

5th International Symposium on Applied Engineering and Sciences (SAES2017)

14th–15th November 2017 | **MALAYSIA**UNIVERSITI PUTRA MALAYSIA, SERDANG, SELANGOR

Poster code:

M19

Synthesis and Characterization of Magnetic Properties of Hard/Soft Nanocomposite Permanent Magnets

Norlaily Mohd Saiden^{1,*}, Noor Ariffuddin Jalani¹, Hartini Abdullah¹, Aisyah Rahhiah Ahmad¹, Mohd Firdaus Azmi¹, Ismayadi Ismail², Mansor Hashim², Elias Saion¹

¹Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

²Advanced Material and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

*Corresponding author's e-mail: nlaily@upm.edu.my

Abstract. We report on an investigation of the magnetic properties of nanocomposite ferrite via different technique. Magnetic hard and soft ferrite, SrFe₁₂O₁₉/ Ni_{0.5}Zn_{0.5}Fe₂O₄ nanocomposites with mass ratio 4:1 were synthesised by using the mechanical alloying (750 rpm) method, physical mixing and high energy ball milling method. The nanocomposite ferrite was calcined at different temperatures from 500°C to 800°C to study the effect of calcination temperature on the magnetic properties of nanocomposite ferrite. The X-Ray Diffraction (XRD) result shows the double phase SrFe₁₂O₁₉ and Ni_{0.5}Zn_{0.5}Fe₂O₄ existed. The Transmission Electron Microscopy (TEM) image shows the particlesize is agglomerated, due to the attractive force. The magnetisation measurement was obtained at room temperature by using a Vibrating Sample Magnetometer (VSM). For mixing by mechanical alloying, nanocomposite ferrite at 800°C gives the larger value of magnetisation, $M_{\rm s}$ 46 emu/g which is higher than the M_s of a single phase of SrFe₁₂O₁₉, 37 emu/g. The remanence ratio, Mr/Ms of nanocomposite ferrite at 800°C gives the value more than 0.5, this proves that the exchange coupling exists with the higher value of M_s. For physical mixing, the highest magnetisation obtains are 51 emu/g at a temperature of 750°C. From this simple technique, we are able to attain good magnetic properties of nanocomposite ferrite nanoparticles with a particle size below 50 nm.

Keywords: nanocomposite, ferrites, magnetic properties