce. MapReduce offers means to handle data
partitioning, task scheduling, distributed computation, and fault tolerance in a cluster of
commodity servers, such as those available in common cloud computing services. All the
modules in Hadoop are designed with a fundamental assumption that hardware failures are
a common occurrence and should be automatically handled by the framework. It deals
with network communication costs and data localization, which is essential to a good dis-
tributed algorithm. The simplicity of the programming model and the quality of services
provided by many implementations of MapReduce attracted a lot of enthusiasm among
distributed computing communities.

The term Hadoop has come to refer not just to the base modules above, but also the
collection of additional software packages that can be installed on top of, or alongside,
Hadoop. In this work, we just focused on Hadoop MapReduce.

1http://wiki.apache.org/hadoop/PoweredBy

14

2.1 MapReduce and related models

Client node

client JVM

Wordcount
Program JobClient

Jobtracker node

JobTracker
5:initialize

job
2: get new job ID

4: submit job

3: copy job
resources

6: retrieve
input splits

TaskTracker

child JVM

Child

Maptask
or

reducetask

10:run

7:heartbeat

8:retrieve job
resources

9:launch

Tasktracker node

1: run Job

NameNode

DataNodeDataNode DataNode

Secondary
NameNode

Node 1 Node 2

Node 3 Node 4 Node 5

HDFS

Figure 2.1: Hadoop MapReduce architecture. (White, 2009)

In the following sections (Section 2.1.1 and Section 2.1.2), we detail the architecture of

MapReduce and give an example of its execution to help the reader understand the main

concepts.

2.1.1 Architecture

Hadoop is an open-source implementation of MapReduce and is the most popular variant

currently used by several large companies (White, 2009). We explain Hadoop MapReduce

architecture instead of Google MapReduce because the latter is not available, so many de-

tails are unclear.

The core of the Hadoop framework consists of a storage part, known as Hadoop dis-

tributed file system (HDFS), and a processing part called MapReduce for distributed pro-

cessing. As illustrated in Figure 2.1, Hadoop consists of a number of different daemon-

s/servers that run inside a single datacenter: NameNode, DataNode, and Secondary NameN-

15

2. BACKGROUND AND RELATED WORK

MapReduce
(cluster resource management

and data processing)

HDFS
(distributed file system)

HDFS
(distributed file system)

YARN
(cluster resource management)

MapReduce
(data processing)

Others
(data processing)

Hadoop 2.0
Hadoop 1.0

Figure 2.2: Hadoop 1.X vs Hadoop 2.X.

ode for managing HDFS; and JobTracker and TaskTracker for performing MapReduce.

Initially, Hadoop was presented as version 1.X. In this version, there was only a MapRe-

duce framework that worked on top of HDFS (see Figure 2.2). A new Hadoop architecture

was created in 2013 – Hadoop 2.X – to improve the performance for specific applications, to

support additional processing models, and to implement a more flexible execution engine.

The new version introduced a new component called YARN, which is a resource manager

that separates the processing engine and resource management capabilities of MapReduce.

YARN is often called the operating system of Hadoop because it is responsible for man-

aging and monitoring workloads, maintaining a multi-tenant environment, implementing

security controls, and managing high availability features of Hadoop. The idea is to have

a global ResourceManager and a per-application ApplicationMaster. The ResourceManager

and the ApplicationManager replace, respectively, the JobTracker and the TaskTracker in

the new version. However, in general, they perform the same roles.

In Hadoop 1.X, the JobTracker is responsible for both managing the cluster’s resources

and driving the execution of the MapReduce job, and the TaskTracker is responsible for

launching and managing map and reduce tasks in a server. In Hadoop 2.X, the role of

the JobTracker was divided into two separate components: resource management and job

scheduling/monitoring. The ResourceManager is responsible for the launching and man-

aging of applications. The role of the TaskTracker was replaced by the ApplicationManager

which is responsible for maintaining a collection of submitted applications. In the case of

MapReduce, it is capable of creating and managing containers where map and reduce tasks

will run.

16

2.1 MapReduce and related models

In the rest of this section, we describe the two most crucial components for our work:

HDFS and MapReduce.

HDFS is a file system designed for storing very large files and optimized for streaming

access patterns. Since it is expected to run on commodity hardware, it aims to take into

account and handle failures on individual machines. As it is optimized for streaming access

of large files, random access to parts of files is significantly more expensive than sequential

access, and there is also no support for updating files, only append is possible. The typical

scenario of applications using HDFS follows a write-once read-many access model.

Files in HDFS are split into many large blocks (with size usually a multiple of 64 MB)

which are stored on DataNodes. A file is typically distributed over a number of DataNodes

to facilitate high bandwidth and parallel processing. Data blocks in HDFS are replicated

and stored on three machines by default to improve reliability, with one of the replicas

in a different rack for increasing availability further. A separate NameNode handles the

maintenance of file metadata. Such metadata includes mapping from file to block, and

location (DataNode) of the block. The NameNode periodically communicates its metadata

to a Secondary NameNode which can be configured to do the task of the NameNode in

the case of the latter’s failure.

MapReduce: In Hadoop, the JobTracker is the access point for clients. The duty of

the JobTracker is to ensure fair and efficient scheduling of incoming MapReduce jobs and

assign the tasks to the TaskTrackers which are responsible for execution. A TaskTracker

can run many tasks depending on available resources and will allocate a new task sent by the

JobTracker when ready. The relatively small size of each task compared to a large number

of tasks in total helps to ensure load balancing among the machines. It should be noted

that while the number of map tasks to be performed is based on the input size (number

of splits), the number of reduce tasks for a particular job is user-specified and defined in a

configuration file.

In a large cluster, machine failures are expected to occur frequently, so regular heartbeat

messages are sent from TaskTrackers to the JobTracker. In this way, failures can be detected,

and the JobTracker can reschedule the failed task to another TaskTracker. Hadoop follows a

speculative execution model for handling failures. Instead of fixing a failed or slow-running

task, it executes a new equivalent task as a backup.

17

2. BACKGROUND AND RELATED WORK

Failure of the JobTracker itself is not handled, being a single point of failure. If it goes

down, all running jobs are halted.

2.1.2 Fundamentals of MapReduce

Deer Beer River
Car Car River

Deer Beer River

Beer, 2
Car, 3

Deer, 2
River, 2

Deer Beer River

Car Car River

Deer Beer River

Dear, 1
Beer, 1
River, 1

Car, 1
Car, 1

River, 1

Deer, 1
Beer, 1
River, 1

Beer, 1
Beer, 1

Car, 1
Car, 1
Car, 1

Deer, 1
Deer, 1

River, 1
River, 1

Beer, 2

Car, 3

Deer, 2

River, 2

Input Splitting Map Shuffle & Sort Reduce Final Result

Job execution
Reduce

taskMap task

Figure 2.3: Example of WordCount execution in Hadoop MapReduce. (White, 2009)

In Hadoop, a user writes an application that consists of a map and a reduce function,

that will be used by the framework to process data in-parallel on large clusters. In this

section, we will use the WordCount application as an example (Fig. 2.3). WordCount is a

standard application that counts word occurrences from an input file. A representation of

the example is depicted here as a diagram to help understand a job execution.

A MapReduce job is characterized by two phases: the map phase that is specified by a

map function; and the reduce phase which processes these map results and produces a final

output. A map function takes key/value pairs as input, performs some computation on

this input, and produces intermediate results in the form of key/value pairs. The output

of the computation are shuffled and sorted before the reduce phase. The shuffle step can be

more time-consuming than the other stages depending on network bandwidth availability

and other resources. In more detail, considering the WordCount example, when the client

submits a job, the MapReduce framework starts an execution that consists of the following

six steps:

18

2.1 MapReduce and related models

Input reader: The input reader in its basic form takes input from files (large blocks)

and divide them into appropriate splits. It is possible to add support for other input types so

that input data can be retrieved from a database or even from main memory. The data are

divided into splits which are the unit of data processed by a map task. A typical split size is

the size of an HDFS block, which is 64 MB by default, but this is a configurable parameter.

Suppose we want to store 1GB of data in HDFS. The data are split into 1GB/64MB=16

split/blocks that will be distributed across the DataNodes. These blocks will reside on

different DataNodes, based on the cluster configuration. The number of map tasks or

mappers in a MapReduce program is defined by the number of splits. In our example, the

input is divided into three blocks containing part of the data, and each block is going to be

processed by a mapper.

Map function: A map task takes as input a key/value pair from the input reader, per-

forms the logic of the map function on it, and outputs the result as key/value pairs. The

results from a map task are initially output to main memory, but when it reaches a certain

limit, it spills the data to the local disk. The spill files are in the end merged into one sorted

file. In our example, the three mappers produce intermediate data that will contain pairs

where for each word is attributed the value 1.

Shuffle & Sort: Shuffling is the process of transferring data from the mappers to the

reducers. Without shuffling, reduce tasks would not have input data. Prior to the shuffling,

a partition function has the goal to determine to which reducer a key-value pair will go. In

this example, it is used a hashing function that creates unique subsets of the same word from

the map output for each reducer. The sorting consists in grouping and sorting the values

by key. Each reduce task will sort the data when the shuffling end. The sorting happens

before starting the reduce phase.

Reduce function: The reduce function is invoked once for each distinct key and is

applied on the set of associated values for that key, i.e., the pairs with the same key will

be processed as one group. The input to each reduce task is guaranteed to be handled in

increasing key order. It is possible to provide a user-specified comparison function to be

used during the sort process. In our example, the goal of the reduce function is to sum all

occurrences of each unique word.

Output writer: The output writer is responsible for writing the output to stable sto-

rage, which can be a database or a file system. In Hadoop, the output of the reduce tasks is

19

2. BACKGROUND AND RELATED WORK

stored in HDFS by default. The user can configure the platform to store the output in the

local disk or in a database.

2.1.3 Enhanced MapReduce frameworks

Different lines of work try to improve specific features of the framework to solve particular

problems or to adapt it to specific environments. In this section, we present related work

on trying to enhance MapReduce characteristics.

Hadoop MapReduce relies on shuffle and sort algorithms for grouping map outputs.

As a consequence, map and reduce functions are blocking in that all tasks should be

completed to move forward to the next stage or job. This property causes performance

degradation. MapReduce Online is an alternative solution that supports online aggrega-

tion (Condie et al., 2010). The authors modified MapReduce for the map tasks to push data

periodically to the reduce tasks. As result, pipelining the batch processing resulted in bet-

ter performance. Similar to MapReduce Online, Li et al. have adapted MapReduce for I/O
intensive operations (Li et al., 2011). This solution uses hash tables for better performance

and for incremental processing. As soon as the intermediate data is produced, results are

pushed to buckets that are consumed by reducers. Reducers perform the aggregation in

each bucket that is stored with a unique key while the map output is being produced.

MapReduce is commonly used in dedicated computing environments where a fixed

number of slave nodes and a master node are configured in the platform. By contrast,

MOON is a system designed to support MapReduce jobs on opportunistic environments,

like volunteering computing (Lin et al., 2010). MOON extends Hadoop with adaptive task

and data scheduling algorithms to offer reliable services on a hybrid resource architecture.

The adaptive task and data scheduling algorithms in MOON distinguish between various

types of MapReduce data and node outage to place tasks and data on both volatile and ded-

icated nodes. Similarly to MOON, the goal of P2P-MapReduce is to investigate how to

modify the master-slave architecture of current MapReduce implementations to make it

more suitable for Grid and P2P-like dynamic scenarios characterized by high churn rate

(Marozzo et al., 2008, 2012). The authors extended the MapReduce architectural model

making it suitable for highly dynamic environments where failure must be managed to

avoid a critical waste of computing resources and time. P2P-MapReduce adopts a peer-to-

peer model where a set of nodes can act as master or slaves at each time for load balancing

20

2.1 MapReduce and related models

purposes.

Iterative MapReduce has also been studied for hybrid cloud environments (Chu et al.,
2006; Clemente-Castello et al., 2017). In this work, the authors combined several MapRe-
duce data locality techniques to achieve scalability for iterative applications. The results
showed that it is feasible to obtain a speedup for applications that scale on-premise with
specialized data locality strategies. Enforcing the exact locality in the scheduling policy can
compete against the performance levels of similar single-site Hadoop deployments.

Phoenix is an implementation of MapReduce developed on top of p-threads that targets
shared-memory systems such as multi-core chips and symmetric multiprocessors (Ranger
et al., 2007). The authors use thread and shared-memory buffers to facilitate communi-
cation between tasks and minimize the overheads of task spawning and data communica-
tion. Phoenix leads to similar performance for most applications when compared with the
same application built with p-threads while offering a high level of abstraction. Alterna-
tively, LEMO-MR is an optimized implementation of MapReduce for both on-disk and
in-memory applications (Dede et al., 2014; Fadika & Govindaraju, 2010). The LEMO-MR
is an elastic approach to MapReduce where a cluster can be scaled out without the need to
restart the system. This idea contrasts Hadoop MapReduce implementation. The master
node can choose which workers will be mappers and reducers, and the work is sent from the
master node. In case of a failure, the communication pipe is broken, and the master node
can detect who has failed. The LEMO-MR evaluation showed that it could perform much
better when running with few workers, but as the number increases, Hadoop MapReduce
presents similar results.

Another significant trend is adapting MapReduce for scientific computing, e.g., for run-
ning high energy physics data analysis and K-means clustering (Cui et al., 2014), and for the
generation of digital elevation models (Krishnan et al., 2010).

Yahoo! Research developed a platform for executing chains of MapReduce programs
used with Hadoop called Pig (Gates, 2011). The design goal of Pig is to be appealing to
experienced programmers for performing ad-hoc analysis of huge datasets. For this frame-
work, the MapReduce paradigm is too low-level and rigid, and leads to a significant amount
of custom user code that is hard to maintain, and reuse. Consequently, the new language
called Pig Latin combines a declarative language style similar to SQL with the procedural
programming of MapReduce and has several features to help a programmer to achieve effi-
ciently parallel execution of data analysis tasks (Grolinger et al., 2014; Olston et al., 2008).

21

2. BACKGROUND AND RELATED WORK

In contrast, Osprey is an SQL system that implements a MapReduce strategy to query data

replicated on different databases (Yang et al., 2010). It does so by splitting running queries

into sub-queries and executing them in parallel. The intermediate results of the sub-queries

are merged before the result being sent to the client. Similarly to MapReduce, in a case of

a fault, Osprey uses re-execution to minimize the effect of the “stragglers”.

MapReduce is suitable to execute easily a wide range of applications using distributed

computing, but it is inefficient implementing others (Bu et al., 2010; Ekanayake et al., 2008;

Power & Li, 2010). Alternatives to the Hadoop framework try to enhance MapReduce char-

acteristics to enable complex interactions, improve efficiency, and provide a higher level of

abstraction (Alexandrov et al., 2014). This is useful when we want to deal with second-order

functions (Battré et al., 2010), or combine communication channels with computational

vertices to form complex data flow graphs (Gonzalez et al., 2014; Isard et al., 2007).

In 2010, Microsoft lacked a distributed computing framework that could run in Mi-

crosoft Azure cloud service 1 such as MapReduce. It only supported basic queue-based job

scheduling. At that time, Microsoft introduced a novel MapReduce runtime called Azure

MapReduce that improves the original MapReduce in several aspects (Gunarathne et al.,

2010). The Azure MapReduce is a decentralized platform that does not contain a master

node, avoiding that single point of failure. In addition, it allows to scale up or down the

number of computing nodes even in the middle of computation. The Azure MapReduce

leverages these characteristics to provide an efficient on-demand alternative to traditional

MapReduce clusters.

Twister, a lightweight — yet enhanced — distributed in-memory MapReduce, expands

the applicability of the framework to classes of applications that need iterative computa-

tions, such as data clustering and machine learning (Ekanayake et al., 2010). Twister uses

publish/subscribe messaging (pub/sub) for communication and data transfer, facilitating

multicast and broadcast messaging. In contrast, all communication in Hadoop MapReduce

is point-to-point. Twister also provides fault tolerance for iterative MapReduce computa-

tions. The framework saves the application state of the computation on every iteration so

that, in the case of a failure, the entire computation can roll back to the last correct state.

1The Microsoft Azure infrastructure is a cloud computing platform created by Microsoft for building,
deploying, and managing applications and services through a global network of Microsoft-managed datacen-
ters.

22

2.1 MapReduce and related models

The evaluation results have shown that Twister performs and scales well for many complex

iterative MapReduce applications.

Dryad is an alternative solution to MapReduce developed by Microsoft Research (Is-

ard et al., 2007; Yu et al., 2008). Dryad also provides reliable, distributed computing on

thousands of servers for large-scale data parallel applications, but, differently from MapRe-

duce, it allows to create more complex data flow graphs, meaning more than a single map

and reduce iteration in the flow. This framework allows communication between stages

to happen over more than just files stored in the distributed file system, by means of sock-

ets, shared memory, and pipes to be used as channels between elements. It ultimately ends

up looking like a directed acyclic-graph (DAG) of user-defined elements. Data flows bet-

ween elements over a choice of channels, and the elements are all user-defined, bringing the

benefit of more efficient communication, the ability to chain together multiple stages and

express more complicated computation. This solution is useful to deal with problems that

are difficult to solve in a large-scale and concurrent way, such as data-mining applications,

image and stream processing.

CIEL is a similar solution to Dryad, which can also make data-dependent control flow

decisions to compute iterative and recursive algorithms (Murray et al., 2011). This solution

could offer a more powerful programming model and execution engine than Dryad. What

differentiates CIEL from Dryad is that this framework can provide dynamic task graphs

and control flow requiring low-overhead runtime approaches to not only schedule tasks

but also to reschedule tasks when failures occur. CIEL tolerates faults by re-executing those

that have failed or stopped responding in the worker nodes. When a failure happens in the

master node, CIEL launches a new master to resume execution immediately.

Another framework that improves over MapReduce is Nephele. This framework ex-

ploits the dynamic resource allocation offered by clouds for both task scheduling and exe-

cution. The need to create more complex data flows led its authors to propose a parallel

data processor centered around a programming model of so-called Parallelization Contracts

(PACTs) (Battré et al., 2010; Warneke & Kao, 2009). The PACT programming model is a

generalization of the map/reduce programming model, extending it with further second-

order functions, useful for relational query processing or data mining. Similar to Dryad,

Nephele considers incoming jobs to be directed acyclic graphs (DAGs) with vertices being

sub-tasks and edges representing communication channels between these sub-tasks. During

23

2. BACKGROUND AND RELATED WORK

execution, Nephele allocates resources dynamically in order to match the workload, and
allows communication between sub-tasks using network, in-memory, and file channels.

This impressive list of works (and we are only touching the surface) show the impor-
tance of the MapReduce programming model to solve complex applications from different
areas, but also its limitations and proposals to address them. However, none of them im-
proves the original MapReduce regarding fault tolerance, namely, to tolerate arbitrary faults
and cloud outages.

2.2 Cloud-of-clouds systems and applications

The increasing maturity of cloud computing technology is leading many organizations to
migrate their systems and applications to operate entirely or partially in the cloud. Howe-
ver, existing cloud computing services are today problematic for running critical applica-
tions, which may range from business-critical tasks of companies to mission-critical tasks
for the society. Protecting data and services in the cloud is a challenge of increasing impor-
tance for governments and organizations across all industries, including healthcare, energy
utilities, and banking. Delivering reliable and resilient computing services traditionally
implies having trustworthy components that operate inside the cloud infrastructure. The
purpose of these components is to achieve higher security and better resilience than current
cloud computing services may provide.

Regarding data availability and privacy, current cloud computing systems involve the
disadvantage that users do not know where their data is stored or how it is processed. The
trust put on cloud providers may be unjustified due to a set of threats that may affect the
services, like the loss and corruption of data (Cloud Security Alliance, 2013). Indeed, there
are several cases of cloud services losing or corrupting data. In 2009, Sidekick, a company
acquired by Microsoft, suffered a data outage that resulted in the loss of contacts, calen-
dars, and personal information of an estimated 800 thousand users (Williams, 2009). The
incident caused a public loss of confidence in the concept of cloud computing and Steve
Ballmer, CEO of Microsoft, said that it was “not good” for Microsoft.

Another wide-spread security problem that affects clouds is malicious insiders. A cloud
insider can be a rogue administrator of a service provider or an insider that exploits a cloud-
related vulnerability to steal information or to carry out an attack (Claycomb & Nicoll,
2012; Hanley et al., 2011; Jones, 2017; Narayan, 2016). A security survey on clouds was

24

2.2 Cloud-of-clouds systems and applications

performed in 2014 and showed that 20% of organizations believe malicious insiders pose

the biggest threat to business security, and 44% suggest employees’ ignorance could also

cause cloud security to fail (AppRiver Guest Blog, 2014).

The current vulnerabilities that affect cloud computing have lead to the cloud-of-clouds
paradigm introduced in (Bessani et al., 2011). The approach of moving to multi-clouds was

employed in the TClouds project (Veríssimo et al., 2012) with a goal to improve resilience

against attacks and accidents while preserving the ability for the user to interact with mul-

tiple clouds without any predefined coordination between cloud providers. The TClouds

platform integrates multiple advanced security technologies in a standard cloud distribu-

tion and in commercial cloud systems to add resilience to the infrastructure and guarantee

the integrity of a hardened cloud computing platform to users of these services. Cloud

applications can run on the top of the TClouds architecture benefiting from the resilience

against arbitrary faults, and from the additional resources made available by using a multi-

cloud architecture.

A significant contribution from the TClouds project was DepSky. DepSky is a de-

pendable and secure storage system that tackles the vulnerabilities of traditional cloud sto-

rage by providing a system that improves the availability, integrity, and confidentiality of

data stored in the cloud, by replicating data on different cloud providers (Bessani et al.,
2011). DepSky ensures confidentiality of the data stored on the clouds using a secret shar-

ing scheme. This scheme prevents the data to be disclosed with less than f + 1 different

shares of the secret. As a result, intruders cannot disclose the data if they have compro-

mised f clouds.

2.2.1 Cloud-of-clouds MapReduce

The cloud-of-clouds model arises from two key limitations that affect cloud services: a sin-

gle cloud may not have enough resources to fulfill all tenant’s requirements, and a single

cloud is, by definition, a single point of failure. The growing interest in a multi-cloud envi-

ronment led to the establishment of a federation of collaborated clouds for improving the

quality of service. A cloud-of-clouds model entails several benefits, such as the mitigation

against cloud-scale disasters, cost reduction by taking advantage of different cloud pricing

schemes, among other advantages that arise from reducing reliance on a single provider.

Despite the advantages of having a cloud-of-clouds model, the challenge is on materializing

25

2. BACKGROUND AND RELATED WORK

it in the real world. It is necessary to find the right abstractions that enable an efficient
and transparent interoperation between different clouds, extending the level and the types
of service offered to tenants (Group, 2011). Moreover, current solutions do not support a
coordinated distribution of the workload into different clouds.

The high data-growth and the multiplication of cloud offers have lead to user’s data to
be spread across multiple cloud providers. With this new setting, it comes the need to ana-
lyze data stored by different applications in different clouds, but that can be burdensome.
In fact, scientific applications, click-stream analysis, social networking, and many other ap-
plications usually have several distributed data sources with the resulting data collected and
spread in separate locations, even across the Internet.

Hadoop MapReduce is designed based on the assumption that there is a centralized mas-
ter responsible for resource management, and it is assumed that all nodes in the cluster are
connected and data is distributed among them. This assumption is not entirely congruent
in a scenario in which data resides in a highly distributed environment, and, as such, this
framework lacks support for general data analytics for highly distributed infrastructures.

HDM-MC is a recent solution for this problem (Wu et al., 2017). It is a multi-cluster
big data processing framework, which is designed to enable the capability of performing
large scale data analytics across multi-clusters with minimum extra overhead. This solution
is designed to support coordination and execution of general big data applications across
multi-clusters infrastructures, but does not target MapReduce.

G-MR is a Hadoop-based framework that can perform a sequence of MapReduce jobs
on geo-distributed data across multiple datacenters (Jayalath et al., 2014). G-MR determines
an optimized path to carry out a sequence of MapReduce jobs and uses Hadoop MapRe-
duce clusters deployed in each datacenter. G-MR aggregates the results obtained from the
several job executions with aggregators. Once the output data is generated in one or more
datacenters, it is copied to a single destination where it will initiate the aggregate operation
and return the final result. G-MR was evaluated against common and naïve deployments
for processing geo-distributed datasets, and the results show that using G-MR improves pro-
cessing time and cost for geo-distributed datasets. G-MR optimizes the data movement, but
this approach is highly complex and does not support complicated job sequences well.

A similar approach is G-Hadoop, a solution that explores G-farm, a file system similar to
HDFS, with the difference that G-farm can federate local disks of network-connected PCs
and compute nodes in several clusters (Mikami et al., 2011; Tatebe et al., 2010). G-Hadoop

26

2.3 Arbitrary fault tolerance

is another MapReduce framework that aims to enable large-scale distributed computing
across multiple clusters, by replacing HDFS with Gfarm (Wang et al., 2013). Thus, users
can submit their MapReduce application to G-Hadoop, which executes map and reduce
tasks across multiple clusters with the help of Gfarm. Although Gfarm can deal with files
stored in several clusters, it uses some strategies to reduce the added latency when compared
with HDFS. As a result, Gfarm presents on average similar results to HDFS.

Resilin is an Elastic-MapReduce system that enables the execution of MapReduce com-
putations across multiple clouds besides Amazon EC2 (Iordache et al., 2013). Resilin sup-
ports multi-cloud job flows by allowing users to dynamically add new resources from dif-
ferent clouds to a running job flow. This system provisions Hadoop VMs when it receives a
user request to submit a MapReduce job flow, and it can commission nodes in the cluster to
scale up and down the service. When scaling up, Resilin starts the VMs and configures the
Hadoop services to join the cluster. When scaling down, the solution decommissions the
Hadoop services when all running tasks have finished and if there is enough disk capacity
in the remaining services. The system also monitors several services to enable fault toler-
ance to the VMs and request distribution of the work among several instances in order to
prevent individual services from being overloaded. A full MapReduce execution with Re-
silin includes: (1) the transfer of the input data from the cloud storage (e.g., S3) to HDFS;
(2) execution of the MapReduce application; (3) transfer the output data from HDFS to the
cloud storage. The S3 filesystem can be used as a replacement for HDFS or as a repository
to transfer data between several HDFS filesystems. As S3 does not guarantee data locality
when it is used as a replacement for HDFS, it results in some degradation of the perfor-
mance of MapReduce jobs. Overall, the experiments showed a performance degradation
when using a platform built from resources provided by multiple clouds.

Unlike our work, these alternative solutions do not address the MapReduce dependa-
bility limitations — inability to deal with arbitrary faults and cloud outages — and most of
them do not attempt to be transparent to users.

2.3 Arbitrary fault tolerance

Arbitrary faults, also known as Byzantine faults, are the most serious type of fault that
affects a distributed system. An arbitrary fault can be transient or permanent, such as a bit
flip or a stuck-at bit. A system that suffers an arbitrary fault can produce an output that

27

2. BACKGROUND AND RELATED WORK

should never be produced. Worse yet, a faulty server can produce intentionally incorrect

outputs due to a malicious action.

Algorithms to tolerate Byzantine faults were first introduced 35 years ago with the

objective of enabling a system to defend against arbitrary behavior. The goal of these al-

gorithms is that all participants have a globally consistent view of the system. The term

Byzantine refers to an agreement problem designated as the Byzantine Generals’ Problem

(Lamport et al., 1982). Achieving agreement, or consensus, can be troublesome when we

are in the presence of traitorous generals (faulty nodes).

In Byzantine fault-tolerant algorithms, it is up to all parts of the system to agree on

a correct value. The key technique to control faults is to use redundancy and accept the

outputs of the majority. Although there are solutions, Byzantine faults are often ignored

due to the difficulty to address them, and the fact that they are incorrectly assumed to

occur with zero or very low probability. However, the explosion of commercial off-the-

shelf technology and the increasing number of critical systems show the opposite. Large

services have been disrupted by arbitrary faults, resulting in long periods of unavailability

(Amazon S3, 2011; Anderson, 2017), and the hardware error rate is expected to increase

with the upcoming hardware generations (Borkar, 2005; Qiang Wu & Mutlu, 2015).

Unfortunately, practical fault-tolerant distributed systems such as MapReduce are not

built to tolerate arbitrary faults (Dean & Ghemawat, 2004). As this system is usually de-

ployed on commodity hardware (Barroso & Hoelzle, 2009), because hardware fault-tolerant

computers are expensive and usually an order of magnitude slower than commodity hard-

ware (Faccio, 2011), so the distributed algorithm it implements is designed to tolerate be-

nign faults only, e.g., process crashes and message omissions.

Solutions that are Byzantine fault-tolerant involve consensus to provide coherence among

and between nodes. Consensus is a classical distributed systems problem that involves an

agreement among a number of processes to decide for a single data value. The consensus

problem is deeply connected to the state machine replication (Schneider, 1990) and atomic

broadcast algorithms (Correia et al., 2006; Hadzilacos & Toueg, 1994). One way of achiev-

ing consensus is using voting to obtain a quorum. Consensus, state machine replication,

and quorum are methods that are used to develop Byzantine fault-tolerant systems.

