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ABSTRACT
WiFi networks are o�en planned to reduce interference through
planning, macroscopic self-organization (e.g. channel switching) or
network management. In this paper, we explore the use of historical
data to automatically predict tra�c bo�lenecks and make rapid
decisions in a wireless (WiFi-like) network on a smaller scale. �is
is now possible with so�ware de�ned networks (SDN), whose con-
trollers can have a global view of tra�c �ows in a network. Models
such as classi�cation trees can be used to quickly make decisions
on how to manage network resources based on the quality needs,
service level agreement or other criteria provided by a network
administrator. �e objective of this paper is to use data generated
by simulation tools to see if such classi�cation models can be de-
veloped and to evaluate their e�cacy. For this purpose, extensive
simulation data were collected and data mining techniques were
then used to develop QoS prediction trees. Such trees can predict
the maximum delay that results due to speci�c tra�c situations
with speci�c parameters. We evaluated these decision/classi�cation
trees by placing them in an SDN controller. OpenFlow cannot di-
rectly provide the necessary information for managing wireless
networks so we used POX messenger to set up an agent on each
AP for adjusting the network. Finally we explored the possibility of
updating the tree using feedback that the controller receives from
hosts. Our results show that such trees are e�ective and can be
used to manage the network and decrease maximum packet delay.
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1 INTRODUCTION
Wireless infrastructures play an important role in a growing number
of environments, some of which, such as e-health care environ-
ments [5], are rather critical in their demand for speci�c �ality of
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Service (QoS) for speci�c �ows. As an example, in hospitals, inter-
ference can impact the quality of a video which may be critical for a
physician to make the correct diagnosis 1. If the wireless network is
controlled using a so�ware de�ned network (SDN) controller, it is
possible to achieve a complete view of the network in the controller
which can monitor parameters. �rough an observation of relevant
parameters, the controller can manage changes to the characteris-
tics of a �ow (in the extreme case by changing the communication
channel or stopping some �ows).

�is begs the question as to whether a speci�c combination of
factors such as number of APs, location of APs, power, packet rate,
packet size, number of �ows and so on (speci�c value ranges) can
be used to develop a model that can assess the emergence of QoS
problems. In other words, is it possible to develop a model based
on historical data that can automatically and rapidly assess the
possible QoS in various situations when multiple APs are simulta-
neously sending data. �en, we may be able to use this model to
decide whether the QoS is unacceptable and react by lowering (for
instance) the packet size and packet rate of �ows from other APs
(based on the requirements and priority of speci�c �ows). Since
there are numerous parameter combinations, we consider building
classi�cation trees that allow quick decisions to be made by the
controller. �e purpose of this paper is to determine if this a viable
approach. Our goal is not to develop new solutions to problems of
�ow control, scheduling, or congestion, but to evaluate the potential
of data mining based models in wireless SDN controllers to automati-
cally and rapidly impact QoS for speci�c �ows. In order to see if
such classi�cation guidelines can be developed, di�erent situations
that might happen in the network were simulated under di�erent
con�gurations. A�er collecting various types of information about
speci�c parameters, we created a cleaned database of scenarios and
observed QoS. Using this historical data (in this paper from simu-
lations), we applied data mining techniques using the Weka [13]
data mining tool to create decision/prediction trees that can inform
the controller what may happen to a �ow under speci�c parameter
ranges and network conditions.

We created a prediction tree that captures situations where there
can be an observed decrease in QoS for �ows and situations that
may block communications. �is “QoS tree” can be employed to
predict delay based on QoS parameters (packet loss and delay) that
a communication �ow needs. Using the the QoS tree, an SDN con-
troller in the network can detect situations causing interference
and may, for example, switch the channel of the �ow (or neigh-
boring �ows) or lower the speci�ed bandwidth allocated to APs
that do not require high QoS. We then applied the tree in a POX

1Interference can increase delay and packet losses which means a decrease in QoS.
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[19] SDN controller. OpenFlow is su�cient for programming �ow
table rules but it cannot in general provide required information
for wireless networks [29]. We used POX messenger and set up an
agent on each AP. �e controller used this new channel to receive
information from APs, make a decision based on the QoS tree and
to determine how it a�ected the QoS. As the historical data changes,
we stored the leaves in an update-able data structure, making the
tree dynamic. Agents were created on “Hosts” to communicate
with the controller and send feedback to update the tree.

