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ABSTRACT 

Polycystic kidney disease (PKD) is a genetic condition that leads to increased formation and 

growth of kidney cysts, and thus may lead to rapid onset of end-stage renal disease (ESRD). In 

2017, more than 15% adults in the US were estimated to have inherited PKD. About half of PKD 

patients require dialysis or renal replacement therapy by 60 years of age. Prior to these terminal 

outcomes, chronic kidney disease (CKD), which is defined as a progressive loss of kidney 

function, represents the primary outcome of interest for PKD patients. Treatments of CKD are 

currently being developed, bur need to be administered earlier in the process. Therefore, earlier 

prognosis of PKD patients at risk for renal decline provides an opportunity to prevent or delay the 

progression of ESRD and decrease morbidity and mortality. 

In this study, CKD stage 3B with glomerular filtration rate (GFR) less than 45 ml/min was 

considered the endpoint of highest clinical interest since stage 3B is early enough to identify 

patients before rapid decline, but late enough to represent a clinically meaningful outcome. We 

evaluated earlier prognostic ability of factors available at birth for CKD stage 3B among currently 

healthy PKD patients; use of only factors available at birth is a novel approach and could lead to 

early identification of PKD patients who subsequently experience clinical outcomes (e.g. later 

stages of CKD or ESRD). 

Douglas Landsittel, PhD 

MODELS FOR EARLIER PROGNOSIS OF RENAL DECLINE IN POLYCYSTIC 

KIDNEY DISEASE (PKD) PATIENTS 

Tiange Shi, MS 

University of Pittsburgh, 2018
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Training data were collected from the Consortium for Radiologic Imaging Studies of 

Chronic Kidney Disease (CRISP). Multivariable logistic regression was initially employed to 

predict renal decline. A pruned classification tree model showed similar prognostic ability as 

logistic regression based on overlapping 10-fold cross validation AUC confidence intervals. 

Random forests, however, showed significant improvement in prognostic ability.  

This study also validated results using a completed clinical trial of similar PKD patients 

(the HALT Progression of Polycystic Kidney Disease Study). Both CRISP cross validation and 

HALT validation results agreed on the best model (random forests) for prognostic ability.  

In terms of public health significance, random forests could help estimate the probability 

of PKD patients reaching renal failure at given age, and thus inform prevention efforts. 
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1.0  INTRODUCTION 

1.1 POLYCYSTIC KIDNEY DISEASE 

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most widespread genetic 

cystic kidney disorders; ADPKD often leads to premature development of end-stage renal disease 

(ESRD). [1-3] More specifically, nonreplicable cysts expansion and development inside bilateral 

kidneys leads to progressive renal enlargement, fibrosis and parenchyma destruction. These 

physiological changes lead to seriously impaired quality of life for around 600,000 Americans 

ADPKD patients annually. [4] Among those complications, ADPKD leads to hypertension, 

cerebral aneurysms, cardiovascular disease and hepatic cysts development. [5, 6] More than 60% 

of ADPKD patients are reported to suffer from hypertension or gross hematuria [7-9], and about 

80% of adults with ADPKD are also detected with polycystic liver disease. [10] 

Another important characteristic of ADPKD is genetic polymorphisms. Studies have 

shown that at least two genes are associated with this disease. [11] About 80-85% of ADPKD 

cases were caused by mutations to polycystic kidney disease type 1 gene (PKD1), and mutations 

to PKD2 account for most of the remaining cases. [11,12] Heyer et al [13] showed that patients 

with PKD1 mutations tend to have more severe disease than PKD2; truncating (i.e., nonsense 

mutations, frameshift mutations, splicing mutations, and large rearrangements) PKD1 mutations 

were associated with worse renal function loss compared to non-truncating PKD1 mutations. From 
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mutation strength level, the truncating PKD1 population was set as mutation strength group 1 

(MSG1); the non-truncating PKD1 population was then further divided into strong mutation 

strength group (MSG2) and weak mutation group (MSG3). Heyer et al [13] showed that patients 

within MSG3 had significantly higher (i.e., better) glomerular filtration rate (GFR) than truncating 

PKD1 mutation group (MSG1).  

The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) 

was funded by the National Institute of Diabetes and Digestive and Kidney Disorders to identify 

biomarkers of disease progression in patients with ADPKD. Previous publications from CRISP 

have shown that higher baseline total kidney volume (TKV) and lower renal blood flow (RBF) are 

positively associated with disease progression in ADPKD. [14, 15] Other studies also showed that 

serum or urine biomarkers, including monocyte chemoattractant protein-1 (MCP) and blood urea 

nitrogen (BUN), having a role predicting the renal failure in PKD patients. [16, 17] This study will 

contribute to the literature by evaluating prognostic ability of factors available at birth, which can 

then possibly allow for earlier intervention. 

1.2 CHRONIC KIDNEY DISEASE 

Chronic kidney disease (CKD), which is defined as a progressive loss of kidney function, is the 

primary outcome of interest for PKD patients. CKD is also associated with hypertension, diabetes, 

cardiovascular disease, nephritis, and other complications. [18] CKD poses a huge threat to global 

public health. CKD has a global prevalence of about 10% [19] and more than 30 million people in 

the US suffer from CKD. [20]  
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A number of different strategies can be used to diagnose and classify CKD. One approach 

identifies CKD using any one of three characteristics: cause, glomerular filtration rate (GFR) and 

albuminuria. [21] Identifying cause is emphasized because of its fundamental importance in 

predicting outcome and guiding choice of cause-specific treatments. Based on the GFR, CKD can 

be classified into one of 5 stages: 1) fully functional kidneys with GFR over 90 ml/min, 2) 

somewhat reduced but still normal levels of preserved renal function with GFR between 60-90 

ml/min, 3) mild to moderate reduction in renal function with GFR between 30-60 ml/min, 4) severe 

reduction in renal function with GFR between 15 and 30, or 5) renal failure with GFR below 15. 

Stage 3 CKD may also be divided into stage 3A (mild to moderate reduction) with GFR between 

45 and 60 or stage 3B (moderate, approaching severe reduction) with GFR between 30 and 45. 

[22, 23] The actual GFR can be assessed through measuring iothalamate clearance, but is usually 

impractical to assess on regular basis; therefore, most studies and clinical applications use serum 

creatinine (with age, sex and race) to calculate estimated GFR (eGFR). [24]  

While there are a few strategies for treating or slowing the effect of CKD, such as the use 

of blood pressure medications. [25, 26] Prevention and treatment to CKD are severely challenged 

by the inability to identify those patients who decline more quickly, versus those whose GFR 

remains relatively constant (or declines slowly) over time. Notable declines in GFR measurements 

and detection of albuminuria typically do not happen until the patient is already on a course for 

rapid decline. This narrows the valuable time window for effective clinical intervention. Greene 

et al [27] suggested that use of the 40% eGFR declines was an appropriate strategy to reduce 

sample size. However, the complexity of eGFR trajectories, which can be highly variable and 

remain constant until soon before rapidly falling toward renal failure, introduces significant 
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challenges for interventions. Thus, developing prognostic models for renal decline that are 

sufficiently accurate across the population remains an imperative goal for public health. 

Grantham [28] showed that kidney enlargement resulting from the expansion of cysts in 

patients with PKD is associated with the decline of renal function. In terms of risk factors 

associated with progression of cyst growth and renal decline, Chapman [29] showed that baseline 

total kidney volume (TKV) predicts CKD development almost a decade later, thus motivating use 

of TKV as a prognostic biomarker in PKD. Based on these results, new diagnostic approaches 

using machine learning algorithms were introduced to predict CKD. In a previous study, artificial 

neural networks [30] were shown to produce accurate prognosis of renal failure in PKD patients. 

In another analysis using tree models [31], optimally pruned tree models used only two variables, 

baseline eGFR and baseline height adjusted TKV, to accurately predict CKD status. This current 

study, in addition to focusing on factors available at birth, is the first to also validate results using 

a completed clinical trial of similar PKD patients. 

1.3 COMMON PROGNOSTIC MODELS FOR BINARY OUTCOMES 

Both logistic regression and classification tree model are commonly used in disease prognosis 

studies with binary outcomes. Logistic regression was proposed as a method for binary outcomes 

in the late 1960s. [32] It models the probability of an outcome of interest by several predictive 

factors in an equation of the form 

log �
𝑝𝑝

1 − 𝑝𝑝
� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 



 5 

where p is the probability of the outcome, 𝛽𝛽0 is the intercept, 𝛽𝛽1, … ,𝛽𝛽𝑖𝑖  are the coefficients of 

predictors 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖.  

Logistic model is easy to interpret; One can easily convert 𝛽𝛽 coefficients to the  

corresponding odds ratios and interpret the magnitude of importance of the predictors. Thus, 

logistic regression is probably the most popular statistical technique used to describe 

relationships between independent variables and a dichotomous dependent variable. However, 

logistic regression forces all the predictive factors in a linear function to the log odds of the 

outcome and does not implicitly account for non-linearity or interactions. These non-linearity 

and interactions need to be explicitly specified, and the linearity assumption of logistic 

regression is hard to be met as well. 

Classification trees is another method for classification problems, where data are 

recursively split into two groups until the final subsets (or terminal nodes) are too small to split 

further (usually set at n<10) or data are perfectly classified. [33] Classification tree algorithm has 

been broadly applied for classifying binary outcomes in numerous areas of medicine. [34] This 

approach is more flexible and can implicitly model non-linearity and interactions in the data. 

Results may therefore be superior for nonlinear classifications and complex sample structures. 

Tree models can be pruned by deleting non-significant splits (from the bottom of the tree working 

up) and thus avoid over-fitting the data. [35] 

However, the classification trees algorithm is known to be unstable. Tree models can 

produce drastically different results from training datasets that differ just slightly. [36] This 

instability undermines the objective of extracting knowledge from the trees. 
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1.4 RANDOM FORESTS 

Breiman proposed bagging of classification trees in 1996 [37], in which successive trees are 

constructed independently using a bootstrap sample of the dataset and a simple majority vote is 

taken for prediction. Later in 2001, Breiman proposed random forests [38], which add an additional 

layer of randomness to bagging. In addition to constructing each tree using a different bootstrap 

sample of the data, random forests change how the classification or regression trees are 

constructed. In standard trees, each node is split using the best split among all variables, while, in 

a random forest, each node is split using the best split among a subset of predictors randomly 

chosen at that node. This strategy turns out to preform very well compared to many other 

classifiers, including discriminant analysis and other machine learning methods, and is robust 

against overfitting [38].  