A Byzantine failure is the loss of a system service due to a Byzantine fault. Many algo-

rithms that helps multiple processes maintain a consistent state in a model where failures

28

2.3 Arbitrary fault tolerance

can happen involve solving a consensus problem. The original paper discussed the prob-
lem of consensus in the context of unauthenticated and authenticated messages (Driscoll
et al., 2003; Lamport et al., 1982). For unauthenticated messages, it is concluded that to
tolerate f Byzantine faults, it is necessary 3 f + 1 processes using f + 1 rounds of message
exchange. For authenticated messages, consensus is possible with 2 f + 1 processes using
the same number of rounds. Since the possibility of implementing efficient Byzantine fault-
tolerant (BFT) replication was demonstrated in (Castro & Liskov, 1999), several algorithms
appeared (Amir et al., 2006; Bessani et al., 2014; Clement et al., 2009b; Veronese et al., 2010,
2013) that tolerate f faults with different number of replicas and communication rounds,
for various system models.

Quorum systems are used to ensure the consistency and availability of replicated data. A
quorum is obtained from a minimum number of votes that any given operation must obtain
to be performed and have to be defined in such way that conflicting operations always
intersect some replicas. Several algorithms rely on quorums and exploit the fact that two
(read and write) quorums overlap in at least one process. For instance, consider a system
with N processes, serving as a distributed replicated database. There is a single process
writing to the database and there can be multiple readers. One approach to doing this
would be to have the writing process write to at least dN/2e+ 1 replicas. If the reading
process reads from at least dN/2e+1 nodes, there will be at least one replica which has seen
the latest write. This is a simple quorum example that can be used in scenarios where only
less than half the nodes can fail. The key idea is that the intersection property guarantees
that operations done on distinct quorums preserve consistency.

A weighted voting scheme can be used for maintaining replicated data (Gifford, 1979).
Every copy of a replicated file is assigned some number of votes for read and write transac-
tions. With weighted quorums, if N is the total number of votes assigned to all nodes, then
a quorum of r votes is required for a read operation, and a quorum of w votes is required
for a write operation. The quorum values are such than r+w >N and 2w >N . Therefore,
there is always a representative quorum to guarantee any transaction. The voting scheme
has a high communication cost as a request to an operation is typically sent to all nodes.
Other solutions try to reduce the size of the quorums to reduce the communication cost.
For instance, the hierarchical quorum system proposed by Preguica & Martins (2001) is
based on an n-ary tree construction in a triangle shape to present better availability and
load in grid-based constructions. As result, the system requires a quorum smaller than the

29

2. BACKGROUND AND RELATED WORK

quorums average size. It also showed an improvement in the load and availability with
results close to the optimal load.

In a system prone to arbitrary faults, two majority quorums may not intersect in a
correct process due to arbitrary behavior. Therefore, a majority achieved in a Byzantine
quorum tolerating f faults happens when there is a set of more than (N + f)/2 processes
(Guerraoui & Rodrigues, 2006). Byzantine quorum systems are used to implement data
stores with several concurrency semantics (Alvisi et al., 2001; Malkhi & Reiter, 1997), even
in the cloud (Bessani et al., 2011). These solutions are inadequate to implement an arbitrary
fault-tolerant MapReduce for the simple reason that the framework is not a storage service,
but a computational system.

One of the initial works on BFT for task processing is due to Sarmenta (Sarmenta,
2002). He proposed a voting mechanism for sabotage-tolerance in volunteering computing.
This scheme estimates the credibility of results and of individual nodes as the probability
of being correct given a computed result. The author considers two mechanisms: (i) the
identification of malicious nodes is done by verifying if the computed result is correct —
this helps estimate the nodes reliability and exclude faulty nodes from the computation; (ii)
in order to increase confidence in a result, it computes a task redundantly until a certain
number of results agree. Overall, Sarmenta wants to avoid more than a number of false
results to be obtained during computation.

To the best of our knowledge, only a couple of proposals deal with BFT data processing
in cloud contexts: CloudBFT and ClusterBFT. CloudBFT was created to evaluate the fea-
sibility of a Byzantine fault-tolerant architecture in cloud computing environments. This
architecture is designed for critical applications that tolerate up to f physical or virtual ma-
chine failures (Nogueira et al., 2014). It uses redundant virtual machines placed on different
physical machines, availability zones, or regions to avoid common faults and guarantee cor-
rect computation. This platform uses the MinBFT algorithm to achieve Byzantine fault-
tolerance (Veronese et al., 2009), uses a Trusted Platform Module (TPM) to sign and verify
messages, and allows to create groups composed of 2 f +1 replicas to tolerate a fixed number
of f Byzantine failures, plus another machine to order the requests. The proposed design
uses a relational database to have synchronization among different replicas to guarantee
totally ordered requests.

Although CloudBFT could be used to implement a BFT MapReduce, it would require
a heavy execution based on the necessity to launch 2 f + 1 replicas. Moreover, ordering

30

2.4 Scheduling

requests would also increase the cost.

A different system for Byzantine fault-tolerant data-flow processing in clouds is Clus-

terBFT (Stephen & Eugster, 2013). ClusterBFT models jobs as DAGs, similarly to Dryad

and Nephele (Section 2.1.3), allowing the creation and replication of sub-graphs. At the end

of execution, the system produces a digest of each output and verifies that f +1 executions

produced the same result. The use of sub-graphs has the intention to reduce overhead and

improve utilization by preventing the whole graph to be replicated, and only the output of

the last step being validated. When a fault happens — when the platform receives a wrong

digest or does not receive a digest from nodes executing the data-flow — the faulty nodes

will be isolated, and the sub-graph will be rescheduled. This system secures computation

in the cloud leveraging BFT replication with fault isolation, but disregarding the case an

adversary manipulates the cloud service provider to the point of provoking cloud outages.

Moreover, the system is deployed on a cloud service that leases out virtual machines to

users. Particularly, each physical machine in the cloud can host multiple virtual machines.

State machine replication is not adequate to make MapReduce Byzantine fault-tolerant

because the cost would be high, i.e., 3f+1 replicas of the job would have to be executed.

ClusterBFT acknowledges this evidence and uses graphs to avoid replicating the whole exe-

cution in several nodes. This solution is restricted to a single cloud, and thus it does not

tolerate cloud outages or attacks from malicious insiders.

2.4 Scheduling

Scheduling is the process of assigning work to resources, which is a fundamental problem

when it is necessary to share resources among different users. The utility of a scheduling

algorithm depends on its requirements. In MapReduce, a scheduler chooses the order in

which a series of jobs are executed and how the tasks will be distributed. When one con-

siders a multi-cloud environment, a scheduler also needs to deal with the heterogeneity of

the cloud resources, with its varying capacities and functionalities to distribute work. In

summary, different applications have schedulers with different purposes. In the following

sections, we present work on scheduling for Hadoop MapReduce (Section 2.4.1) and other

distributed environments (Section 2.4.2).

31

2. BACKGROUND AND RELATED WORK

2.4.1 MapReduce Scheduling

Hadoop MapReduce was designed mainly for running large batch jobs. For this purpose,

when users submit jobs, they are added to a queue, and the Hadoop scheduler will run them

in order, i.e., following a FIFO order. The main advantage of Hadoop’s FIFO scheduler is

the simplicity in assigning resources to jobs.

In case several jobs are waiting to execute, and there are still resources available, the

scheduler launches the next job according to the FIFO order. When no spare capacity is

available, the waiting jobs stay in the queue until resources are freed. However, this default

scheduler is not very efficient, especially, when skew occurs. For example, if a job has a

map or reduce task that is a straggler, then the whole system might halt. Similar to the

case with tasks, a high-priority job can still be blocked by a long-running low priority job

that started before. Fortunately, Hadoop has a speculative mode of execution that launches

new tasks at other nodes when stragglers are detected. Ultimately, when we need to share

resources to provide an assured capacity to production jobs and good response time, new

scheduling algorithms are necessary.

Unlike the FIFO scheduler, Hadoop’s Fair scheduler assigns an equal share of resources

to every user over time. This scheduler organizes jobs into sets and divides resources bet-

ween them (Apache, 2013). As a consequence, it lets short jobs finish in reasonable time

while not starving long jobs. Over time, this scheduler has grown in functionality to sup-

port hierarchical scheduling, preemption, and multiple ways of organizing jobs.

These two schedulers assume that a cluster is built with homogeneous servers. In other

words, they assume that all nodes in the same cluster have the same characteristics, and,

as such, the assumption is that the computation will be done at the same rate. This as-

sumption is problematic since, given the large size of clusters dedicated for data-intensive

applications, it is likely that these clusters are comprised of different generations of server

platforms (Nathuji et al., 2008). In fact, the heterogeneity of servers that are inside datacen-

ters provides diversity on performance needs, ranging from real-time to batch computation.

For instance, Amazon EC2 had 2–3 generations of hardware in 5–7 years (Amazon, 2017).

Unfortunately, FIFO and Fair Scheduling offer poor performance in these heterogeneous

environments. With this motivation, new work started to appear to adapt MapReduce to

more diverse cluster configurations.

32

2.4 Scheduling

LATE was the first work to focus on the heterogeneity of the clusters (Zaharia et al.,
2008). This algorithm prioritizes tasks based on how much they will delay the execution,
selecting the faster nodes and capping speculative tasks to prevent trashing. As a result,
LATE performs significantly better than Hadoop’s default speculative execution algorithm.

LATE mainly focuses on the detection and mitigation of stragglers, but does not look
to its cause. Recently, Zhang et al. proposed a model-based optimization, MrHeter, that
efficiently allocates tasks between heterogeneous nodes in order to improve performance
of job execution (Zhang et al., 2016). Unreasonable task allocation between different nodes
in the map tasks increases the execution time of the shuffle and sort stages, and creates
a bottleneck in the network due to the necessity to transfer the map output to perform
the shuffle stage. An optimal allocation of the map tasks will make them finish around the
same time making the shuffle and sort stage start sooner. Similarly, an optimal allocation of
reduce keys avoids the necessity of creating stragglers and balance execution time between
heterogeneous nodes. MrHeter uses a knowledge base that is built from previous executions
to estimate the execution time for the map, shuffle, and reduce stage for each node, allowing
to build an optimal allocation scheduler. As result, MrHeter works more efficiently than
the original Hadoop, especially in environments of heavy-workloads and large difference
of computational power between nodes.

In another work, Verma et al. considered performance modeling of MapReduce envi-
ronments through a combination of measurement, simulation, and analytical modeling for
enabling different service level objectives (Verma et al., 2011, 2014). The authors use job
profiling to estimate the resources required for processing a certain job based on past job
executions. The profiling decides whether it is necessary to add additional resources or
adjust the scheduling to guarantee termination of the execution within the specified time
constraints. The profiling model predicts the job completion time based on the job pro-
file, input data size, and allocated resources. Normally, it is a user decision to estimate the
number of resources needed to perform a task within a time, but in this case, it is the model
that takes this decision. In the event of failures, this algorithm quantifies the impact of the
failure on the job completion time to respond correctly.

We have witnessed the emergence of more complex MapReduce workloads that are
composed of interconnected jobs. Still, in these cases, it is necessary to have scheduling
algorithms for flows of MapReduce jobs. FlowFlex attempts to optimize some metric based
on the completion times of the flows and resource analysis (Nagarajan et al., 2013). The

33

2. BACKGROUND AND RELATED WORK

goal is to minimize either the total cost or the maximum cost of the flows concerning

performance. In the end, FlowFlex showed better performance when compared with other

standard schedulers like the Fair and FIFO schedulers.

In conclusion, with the recent progress on scheduling, Hadoop started to consider to

work in heterogeneous environments or to allocate tasks optimally without incurring the

risk of losing performance.

2.4.2 Scheduling in Distributed Environments

The concept of connecting resources together (meta-computing) has been studied exten-

sively, especially in the area of grid computing. For the majority of meta-computing sys-

tems, scheduling is not a particular problem, but a set of complex problems (Christodoulopou-

los et al., 2009; Xhafa & Abraham, 2010), due to the different requirements and the many

characteristics of each group of resources. In a multi-cloud environment, the complexity

of scheduling is increased due to the nature of the environment, which may scale dynam-

ically, the heterogeneity of the resources, and the resource sharing based on service level

agreements (SLAs). Moreover, providers are constantly changing, which can affect the avai-

lability of the resources.

Local and meta-schedulers are two fundamental solutions for scheduling in large-scale

distributed systems, such as grids or clouds. Local schedulers are used at the cluster level

to manage resources and achieve better load balancing (Buyya et al., 2010), while meta-

schedulers organize multiple resource managers into a single view allowing to assign jobs

based on a great variety of criteria (Huang et al., 2013). Therefore, a solution for scheduling

in a multi-cloud environment has to bridge the gap between local grid or cloud resource

managers using meta-schedulers.

Scheduling algorithms are defined based on the topology of the resources that are ma-

naged, organized, and administered. Since our work focuses in a multi-cloud environment,

decentralized scheduling solutions are in principle suitable for this type of infrastructure.

In a centralized scheme, schedulers may have a complete knowledge of the infrastructure,

something that is unrealistic in multi-clouds. In a decentralized scheme, this information

is incomplete, and the jobs received from the meta-scheduler are assigned to the local sche-

duler in the same or in a different host. As all the jobs are submitted locally, distributed

34

2.4 Scheduling

schemes allow jobs to be transferred to remote hosts to achieve better local resource utiliza-
tion leading to a global load equilibrium, as required in multi-clouds. So, meta-scheduling
schemes have to adapt to the dynamics and unpredictability of the multiple clouds.

In terms of decentralized scheduling methods, Weissman & Grimshaw (1996) proposed
a wide-area scheduling system based on a local resource manager and a wide-area schedu-
ler. The goal of this scheduler is to provide high performance for the jobs and exploit re-
sources in remote sites. For the authors, a network is organized as a collection of sites, i.e.,
a collection of administrative domains with certain security policies, file systems, and most
importantly, computing resources. Each site manages the local resources, and a wide-area
scheduler shares the information between remote scheduling managers in order to perform
global scheduling.

In 2010, Wang et al. suggested bidding as an alternative means of resource selection
in grid computing (Wang et al., 2010). However, under the bidding model, there is no
global information in the dynamic environment that forms the grid to make a decision.
For this reason, the authors proposed a resource selection heuristic approach to minimize
the turnaround time in a non-reserved bidding based grid system. By conducting a series
of experiments, they claim that dissolve-probabilistic heuristics perform better than other
selected heuristics. However, this work does not consider scheduling variables such as job
workload, CPU and memory capability, job execution deadlines, network features and
dynamic availability of resources.

Scheduling tasks in distributed environments using deadlines to provide quality of ser-
vice, at scales of hundred thousand nodes, is a challenging problem. Celaya & Arronategui
(2011) presents a fully decentralized scheduler that allocates tasks with high responsive-
ness, which is unique for systems with such scale. This scheduler operates on bag-of-tasks
applications with time, memory and disk restrictions. By using a best-effort approach, the
scheduler executes tasks before the deadline. The scheduling is divided into two layers, local
and global. A local scheduler contains a task queue and reports its status to the global sche-
duler. In turn, the objective of the global scheduler is to aggregate the information of the
local schedulers, and allocate tasks to nodes that can execute the work before the deadline.

The authors have shown using simulations that the scheduler can operate on appli-
cations with many tasks, and with a network up to a hundred thousand of nodes. The
scheduler shows competitive performance very close to a centralized scheduler, with little
overhead and small allocation times.

35

2. BACKGROUND AND RELATED WORK

Another recent work introduces a decentralized dynamic scheduling approach called

community-aware scheduling algorithm (CASA) (Huang et al., 2013). This paper presents

a two-phase scheduling solution comprised of a set of heuristics to facilitate job scheduling

across decentralized distributed nodes. In the first phase, job submission phase, the goal is

to find the proper node from the scope of the overall grid. However in the second phase,

dynamic scheduling phase, the motivation is to keep improving the previous scheduling

decision by allowing queued jobs to be kept rescheduled in accordance with changes in

the grid. Both phases work together to ensure a rapid job distribution and an optimized

rescheduling process. CASA’s great difference in comparison with other approaches is that

it aims for an overall performance improvement, rather than boosting the performance of

individual hosts. Applying CASA in a decentralized scheduling setting could lead to similar

performance compared with a centralized solution. Also, the job slowdown and waiting

times are dramatically improved because it is not necessary to ask for detailed information

of participating nodes. Nevertheless, the authors suggest that further enhancements should

be considered to include local scheduling algorithms, like backfilling methods and shortest

job first.

Different cloud providers address different needs, yet they share the same characteris-

tics in term of resource provisioning. Therefore, multi-clouds environments should allow

tasks to be exchanged by exploiting resources from different providers. Recently, the au-

thors of (Sotiriadis et al., 2015) considered these points and presented a novel inter-cloud

job scheduling framework, named Inter-Cloud Meta-Scheduling (ICMS), that implements

policies to optimize the performance of participating clouds. They have focused on the

performance optimization of Infrastructure as a Service (IaaS) using the meta-scheduling

paradigm to achieve an improved job scheduling across multiple clouds. The framework

is based on a novel message exchange mechanism to allow optimization of job scheduling

metrics. The resulting system improves performance due to a better request distribution

in comparison with current approaches.

All the solutions described in this section have the goal of choosing wisely the resources

to launch work and to optimize the performance. We leverage on several of these works

for the design of our multi-cloud schedulers. In the Table 2.1, we summarize the schedulers

for the reader to grasp the main ideas of each one.

36

2.5 Summary

Scheduler Type Target Key idea

FIFO Centralized MapReduce Simple scheduler that assigns resources to
jobs as they are launched.

Fair Scheduler Centralized MapReduce Scheduler that assigns an equal share of re-
sources to all jobs over time (Apache, 2013).

LATE Centralized MapReduce Scheduler for allocation of tasks that de-
tects and mitigates stragglers (Zaharia et al.,
2008).

MrHeter Centralized MapReduce Scheduler for allocation of tasks in hetero-
geneous nodes (Zhang et al., 2016).

Resource
Allocation
Framework

Centralized MapReduce Framework that offers resource sizing and
provisioning services in MapReduce envi-
ronments to meet given service levels objec-
tives (SLOs) (Verma et al., 2011).

FlowFlex Centralized MapReduce Scheduling algorithm for flows of MapRe-
duce jobs connected by precedence con-
strains (Nagarajan et al., 2013).

Wide-area
scheduler

Decentralized Internet A distributed algorithm for wide-area sche-
duling that exploits resources in remote
sites and provides high performance (Weiss-
man & Grimshaw, 1996).

Dynamic
resource
selection

Decentralized Grid Dynamic resource selection heuristic that
uses bidding model for resource selection
(Wang et al., 2010).

Highly Scalable
Decentralized

Scheduler

Decentralized Cloud, grid,
or

volunteering
computing

Decentralized scheduler that uses informa-
tion of the nodes to allocate tasks with dead-
lines (Celaya & Arronategui, 2011).

K-Dual and
K-distributed

scheme

Decentralized Grid Distributed schemes that offer better per-
formance than concurrent centralized and
decentralized schedulers (Subramani et al.,
2002).

CASA Decentralized Grid Community-aware scheduling algorithm to
achieve optimized scheduling performance
over different grids (Huang et al., 2013).

ICMS Decentralized Cloud Multi-cloud job scheduling framework that
improves performance by exploiting re-
sources from multiple clouds (Sotiriadis
et al., 2015).

Table 2.1: Summary of scheduling algorithms

2.5 Summary

This chapter provided background on the problem at hand, mainly by introducing the nec-

essary concepts and discussing relevant work done in the area. We organized the related

37

2. BACKGROUND AND RELATED WORK

work in four main areas of interest. First, we introduced the necessary concepts and archi-
tecture of Hadoop MapReduce. We stated that the popularity of the framework has lead to
an impressive list of works that try to improve specific features to solve particular problems
or to adapt it to specific environments. However, none of these works improve the original
MapReduce regarding fault tolerance, namely, to tolerate arbitrary faults, malicious faults,
and cloud outages.

Second, we acknowledge that it is hard to deliver reliable and resilient computing ser-
vices inside the cloud infrastructure. Existing cloud computing services are problematic
for running critical applications, which may range from business-critical tasks of compa-
nies to mission-critical tasks for the society. In fact, the trust put on cloud providers starts
to be questioned due to a set of incidents that affect users’ services. As such, using multi-
ple clouds to mitigate cloud-scale disasters becomes an interesting possibility to investigate.
With this in mind, we have looked at systems that use multiple clouds to run MapReduce
applications. Although these solutions enable the capability of performing large scale data
analytics across multiple clouds, none of them enhances the dependability of the frame-
work.

As our goal is to increase the fault tolerance of MapReduce, and as the distributed sys-
tems literature is rich in this topic, next we focused on the several techniques like consensus
and quorums that are used to create Byzantine algorithms. We have investigated Byzantine
fault-tolerant solutions for cloud environments to understand if it would make sense to run
MapReduce using traditional techniques. We have realized this option to be expensive in
terms of MapReduce execution time.

Finally, we acknowledge that increasing dependability has a cost, but, as we care about
performance, we have looked at scheduling, a fundamental problem to share wisely re-
sources among different users. Respectively, we have presented literature on MapReduce
scheduling and on distributed scheduling, some of which has inspired our own solutions.

38

3
Dependable MapReduce in a Single

Cloud

MapReduce is often used for critical data processing, and there is evidence that there are
arbitrary faults that may corrupt the results of MapReduce execution without being de-
tected. In this chapter, we present an algorithm that masks arbitrary faults by executing
each task more than once, comparing the outputs of these executions, and disregarding
non-matching outputs. This simple but powerful idea allows our Byzantine fault-tolerant
(BFT) MapReduce framework to tolerate any number of faulty task executions at the cost
of one re-execution per faulty task. With the aim of guaranteeing acceptable performance,
we also designed two novel schedulers that allow our framework to run in two modes:
non-speculative and speculative. We thoroughly evaluate experimentally the performance of
these two schedulers in a real testbed, showing that they use around twice more resources
than Hadoop MapReduce, instead of the three times more of alternative solutions. We
believe this cost to be acceptable for many critical applications.

3.1 Introduction

The fault tolerance mechanisms of the original MapReduce and Hadoop cannot deal with
arbitrary or Byzantine faults (Avizienis et al., 2004), even if considering only accidental
faults, not malicious faults, as we do in this work. These faults cannot be detected using file
checksums, so they can silently corrupt the output of any map or reduce task. However,

39

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

it is possible to mask the effect of such faults by executing each task more than once, com-

paring the outputs of these executions, and disregarding the non-matching outputs. This

basic idea was proposed by Sarmenta in the context of volunteer computing to tolerate

malicious volunteers that returned false results of tasks they were supposed to execute (Sar-

menta, 2002). However, he considered only bag-of-tasks applications, which are simpler

than MapReduce jobs. A similar but more generic solution consists in using the state ma-
chine replication approach (Schneider, 1990). This approach is not directly applicable to the

replication of MapReduce tasks, only to replicate the jobs, which is expensive. A cheaper

and simpler solution, which we call result comparison scheme, would be to execute each job

twice and re-execute it if the results do not match, but the cost would be high in case there

is a fault (the whole job re-execution).

We start by exploring the notion of replication of computation in order to tolerate arbi-

trary faults and obtain acceptable performance results. We implemented a BFT MapReduce

framework 1 that is able to tolerate arbitrary faults by executing each task more than once

and comparing the outputs. Since we are especially interested in the performance of the

system, we have developed two scheduling algorithms, speculative and non-speculative, that

have the goal to improve performance of the jobs that run on the platform by managing the

beginning of the map and reduce tasks. In non-speculative mode, f + 1 replicas of all map

tasks have to complete successfully for reduce tasks to be launched. In speculative execu-

tion, reduce tasks start after one replica of all map tasks finish. While the reduce tasks are

running, it is necessary to validate the remaining map replicas’ outputs. If at some point it

is detected that the input used in the reduce tasks was not correct, the tasks will be restarted

with the correct input.

The challenge was to create a platform that could execute the tasks efficiently, without

the need of running 3 f +1 replicas to tolerate at most f faults, which would be the case with

state machine replication (e.g., Castro & Liskov (2002); Clement et al. (2009a); Veronese

et al. (2009)). The system uses several techniques to reduce the overhead. It manages to run

only two copies of each task when there are no faults plus one replica of a task per faulty

replica, instead of a replica of the whole job as in the result comparison scheme.

We thoroughly evaluate experimentally the performance of these two schedulers in a

real testbed, showing that they use around twice more resources than Hadoop MapReduce,

1This framework is a modified version of Hadoop 1.X.

40

3.2 System model

instead of the three times more of alternative solutions. We believe this cost is acceptable

for many critical applications where it is pivotal to obtain valid results .

In summary, the main contributions of this work are:

• an algorithm to execute MapReduce jobs that tolerates arbitrary faults and than can

run in two modes, speculative and non-speculative;

• an extensive experimental evaluation of the system using Hadoop’s GridMix bench-

mark in the Grid’5000 testbed.

The successive sections are organized as follows. In Section 3.2 we describe the system

model. Then, in Section 3.3, we present the two new type of executions, non-speculative
and speculative executions to launch the minimum number of tasks without the need to

run 3 f + 1 replicas to tolerate at most f faults. We have performed a thorough assessment

of the new solution in order to understand the cost in comparison to the use of common

fault tolerance techniques and we show the results in Section 3.4.

3.2 System model

The system is composed by a set of distributed processes: the clients that request the exe-

cution of jobs composed by map and reduce functions, the job tracker that manages the

execution of a job, and a set of task trackers that launch map and reduce tasks. We do not

consider the components of HDFS in the model, as the algorithm is to mostly orthogonal

to it (and there is a Byzantine fault-tolerant HDFS in the literature (Clement et al., 2009a)).

We say that a process is correct if it follows the algorithm, otherwise we say it is faulty.

We also use these two words to denominate a task (map or reduce) that, respectively, returns

the result that corresponds to an execution in a correct task tracker (correct) or not (faulty).

We assume that clients are always correct, because they are not part of the MapReduce

execution and if clients were faulty the job output would be necessarily incorrect. We also

assume that the job tracker is always correct, which is the same assumption that Hadoop

does (White, 2009). It would be possible to remove this assumption by replicating the job

tracker, but it would complicate the design considerably and this component does much

less work than the task trackers, so we leave this as future work. The task trackers can be

41

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

correct or faulty, so they can arbitrarily deviate from the algorithm and return corrupted

results of the tasks they execute.

Our algorithm does not rely on assumptions about bounds on processing and commu-

nication delays. On the contrary, the original Hadoop mechanisms do make assumptions

about such times for termination (e.g., they assume that heartbeat messages from correct

task trackers do not take indefinitely to be received). We assume that the processes are con-

nected by reliable channels, so no messages are lost, duplicated or corrupted. In practice

this is provided by TCP connections. We assume the existence of a hash function to pro-

duce message digests. This function is collision-resistant, i.e., it is infeasible to find two

inputs that produce the same output (e.g., SHA-3).

Our algorithm is configured with a parameter f . In distributed fault-tolerant algo-

rithms f is usually the maximum number of faulty replicas (Bessani et al., 2011; Castro

& Liskov, 2002; Clement et al., 2009a; Malkhi & Reiter, 1997; Veronese et al., 2009), but

in our case the meaning of f is different: f is the maximum number of faulty replicas that

can return the same output given the same input. Consider a function F , map or reduce,

and that the algorithm executes several replicas of the function with the same input I , so all

correct replicas return the same output O. Consider also the worst case in which there are

f faulty replicas that executeF andF1(I) =F2(I) = ...=F f (I) =O ′ 6=O. The rationale

is that f is the maximum number of replicas that can be faulty and still allow the system

to find out that the correct result is O. If the system selects the correct output by picking

the output returned by f + 1 task replicas, it will never select O ′ because it is returned by

at most f replicas. Similarly to the usual parameter f , our f has a probabilistic meaning

(hard to quantify precisely): it means that the probability of more than f faulty replicas of

the same task returning the same output is negligible.

3.3 Byzantine fault-tolerant MapReduce algorithm

3.3.1 Overview

A simplistic solution to make MapReduce Byzantine fault-tolerant considering f the maxi-

mum number of faulty replicas is the following. First, the job tracker starts 2 f +1 replicas

of each map task in different nodes and task trackers. Second, the job tracker starts also

42

3.3 Byzantine fault-tolerant MapReduce algorithm

End

Wait for all running
map tasks replicas

Start +1 replica
of map task

Start f replicas
of map tasks

Non-speculative

no

yes

Start f replicas
of reduce tasks

Start +1 replica
of reduce task

Wait for all running
reduce task replicas

no

yes

Start f+1 replicas
of map tasks

Speculative

Wait for one (first)
map task replica

Start f+1 replicas
of reduce tasks

Wait for all running
map task replicas

f+1
map outputs

match?

no

yes

Start +1 replica
of map task

no

yesfirst map
matched?

Restart f+1 replicas
of reduce tasks

End

Start +1 replica
of reduce task

Wait for all running
reduce task replicas

no

yes

f+1
map outputs

match?

f+1
reduce outputs

match?

f+1
reduce outputs

match?

MAP

REDUCE

(a)

(b)

Figure 3.1: Flowcharts of (a) non-speculative and (b) speculative executions.

2 f +1 replicas of each reduce task. Each reduce task fetches the output from all map repli-

cas, picks the most voted results, processes them and stores the output in HDFS. In the

end, either the client or a special task must vote the outputs to pick the correct result. An

even simpler solution would be to run a consensus or Byzantine agreement between each

set of map task replicas and reduce task replicas. This would involve even more replicas

(typically 3 f + 1 (Correia et al., 2006)) and more messages exchanged.