Our evaluation shows that such classi�cation trees may be used
to perform necessary management by the SDN controller. Using
the dynamic data structure, we update the tree using online tra�c.
�e results show that the tree is stable in the same network. We
use the same approach when we have multiple �ows and create
decision trees for those con�gurations as well. Further work, when
extended, may enable us to also determine which parameters are
critical and need to be monitored more closely in the network to
change (as needed) potential network slices/con�guration, rather
than managing only �ows in one network.

�e paper is organized as follows. In Section II, we provide a
brief background of data mining, SDN, and some related work. In
Section III, we describe the experimental design and present the
QoS Tree. Section IV presents the results of applying the QoS tree
in the SDN controller for simple situations with one �ow. Section
V provides similar experiments for more complicated situations
with more �ows and �ow sizes. Section VI provides a discussion of
limitations and future work and Section VII concludes the paper.

2 BACKGROUND AND PRELIMINARIES
In this section we review some basic concepts of data mining and
SDNs. We also discuss some related work in this area.

2.1 Data Mining
Data mining includes four main steps to create knowledge from
collected data: selection, pre-processing, data mining, and inter-
pretation/evaluation. Selection is the process of choosing tuples
and a�ributes that are required for answering questions. Data pre-
processing includes the following actions: Cleaning: detecting and
correcting or deleting inaccurate or corrupts records; Normalization:
reduction of data to any kind of canonical form; Transformation:
conversion of a set of data values into the data format of a des-
tination data system; Feature extraction: deriving some a�ribute
values from an initial set of measured data; and Selection: selecting
a subset of relevant features based on a domain knowledge.

Data mining algorithms can be applied on the data to �nd pat-
terns of interest. Classi�cation and regression are considered im-
portant tasks in data mining. In this paper, based on our continuous
class variables (delay), we chose Random Tree, REP and MP5 regres-
sion decision tree learners in Weka [13]. We also try to make the
class variable “delay” categorical (> 100ms and < 100ms) and use
J-48 classi�cation algorithm. We chose these algorithms because
they are popular with data mining researchers (e.g. [3, 7, 22, 24, 30]).
�ese methods (described next) help to extract information rela-
tionships and hidden pa�erns in large data sets.

RandomTree: It is one tree from the set of possible trees, withk
random features at each node [33]. �e random tree generates many

individual “learners”. It constructs a decision tree by employing a
random set of data. Each node is split using the best split comparing
to other variables. At each spli�ing step all a�ributes are selected
randomly and the tree is grown as much as possible [6].

REP: It is a fast decision/regression tree builder uses the regres-
sion tree logic to create multiple trees over di�erent iterations. �e
algorithm uses a “gain” for spli�ing and pruning the tree by reduced
error pruning and sorts numeric a�ributes. It uses the C4.5 method
2 of using fractional instances to deal with missing values. [12, 33].

M5P: M5P generates “M5 Model” trees and rules. M5 constructs
a tree that relates the target value to other a�ributes using a divide-
and-conquer method. First it computes the standard deviation of
the target value in a node. �en it will consider all possible splits
and calculate their standard deviations and the reduction in error
of the parent node with that split. �e maximum reduction in error
will specify which split should happen. �e algorithm stops when
the number of tuples in the node reaches a speci�c threshold. �en
it uses standard regression techniques to provide a linear model
for tree nodes. It uses a greedy search to minimize the number of
e�ective parameters by removing the variable that contributes only
a li�le to the model. Finally it will prune the tree comparing the
estimated error of each node with its parent node [23].

Following paths in random trees or REP trees will give us a result
(by having speci�c parameter values). For example, a random tree
or a REP tree may tell us: “if the packet size is smaller than N bits
and the transmit power is smaller than P dBm, the delay will be t
ms”. In M5P trees, instead of ge�ing a clear value as a �owchart
result, we will have models le� in the leaves.

J-48: �e algorithm J-48 is a Weka implementation of the C4.5
classi�cation algorithm with categorical class variable. We use it
with two categories of delay as described previously [16].

We use 10-fold cross validation to test the created decision trees.
�e data set was split into ten equal size subsets. Nine subsets are
used to train the model, and the model is tested with the remaining
tenth subset. �e number of correct classi�cations over the number
of all instances is used to estimate the accuracy of the tree [16].