In this thesis, we used multivariable logistic regression, classification trees, and random 

forests to produce prognostic models for identifying kidney decline earlier in the patients’ lifetime 

(as defined by CKD Stage 3B), and to compare their accuracy. Receiver operating characteristic 

(ROC) curve and area under the ROC curve (AUC) will also be employed to assess the 

classification ability of methods proposed in this study. Results will provide both an illustration of 

the strengths and limitations of these methods, and potentially new findings for the CRISP data, 

which may have important implications for prognosis and earlier treatment of CKD. Methods also 

focus on factors available only at birth to assess whether risk stratification is possible very early 

in life. 
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2.0  MATERIAL AND ANALYSIS 

2.1 DESCRIPTION OF DATASETS  

In this thesis, we used datasets one observational study and one completed clinical trial (where 

treatment had no significant effect) of similar PKD patients. Training data used in this study were 

from (the observational study) Consortium for Radiologic Imaging Studies of Chronic Kidney 

Disease (CRISP). Validation data were obtained from HALT Progression of Polycystic Kidney 

Disease Study (HALT). 

2.1.1 CRISP dataset 

The PKD dataset used in this study is taken from the Consortium for Radiologic Imaging Studies 

of PKD (CRISP). [10] This prospective cohort study recruited 241 adults with ADPKD and 

preserved kidney function and followed them up during 2001 to 2016. GFR or estimated GFR 

(eGFR) were used to detect whether a participant reached a renal insufficient endpoint. Stage 3B 

CKD where GFR less than 45 ml/min is considered as the endpoint of interest. GFR was detected 

using corrected iothalamate clearance for CRISP and estimated GFR using the CKD-EPI equations 

in HALT (since corrected iothalamate clearance was not available in HALT); previous data (not 

shown here) have shown a high level of agreement. [15] For the CRISP training data, ten 

participants were found to have stage 3B CKD at baseline and were excluded from the study. 

Patients found without CKD and with follow-up less than 10 years were also excluded, since it 

could not be determined if they had the outcome at a given time point.  
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Demographic information, including gender, age, race, birthweight and BMI, were 

collected at baseline. Clinical information, MR determined TKV, liver cyst volume (LCV), urinary 

monocyte chemo attractant protein (MCP), renal blood flow (RBF) and blood Urea Nitrogen 

(BUN) were collected at clinic visits (initially annually for the first years after baseline) during the 

15-year follow-up (with a maximum follow-up of 14.2 years). Polycystic kidney disease genotype 

and corresponding mutation strength were also collected during the study.  

This thesis focuses entirely on CKD prognosis using factors available at birth. Predictor 

variables were gender, race, gene mutation and different measures of mutation strength. CRISP 

recorded different gene mutation strength information in several different ways: (1) gene mutation 

(PKD1 mutation, PKD2 mutation and no mutation detected (NMD)); (2) mutation types (truncated 

mutation versus non-truncated mutation); (3) mutation strength groups (MSG), where MSG1 

corresponds to truncating PKD1 mutations; MSG2 and MSG3 are strong and weak mutations, 

respectively, divided from non-truncating PKD1 and PKD2 mutation populations. [13] (4) Semi-

continuous mutation strength score (SCMSS), which divided mutation strengths into a 6-point 

scale, where 0 is for no mutation, 1 as the mildest and 5 as the worst. In addition to these factors 

which are available at birth, age will also be included in the model to account for where participant 

age at baseline measurements. 

Descriptive statistics for all these predictor variables were shown in Table 1 and 2 in 

Chapter 3.1. For outcome of interest, number (percent) of observations reaching CKD stage 3B 

were shown in the first row of each table. Descriptive statistics were described using the mean 

(standard deviation) for continuous variables, and count (percent) for categorical variables. P-

values for age and birthweight were calculated using Wilcoxon rank sum test; chi-square test was 

used for categorical variables. 
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2.1.2 HALT dataset 

The HALT Progression of Polycystic Kidney Disease (HALT) study is the first prospective, 

randomized clinical interventional study for adults with ADPKD. [39] Two simultaneous 

multicenter clinical trials (study A and study B) were conducted to test the efficacy of interruption 

of the renin-angiotestin-aldosterone system (RAAS) on the progression of cystic disease and the 

decline in renal function in ADPKD. [40] Study A investigated treatment effects on patients with 

early ADPKD defined by GFR greater than 60 ml/min, where the change of TKV served as the 

primary outcome and eGFR as the secondary outcome measure. The objective of study B was to 

investigate the treatment efficacy on the time to a 50% reduction of baseline eGFR, ESRD or 

death, among hypertensive individuals with moderately advanced PKD defined by GFR 25-60 

ml/min. [39] Because the study population of HALT A was more similar to CRISP, only data from 

HALT study A were used as validation. For purpose of this thesis, the actual intervention in HALT 

A (which was not significant) was ignored. 

Study A enrolled individuals aged 15 to 49 diagnosed with ADPKD and a eGFR greater 

than 60 ml/min. The eGFR was collected twice a year, and stage 3B CKD where eGFR less than 

45 ml/min was considered the endpoint of interest. Over the whole cohort, median follow-up time 

was 6 years. Patients found without CKD with follow-up less than 5 years were excluded, because 

the length of follow-up was not sufficient to determine the outcome. Descriptive statistics for 

demographic and gene mutation variables were shown in Table 3 and 4. P-values for age were 

calculated using Wilcoxon rank sum test; chi-square test was used for categorical variables. 
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2.2 METHODOLOGY 

2.2.1 Logistic regression 

Logistic regression is the most standard method for predicting a binary outcome. It extends the 

simple linear regression by applying logistic function. In our study, we will use multivariable 

logistic regression model to predict the CKD stage 3B in patients. The model is defined as: 

ln �
𝑝𝑝

1 − 𝑝𝑝
� = 𝑋𝑋𝛽𝛽 

where p is the probability for a patient reaching the given stage of renal decline, with covariate 

matrix X and parameter vector β. Besides the genotype and mutation strength [43], relative studies 

also indicated that lower birthweight [41] and younger age at baseline [42] are correlated with 

having CKD outcome. Although age is obviously not a variable “at birth”, it was included to 

account for how far the participant was in time when outcome data were collected. This thesis thus 

used birthweight, race, gender, age and gene mutation scores as predictor variables. Collinearity 

was assessed with variance inflation factors (VIF) and we deleted variables that induced 

collinearity to obtain the final model. Logistic models were compared using likelihood ratio test 

(LRT), Bayes Information Criteria (BIC) and 10-fold cross validation AUC to determine the best 

model. 

To test whether factors available at birth add significantly to current age in predicting renal 

decline, we first fit a logistic model with age only versus age and other factors available at birth 

(gender, race and birthweight) for observations with birthweight records.  

Because mutation strength information collected by both studies was highly correlated and 

cannot be fitted into the same logistic regression model, another goal of this study was to determine 
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the best coding of gene mutation. According to the characteristics of each gene mutation 

information, we proposed four ways of coding: (1) PKD1 versus PKD2 or NMD; (2) PKD1-

truncating versus PKD1-nontruncating versus PKD2 or NMD; (3) PKD1 within MSG1 versus 

PKD1 within MSG2 and 3 versus PKD2 or NMD. (4) SCMSS and gene mutation (PKD1 versus 

PKD2), with both main effects included in the given model. Because almost half (42.42%) 

observations were missing birthweight in CRISP data, analyses were first performed without 

birthweight. To select the best way of coding gene mutation strength, we fitted four multivariable 

logistic models adjusted for different gene mutation codings. The LRT for each gene mutation 

coding was performed to test the significance of prognostic ability and models were compared 

using Bayes Information Criteria (BIC). Model with the smallest BIC was selected to be the best 

the model, and corresponding gene mutation would be the best coding. Results were shown in 

Table 6 in Chapter 3.  

2.2.2 Classification trees 

Classification trees predict the outcome for a given subject in the validation set as the most 

commonly occurring class of training observations in the region to which it belongs based on 

recursive partitioning of the data. The proportion of subjects with the outcome in a particular 

terminal node region (based on the training observations) defines the predicted proportion (or 

probability) for that subject. In terms of the model fitting process, data are recursively split into 

two groups (shown in Figure 1) until the final subsets meet with stopping rules, which are 

achieving final subsets are too small to split further (n<10 in our cases) or data that are perfectly 

classified.  
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Figure 1. Splitting node in classification tree 

 
Consider data from distribution (𝑌𝑌,𝑋𝑋) where 𝑌𝑌 ∈ {1,  2,  … ,𝑀𝑀} is the class label and 𝑋𝑋 =

(𝑥𝑥1,  … , 𝑥𝑥𝐺𝐺) ∈ ℝ𝐺𝐺  is the G-dimensional covariates. To fully grow the classification tree, at each 

split node, the tree model uses a factor 𝑥𝑥𝑗𝑗 to split parent data, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, into two child datasets, 

𝑡𝑡𝑙𝑙𝑝𝑝𝑙𝑙𝑝𝑝 and 𝑡𝑡𝑝𝑝𝑖𝑖𝑟𝑟ℎ𝑝𝑝 with the probabilities of 𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑝𝑝 and 𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟ℎ𝑝𝑝. After each split, the homogeneity of the 

child dataset will increase, and the impurity of child dataset will decrease compared to the parent 

dataset. To measure the impurity, we used GINI function 𝑖𝑖(𝑡𝑡): 

𝑖𝑖(𝑡𝑡) = � 𝑃𝑃𝑚𝑚(1 − 𝑃𝑃𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 

To identify the best splitting rule of each node, the corresponding 𝑥𝑥𝑗𝑗  value can be 

calculated by maximizing the change of GINI at each split: 

 

The classification tree will continue growing until the stop rules are reached. 

