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ABSTRACT 

The unique metabolic demands of the brain point to the critical nature of cerebral small 

vessel integrity for overall brain and cognitive health. Given the lack of any disease-

modifying treatments, new avenues for Alzheimer’s disease (AD) prevention and 

treatment are urgently needed. This dissertation takes a population neuroscience 

approach to examine potential promoters of cerebral small vessel integrity for cognitive 

disorder prevention.  

Existing methods of evaluating cerebral small vessel integrity focus on 

neuroimaging markers distal to small vessel disease and fail to evaluate the vessels 

themselves. To address this limitation, I developed a method using 7T susceptibility-

weighted imaging (SWI) magnetic resonance imaging (MRI) for direct small vein 

measurement in older adults; I examined associations with potential small vessel integrity 

promoters cross-sectionally and found that the APOE*4 allele was associated with small 

vein tortuosity. In my second paper, a randomized controlled trial, I found that increasing 

physical activity and brain-derived neurotrophic factor late in life may improve cerebral 

small vein health profiles as measured by 7T SWI.  

In an era when multimorbidity is common among older adults, interactions 

involving vascular and cardiometabolic risk factors (VCMRF) are critical to evaluate in 
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order to effectively target preventions and treatments—the promise of precision medicine. 

I evaluated associations of interactions of interest with incident dementia and cognitive 

impairment in a large population-based cohort with 10 years of follow-up. I found that the 

risk of all-cause dementia conferred by stroke was even greater among those with 

congestive heart failure;  the beneficial effects of alcohol consumption on overall cognitive 

performance varied by stroke history; and in exploratory results, the detrimental effect of 

age on AD dementia risk was lower among those who walked more. Taken together, my 

findings point to physical activity and VCMRF reduction as potential strategies to promote 

cerebral small vessel integrity for cognitive disorder prevention and suggest that growth 

factors such as brain-derived neurotrophic factor should be evaluated further. These 

strategies for prevention could reduce late-life cognitive disorder prevalence as well as 

attendant disability and costs, goals of great public health significance. 
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1 

1.0  INTRODUCTION 

1.1 CEREBRAL SMALL VESSEL INTEGRITY IS CRITICAL TO BRAIN HEALTH 

Poor cerebral small vessel health is a key determinant of both neuroimaging features of 

cerebral small vessel disease (SVD)1-3 and functional cognitive outcomes such as mild 

cognitive impairment (MCI) and dementia, including dementia due to Alzheimer’s disease 

(AD).4,5 The vascular influence on these outcomes has been collectively termed vascular 

contributions to cognitive impairment and dementia (VCID).6,7 While at approximately 

three pounds the human brain comprises only 2% of the body by weight, it is a greedy 

organ, demanding 20% of the body’s oxygen8 and approximately 60% of the body’s 

glucose.9,10 With no ability for the brain to store energy, consistent and perpetual blood 

flow is required to keep it healthy. This metabolic need points to the critical nature of 

cerebral small vessel integrity for overall brain and cognitive health with implications for 

AD. 

1.2 PUBLIC HEALTH SIGNIFICANCE 

Early diagnosis and primary prevention of AD dementia is a public health priority that is 

especially urgent among the oldest old. Age is the strongest risk factor for AD dementia, 
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with individuals aged 80-89 having about seven times greater odds of the disease than 

those aged 70-79.11 SVD also increases with age.12,13 At the same time, this group of 

older adults is one of the fastest growing segments of the population.14 Thus, the 

consequences of this brain aging epidemic on the future of health care systems worldwide 

could be disastrous. Although new data indicate AD dementia prevalence and incidence 

may have recently declined,15 prior projections indicate that the demographic shift would 

push the US prevalence of AD dementia to triple from 4.7 million among those 65+ in 

2010 to 13.8 million people by 2050.16 Currently, AD-associated disability rates are 

alarmingly on the rise.17 Devastating interpersonal suffering is wrought by the disease on 

individuals diagnosed with it and their caregivers, who often report losing their loved one 

twice, once when the disease robs them of their personality, memories, and identity, and 

again when it robs them of life.18,19 When measured by financial burden, care for AD and 

other dementias is expensive to society, costing the US between $159 billion and $215 

billion in 2010.20 Thus, finding preventions for AD dementia is of importance, and 

strategies that target very old adults are also urgently needed.  