2.2 Managing interference by using machine
learning algorithms

Machine learning algorithms have been used in wireless interfer-
ence management, some of which we brie�y review next. In [10]
authors process data from real-time reporting of sessions for net-
work optimization. In order to predict packet drops, before the
end of the session, machine learning was used on o�ine LTE data.
In [18], authors identify interference modulation order by using
source automatic modulation classi�cation. �ey use supervised
learning techniques to achieve channel estimate in inter/intra cell
interface, with/ without accurate information. �is method can be
used in cancellation of interference in cellular networks.

In [31], authors optimize radio resources with poor performance
by using a statistical learning process which uses regression to

2C4.5 is an algorithm that splits data into smaller subsets by calculating “entropy”
(the measure of data disorderliness) and “gain” (decrease in information entropy) for
possible a�ribute splits, and makes a decision. For each split it chooses the highest
gain that is the lowest entropy to branch on. It stops when it reaches a completely
pure subset that all instances have the same class a�ribute in a tree leaf. �en the tree
will be pruned to eliminate outliers [6, 16]
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Figure 1: So�ware De�ned Network architecture

extract relation between performances a�ributes. �e objective is
to heal inter-cell interference coordination. In [17] a Kalman-Filter
approach is used to predict interference by deriving the correla-
tion of co-channel interference. Based on interference prediction
and path gain, the transmit power can be adjusted to achieve the
required signal-to-interference ratio (SINR). None of these works
have considered SDN networks and their control as their objective.

In [10] and [18], authors use historical data and libSVM to cre-
ate models which predict interference but they did not apply their
model to the network to see how it can improve performance met-
rics. In [31] and [17] they apply their model in the network but they
did not use historical data. In these papers, authors consider signal-
to-noise ratio and none of them examine QoS. In this paper we
simulate parameters that a�ect QoS and based on data from all APs
across the network, we use models that decide how interference can
a�ect the QoS. We also apply the models in an SDN controller to
react to network conditions by lowering the packet size and packet
rates of �ows from APs with lower priority to improve QoS.

2.3 So�ware De�ned Network
SDNs push the control plane of the switches and routers to so�ware.
�e data plane in SDNs is separated from the control plane. �e
high-level architecture is shown in Figure 1. �e central controller
in the SDN architecture provides the infrastructure for managing
the network. Routing algorithms are placed in the controller. �e
SDN controller receives policies and instructions from the “applica-
tion” via north-bound communications. [27]. Routing is performed
for each �ow by the controller and installed rules in the switch’s
�ow tables. Switches forward the data according to these rules.
When a �ow enters a switch, the switch compares �ow �elds with
the �ow table. If it matches an existing entry, the corresponding
action will be taken; otherwise the switch uses the OpenFlow pro-
tocol to send the �rst packet of the �ow to the controller. �e
controller then calculates the route for this �ow and adds an entry
with �ow �elds and suitable action to the �ow table. SDN provides
an intelligent and controllable architecture, less dependency on
hardware or speci�c vendor, simple management, faster innova-
tion, implementation, and testing [1, 27].

SDNs may be used in a variety of environments. As an example,
consider a healthcare application where it is required to stream
approximately 360 Mbps uncompressed video from two discrete
endoscopic cameras [26]. Processing this data needs a high perfor-
mance real-time computing (HPC) environment, to minimize the
risk to a patient. In [26], authors utilize an algorithm on OpenFlow
SDN to use its capability of connecting multiple remote HPC servers
and medical devices. Similarly, the use of SDN in wireless networks

Figure 2: Steps in experiment

is possible. In particular, an SDN controller can set parameters in
WiFi APs (which are the switches in Figure 3) such as the channel
and the transmit power in addition to the �ow tables [4].

In [29], authors claim that there is not any uniformity of fea-
ture set solution available for wireless networks management, and
OpenFlow does not address WiFi complexities such as interference
management, mobility and channel selection. �ey used Odin to
propose Light Virtual Access Points (LVAP) which is per client AP
with unique BSSID (mac address of wireless interface), it provides
isolation in control logic. In the case of hando� these LVAPs migrate
between APs without triggering re-association in clients. Some
applications were developed over Odin, such as: mobility manager,
load balancer, trouble shooting (Interference and jammer detection
using channel snapshots using WiFiNet cards), channel selection
and energy e�cient WiFi networks (by selecting one AP as master
with couple of APs as slaves) and guest policy enforcement [29].