To avoid overfitting issue, full-grown tree needs to be pruned. In this thesis, we used 

minimal cost complexity pruning method. More specifically, let 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑝𝑝 denote all nodes in 

full-grown tree while 𝑅𝑅(𝐴𝐴𝑖𝑖) denote the risk of corresponding node 𝐴𝐴𝑖𝑖. |𝑇𝑇|, total number of split 

nodes, describes the complexity of a classification tree 𝑇𝑇. The risk of a classification tree 𝑇𝑇 is then 

calculated by summation of all the risk of split nodes in 𝑇𝑇: 

arg max
𝑥𝑥𝑗𝑗≤𝑥𝑥𝑗𝑗

𝑅𝑅 , 𝑗𝑗=1,…,𝑀𝑀
[𝛥𝛥𝑖𝑖(𝑡𝑡)] = arg max

𝑥𝑥𝑗𝑗≤𝑥𝑥𝑗𝑗
𝑅𝑅 , 𝑗𝑗=1,…,𝑀𝑀

[𝑖𝑖�𝑡𝑡𝑝𝑝� − 𝑃𝑃𝑙𝑙𝑖𝑖(𝑡𝑡𝑙𝑙) − 𝑃𝑃𝑟𝑟𝑖𝑖(𝑡𝑡𝑟𝑟)] 
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When pruning the tree, the new risk of the pruned tree is introduced: 

 

where 𝛼𝛼 denotes the complexity parameter, which seeks to balance the prediction error rate and 

number of nodes in the tree model. The new risk for the pruned tree is penalized for the 

misclassification risk 𝑅𝑅(𝑇𝑇) and the total number of terminal nodes |𝑇𝑇| based on the complex 

parameter 𝛼𝛼. The tree is pruned with complexity parameter that minimized 𝑅𝑅𝛼𝛼(𝑇𝑇), i.e., 

 

The pruning processes can be interpreted as follows: starting from the bottom of a classification 

tree, the terminal nodes could remain in the model when the decrease of misclassification risk is 

greater than 𝛼𝛼 times of the change of tree complexity |𝑇𝑇|. 

Classification tree models have a few advantages comparing to other classical algorithms 

e.g. linear regression, logistic regression: Tree models are easy to interpret, even more so than 

generalized linear models. Presumably, classification trees more closely reflect human decision-

making than do the regression and other classification approaches. Trees can be displayed 

graphically and are easily interpreted by non-experts. Trees can easily handle qualitative predictors 

without the need to create dummy variables.  

There are also disadvantages of tree models: Tree models may not have the same level of 

predictive accuracy as some more complex machine learning approaches. Trees can be very 

unstable. In other words, a small change in the data can cause a large change in the final estimated 

tree. 

𝑅𝑅(𝑇𝑇) = �𝑃𝑃(𝐴𝐴𝑖𝑖)
𝑛𝑛

𝑖𝑖

𝑅𝑅(𝐴𝐴𝑖𝑖) 

𝑅𝑅𝛼𝛼(𝑇𝑇) = 𝑅𝑅(𝑇𝑇) + 𝛼𝛼|𝑇𝑇| 

𝑅𝑅𝛼𝛼(𝑇𝑇(𝛼𝛼)) = min
𝑇𝑇≤𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥

𝑅𝑅𝛼𝛼(𝑇𝑇) 
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2.2.3 Random forest 

A random forest model, as proposed by Leo Breiman in 2001, is a fast, often highly accurate, noise 

resistant classification method. [44] Random forests use an ensemble of classification trees, where 

each tree is built using 1) a bootstrap sample of the data, and 2) a random selection of predictors 

at each node. Hence, the random forest includes a combination of bootstrap sampling and random 

selection of variables that potentially differs at each node of the trees. 

The bootstrap aggregating (or bagging) is a widely applicable and extremely powerful 

statistical tool that can be used to quantify the uncertainty associated with a given estimator or 

statistical learning method. Use of these resampling approaches was first introduced by Breiman 

[37,45] to stabilize the relatively unstable tree algorithm procedure. The bagging algorithms in a 

classification setting can be described as follows: 

Consider a learning set ℒ that consists of data {(𝑦𝑦𝑝𝑝, 𝑥𝑥𝑝𝑝),𝑛𝑛 = 1, … ,𝑁𝑁} where the 𝑦𝑦’s are 

class label of outcome. Assume we have a procedure for using this learning set to form a 

predictor 𝜑𝜑(𝑥𝑥,ℒ); if the input is 𝑥𝑥, we predict 𝑦𝑦 by 𝜑𝜑(𝑥𝑥,ℒ). Now, suppose we are given a 

sequence of learnings sets { ℒ𝑘𝑘}, each consisting of N independent observations from the same 

underlying distribution as ℒ. Our mission is to use the { ℒ𝑘𝑘} to get a better predictor than the 

single learning set predictor 𝜑𝜑(𝑥𝑥,ℒ). The approach is restricted to using the sequence of 

predictors {𝜑𝜑(𝑥𝑥,ℒ𝑘𝑘)}. 

In a classification setting, 𝜑𝜑(𝑥𝑥,ℒ) predicts a class 𝑗𝑗 ∈ {1, … , 𝐽𝐽}, and aggregated 

predictions from 𝜑𝜑(𝑥𝑥,ℒ𝑘𝑘) follow from either voting or averaging across the individual tree 

predictions. Let 𝑁𝑁𝑗𝑗 = 𝑛𝑛𝑟𝑟{𝑘𝑘;  𝜑𝜑(𝑥𝑥,ℒ𝑘𝑘) = 𝑗𝑗} and take 𝜑𝜑𝐴𝐴(𝑥𝑥) = 𝑚𝑚𝑟𝑟𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗𝑁𝑁𝑗𝑗, that is, the j for 

which 𝑁𝑁𝑗𝑗 is maximum. Bagging used repeated bootstrap samples {ℒ (𝐵𝐵)} from ℒ to produce 
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{𝜑𝜑�𝑥𝑥,ℒ (𝐵𝐵)�}. Let the {𝜑𝜑�𝑥𝑥,ℒ (𝐵𝐵)�} votes or averaging estimate 𝜑𝜑𝐵𝐵(𝑥𝑥). The {ℒ (𝐵𝐵)} form replicate 

data sets, each consisting of N cases, drawn at random but with replacement, from ℒ. This means 

that {ℒ (𝐵𝐵)} are replicate data sets drawn from the bootstrap distribution approximating the 

distribution underlying ℒ.  

A critical factor in whether bagging will improve accuracy is the stability of the procedure 

for constructing 𝜑𝜑. Improvement will occur for unstable procedures where a small change in ℒ can 

result in large changes in 𝜑𝜑 (e.g. classification tree model). 

2.2.4 Variable importance measures 

Although bagging typically improves accuracy over a single tree, the results of the bagged models 

can be more difficult to interpret since decision trees produce an easily interpretable diagram of 

results. Further, bagging complicates the interpretation in terms of which variables are most 

important to the model. Therefore, bagging algorithm increase prediction accuracy at the price of 

interpretability. 

Although random forests algorithm is much more hard to interpret comparing to a single 

tree, the significance of each predictive variable could be described by mean decrease accuracy 

and mean decrease Gini in classification setting. In the case of random forests, we can add up the 

total amount that the Gini index or predictive accuracy is decreased by excluding a given predictor 

from the model, averaged over all trees. Predictors with greater mean decrease accuracy or mean 

decrease Gini has more importance in predicting the outcome. 
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2.2.5 Differences between random forests and bootstrap 

Random forests algorithm provides a development over bagging by decorrelating the trees. 

Random forests first build a number of decision trees on bootstrapped training samples. And 

then, at each terminal node in a tree, random forests randomly select 𝑚𝑚 predictors as divide 

candidate variables from all the 𝑝𝑝 variables in the model. The split can even use only one of 

those m predictors. At each split, random forests will randomly select a fresh sample of m 

predictors to do the split, and usually the number of sampled factor is determined as 𝑚𝑚 ≈ �𝑝𝑝, in 

other words, the number of predictors considered at each terminal node is approximately equal to 

the square root of the total number of predictors.  

Thus, in building a random forest, each split in the tree considers a minority of the 

available predictors. This step is done to decorrelate the trees. To illustrate, consider the instance 

where the data set has one very strong predictor and numerous other moderately or weakly 

associated predictors. In this case, the most all or all of bagged trees will most likely include this 

strong predictor in the top split. Consequently, the bagged trees will look quite similar and 

produce highly correlated predictions. This result, of highly correlated predictions, will lead to 

only small reductions in variance as compared to averaging many uncorrelated predictions, and 

thus produce similar results between individual and bagged trees. 

Random forests overcome this problem by forcing each split to consider only a subset of 

the predictors. Therefore, in the above scenario, on average (𝑝𝑝 −𝑚𝑚)/𝑝𝑝 of the splits will not 

consider the strong predictor, and so other predictors will have a greater chance of inclusion in 

the splits. We can think of this process as decorrelating the trees, thereby making the average of 

the resulting trees less variable and hence more reliable. 
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A key aspect of random forests is the choice of predictor subset size 𝑚𝑚. Using 𝑚𝑚 = 𝑝𝑝 

equates to bagging. Most commonly, random forests specify 𝑚𝑚 = �𝑝𝑝 to produce a reduction in 

both test error and out-of-bag (OOB) error over bagging. In contrast, using a smaller value of 𝑚𝑚 

in building a random forest will typically be helpful in the case of a large number of correlated 

predictors. As with bagging, random forests will overfit less with an increasing number of trees 

(B); therefore, B must be chosen sufficiently large to reduce the error rate. 

2.2.6 Algorithm for random forests 

Random forest is developed as followed: 

1) Randomly draw k bootstrap samples from the original dataset with replacement. For each 

bootstrap, data not drawn into the sample define another sample called out-of-bag (OOB). 

2) For each bootstrap sample, grow an unpruned classification tree. At each node of the tree, 

randomly pick 𝑚𝑚𝑝𝑝𝑝𝑝𝑡𝑡 variables and pick the best split from those variables. 