43

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

The first simplistic solution is very expensive because it replicates everything 2 f + 1
times: task execution, map task inputs reading, communication of map task outputs, and
storage of reduce task outputs. Starting from this solution, we propose a set of techniques
to avoid these costs:

Deferred execution. Crash faults, which happen more often, are detected using Hadoop
standard heartbeats, while arbitrary faults are dealt using replication and voting. Given the
expected low probability of arbitrary faults (Nightingale et al., 2011; Schroeder et al., 2009),
there is no point in always executing 2 f +1 replicas to obtain the same result almost every
time. Therefore, our job tracker starts only f + 1 replicas of map and reduce tasks. After
map tasks finish, the reduce tasks check if all f + 1 replicas of every map tasks produced
the same output. If some outputs do not match, more replicas are started until there are
f + 1 matching replies. At the end of execution, the reduce output is also checked to see if
it is necessary to launch more reduce replicas. This algorithm is represented as a flowchart
in Figure 3.1(a).

Digest outputs. f +1 map outputs and f +1 reduce outputs must be matched to be considered
correct. These outputs tend to be large, so it is useful to fetch only one output from some
task replica and compare its digest with those of the remaining replicas. With this solution,
we avoid transferring the same data several times causing additional network traffic, and we
just transfer data from one replica and the digests from the rest.

Tight storage replication. We write the output of all reduce tasks to HDFS with a replication
factor of 1, instead of 3 (the default value). We are already replicating the tasks, and their
outputs will be written on different locations, so we do not need to replicate these outputs
even more. A job starts reading replicated data from HDFS, but from this point forward,
the data that is saved in the HDFS by each (replicated) task is no longer replicated.

Speculative execution. Waiting for f + 1 matching map results before starting a reduce task
can worsen the time for the job completion. A way to deal with the problem is for the
job tracker to start executing the reduce tasks immediately after receiving the first copy of
every map output (see Figure 3.1(b)). Whenever f + 1 replicas of a map task finish, if the
results do not match, another replica is executed. If f + 1 replicas of a map finish with
matching results but these results do not match the result of the first copy of the task, then
the reduces are stopped and launched again with the correct inputs. For a job to complete,
f + 1 matching map and reduce results must be found for all tasks, and the reduces must
have been executed with matching map outputs.

44

3.3 Byzantine fault-tolerant MapReduce algorithm

The difference between the non-speculative and speculative modes of operation (Figure

3.1) is that the latter uses these four techniques, whereas the former excludes speculative

execution.

3.3.2 The algorithm in detail

The algorithm is based on the operation of Hadoop MapReduce and follows its termino-

logy. Recall that a client submits a job to the job tracker that distributes the work to the

several task trackers. Therefore, the algorithm is divided in the part executed by the job

tracker (Algorithms 3.1 and 3.2) and the part executed by the task tracker (Algorithm 3.3).

The work itself is performed by the map and reduce tasks, whose code is part of the job

specification.

The presentation of the algorithm follows a number of conventions. Function names

are capitalized and variable names are in lowercase letters (separated by ‘_’ if composed of

multiple words). Comments are inside {...}. The operator |...| returns the number of ele-

ments in a set. There are a number of configuration constants and variables. The algorithm

is a set of event handlers executed in different conditions.

The idea of the algorithm consists essentially in the job tracker inserting tasks in two

queues – q_maps, q_reduces – and the task trackers executing these tasks. Several auxiliary

functions are used to manipulate these queues:

• Enqueue(queue, tuple) – inserts the tuple describing a task in queue;

• Dequeue(queue, tuple) – removes a task described by tuple from queue;

• FinishedReplicas(queue, task_id) – searches in queue for replicas of a task identified by

task_id and returns the number of these replicas that have finished;

• MatchingReplicas(queue, task_id) – searches in queue for finished replicas of a task iden-

tified by task_id and returns the maximum number of these replicas that have match-

ing outputs;

• MaxReplicaId(queue, task_id) – searches in queue for replicas of a task identified by

task_id and returns the highest replica_id among them;

45

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

• ReplicaOutput(queue, task_id, replica_id) – searches in queue for a finished task replica
identified by task_id and replica_id and returns its output;

• MatchingReplicasOutput(queue, task_id) – searches in queue for finished replicas of a
task identified by task_id and returns the output of the maximum number of replicas
that have matching outputs;

Listing 3.1: Job tracker — common part and non-speculative mode.

1 constants:

2 mode {non-speculative or speculative}

3 f {maximum number of faulty replicas that return the←-
same output}

4 nr_reduces {number of reduce tasks used}

5 splits {split locations}

6
7 variables:

8 q_maps {queue of map tasks pending to be executed or ←-
being executed; initially empty}

9 q_reduces {queue of reduce tasks pending to be executed or ←-
being executed; initially empty}

10 reduce_inputs {identifiers of map replicas that gave inputs to ←-
the reduces; initially empty}

11 reduces_started {indicates if reduces already started; initialized←-
with false (speculative mode)}

12
13 {start execution}

14 upon job execution being requested do

15 for replica_id := 1 to f + 1 (

16 for map_id := 1 to |splits|

17 Enqueue(q_maps, (map_id, replica_id, splits[i], not_running));

18)

19
20 {restart a stopped task}

21 upon task (queue, task_id, replica_id) stopping do

22 task := Dequeue(queue, (task_id, replica_id));

23 task.running := not_running;

24 Enqueue(queue, task);

25

46

3.3 Byzantine fault-tolerant MapReduce algorithm

26 {non-speculative mode: start extra map task replica, start reduce ←-
tasks}

27 upon map task (map_id, replica_id, splits) finishing and mode = non-←-
speculative do

28 if (FinishedReplicas(q_maps, map_id)≥ f + 1 and MatchingReplicas(←-
q_maps, map_id)< f + 1) (

29 new_replica_id := maximum replica_id+1;

30 Enqueue(q_maps, (map_id, new_replica_id, splits, not_running));

31) else (

32 if (∀map_id : MatchingReplicas(q_maps, map_id)≥ f + 1) (

33 reduce_inputs := {(map_id, urls) tuples with the f+1 matching ←-
output urls for each map_id}

34 for replica_id := 1 to f + 1 (

35 for reduce_id := 1 to nr_reduces

36 Enqueue(q_reduces, (reduce_id, replica_id, reduce_inputs, ←-
not_running));

37)

38 for all map_id, replica_id

39 Dequeue(q_maps, (map_id, replica_id));

40)

41)

42
43 {non-speculative mode: start extra reduce task replica, finish job}

44 upon reduce task (reduce_id, replica_id, reduce_inputs) finishing and ←-
mode = non-speculative do

45 if (FinishedReplicas(q_reduces, reduce_id)≥ f + 1 and ←-
MatchingReplicas(q_reduces, reduce_id)< f + 1) (

46 new_replica_id := maximum replica_id+1;

47 Enqueue(q_reduces, (reduce_id, new_replica_id, reduce_inputs, ←-
not_running));

48) else (

49 if (∀reduce_id : MatchingReplicas(q_reduces, reduce_id)≥ f + 1) (

50 for all reduce_id, replica_id

51 Dequeue(q_reduces, (reduce_id, replica_id));

52)

53)

54
55 {send task to task tracker}

56 upon receiving a TASK_REQUEST (task_type, splits_stored_node) message ←-
from task tracker do

47

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

57 queue = undefined;

58 if (task_type = map and ∃(map_id, replica_id, split, not_running) ←-
∈ q_maps) (

59 queue := q_maps;

60 funct := map;

61 replica_id_ := replica_id;

62 inputs := split;

63 if (∃(map_id, replica_id, split, not_running) ∈ q_maps : split ←-
∈ splits_stored_node) (

64 task_id := map_id;

65) else (

66 task_id := map_id : (map_id, replica_id, split, not_running) ←-
∈ q_maps;

67)

68) else if (task_type = reduce and ∃(reduce_id, replica_id, split, ←-
not_running) ∈ q_reduces) (

69 queue := q_reduces;

70 funct := reduce;

71 task_id := reduce_id;

72 replica_id_ := replica_id;

73 inputs := reduce_inputs;

74)

75 if (queue = q_maps or queue = q_reduces) (

76 task := Dequeue(queue, (task_id, replica_id_));

77 task.running := running;

78 Enqueue(queue, task);

79 Send EXECUTE_TASK (funct, inputs, task_id, replica_id_) message ←-
to the task tracker;

80) else (

81 Send NO_TASK_AVAILABLE message to the task tracker;

82)

Let us first present the algorithm executed by the job tracker in non-speculative mode

(Algorithm 3.1), then the changes to this algorithm when executed in speculative mode

(Algorithm 3.2), and finally the algorithm executed by every task tracker (Algorithm 3.3).

Non-speculative job tracker. When the execution of a job is requested, the job tracker inserts

f + 1 replicas of every map task in the q_maps queue, which is the minimum number of

replicas executed of every task (lines 13-18). Each map task is in charge of processing one

48

3.3 Byzantine fault-tolerant MapReduce algorithm

input split (line 16). If any task (map or reduce) stops or stalls, it is dequeued and enqueued

again to be re-executed (lines 21-24).

In the non-speculative mode, two things may happen when a map task finishes (lines

26-41). If f + 1 or more replicas of a task have finished but there are no f + 1 matching

outputs, then a Byzantine fault happened and another replica is enqueued for execution

(lines 28-30). If there are already f + 1 matching outputs for every map task, then the map

phase ends and the reduces are enqueued to be executed (lines 32-40). To be consistent with

Hadoop’s nomenclature, we use urls to indicate the locations of the map outputs passed to

the reduces.

When a reduce task finishes in non-speculative mode, two things can happen (lines 43-

53). Similarly to the map tasks, if f +1 or more replicas of a task have finished but there are

no f +1 matching outputs, then there was a Byzantine fault and another replica is enqueued

(lines 45-47). Otherwise, if there are already f +1 matching outputs for every reduce task,

then the job execution finishes (lines 49-52).

The last event handler processes a request for a task coming from a task tracker (lines

55-82). If a map task is being requested, the job tracker gives priority to map tasks for which

the input split exists in the node that requested the task. Otherwise, it assigns to the task

tracker the next non-running map task in the queue. If a reduce is requested, the job tracker

returns the next reduce task in the queue.

Listing 3.2: Job tracker — Speculative mode.

1 {speculative mode: start extra map task replica, start/restart reduce ←-
tasks}

2 upon map task (map_id, replica_id, splits) finishing and mode = ←-
speculative do

3 if (FinishedReplicas(q_maps, map_id)≥ f + 1) (

4 if (MatchingReplicas(q_maps, map_id)< f + 1) (

5 new_replica_id := MaxReplicaId(q_maps, map_id)+1;

6 Enqueue(q_maps, (map_id, new_replica_id, splits, not_running))←-
;

7) else (

8 if (∃(map_id, replica_id_, url_) ∈ reduce_inputs :

9 ReplicaOutput(q_maps, map_id, replica_id_)6= ←-
MatchingReplicasOutput(q_maps, map_id)) (

49

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

10 for all reduce_id, replica_id

11 Dequeue(q_reduces, (reduce_id, replica_id));

12 reduce_inputs := {(map_id, replica_id, url) tuples with the ←-
output url of replica_id of a map_id matching f outputs from other←-
different replicas}

13 for replica_id := 1 to f + 1 (

14 for reduce_id := 1 to nr_reduces

15 Enqueue(q_reduces, (reduce_id, replica_id, reduce_inputs←-
, not_running));

16)

17)

18 for all map_id, replica_id

19 Dequeue(q_maps, (map_id, replica_id));

20)

21) else (

22 if (not reduces_started and ∀map_id : FinishedReplicas(q_maps, ←-
map_id)≥ 1) (

23 reduces_started := true;

24 reduce_inputs := {(map_id, replica_id, url) tuples with the ←-
output url of replica_id of map_id}

25 for replica_id := 1 to f + 1 (

26 for reduce_id := 1 to nr_reduces

27 Enqueue(q_reduces, (reduce_id, replica_id, reduce_inputs, ←-
not_running));

28)

29)

30)

31
32 {speculative mode: start extra reduce task replica}

33 upon reduce task (reduce_id, replica_id, reduce_inputs) finishing and ←-
mode = speculative do

34 if (FinishedReplicas(q_reduces, reduce_id)≥ f + 1 and ←-
MatchingReplicas(q_reduces, reduce_id)< f + 1) (

35 new_replica_id := MaxReplicaId(q_reduces, reduce_id)+1;

36 Enqueue(q_reduces, (reduce_id, new_replica_id, reduce_inputs, ←-
not_running));

37)

38
39 {speculative mode: finish job}

40 upon ∀map_id : MatchingReplicas(q_maps, map_id)≥ f + 1 and

50

3.3 Byzantine fault-tolerant MapReduce algorithm

41 ∀reduce_id : MatchingReplicas(q_reduces, reduce_id)≥ f + 1 and

42 ∀(map_id, replica_id, url) ∈ reduce_inputs :

43 ReplicaOutput(q_maps, map_id, replica_id) = ←-
MatchingReplicasOutput(q_maps, map_id) and

44 mode = speculative do

45 for all reduce_id, replica_id

46 Dequeue(q_reduces, (reduce_id, replica_id));

Speculative job tracker. Algorithm 3.2 contains the functions that change in the job tracker

when the algorithm is executed in speculative mode. Similarly to what happens in non-

speculative mode, if f + 1 or more replicas of a map task have finished but there are no

f + 1 matching outputs, another replica is enqueued (lines 4-6). On the contrary to the

other mode, only one replica of each map task must have finished for the reduces to be

enqueued for execution (lines 23-30). Finally, in speculative mode there is an extra case: if

there are f + 1 matching outputs of a task but they differ from the one that was used to

start executing the reduces, all the reduces have to be aborted and restarted (lines 8-21).

When a reduce task finishes in speculative mode, if there are f +1 outputs for that task

but not f + 1 with matching outputs, a new replica is enqueued (lines 33-38).

The event handler in lines 40-47 checks if the job can finish in speculative mode. It tests

if there are enough matching map and reduce outputs (lines 41-42) and if the reduces were

executed with correct input (line 43-44). If that is the case, the job finishes. This handler is

exceptional in the sense that it is activated by the termination of both map and reduce tasks;

its code might be part of the two previous handlers, but we made it separate for clarity.

Listing 3.3: Task tracker.

1 constants:

2 task_type {type of task this task tracker executes, map ←-
or reduce}

3
4 variables:

5 splits_stored_node {splits currently stored in this node}

6 executing_task {indicates if a task is being executed; ←-
initialized with false (not executing)}

7

51

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

8 {every T units of time request a task for execution or send heartbeat}

9 upon timer expiring do

10 if (executing_task = false) (

11 Send TASK_REQUEST (task_type, splits_stored_node) message to the←-
job tracker;

12) else (

13 Send HEARTBEAT message to the job tracker;

14)

15 launch timer;

16
17 {execute a task}

18 upon receiving EXECUTE_TASK (funct, inputs, task_id, replica_id) ←-
message from the job tracker do

19 if (executing_task = false) (

20 executing_task := true;

21 execute funct(inputs); {funct may be a map or a reduce}

22 Send TASK_FINISHED (task_id, replica_id) message to the job ←-
tracker;

23 executing_task := false;

24) else (

25 Send ANOTHER_TASK_EXECUTING message to the job tracker;

26)

Task tracker. The presentation of the task tracker algorithm (Algorithm 3.3) was simplified
by considering that a task tracker does not execute tasks in parallel and that it only exe-
cutes maps or reduces (defined by the constant in line 2). In practice, what happens are
essentially N parallel executions of the algorithm, some for map tasks, others for reduce
tasks (the number of each is configurable, see Section 3.4). Periodically every task tracker
either requests a task to the job tracker when it is not executing one, or sends a heartbeat
message reporting the status of the execution (lines 9-15). If it receives a task from the job
tracker, it executes the task and signals termination to the job tracker (lines 18-26). The
algorithm does not show the details about inputs/outputs but the idea is: the input (split)
for a map task is read from HDFS; the inputs for a reduce task are obtained from the nodes
that executed the map tasks; the outputs of a reduce task are stored in HDFS.
Discussion. Algorithms 3.1- 3.3 show the implementation of only two of the four mech-
anisms used to improve the efficiency of the basic algorithm: deferred execution and spe-
culative execution. The digest outputs mechanism is hidden in functions MatchingReplicas

52

3.3 Byzantine fault-tolerant MapReduce algorithm

and MatchingReplicasOutput. The tight storage replication is implemented by modifying

HDFS.

In the normal case, Byzantine faults do not occur, so the mechanisms used in the algo-

rithm greatly reduce the overhead introduced by the basic scheme. Specifically, without

Byzantine faults, only f + 1 replicas of each task are executed and the storage overhead is

minimal. Notice also that our algorithm tolerates any number of arbitrary faults during

the execution of a job, as long as there are no more than f faulty replicas of a task that

return the same (incorrect) output.

3.3.3 The prototype

The prototype of the BFT MapReduce runtime was implemented by modifying the original

Hadoop 1.x source code. Hadoop is written in Java so we describe the modifications made

in key classes. HDFS was almost not modified for two reasons. First, it is used only before

the execution of map tasks and after the execution of reduces, therefore it barely interferes

with the performance of MapReduce. Second, there is a Byzantine fault-tolerant HDFS

in the literature (Clement et al., 2009a) so we did not investigate this issue. The single

modification was the setting of the replication factor to 1 to implement the tight storage

replication mechanism (Section 3.3).

Most modifications were made in the JobTracker class in order to implement Algo-

rithms 3.1- 3.2. The constants of the algorithm (lines 1-5) are read from an XML file. The

format of the identifier of tasks (maps and reduces) was modified to include a replica num-

ber so that they can be differentiated. A map task takes as input the path to a split of the

input file. The job tracker gives each map replica a path to a different replica of the split,

stored in a different data node, whenever possible (i.e., as much as there are enough replicas

of the split available). It tries to instantiate map tasks in the same server where the data

node of the split is, so this usage of different split replicas forces the replicas of a map to be

executed in different task trackers (TaskTracker class), which improves fault tolerance.

TheJobTracker class stores data of a running job in an object of theJobInProgress

class. The TaskTracker class sends heartbeat messages to job tracker periodically. We

modified this process to include a digest (SHA-1) of the result in the heartbeat that signals

the conclusion of a task (map or reduce). The digest is saved in a JobInProgress ins-

tance, more precisely in an object of the VotingSystem class. The Heartbeat class,

53

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

used to represent a heartbeat message, was modified to include the digest and task replica

identifier.

3.4 Evaluation

We did an extensive evaluation of our BFT MapReduce. Our purpose was mainly to answer

the following questions: Is it possible to run BFT MapReduce without an excessive cost in

comparison to the original Hadoop? Is there a considerable benefit in comparison to the

use of common fault tolerance techniques such as state machine replication? Is there a

considerable benefit in using the speculative mode in scenarios with and without faults? Is

it possible to still achieve a high degree of locality in comparison to the original Hadoop?

Our experimental evaluation was based on a benchmark that tests particular parts of the

Hadoop framework called GridMix (Apache, 2013). More specifically, we used GridMix2,

which is composed by the following jobs: MonsterQuery, WebdataScan, WebdataSort,

Combiner, StreamingSort and JavaSort. The experiments were executed in the Grid’5000

environment, a French geographically distributed infrastructure used to study large-scale

parallel and distributed systems, during several months.

3.4.1 Analytical evaluation

This section models analytically the performance of the BFT MapReduce, the original

MapReduce, and hypothetical BFT MapReduce systems based on state machine replica-

tion and the result comparison scheme. This performance is analyzed in terms of a single

metric: the total execution time or makespan. Our objective is twofold: to do a comparison

with systems that do not exist, so cannot be evaluated experimentally; to provide an expres-

sion that helps understanding the experimental results presented in the following sections.

The execution of a job is composed by serial and parallel phases. The job initialization,

the shuffle (sending the map task outputs to the reduce tasks), and the finishing phase be-

long to the serial phase. We model these times as a single value T s . The two parallel phases

are the execution of map and reduce tasks. The time to execute the map (respectively re-

duce) tasks depends on maximum the number of map (respectively reduce) tasks that can

be executed in parallel.

54

3.4 Evaluation

The total execution time of a job (makespan) without faults is obtained using Equation

3.1 for all considered versions of MapReduce. The versions are differentiated by the value

of α, that corresponds to the number of replicas of map and reduce tasks executed (without

faults). For the (i) original MapReduce α = 1 and for the (ii) BFT MapReduce α = f + 1.

If we execute (iii) the original MapReduce sequentially — sequential BFT MapReduce —

α = f + 1. In the (ii) hypothetical scheme, the client issues the job to a set of replicas that

process the job in parallel and return the results, which are compared by the client. In (iii),

the client issues the job sequentially to a single cloud and compares the outputs. Byzantine

fault-tolerant state machine replication typically requires 3 f +1 replicas, but in (Yin et al.,

2003) have shown that only 2 f + 1 have to execute the service code, therefore, for this

version α = 2 f + 1. The sequential BFT MapReduce scheme consists in executing the

whole job f + 1 times sequentially; if all executions return the same result, it is considered

the correct result, otherwise the job has to be re-executed one or more times until there are

f + 1 matching results. Therefore, similar to BFT MapReduce but with a different twist,

for this scheme α= f + 1.

T j = T s +α ·
¡ N m

P m ·N

¤

·T m+α ·
¡ N r

P r ·N

¤

·T r −Ω (3.1)

In relation to the rest of the parameters, N m and N r are the number of map and reduce

tasks executed. P m and P r are the number of tasks that can be executed in parallel per

task tracker (in Hadoop by default P m = P r = 2) and N is the number of nodes (or task

trackers). T j is the time of a job execution, T m is the average time that it takes to execute a

map task, and T r is the same for a reduce task. These values change from job to job and have

to be obtained experimentally. Ω expresses an overlap that may exist in the execution of

map and reduce tasks. For the original Hadoop we observed that Ω is essentially 0 because

reduce tasks start by default after 95% of map tasks finish. So we use this value for the state

machine replication and result comparison versions. For the BFT MapReduce we have

two cases. In non-speculative mode, again Ω = 0. In speculative mode, the reduces start

processing data after the first replica of every map is executed, so there is an overlap and

Ω> 0.

To assist in the comparison among MapReduce systems, we introduce a parameter

called the non-replicated task processing time, T n. This parameter measures the time to

55

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

process map and reduce tasks without replication, i.e., in the original Hadoop. It is ob-

tained from Equation 3.1 by setting T s = 0 (it considers only task processing time), α = 1

(no replication), and Ω= 0 (no overlap). The T n parameter is defined in Equation 3.2.

T n =
¡ N m

P m ·N

¤

·T m+
¡ N r

P r ·N

¤

·T r (3.2)

Table 3.1 compares the MapReduce systems when there are no faults: the original

Hadoop, sequential BFT MapReduce (BFT-MR-seq), our BFT MapReduce in non-speculative

(BFT-MR-ns) and speculative (BFT-MR-s) modes, the hypothetical BFT MapReduce based on

state machine replication (BFT-MR-smr) and the BFT MapReduce based on the result com-

parison scheme (BFT-MR-cmp). The comparison is made in terms of T j/T n and assumes

T s � T n, N m � P m ·N and N r � P r ·N (consider the contrary: if there are much

more resources than tasks, executing some extra tasks does not impact the total execution

time). It is shown in terms of a formula and by instantiating it with the first values of f .

In a scenario without faults, BFT-MR-smr needs to launch much more tasks than our

solution. In contrast, the non-speculative execution needs to launch the same number of

tasks as the comparison scheme solution. This shows the benefit of our BFT MapReduce

opposed to the state machine replication version.

System T j/T n f = 1 f = 2 f = 3
Hadoop 1 1 1 1
BFT-MR-seq f + 1 2 3 4
BFT-MR-ns f + 1 2 3 4
BFT-MR-s f + 1− Ω

T n 2− Ω
T n 3− Ω

T n 4− Ω
T n

BFT-MR-smr 2 f + 1 3 5 7
BFT-MR-cmp f + 1 2 3 4

Table 3.1: Analytical comparison between MapReduce systems without faults.

Table 3.2 shows the impact of a map or reduce task affected by a Byzantine fault in the

makespan of a job. The table shows that the impact of a fault in our BFT MapReduce is

quite small, whereas for the result comparison scheme the makespan doubles. This happens

because it is necessary to launch a new job in case of any fault. In BFT-MR-smr there is no

need to relaunch any task because this solution can tolerates up to f faults.

56

3.4 Evaluation

Clearly the answer to one of the questions — if there was a clear benefit in using our
scheme instead of the result comparison scheme — is positive. Moreover, our solution is
just better than the state machine replication solution in case of any faults.

System Extra time if there is a faulty map task
Hadoop cannot tolerate
BFT-MR-seq T n
BFT-MR-ns T m/(P m ·N) on average
BFT-MR-s T m/(P m ·N) on average
BFT-MR-smr 0
BFT-MR-cmp T j

Table 3.2: Effect of a single faulty map task in the makespan for all MapReduce systems.

3.4.2 Experimental evaluation

Makespan vs. number of input splits

Figure 3.3 shows the makespan of the six GridMix2 benchmark applications for the original
Hadoop and our BFT MapReduce in the non-speculative and speculative modes. We con-
sider only the case of f = 1. We recall that the meaning of f in our system is not the usual
one and that the probability of the corresponding assumption being violated is even lower
than in other BFT replication algorithms. The values we present are averages of around 100
executions of each experiment. The average does not include outliers, which represent less
than 1% of the executions. The standard deviation is low, showing that most of the results
are close to the average, and for that reason we do not include this information in any of
the following graphs. Each job processed from 50 to 1000 input splits of 64 MB stored in
HDFS data nodes. We use the default data-block size of 64 MB to minimize the cost of
seeks (White, 2009). To allow results to be comparable, we used a standard configuration
for all tests. The times reported were obtained from the logs produced by GridMix. We
choose to run the experiments with the original Hadoop in 100 cores and those with the
BFT MapReduce in 200 cores, as our framework uses twice as many resources as the first
with f = 1 and no faults, which is the case we are considering. This allows a fair apples-to-
apples comparison.

Overall, the original Hadoop and the BFT MapReduce in non-speculative mode had
similar makespan in all experiments (see Figure 3.3). This may seem counter-intuitive but

57

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 [
s
]

Number of splits

original
non-speculative

speculative

(a) WebdataScan

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 [
s
]

Number of splits

original
non-speculative

speculative

(b) WebdataSort

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 [
s
]

Number of splits

original
non-speculative

speculative

(c) Combiner

58

3.4 Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 [
s
]

Number of splits

original
non-speculative

speculative

(a) Javasort

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 [
s
]

Number of splits

original
non-speculative

speculative

(b) Streaming

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 [
s
]

Number of splits

original
non-speculative

speculative

(c) Monsterquery

Figure 3.3: Makespan of total execution time of the six GridMix2 benchmark applications
varying the number of splits.

59

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

recall that we provided the BFT MapReduce with twice the number of cores of Hadoop.
This similarity of makespans shows something interesting: the additional communication
contention in the network and in the nodes (caused by the comparisons of all map replica’s
outputs) did not impact significantly the performance of the BFT MapReduce (twice as
much computation was done using twice as many resources in the same time).

The objective of the speculative mode is to improve the makespan by starting reduces
earlier, when there are results from at least one replica of each map. The speculative mode
improved the makespan in three of the benchmarks — webdatascan, combiner, and mons-
terquery. We can observe that the improvement gets larger as there are more splits to pro-
cess, reaching an improvement of 30-40%, which is to be expected as more splits mean more
map tasks to process them. Interestingly, the speculative mode had almost no impact in the
other three benchmarks with up to 1000 splits. An analysis of the logs of these experiments
has shown that the reduce tasks were launched when around three quarters of the maps fin-
ished, instead of one half as we would expected with f +1= 2. This late start of the reduce
tasks led to a very small benefit in using the speculative execution. Moreover, it is prefe-
rable to execute webdatascan, combiner, and monsterquery with our solution, instead of
running sequentially a couple of jobs like we would do in the BFT MapReduce sequential
hypothetical system.

In summary, there is a cost associated to running BFT MapReduce in comparison to
the original Hadoop, as approximately twice as many resources are used (α= 2 in Equation
3.1). Given twice the number of cores, the time to run BFT MapReduce is essentially the
same as Hadoop’s, somewhat better if the speculative mode is used. With the same number
of cores the makespan is approximately the double (Costa et al., 2011).

Locality

The Hadoop MapReduce default scheduler tries to run each map task in the location where
its input split is stored. This objective is called locality and a map task for which this is
achieved is called a data-local task. When this is not possible, the task will be preferably
processed in a node in the rack where the input split resides — rack-local tasks. If not even
that is possible, the task is executed in a node in a different rack. Locality is an important
property in MapReduce as moving large amounts of data (splits of 64 MB in our experi-
ments) for a different node takes time and occupies resources, with a negative impact in the
makespan and the load in the systems where MapReduce is executed.

60

3.4 Evaluation

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%

Number of splits

original
non-speculative

speculative

(a) Webdatasort

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%

Number of splits

original
non-speculative

speculative

(b) Javasort

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%

Number of splits

original
non-speculative

speculative

(c) Streaming

Figure 3.4: Percentage of data-local tasks in three of the GridMix2 benchmarks varying the
number of splits.

61

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

Figure 3.4 shows the percentage of data local tasks in the Webdatasort, Javasort, and

Streaming benchmarks in the same experiments that were reported in the previous section.