3 EXPERIMENTAL DESIGN AND RESULTS
We simulate an SDN in which some hosts (2 to 6 in number) are
communicating with each other (1 to 3 �ows) through an AP and
neighboring APs cause interference. We then examine di�erent
situations by changing the number of interfering APs, their power,
packet sizes, packet rates, their locations, di�erent numbers of hosts,
and di�erent �ow sizes. �en we use WEKA to apply data mining
methods (speci�cally the random tree, REP, and M5P) to create a
decision/prediction tree that considers the current state and predicts
the QoS of the tagged �ow for that state. Each state is composed
of the above parameters - number of APs, APs’ locations, packet
size, packet rate, power and etc. QoS is de�ned as the maximum
delay that can happen in each state and it will be compared to the
delay that the �ow can tolerate based on the SLA. Based on the QoS
the �ow needs, the prediction tree (described later) can be used to
predict whether a situation can provide the necessary QoS or not.
Figure 2 shows all the steps used in our experiments.

3.1 Test Scenario
We �rst run the controller and create the WiFi network with the
topology in Figure 3. Hosts (in this case h1 and h2) start to commu-
nicate while other WiFi APs continue to broadcast packets. �is
process is explained in more details next.
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Figure 3: Experiment’s topology

Experimental environment: Experiments are done with Ubuntu
14.04, python 2.7.6, java 1.8.0 111. Tools that were used include but
were not limited to OpenNet SDN simulator, POX controller, Weka,
eclipse 3.8.1 and pydev.

Network setup: For each experiment, we �rst ran the POX
[19] SDN controller, then OpenNet is started. OpenNet [8] is an
open source simulator for wireless SDN formed by two simulators:
Mininet [20] for simulating the SDN, using OpenFlow 1.3.1 and NS3
[25] for simulating wireless networks. We used OpenNet, without
any change 3, to simulate 420 di�erent con�gurations with a di�er-
ent number of APs (1 to 21) in di�erent locations. In this simulation
ns3::YansWifiPhyHelper is used to set-up WiFi PHY in the emu-
lation, which uses ns3::LogDistancePropagationLossModel as
the propagation loss model and ns3::NistErrorRateModel as the
error rate model. �e received power a�er adding the propagation
loss is calculated as:

rx = 10 log(Pr0(tx)) − n × 10 log(d/d0)[14] (1)

in which n is the path loss distance exponent, d0 is reference dis-
tance (m), L0 is path loss at reference distance (dB), d is distance (m),
Pr0 is the received power at d0 (W), and tx is the current transmis-
sion power(dB) [14]. Di�erent modulation/coding schemes have
di�erent error rate models 4.

In Figure 3, the lighter/smaller APs are changed in numbers,
locations, power, etc. with each con�guration. We vary the number
of APs from 1 to 21. �e number of hosts vary between 2 and 6.
APs and hosts are placed in a rectangular region between local
coordinates of –120 m (lower / le�) to 120 m (upper / right). �e
Other ranges are as the following: transmit power range between
0 and 40 dBm, packet size range from 0 to 100000 bytes and packet
rate was between 10 and 1000 packets per second. Packet size
ranges from 64 bytes to 4000 bytes. All APs use channel 11 and
simply broadcast packets to in�uence the QoS of the tagged �ow(s).
�e APs were connected to a POX controller. Each con�guration
was de�ned in a python script. Each python script de�nes the
AP’s position, links, host’s position, host’s mobility, the channel
characteristics and other details about the simulation. Default
parameters are used in most cases. As mentioned previously, our
objective was not to develop any new algorithms for solving speci�c
network problems, but to evaluate the feasibility of using data
mining for network resource management in an automated manner.

3�e simulated network models the IEEE 802.11g standard.
4Validation and description for OFDM modulation is presented in [21]. It calculates
bit error rate (BER) for di�erent modulations such as QAM, BPSK, QPSK at giver SNR
a�er and before applying Forward Error Correction (FEC) [15].

Running experiments: Hosts h1 and h2 send packets with
variable sizes to each other via the AP s1. �e other APs and hosts
may be there or not in di�erent tests. In each experiment, the
transmit power of each AP is speci�ed. Hping3 [28] is used in
each AP to create and send TCP/IP packets. �is provides us the
possibility of specifying di�erent packet rates, packet sizes, packet
counts and other protocol details and varying them easily. �e
interference from these transmissions in�uences the delay, packet
loss and thus the QoS of the tagged �ow. �ere are 1 to 3 tagged
�ows with di�erent sizes that we monitor in the experiments, which
is between hosts h1 and h2 that passes through AP s1. For each
�ow, we sent 50 packets to be able to see the changes.