3) These k trees compose a random forest. Each tree gives a classification vote and estimated 

probability; the final decision can then use majority vote or average prediction. 

Using OOB samples, random forest can construct a diverse predictor rank measure and 

compute the prediction accuracy of each predictor. In addition, randomization in predictors and 

sample selection also reduce the decision error. As described previously, 𝑚𝑚𝑝𝑝𝑝𝑝𝑡𝑡 = �𝑝𝑝 is a standard 

choice for 𝑚𝑚𝑝𝑝𝑝𝑝𝑡𝑡. [47] For the other two key parameters, k and node size (nodesize) we specified 

k=1000 and nodesize=3. 
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2.2.7 Validation and assessment of prognostic accuracy 

Prognosis performance of all models was validated using the HALT study A data. Each 

observation was predicted Comparing to calculated false positive (FP), true positive (TP), false 

negative (FN) and true negative (TN).  

Accuracy =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁
 

Sensitivity =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

Specificity =
𝑇𝑇𝑁𝑁

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁
 

In addition, the ROC curve, which plots sensitivity (y-axis) by 1-specificity (x-axis), was 

presented to evaluate model performance. The area under the curve (AUC) measures 

discrimination capability of the proposed models. The AUC ranges from 0.5-1, with an AUC of 

0.5 indicating no prediction ability, and 1 meaning ideal prediction. For medical applications, AUC 

greater than 0.8 are generally considered reflective of high accuracy. 
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3.0  RESULTS 

3.1 DATA DESCRIPTION 

Table 1-4 outlines basic characteristics of both CRISP and HALT datasets. For the outcome of 

interest, number (percent) of observations reaching CKD stage 3B are shown in the third and fourth 

column of each table. Table 1 shows that those who reach CKD stage 3B are older (with a mean 

age of 36 versus 29 years; p<0.001) with fewer African Americans (5% versus 14%; p=0.03). 

Birthweight was similar (6.8 versus 7.2 pounds; p=0.18) as was percent of females (58% versus 

60%; p=0.75). 

 

Table 1. Demographic data descriptive summaries for CRISP 

*   For continuous variables, statistics were showed in mean (standard deviation).  
     P-values were calculated by Wilcoxon rank sum test. 
** For categorical variables, statistics were showed in count (column proportion).  
     P-values were calculated by chi-square test. 
 
 

Table 2 shows frequencies of different categorizations of gene mutations. Those who reach 

CKD stage 3B have a higher percentage of PKD1 mutations (92% versus 72%; p=0.002 using 

three categories). Later analyses (in the multivariable analyses) group PKD2 and NMD as a singe 

Covariates N Total 
Did not reach 
CKD stage 3B 

108(55.1%) 

Reached CKD 
stage 3B 

88(44.9%) 
P-value 

Age in years* 196 32.15 (8.82) 29.21 (8.75) 35.74 (7.19) <0.001 
Birthweight in pounds* 128 7.02 (1.47) 7.21 (1.30) 6.81 (1.63) 0.18 
Race** 

• African American 
• Non-African 

American 

196   
 19 (13.97) 
117 (86.03) 

 
15 (13.89) 
93 (86.11) 

 
4 (4.55) 
84 (95.45) 

0.03 

Gender** 
• Male 
• Female 

196   
 80 (40.82) 
116 (59.18) 

 
43 (39.81) 
65 (60.19) 

 
37 (42.05) 
51 (57.95) 

0.75 
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category. The other two categorizations, namely mutation strength group and the semi-continuous 

mutation strength score were not different between those who did or did not reach stage 3B (p=0.53 

and 0.31, respectively). Later analyses (in the multivariable analyses) grouped PKD1 versus PKD2 

and NMD with MSG to obtain additional variables consistent with guidance from the clinical 

investigators. 

 
Table 2. Gene mutation data descriptive summaries for CRISP 

Covariates Total (196) 
Did not reach 
CKD stage 3b 
108(55.1%) 

Reached CKD 
stage 3b 
88(44.9%) 

P-
value** 

Gene type 
• NMD*** 
• PKD1 
• PKD2 

 
12 (6.12) 
159 (81.12) 
25 (12.76) 

 
9 (8.33) 
78 (72.22) 
21 (19.44) 

 
3 (3.41) 
81 (92.05) 
4 (4.55) 

0.002 

Mutation strength group (MSG) 
• Truncating (MSG1) 
• Strong mutation (MSG2) 
• Weak mutation (MSG3) 

 
126 (68.48) 
37 (20.11) 
21 (11.41) 

 
71 (71.72) 
17 (17.17) 
11 (11.11) 

 
55 (64.71) 
20 (23.53) 
10 (11.76) 

0.53 

Semi-continuous mutation strength 
score (SCMSS) 

• No mutation (SCMSS=0) 
• Weak mutation (SCMSS=3) 
• Strong mutation (SCMSS=4) 
• Truncating (SCMSS=5) 

 
 
12 (6.12) 
17 (8.67) 
41 (20.92) 
126 (64.29) 

 
 
9 (8.33) 
7 (6.48) 
21 (19.44) 
71 (65.74) 

 
 
3(3.41) 
10(11.63) 
20(22.73) 
55(62.50) 

0.31 

*     Statistics were showed in count (column proportion) 
**   p-values were calculated by chi-square test. 
*** NMD stands for “no mutation detected”. 
 

Table 3, similar to Table 1 for the CRISP data, described demographics stratified by the 

final outcome status. Results again show that those who reach CKD stage 3B are slightly but 

significantly older (with a mean age of 39 versus 37 years; p<0.001). Unlike CRISP, the 

percentages of African Americans and females were higher, although not significantly (4.4% 

versus 1.5%; p=0.08 and 58% versus 51%; p=0.23). Birthweight was not collected in HALT. 
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Table 3. Demographic data descriptive summaries for HALT 

*   For continuous variables, statistics were showed in mean (standard deviation).  
     P-values were calculated by Wilcoxon rank sum test. 
** For categorical variables, statistics were showed in count (column proportion).  
     P-values were calculated by chi-square test.  
 

Table 4 shows frequencies of different categorizations of gene mutations for HALT. Those 

who reach CKD stage 3B have a higher percentage of PKD1 mutations (88% versus 71%; p<0.001 

using three categories). The other two categorizations, namely mutation strength group and the 

semi-continuous mutation strength score were not different between those who did or did not reach 

stage 3B (p=0.57 and 0.77, respectively).  

  

Covariates Total (436) 
Did not reach 
CKD stage 3b 
344 (78.9%) 

Reached CKD 
stage 3b 

92 (21.1%) 
P-value 

Age* 37.26 (7.94) 36.77 (8.13) 39.10 (6.93) 0.02 
Race** 

• African American 
• Non-African 

American 

 
9 (2.06) 
427 (97.94) 

 
5 (1.45) 
339 (98.55) 

 
4 (4.35) 
88 (95.65) 

0.08 

Gender** 
• Male 
• Female 

 
227 (52.06) 
209 (47.94) 

 
174 (50.58) 
170 (49.42) 

 
53 (57.61) 
39 (42.39) 

0.23 
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Table 4. Gene mutation data descriptive summaries for HALT 

Covariates Total (436) 
Did not reach 
CKD stage 3b 
344 (78.9%) 

Reached CKD 
stage 3b 
92 (21.1%) 

P-value** 

Gene type 
• NMD*** 
• PKD1 
• PKD2 

 
36 (8.26) 
324 (74.31) 
76 (17.43) 

 
28 (8.14) 
243 (70.64) 
73 (21.22) 

 
8 (8.70) 
81 (88.04) 
3 (3.26) 

<0.001 

Mutation strength group (MSG) 
• Truncating (MSG1) 
• Strong mutation (MSG2) 
• Weak mutation (MSG3) 

 
263 (65.75) 
80 (20.00) 
57 (14.25) 

 
205 (64.87) 
63 (19.94) 
48 (15.19) 

 
58 (69.05) 
17 (20.24) 
9 (10.71) 

0.57 

Semi-continuous mutation strength 
(SCMSS) 

• No mutation (SCMSS=0) 
• Weak mutation (SCMSS=3) 
• Strong mutation (SCMSS=4) 
• Truncating (SCMSS=5) 

 
 

36 (8.26) 
57 (13.07) 
80 (18.35) 
263 (60.32) 

 
 

28 (8.14) 
48 (13.95) 
63 (18.31) 
205 (59.59) 

 
 

8 (8.70) 
9 (9.78) 
17 (18.48) 
58 (63.04) 

0.77 

*     Statistics were showed in count (column proportion) 
**   p-values were calculated by chi-square test. 
*** NMD stands for “no mutation detected”.  

3.2 RESULTS FROM LOGISTIC REGRESSION 

The likelihood ratio test for the overall model yielded a p-value of 0.0001 indicating that sex, 

race and birthweight together added significantly to current age in predicting CKD stage 3B. 

Further, the variables available at birth (gender, gene mutation, race), without birthweight also 

add significantly to a model that contains current age in predicting renal decline (p < 0.001). To 

determine if birthweight adds significantly to other factors available at birth, the nested logistic 

models (with and without birthweight) were fit in the subset with birthweight records; the LRT 

(using the optimal coding of gene mutation, which was PKD1 versus PKD2/NMD as described 

in the subsequent tables) shows that birthweight did not add significantly to the reduced model (p 

= 0.159). Given that more than one third of observations in CRISP were missing birthweight, 

and birthweight was not recorded in HALT, birthweight was dropped from further analyses.  
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Unadjusted logistic results for age, gender and race are shown in Table 5. Results for logistic 

models adjusted for different gene coding are shown in Table 6 and 7. 

 
Table 5. Results of the unadjusted logistic model for demographics* 

Covariates Odds ratio (95% CI) P-value** 
Age 1.11 (1.06, 1.15) <0.001 
Male 1.10 (0.58, 2.06) 0.776 
African American 0.24 (0.07, 0.82) 0.023 

* LRT of all main effects versus the null for unadjusted logistic yielded p<0.001. 
**p-values were calculated by LRT. 
 