The results of the others are similar so we do not show them in the interest of space. The

first conclusion is that the locality of the BFT MapReduce in both modes is around 90%

and similar to the one achieved in the original Hadoop with half of the nodes. A second

conclusion is that although the absolute number of non-data-local tasks increases conside-

rably, the percentage of non-data-local tasks stays reasonably stable when the number of

tasks increases.

Data volume

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

T
o
ta

l
o
u
tp

u
t
p
ro

d
u
c
e
d
 b

y
 t
a
s
k
s
 [
M

b
]

Number of splits

Map(orig.)
Reduce(orig.)

Map(BFT)
Reduce(BFT)

(a) Webdatasort

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

T
o
ta

l
o
u
tp

u
t
p
ro

d
u
c
e
d
 b

y
 t
a
s
k
s
 [
M

b
]

Number of splits

Map(orig.)
Reduce(orig.)

Map(BFT)
Reduce(BFT)

(b) Streaming

Figure 3.5: Total size of map and reduce outputs in two of the GridMix2 applications with
different number of splits.

This section compares the quantity of data processed in the original and in the BFT

Hadoop. Figure 3.5 shows the total size of the data produced by the maps and reduces in

each experiment, i.e., the sum of the size of the outputs of all maps and the sum of the size

of the outputs of all reduces. Recall that each input split has 64 MB. For the webdatasort

application, the output of each map task had approximately the same size of its input (64

MB), whereas for streaming the output of a map had an average of 17 MB. The main con-

clusion is that the total output data of the BFT MapReduce with f = 1 and two replicas

executed without faults is twice the value for Hadoop, which is the expected result.

62

3.4 Evaluation

Makespan with faults

The experiments of the previous sections were executed in a scenario without faults. We
created a simple fault injector that tampers outputs and digests of outputs of map and reduce
tasks. The component injects random bits leading the job tracker to detect differences in
the outputs of replicas, forcing the system to run additional tasks. The percentage of tasks
affected by faults is configurable.

We set the percentage of faults to 10%. Figure 3.6(a) shows the makespan of webdatasort
with different numbers of splits. The graph shows two lines with a slope similar to those
in Figure 3.3. To better compare the makespan with and without faults Figure 3.6(b) shows
the ratio between them. We can see that the makespan was roughly 10% longer, which is
to be expected after executing 10% more tasks (see Equation 3.1 and consider that T s and
Ω are negligible in comparison to the time taken to execute the tasks).

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 [
s
]

Number of splits

non-speculative
speculative

(a) Makespan of both modes of execution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 200 400 600 800 1000

R
a
ti
o

Number of tasks

non-speculative
speculative

(b) Faulty over faultless makespan ratio.

Figure 3.6: Makespan of the webdatasort benchmark with fault injector enabled.

Makespan vs. parallelism

In the tests presented so far we used a fixed number of nodes. That configuration allowed
running the experiments as quickly as possible, within the resource constraints imposed
by Grid’5000. This section presents experiments in which we fixed the input data size and
varied the number of nodes (without faults). As we increase the number of nodes, we allow
more tasks to run in parallel.

63

3. DEPENDABLE MAPREDUCE IN A SINGLE CLOUD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35 40

M
a
k
e
s
p
a
n
 [
s
]

Max number of map/reduce tasks executed in parallel

original (estim.)
original (real)

deferred (real)
speculative (real)

(a) Combiner.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70

M
a
k
e
s
p
a
n
 [
s
]

Max number of map/reduce tasks executed in parallel

original (estim.)
original (real)

deferred (real)
speculative (real)

(b) WebdataSort.

Figure 3.7: Makespan varying the parallelism without faults.

The experimental results are presented in Figure 3.7. We also plotted values from the
original Hadoop estimated using Equation 3.1 (with Ω = 0 and values of T s , T m and T r
obtained experimentally). The horizontal axis is the number of map/reduce tasks that
can be executed in parallel (i.e., P m ·N = P r ·N) and the vertical axis is the makespan.
Interestingly, the equation provides a good approximation of the curves (also for the BFT
versions, although we do not plot those curves).

The graphs show an exponential drop as the number of map/reduce tasks executed in
parallel increases. From the equation, it becomes clear that the curves converge asymptoti-
cally to T s −Ω.

The experimental evaluation confirmed what might be intuited from the algorithm:
with f = 1 the resources used and the makespan essentially double. Although this is a
considerable cost, we have shown that it is much better than alternative solutions: state
machine replication and result comparison scheme. This cost may be acceptable for a large
number of applications that handle critical data. We also believe that setting f to 1 is a
reasonable option as this parameter is the maximum number of faulty replicas that return
the same output.

3.5 Summary

Hadoop MapReduce is prepared to tolerate crash faults by re-executing tasks in case of
failure. Yet, the framework is not prepared to deal with Byzantine faults that can silently

64

3.5 Summary

corrupt the output of any map or reduce task. Evidence shows that arbitrary faults are
often observed in commodity-hardware datacenters and have disrupted large services. In
this chapter, we have presented a Byzantine fault-tolerant MapReduce algorithm that can
mask arbitrary faults by executing each task more than once, comparing the outputs of
these executions, and disregarding non-matching outputs. This simple but powerful idea
allows our solution to tolerate any number of faulty task executions at the cost of one re-
execution per faulty task. Always keeping in mind the performance cost, we developed
two scheduling algorithms (speculative and non-speculative) that have the goal to improve
performance of the jobs that run on the platform.

We performed a thorough experimental evaluation in a real testbed, and the results have
confirmed what might be intuited from the algorithm: with f = 1 the resources used and
the makespan essentially double. Although this is a considerable cost, we have shown that
it is much better than alternative solutions: state machine replication and result comparison
scheme. In conclusion, we believe that this cost is acceptable for critical applications that
require a high degree of certainty of the correctness of the results.

65

4
Cloud-of-Clouds Dependable

MapReduce

Several applications that we use daily have been moving from centralized to decentralized
cloud architectures to improve their scalability. MapReduce, a programming framework
for processing large amounts of data using thousands of machines in a single cloud, also
needs to be scaled out to multiple clouds to adapt to this evolution. The challenge of build-
ing a multi-cloud distributed architecture is substantial. Notwithstanding, the ability to
deal with the new types of faults introduced by such setting, such as the outage of a whole
datacenter or an arbitrary fault caused by a malicious cloud insider, increases the endeavor
considerably.

In this chapter we propose Medusa, a platform that allows MapReduce computations to
scale out to multiple clouds and tolerate several types of faults. Our solution fulfills four ob-
jectives. First, it is transparent to the user, who writes her typical MapReduce application
without modification. Secondly, it does not require any modification to the widely used
Hadoop framework 1. Thirdly, the proposed system goes well beyond the fault tolerance
offered by MapReduce to tolerate arbitrary faults, cloud outages, and even malicious faults
caused by corrupt cloud insiders. Fourth, it achieves this increased level of fault tolerance
at reasonable cost. We performed an extensive experimental evaluation in the ExoGENI
testbed, demonstrating that our solution significantly reduces execution time when com-
pared to traditional methods that achieve the same level of resilience.

1For this chapter, we have used Hadoop MapReduce 2.X version.

67

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

4.1 Introduction

Spreading data across multiple servers in different administrative domains can provide avai-
lability and fault tolerance to the users. For a growing number of applications, the data is
gathered and stored in different datacenters but the analysis required are global. A well-
known example includes the analysis of scientific data such as those originated from the
Large Hadron Collider (LHC). The tens of petabytes of data produced every year by this
particle accelerator are stored in more than 140 datacenters distributed across 34 countries.
Moreover, to cope with the unprecedented data growth, applications such as web search, so-
cial networking and bioinformatic applications can be distributed in geographically-distant
datacenters to leverage data locality and improve data processing efficiency (Baeza-Yates
et al., 2009; Matsunaga et al., 2008). In these cases, multiple MapReduce clusters are set up
in distributed datacenters. Each cluster collects and processes the data that is close to its
datacenter. The final data processing results are obtained by aggregating their respective
outputs in an aggregation job.

Acknowledging this trend, the research community has recently proposed MapReduce-
based platforms that scale out to multiple clouds, like G-Hadoop (Wang et al., 2013) and
G-MR (Jayalath et al., 2014). These examples are demonstrative of the challenges to build
multi-cloud distributed architectures. Notwithstanding, the ability to deal with – and to
tolerate – the new types of faults that are introduced by this setting makes building such
system significantly harder.

Unfortunately, accidental faults that may affect the correctness of the results have been
known to happen, corrupting the processing and leading to wrong values (Meza et al., 2015;
Nightingale et al., 2011; Schroeder et al., 2009). This issue is intensified when calculations
are scaled out to multiple datacenters, and may indeed become more frequent. Secondly,
malicious attacks perpetrated by cloud insiders or external hackers can also cause corruption
of the processing and of its results. For example, a malicious insider in a cloud that hosts
an epidemiological surveillance system can tamper the diagnosis of patients with tragic
consequences. A recent report mentions malicious insiders as one of the top threats in cloud
computing (Cloud Security Alliance, 2013), and alarming instances of this problem have
occurred in companies such as Google (Chen, 2010; Kandias et al., 2013). Thirdly, cloud
outages may lead to the unavailability of MapReduce instances and data loss. Experience
shows that these events are also frequent, with cases of unavailability of minutes to days

68

4.1 Introduction

in services like Google Drive or Amazon EC2, to name just a few (CloudSquare, 2015).
Several cases have been reported, including the disruption of one Amazon EC2 datacenter
for almost five hours in 2015 (Smolaks, 2015), and the disruption of the Google Cloud
Engine service for some periods in 2016, affecting customers in all regions (Bort, 2016).
Cloud outages can interrupt the execution of MapReduce jobs, and the original framework
cannot deal with this type of fault as it is restricted to work in a single datacenter. To deal
with such faults, one needs to add redundancy to the computation. As both malicious faults
and cloud outages can impair a complete cloud, handling them involves resorting to more
than one cloud.

The terms cloud federation (Kurze et al., 2011) and cloud-of-clouds (Bessani et al., 2011)
have been used to denote such virtual environments composed of multiple clouds. We
explore this idea to replicate MapReduce jobs in different clouds to avoid their incorrectness
or unavailability of computation due to arbitrary and malicious faults, and cloud outages.

We propose a novel approach that allows MapReduce to scale out to multiple clouds
to tolerate arbitrary and malicious faults, as well as cloud outages, for critical applications.
As per above, the use of multiple clouds for MapReduce is not in itself new. The novelty
of this work arises from the use of a multi-cloud environment to not only parallelize com-
putation, but also to transparently tolerate different types of faults at the minimum cost.
Our solution addresses several non-trivial challenges for this purpose. First, it aims to be
a transparent solution for the user. The MapReduce API is not changed, and the user sim-
ply writes her typical MapReduce application without modification. Secondly, it does not
require any modification to the Hadoop framework. Thirdly, it tolerates not only crash
faults, as the original MapReduce, but also arbitrary faults, cloud outages, and malicious
faults caused by corrupt cloud insiders. Fourth, it achieves this level of fault tolerance at
the minimum replication cost and guaranteeing acceptable performance.

Our approach relies on a proxy, Medusa, that runs in the client and that interacts with
(unchanged) MapReduce runtimes in different clouds to tolerate the three kinds of faults
above. The basic idea is to replicate each MapReduce job in more than one cloud and to
compare the outputs of the replicated jobs to tolerate faults. The challenge is to perform this
efficiently, and doing so without changing the framework and keeping the whole process
transparent to the user. Achieving efficiency requires (i) replicating each job the minimum
number of times; and (ii) assigning each replicated job to the cloud that ensures the best
performance. To this end, instead of replicating each job at least 2 f + 1 times to ensure a

69

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

majority of correct results and tolerate f faults, as is common (Schneider, 1990; Veronese

et al., 2013), our approach is crafted to run only f + 1 replicas for each job when there is

no fault, and 2 f + 1 replicas when there are f faults.

Importantly, our approach can tolerate not only f but any number of faulty replicas

or clouds as long as no more than f faulty replicas return the same wrong output. This

includes the possibility that up to f clouds maliciously collude and the system remains

able to reach a correct output. Moreover, we introduce a novel scheduling algorithm that

takes into account the heterogeneity of the individual clouds to schedule the replicated jobs

among them in order to reduce data communication and job completion time.

We performed an extensive experimental evaluation of our approach in a real testbed

(ExoGENI). The results demonstrate that our solution significantly reduces the execution

time when compared to traditional methods that achieve the same level of resilience. As

an example, in certain scenarios we achieve a gain of up to 3 in efficiency when compared

with a conventional round-robin approach that tolerates cloud faults.

In summary, our proposal is practical and transparent to the user by only involving a

new software module running in the client (Medusa), not requiring any modification to the

MapReduce framework or to user applications. Simultaneously, it tolerates arbitrary and

malicious faults, and cloud outages, efficiently.

The remainder sections are organized as follows. In the next section we describe the

system model and define the problem. Then, in Section 4.3 we present the detailed design of

Medusa, the cloud fault-tolerant MapReduce system we propose, as well as a new scheduling

algorithm that distribute replicated jobs among the clouds to ensure efficient completion

of the entire job. Section 4.4 reports the experimental evaluation that we have performed

in a testbed to show the advantages of our solution contrasted with customary methods

that accomplish a similar level of resilience.

4.2 System model

In a multi-cloud system, the MapReduce job runs in a federation of clouds. Each cloud has

an HDFS instance to store the initial inputs and final outputs of the jobs running in that

cloud. The entire data to be processed by the job is distributed across the clouds in the

system, i.e., each cloud has a subset of the data stored in its HDFS. The data can be either

70

4.2 System model

Medusa

Client

Resource
Manager

Resource
Manager

Node
Manager

Cloud C

Resource
Manager

Resource
Manager

Node
Manager

Cloud B

Resource
Manager

Resource
Manager

Node
Manager

Cloud A

Figure 4.1: Medusa interacting with several MapReduce runtime in a multi-cloud system.

collected by the cloud itself or assigned by some external processes, but we ignore this detail
as it is application dependent and is orthogonal to the MapReduce execution.

The system is composed by a set of distributed processes (see Figure 4.1). The client
that requests the execution of a job, submits it through the proxy (also called Medusa) to
the resource manager. The goal of the proxy is to manage the execution of the job in all
the clouds. Each cloud first runs its own MapReduce instance to process the data it has:
the resource manager controls the execution of the part of job assigned to that cloud; and
the node manager in each server runs the map and reduce tasks assigned to that server.
Finally, the proxy is in charge of assigning the outputs from these clouds to an aggregation
MapReduce job in one of the clouds to obtain the final output for this job.

The messages between the proxy and the clouds are mediated by a message queuing
service (MQ), which uses reliable channels so that no messages are lost, duplicated or cor-
rupted. In practice, this is provided by establishing TCP/IP connections. A message is only
lost if the cloud is unreachable.

The system is asynchronous, i.e., we make no assumptions about bounds on processing
and communication delays in each stage of job execution (Section 4.3.2). We assume the
use of authenticated reliable channels for communication.

We assume the existence of one correct dataset in each cloud at the beginning of job
execution. We further assume the existence of a collision-resistant hash function, i.e., a hash

71

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

function for which it is impossible to let two different inputs produce the same output (e.g.,

SHA-256). We use the digests produced by this function to verify the integrity of the data

replicated between clouds, and to validate the correctness of the job outputs.

The proxy is the key component in the multi-cloud system for tolerating cloud faults.

We focus, in this work, on the design of the proxy as well as on a scheduling mechanism

that guarantees good system performance.

4.2.1 Fault model

We say that a process is correct if it follows the algorithm, otherwise we say it is faulty. We

also use these two words to denominate a task (map or reduce) that, respectively, returns

the result of applying the map/reduce function to the input (correct) or some other result

(faulty). We assume that clients are always correct, because they are not part of the MapRe-

duce execution. If clients were faulty, the job output would be necessarily incorrect. We

also assume that the proxy is always correct because it runs at the client side, e.g., in the

same host as the client or in a host under the same administration. Resource managers and

node managers can fail arbitrarily: they can return wrong results (e.g., processing corrup-

tion, or malicious insider) or even stop executing (e.g., due to a cloud outage). A cloud is

faulty if it becomes partitioned from the rest of the processes, it is compromised by a ma-

licious attacker, or suffers an outage, a disconnection from the Internet or another severe

communications problem.

Our algorithm is configured with two parameters f and t . In distributed fault-tolerant

algorithms f is usually the maximum number of faulty replicas, but in our case the meaning

of f is different and weaker: f is the maximum number of faulty replicas that can return

the same wrong output given the same input. t is the number of faulty clouds that the

system tolerates before the service becomes unavailable. Moreover, O is the output of a

MapReduce computation. The rationale is that f is the maximum number of replicas that

can be faulty and still allow the system to find out that the correct result is O. If the system

selects the correct output by picking the output returned by f +1 task replicas, it will never

select O ′ because it is returned by at most f replicas. Similarly to the usual parameter f ,

our f has a probabilistic meaning (hard to quantify): it means that the probability of more

than f faulty replicas of the same task returning the same output is negligible.

72

4.3 Medusa: a cloud fault-tolerant MapReduce

The other parameter, t , is the maximum number of clouds that may fail arbitrarily
(including outages and malicious faults). We assume there are at least 2t + 1 clouds, to
ensure that there are always enough clouds to execute the job.

4.2.2 Problem formulation

We aim at tolerating (i) arbitrary and malicious faults, and (ii) cloud outages, when running
MapReduce jobs in multi-cloud systems. To tolerate f faults, a basic approach is to create
2 f + 1 replicas of each job (i.e., the job running in each cloud and the aggregation job),
spread them in 2t + 1 different clouds, and compare the 2 f + 1 outputs of each job. If at
least f + 1 outputs are identical, their corresponding MapReduce jobs are correct and the
identical output is the correct output of this job.

This basic approach has two major problems. First, it is expensive in terms of compu-
tation, communication, and storage. Even if there is no fault, each job is executed 2 f + 1
times. This requires replicating the data initially hosted by each cloud to t+1 other clouds,
which can be expensive in geographically distributed clouds. The same data also have to be
stored in the HDFS of 2t + 1 clouds. In fact, if there is no fault, executing each job f + 1
times is enough (there is no need for additional computations). Second, the basic approach
does not take into account the difference among clouds for data replication and data pro-
cessing. Intuitively, the data initially hosted by a cloud should be replicated to other clouds
with which the original cloud has a high pair-wise bandwidth and, simultaneously, has high
computational power. This would ensure the efficiency of the entire job execution in the
multi-cloud system.

Therefore, our objective in this work is to design a MapReduce proxy that ensures the
MapReduce job running in multiple distributed clouds to tolerate cloud faults while (i)
minimizing the amount of data replication and processing; and (ii) ensuring efficient com-
pletion of the entire MapReduce job.

4.3 Medusa: a cloud fault-tolerant MapReduce

4.3.1 Overview

As mentioned in Section 4.2, a full job execution in a multi-cloud system is comprised of
two phases. The first phase runs a vanilla MapReduce job in each cloud that holds a subset

73

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

of data initially owned by that cloud. The second phase runs a global MapReduce job that
aggregates the outputs from all clouds to generate the final results. To tolerate arbitrary,
malicious faults, and cloud outages, the MapReduce jobs in each phase need to be replicated
to other clouds for ensuring the existence of f +1 identical outputs and thus the correctness
of the results.

We propose in this work a MapReduce proxy that works as a middleware in a multi-
cloud system (i.e., a federation of clouds). We refer to this proxy as Medusa1.

As explained, we assume that no more than f replicas of a job return to the proxy identi-
cal wrong outputs from their executions. This assumption allows the proxy to know that a
result is correct by getting f +1 identical results from different clouds / resource managers.
Given the expected low probability of arbitrary and malicious faults, it is too expensive to
always execute 2 f + 1 replicas of a job as is done in typical approaches. Therefore, instead
of replicating each job 2 f + 1 times, Medusa first replicates each job f + 1 times in t + 1
different clouds (i.e., once in the cloud where the data initially are and f times in other
clouds that do not have the corresponding data initially). If the executions of these replicas
do not produce identical outputs, one more replicated job is launched in a different cloud
until the proxy gets f +1 identical outputs. This deferred job execution avoids the redundant
data transmission, storage and processing when no fault happens. As per the point above,
each subset of data initially available in one cloud is replicated (at least) f +1 times, instead
of 2 f + 1 times.

We detail in Section 4.3.2 how Medusa works and explain in Section 4.3.3 how the
replicated jobs are scheduled among the clouds in the system to ensure efficient completion
of the entire job.

4.3.2 Medusa proxy in a nutshell

Each of the two phases of a full job execution is composed of three stages: replicating the
data from the local cloud that initially holds them to other clouds; running the replicated
jobs in all the clouds having the same data; and agreeing on the outputs of the replicated
jobs. In each stage, all processes wait until every other process finishes, to move to the next
stage. Fig. 4.2 and Fig. 4.3 depicts the two-phase execution by means of an example, where
the full job is running in 3 clouds and is set to tolerate 1 fault (f = 1).

1Medusa is the mythological figure that has living snakes in place of hair. Metaphorically, the connections
of our proxy to the clouds are the snakes, and these follow orders given by Medusa’s brain (our proxy).

74

4.3 Medusa: a cloud fault-tolerant MapReduce

Cloud 1

2. rank clusters (sched. alg.)
3. copy data
4. run job
5. verify output

3.1 copy data
4.1 run job
5.1 verify output 3.2 copy data

4.2 run job (x 2)
5.2 verify output

4.3 run job
5.3 verify output

Client

A.txt

HDFS

Map
Reduce

B.txt

HDFS HDFS

Cloud 3

Medusa

Cloud 2
Job A

B.txt

1.submit

Map
Reduce

Map
Reduce

Job A
Job B

Job B

Figure 4.2: Phase 1: Vanilla MapReduce execution.

The proxy interacts with the clouds with the help of a message queuing service (MQ).

In Fig. 4.2 and Fig. 4.3, MQ is tightly coupled with the proxy, but in practice it can be

running in a different host.

In the first phase (Fig. 4.2), the client submits a job (Step 1) with input data A.txt and

B.txt (representing the two subsets of the entire data to be processed). As mentioned earlier,

we assume that the cloud collected or generated the data itself as we anticipate this to be

the most common scenario. Hence, the input data is already stored in cloud 1 and cloud

2, respectively. After receiving the request from the client, Medusa runs a scheduling algo-

rithm (Section 4.3.3) to select the best cloud(s) to run the replicated jobs (Step 2). Medusa

selects the clouds that offer the best performance in terms of data transmission and data

processing to ensure low job makespan (i.e., the time it takes for the whole job to finish).

In this example, Medusa chooses to copy A.txt to cloud 2 and B.txt to cloud 3. Note that to

guarantee data integrity, a digest of each data is computed using a collision-resistant hash

function (e.g., SHA-256) and is sent with the original data for validation at reception.

If the data transmission is successful and the communication is not tampered, the exe-

cution of the job will start (Step 4). After the executions of the f + 1 job replicas finish,

digests of their outputs are computed using the same collision-resistant hash function, and

the correctness of these outputs are verified (Step 5). If all the digests are identical, the

75

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

Cloud 1 Cloud 2

6. rank clusters (minimize data transfer)
7. copy data
8. run job
9. verify output

7.1 copy data
7.2 copy data
8.1 run job
9.1 verify output 8.2 run job

9.2 verify output

10.return
result

OutA.txt

HDFS

OutB.txt

Cloud 3

OutA.txt
OutB.txt

HDFS

OutA.txt

Client Medusa

Map
Reduce

OutA.txt

HDFS

Map
Reduce

Map
Reduce

Job C Job C

Figure 4.3: Phase 2: Global MapReduce execution.

vanilla MapReduce job finishes successfully. Otherwise, the data is copied to a different
cloud, selected by Medusa’s scheduling algorithm, and the job is executed again to obtain
f + 1 identical outputs. Once a majority of correct MapReduce jobs have finished, the
second phase can start.

In the second phase (Fig. 4.3), Medusa chooses the t + 1 clouds that minimize the data
transmission time to gather the outputs of the first phase and to run the global MapReduce
jobs to produce the final output. In this example, only OutA.txt is replicated to cloud 3 (Step
7). Then, after verifying the integrity of the data, the f + 1 replicated jobs are launched
(Step 8). Once the f + 1 replicated jobs finish, the digests of their outputs are computed
and compared (Step 9). As in the first phase, if the digests are identical, the job finishes
successfully, and the correct result is returned to the client. Otherwise, another replica of
the global MapReduce job is launched until f + 1 equal results from different clouds are
obtained.

4.3.3 The Medusa scheduler

When a client submits a job, Medusa needs to instantiate f + 1 replicas of the job. These
replicas will be launched in different clouds to tolerate cloud faults as explained in the pre-
vious section. Whenever there is a disagreement on the output of a job, Medusa needs to
launch an extra execution of that job.

76

4.3 Medusa: a cloud fault-tolerant MapReduce

Deciding in which cloud a replicated job should be executed is crucial for the perfor-

mance of the system. Specifically, the client is interested in minimizing the time it takes for

the submitted job to complete: the makespan of the job. Intuitively, if a job, as well as the

data it needs to process, is replicated to a particular cloud with high computational power

and to which it is connected by high-bandwidth links, it should take relatively shorter time

for the job to complete, when compared to the available alternatives. On the contrary, if

the data has to be copied to a cloud using low bandwidth links, or to a cloud that is already

overloaded, it may take a very long time for the job to complete. Therefore, to ensure

a small makespan of the entire job, it is important for Medusa to choose the appropriate

clouds to replicate each job.

To this end, we propose a scheduler to distributes the replicated jobs across different

clouds based on the predicted data transmission time and data processing time in each cloud.

The prediction takes into account the historical performance as well as the current status

of each cloud, allowing us to incorporate the heterogeneity of the clouds into the scheduling

decision.

The overall makespan is determined by the longest time to complete the vanilla MapRe-

duce jobs running in all the clouds and the time to complete the global MapReduce job.

Each job is replicated and executed between f + 1 times and 2 f + 1 times. The Medusa

scheduler follows a greedy approach and selects, for each job, the clouds that minimize the

time to complete the executions of all its replicas. Specifically, the Medusa scheduler esti-

mates, for each job, the time to replicate and process the corresponding data in each cloud

that does not initially holds the data, and selects the t + 1 clouds in increasing order of

the estimated time. In case of a fault, the Medusa scheduler makes another estimation and

chooses the cloud with the shortest estimated time to run the extra replica. Note that the

scheduler will deal in accordance with the type of fault. When the system is set (by the

client) to assume any fault can be malicious, it will not consider the cloud where the fault

occurred as an option to run the extra replica. That cloud cannot be trusted again since

the malicious insider may corrupt the results once more. When the system is set to only

tolerate arbitrary faults and cloud outages, any alive cloud can be an option to launch the

extra replica.

Formally, the estimated time t1(i) for completing a (replicated) vanilla MapReduce job

77

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

(i.e., phase 1) in cloud i can be written as

t1(i) = tt rans (j , i)+ t1, p r oc (i), (4.1)

where tt rans (j , i) is the estimated time to transfer the data to be processed by the job from
cloud j to cloud i , and t1, p r oc (i) is the estimated time to execute the vanilla MapReduce job
in cloud i .

The estimated time t2(i) for completing a (replicated) global MapReduce job (i.e., phase
2) in cloud i can be written as

t2(i) = max j∈C∧ j 6=i{tt rans (j , i)}+ t2, p r oc (i). (4.2)

This equation requires further explanation. For the global MapReduce job, all the out-
puts produced by the vanilla MapReduce jobs need to be copied to cloud i except the ones
that already exist in cloud i . As the data transmission can take place in parallel, the time
for transmitting the outputs of the vanilla MapReduce jobs is bounded by the maximum
time for transmitting the outputs from any cloud j to cloud i (tt rans (j , i)). t2, p r oc (i) is the
estimated time to execute the global MapReduce job in cloud i .

Therefore, for each job the Medusa scheduler selects the cloud i that has the shortest es-
timated time t1(i) or t2(i) to run a replica among the clouds that have not been selected until
the correct output is obtained. We explain in the following how the data transmission time
tt rans (j , i) and the data processing time t1, p r oc (i) and t2, p r oc (i) are estimated, respectively.

Estimating data transmission time The data transmission time between two clouds de-
pends on (i) the network distance between them, (ii) the network throughput between them,
and (iii) the size of the data to transfer. Hence, we estimate the time to transfer data of size
S between cloud j and cloud i as

tt rans (j , i) = l (j , i)/2+ S/T (j , i), (4.3)

where l (j , i) is the round-trip time between cloud j and i , and T (j , i) is the estimated
throughput between them.

The value of l (j , i) depends on the geographical distance between clouds j and i , the
speed of transmission in the different propagation media connecting them, among other

78

4.3 Medusa: a cloud fault-tolerant MapReduce

variables, and is usually stable. Since this value is small (typically in the milliseconds range),

accurate estimation of the data transmission time depends largely on the estimation of the

network throughput T (j , i) between cloud j and cloud i . Nevertheless, we decide to in-

clude both variables in Equation 4.3 for the sake of model completeness.

Considering that the throughput varies depending on the traffic load of other connec-

tions, Medusa keeps track of the throughput for each pair of clouds in the system. The

measures are taken sequentially and periodically by running the network tool Iperf, a tool

that measures maximum TCP bandwidth. Specifically, a script is running in each cloud to

measure its throughput to other clouds. Before scheduling a job, Medusa will access this

information to estimate the throughput from one cloud to the others. The throughput

between two clouds is estimated as the average throughput between them over a window

of size k, where k is the number of the most recent throughput measurements.