Collecting the results: In each experiment some outputs were
gathered to form the database used as historical data. �is database
was analyzed to drive the prediction/decision trees (explained later).
In each experiment the following �les were stored: (a) python �les
of the simulated network consisting of APs and hosts’ locations,
(b) a script for se�ing the transmit power and executing Hping3,
containing power, packet size, packet rate and number of packets,
and TCP/UDP mode. Table 1 shows all of the extracted a�ributes.

In some cases, we decided to use the option “�ood”, which sends
as many packets as it can with the maximum possible rate. �e
output response of every single packet delivery (between hosts)
was stored along with the packet size, overall max delay, min delay,
average delay and packet loss. �e results show that the delay
range can be between 4.08 ms and 50672 ms. �is experiment was
repeated 1480 times with di�erent con�gurations with di�erent
numbers of APs, packet size, packet rate, AP locations, sending
power, �ows and other variables. �e total amount of gathered
data was about 50 Gigabytes and the a�ributes in each �le were
surrounded by many unnecessary data �elds. �us the collected
data needed to be pre-processed.

3.2 Pre-processing
For data pre-processing, we wrote Java programs to apply some
string processing to extract features from the hosts’ �les and com-
pute �ow size, meanDelay, maxDelay, minDelay and packet loss
(see the tuple in Table 1). Next, we processed the APs’ �les to
determine the power and Hping3 command parameters. �en we
processed the network simulator python �les to get the APs and
hosts locations. �e result is a summarization and integration of
each experiment into one �le. Later, another Java program was
developed to integrate all �les into one single excel �le. We further
pre-processed the data by data cleaning (deleting some records in
which the APs stop working), transformation and normalization (to
bring data into an acceptable range5), feature extraction (APs dis-
tances from hosts and s1 considering their location) and selection6.
�e result was a table with more than 200,000 tuples.
5 Some parameters like power should be in an acceptable range. �e maximum possible
transmi�er output power in most devices is 30 dbm and there is no legal device that
can support a transmit power more than 40 dbm [9, 11].
6 Several data cleaning operations are not discussed here for lack of space. For exam-
ple, �oods were replaced with the maximum possible rate and size. Some standard
techniques were applied to create be�er trees - the mean size and rate were multiplied
by the number of Sender APs and the sum of the distance to h1, h2 and AP s1 were
divided by the number of sender APs. Where some records are important and they
should not get pruned, were duplicated. Also, since we have only one class variable,
which is delay, when packet loss occurs we assume the packet’s delay was more than
a threshold, so we set the maximum delay in that record to that threshold.
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Table 1: Fields and Description

Fields Description
Mean Delay Average delay between h1 and h2
Max Delay Maximum delay between h1 and h2
Min Delay Minimum delay between h1 and h2
Packet loss Number of lost packet between h1 and h2
Num Of Ss Number of APs that are sending packets
MeanDist Ss sH Average distance between APs & Sender Host
MeanDist Ss rH Average distance between APs & Receiver Host
Mean Dist Ss&S �e average distance between APs and AP1
TPacket Size Total size of the packets that APs sent
TPacket Rate Total rates at which APs sent packets
Mean Ss Power �e average of the power of sender APs
Num of �ows Number of Hosts that send packet
Packet size �e size of packets sent by the considering host
Total �ow size Summation of all �ows in the network

4 SIMPLE DECISION TREE FOR ONE FLOW
We build a simple tree based on some part of the data to see the
e�ectiveness of our method. We put this tree in the controller and
create su�cient agents for APs to communicate with the controller
and change their bandwidth usage based on the prediction tree.

4.1 Creating the tree
We used Weka [13] to build decision trees to decide whether a
con�guration may a�ect the QoS. First we built the tree for tuples
that contained only a single �ow of 64 bytes (between h1 and
h2), and we aggregated all packets of one �ow to one tuple by
considering the maximum delay as its class variable. If the tree
predicted a block or very high delay in the �ow, the controller
should react to it by lowering the data rates of other APs. �e
a�ributes that were used are as follows:

QoS Tree
numOfSenders

meanDistOfSendersToH1
meanDistOfSendersToH2
meanDistOfSendersToS

meanPacketSize
meanPacketRate

meanPowerOfSenders
�e class a�ribute was “maxDelay” for the QoS tree. �e a�ributes
are used to split the tree branches in each step and the class a�ribute
is used in the leaf nodes as the result for subsequently predicting
the delay for packets in the tagged �ow.