Table 6. Results of the logistic model for each gene coding adjusting for demographics 

Covariates Odds ratio (95% CI) P-value* 10-fold cross 
validation AUC 

Model 1 <0.001 0.7556 
PKD2/NMD** 
PKD1 

 
6.77 (2.55, 18.00) 

 
<0.001 

 

Age 1.13 (1.08, 1.18) <0.001  
Male 1.24 (0.64, 2.42) 0.5237  
African American 0.40 (0.11, 1.45) 0.1455  

Model 2 <0.001 0.7481 
PKD2/NMD** 
PKD1-truncating 
PKD1-non-truncating 

 
1.92 (0.91, 2.93) 
1.89 (0.81, 2.98) 

 
<0.001 
0.001 

 

Age 0.12 (0.08, 0.16) <0.001  
Male 0.20 (-0.47, 0.87) 0.550  
African American -0.92 (-2.21, 0.37) 0.160  

Model 3 <0.001 0.7519 
PKD2/NMD** 
PKD1_MSG1+2 
PKD1_MSG3 

 
7.04 (2.63, 18.87) 
5.02 (1.28, 19.63) 

 
<0.001 
0.020 

 

Age 1.13 (1.08, 1.18) <0.001  
Male 1.24 (0.64, 2.41) 0.531  
African American 0.39 (0.11, 1.41) 0.150  

Model 4 <0.001 0.7450 
SCMSS (=0) ** 
Weak mutation (SCMSS=3) 
Strong mutation (SCMSS=4) 
Truncating (SCMSS=5) 

 
0.73 (0.09, 5.82) 
0.50 (0.08, 3.24) 
0.52 (0.09, 3.06) 

 
0.765 
0.465 
0.466 

 

PKD2 
PKD1 

 
8.50 (2.51, 28.83) 

 
0.001 

 

Age 1.13 (1.08, 1.18) <0.001  
Male 1.26 (0.64, 2.48) 0.501  
African American 0.41 (0.11, 1.51) 0.182  

*p-values of models were calculated by LRT of all main effects versus the null. 
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*p-values of each main effect were obtained by LRT. 
**The overall p-values for PKD1, PKD1-truncating, PKD1_MSG1+2 and the semi-continuous mutation 
strength score (SCMSS) in the above models were <0.0001, 0.0001, 0.0001 and 0.0010, respectively. 

 
Table 7. 10-fold cross validation AUCs for logistic models adjusting for different gene mutation 

 Model 1 Model 2 Model 3 Model 4 
10-fold cross 

validation 
AUROC 

0.7556 0.7481 0.7519 0.7450 

95% confidence 
interval (0.6644, 0.8038) (0.6798, 0.8164) (0.6839, 0.8200) (0.6762, 0.8138) 

 

Figure 2. 10-fold cross validation ROC for logistic models adjusting for different gene mutation codings 

(A) Model 1 (B) Model 2 (C) Model 3 (D) Model 4 
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The above results show that all four codings of gene mutation had statistically significant 

p-values, indicating that gene mutation information contributed significantly to prognosis of 

renal decline. 10-fold cross validation ROC curves for four models are shown in Figure 2. 

Among the four coding of gene mutation, the first model with PKD1 versus PKD2/NMD yielded 

the smallest BIC and largest 10-fold cross validated AUC, so this model was selected as the 

optimal coding of gene mutation. PKD1 mutations and older age were associated with higher 

odds of renal function decline. Both unadjusted and adjusted odds ratios and p-values and 

individual AUC for the selected best model are shown in Table 8. 

 
Table 8. Coefficients of the best logistic model 

Covariates Unadjusted Odds 
ratio (95% CI) 

Adjusted odds ratio 
(95% CI) P-value Adjusted 

P-value 
Individual 

AUC 
PKD2/NMD 
PKD1 

 
4.45 (1.85, 10.72) 

 
6.77 (2.55, 18.00) 

 
<0.0001 

 
<0.0001 

 
0.5991 

Age 1.10 (1.06, 1.15) 1.13 (1.08, 1.18) <0.0001 <0.0001 0.7136 
Male 1.09 (0.62, 1.94) 1.24 (0.64, 2.42) 0.7520 0.5237 0.5112 
African 
American 0.30 (0.09, 0.92) 0.40 (0.11, 1.45) 0.0226 0.1455 0.5467 
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Figure 3. Individual ROC curves for each main effect in the best logistic model 

(A) PKD1 vs. PKD2/NMD (B) age (C) gender (D) race  

3.3 RESULTS FROM CLASSIFICATION TREES 

The unpruned tree model is shown in Figure 4. Each number below each node represent the amount 

of observations with/without CKD stage 3B in corresponding node. At each splitting node, 

observations that agree with the splitting rule are shown in the left branch and others in the right 

branch.  Results show that female patients over 35 years old, and with a mutation score above 0, 

are more likely to reach CKD stage 3B. Age accounted for the most splits. 
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Figure 4. Tree model without pruning classifying CKD stage 3B 

Figure 5 shows the relative misclassification error of tree model accompanying with each 

complexity parameter, resulting in an optimal value of 0.038. Figure 6 shows the pruned tree. 

After pruning, the classification tree only includes age and gene mutation, with a 

misclassification rate of 23.47%. As shown in Figure 7, classification tree model after pruning 

has a 10-fold cross validation AUC of 0.8008 (95% confidence interval: 0.7394, 0.8622), 

suggesting strong discrimination ability.  
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Figure 5. Cross-validation relative error for each complex parameter 

 

Figure 6. Pruned tree for predicting stage CKD 3B 
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Figure 7. 10-fold cross validation ROC for pruned tree model 

As a comparison, a pruned tree model with age alone (Figure 8) was fit, yielding an AUC 

of 0.7257 (95% CI of (0.6612, 0.7902)). The AUC and 95% CI for the tree and logistic models are 

listed in Table 9. 

 

Figure 8. Pruned tree model with age alone 
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Table 9. Summary of AUC results of logistic regression and tree model 

 Logistic model Tree model Tree model with age alone 

10-fold cross 
validation AUROC 

(95% CI) 

0.7556 

(0.6644, 0.8038) 

0.8008 

(0.7394, 0.8622) 

0.7257 

(0.6612, 0.7902) 

 
When comparing the tree model with all predictors to the tree model with age alone using 

only the training data, using DeLong’s test for AUC, pruned tree model with all variables had a 

significantly better AUC (p=0.006778).  

3.4 RESULTS FROM RANDOM FORESTS 

Random forests, using 1000 bootstrap samples of size 196, yielded an out-of-bag misclassification 

rate 34.18% with voting. The variable importance measures are listed in Table 4 below. 

 
Table 10. Importance of variables 

 Mean decrease accuracy Mean decrease Gini 
age 30.93684 22.3869 

SCMSS -0.45672 2.402299 
gene 10.10632 2.328235 

PKD1 (2) 9.50293 1.80623 
Truncating (3) 7.359186 2.7477 

MSG (3) 9.642423 2.564204 

 
Figure 9 shows the ROC curve for the random forest model, with an AUC of 0.9078, 

with 95% CI of (0.8689, 0.9467). Compared to logistic regression and the single classification 

tree, random forests yielded greater prognostic ability using the factors available at birth. 
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Figure 9. ROC for random forest model 

3.5 MODEL VALIDATION AND DATA SPLITTING 

Models fitted above based on the training dataset were then used to predict CKD stage 3B outcome 

using HALT dataset. AUC and 95% CIs for each model are shown in Table 11 with corresponding 

ROC curves shown in Figure 10. 

 
Table 11. Summary of AUC results of validation 

 Logistic model Tree model Random forests 

AUC (95% CI) 0.5371 
(0.4827, 0.5914) 

0.5524 
(0.5012, 0.6035) 

0.6659 
(0.5860, 0.7458) 
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Figure 10. Validation ROC curves 

(A) Logistic regression model (B) Pruned tree model (C) Random forests 

The logistic and tree models established on CRISP dataset had similar, and quite limited 

ability to predict CKD outcomes on HALT study, while random forests had a higher, but still fairly 

low AUC. These validation results provided further evidence that random forests could improve 

prognostic ability of the factors available at birth. The relatively low AUC may be due to the 

shorter follow-up, and thus lower incidence of CKD stage 3B of HALT study A (~21%), compared 

to CRISP (~47%). Other inherent issues within the models like instability of tree model and 

overfitting of random forest may also lead to a low AUC in validation. 
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To further test if the reduction in accuracy with validation data is due to overfitting or 

systematic differences between CRISP and HALT data, additional analyses were performed within 

the CRISP data and compared to the HALT validation analysis, including the following analyses 

and statistics: 1) resubstitution accuracy was assessed using the entire CRISP data (n=194) for 

training and again for testing; 2) cross-validation accuracy was assessed using 10 randomly 

selected partitions of the data (with n=19-20 per partition); 10 separate models were then fit, each 

using 9 of the 10 partitions of data, with predictions calculated on the other (hold out) data; 3) data 

were randomly split only once into a train data (n=154) and test data (n=40); and 4) the AUCs for 

these models were then compared to HALT validation in Table 12. 

 
Table 12. Summary table for model training and validation AUC 

 Logistic regression Tree model Random forests 

Resubstition 0.7861 
(0.7231, 0.8491) 

0.8193 
(0.7424, 0.8818) 

0.9328 
(0.9007, 0.9649) 

10-fold cross 
validation 

0.7556 
(0.6644, 0.8038) 

0.8008 
(0.7394, 0.8622) 

0.9078 
(0.8689, 0.9467) 

CRISP training-
test split  

0.6793 
(0.5015, 0.8571) 

0.7340 
(0.5586, 0.9094) 

0.7609 
(0.6028, 0.919) 

HALT validation  0.5371 
(0.4827, 0.5914) 

0.5524 
(0.5012, 0.6039) 

0.6659 
(0.5860, 0.7458) 

Results in Table 12 show that 10-fold cross validation yields similar results to reubstitution 

, and those results are substantial better than results from the single training-test split, reflecting 

over-fitting in the resubstitution and 10-fold cross-validation results. Results also show an even 

greater degregation of classification accuracy between the single training-test split and the HALT 
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validation results, likely reflecting that the differences in length of follow-up are negatively 

affecting classification in HALT. 