Estimating data processing time The time for completing a given MapReduce job mainly

depends on (i) the capacity of the cloud running this job and (ii) the configuration of the job.

Obviously, if a cloud has high computational power and large amounts of free resources,

the job running on it will finish within a short time. In addition, a high level of paralleliza-

tion (i.e., large number of map and reduce tasks) for the same job in the same cloud implies

shorter data processing times. Considering this, the Medusa scheduler relies on a linear

regression model to predict the data processing time for a MapReduce job to complete in a

cloud.

Specifically, the Medusa scheduler trains one linear regression model for each cloud in

the system to predict its time to complete a MapReduce job, in the form

ŷ =β1x1+ · · ·+βn xn +β0, (4.4)

where ŷ is the data processing time to predict (i.e., t1, p r oc (i) or t2, p r oc (i) in cloud i) and x1,

..., xn are the n features we use to make the prediction. We estimate the parameters β0, ...,

βn using the least squares approach (Björck, 1996).

The Medusa scheduler relies on three types of features to make the prediction: (i) job

configuration; (ii) cloud capacity; and (iii) cloud overhead. We describe the representative

features for each type in the following.

79

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

Job configuration features. We consider the size of the input data, the number of map
tasks and the number of reduce tasks as features in this type. Clearly, large input data and
a small number of map and reduce tasks imply long job completion times. The values of
these features are always known to the Medusa scheduler.

Cloud capacity features. We consider the clock speed (MHz) and the number of cores of
the CPU and the total memory capacity (MBs) as features in this type. These are variables
that define the capacity of cloud, but they do not tell the load of the cloud in a specific time.

Cloud overhead features. In addition to the computational capacity, the overhead in
the cloud also has an impact on the completion time of the job to schedule. For instance,
if a cloud is overloaded and there are already a number of jobs queued to be launched, the
scheduled job will not finish in a short time even if very small. In contrast, if a cloud
has more free resources the scheduled job can finish early even if its capacity is relatively
low. We use the number of MapReduce jobs that are currently running in the cloud, the
percentage of completion of the running MapReduce jobs, the number of MapReduce jobs
that are queued to run, and the size of the input data of the running jobs as features in this
type. These are part of the filesystem information that MapReduce can provide.

For each vanilla MapReduce job to schedule, the Medusa scheduler estimates the data
processing time t1, p r oc (i) in cloud i using this linear regression model.

4.4 Evaluation

This section evaluates the performance of our system. Section 4.4.1 describes the exper-
imental setup as well as the implementation and configuration of Medusa. Section 4.4.2
reports on its performance, considering both the presence and absence of faults during job
execution.

4.4.1 Experimental setup

We evaluate the performance of Medusa using the WordCount, WebdataScan, and Mons-
terquery benchmarks from Hadoop’s Gridmix benchmark (Apache, 2013), as examples of
applications commonly used in real-world scenarios.

80

4.4 Evaluation

Running WordCount in a multi-cloud system can be considered as building the inverted
indexes of a multi-site web search engine for each search site (i.e., cloud). Specifically, in a
multi-cloud web search engine each site is in charge of collecting and indexing a subset of the
entire document collection. To build the search index (that supports the term frequency-
inverse document frequency style ranking functions, TF-IDF), each search site runs a local
MapReduce job to parse the documents it has and to count the occurrences of each term in
a document (i.e., TF) and the number of documents in that search site containing each term
(i.e., partial IDF). This can be achieved by running WordCount as a vanilla MapReduce job
in each cloud. To ensure the same search results can be retrieved as in a single-cloud search
engine, the local outputs from previous executions need to be aggregated to obtain the num-
ber of documents in the search engine that contain each term (i.e., global IDF). To this end,
we implemented a WordCountAggregator. This corresponds to the global MapReduce job
described in Section 4.3. WebdataScan is a benchmarking application that extracts samples
from a large data set, which is a common form of processing in many systems. Monster-
query is another benchmarking application that queries part of the data from a large data
set. The MapReduce framework divides a query into steps and the dataset into chunks, and
then runs those step/chunk pairs in separate physical hosts. The mappers perform the data
collection phase and the reducers take care of data processing.

For evaluating these applications we used up to 6GB of data generated by Gridmix,
equally partitioned and stored in all clouds. For a small subset of the experiments we tested
larger files. The results obtained using these larger datasets confirm the general trend we
report next.

We evaluated the system in the ExoGENI testbed (Baldine et al., 2012), a distributed
networked infrastructure-as-a-service spread across the USA that allows setting up virtual
topologies across sites and servers in each site.

We set up four clouds located in different sites for each experiment. For the Word-
Count benchmark, we used clouds located in the East and West coasts of the USA: Cali-
fornia, Chicago, and West-Virginia. In the WebdataScan and MonsterQuery benchmarks
the clouds were geographically closer: Pittsburgh, Massachusetts, and Texas. For the sake
of heterogeneity we set for each experiment two clouds in the same state, with the other
two in different states (e.g., in the WordCount experiment we set two clouds in Chicago).
WordCount was executed in clouds different from WebdataScan and MonsterQuery due
to frequent maintenance operations in ExoGENI, which prevented us from continuing to

81

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

use the same clouds. However, the hardware used with all applications was heterogeneous

in terms of CPU characteristics and RAM size. We have set one specific cloud in each expe-

riment with better resources than the remaining ones in order to maximize heterogeneity

and to demonstrate the benefits of the Medusa scheduler. In the WordCount experiments

the best cloud was in Chicago, whereas in the WebdataScan case it was in Pittsburgh.

Each cloud is composed of 4 hosts with a MapReduce runtime: one resource manager

(master) and 3 node managers (slaves). The framework is not modified, which leads to each

Resource Manager being a single point of failure in its cloud. However, Medusa has the

capability to detect which MapReduce runtime is running in a cloud. If not, that cloud

is considered faulty (a type of fault our system tolerates). Medusa is installed in the client

machine because we assume that the client is always correct. If a client was faulty, the job

output and the proxy results would be compromised.

Medusa is implemented in Python 2.7. Medusa is the key component to schedule the

jobs and tolerate cloud faults. It submits and coordinates the execution of jobs, makes sche-

duling decisions, and verifies the integrity of the replicated data and job outputs (checking

if f + 1 replicas are identical and launching new replicas accordingly). These operations

require the proxy to communicate with the Resource Manager in each cloud. The proxy is

logically located outside the system (in the sense that the clouds are oblivious to it). In our

experiments, it runs in the same machine as the client, an Amazon AWS host located in

Oregon. The message queuing service used is RabbitMQ (Videla & Williams, 2012). The

RabbitMQ server runs in the same machine as the proxy.

Each experiment is configured to first execute the WordCount, WebdataScan, or Mons-

terquery job and then aggregate the results to obtain the final output. Each experiment is

repeated 40 times. The Medusa scheduler relies on a history of 30 executions to train the

linear regression model and estimate the throughput between clouds. We use Hadoop’s

DistCp3 tool1 to copy data between the HDFS of two clouds. We inject random work-

loads by running random numbers of extra jobs in each cloud, to simulate background

overhead added by other users.

We compare the performance of the Medusa scheduler in terms of job makespan – the

time it takes to complete the entire job – and system workload against a baseline that also

1Distributed Copy, or DistCp, is a tool that uses MapReduce for large inter/intra-cluster data copying.

82

4.4 Evaluation

tolerates cloud faults but uses a simple strategy to schedule the replicated jobs – a Round-
robin scheduler. This scheduler selects the clouds to run the replicas of a job in a circular

order, assuming the clouds are numbered sequentially.

4.4.2 Experimental performance

Performance without faults We first evaluate the performance of Medusa when no fault

occurs during the entire job execution. We consider f = 1 in our experiments, so each job

will be executed twice, i.e., f +1 times. This choice of f = 1 is based on the observation that

the faults we consider in this work, despite potentially having devastating consequences, are

assumed not to be frequent.

Job efficiency. Fig. 4.4 compares the job makespan of the Medusa scheduler against the

baseline with different job sizes. We observe that Medusa outperforms Round-robin in all

cases. In particular, notice that for the WordCount experiment (Fig. 4.4a) the Medusa sche-
duler is up to 3 times faster to complete the job when compared with Round-robin for the larger
input sizes. Moreover, from the bars depicting the first and third quartiles of the makespan

in both figures, we conclude that the Medusa scheduler offers more stable performance as the

variance of the Round-robin scheduler is much more evident (in fact, the variance of the

others is so low that the bars are barely perceptible).

The performance gain of Medusa in the other two experiments exists but is not so pro-

nounced because the throughput between clouds is similar. However, in terms of stability

Medusa still offers an advantage: the variation in performance of the Round-robin is per-

ceptible in all plots, contrary to our scheme.

Discussion. We now focus on trying to understand the results a bit further. For this

purpose we measured the load distribution among clouds with the WordCount application

to understand the improved makespan of the Medusa scheduler in more detail. Fig. 4.5

illustrates the usage of each cloud for executing an entire job when different schedulers

are used. The Round-robin scheduler distributes the workload evenly across the clouds,

ignoring cloud and network performance. In contrast, with the Medusa scheduler the jobs

are launched more often in the Chicago clouds, followed by West-Virginia, and only rarely

in California. The reason is twofold. First, as can be seen in Fig. 4.6a, which shows the

throughput measured between each pair of clouds in the system, the Chicago clouds have

better network connections between them when compared to the other clouds. Thus, the

83

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1000 2000 3000 4000 5000 6000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Round-robin
Medusa

(a) WordCount

 0

 500

 1000

 1500

 2000

 2500

 1000 2000 3000 4000 5000 6000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Round-robin
Medusa

(b) WebdataScan

 0

 500

 1000

 1500

 2000

 2500

 1000 2000 3000 4000 5000 6000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Round-robin
Medusa

(c) MonsterQuery

Figure 4.4: Execution time of WordCount, WebdataScan, and MonsterQuery (no faults).

84

4.4 Evaluation

transfer time to these clouds is, on average, smaller, and this advantage results in the Chicago

clouds being chosen more frequently to run replicated jobs. We observe, however – and that

is the second reason –, that although West-Virginia has slightly lower network throughput

when compared to California, more jobs are still scheduled to that cloud. This is because

the Medusa scheduler considers both network transfer time and available computational

capacity of the cloud when making its decision. So, in this case, as the relative difference of

network throughput is not very high, the cloud with higher computational power (West-

Virginia in this case) is capable of offering a lower makespan of the entire job.

Why does Medusa outperforms Round-robin so considerably in the WordCount expe-

riment, in particular, when compared with the other two? Recall from Section 4.4.1 that

we ran the two sets of experiments in different sets of clouds. Contrary to Fig. 4.6a, the

throughput measured between each pair of clouds in the WebdataScan and Monsterquery

(Figure 4.6b) experiments was very stable. The average throughput was around 1 Gbps.

As is clear, this scenario is more homogeneous in terms of network throughput between

clouds, so a Round-robin scheduler performs reasonably well in this setting. The reason

why Medusa shows a very significant improvement for the WordCount experiment and

less so for the others is therefore related to the heterogeneity of the scenario.

In summary, as we have shown, the combination of the cloud characteristics and net-

work throughput both influence the scheduling decision explaining the best performance

of Medusa over a traditional scheduler.

Performance with faults In this section, we evaluate the performance of the Medusa

scheduler when there are faults. We consider f = 1 in this experiment, as before.

We first evaluate the performance of the Medusa scheduler when a malicious fault oc-

curs. To this end, we inject a fault that corrupts the digest of a job output at the end of the

vanilla WordCount execution, forcing the scheduler to launch an extra replica of this job in

a different cloud. Fig. 4.7 shows the performance of the Medusa scheduler when one such

fault occurs (Medusa w/ malicious faults). In this case, the job makespan doubles when

compared to the case with no faults (Medusa w/o faults) as one extra job has to be executed

in a different cloud. This is due to the fact that the scheduler can not consider as options

the cloud where the job has just run. As explained in Section 4.3.3, that cloud cannot be

trusted again.

85

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

1500 3000 4500 6000

Input data size (MB)

%
 o

f C
lo

ud
 u

sa
ge

0
10

20
30

40

WestVirginia
Chicago I
Chicago II
California

(a) Round-robin

1500 3000 4500 6000

Input data size (MB)

%
 o

f C
lo

ud
 u

sa
ge

0
10

20
30

40
50

WestVirginia Chicago I Chicago II California

(b) Medusa

Figure 4.5: Percentage of cloud usage with both schedulers.

86

4.4 Evaluation

WestVirginia ChicagoI ChicagoII California

From:

T
hr

ou
gh

pu
t (

M
bp

s)

0
20

0
40

0
60

0
80

0
10

00

WestVirginia
Chicago I
Chicago II
California

(a) Throughput between each pair of clouds (WordCount).

WestVirginia ChicagoI ChicagoII California

From:

T
hr

ou
gh

pu
t (

M
bp

s)

0
20

0
40

0
60

0
80

0
10

00

WestVirginia Chicago I Chicago II California

(b) Throughput between each pair of clouds (WebdataScan and Monsterquery).

Figure 4.6: Throughput measured between multiple cloud instances.

87

4. CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

We also evaluate the performance of the Medusa scheduler by assuming that the fault is

arbitrary but not malicious (Medusa w/ arbitrary faults). In this scenario, we also inject a

fault that tampers the digest of one job output at the end of the vanilla WordCount execu-

tion. The difference, in this case, is that the Medusa scheduler has the possibility to launch

the extra replica of this job in the same cloud where the fault occurred (as we assume it is

not malicious). As we observe from Fig.4.7, only tolerating arbitrary faults allows reducing

the job makespan. This is mainly because the extra replica of the faulty job will with high

probability be scheduled to the same cloud, so there is no need to copy the input of this job

to another cloud.

Finally, we evaluate the performance of the Medusa scheduler when one cloud outage

happens (Medusa w/ cloud outage). To this end, we simulate cloud outages by crashing the

resource manager of a random cloud. This forces the scheduler to launch an extra replica of

this job to a different cloud. As shown in Fig. 4.7, tolerating cloud outages requires higher

job makespan than tolerating arbitrary or malicious faults. This is due to the scheduler

taking some time to detect that the cloud has failed, looking for a copy of the data in another

cloud, making the necessary data transfers and running the job.

Interestingly, when the input data is large, the Medusa scheduler in the presence of faults
performs better than Round-robin with no faults occurring. We find it therefore unnecessary

to report the performance of the Round-robin scheduler when a fault occurs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1000 2000 3000 4000 5000 6000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa w/ malicious faults
Medusa w/ arbitrary faults

Medusa w/ cloud outage
Medusa w/o faults

Round-Robin w/o faults

Figure 4.7: Job makespan with one fault injected (WordCount).

88

4.5 Summary

To summarize, our experimental evaluation shows that the Medusa scheduler is more
efficient than the conventional round-robin alternative, and achieves a significant gain in
realistic scenarios of high cloud heterogeneity.

4.5 Summary

In this chapter we proposed a solution, Medusa, for scaling out MapReduce to multiple
clouds and, simultaneously, tolerating the new faults introduced by such multi-cloud envi-
ronment.

This proposal fulfills the objectives that we set forth. First, Medusa scales MapReduce
computations to multiple clouds. Second, it extends the fault tolerance offered by MapRe-
duce to tolerate arbitrary and malicious faults, as well as cloud outages. Third, it does so
transparently to the user. The Hadoop API is not touched and the existing Hadoop MapRe-
duce programs run without modification. Forth, Medusa is a proxy in the client, and
thus the system does not require any modification to the Hadoop framework. The clouds
just need to run “vanilla” Hadoop (e.g., Amazon Elastic MapReduce (Amazon, 2015)). Fi-
nally, as demonstrated by our extensive experimental evaluation in the ExoGENI testbed,
it achieves this increased level of fault tolerance at a reasonable cost when compared with
common alternatives. It does so by minimizing replication and by running a novel schedu-
ling algorithm that judiciously chooses the best clouds to perform the necessary replicated
jobs.

As future work, we plan to investigate techniques to improve the performance of our
system by replicating at a more fine-grained level than at a job level.

89

5
Fine-Grained Cloud-of-Clouds

Dependable MapReduce

In this chapter, we propose a novel execution system that allows to scale out MapReduce
computations to a cloud-of-clouds, and tolerate arbitrary faults, malicious faults, and cloud
outages. Our system, Chrysaor, is based on a fine-grained replication scheme that tolerates
faults at the task level, contrary to Medusa. Our solution has three important properties: it
tolerates arbitrary faults, malicious faults, and cloud outages at reasonable cost; it requires
minimal modifications to the users’ applications; and it does not involve changes to the
Hadoop source code. 1 We performed an extensive evaluation of our system in Amazon
EC2, showing that our fine-grained solution is efficient in terms of computation by recov-
ering only faulty tasks. This is achieved without incurring a significant penalty for the
baseline case (i.e., without faults) in most workloads.

5.1 Introduction

Using multiple clouds to store and compute data can bring many benefits. First, it increases
resilience by avoiding single points of failure. A user can be made immune to any single
cloud availability zone outage by spreading its services across providers. Second, it can
improve performance – for example by taking advantage of data locality (bringing the data
to a cloud closer to the user), or by leveraging from the computing and network diversity

1We have used Hadoop MapReduce 2.X version.

91

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

of multiple infrastructures. Third, it can improve security, for instance by exploring the

interaction between public and private clouds. A tenant that needs to comply with privacy

legislation may demand certain data to be stored in a specific location (e.g., in a private

facility). Finally, it may help in reducing costs, by taking advantage of dynamic pricing

plans from multiple cloud providers (Zheng et al., 2015). In this work we provide a solution

for doing MapReduce computation on such multi-cloud – or cloud-of-clouds – environment,

for fault tolerance.

We propose a novel MapReduce runtime environment, Chrysaor, that scales out MapRe-

duce computations to clouds-of-clouds in order to tolerate arbitrary faults, malicious faults,

and cloud outages. Chrysaor is based on a fine-grained replication scheme that tolerates

faults at the task level. This scheme allows recovering from faults by re-executing only the

tasks that were affected. In previous work we have proposed a system, Medusa (see Chap-

ter 4), which shared the goal of allowing MapReduce computations to tolerate the same

type of faults. However, Medusa worked at the granularity of MapReduce jobs, resulting

in a high cost for fault recovery. For a realistic workload composed of several map and

reduce tasks, the single fault in a task would require the whole job to be recomputed in

Medusa.

The challenge of achieving the form of fine-grained replication we target in Chrysaor

– of tasks, not full jobs – is exponentiated by one of our requirements: not changing the

Hadoop source code. Our goal is for our system to use unmodified Hadoop runtimes run-

ning in the clouds, including commercial offerings, such as Amazon Elastic MapReduce

(Amazon, 2015). As a result, Chrysaor employs a more sophisticated approach that in-

volves the creation of logical jobs to enable the re-execution of MapReduce tasks, in order

to reduce the cost of recovery from a fault.

Tolerating cloud faults through replication may be considered expensive as one expects

these faults to be rare. The reality contradicts this expectation: cloud outages are becom-

ing very common (Cerin et al., 2013; Clarke, 2015). Moreover, Hadoop MapReduce is

increasingly being used for critical applications such as medical research and finance, where

any incorrectness or unavailability issues may be intolerable and it is necessary to protect

execution against devastating consequences. Cloud providers seem to share this concern:

Amazon recently launched Cross-Region Replication to automatically replicate data in dif-

ferent geographical locations (Amazon Web Services, 2015). Motivated by these facts, we

92

5.2 System model

believe the cost of replication to be acceptable for such critical applications, in order to gua-
rantee that rare faults with devastating consequences do not occur. Nevertheless, limiting
the cost of replication does not cease to be an important goal in our design.

We have performed an extensive experimental evaluation of our system on Amazon
EC2. The main conclusion is that Chrysaor is more efficient in terms of computation
(number and size of replicas executed) by recovering only faulty tasks, instead of the whole
job. This is achieved without incurring a significant penalty for the baseline case (i.e., wi-
thout faults) in most workloads.

In summary, the main contribution of this chapter, Chrysaor1, is a system that lever-
ages from several Hadoop MapReduce runtimes spread in different clouds to provide fault
tolerance against arbitrary and malicious faults, and cloud outages. Chrysaor fulfills three
additional requirements. First, it requires only minimal modifications to the users’ appli-
cations. Second, it is based on Hadoop but does not involve modifications to the Hadoop
source code. Third, it achieves its goals at a reasonable cost, as our experimental evaluation
shows. As a result, with Chrysaor users can outsource their critical computations while
being assured that the result is trustworthy.

The following sections are organized as follows. In Section 5.2 we describe the system
model and define the problem. We present in Section 5.3 Chrysaor by giving a detailed
view of the execution during several use cases, and a thorough explanation about the details
of implementation. Finally, in Section 5.4, we performed an exhaustive evaluation of our
solution in a real test bed in order to understand the gain of the new fine-grained fault
tolerance mechanism.

5.2 System model

Chrysaor aims to solve the same problem as Medusa. Chrysaor is distinct than Medusa
because it handles faults at task level, so it can react quickly to faults and avoid the overhead
of re-executing a whole job.

The system is composed by a set of distributed processes (see Figure 5.1): the client that
request the execution of job, the proxy (also called Chrysaor) that submits the job to the
resource manager, the resource manager that governs the execution of jobs and tasks in a

1Medusa was a Greek mythology figure that had snakes in place of hair. Chrysaor was one of the sons of
Medusa and his name meant “he who bears a golden sword”.

93

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

cloud, and a set of node managers that execute map and reduce tasks. We do not consider the

components of HDFS in the model, as the algorithm is mostly orthogonal to that service.

For simplicity we consider that each cloud contains exactly one MapReduce runtime.

We say that a process is correct if it follows the algorithm, otherwise we say it is faulty.

We also use these two words to denominate a task (map or reduce) that, respectively, re-

turns the result of applying the map/reduce function to the input (correct) or some other

result (faulty). We assume that clients are always correct, because they are not part of the

MapReduce execution. If clients were faulty, the job output would be necessarily incorrect.

We also assume that the proxy is always correct because it runs at the client side, e.g., in the

same host as the client or in a host under the same administration. Resource managers and

node managers can fail arbitrarily: they can return wrong results (e.g., processing corrup-

tion, or malicious insider) or even stop executing (e.g., due to a cloud outage). A cloud is

faulty if it becomes partitioned from the rest of the processes, it is compromised by a ma-

licious attacker, or suffers an outage, a disconnection from the Internet or another severe

communications problem.

Our algorithm is configured with two parameters f and t . In distributed fault-tolerant

algorithms f is usually the maximum number of faulty replicas, but in our case the meaning

of f is different and weaker: f is the maximum number of faulty replicas that can return

the same wrong output given the same input. t is the number of faulty clouds that the

system tolerates before the service becomes unavailable. Moreover, O is the output of a

MapReduce computation. The rationale is that f is the maximum number of replicas that

can be faulty and still allow the system to find out that the correct result is O. If the system

selects the correct output by picking the output returned by f +1 task replicas, it will never

select O ′ because it is returned by at most f replicas. Similarly to the usual parameter f ,

our f has a probabilistic meaning (hard to quantify): it means that the probability of more

than f faulty replicas of the same task returning the same output is negligible.

The other parameter, t , is the maximum number of clouds that may fail arbitrarily

(including outages and malicious faults). We assume there are at least 2t + 1 clouds, to

ensure that there are always enough clouds to execute the job.

Chrysaor does not rely on assumptions about processing and communication delays in

each stage of job execution, making the system asynchronous. On the contrary, the original

MapReduce makes assumptions about such times for termination (e.g., they assume that

94

5.2 System model

Chrysaor

Client

Resource
Manager

Resource
Manager

Node
Manager

Cloud C

Resource
Manager

Resource
Manager

Node
Manager

Cloud B

Resource
Manager

Resource
Manager

Node
Manager

Cloud A

Figure 5.1: Chrysaor interacting with several MapReduce runtime in a multi-cloud system.

heartbeat messages from correct node managers do not take indefinitely to be received).

Therefore, Chrysaor also makes these assumptions implicitly (cf. Section 4.2).

We assume that processes are connected by reliable channels, so no messages are lost,

duplicated or corrupted. In practice this is provided by TCP connections.

We assume the existence of a hash function that is collision-resistant, i.e., it is unfeasible

to find two inputs that produce the same output (e.g., SHA-256).

5.2.1 Problem formulation

We aim at tolerating (i) arbitrary and malicious faults, and (ii) cloud outages, when running

MapReduce jobs in multi-cloud systems. To tolerate f faults, a basic approach is to create

2 f + 1 replicas of each task (i.e., the task running in each cloud), spread them in 2t + 1

clouds, and compare the 2 f + 1 outputs of each task. If at least f + 1 outputs are identical,

the tasks that produced them must be correct and this must be the correct output, due to

the definition of f . The proxy can replicate all tasks, verify all outputs, and obtain the

correct output of the job.

This basic approach is expensive in terms of computation. Even if there is no fault,

each job is executed 2 f +1 times. Therefore, our objective in this work is to design a proxy

that ensures the MapReduce job running in multiple distributed clouds to tolerate cloud

faults while (i) minimizing the amount of processing; (ii) ensuring efficient completion of

95

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

the entire MapReduce job; (iii) and tolerate faults at the task level.

5.3 Chrysaor

To tolerate arbitrary/malicious faults and cloud outages, tasks need to be replicated in a
few clouds for ensuring the existence of f +1 identical outputs, thus the correctness of the
result. Let us first describe briefly how our previous system works (see Chapter 4). Medusa
has a proxy that works similarly to a middleware node in a multi-cloud environment. In
that solution, a full job execution is comprised of two phases. The first phase runs a vanilla
MapReduce job in each cloud, which holds a copy of the data to be processed. The second
phase runs a global MapReduce job that aggregates the outputs from all clouds to generate the
final job result. If insufficient identical results are obtained, additional vanilla MapReduce
jobs are executed.

In Chrysaor, the proxy still works as a middleware node, but now it has the advantage
of just relaunching failed tasks, instead of having to relaunch a whole job in case of no
majority.

5.3.1 Chrysaor overview and the logical job abstraction

Our solution involves defining the concept of logical job. To perform fine-grained repli-
cation, more specifically to re-execute faulty tasks, we would like Hadoop MapReduce to
provide an API to control the execution of a job (e.g., to pause it), but such an API is not
available. There would be two ways to solve this limitation: (i) by modifying the Hadoop
source code to provide such control; (ii) or to split a job into parts that from the point of
view of Hadoop are still jobs (as Hadoop can only execute jobs). We opted for the latter
solution.

Chrysaor executes jobs that are divided in two logical jobs that are launched and managed
by the Hadoop framework in each cloud. From the Hadoop viewpoint, each logical job is
a complete MapReduce job. From the Chrysaor viewpoint, the first logical job is dedicated
to execute solely map tasks, whilst the second logical job that is dedicated to the execution
of reduce tasks is preceded by the execution of identity map tasks. These logical jobs are
replicated in different clouds. In case a task fails, Chrysaor creates yet another logical job
for that failed task and gives it to Hadoop for execution in one or more clouds.

96

5.3 Chrysaor

The end of the Chrysaor map phase corresponds to the end of the first logical job,

so by default Hadoop would write the output in HDFS. This has a penalty in terms of

performance, so in Chrysaor this output is written in a RAM disk (a virtual disk in RAM

memory). The second logical job will read the stored data and will execute the reduce tasks.

Since it is not possible to run a job in Hadoop starting from the reduce tasks (another API

limitation), we need to use identity map tasks that output the same input data that reduce

tasks consume.

During the execution of map and reduce tasks, each task will generate one digest of the

output that our application will use to validate the result. In case there are enough equal

results, the proxy will consider that the task has ended successfully. In contrast, if there are

not enough equal results, Chrysaor creates a new logical job to run just the faulty task(s).

5.3.2 Chrysaor operation

Chrysaor has the capability to deal with accidental and malicious faults in the map and

reduce tasks. In this section we explain the operation of Chrysaor in steps: first without

faults, second with arbitrary faults, and finally with malicious faults. We consider f = 1

and t = 1 in the examples.

Chrysaor without faults Figure 5.2 depicts a successful job execution in Chrysaor with-

out faulty tasks. The scenario contains two MapReduce runtimes in two clouds. It assumes

that input data is replicated in both clouds before the execution begins.

When the client (not represented in the figure) requests Chrysaor to execute a job, t +
1= 2 clouds (clouds A and B) are selected by the proxy (Chrysaor in the figure) to run the

first logical job (step 1). Chrysaor executes max(f , t)+1 replicas of each logical job, which

in this case means 2 replicas, one per cloud as f = t = 1 (max returns the maximum of two

numbers). During execution, each map task creates a digest of the map output. The digests

are fetched (step 2) and compared by Chrysaor to check if all map task replicas produced

the same results (step 3). This is the case (we are considering no faults), and so the second

logical job is launched (step 4).

The second logical job will read the data that was stored previously, run the identity

map tasks, and do the shuffle&sort phase before the reduce tasks start. The reduce tasks will

produce the final output and the corresponding digest that will be fetched by our system

97

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

Chrysaor

M

Mid
R

1.
2.

4.

Actions:
1. launch 1st logical job
2. fetch digests from map outputs
3. vote map output
4. launch 2nd logical job
5. fetch digests from reduce outputs
6. vote reduce output

Mid
R

2.
5.

Input data
Output data

Execution
of the job

MMM

3., 6.