Since the class parameters were continuous, we needed regres-
sion classi�cation algorithms and in Weka, we used “M5P”, “REP”
and “Random Tree”. �e correctness of the trees was checked with
10 fold cross validation (see Section II). �e summary of QoS pre-
diction trees are shown in Table II. For each tree in Weka, the
correlation coe�cient is calculated to estimate the e�ectiveness
and correctness of the tree. �ere is the exact value of variables and
the value that the model estimated for that variable; �e correlation
coe�cient indicates how much these two variables are related [2].

Considering Table 2, comparing correlation coe�cients, it turns
out that random tree has the highest correlation (0.9709). So we
believe it can be chosen as the representative tree to predict QoS.

Table 2: Evaluation of QoS trees

QoS tree M5P REP Random
Correlation coe�cient 0.9303 0.968 0.9709

Figure 4: �e selected decision tree

In the QoS tree, by following the trees’ �owcharts, the delay for
the �ow in a speci�c con�guration with speci�c parameters can
be predicted. �e tree is shown in Figure 4. As an example, in the
Random Tree for QoS, if the packet size is less than 12300 bytes and
the mean distance to h1 is less than 30 m, then the maximum delay
that can result will be about 1180 ms. As shown in Figure 4, in each
branch of the tree, just some of the parameters are needed. �is
allows the controller to quickly make decisions when necessary.

4.2 Measuring the e�ectiveness of the tree
In order to see the e�ectiveness of the tree, it is embedded in the
SDN controller to predict network performance and apply necessary
topology changes to see how this will impact the network perfor-
mance in practice. It is necessary to determine the importance of
various parameters in prediction to minimize the monitoring over-
head. Weka created the decision tree for us. We wrote a program
to convert that tree into “if and else” conditions to aggregate it into
the POX controller. POX uses the port 6633 to communicate with
APs, but this communication is used for OpenFlow information.
�is is not enough for wireless networks and management and it
cannot receive all required information. To provide a communi-
cation mechanism between the controller and APs, we used POX
messenger, which uses the port 7790 to receive information from
APs. �en we created a Python agent on each AP which is respon-
sible for communicating with the POX messenger. Agents build a
message consisting of location information, packet rate, packet size
and power and then send this message to the controller. Agents
repeat this action each 100r� (round trip time). �e controller re-
ceives the information and uses the QoS tree to decide whether the
required QoS is provided or not. If the maximum delay was more
than acceptable for the tagged �ow, it sends APs suitable commands
to reduce the rate by a factor of 10 and size of the packet by half.
On the other hand, if there was extra bandwidth, APs may increase
their packet size by 100 kilobytes and also increase packet rate by
a factor of 10. �e agent on AP will hear that and apply changes.
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Figure 5: Results for single �ow decision tree

4.3 Results
Considering the amount of information that should be exchanged
among the controller and APs, we repeated the experiment in 12
di�erent situations, both before and a�er applying the QoS tree to
see how it a�ects the QoS. �e results are summarized in Figure 5.
�e percentage of changes in mean delay, max delay and packet loss
are negative which shows a reduction that concludes a higher QoS.
�ere is a small increase in minimum delay in some cases due to
the additional control packet and processing time in the controller.
We calculated 95% con�dence interval for each parameter.

In Figure 5 the dots below the zero line shows a reduction in
delay or loss. Considering the con�dence interval, there was no
big change in the case of minimum delay (a li�le increase due to
extra communication between AP and controller), average delay
or packet loss. But the amount of maximum delay is decreased
considerably, which is very good and bene�cial especially in real
time applications or communications.

5 DECISION TREES FOR MORE FLOWS
In this section we used the entire database including the experi-
ments with more than two hosts which are sending packets (multi-
ple �ows). �en we built di�erent trees based on the whole database
using REP, M5P, Random Tree and J48 algorithms.