 

3.6 ADJUSTED COMPARISON BETWEEN THREE MODELS 

Because logistic regression could not allow all the gene mutation information fitted in the model 

due to collinearity, this raised concern that the tree and random forest models benefit unfairly from 

the inclusion of multiple codings for gene mutation. To address this question, an adjusted logistic 

model using PKD1 versus PKD2 or NMD with high order of interactions (PKD1*age, 

PKD1*gender, PKD1*race and PKD1*age*race) was fitted. And we also fitted tree and random 

forest models using only the same gene mutation coding (PKD1 versus PKD2 or NMD) in adjusted 

logistic regression. Classification tree was pruned using minimal cost-complexity method. 10-fold 

cross validation was then performed, and models were compared using 10-fold cross validation 

AUC. Results are shown in Table 13. 

 From the results, adding high-order interactions increase AUC of logistic regression. 

Limiting gene information did not substantially affect prediction performance of tree model and 

random forests. This indicated that gene mutation codings were highly correlated and deleting 

redundant gene mutation information from the model would not harm the prognostic ability. 

 
Table 13. AUC comparison between three models using PKD1 vs. PKD2/NMD gene mutation 

Original models Logistic regression Pruned tree model Random forests 
10-fold CV AUC 0.7556 0.8008 0.9078 

95% CI (0.6644, 0.8038) (0.7394, 0.8622) (0.8689, 0.9467) 
Adjusted models Logistic regression Pruned tree model Random forests 
10-fold CV AUC 0.7850 0.8027 0.9303 

95% CI (0.7219, 0.8482) (0.7414, 0.8639) (0.8978, 0.9629) 
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4.0  DISCUSSION 

For classification CKD stage 3B, logistic regression suggests variables available at birth (gender, 

race, gene mutations and mutation strength) are significant predictors (p<0.001) to identify renal 

decline within a decade (or 15 years) for currently healthy PKD patients. Among variations of 

gene mutation information, PKD1 verses PKD2/NMD was the optimal coding with the smallest 

BIC of the model.  

The optimal pruned tree model depended only on age and PKD1 mutations, with a cutoff 

value at age 35. Comparing to logistic regression, the tree model allowed for non-linear high order 

interactions. But tree model is unstable; the prediction of tree models might differ dramatically 

with even a slight change in the dataset. 

Random forests greatly improved prognostic ability of the factors available at birth 

compared to other models. It also suggested high importance of age and gene mutations. Using 

validation with an independent dataset, random forest still yielded the greatest AUC. However, the 

much lower accuracy in the validation data may reflect overfitting and differences in length of 

follow-up. To address this limitation, CRISP will continue to follow HALT A participants over 

the next five years, and to achieve more at least 10 years of follow-up. For future extensions of 

this thesis, it would be of interest to consider other bias-correction approaches such as bootstrap 

or alternative cross-validation techniques. 

There are limitations to the comparison of logistic regression and tree and random forest 

models, as the logistic model do not allow all the gene mutation information fitted in the same 

model due to collinearity, while tree and random forest models can benefit from the inclusion of 

multiple codings for gene mutation.  
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Results in this thesis pointed to the similar conclusions across different analyses, i.e. that 

variables available at birth could be used for modest gains in prognosis of renal decline with 

random forest models. In terms of public health significance, random forests could help estimate 

the probability of PKD patients reaching renal failure at given age, and thus inform prevention 

efforts. Although the AUC of about 0.6 with random forests may not seem very impressive, 

findings show improvement over what researchers had expected (which was no information from 

factors available at birth). Findings therefore make a significant contribution to the literature. 
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APPENDIX A: STATA CODES 

/*  import data: 236 sample with gene info */ 

import delimited "C:\Users\tis42\OneDrive\thesis\data\variables at birth_236 sample.csv" 

 

/* category data: demographic variables */ 

tab race ckd3b, col fre chi2 

tab gender ckd3b, col fre chi2 

sum age 

sum age if ckd3b=="1" 

sum age if ckd3b=="0" 

ttest age, by(ckd3b) unequal 

sum brwgt 

sum brwgt if ckd3b=="1" 

sum brwgt if ckd3b=="0" 

ttest brwgt, by(ckd3b) unequal 

 

/* gene variables */ 

tab gene ckd3b, col fre chi2 

tab msg ckd3b, col fre chi2 

tab scmss ckd3b, col fre chi2 

 

/* convert string to numeric variables */ 
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rename ckd3a ckd3a_c 

rename ckd3b ckd3b_c 

rename ckd4 ckd4_c 

destring ckd3a_c, generate(ckd3a) 

destring ckd3b_c, generate(ckd3b) 

destring ckd4_c, generate(ckd4) 

 

rename gender gender_c 

gen gender=1 if gender_c=="Male" 

replace gender=0 if gender_c=="Female" 

label define male_label 1 "Male" 0 "Female" 

label variable gender "male_label" 

label values gender male_label 

 

rename race race_c 

gen race=1 if race_c=="African American" 

replace race=0 if race_c=="Non African American" 

label define race_label 1 "African American" 0 "Non African American" 

label variable race "race_label" 

label values race race_label 

 

rename gene gene_c 

gen gene=0 if gene_c=="NMD" 



 39 

replace gene=1 if gene_c=="PKD1" 

replace gene=2 if gene_c=="PKD2" 

label define gene_label 0 "NMD" 1 "PKD1" 2 "PKD2" 

label variable gene "gene_label" 

label values gene "gene_label" 

 

replace msg=0 if msg==. 

 

/* fit full model with age with factors available at birth */  

logit ckd3b age i.gender i.race i.gene i.msg 

/* save current model */  

estimates store full 

 

/* Fit a logistic model with age only */  

logit ckd3b age  

 

/* Test with the likelihood ratio.*/  

lrtest full 

 

/* fit full model with age with factors available at birth. */  

logit ckd3b age i.gender i.race i.gene i.msg brwgt 

/* save current model */  

estimates store full 
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/* Fit a logistic model with age only */  

logit ckd3b age if brwgt!=. 

 

/* Test with the likelihood ratio */ 

lrtest full 

 

/* gene codings */  

gene genecode1=1 if gene==1 

replace genecode1=0 if gene!=1 

label define genecode1 1 "pkd1" 0 "pkd2/nmd" 

label values genecode1 genecode1 

 

gen genecode2=0 if genecode1==0 

replace genecode2=2 if genecode1==1 & trunc_grp=="Truncating" 

replace genecode2=1 if genecode1==1 & trunc_grp=="Non Truncating" 

label define genecode2 0 "pkd2/nmd" 1 "pkd1-non-truncating" 2 "pkd1-truncating" 

label values genecode2 genecode2 

 

rename genecompkd_msg genecompkd_msg_c 

gene genecode3=1 if genecompkd_msg_c=="PKD1_MSG1+2" 

replace genecode3=2 if genecompkd_msg_c=="PKD1_MSG3" 

replace genecode3=0 if genecompkd_msg_c=="PKD2+NMD" 
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label define genecode3 1 "pkd1_msg1+2" 2 "pkd1_msg3" 0 "pkd2+nmd" 

label values genecode3 genecode3 

 

/* try different gene mutation codings */  

 

logit ckd3b age i.gender i.race i.genecode1, or 

estat ic 

estimates store full 

logit ckd3b age i.gender i.race, or 

lrtest full 

 

logit ckd3b age i.gender i.race i.genecode2 if genecode2!=. 

estat ic 

estimates store full 

logit ckd3b age i.gender i.race if genecode2!=., or 

lrtest full 

 

logit ckd3b age i.gender i.race i.genecode3 if genecode3!=., or 

estat ic 

estimates store full 

logit ckd3b age i.gender i.race if genecode3!=., or 

lrtest full 
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logit ckd3b age i.gender i.race i.scmss i.gene, or 

estat ic 

estimates store full 

logit ckd3b age i.gender i.race, or 

lrtest full 

 

logit ckd3b age i.gender i.race i.scmss i.gene 1.gene#i.scmss , or 

estat ic 

 

logit ckd3b age i.gender i.race i.genecode1, or 

estat ic 

lroc 

estimates store full 

logit ckd3b i.gender i.race i.genecode1, or 

lrtest full 

logit ckd3b age i.race i.genecode1, or 

lrtest full 

logit ckd3b age i.gender i.genecode1, or 

lrtest full 

 

logit ckd3b age 

lrtest full 
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/* add brwgt */  

logit ckd3b age i.gender i.race i.genecode1 brwgt 

estimates store full 

logit ckd3b age i.gender i.race i.genecode1 if brwgt!=. 

lrtest full 

 

/*improt halt data*/ 

use "C:\Users\tis42\OneDrive\thesis\halt\halt data for validation.dta" 

/*data descriptive analysis*/ 

tab race ckd3b, col fre chi2 

tab gender ckd3b, col fre chi2 

sum age 

sum age if ckd3b==1 

sum age if ckd3b==0 

ttest age, by(ckd3b) unequal 

 

/* gene variables */ 

tab gene ckd3b, col fre chi2 

tab msg ckd3b, col fre chi2 

tab scmss ckd3b, col fre chi2 
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APPENDIX B: R CODES 

# install.packages("rpart") 

library(rpart) 

# install.packages("rpart.plot") 

library(rpart.plot) 

# install.packages("randomForest") 

library(randomForest) 

 

# ==================== 

# data pre-processing 

# ==================== 

getwd() 

setwd("C:/Users/dell/onedrive/thesis/data") 

sample<-read.csv("thesis data ckd3b_196 sample v2.csv") 

# ======================= 

# data description 

# ======================= 

setwd("C:/Users/dell/onedrive/thesis/data") 

data<-read.csv("thesis data ckd3b_196 sample v2.csv") 

data[!is.na(data$ckd3b_c) & data$ckd3b_c==1,]$ckd3b_c<-"ckd3b" 

data[data$ckd3b_c==0,]$ckd3b_c<-"control" 
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# #split data into train and test  