5.

1.

Cloud A Cloud B

Figure 5.2: Chrysaor executing a job in two clouds without faults

(step 5). Again, Chrysaor will compare the results (step 6). As there are no faults, the results
are the same and the job execution terminates successfully.

Chrysaor with arbitrary faults This section explains the case when a map or reduce task
returns a wrong output. The alternative case of a task not returning a result at all is not
as interesting because it is handled autonomously by the Hadoop runtime: the resource
manager of the cloud where the task is being executed simply re-executes the task in the
already selected clouds.

Chrysaor detects that the result of a task is wrong when it observes that replicas of
the task return different results, i.e., that there are no max(f , t) + 1 equal results (2 in the
example). Notice that it does not know which of the replicas is faulty, only that one of
them is faulty as there is disagreement on the result. In that situation, Chrysaor creates a
logical job with that task in both clouds and re-executes it.

98

5.3 Chrysaor

Chrysaor cannot differentiate if a fault that affected the task was accidental or malicious.
If it was accidental, the re-executions may be done in the same clouds: if the faults are
intermittent, they will eventually no longer affect the same tasks; if they are permanent,
the Hadoop runtime will eventually choose other node managers (and other nodes). If the
fault is intentional – malicious – it may affect a whole cloud so it is advisable to use another
cloud.

Chrysaor allows configuring how to deal with such faults, but the key idea is that it can
try a few times to re-execute the tasks in the same clouds, then pick additional clouds if no
agreement is reached. Specifically, there is a threshold T f au l t s that is defined by the user.
When T f au l t s occur, Chrysaor considers that there may be malicious faults and it picks an
additional cloud to execute tasks (next section).

If a faulty result is detected at the end of the second logical job, it is necessary to re-
launch the faulty reduce task. This involves re-running not only the reduce task but also
the identity map tasks that precede it. The job ends successfully when all reduce task repli-
cas produce the same result.

Chrysaor with malicious faults When Chrysaor is dealing with malicious faults or cloud
outages, it has to execute tasks in another cloud until it obtains max(f , t)+1 equal results.
As already explained, Chrysaor is not able to detect that there is malicious behavior; it
simply starts using a new cloud when the threshold T f au l t s is exceeded.

Figure 5.3 depicts the re-execution of a job when map tasks suffer a malicious fault and
T f au l t s is exceeded (e.g., because T f au l t s = 0). Something similar would happen if there was
an outage. Cloud C is going to be used to execute the extra replica. At the end of the first
logical job (step 3), there is a task that did not return equal results forcing the system to
re-launch the same job in cloud C (step 4). The validation of the digests in cloud C (steps 5,
6) will allow the system to obtain the correct result and show that A may be malicious as it
did not provide the correct result. Again, at the end of the execution of the second logical
job, Chrysaor reads the digests (step 7). If the execution has ended correctly, the solution
as the capability to validate the results and find which cloud is compromised.

In case of a malicious fault at the end of the second logical job, i.e., in the reduce tasks, it
is necessary to execute a new full job in the new cloud, and wait to validate the output result.
This is the worst case scenario in terms of performance. If more clouds were necessary and
were not available, Chrysaor would abort the execution and inform the client.

99

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

Chrysaor

M

2.

7.

Actions:
1. launch 1st logical job
2. fetch digests from map outputs
3. vote map output
4. relaunch 1st logical job
5. fetch digests from map output
6. launch 2nd logical job
7. fetch digests from reduce outputs
8. vote reduce output

M

1.

2.

6.

4.

5.

M

Mid
R

Execution of the job
Re-execution of the job

Mid
R

Input data
Output data
Wrong output data

M M

Cloud A Cloud B Cloud C

M

3., 8.

Figure 5.3: Chrysaor executing a job in two clouds with a map task re-execution in another
cloud due to a fault

5.3.3 Chrysaor implementation

So far we have explained Chrysaor’s design. Now we detail its implementation.

The proxy (Chrysaor) is installed in the client machine. It interacts with the resource

manager in each cloud using the RabbitMQ message broker (Videla & Williams, 2012). The

proxy has the capability to tolerate cloud outages by triggering a timeout when a connec-

tion to a resource manager is detected.

Besides the proxy, Chrysaor provides a Java library that is installed in each resource

manager. Although Hadoop supports map and reduce functions written in a few languages,

the current implementation of Chrysaor supports only Java. Hadoop is not modified,

which leads to each resource manager still being a single point of failure in its cloud. The

100

5.3 Chrysaor

framework is configured to store temporary outputs in RAM disk.

The server-side Java library has the goal of intercepting certain calls done by the exe-

cuting jobs to the Hadoop API in order to execute Chrysaor server-side code. The calls are

intercepted using AspectJ during the execution of the MapReduce job. AspectJ is an aspect-

oriented extension to Java that allows, essentially, adding hooks that force calls to external

methods in certain conditions, without requiring modifications to the original source code

(Kiczales et al., 2001).

For an user to take advantage of Chrysaor, she has to do minor modifications to her ap-

plication. The user does not need to modify the Java code of the map and reduce functions

to use Chrysaor. The updates are related to the definition of the identity map function.

The user can create his own identity map code, or use the template that is available in the

Chrysaor library. The identity map code has to take as inputs a key and values with the

same types (classes in Java) as those returned by the job’s map function.

Listing 5.1 shows an example identity map function for the WordCount application

(Apache, 2016). Specifically, in Line 4 we define a simple identity map method that reads

a key and values with expected type (respectively Object and Text) and produces identical

output. In the WordCount application, the key and the value of the map output come in

the value parameter. The value of the variable is split and set in the word attribute.

During the creation of the job in the main class, it is necessary to set the identity map

class. In Line 14, we set our own identity map class in the job configuration using Hadoop

JobConf variable. JobConf is the interface for a user to describe a map-reduce job to the

Hadoop framework for execution.

Chrysaor intercepts write calls that are made inside the map and reduce functions to

update the digest for each key and value produced by the task (Apache, 2016). When the

task ends, it invokes the cleanup method. The cleanup call is intercepted by the Chrysaor

server code to save the digest locally. The set of digests produced by the replicated tasks

will be used to detect incorrect results.

The job is launched using the run method from the JobClient interface provided by the

Hadoop API. JobClient provides facilities to submit jobs and track their progress.

101

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

Listing 5.1: Definition of the identity mapper.

1 public static class MyFullyIndentityMapper

2 extends Mapper<Object, Text, Text, IntWritable>{

3 private Text word = new Text();

4 public void map(Object key, Text value, Context context) throws ←-
IOException, InterruptedException {

5 StringTokenizer itr = new StringTokenizer(value.toString());

6 while (itr.hasMoreTokens()) {

7 word.set(itr.nextToken());

8 }

9 }

10 }

11
12 public static void main(String[] args) throws Exception {

13 (...)

14 conf.setClass("mapreduce.job.map.identity.class", ←-
MyFullyIndentityMapper.class, Mapper.class);

15 JobClient.runJob(job);

16 (...)

17 }

5.4 Evaluation

The objective of our experimental evaluation is to answer the following questions: (1) How

does the performance of Chrysaor compares with its nearest system, Medusa, in a baseline

scenario without faults? How does Chrysaor behaves compared with the vanilla MapRe-

duce? (Section 5.4.2); (2) What is the gain of the fine-grained fault tolerance introduced

in Chrysaor? (Sections 5.4.2 and 5.4.2); (3) How does the type of job affect Chrysaor’s

performance?

Section 5.4.1 describes the experimental setup as well as the configuration of our solu-

tion. Section 5.4.2 reports on the performance of Chrysaor, considering both the presence

and absence of faults during job execution. Finally, in Section 5.4.3, we perform an analy-

tical evaluation to understand in more detail the costs introduced by our system.

102

5.4 Evaluation

5.4.1 Experimental setup

To answer the aforementioned questions we evaluate our solution in a real-world scenario.
We have configured a testbed in Amazon EC2 to run all experiments. Amazon EC2 pro-
vides a distributed networked infrastructure-as-a-service for computation and storage in the
cloud. We set up four clouds located in different sites to evaluate our solution. We used
clouds located in Oregon, North Virgina, California and Ireland. The hardware used in
all applications was diversified in terms of CPU characteristics and RAM size. Each cloud
was composed of 4 hosts with a MapReduce runtime: one resource manager (master) and
3 node managers (slaves). The framework was not modified, which leads to each Resource
Manager being a single point of failure in its cloud. However, Chrysaor has the capability
to detect MapReduce failures.

We considered three common applications provided by Hadoop’s Gridmix benchmark
(Apache, 2013): WordCount, WebdataScan, and Sort. This choice aims to ensure application
diversity in terms of communication and computation requirements. We have applied to
all the applications the slight modifications required to run our system (cf. Section 5.3.3).

We run each experiment 10 times, reporting in the figures the average results, and the
5th and 95th percentiles.

WordCount. The first application we evaluated is related to Web indexing. Running
WordCount in a multi-cloud system can be considered as building the inverted indexes of a
multi-site web search engine for each search site (i.e., cloud). Each cloud runs a local MapRe-
duce job to parse the documents, and to build a search index that supports frequency-inverse
document frequency style ranking functions (TF-IDF). This can be achieved by running
WordCount as a vanilla MapReduce job in each cloud. To ensure the same search results
can be retrieved as in a single-cloud search engine, the input data need to be replicated in
each cloud.

WebdataScan. This application has the goal to extract value from big data, an increas-
ingly important tool for decision-making. WebdataScan extracts a small amount of relevant
data from a large data set, which is a common form of processing and data analysis in many
systems. The map tasks keep just a small fraction of the data (0.2%) and the reduce tasks
again return just a small part of their input (5%).

Sort. The last application we evaluated does sorting of big data, another typical use of
MapReduce. Sort is an example of a benchmark that is computationally-intensive (rather

103

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

than communication-bound). In this application the intermediate key/value pairs are pro-

cessed in increasing key order. This ordering makes it easy to generate a sorted output file

per partition, which is useful when the output file format needs to support efficient random

access lookups by key, for instance.

To simulate a real-world scenario, we have set up three clouds located in different Ama-

zon EC2 sites (Oregon, North Virginia, and California). Each cloud is composed of one

resource manager (master) and four node managers (slaves). The hosts are general purpose in-

stances that provide a balance of compute, memory, and network resources. Each instance

contains a 2.3 GHz Intel Xeon E5-2686 processor for a total of 8 vCPUS per server. Each

server has 12GB of memory, and 150GB of Elastic Block Store (EBS) space. The clouds are

protected from the outside world using firewalls, so it is not possible to access them without

proper credentials or specific configurations.

We compare the performance of Chrysaor and Medusa in terms of the time it takes to

complete the entire job (makespan). Medusa is the only system to tolerate arbitrary and

malicious faults, and cloud outages (at the job level). So we use it as a baseline.

Based on the observation that the faults we consider in this work, despite potentially

having devastating consequences, are rare, we consider f = t = 1 in our experiments.

5.4.2 Experimental performance

Performance without faults We start by analyzing the performance of Chrysaor with-

out faults. In Figure 5.4a, we check the performance of the WordCount application with

several sizes of input data, ranging from 1GB to 8GB. The choice of these input sizes is

based on the fact that the MapReduce jobs that run in Microsoft or Yahoo! production

clusters typically operate over input sizes under 14GB (Rowstron et al., 2012). By com-

paring Chrysaor with vanilla MapReduce, we see that Chrysaor was 27% to 50% slower.

As we use the same amount of resources in the evaluation, and Chrysaor needs to execute

double of the tasks, we have in the best case less than the double of the performance. When

compared with Medusa, we see that Chrysaor got slightly worse results. The reason is that

in WordCount the map tasks produce a map output larger than the input data, so the iden-

tity map tasks will compute large data, with a considerable overhead. As result, Chrysaor

is 5% to 27% slower than Medusa in the reported cases.

104

5.4 Evaluation

 0

 200

 400

 600

 800

 1000

1000 2000 4000 8000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Vanilla
Medusa
Chrysaor

(a) WordCount

 0

 200

 400

 600

 800

 1000

1000 2000 4000 8000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Vanilla
Medusa
Chrysaor

(b) Webdatascan

 0

 200

 400

 600

 800

 1000

1000 2000 4000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Vanilla
Medusa
Chrysaor

(c) Sort

Figure 5.4: Detail of job execution without faults

105

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

The WebdataScan application is mostly centered in the map side. As such, less time was
spent in the second logical job. As consequence, a full execution in Chrysaor spends similar
amount of time in the map and reduce tasks as in Medusa. In other words, the identity
map tasks and the digests produced while the tasks run did not introduce visible delay as in
the WordCount application. Thus, we can see in Figure 5.4b similar results between both
solutions. When we compare Chrysaor with vanilla MapReduce, we see that our solution
was 35%-56% slower. Most interesting, as we increase the input size, the difference between
both solutions is decreasing.

In the Sort application (see Figure 5.4c), Medusa got worse results in comparison to
Chrysaor, due to the fact that generating digests after job execution in Medusa delays the
entire execution (it involves invoking an HDFS command to access a file). In contrast, the
digests are generated while the output is being produced in our new solution. Due to the
large output that is produced, the characteristics of Chrysaor wins over Medusa. For ins-
tance, in the case of 4GB, Chrysaor was 16% faster. It was not possible to run a use case
with 8GB of input data due to lack of memory. Anyway, the trend is clear in showing the
advantage of Chrysaor for this type of application. In comparison with vanilla MapRe-
duce, Chrysaor was 25% to 30% slower. Overall, generating a digest while the output is
being produced is shown to be better than generating a digest after the reduce tasks finish.
Importantly, this gain would not be made possible in Medusa. It is the new architecture
introduced in Chrysaor of a fine-grained approach that allows this optimization. When we
compare Chrysaor with vanilla MapReduce, we see that our solution is slower 25%-30%.
Although Chrysaor has performed twice as much computation, it takes only a quarter of
the time more. This result shows how the framework architecture is adequate to this type
of job.

In summary, the main cost of Chrysaor are the identity maps. When we compare
Chrysaor with Medusa, we notice that for applications that require identity map tasks that
handle large amounts of data, as in the WordCount example, the penalty introduced by
our system is non-negligible. In contrast, applications such as WebdataScan that spend less
time executing identity map tasks, do not suffer and behave similarly to the baseline case.
Finally, the Sort application is an example of a class of MapReduce jobs where Chrysaor
improves over Medusa even in the baseline case without faults. In particular, when the cost
of generating digests is high, the advantage introduced by our architecture of enabling this
cost to be amortized as the system runs results in an effective gain. When we compare with

106

5.4 Evaluation

vanilla MapReduce, we realize that despite Chrysaor executing the double of tasks, our

solution can take just 25% more time in some examples.

Performance with arbitrary faults In this section, we want to understand the behav-

ior of the system when arbitrary faults occur in the map and reduce tasks. Medusa and

Chrysaor behave differently when they are dealing with arbitrary faults. The faults were

injected using a configuration setup that tampers randomly the digests of the map or reduce

tasks. In the case of Chrysaor we leveraged AspectJ to inject the faults.

Chrysaor is the only system that responds immediately to a fault at the task level, so

its behavior is different if the fault affects a map or a reduce task. When an arbitrary fault

happens in a map task, the corrupted task will be relaunched in the same clouds. When

it happens in a reduce task, it is necessary to relaunch again all the identity map tasks to

re-execute the faulty task(s). When dealing with arbitrary faults, we consider the threshold

T f au l t s to be greater than 1 in order to re-execute the faulty task in the same cloud. Medusa

always re-executes the full job when there is a fault, so its performance is the same if the

fault compromises a map or a reduce.

Figure 5.5 depicts the execution time in the case of accidental faults for the three appli-

cations. When a fault happens in the map side, Chrysaor has always the best performance,

up to 56% better than Medusa. Dealing with faults at the task level brings this important

benefit.

When we analyze the reduce tasks, we have different results depending on the appli-

cation. In the case of WordCount (see Figure 5.5a), Chrysaor was slower when a fault

happened in the reduce tasks, whereas in the case of WebdataScan (Figure 5.5b) we see that

both systems reached similar results. In this application, re-executing our solution with

the identity tasks took the same time as re-executing the full job. Finally, in the Sort ap-

plication (Figure 5.5c), Chrysaor was always faster. Again, in the case of an arbitrary fault

generating the digests whilst the output is being produced continues to be a better solution

than generating the digest at the end of the job.

One important result from this analysis is the fact that Chrysaor was always faster when

the faults affected map tasks. In most MapReduce jobs the number of map tasks (one per in-

put slice) is much larger than the number of reduce tasks, which means that in the common

case our solution will outperform Medusa in the presence of arbitrary faults.

107

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

 0

 500

 1000

 1500

 2000

 2500

1000 2000 4000 8000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa with arbitrary faults
Chrysaor with arbitrary faults map side
Chrysaor with arbitrary faults reduce side

(a) WordCount

 0

 200

 400

 600

 800

 1000

1000 2000 4000 8000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa with arbitrary faults
Chrysaor with arbitrary faults map side
Chrysaor with arbitrary faults reduce side

(b) WebdataScan

 0

 500

 1000

 1500

 2000

 2500

1000 2000 4000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa with arbitrary faults
Chrysaor with arbitrary faults map side
Chrysaor with arbitrary faults reduce side

(c) Sort

Figure 5.5: Detail of job execution with arbitrary faults

108

5.4 Evaluation

 0

 500

 1000

 1500

 2000

 2500

1000 2000 4000 8000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa with malicious faults
Chrysaor with malicious faults map side
Chrysaor with malicious faults reduce side

(a) WordCount

 0

 200

 400

 600

 800

 1000

1000 2000 4000 8000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa with malicious faults
Chrysaor with malicious faults map side
Chrysaor with malicious faults reduce side

(b) WebdataScan

 0

 500

 1000

 1500

 2000

 2500

1000 2000 4000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa with malicious faults
Chrysaor with malicious faults map side
Chrysaor with malicious faults reduce side

(c) Sort

Figure 5.6: Detail of job execution with malicious faults

109

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

Performance with malicious faults When the system deals with a malicious fault, it re-

executes the faulty tasks in a new cloud (as at least one cloud is deemed malicious). In this

section, the system used T f au l t s = 0 in order to use immediately a new cloud without trying

first re-execution in the same clouds.

There are different scenarios of execution when we test Chrysaor with malicious faults.

In case of a malicious fault in the map side, the algorithm chooses to execute all the map

tasks in a new cloud. It is only after this process that the system can check which cloud

is compromised, and decide to continue with the correct ones. When a malicious fault is

detected in the reduce tasks, a new cloud is chosen to execute the whole job before finding

the compromised cloud.

The results are presented in Figure 5.6. As in the previous section, Chrysaor got the best

results when dealing with faults that occurred in the map tasks. Again, our solution can be

up to 60% better when compared with Medusa. As before, the results are not as positive

when a fault happens in the reduce tasks. Observing Figure 5.6a, we see that Chrysaor was

slower than Medusa. The reason is the need to execute a large identity map task in the new

job that runs in the additional cloud.

In the WebdataScan application (see Figure 5.6b), we confirm the similarity of results

between Medusa and Chrysaor. This is due to the identity map tasks not being the most

important component of the overall execution time.

Finally, in Figure 5.6c we see that the Sort application had better performance in Chrysaor

than in Medusa for all cases. In this case, the Sort application was 2% to 27% faster in

Chrysaor.

The conclusions to draw in the experiments with malicious faults is similar to those of

the arbitrary case. Namely, Chrysaor is always the best solution when dealing with faults

that occur at the map tasks. However, in case of faults in the reduce tasks, Chrysaor is only

favorable for workloads that do not involve large execution in the identity step.

Performance with different input size We wanted to evaluate the system as we vary the

size of the split, i.e., of the input for every map task. For the WordCount and WebdataScan,

we have set the split size from 64MB to 8GB, and for the Sort application from 64MB to

4GB. The size of the input file for the WordCount and WebdataScan is 8GB, and for the

Sort is 4GB. We have run these applications without faults.

110

5.4 Evaluation

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa
Chrysaor

(a) WordCount

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa
Chrysaor

(b) WebdataScan

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
xe

cu
ti

o
n
 P

e
rf

o
rm

a
n
ce

 (
s)

Input data size (MB)

Medusa
Chrysaor

(c) Sort

Figure 5.7: Detail of job execution with different input split sizes (without faults)

111

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

In the WordCount application (see Figure 5.7a), Medusa tends to improve performance
as the size of each split increases until 1024MB. After that, the performance tends to stabi-
lize. In contrast, Chrysaor always presented similar performance results despite the input
size. By looking into the details of Chrysaor jobs, we observed that the time to execute
the second part of the job remained the same despite the input size. What has decreased in
terms of execution performance was the first logical job. Since the first logical job is 20%
time faster than the second part, the difference of results between each split is negligible in
Chrysaor. As result, Medusa starts to present similar results to Chrysaor when a split has
the size of 64MB and ends being 60% faster than Chrysaor when dealing with splits of 8GB
(there are no faults). We have claimed that having identity map tasks in Chrysaor was the
main reason for Chrysaor to be slower than Medusa, and we can add that the performance
difference remains the same despite the number of splits.

In the WebdataScan application shown in Figure 5.7b, Chrysaor starts to be 17% slower
than Medusa when we are dealing with splits of 64MB. Chrysaor is 27% slower than Medusa
in the case of 128MB splits. Finally, Chrysaor tends to be twice more slower as we increase
the split size. The main reason for Chrysaor cost is the need of having the second logical
job. Since most of the computation in this application is in the first part, launching a second
job to run the reduce tasks is not the best strategy for this application. Again, the use of
identity map tasks delayed the performance.

In the case of the Sort (see Figure 5.7c), Chrysaor was always 16%-19% faster than
Medusa. This difference in the execution between both solutions remained the same in-
dependently of the split size. We realized that generating digests in Medusa at the end of
the job got an impact of 55% in the overall execution. As result, Medusa got much worse
performance than with Chrysaor.

Overall, Chrysaor obtained better performance in the Sort application and lost to Medusa
in the WordCount and WebdataScan application. As conclusion, we can say that the split
size did not affected Chrysaor’s performance, because of the existence of the identity map
tasks. What affected the performance of Chrysaor is the existence of identity map tasks.
If we removed this type of task by updating the MapReduce source code, we would have
much better results but we would be constrained to the MapReduce version. This is a trade
off that we must take into consideration when analyzing these results. Since most of jobs
use a split size from 64MB to 128MB as the default block of HDFS has 64MB (White, 2009),
the difference between performance between both solutions is much smaller than when we

112

5.4 Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500 600 700 800 900 1000

#
 m

a
p
 t

a
sk

s
e
xe

cu
te

d

Number of input splits
Vanilla MapReduce (x)

Medusa
No faults

Arbitrary faults
Malicious faults

(a) Number of map tasks executed versus number of splits (f = t = 1) with Medusa

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500 600 700 800 900 1000

#
 m

a
p
 t

a
sk

s
e
xe

cu
te

d

Number of input splits
Vanilla MapReduce

Chrysaor
No faults

Arbitrary faults
Malicious faults

(b) Number of map tasks executed versus number of splits (f = t = 1) with Chrysaor

are dealing with splits sizes with bigger size. Therefore, we consider Chrysaor achieved
acceptable results in these scenarios.

5.4.3 Analytical evaluation

Chrysaor needs more computation in most of the cases when dealing with faults in com-
parison with Medusa. This is the result of the solution architecture and the introduction
of identity map tasks. In this section, we evaluate the computation costs analytically by
calculating the number of tasks executed versus the number of input splits.

In the Figures 5.8a and 5.8b we present a simulation of the number of map tasks needed
to process a certain number of input splits. We consider the fact that a map task processes

113

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

one split. We calculate the number of map tasks from 100 to 1000 splits. We also set f =
t = 1, like we did in the experiments, to calculate the number of map tasks needed to run

in the Medusa platform.

No faults. The vanilla MapReduce executes every task only once when there are no

faults. For instance, if we have a job that is composed by 100 splits, the framework will

run 100 map tasks to process the job. Since the number of map tasks is proportional to the

number of splits, it is represented in the graph as a positive line with slope m = 1 (bottom

line). This runtime does not have any mechanism to tolerate other types of runtime faults

besides crash faults.

With Medusa, it is necessary to execute f +1 job replicas in the case of no faults, making

a total of 200 tasks. This solution requires to launch the double of tasks than in the original

Hadoop, which represents a slope m = 2 (second line from bottom).

In Chrysaor, it is necessary to launch f + 1 map tasks and f + 1 identity map tasks

to run the reduce tasks. Therefore, 400 tasks must be launched to execute a job with the

same number of splits. As result, we have a slope of m = 4. Notice however that the

identity maps do not process the data, only return what they receive as input, therefore

their processing time tends to be lower than the rest of the maps. In fact, if we did not

consider these maps, we would have the same number of maps as in Medusa (200 maps for

100 splits).

Arbitrary faults. In case of arbitrary faults, and assuming that these faults only happen

once, it is necessary to execute 2 f +2 jobs in Medusa. Because Medusa cannot differentiate

if a fault has happened in a map or reduce task, it is necessary to re-launch a full job. This

produces a line with slope m = 4 in the figure.

In Chrysaor, when an arbitrary fault happens in the map tasks, it is necessary to launch

just the failed map task f + 1 times. As result, the execution time is similar to the case of

no faults (slope m = 4). In fact, Chrysaor is the solution that offers better results when

dealing with faults at the map side. When there is a faulty task at the reduce side, it is

necessary to re-run the identity map tasks to just execute the faulty reduce tasks. In the

end, Chrysaor needs to execute 3 f + 3 tasks, which is f + 1 more tasks than in Medusa.

This makes a slope of m = 6. Again, this is counting with the identity maps. Without these

less expensive maps we would fall on the m = 2 line.

114

5.4 Evaluation

Malicious faults. In case of malicious faults, Medusa needs to execute at least 2 f + 1

jobs to terminate the computation. In this case, it is necessary to launch 3× more tasks

than the vanilla MapReduce, which makes a slope of m = 3. In contrast, Chrysaor behaves

differently.

If a malicious fault happens in the map tasks, i.e. after the execution of the first logical

job, it is necessary to launch a new job in a new cloud. Therefore, 2 f +3 tasks need to run.

Notice that the second logical job in the new cloud also needs to execute the identity map

tasks. That is the reason that we have 2 f + 3 and not 2 f + 1. If a malicious fault happens

in the reduce tasks, it is necessary to execute a whole new job when a fault is detected. In

the end, we have a total of 2 f + 4 map tasks to run, which means that it is necessary to

execute 3× more tasks with our solution than with Medusa. Again, this is counting with

the identity map tasks.

Solution
Fault No Arbitrary Malicious

Map Reduce Map Reduce
Hadoop 1 - - - -
Medusa f + 1 2 f + 2 2 f + 1

Chrysaor f + 1 f + 1 3 f + 3 2 f + 3 2 f + 4

Table 5.1: Number of jobs to launch depending on f

In Table 5.1, we sum up the number of jobs that each solution needs to launch according

to the use case. Analyzing the values in the table, we can see that Chrysaor needs to do more

computation when dealing with certain type of faults. If we compare the values of Chrysaor

in Table 5.1 with our evaluation, we notice that the relation between the performance and

the analytical evaluation is not proportional. For instance, Chrysaor needs to execute f +
1 more tasks when dealing with arbitrary faults in the reduce side in comparison with

Medusa. But our evaluation showed that both solutions presented similar results with the

WebdataScan application. This contradicts the expectation that Chrysaor were f + 1×
slower than Medusa. This analysis is extended to all use cases.

The need to use identity map tasks affected Chrysaor performance. If we removed

this type of task by updating the MapReduce source code, we would have much better

results but we would be constrained to the MapReduce version. Chrysaor interacts with

MapReduce runtime using the framework available commands, making it suitable to work

115

5. FINE-GRAINED CLOUD-OF-CLOUDS DEPENDABLE MAPREDUCE

with any MapReduce version. This is a trade off that we must take into consideration when
analyzing these results.

5.5 Summary

We presented a second solution, Chrysaor, that allows to scale out MapReduce compu-
tation to a cloud-of-clouds (or multi-cloud) environment. The motivation is twofold: to
tolerate arbitrary and malicious faults that may corrupt the result of MapReduce jobs at
the fine granularity of a task, and to tolerate cloud outages.

Our solution involved the development of a new abstraction – the logical job – to ob-
viate the need to modify the Hadoop source code. As such, Chrysaor requires minimal
modifications to the users’ applications and does not involve changes to Hadoop. As result,
Chrysaor is capable of tolerating faults in MapReduce jobs at the task level in a cloud-of-
clouds environment.

We compared Chrysaor with the closest alternative – Medusa – and with vanilla MapRe-
duce to understand the impact of our new architecture. The results from experiments in
Amazon EC2 have shown that our fine-grained solution is always better in the most com-
mon fault case (a fault in a map task). Moreover, despite Chrysaor requiring the double
of tasks, when we compare our solution with vanilla MapReduce, we realize that in some
use cases the extra-work that our solution introduces is reasonable. In addition, despite the
unavoidable penalty introduced by not changing Hadoop, our novel design allows perfor-
mance improvements even in the baseline case, for particular workloads.

116

6
Conclusions and Future Work

This chapter summarizes the main contributions of the work, concerning improving the

dependability limitations of MapReduce, focusing on the several techniques that we have

proposed to tolerate arbitrary faults, malicious attacks, and cloud outages. We divided the

chapter into two sections. First, we present the key findings taken from our work, and then

the future work that can derive from this thesis, namely to improve the performance of our

solutions.