We �rst built a tree for delay. In this tree we can have more
than one �ow and the size of the �ow can also change. In spite
of the previous decision trees in this section, each packet of the
�ow formed a tuple, while in the previous one, each �ow were
summarized into one tuple. For each tuple some of the other �ow
sizes are also added. �e a�ributes that were used are as follows:

QoS Tree
meanDistOfSendersToReceiver Host
meanDistOfSendersToSenderHost

totalPacketSize
totalPacketRate

meanPowerOfSenders
sumOfFlowSize

As described in the following sections, we built 3 di�erent trees
using these a�ributes and di�erent class variables. We �rst built a
regression tree for delay and later we built classi�cation trees.

Table 3: Evaluation of All Data Delay Decision Tree

QoS Linear re-
gression REP Tree M5P Tree Random

Tree
Correlation
coe�cient 0.39 0.804 0.795 0.80

Figure 6: Results for delay decision tree

5.1 Regression Tree for Delay
Here the class variable was delay (shown as “delayh” in Figure 6).
�e total number of instances in the data set was 206261. We do
not show the tree due to space limitation (the size of the tree was
large with 869 nodes). Table 3 shows the output of 10 fold cross
validation on the tree. �e important variables in the REP tree were
distance of senders to receiver, power and packet size. We also
compare the decision tree methods with linear regression.

As we did in the previous section, we placed this tree in the
controller and created agents on APs. We also need to create some
agents on hosts to send their packet sizes. We tested this tree in 12
di�erent con�gurations and for 3 hosts which gives us 36 tuples
(36 experiments) and we summarized the results. �e results are
shown in Figure 6. Like previous results, the maximum and mean
delay and packet loss are all reduced while there is an increase in
min delay in some cases due to the additional control packet and
processing time in the controller. �e dots below the zero line show
a reduction in the delay or loss. �e amount of average delay and
maximum delay is decreased but based on con�dence interval, this
tree was not as e�ective since the con�dence range crossed zero.

5.2 Delay Classi�cation tree
In order to apply classi�cation trees we changed the class variable
by se�ing a threshold of 100ms (requirement for time sensitive
applications [32]) for delay to label the class variable, considering
the delay is more (false) or less (true) than this value. �en we built
the tree using REP, Random Tree and J48 algorithms in Weka.

�e output of 10 fold cross validation on the tree is shown in
Table 4. We also apply libSVM [10, 18] on our data to create the
model and compare it with classi�cation trees. �e time it takes to
build a tree for libSVM was two days, while it takes few minutes to
build a tree with decision tree algorithms.

We chose J48 prediction tree since it has higher overall perfor-
mance; REP has the lowest correctly classi�ed items, libSVM was
so slow (it takes two days to build the model) while it doesn’t have
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Table 4: Evaluation of Classi�cation Delay Tree

QoS REP Tree J48 Tree Random Tree libSVM
Correctly Clas-
si�ed Instances 82.95% 83% 83% 83%

Tree size 1709 1159 6541 ---

Figure 7: Results for delay decision tree

Figure 8: Dynamic tree

higher correctly classi�ed items. Random Tree has a tree 6 times
bigger than J48 with the same correctly classi�ed items. So in this
case we pick J48 decision tree as our delay decision tree. �e im-
portant variables in the J48 derived tree were packet size, distance
of senders to receiver, and transmit power.We placed this tree in
the controller as well and repeated the experiment as in previous
sections. �e results are shown in Figure 7. Although there is a
slight increase in minimum delay due to sending control packets,
we can see that the tree was much more e�ective and the average
delay and maximum delay were both decreased. It especially has a
big e�ect on decreasing the maximum delay. Although there is a
slight increase in minimum delay due to sending control packets,
you can see that the tree was much more e�ective and the average
delay and maximum delay were both decreased. It especially has a
big e�ect on decreasing the maximum delay.

5.3 Dynamic Tree
In order to update the tree by receiving feedback from hosts, each
leaf is tagged with the value of the class a�ribute, the number of
instances and the number of incorrectly classi�ed instances in that
node. �en we store the conditions related to sequence number
and leaves values in an update-able data structure (e.g., array).