# set.seed(1021) 

# a<-sample(1:196, 40, replace=F) 

# #train data 

# data<-sample[-a,] 

# #test data 

# test<-sample[a,] 

 

do.classification <- function(train.set, test.set, 

                              cl.name, verbose=F) { 

  ## note: to plot ROC later, we want the raw probabilities, 

  ## not binary decisions 

  switch(cl.name, 

          

         lr = { # logistic regression 

           model = glm(ckd3b_c~age+gender+race+genecode1, 

family=binomial(link="logit"), data=train.set) 

           if (verbose) { 

             print(summary(model)) 

           } 

           prob = predict(model, newdata=test.set, type="response") 

           #print(cbind(prob,as.character(test.set$y))) 

           prob 



 46 

         }, 

          

          

         dtree = { # decision tree 

           model = rpart(ckd3b_c~age+gender+race+genecode1, data=train.set) 

           if (verbose) { 

             print(summary(model)) # detailed summary of splits 

             printcp(model) # print the cross-validation results 

             plotcp(model) # visualize the cross-validation results 

             ## plot the tree 

             plot(model, uniform=TRUE, main="Classification Tree") 

             text(model, use.n=TRUE, all=TRUE, cex=.8) 

           } 

           prob = predict(model, newdata=test.set) 

            

           if (0) { # here we use the default tree, 

             ## you should evaluate different size of tree 

             ## prune the tree 

             pfit<- prune(model, 

cp=model$cptable[which.min(model$cptable[,"xerror"]),"CP"]) 

             prob = predict(pfit, newdata=test.set) 

             ## plot the pruned tree 

             plot(pfit, uniform=TRUE,main="Pruned Classification Tree") 
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             text(pfit, use.n=TRUE, all=TRUE, cex=.8) 

           } 

           #print(cbind(prob,as.character(test.set$y))) 

            

           prob = prob[,2]/rowSums(prob) # renormalize the prob. 

           prob 

         }, 

          

         dtreeprune = { 

           model = rpart(ckd3b_c~age+gender+race+genecode1, data=train.set) 

           if (verbose) { 

             print(summary(model)) # detailed summary of splits 

             printcp(model) # print the cross-validation results 

             plotcp(model) # visualize the cross-validation results 

             ## plot the tree 

             plot(model, uniform=TRUE, main="Classification Tree") 

             text(model, use.n=TRUE, all=TRUE, cex=.8) 

           } 

           prob = predict(model, newdata=test.set) 

            

           if (1) { # here we prune the tree 

             ## prune the tree 
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             pfit<- prune(model, 

cp=model$cptable[which.min(model$cptable[,"xerror"]),"CP"]) 

             prob = predict(pfit, newdata=test.set) 

             ## plot the pruned tree 

             plot(pfit, uniform=TRUE,main="Pruned Classification Tree") 

             text(pfit, use.n=TRUE, all=TRUE, cex=.8) 

           } 

           #print(cbind(prob,as.character(test.set$y))) 

           prob = prob[,2]/rowSums(prob) # renormalize the prob. 

           prob 

         }, 

          

         rf = { # random forests 

           model = randomForest(ckd3b_c~age+gender+race+genecode1, data=train.set) 

           if (verbose) { 

             print(summary(model)) # detailed summary of random forests 

              

           } 

           prob = predict(model, newdata=test.set) 

           prob 

         } 

  ) 

} 
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#10-fold cross validation 

k.fold.cv <- function(dataset, cl.name, k.fold=10, prob.cutoff=0.5, get.performance=F) { 

  ## default: 10-fold CV, cut-off 0.5 

  n.obs <- nrow(dataset) # no. of observations 

  s = sample(n.obs) 

  errors = dim(k.fold) 

  precisions = dim(k.fold) 

  recalls = dim(k.fold) 

  fscores = dim(k.fold) 

  accuracies = dim(k.fold) 

  probs = NULL 

  actuals = NULL 

  for (k in 1:k.fold) { 

    test.idx = which(s %% k.fold == (k-1) ) # use modular operator 

    train.set = dataset[-test.idx,] 

    test.set = dataset[test.idx,] 

    cat(k.fold,'-fold CV run',k,cl.name,':', 

        '#training:',nrow(train.set), 

        '#testing',nrow(test.set),'\n') 

    prob = do.classification(train.set, test.set, cl.name) 

    predicted = as.numeric(prob > prob.cutoff) 

    actual = test.set$y 



 50 

    confusion.matrix = table(actual,factor(predicted,levels=c(0,1))) 

    confusion.matrix 

    error = (confusion.matrix[1,2]+confusion.matrix[2,1]) / nrow(test.set) 

    errors[k] = error 

    cat('\t\terror=',error,'\n') 

    precision = (confusion.matrix[1,1]/(confusion.matrix[1,1]+confusion.matrix[2,1])) 

    precisions[k] = precision 

    print(confusion.matrix) 

    recall =(confusion.matrix[1,1]/(confusion.matrix[1,1]+confusion.matrix[1,2])) 

    recalls[k] = recall 

    probs = c(probs,prob) 

    actuals = c(actuals,actual) 

    ## you may compute other measures and store them in arrays 

  } 

 

  avg.error = mean(errors) 

  cat('avg error=',avg.error,'\n') 

  avg.accuracy = 1 - avg.error 

  cat('avg Accuracy=',avg.accuracy,'\n') 

  avg.precision = mean(precisions) 

  cat('avg Precision=',avg.precision,'\n') 

  avg.recall = mean(recalls) 

  cat('avg recall=',avg.recall,'\n') 
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  avg.fscore = mean(fscores) 

  cat('avg fscore=',avg.fscore,'\n') 

   

  ## plot ROC 

  result = data.frame(probs,actuals) 

  pred = prediction(result$probs,result$actuals) 

  perf = performance(pred, "tpr","fpr") 

  auc = performance(pred,"auc") 

  auc <- as.numeric(auc@y.values) 

  cat(k.fold,'-fold AUC:',auc,'\n') 

plot(perf) 

 

#logit  

logit<-glm(ckd3b_c ~ age + gender + race + genecode1, 

           family=binomial(link='logit'),data=data) 

#prediction 

pred.logit<-predict(logit,newdata=data) 

outcome<-cbind(data$pkdid, 

              data$ckd3b_c, 

              pred.logit) 

colnames(outcome)<-c("id","ckd3b","pruned") 

outcome<-as.data.frame(outcome) 

 



 52 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for logistic model") 

# Area under the curve: 0.7861 

# 95% CI: 0.7231-0.8491 (DeLong) 

table(pred.logit, data$ckd3b_c) 

 

#within test 

pred.logit<-predict(logit,newdata=test) 

outcome<-cbind(test$pkdid, 

               test$ckd3b_c, 

               pred.logit) 

colnames(outcome)<-c("id","ckd3b","pruned") 

outcome<-as.data.frame(outcome) 

 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for logistic model") 

 

# high level interaction test 

logit<-glm(ckd3b_c ~ age + gender + race + genecode1  

           + age*genecode1 + gender*genecode1 + race*genecode1 

           +age*race*genecode1, 

           family=binomial(link='logit'),data=data) 

summary(logit) 
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pred.logit<-predict(logit,newdata=data) 

outcome<-cbind(data$pkdid, 

               data$ckd3b_c, 

               pred.logit) 

colnames(outcome)<-c("id","ckd3b","pruned") 

outcome<-as.data.frame(outcome) 

 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for logistic model") 

# Area under the curve: 0.785 

# 95% CI: 0.7219-0.8482 (DeLong) 

 

#roc curves for each gene codings 

setwd("C:/Users/dell/onedrive/thesis/gene code roc") 

#coding 1 

logit<-glm(ckd3b_c ~ age + gender + race + genecode1, 

           family=binomial(link='logit'),data=data) 

pred.logit<-predict(logit,newdata=data) 

outcome<-cbind(data$pkdid, 

               data$ckd3b_c, 

               pred.logit) 

colnames(outcome)<-c("id","ckd3b","pruned") 

outcome<-as.data.frame(outcome) 
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png("gene code1.png") 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="A") 

dev.off() 

#coding 2 

logit<-glm(ckd3b_c ~ age + gender + race + genecode2, 

           family=binomial(link='logit'),data=data) 

pred.logit<-predict(logit,newdata=data) 

outcome<-cbind(data$pkdid, 

               data$ckd3b_c, 

               pred.logit) 

colnames(outcome)<-c("id","ckd3b","pruned") 

outcome<-as.data.frame(outcome) 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="B") 

png("gene code2.png") 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="B") 

dev.off() 

 

#coding 3 

logit<-glm(ckd3b_c ~ age + gender + race + genecode3, 

           family=binomial(link='logit'),data=data) 
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pred.logit<-predict(logit,newdata=data) 

outcome<-cbind(data$pkdid, 

               data$ckd3b_c, 

               pred.logit) 

colnames(outcome)<-c("id","ckd3b","pruned") 

outcome<-as.data.frame(outcome) 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="C") 

png("gene code3.png") 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="C") 

dev.off() 

 

#coding 2 

logit<-glm(ckd3b_c ~ age + gender + race + gene + scmss, 

           family=binomial(link='logit'),data=data) 

pred.logit<-predict(logit,newdata=data) 

outcome<-cbind(data$pkdid, 

               data$ckd3b_c, 

               pred.logit) 

colnames(outcome)<-c("id","ckd3b","pruned") 

outcome<-as.data.frame(outcome) 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 
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          auc.polygon=TRUE, grid=TRUE, plot=T, main="D") 

png("gene code4.png") 

roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="D") 

dev.off() 

 

#============ 

#tree model 

fit.ckd3b<-rpart(formula = ckd3b_c ~ age + gender + race +  

           semicontinuousmspkd1 + semicontinuousmspkd2 +  

           scmss + msg + trunc_grp + gene +  

           genecode1 + genecode2 + genecode3, 

           data = data, method = "class",  

           control=rpart.control(cp=0, xval=195)) 

prp(fit.ckd3b, faclen = 0, cex=0.8, extra = 1) 

plotcp(fit.ckd3b) 

