

5th International Symposium on Applied Engineering and Sciences (SAES2017)

14th-15th November 2017 | **MALAYSIA** UNIVERSITI PUTRA MALAYSIA, SERDANG, SELANGOR

Poster code:

M18

Synthesizing Methylammonium-Octhylammonium Lead Bromide Hybrid Perovskite Nanoparticles

Josephine Ying Chyi Liew^{1, 2,*}, Etienne David Baranoff¹, Thomas Wheildon Rees¹, Mahnaz M. Abdi^{3, 4}, Zainal Abidin Talib², Mazliana Ahmad Kamarudin², Soo Kien Chen², Farah Diana Muhammad² and Han Kee Lee²

¹School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK ²Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

³Department of Chemical Engineering, Shiraz University, Shiraz, 7134851154 Iran
⁴Institute of Tropical Foresty and Forest Products, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

*Corresponding author's e-mail: josephine@upm.edu.my

Abstract

Organic-Inorganic hybrid perovskite materials have attracted significant research interest in the field of photovoltaic as well as light emitting applications. Methylammonium-Octylammonium Lead Bromide (MOPbBr₃) as one of the organic-inorganic hybrid perovskite materials have been synthesized through non template chemical precipitation technique. This technique is simple and allows low cost solution processing in low temperature route to form MOPbBr₃ nanoparticles. The formation of MOPbBr₃ nanoparticles has been characterized through X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), X-Ray Fluorences (XRF) analyzer and Nuclear Magnetic Resonance (NMR). Exploiting the optical properties through UV-Vis spectroscopy and photoluminescence spectroscopy specifically could greatly enhance the efficiency and functionality of applications based on this materials.

Keywords: Organic-Inorganic hybrid perovskite, non-template chemical precipitation, nanoparticles, optical properties.