6.1 Conclusions

The popularity of cloud computing enabled the establishment of large-scale computing

services from numerous resources, and the computation of massive volumes of data that

traditional software had difficulty in processing in acceptable time bounds. Following this

trend, Hadoop MapReduce has appeared as a popular framework that allows processing

large quantities of data in parallel and distributed ways. At the scale of thousand of servers

that are spread in datacenters, however, failures are frequent. Current datacenters are built

with commodity servers that are prone to soft and hard errors in the hardware that will

propagate to the software running atop, causing the crash of the application, or causing

subtle failures. These uncorrectable errors can affect the execution of MapReduce pro-

cedures causing the framework to carry on mistakenly. Although it is crucial to tolerate

crashes of tasks and data corruptions in the disk, like MapReduce does, other faults that can

117

6. CONCLUSIONS AND FUTURE WORK

affect the correctness of results should be tolerated. MapReduce does not tolerate such arbi-

trary faults, affecting its dependability. Another limitation of MapReduce dependability is

its design based on a single datacenter (i.e., a single cloud), which makes such framework

vulnerable to an outage in the datacenter (cloud outage). In this thesis, we addressed the

referred MapReduce dependability limitations — inability to deal with arbitrary faults and

cloud outages — following different directions. Table 6.1 summarizes the frameworks that

we have built during the Ph.D. to give MapReduce the ability to tolerate arbitrary faults,

malicious faults, and cloud outages.

Application Description Chapter
BFT-MapReduce MapReduce solution that masks arbitrary faults to tolerate a

number of faulty task executions at the cost of one
re-execution.

3

Medusa Platform that allows MapReduce computations to scale out to
multiple clouds and tolerate several types of faults.

4

Chrysaor Platform that scales out MapReduce computations to multiple
clouds and has a fine-grained replication scheme to tolerate

faults at the task level.

5

Table 6.1: Summary of the contributions of the thesis

As first contribution, we designed and implemented a BFT MapReduce framework that

is able to tolerate arbitrary faults. The solution has two modes of job execution: non-

speculative and speculative. The goal of supporting these two modes is to improve the over-

all performance, by launching the minimal number of replicas as soon as possible. What

differentiates them is the starting point of the reduce tasks. In non-speculative mode, f +1

replicas of all map tasks have to complete successfully for reduce tasks to be launched. In

speculative execution, reduce tasks start after only one replica of all map tasks finishes. We

evaluated our system extensively in a real testbed, Grid’5000, and concluded that our so-

lution is indeed more efficient than the alternatives, using only twice as many resources as

the original Hadoop. Also, the speculative mode considerably accelerates termination in

a scenario without faults. We also concluded that the impact of faults in the makespan is

low, even in a harsh fault scenario.

As second contribution, we explored the idea of replicating MapReduce jobs in multi-

ple clouds to enhance the dependability of the framework by avoiding the unavailability

of computation due to arbitrary and malicious faults, and cloud outages. We proposed

118

6.1 Conclusions

Medusa, a platform that scales out MapReduce computations to multiple clouds and tol-

erates these types of faults. The innovation of this work emerges from the utilization of

a multi-cloud environment to parallelize computing, as well as to transparently tolerate

different types of faults at a minimum cost. Our solution addresses several non-trivial chal-

lenges for this purpose. First, it is a transparent for the user. Second, it does not require

any modification to the Hadoop framework. Third, it tolerates not only crash faults as the

original MapReduce, but also the other faults mentioned above that can corrupt the execu-

tion, and also cloud outages. Fourth, it achieves this level of fault tolerance at the minimum

replication cost and guaranteeing acceptable performance results.

As part of this work, we proposed a scheduler to distribute the replicated jobs across

different clouds, based on two metrics: predicted data transmission time and data process-

ing time. The scheduling algorithm uses several attributes related to the current status of

the environment and a historic of executions to estimate the execution time of the next job.

We have shown that deciding in which cloud a replicated job should be executed is crucial

for gaining performance in the overall execution, by evaluating Medusa thoroughly in a

real testbed, ExoGENI. The developed scheduler does so by minimizing replication and

judiciously choosing the best clouds to perform the replicated jobs.

Medusa works at the granularity of MapReduce jobs, leading in some scenarios to a high

cost for fault recovery. The reason is that to recover from a single fault in a task requires

the whole job to be recomputed. This limitation issues the necessity of finding a new fault

tolerance mechanism with less impact on performance, while keeping the goal of leaving

MapReduce unchanged.

The next contribution addresses this problem. Chrysaor, the system we propose, is

based on a fine-grained replication scheme to tolerate faults at the task level. Chrysaor is

similar to Medusa in the sense that it replicates the execution in different clouds, but with

a different system architecture and a fine-grained fault tolerance mechanism. This solution

tolerates the classes of faults mentioned above at a more reasonable cost, requiring minimal

modifications to the users’ applications. Again, this solution does not involve changing the

Hadoop source code. The creation of a fine-grained fault-tolerant mechanism was possible

with the development of a new abstraction — the logical job. We evaluated our solution

thoroughly in a real testbed, Amazon EC2, and compared it with different schemes, in-

cluding Medusa and MapReduce. As a conclusion, our fine-grained solution is efficient

119

6. CONCLUSIONS AND FUTURE WORK

regarding computation by recovering only faulty tasks, without incurring a noteworthy
penalty for the baseline case (i.e., without faults) in most workloads.

As an overall conclusion, our solutions allow scaling out MapReduce to multiple clouds
for tolerating several types of faults not covered before, and by introducing a set of core
techniques that made this possible at reasonable cost. With this work, we significantly
improve the dependability of MapReduce, increasing the confidence in its use even in very
critical application areas.

6.2 Future Work

This thesis proposed several techniques to improve the dependability of MapReduce frame-
works. Despite their advantages, there is room for improvement. We thus hope this thesis
can open new avenues for research. For instance, future works can investigate different
methodologies to improve the performance of MapReduce and still guarantee the same
level of fault tolerance. Other may further enhance the dependability of the solution con-
cerning security.

In this final section, we leave a few ideas. The first idea that we describe in Section 6.2.1
consists of new techniques that could be explored to improve performance in the context
of Medusa and Chrysaor. The second idea, outlined in Section 6.2.2, consists in applying
network programmability (e.g., SDN), to accelerate MapReduce computations. Finally, in
Section 6.2.3, we consider improving security. Namely, we propose using trusted comput-
ing to guarantee data confidentiality, which is not assured in the solutions presented in this
thesis.

6.2.1 Improvements on Medusa and Chrysaor

As explained in Chapter 5, the logical abstraction introduced in Chrysaor adds a perfor-
mance penalty due to the fact that an extra-step is added in a job execution. Two solutions
could be investigated in this respect to improving performance: the usage of hooks, and the
enhancement of the MapReduce API.

Hooking is a technique used to modify the behavior of an operating system or appli-
cation by intercepting function calls, messages or events passed between software compo-
nents (Wynne & Hellesoy, 2012). The code that handles such events is known as a hook. In

120

6.2 Future Work

Chrysaor (Chapter 5), we could use hooks to intercept the writes of the map tasks to disk,
preventing the tasks from closing the files. This way, Chrysaor would be able to pause the
execution and validate the writes to disk before resuming the execution. With this tech-
nique, we no longer need to use the identity map tasks, which would immediately improve
performance.

A second solution could be to extend the MapReduce API. The idea would be to in-
troduce new MapReduce commands that would give more control to job execution. By
adding these novel commands — pause, resume, and kill — to be part of the MapReduce
API, Chrysaor would be able to control each replicated job remotely in each cloud, adding
a fine-grained control of the job execution to the system that would bring better perfor-
mance to the overall execution.

Lets describe the functioning of the system using this more elegant solution in three
scenarios: (i) without faults, (ii) with arbitrary faults, (iii) and with malicious fault or cloud
outages.

1. In a no fault scenario, after all map or reduce tasks finish, the job could be paused
by Chrysaor, to validate the output. After a successful validation, Chrysaor could
resume it. Consequently, a job could be resumed after the validation of the map
output, to start the reduce tasks, or after the validation of the reduce output, to just
terminate the job.

2. In the case of an arbitrary fault in a task, Chrysaor could kill the failed task and re-
launch it. An eventual correct result would replace the incorrect one, and the job
could be resumed.

3. In the case of a malicious fault or cloud outages, Chrysaor could pause the running
job to execute another replica in a new cloud. In this use case, this solution would
behave similarly to Chrysaor (Section 5.3.2), but excluding the identity step. After
the validation of the output, the correct jobs could be resumed from the point where
they have been suspended.

A different topic of research that shares the same goal of improving performance is
scheduling. In Medusa, we proposed a scheduling algorithm that replicates jobs across dif-
ferent clouds based on the predicted data transmission time and processing time in each
cloud. Despite this solution allowing to incorporate the heterogeneity of the clouds into

121

6. CONCLUSIONS AND FUTURE WORK

the scheduling decision, it could be interesting to explore Machine Learning techniques to

achieve more accurate models and predictions for network and cloud conditions (Abadi

et al., 2016; Dean et al., 2012). Using a machine learning solution like TensorFlow to create

new scheduling algorithms with a focus on training and inference on deep neural networks,

would result in an algorithm that could use innumerous parameters to select clouds more

accurately.

These three solutions focus mostly on the MapReduce application. As the network and

the computing system can influence the framework’s performance significantly, in the next

sections, we investigate the impact of these factors to enhance our solutions.

6.2.2 Exploring network programmability

Our experience with Medusa and Chrysaor led us to the conclusion that in several situa-

tions, the network is the bottleneck of the system. As such, one could explore Software-

Defined Networking (Farhady et al., 2015) to improve network control, enabling us to

distribute traffic more precisely.

Software-defined networks (SDN) materialize the decoupling between the control and

data forwarding logic of network elements (switches/routers), moving the control-plane of

the network elements and on to a centralized controller (Kreutz et al., 2015). Software-

defined networks provide the ability to program the network at runtime in a manner

such that the data flow is optimized for faster, service-aware, and more resilient applica-

tion execution. The dynamic fine-grained control of the underlying datacenter network

that Chrysaor or Medusa would have with SDN would allow distributing tasks taking into

account the location, the performance of the node, the network throughput and latency

between nodes. The common goal behind these three factors would be rearranging the

network and the task distribution to avoid low network throughput during the shuffle &

sort phase. One could also explore recent advances in switch programmability (Bosshart

et al., 2014) to improve network visibility (Shahbaz et al., 2016), and thus enhance network

control. For instance, using P4 (Shahbaz et al., 2016) as a high-level language to program

packet switching behavior in conjunction with SDN control protocols like OpenFlow, one

could envisage solutions where parts of MapReduce processing could be offloaded to the

network.

122

6.2 Future Work

6.2.3 Improving security properties

Security and privacy in MapReduce computations are essential concerns when it is neces-
sary to execute sensitive data in public or hybrid clouds. As such, one could explore SGX
(Chakrabarti et al., 2017) or Blockchain (Swan, 2015) technology to add confidentiality and
auditability to Hadoop MapReduce.

Intel’s Software Guard Extensions (SGX) is a set of extensions to the Intel architecture
that aims to provide integrity and confidentiality guarantees to computation performed on
a computer where all the privileged software is potentially malicious (Chakrabarti et al.,
2017; McKeen et al., 2016). Allocating private regions of memory, called enclaves, to the
map and reduce tasks, would force the map and reduce functions to be executed in a trusted
environment (Pires et al., 2017). This would add confidentiality (or privacy) to the map and
reduce operations, something that it is not assured in the three solutions presented in this
thesis. Specifically, the data could be provided encrypted to the enclave, decrypted inside
it, and the result encrypted before leaving the enclave. This would prevent an adversary
with access to the servers that process data from reading it.

Another technology that could be used to make MapReduce computations more secure
is Blockchain. Blockchain is a decentralized database shared among a network of computers
that are used to maintain a continuous growing list of blocks (Swan, 2015). Each peer
in the network must approve a transaction before it can be recorded. This technology
excludes the need of a trusted intermediary to arbiter all transactions. The information
would be held securely and transparently by a digital ledger for all users on the network
to see. Applying Blockchain to MapReduce is a way to make each step of a job execution
auditable. For instance, after each map and reduce tasks finish, this information could
be added to the database. As result, Medusa and Chrysaor could audit which tasks were
executed and validate the output with the help of every party in the network. The challenge
of scalability of the Blockchain would be particularly interesting in this context.

To conclude this thesis, we hope these ideas offer motivation to improve the dependa-
bility of MapReduce system further and may become part of its environment in the near
future.

123

Bibliography

ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN, J., DEVIN, M., GHE-

MAWAT, S., IRVING, G., ISARD, M., KUDLUR, M., LEVENBERG, J., MONGA, R.,

MOORE, S., MURRAY, D.G., STEINER, B., TUCKER, P., VASUDEVAN, V., WARDEN,

P., WICKE, M., YU, Y. & ZHENG, X. (2016). TensorFlow: A system for large-scale ma-

chine learning. In 12th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI), 265–283. 122

ALEXANDROV, A., BERGMANN, R., EWEN, S., FREYTAG, J.C., HUESKE, F., HEISE, A.,

KAO, O., LEICH, M., LESER, U., MARKL, V., NAUMANN, F., PETERS, M., RHEIN-

LÄNDER, A., SAX, M.J., SCHELTER, S., HÖGER, M., TZOUMAS, K. & WARNEKE, D.

(2014). The stratosphere platform for big data analytics. The VLDB Journal, 23, 939–964.

22

ALVISI, L., MALKHI, D., PIERCE, E. & REITER, M. (2001). Fault Detection for Byzantine

Quorum Systems. IEEE Transactions on Parallel and Distributed Systems, 12, 996–1007.

30

AMAZON (2015). Amazon EMR Documentation. https://aws.amazon.com/

documentation/emr/. 2, 14, 89, 92

AMAZON (2017). AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting.

http://aws.amazon.com/ec2/. 32

AMAZON S3 (2011). Amazon S3 availability event: July 20, 2008. http://

status.aws.amazon.com/s3-20080720.html. 28

AMAZON WEB SERVICES (2015). Amazon S3 introduces cross-region replication.

https://aws.amazon.com/pt/about-aws/whats-new/2015/03/amazon-

s3-introduces-cross-region-replication/. 92

125

https://aws.amazon.com/documentation/emr/
https://aws.amazon.com/documentation/emr/
http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
https://aws.amazon.com/pt/about-aws/whats-new/2015/03/amazon-s3-introduces-cross-region-replication/
https://aws.amazon.com/pt/about-aws/whats-new/2015/03/amazon-s3-introduces-cross-region-replication/

BIBLIOGRAPHY

AMIR, Y., DANILOV, C., DOLEV, D., KIRSCH, J., LANE, J., NITA-ROTARU, C., OLSEN,
J. & ZAGE, D. (2006). Scaling Byzantine Fault-Tolerant Replication to Wide Area Net-
works. In Proceedings of the IEEE/IFIP 36th International Conference on Dependable Sys-
tems and Networks, 105–114. 29

ANDERSON, M. (2017). Amazon Cloud Storage Failure Causes Widespread Disrup-
tion. http://www.nbcnewyork.com/news/tech/Amazons-Web-Services-
Down-Causes-Massive-Outages-Online-415003823.html. 28

APACHE (2013). Fair Scheduler. https://hadoop.apache.org/docs/r1.2.1/
fair_scheduler.html. 32, 37

APACHE (2013). MapReduce 0.22 Documentation – GridMix. http://

hadoop.apache.org/docs/r1.2.1/gridmix.html. 54, 80, 103

APACHE (2016). MapReduce Tutorial. https://hadoop.apache.org/docs/
stable/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html. 101

APPRIVER GUEST BLOG (2014). Malicious insiders pose biggest threat to security?
http://talkincloud.com/blog/malicious-insiders-pose-biggest-
threat-security. 25

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A.D., KATZ, R.H., KONWINSKI, A.,
LEE, G., PATTERSON, D.A., RABKIN, A. & ZAHARIA, M. (2009). Above the Clouds:
A Berkeley View of Cloud Computing. Tech. rep., . v, 1

AVIZIENIS, A., LAPRIE, J.C., RANDELL, B. & LANDWEHR, C. (2004). Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing, 1, 11–33. vii, 3, 39

BAEZA-YATES, R., GIONIS, A., JUNQUEIRA, F., PLACHOURAS, V. & TELLOLI, L.
(2009). On the Feasibility of Multi-site Web Search Engines. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management, 425–434. 6, 68

BAHMANI, B., CHAKRABARTI, K. & XIN, D. (2011). Fast personalized pagerank on
mapreduce. In Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data. 14

126

http://www.nbcnewyork.com/news/tech/Amazons-Web-Services-Down-Causes-Massive-Outages-Online-415003823.html
http://www.nbcnewyork.com/news/tech/Amazons-Web-Services-Down-Causes-Massive-Outages-Online-415003823.html
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
http://hadoop.apache.org/docs/r1.2.1/gridmix.html
http://hadoop.apache.org/docs/r1.2.1/gridmix.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://talkincloud.com/blog/malicious-insiders-pose-biggest-threat-security
http://talkincloud.com/blog/malicious-insiders-pose-biggest-threat-security

BIBLIOGRAPHY

BALDINE, I., XIN, Y., MANDAL, A., RUTH, P., HEERMAN, C. & CHASE, J. (2012). Exo-

GENI: A multi-domain infrastructure-as-a-service testbed, vol. 44 LNICST of Lecture Notes

of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing, 97–113. Springer International Publishing. 8, 81

BARGA, R. (2011). Daytona – Iterative MapReduce on Windows Azure. http://

research.microsoft.com/en-us/projects/daytona/. 2, 14

BARROSO, L.A. & HOELZLE, U. (2009). The Datacenter As a Computer: An Introduction

to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st edn. 28

BATTRÉ, D., EWEN, S., HUESKE, F., KAO, O., MARKL, V. & WARNEKE, D. (2010).

Nephele/PACTs: a programming model and execution framework for web-scale analy-

tical processing. In Proceedings of the 1st ACM Symposium on Cloud Computing, 119–130.

22, 23

BESSANI, A., CORREIA, M., QUARESMA, B., ANDRÉ, F. & SOUSA, P. (2011). DepSky:

Dependable and Secure Storage in a Cloud-of-clouds. In Proceedings of the 6th Conference

on Computer Systems, EuroSys ’11, 31–46. 25, 30, 42, 69

BESSANI, A.N., SOUSA, J. & ALCHIERI, E.A.P. (2014). State machine replication for the

masses with BFT-SMART. In 44th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks, DSN 2014, 355–362. 29

BJÖRCK, A. (1996). Numerical Methods for Least Squares Problems. Siam Philadelphia. 79

BLELLOCH, G.E. (1989). Scans as primitive parallel operations. IEEE Transactions on Com-

puters, 38, 1526–1538. 13

BLODGET, H. (2017). Amazon’s Cloud Crash Disaster Permanently Destroyed Many

Customers’ Data. http://www.businessinsider.com/amazon-lost-data-

2011-4. 4, 5

BORKAR, S. (2005). Designing reliable systems from unreliable components: The chal-

lenges of transistor variability and degradation. IEEE Micro, 25, 10–16. 28

127

http://research.microsoft.com/en-us/projects/daytona/
http://research.microsoft.com/en-us/projects/daytona/
http://www.businessinsider.com/amazon-lost-data-2011-4
http://www.businessinsider.com/amazon-lost-data-2011-4

BIBLIOGRAPHY

BORT, J. (2016). Google apologizes for cloud outage that one person describes as a ’comedy

of errors’. http://www.businessinsider.com/google-apologizes-for-

cloud-outage-2016-4. 69

BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN, N., REXFORD, J.,

SCHLESINGER, C., TALAYCO, D., VAHDAT, A., VARGHESE, G. & WALKER, D. (2014).

P4: Programming Protocol-independent Packet Processors. SIGCOMM Computer Com-
munication Review, 44, 87–95. 122

BU, Y., HOWE, B., BALAZINSKA, M. & ERNST, M.D. (2010). Haloop: Efficient iterative

data processing on large clusters. Proceeding VLDB Endowment, 3, 285–296. 22

BUYYA, R., RANJAN, R. & CALHEIROS, R.N. (2010). Intercloud: Utility-oriented feder-

ation of cloud computing environments for scaling of application services. In C.H. Hsu,

L. Yang, J. Park & S.S. Yeo, eds., Algorithms and Architectures for Parallel Processing, vol.

6081 of Lecture Notes in Computer Science, 13–31, Springer Berlin Heidelberg. 34

CASTRO, M. & LISKOV, B. (1999). Practical Byzantine Fault Tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation (OSDI), 173–186.

29

CASTRO, M. & LISKOV, B. (2002). Practical Byzantine Fault-Tolerance and Proactive Re-

covery. ACM Transactions Computer Systems, 20, 398–461. viii, 7, 40, 42

CELAYA, J. & ARRONATEGUI, U. (2011). A Highly Scalable Decentralized Scheduler of

Tasks with Deadlines. In GRID, 58–65. 35, 37

CERIN, C., COTI, C., DELORT, P. et al. (2013). Downtime statistics of current cloud solu-

tions. The International Working Group on Cloud Computing Resiliency. vii, 5, 92

CHAKRABARTI, S., LESLIE-HURD, R., VIJ, M., MCKEEN, F., ROZAS, C., CASPI, D.,

ALEXANDROVICH, I. & ANATI, I. (2017). Intel Software Guard Extensions (Intel SGX)

Architecture for Oversubscription of Secure Memory in a Virtualized Environment.

In ACM Proceedings of the Hardware and Architectural Support for Security and Privacy,

HASP’17, 7:1–7:8. 123

128

http://www.businessinsider.com/google-apologizes-for-cloud-outage-2016-4
http://www.businessinsider.com/google-apologizes-for-cloud-outage-2016-4

BIBLIOGRAPHY

CHEN, A. (2010). GCreep: Google Engineer Stalked Teens, Spied on Chats.
http://gawker.com/5637234/gcreep-google-engineer-stalked-
teens-spied-on-chats. 68

CHRISTODOULOPOULOS, K., SOURLAS, V., MPAKOLAS, I. & VARVARIGOS, E. (2009).
A comparison of centralized and distributed meta-scheduling architectures for computa-
tion and communication tasks in grid networks. Computer Communications, 32, 1172–
1184. 34

CHU, C.T., KIM, S.K., LIN, Y.A., YU, Y., BRADSKI, G., NG, A.Y. & OLUKOTUN, K.
(2006). MapReduce for Machine Learning on Multicore. In Proceedings of the 19th Inter-
national Conference on Neural Information Processing Systems (NIPS), 281–288. 21

CLARKE, G. (2015). Microsoft Azure was most FAIL-FILLED cloud of 2014.
http://www.theregister.co.uk/2015/01/16/microsoft_worst_cloud_
uptime_2014. vii, 5, 92

CLAYCOMB, W.R. & NICOLL, A. (2012). Insider threats to cloud computing: Directions
for new research challenges. In Proceedings of the 2012 IEEE 36th Annual Computer Soft-
ware and Applications Conference (COMPSAC), 387–394. 5, 24

CLEMENT, A., KAPRITSOS, M., LEE, S., WANG, Y., ALVISI, L., DAHLIN, M. & RICH, T.
(2009a). UpRight Cluster Services. In Proceedings of the 22nd ACM Symposium on Oper-
ating Systems Principles. viii, 7, 40, 41, 42, 53

CLEMENT, A., WONG, E., ALVISI, L., DAHLIN, M. & MARCHETTI, M. (2009b). Making
Byzantine Fault Tolerant Systems Tolerate Byzantine Faults. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design & Implementation. 29

CLEMENTE-CASTELLO, F., NICOLAE, B., RAFIQUE, M.M., MAYO, R. & FERNANDEZ,
J.C. (2017). Evaluation of Data Locality Strategies for Hybrid Cloud Bursting of Iterative
MapReduce. In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). 21

CLOUD SECURITY ALLIANCE (2013). The notorious nine: Cloud computing top threats
in 2013. 24, 68

129

http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats
http://www.theregister.co.uk/2015/01/16/microsoft_worst_cloud_uptime_2014
http://www.theregister.co.uk/2015/01/16/microsoft_worst_cloud_uptime_2014

BIBLIOGRAPHY

CLOUDSQUARE (2015). Cloudsquare Service Status. https://cloudharmony.com/
status-1year-of-storage-and-compute-group-by-regions-and-

provider. 4, 69

CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J.M., ELMELEEGY, K. & SEARS,
R. (2010). MapReduce Online. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (NSDI), 21–21. 20

CORREIA, M., NEVES, N.F. & VERSSIMO, P. (2006). From Consensus to Atomic Broad-
cast: Time-Free Byzantine-Resistant Protocols without Signatures. The Computer Jour-
nal, 49, 82–96. 28, 43

COSTA, P., PASIN, M., BESSANI, A.N. & CORREIA, M. (2011). Byzantine Fault-Tolerant
MapReduce: Faults Are Not Just Crashes. In Proceedings of the 3rd IEEE International
Conference on Cloud Computing Technology and Science, 32–39. 60

COSTA, P., PASIN, M., BESSANI, A.N. & CORREIA, M.P. (2013). On the Performance
of Byzantine Fault-Tolerant MapReduce. IEEE Transactions on Dependable and Secure
Computing, 10, 301–313. 8

CUI, X., ZHU, P., YANG, X., LI, K. & JI, C. (2014). Optimized big data K-means clustering
using MapReduce. The Journal of Supercomputing, 1249–1259. 21

DAI, L., GAO, X., GUO, Y., XIAO, J. & ZHANG, Z. (2012). Bioinformatics clouds for big
data manipulation. Biology Direct, 7. 5

DAWN-HISCOX, T. (2017). Fujitsu’s sydney data center suffers five hour outage.
http://www.datacenterdynamics.com/content-tracks/security-
risk/fujitsus-sydney-data-center-suffers-five-hour-outage/

98826.fullarticle. 4

DEAN, J. (2009). Large-Scale Distributed Systems at Google: Current Systems and Future
Directions. Keynote speech at the 3rd ACM SIGOPS International Workshop on Large
Scale Distributed Systems and Middleware (LADIS). 2

DEAN, J. & GHEMAWAT, S. (2004). Mapreduce: Simplified data processing on large clus-
ters. In Proceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation, OSDI’04, 10–10. v, vi, 1, 2, 13, 28

130

https://cloudharmony.com/status-1year-of-storage-and-compute-group-by-regions-and-provider
https://cloudharmony.com/status-1year-of-storage-and-compute-group-by-regions-and-provider
https://cloudharmony.com/status-1year-of-storage-and-compute-group-by-regions-and-provider
http://www.datacenterdynamics.com/content-tracks/security-risk/fujitsus-sydney-data-center-suffers-five-hour-outage/98826.fullarticle
http://www.datacenterdynamics.com/content-tracks/security-risk/fujitsus-sydney-data-center-suffers-five-hour-outage/98826.fullarticle
http://www.datacenterdynamics.com/content-tracks/security-risk/fujitsus-sydney-data-center-suffers-five-hour-outage/98826.fullarticle

BIBLIOGRAPHY

DEAN, J., CORRADO, G.S., MONGA, R., CHEN, K., DEVIN, M., LE, Q.V., MAO, M.Z.,

RANZATO, M., SENIOR, A., TUCKER, P., YANG, K. & NG, A.Y. (2012). Large Scale

Distributed Deep Networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems, NIPS’12, 1223–1231. 122

DEDE, E., FADIKA, Z., GOVINDARAJU, M. & RAMAKRISHNAN, L. (2014). Benchmark-

ing mapreduce implementations under different application scenarios. Future Generation
Computer Systems, 36, 389 – 399. 21

DESHMUKH, R.V. & DEVADKAR, K.K. (2015). Understanding DDoS Attack & its Ef-

fect in Cloud Environment. Procedia Computer Science, 49, 202–210, proceedings of 4th

International Conference on Advances in Computing, Communication and Control

(ICAC3’15). 3

DRISCOLL, K., HALL, B., SIVENCRONA, H. & ZUMSTEG, P. (2003). Byzantine fault tol-

erance, from theory to reality. In S. Anderson, M. Felici & B. Littlewood, eds., Computer
Safety, Reliability, and Security, vol. 2788 of Lecture Notes in Computer Science, 235–248,

Springer Berlin Heidelberg. 29

DUBEY, A.K., JAIN, V. & A.P.MITTAL (2015). Stock market prediction using hadoop map-

reduce ecosystem. Computing for Sustainable Global Development (INDIACom). 5

DVORAK, J. (2011). The Cloud: Risky, Unreliable, and Dumb. http:

//www.pcmag.com/article2/0,2817,2385463,00.asp. vii

EKANAYAKE, J., PALLICKARA, S. & FOX, G. (2008). MapReduce for Data Intensive Scien-

tific Analyses. In Proceedings of the 2008 Fourth IEEE International Conference on eScience,
277–284. 22

EKANAYAKE, J., LI, H., ZHANG, B., GUNARATHNE, T., BAE, S.H., QIU, J. & FOX,

G. (2010). Twister: a runtime for iterative MapReduce. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, 810–818. 22

FACCIO, F. (2011). Radiation Effects and Hardening by Design in CMOS Technologies, 69–87.