We put this tree in the controller and create proper agents on
APs and Hosts to communicate with the controller and update the
tree as new training instances get available as feedback from hosts.
APs send their a�ributes such as location, packet rate, packet size,
power, etc. �e controller reads values related to the condition from
that data structure and replies with whether they should decrease
their packet rate and packet size or not. �en the controller also
receives feedback from the hosts to see how it a�ects the delay then
it updates the tree using that feedback. �e feedback is the number
of instances and the delay values. In the dataset the controller adds
up the number of instances in one group and decides whether the
class tag for that leaf should change. Based on the requirement the
coe�cient for old data (instances that are already in tree leaves)
and new data (feedback from hosts) can be di�erent.

We try this on the same network to see how it changes the tree,
the results show that in 19% of the times the statistics in tree leaves
may change but the labels of the leaves do not change. �is provides
us with a reasonable con�dence in teh stability of the trees and
their ability to allow the SDN controller to manage the network.

6 DISCUSSION AND LIMITATIONS
Our objective in this work was to examine the potential of mining
historical data towards wireless SDN management. SDNs aim to
provide compatibility among di�erent networks. In considering
complex situations (e.g. in hospitals with di�erent applications such
as multimedia streaming, internet of things, medical devices, and
personal area networks) we believe a good, yet simple, model based
on historical data may be a great help in managing the network
con�guration, monitoring, troubleshooting, modifying and optimiz-
ing the network. SDNs can be applied in a large scale environment
– management will be hard and it is necessary to make it automatic
to reduce the amount of e�ort for network management. Providing
a reasonably accurate yet simple approach for SDN management is
not trivial. Many di�erent machine learning and arti�cial intelli-
gence approaches have been applied in many applications, such as
supervised learning (e.g. classi�cation), unsupervised learning, and
reinforcement learning (e.g. evolution and swarm algorithms and
neural networks). In this work we examined the applicability of
simple models using historical data for automating wireless SDN
management. We applied the models in the network to see whether
there is an improvement in performance and also use feedback to
update the decision trees. Previous works use historical data to
create models but do not test the models in experiments nor do
they get feedback from online data.

In this paper we focus on constructing a simple model with deci-
sion tree regression and classi�cation techniques. Our reasoning is
that trees allow an SDN controller to quickly check the important
conditions for recon�guration to see if the performance metrics
(SLA) can be satis�ed. �is is in contrast to computationally expen-
sive approaches that try to optimize the network performance. Our
goal instead is to simply meet the performance metrics. We were
also interested to make the tree more dynamic and use the feedback
from hosts to optimize and update the tree and see the results over
a longer duration of time. Decision trees may change in di�erent
networks with di�erent con�guration and di�erent topology. Also
multiple channels may need multiple trees.
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A problem that is not covered in this paper and planned for the
future is to consider mobility and other complexities, more diverse
data sets and determining how much historical data is required
for it to be e�ective in dynamic wireless networks. Clearly, this
work is nascent and does not address several complex issues. In
the simplest limitation, while considering mobile nodes that need
heterogeneous QoS metrics to be satis�ed, the decision trees may
change substantially. �is work also leads to hope for exploring
automatic bandwidth management, potential of using such models
in dynamically slicing the network into partitions and network
recon�guration. We can potentially use these kinds of models to
automatically manage the network i.e., bandwidth allocation or slic-
ing the network. Using real world data sets which are not available
at this time can also help us to con�rm the results. Creating an opti-
mal tree and evaluating the scalability and applying other dynamic
tree approaches to update the model as new training samples are
available are possible solutions to improve the models.

7 CONCLUSION
In this paper we used historical data to predict quality of service
and decide what �ows to thro�le (e.g. reducing packet size) towards
managing an SDN wireless network where interference from com-
peting transmissions may impact the quality observed by critical
�ows. In order to create a database consisting of di�erent network
con�gurations and tra�c situations, we �rst simulated many SDNs
with di�erent topologies. In each topology, some hosts try to con-
nect via an AP while other active APs cause interference, decrease
the �ow QoS and may block the media by overusing the bandwidth
or sending with high transmit power. We collected the data and
pre-processed them to achieve a clean set of data that consists of
the number of actively interfering APs, APs’ location, packet size,
power, delay, etc. �e data mining tool Weka is used to apply data
mining methods to create one tree for prediction of the QoS. Based
on the QoS prediction tree, the SDN controller can decide whether
a situation can meet the demanded QoS or not. �e Results show
that such trees can be used by SDN controllers to rapidly managing
the network to maintain QoS for critical �ows. �e controller can
also use feedback from hosts to update the tree on a continual basis
to improve the delay performance.
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