 

fit.ckd3b.1<-prune(fit.ckd3b, cp=0.038) 

prp(fit.ckd3b.1, faclen = 0, cex=0.8, extra = 1) 

printcp(fit.ckd3b.1) 

 

#prediction 

pred.tree.ckd3b<-predict(fit.ckd3b.1,  
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                         type="prob", 

                         newdata=data) 

outcome.ckd3b<-cbind(data$pkdid, 

                     data$ckd3b_c, 

                     pred.tree.ckd3b[,2]) 

colnames(outcome.ckd3b)<-c("id","ckd3b","pruned") 

outcome.ckd3b<-as.data.frame(outcome.ckd3b) 

 

roc1<-roc(ckd3b~pruned,outcome.ckd3b,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for tree model") 

 

#test  

pred.tree.ckd3b<-predict(fit.ckd3b,  

                         type="prob", 

                         newdata=test) 

outcome.ckd3b<-cbind(test$pkdid, 

                     test$ckd3b_c, 

                     pred.tree.ckd3b[,2]) 

colnames(outcome.ckd3b)<-c("id","ckd3b","pruned") 

outcome.ckd3b<-as.data.frame(outcome.ckd3b) 

 

roc1<-roc(ckd3b~pruned,outcome.ckd3b,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for tree model") 
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# test gene information 

fit.ckd3b<-rpart(formula = ckd3b_c ~ age + gender + race + genecode1, 

                 data = data, method = "class",  

                 control=rpart.control(cp=0, xval=195)) 

plotcp(fit.ckd3b) 

fit.ckd3b.1<-prune(fit.ckd3b, cp=0.038) 

prp(fit.ckd3b.1, faclen = 0, cex=0.8, extra = 1) 

printcp(fit.ckd3b.1) 

 

#prediction 

pred.tree.ckd3b<-predict(fit.ckd3b.1,  

                         type="prob", 

                         newdata=data) 

outcome.ckd3b<-cbind(data$pkdid, 

                     data$ckd3b_c, 

                     pred.tree.ckd3b[,2]) 

colnames(outcome.ckd3b)<-c("id","ckd3b","pruned") 

outcome.ckd3b<-as.data.frame(outcome.ckd3b) 

 

roc1<-roc(ckd3b~pruned,outcome.ckd3b,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for tree model") 

# Area under the curve: 0.8027 
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# 95% CI: 0.7414-0.8639 (DeLong) 

fit.ckd3b.age<-rpart(formula = ckd3b_c ~ age, 

                 data = data, method = "class",  

                 control=rpart.control(cp=0, xval=195)) 

prp(fit.ckd3b.age, faclen = 0, cex=0.8, extra = 1) 

plotcp(fit.ckd3b.age) 

 

fit.ckd3b.age.1<-prune(fit.ckd3b.age, cp=0.052) 

prp(fit.ckd3b.age.1, faclen = 0, cex=0.8, extra = 1) 

printcp(fit.ckd3b.age.1) 

 

#prediction 

pred.tree.ckd3b.age<-predict(fit.ckd3b.age.1,  

                         type="prob", 

                         newdata=data) 

outcome.ckd3b.age<-cbind(data$pkdid, 

                     data$ckd3b_c, 

                     pred.tree.ckd3b.age[,1]) 

colnames(outcome.ckd3b.age)<-c("id","ckd3b","pruned") 

outcome.ckd3b.age<-as.data.frame(outcome.ckd3b.age) 

 

roc.age<-roc(ckd3b~pruned,outcome.ckd3b.age,ci=T, 
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          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for tree model with 

age only") 

################################################################## 

# random forest 

 

set.seed(1021) 

data$ckd3b_c<-factor(data$ckd3b_c) 

set.seed(1021) 

rf.3b<-randomForest(ckd3b_c ~ age + gender + race +                         

                      scmss + gene +  

                      genecode1 + genecode2 + genecode3, 

                    data = data, na.action = na.omit, importance=T, ntree=1000) 

importance(rf.3b, type=1) 

importance(rf.3b, type = 2) 

 

plot(rf.3b) 

#prediction 

p2 <- predict(rf.3b, type="prob",data) 

outcome.rf<-cbind(data$pkdid, 

                     data$ckd3b_c, 

                     p2[,1]) 

colnames(outcome.rf)<-c("id","ckd3b","predict") 

outcome.rf<-as.data.frame(outcome.rf) 
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roc.rf<-roc(ckd3b~predict,outcome.rf,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for random forest") 

# Area under the curve: 0.9078 

# 95% CI: 0.8689-0.9467 (DeLong) 

 

#within test 

p2 <- predict(rf.3b, type="prob",test) 

outcome.rf<-cbind(test$pkdid, 

                  test$ckd3b_c, 

                  p2[,1]) 

colnames(outcome.rf)<-c("id","ckd3b","predict") 

outcome.rf<-as.data.frame(outcome.rf) 

 

roc.rf<-roc(ckd3b~predict,outcome.rf,ci=T, 

            auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for random forest") 

 

#age only  

set.seed(1) 

rf.3b.age<-randomForest(ckd3b_c ~ age, 

                    data = data, na.action = na.omit, importance=T, ntree=1000) 

p.age <- predict(rf.3b.age,data) 

head(p.age) 
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confusionMatrix(p.age, data$ckd3b_c) 

 

outcome.rf.age<-cbind(data$pkdid, 

                  data$ckd3b_c, 

                  p.age) 

colnames(outcome.rf.age)<-c("id","ckd3b","predict") 

outcome.rf.age<-as.data.frame(outcome.rf.age) 

 

roc.rf.age<-roc(ckd3b~predict,outcome.rf.age,ci=T, 

            auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for random forest 

with age only") 

# Area under the curve: 0.9916 

# 95% CI: 0.9842-0.999 (DeLong) 

#------------------------------------------ 

 

# test interaction of gene mutation 

set.seed(1021) 

data$ckd3b_c<-factor(data$ckd3b_c) 

rf.3b<-randomForest(ckd3b_c ~ age + gender + race + genecode1, 

                    data = data, na.action = na.omit, importance=T, ntree=1000) 

p2 <- predict(rf.3b, type="prob",data) 

outcome.rf<-cbind(data$pkdid, 

                  data$ckd3b_c, 
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                  p2[,1]) 

colnames(outcome.rf)<-c("id","ckd3b","predict") 

outcome.rf<-as.data.frame(outcome.rf) 

roc.rf<-roc(ckd3b~predict,outcome.rf,ci=T, 

            auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for random forest") 

# Area under the curve: 0.9303 

# 95% CI: 0.8978-0.9629 (DeLong) 

 

# validation using HALT data 

# read in HALT data 

setwd("C:/Users/tis42/onedrive/thesis/halt") 

data<-read.csv("halt data for validation.rdata") 

 

#---------------------- 

# fit logit model 

logit<-glm(ckd3b_c ~ age + gender + race + genecode1, 

           family=binomial(link='logit'),data=data) 

#predict using HALT 

pred.logit<-predict(logit,newdata=halt.data) 

outcome<-cbind(halt.data$ckd3b, 

               pred.logit) 

colnames(outcome)<-c("ckd3b","pruned") 

outcome<-as.data.frame(outcome) 
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roc1<-roc(ckd3b~pruned,outcome,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="ROC curve for logistic model") 

# Area under the curve: 0.6584 

# 95% CI: 0.5975-0.7194 (DeLong) 

 

#----------------------- 

# fit classification tree model 

fit.ckd3b<-rpart(formula = ckd3b_c ~ age + gender + race +  

                   semicontinuousmspkd1 + semicontinuousmspkd2 +  

                   scmss + msg + trunc_grp + gene +  

                   genecode1 + genecode2 + genecode3, 

                 data = data, method = "class",  

                 control=rpart.control(cp=0, xval=195)) 

prp(fit.ckd3b, faclen = 0, cex=0.8, extra = 1) 

plotcp(fit.ckd3b) 

fit.ckd3b.1<-prune(fit.ckd3b, cp=0.038) 

prp(fit.ckd3b.1, faclen = 0, cex=0.8, extra = 1) 

#predict using HALT 

pred.tree.ckd3b<-predict(fit.ckd3b.1,  

                         type="prob", 

                         newdata=halt.data) 

outcome.ckd3b<-cbind(halt.data$ckd3b, 

                     pred.tree.ckd3b) 
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colnames(outcome.ckd3b)<-c("ckd3b","pruned") 

outcome.ckd3b<-as.data.frame(outcome.ckd3b) 

roc1<-roc(ckd3b~pruned,outcome.ckd3b,ci=T, 

          auc.polygon=TRUE, grid=TRUE, plot=T, main="B") 

# Area under the curve: 0.6332 

# 95% CI: 0.5733-0.6931 (DeLong) 

 

#----------------------- 

# fit random forest model 

data$ckd3b_c<-factor(data$ckd3b_c) 

set.seed(1021) 

rf.3b<-randomForest(ckd3b_c ~ age + gender + race + gene + scmss + 

                      genecode1 + genecode2 + genecode3, 

                    data = data, na.action = na.omit, importance=T, ntree=1000) 

# predict using CRISP 

p2 <- predict(rf.3b, type="prob",data) 

outcome.rf<-cbind(data$ckd3b_c, 

                  p2[,1]) 

colnames(outcome.rf)<-c("ckd3b","predict") 

outcome.rf<-as.data.frame(outcome.rf) 

roc.rf<-roc(ckd3b~predict,outcome.rf,ci=T, 

            auc.polygon=TRUE, grid=TRUE, plot=T, main="A") 
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# predict using HALT 

p2 <- predict(rf.3b, type="prob",halt.data) 

outcome.rf<-cbind(halt.data$ckd3b_c, 

                  p2[,1]) 

colnames(outcome.rf)<-c("ckd3b","predict") 

outcome.rf<-as.data.frame(outcome.rf) 

roc.rf<-roc(ckd3b~predict,outcome.rf,ci=T, 

            auc.polygon=TRUE, grid=TRUE, plot=T, main="C") 

# Area under the curve: 0.6659 

# 95% CI: 0.586-0.7458 (DeLong) 
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