Springer Netherlands. 28

131

http://www.pcmag.com/article2/0,2817,2385463,00.asp
http://www.pcmag.com/article2/0,2817,2385463,00.asp

BIBLIOGRAPHY

FADIKA, Z. & GOVINDARAJU, M. (2010). LEMO-MR: Low overhead and elastic MapRe-
duce implementation optimized for memory and cpu-intensive applications. In Proceed-
ings of the 2nd IEEE International Conference on Cloud Computing Technology and Science,
1–8. 21

FARHADY, H., LEE, H. & NAKAO, A. (2015). Software-defined networking. Computer
Networks: The International Journal of Computer and Telecommunications Networking,
81, 79–95. 122

FERRARO PETRILLO, U., ROSCIGNO, G., CATTANEO, G. & GIANCARLO, R. (2017).
Fastdoop: a versatile and efficient library for the input of fasta and fastq files for mapre-
duce hadoop bioinformatics applications. Bioinformatics, 33, 1575–1577. 5

GAO, G.R., STERLING, T., STEVENS, R.L., HERELD, M. & ZHU, W. (2007). ParalleX:
A Study of a New Parallel Computation Model. In IEEE International Parallel and Dis-
tributed Processing Symposium. 13

GARCIA, M., BESSANI, A., GASHI, I., NEVES, N. & OBELHEIRO, R. (2011). OS diversity
for intrusion tolerance: Myth or reality? In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks. vii, 4

GATES, A. (2011). Programming Pig. O’Reilly Media, Inc., 1st edn. 21

GHEMAWAT, S., GOBIOFF, H. & LEUNG, S.T. (2003). The Google file system. In Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles, 29–43. vi, 2

GIFFORD, D. (1979). Weighted Voting for Replicated Data. In Proc. of the 7th ACM Sympo-
sium on Operating Systems Principles (SOSP), 150–162, ACM. 29

GONZALEZ, J.E., XIN, R.S., DAVE, A., CRANKSHAW, D., FRANKLIN, M.J. & STO-
ICA, I. (2014). GraphX: Graph Processing in a Distributed Dataflow Framework. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 599–613.
22

GROLINGER, K., HAYES, M., HIGASHINO, W.A., L’HEUREUX, A., ALLISON, D.S. &
CAPRETZ, M.A.M. (2014). Challenges for mapreduce in big data. In Proceedings of the
2014 IEEE World Congress on Services, 182–189. 21

132

BIBLIOGRAPHY

GROUP, I.W.I.W. (2011). P2302 - standard for intercloud interoperability and federation.

http://standards.ieee.org/develop/project/2302.html. 26

GUERRAOUI, R. & RODRIGUES, L. (2006). Introduction to Reliable Distributed Program-
ming. Springer-Verlag. 30

GUERRAOUI, R. & YABANDEH, M. (2010). Independent Faults in the Cloud. In Proceed-
ings of the 4th International Workshop on Large Scale Distributed Systems and Middleware,
LADIS ’10, 12–17. 3

GUNARATHNE, T., WU, T.L., QIU, J. & FOX, G. (2010). MapReduce in the Clouds for

Science. In Proceedings of the 2nd IEEE International Conference on Cloud Computing
Technology and Science, 565–572. 22

HADZILACOS, V. & TOUEG, S. (1994). A Modular Approach to the Specification and

Implementation of Fault-Tolerant Broadcasts. Tech. Rep. TR 94-1425, Department of

Computer Science, Cornell University, New York - USA. 28

HANLEY, M., DEAN, T., SCHROEDER, W., HOUY, M., TRZECIAK, R. & MON-

TELIBANO, J. (2011). An Analysis of Technical Observations in Insider Theft of Intel-

lectual Property Cases. Tech. Rep. CMU/SEI-2011-TN-006, Software Engineering Insti-

tute, Carnegie Mellon University, Pittsburgh, PA. 24

HUANG, Y., BESSIS, N., NORRINGTON, P., KUONEN, P. & HIRSBRUNNER, B.

(2013). Exploring Decentralized Dynamic Scheduling for Grids and Clouds Using the

Community-aware Scheduling Algorithm. Future Generation Computer Systems, 29, 402–

415. 34, 36, 37

IORDACHE, A., MORIN, C., PARLAVANTZAS, N., FELLER, E. & RITEAU, P. (2013). Re-

silin: Elastic MapReduce over Multiple Clouds. In 13th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, best paper finalist. 27

ISARD, M., BUDIU, M., YU, Y., BIRRELL, A. & FETTERLY, D. (2007). Dryad: distributed

data-parallel programs from sequential building blocks. In Proceedings of the ACM SIGOP-
S/EuroSys European Conference on Computer Systems, 59–72. 22, 23

133

http://standards.ieee.org/develop/project/2302.html

BIBLIOGRAPHY

JAYALATH, C., STEPHEN, J.J. & EUGSTER, P. (2014). From the Cloud to the Atmosphere:
Running MapReduce across Data Centers. IEEE Transactions Computers, 63, 74–87. viii,
4, 6, 26, 68

JONES, S. (2017). How the wannacry cyber attack spread. https://www.ft.com/
content/82b01aca-38b7-11e7-821a-6027b8a20f23. 24

KANDIAS, M., VIRVILIS, N. & GRITZALIS, D. (2013). The insider threat in cloud comput-
ing. In Critical Information Infrastructure Security, vol. 6983 of LNCS, 93–103, Springer
Berlin Heidelberg. 68

KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J. & GRISWOLD,
W.G. (2001). An overview of AspectJ. In Proceedings of the 15th European Conference on
Object-Oriented Programming, 327–353. 101

KOHLWEY, E., SUSSMAN, A., TROST, J. & MAURER, A. (2011). Leveraging the Cloud for
Big Data Biometrics: Meeting the Performance Requirements of the Next Generation
Biometric Systems. In 2011 IEEE World Congress on Services, 597–601. 5

KRAFT, J. (2017). Top Cloud Outages and IT Issues of 2016. https://

www.ajubeo.com/blog/top-cloud-outages-issues-2016. 4

KREUTZ, D., RAMOS, F.M.V., VERÍSSIMO, P., ROTHENBERG, C.E., AZODOLMOLKY,
S. & UHLIG, S. (2015). Software-Defined Networking: A Comprehensive Survey. Pro-
ceedings of the IEEE, 103, 63. 122

KRISHNAN, S., BARU, C. & CROSBY, C. (2010). Evaluation of MapReduce for Gridding
LIDAR Data. In Proceedings of the 2nd IEEE International Conference on Cloud Comput-
ing Technology and Science, 33–40. 21

KURZE, T., KLEMS, M., BERMBACH, D., LENK, A., TAI, S. & KUNZE, M. (2011). Cloud
Federation. In Proceedings of the 2nd International Conference on Cloud Computing,
Grids, and Virtualization. 69

LACOSTE, M., MIETTINEN, M., NEVES, N., RAMOS, F.M., VUKOLIC, M., CHARMET,
F., YAICH, R., OBORZYNSKI, K., VERNEKAR, G. & SOUSA, P. (2016). User-Centric
Security and Dependability in Clouds-of-Clouds. IEEE Cloud Computing, 3, 64–75. 4

134

https://www.ft.com/content/82b01aca-38b7-11e7-821a-6027b8a20f23
https://www.ft.com/content/82b01aca-38b7-11e7-821a-6027b8a20f23
https://www.ajubeo.com/blog/top-cloud-outages-issues-2016
https://www.ajubeo.com/blog/top-cloud-outages-issues-2016

BIBLIOGRAPHY

LAMPORT, L., SHOSTAK, R. & PEASE, M. (1982). The Byzantine Generals Problem. ACM
Transactions on Programing Languages and Systems, 4, 382–401. vii, 28, 29

LEE, K.H., LEE, Y.J., CHOI, H., CHUNG, Y.D. & MOON, B. (2012). Parallel data process-

ing with mapreduce: A survey. ACM SIGMOD Record, 40, 11–20. 14

LI, B., MAZUR, E., DIAO, Y., MCGREGOR, A. & SHENOY, P. (2011). A platform for

scalable one-pass analytics using mapreduce. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, 985–996. 20

LI, M.L., RAMACH, P., SAHOO, S.K., ADVE, S.V., ADVE, V.S. & ZHOU, Y. (2008). Under-

standing the propagation of hard errors to software and implications for resilient system

design. In Proceedings International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). vii, 3

LIN, H., MA, X., ARCHULETA, J., FENG, W.C., GARDNER, M. & ZHANG, Z. (2010).

MOON: MapReduce On Opportunistic eNvironments. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing (HPDC), 95–106.

20

LUCKY, D. (2015). Taking advantage of multi-cloud benefits with visibility.

https://www.datapipe.com/blog/2015/05/28/taking-advantage-

of-multi-cloud-benefits-with-visibility/. vii, 4

MACK, E. (2013). Google outage reportedly caused big drop in global traffic.

https://www.cnet.com/news/google-outage-reportedly-caused-

big-drop-in-global-traffic/. 4

MALKHI, D. & REITER, M. (1997). Byzantine Quorum Systems. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing (STOC), 569–578. 30,

42

MAROZZO, F., TALIA, D. & TRUNFIO, P. (2008). Adapting MapReduce for Dynamic

Environments Using a Peer-to-Peer Model. In Proceedings of the 1st Workshop on Cloud
Computing and its Applications. 20

135

https://www.datapipe.com/blog/2015/05/28/taking-advantage-of-multi-cloud-benefits-with-visibility/
https://www.datapipe.com/blog/2015/05/28/taking-advantage-of-multi-cloud-benefits-with-visibility/
https://www.cnet.com/news/google-outage-reportedly-caused-big-drop-in-global-traffic/
https://www.cnet.com/news/google-outage-reportedly-caused-big-drop-in-global-traffic/

BIBLIOGRAPHY

MAROZZO, F., TALIA, D. & TRUNFIO, P. (2012). P2P-MapReduce: Parallel Data Pro-

cessing in Dynamic Cloud Environments. Journal of Computer and System Sciences, 78,

1382–1402. 20

MATSUNAGA, A., TSUGAWA, M. & FORTES, J. (2008). CloudBLAST: Combining

MapReduce and Virtualization on Distributed Resources for Bioinformatics Applica-

tions. In Proceedings of the 4th IEEE International Conference on eScience, 222–229. 6,

68

MCKEEN, F., ALEXANDROVICH, I., ANATI, I., CASPI, D., JOHNSON, S., LESLIE-

HURD, R. & ROZAS, C. (2016). Intel&Reg; Software Guard Extensions (Intel&Reg;

SGX) Support for Dynamic Memory Management Inside an Enclave. In ACM Proceed-

ings of the Hardware and Architectural Support for Security and Privacy (HASP), 10:1–10:9.

123

MENON, R.K., BHAT, G.P. & SCHATZ, M.C. (2011). Rapid parallel genome indexing with

mapreduce. In Proceedings of the Second International Workshop on MapReduce and Its

Applications, 51–58. 14

MEZA, J., WU, Q., KUMAR, S. & MUTLU, O. (2015). Revisiting Memory Errors in Large-

Scale Production Data Centers: Analysis and Modeling of New Trends from the Field.

In Proceedings of the IEEE/IFIP 45th International Conference on Dependable Systems and

Networks, 415–426. 68

MIKAMI, S., OHTA, K. & TATEBE, O. (2011). Using the Gfarm File System As a POSIX

Compatible Storage Platform for Hadoop MapReduce Applications. In Proceedings of the

2011 IEEE/ACM 12th International Conference on Grid Computing (GRID), 181–189. 26

MOHAMMED, E.A., FAR, B.H. & NAUGLER, C. (2014). Applications of the MapRe-

duce programming framework to clinical big data analysis: current landscape and future

trends. BioData Mining, 7, 22. 5

MUKESH, R. (2015). Market Price Prediction Based on Neural Network using Hadoop

MapReduce Technique. http://citeweb.info/20151739232. 5

136

http://citeweb.info/20151739232

BIBLIOGRAPHY

MURRAY, D.G., SCHWARZKOPF, M., SMOWTON, C., SMITH, S., MADHAVAPEDDY, A.
& HAND, S. (2011). CIEL: A Universal Execution Engine for Distributed Data-flow
Computing. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, 113–126. 23

NAGARAJAN, V., WOLF, J.L., BALMIN, A. & HILDRUM, K. (2013). FlowFlex: Malleable
Scheduling for Flows of MapReduce Jobs. In Proceedings of the 14th ACM/IFIP/USENIX
International Conference on Middleware, 103–122. 33, 37

NARAYAN, K. (2016). 5 Devious Instances of Insider Threat in the Cloud.
https://www.skyhighnetworks.com/cloud-security-blog/5-
devious-instances-insider-threat-cloud/. 24

NATHUJI, R., ISCI, C., GORBATOV, E. & SCHWAN, K. (2008). Providing Platform
Heterogeneity-awareness for Data Center Power Management. Cluster Computing, 11,
259–271. 32

NIGHTINGALE, E.B., DOUCEUR, J.R. & ORGOVAN, V. (2011). Cycles, cells and platters:
an empirical analysis of hardware failures on a million consumer PCs. In Proceedings of
the ACM SIGOPS/EuroSys European Conference on Computer Systems, 343–356. 3, 44, 68

NOGUEIRA, R., ARAÚJO, F. & BARBOSA, R. (2014). CloudBFT: Elastic Byzantine Fault
Tolerance. In Proceedings of the 2014 IEEE 20th Pacific Rim International Symposium on
Dependable Computing (PRDC), 180–189. 30

NOLTING, D. (2012). Commodity Clouds vs. Enterprise Clouds vs. Other Cloud Op-
tions: What’s the Difference? http://www.bluelock.com/blog/commodity-
clouds-vs-enterprise-clouds-vs-other-cloud-option-whats-

the-difference/. vii, 3

NOVET, J. (2013). How NASA is using Hadoop to advance climate science.
https://gigaom.com/2013/06/26/how-nasa-is-using-hadoop-to-
advance-climate-science/. 14

O’DOWD, S. (2015). Top 10 big data trends in 2016 for financial services.
https://mapr.com/blog/top-10-big-data-trends-2016-financial-
services/. 5

137

https://www.skyhighnetworks.com/cloud-security-blog/5-devious-instances-insider-threat-cloud/
https://www.skyhighnetworks.com/cloud-security-blog/5-devious-instances-insider-threat-cloud/
http://www.bluelock.com/blog/commodity-clouds-vs-enterprise-clouds-vs-other-cloud-option-whats-the-difference/
http://www.bluelock.com/blog/commodity-clouds-vs-enterprise-clouds-vs-other-cloud-option-whats-the-difference/
http://www.bluelock.com/blog/commodity-clouds-vs-enterprise-clouds-vs-other-cloud-option-whats-the-difference/
https://gigaom.com/2013/06/26/how-nasa-is-using-hadoop-to-advance-climate-science/
https://gigaom.com/2013/06/26/how-nasa-is-using-hadoop-to-advance-climate-science/
https://mapr.com/blog/top-10-big-data-trends-2016-financial-services/
https://mapr.com/blog/top-10-big-data-trends-2016-financial-services/

BIBLIOGRAPHY

OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R. & TOMKINS, A. (2008). Pig Latin:

a not-so-foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, 1099–1110. 21

PIRES, R., GAVRIL, D., FELBER, P., ONICA, E. & PASIN, M. (2017). A lightweight mapre-

duce framework for secure processing with SGX. CoRR, abs/1705.05684. 123

POWER, R. & LI, J. (2010). Piccolo: Building Fast, Distributed Programs with Partitioned

Tables. In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, 1–14. 22

PREGUICA, N. & MARTINS, J.L. (2001). Revisiting Hierarchical Quorum Systems. In

Proceedings of the The 21st International Conference on Distributed Computing Systems,
ICDCS ’01, 264–272. 29

QIANG WU, J.M., SANJEEV KUMAR & MUTLU, O. (2015). Revisiting Memory Errors in

Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the

Field. IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
vi, 2, 3, 28

RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRADSKI, G. & KOZYRAKIS, C.

(2007). Evaluating MapReduce for Multi-core and Multiprocessor Systems. In Proceed-
ings of the 13th IEEE International Symposium on High Performance Computer Architec-
ture, 13–24. 21

RAPHAEL, J. (2014). The worst cloud outages of 2014 (so far). http://

www.infoworld.com/article/2606209/cloud-computing/162288-

The-worst-cloud-outages-of-2014-so-far.html. vii, 5

ROWSTRON, A., NARAYANAN, D., DONNELLY, A., O’SHEA, G. & DOUGLAS, A.

(2012). Nobody Ever Got Fired for Using Hadoop on a Cluster. In Proceedings of the
1st International Workshop on Hot Topics in Cloud Data Processing, 2:1–2:5. 104

SARMENTA, L.F.G. (2002). Sabotage-tolerance mechanisms for volunteer computing sys-

tems. Future Generation Computer Systems, 18, 561–572. 6, 30, 40

138

http://www.infoworld.com/article/2606209/cloud-computing/162288-The-worst-cloud-outages-of-2014-so-far.html
http://www.infoworld.com/article/2606209/cloud-computing/162288-The-worst-cloud-outages-of-2014-so-far.html
http://www.infoworld.com/article/2606209/cloud-computing/162288-The-worst-cloud-outages-of-2014-so-far.html

BIBLIOGRAPHY

SCHNEIDER, F.B. (1990). Implementing Fault-Tolerant Service Using the State Machine
Aproach: A Tutorial. ACM Computing Surveys, 22, 299–319. 6, 28, 40, 70

SCHROEDER, B. & GIBSON, G.A. (2007). Understanding Failures in Petascale Computers.
Journal of Physics: Conference Series, 78. vi, 2

SCHROEDER, B., PINHEIRO, E. & WEBER, W.D. (2009). DRAM Errors in the Wild: A
Large-Scale Field Study. In Proceedings of the 11th International Joint Conference on Mea-
surement and Modeling of Computer Systems, 193–204. vii, 2, 3, 44, 68

SHAHBAZ, M., CHOI, S., PFAFF, B., KIM, C., FEAMSTER, N., MCKEOWN, N. & REX-
FORD, J. (2016). PISCES: A Programmable, Protocol-Independent Software Switch. In
Proceedings of the 2016 ACM SIGCOMM Conference, 525–538. 122

SHARMA, A.V. (2016). Stock market forecasting using fuzzy logic. 5

SHARWOOD, S. (2016). Salesforce.com crash caused DATA LOSS. https:

//www.theregister.co.uk/2016/05/13/salesforcecom-crash-
caused-data-loss/. 4

SHI, J., QIU, Y., MINHAS, U.F., JIAO, L., WANG, C., REINWALD, B. & ÖZCAN, F. (2015).
Clash of the titans: Mapreduce vs. spark for large scale data analytics. Proceedings VLDB
Endowment, 8, 2110–2121. 7

SMOLAKS, M. (2015). AWS suffers a five-hour outage in the US. http:

//www.datacenterdynamics.com/content-tracks/colo-cloud/aws-
suffers-a-five-hour-outage-in-the-us/94841.fullarticle. 69

SNIJDERS, C., MATZAT, U. & REIPS, U.D. (2012). Big data: Big gaps of knowledge in the
field of internet science. International Journal of Internet Science, 7, 1–5. v, 1

SOTIRIADIS, S., BESSIS, N., ANJUM, A. & BUYYA, R. (2015). An Inter-Cloud Meta-
Scheduling (ICMS) Simulation Framework: Architecture and Evaluation. IEEE Trans-
actions on Services Computing, 1–1. 36, 37

SPECTATOR, C. (2015). Choosing Between Commodity and Enterprise Cloud.
http://docplayer.net/2000690-Choosing-between-commodity-
and-enterprise-cloud.html. vii, 3

139

https://www.theregister.co.uk/2016/05/13/salesforcecom-crash-caused-data-loss/
https://www.theregister.co.uk/2016/05/13/salesforcecom-crash-caused-data-loss/
https://www.theregister.co.uk/2016/05/13/salesforcecom-crash-caused-data-loss/
http://www.datacenterdynamics.com/content-tracks/colo-cloud/aws-suffers-a-five-hour-outage-in-the-us/94841.fullarticle
http://www.datacenterdynamics.com/content-tracks/colo-cloud/aws-suffers-a-five-hour-outage-in-the-us/94841.fullarticle
http://www.datacenterdynamics.com/content-tracks/colo-cloud/aws-suffers-a-five-hour-outage-in-the-us/94841.fullarticle
http://docplayer.net/2000690-Choosing-between-commodity-and-enterprise-cloud.html
http://docplayer.net/2000690-Choosing-between-commodity-and-enterprise-cloud.html

BIBLIOGRAPHY

STEPHEN, J.J. & EUGSTER, P. (2013). Assured Cloud-Based Data Analysis with Clus-

terBFT. In D.M. Eyers & K. Schwan, eds., Proceedings of the 14th ACM/IFIP/USENIX

International Conference on Middleware, 82–102, Springer. 31

SUBRAMANI, V., KETTIMUTHU, R., SRINIVASAN, S. & SADAYAPPAN, P. (2002). Dis-

tributed Job Scheduling on Computational Grids Using Multiple Simultaneous Re-

quests. In Proceedings of the 11th IEEE International Symposium on High Performance

Distributed Computing (HPDC). 37

SWAN, M. (2015). Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc., 1st edn.

123

TATEBE, O., HIRAGA, K. & SODA, N. (2010). Gfarm Grid File System. New Generation

Computing, 28, 257–275. 26

TRUONG, H.L. & DUSTDAR, S. (2009). On analyzing and specifying concerns for data as

a service. In 2009 IEEE Asia-Pacific Services Computing Conference (APSCC), 87–94. 5

TSIDULKO, J. (2015). The 10 Biggest Cloud Outages Of 2015 (So Far). https://

www.ajubeo.com/blog/top-cloud-outages-issues-2016. 4

VENTURES, C. (2017). DDos Attack Report. http://

cybersecurityventures.com/ddos-attack-report-2017/. 4

VERÍSSIMO, P., BESSANI, A.N. & PASIN, M. (2012). The TClouds architecture: Open and

resilient cloud-of-clouds computing. In Dependable Systems and Networks (DSN) Work-

shops, 1–6. 25

VERMA, A., CHERKASOVA, L. & CAMPBELL, R.H. (2011). Resource Provisioning Frame-

work for MapReduce Jobs with Performance Goals. In Proceedings of the 12th ACM/I-
FIP/USENIX International Conference on Middleware, 165–186. 33, 37

VERMA, A., CHERKASOVA, L. & CAMPBELL, R.H. (2014). Profiling and evaluating hard-

ware choices for MapReduce environments: An application-aware approach. Perfor-

mance Evaluation, 79, 328–344. 33

140

https://www.ajubeo.com/blog/top-cloud-outages-issues-2016
https://www.ajubeo.com/blog/top-cloud-outages-issues-2016
http://cybersecurityventures.com/ddos-attack-report-2017/
http://cybersecurityventures.com/ddos-attack-report-2017/

BIBLIOGRAPHY

VERONESE, G.S., CORREIA, M., BESSANI, A., CHUNG, L. & VERISSIMO, P. (2009). Min-

imal Byzantine Fault Tolerance: Algorithm and Evaluation. DI/FCUL TR 09–15, De-

partment of Computer Science, University of Lisbon. viii, 7, 30, 40, 42

VERONESE, G.S., CORREIA, M., BESSANI, A.N. & LUNG, L.C. (2010). EBAWA: Effi-

cient Byzantine Agreement for Wide-Area Networks. In Proceedings of the 12th IEEE
International High Assurance Systems Engineering Symposium. 29

VERONESE, G.S., CORREIA, M., BESSANI, A.N., LUNG, L.C. & VERÍSSIMO, P. (2013).

Efficient Byzantine Fault Tolerance. IEEE Transactions on Computers, 62, 16–30. 29, 70

VIDELA, A. & WILLIAMS, J. (2012). RabbitMQ in Action: Distributed Messaging for Every-
one. Manning Pubs Co Series, Manning Publications Company. 82, 100

WANG, C.M., CHEN, H.M., HSU, C.C. & LEE, J. (2010). Dynamic Resource Selection

Heuristics for a Non-reserved Bidding-based Grid Environment. Future Generation Com-
puter Systems, 26, 183–197. 35, 37

WANG, L., TAO, J., RANJAN, R., MARTEN, H., STREIT, A., CHEN, J. & CHEN, D.

(2013). G-Hadoop: MapReduce Across Distributed Data Centers for Data-intensive

Computing. Future Generation Computer Systems, 29, 739–750. viii, 4, 6, 14, 27, 68

WARNEKE, D. & KAO, O. (2009). Nephele: Efficient Parallel Data Processing in the

Cloud. In Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Su-
percomputers, MTAGS ’09, 8:1–8:10. 23

WEISSMAN, J.B. & GRIMSHAW, A.S. (1996). A Federated Model for Scheduling in Wide-

Area Systems. In Proceedings of the 5th International Symposium on High Performance
Distributed Computing (HPDC ’96), 542–550. 35, 37

WHITE, T. (2009). Hadoop: The Definitive Guide. O’Reilly, 1st edn. vi, xvii, 2, 14, 15, 18,

41, 57, 112

WILLIAMS, M. (2009). Microsoft loses Sidekick users’ personal data. http:

//www.computerworld.com/article/2528964/networking/microsoft-

loses-sidekick-users--personal-data.html. 24

141

http://www.computerworld.com/article/2528964/networking/microsoft-loses-sidekick-users--personal-data.html
http://www.computerworld.com/article/2528964/networking/microsoft-loses-sidekick-users--personal-data.html
http://www.computerworld.com/article/2528964/networking/microsoft-loses-sidekick-users--personal-data.html

BIBLIOGRAPHY

WU, D., SAKR, S., ZHU, L. & WU, H. (2017). Towards Big Data Analytics across Mul-
tiple Clusters. In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. 26

WYNNE, M. & HELLESOY, A. (2012). The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. Pragmatic Bookshelf. 120

XHAFA, F. & ABRAHAM, A. (2010). Computational Models and Heuristic Methods for
Grid Scheduling Problems. Future Generation Computer Systems, 26, 608–621. 34

YANG, C., YEN, C., TAN, C. & MADDEN, S. (2010). Osprey: Implementing MapReduce-
style fault tolerance in a shared-nothing distributed database. In Proceedings of the IEEE
26th International Conference on Data Engineering. 22

YIN, J., MARTIN, J., VENKATARAMANI, A., ALVISI, L. & DAHLIN, M. (2003). Separating
Agreement from Execution for Byzantine Fault Tolerant Services. In Proceedings of the
19th ACM Symposium on Operating Systems Principles, 253–267. 55

YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON, U., GUNDA, P.K. & CUR-
REY, J. (2008). DryadLINQ: A System for General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language. In Proceedings of the 8th Symposium on Oper-
ating Systems Design and Implementation, 1–14. 23

ZAHARIA, M., KONWINSKI, A., JOSEPH, A.D., KATZ, R. & STOICA, I. (2008). Improving
MapReduce performance in heterogeneous environments. In Proceedings of 8th USENIX
Symposium on Operating Systems Design and Implementation, 29–42. 33, 37

ZHANG, X., WU, Y. & ZHAO, C. (2016). MrHeter: improving MapReduce performance
in heterogeneous environments. Cluster Computing, 19, 1691–1701. 33, 37

ZHENG, L., JOE-WONG, C., TAN, C.W., CHIANG, M. & WANG, X. (2015). How to Bid
the Cloud. In Proceedings of the 2015 ACM Conference on Data Communication (SIG-
COMM), 71–84. 92

142

	Abstract
	Resumo
	Resumo Alargado
	List of Figures
	List of Tables
	List of Notations and Acronyms
	List of Publications
	1 Introduction
	1.1 Problem and Motivation
	1.2 Objective
	1.3 Contributions
	1.4 Structure of the Thesis

	2 Background and Related work
	2.1 MapReduce and related models
	2.1.1 Architecture
	2.1.2 Fundamentals of MapReduce
	2.1.3 Enhanced MapReduce frameworks

	2.2 Cloud-of-clouds systems and applications
	2.2.1 Cloud-of-clouds MapReduce

	2.3 Arbitrary fault tolerance
	2.4 Scheduling
	2.4.1 MapReduce Scheduling
	2.4.2 Scheduling in Distributed Environments

	2.5 Summary

	3 Dependable MapReduce in a Single Cloud
	3.1 Introduction
	3.2 System model
	3.3 Byzantine fault-tolerant MapReduce algorithm
	3.3.1 Overview
	3.3.2 The algorithm in detail
	3.3.3 The prototype

	3.4 Evaluation
	3.4.1 Analytical evaluation
	3.4.2 Experimental evaluation

	3.5 Summary

	4 Cloud-of-Clouds Dependable MapReduce
	4.1 Introduction
	4.2 System model
	4.2.1 Fault model
	4.2.2 Problem formulation

	4.3 Medusa: a cloud fault-tolerant MapReduce
	4.3.1 Overview
	4.3.2 Medusa proxy in a nutshell
	4.3.3 The Medusa scheduler

	4.4 Evaluation
	4.4.1 Experimental setup
	4.4.2 Experimental performance

	4.5 Summary

	5 Fine-Grained Cloud-of-Clouds Dependable MapReduce
	5.1 Introduction
	5.2 System model
	5.2.1 Problem formulation

	5.3 Chrysaor
	5.3.1 Chrysaor overview and the logical job abstraction
	5.3.2 Chrysaor operation
	5.3.3 Chrysaor implementation

	5.4 Evaluation
	5.4.1 Experimental setup
	5.4.2 Experimental performance
	5.4.3 Analytical evaluation

	5.5 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work
	6.2.1 Improvements on Medusa and Chrysaor
	6.2.2 Exploring network programmability
	6.2.3 Improving security properties

	Bibliography