Despite its importance, the focus placed on vascular impacts on AD and related 

disorders has fluctuated over time. AD was historically referred to as “hardening of the 

arteries”, but the discovery of β-amyloid led the pendulum to shift away from vascular 

influence. More recently, the high-profile failures of multiple drugs aimed at β-amyloid and 

the amyloid cascade have caused many researchers to reconsider the importance of AD-

specific VCID. Given the responsiveness of cardiovascular and cardiometabolic disorders 

such as hypertension and diabetes to treatment, this line of research is quite timely and 

could have a large impact on cognitive health at the population level. 
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Official integration of a defined cross-disciplinary research field studying the 

intersection of neurovascular health with AD and related disorders is still quite new, but 

nevertheless, of high priority. The term vascular contributions to cognitive impairment and 

dementia and its acronym, VCID, were recently coined, 6,7 and the National Institutes of 

Health (NIH) only began tracking funding for this field in 2014.21 Importantly, NIH has 

recently prioritized finding new biomarkers of small vessel VCID in the Mark VCID study, 

a collaborative effort of multiple research groups which began in early 2017.22 

1.3 CEREBRAL SMALL VESSEL DISEASE 

Cerebral SVD is an important contributor to VCID. Neurovascular integrity is adversely 

impacted by cerebral SVD, which includes pathology of the small arteries, veins, and 

capillaries of the brain. 1-3 However, owing to the difficulty of visualizing these small 

vessels directly in vivo in humans, SVD has typically been characterized by several 

neuroimaging markers, which are not direct measures of blood vessels. Among the most 

common traditional neuroimaging markers of SVD are white matter hyperintensities 

(WMH) of presumed vascular origin, silent brain infarcts (SBI)/lacunes, and cerebral 

microbleeds. Adopting the STRIVE consortium1 terminology and definition, WMH of 

presumed vascular origin occur in the white matter and appear as areas of hyperintense 

signal on T2 weighted MRI including fluid attenuated inversion recovery (FLAIR) images. 

The specifier “of presumed vascular origin” differentiates these hyperintensities from 

other disorders including multiple sclerosis. Silent brain infarcts / lacunes are termed 

lacunes of presumed vascular origin by STRIVE.1. These are seen as hypointense 



4 

cavities 3-15 mm in diameter with hyperintense rims on FLAIR imaging. They are healed 

small strokes associated with blockage of a deep arteriole. Finally, microbleeds are 

hypointense round areas ≤ 10 mm in diameter on T2* and SWI. Microbleeds can be due 

to cerebral amyloid angiopathy, deposition of β-amyloid, in the leptomeninges, media and 

adventitia of cortical arterioles and small-medium arteries, and occasionally capillaries 

and veins.23 Microbleeds may also be due to other SVD pathology (see Ungvari, et al., 

for a recent review24). 

In addition to these traditional markers, novel markers of SVD are beginning to be 

examined. These include cerebral blood flow (CBF), cerebrovascular reactivity (CVR), 

microstructural integrity via diffusion weighted imaging, and small vessel morphological 

characteristics. CBF can be measured using multiple modalities including [15O] water 

positron emission tomography (PET), dynamic contrast MRI, and arterial spin labeling 

(ASL) MRI. [15O] water PET is an attractive option due to the scan taking only 1 minute. 

It would be ideal in instances in which other PET imaging is already being obtained, such 

as in glucose metabolism scanning via [15F] FDG PET or amyloid imaging or in 

circumstances where a research center has a hybrid PET-MRI scanner. On the other 

hand, ASL is attractive due to use of magnetically tagged water as a non-invasive tracer. 

This is ideal for use in older adults who may not withstand exposure to radioactive PET 

tracers or contrast, and has been shown to correlate well with [15O] water PET.25 CVR 

allows for quantification of changes in CBF via ASL or blood oxygen level dependent 

(BOLD) MRI scanning following breath holding, hypercapnic challenge, or other 

vasoactive stimulus, thus allowing for measurement of vessel vasodilation and 

constriction capability. Microstructural integrity of white matter can be measured on 



5 

diffusion weighted imaging by fractional anisotropy (FA) or mean diffusivity (MD). These 

markers are thought to represent very early parenchymal changes associated with SVD. 

Finally, some of the newest methods include imaging modalities to directly measure the 

cerebral small vasculature, such as time of flight (TOF) and SWI at ultra-high field 

strengths. TOF with application of a maximum intensity projection allows for MRI imaging 

of cerebral arteries, which will appear brighter than the surrounding tissue.26 Conversely, 

brain small veins can be measured using SWI and application of a minimum intensity 

projection to improve visualization of vessel continuity.27 With this method, veins appear 

darker than surrounding tissue due to the paramagnetic properties of the 

deoxyhemoglobin in the deoxygenated venous blood. 

1.4 PROMOTERS OF CEREBRAL SMALL VESSEL INTEGRITY 

From 2002-2012, 244 experimental drugs for AD dementia were assessed in clinical 

trials. Only one (Namenda/memantine) made it to market it in that time.28 Thus, finding 

promoters of cerebral small vessel integrity has become increasingly urgent as they 

represent intervention targets for late-life cognitive impairment and dementia. While the 

literature suggests many candidate promoters, this dissertation will focus on some of the 

most promising: physical activity (PA), growth factors, and vascular and cardiometabolic 

risk factor (VCMRF) reduction (Figure 1-1 and 1-2). They will be discussed in the next 

several chapters. 
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Figure 1-1. Targeting cerebral small vessel integrity offers a promising approach to intervene on 
cognitive impairment and dementia 
 
Among the many candidate promoters suggest in the literature, the ones in bold will be addressed in this 
dissertation. 
 

 

Figure 1-2. Conceptual model 
 
Physical activity, growth factors, and vascular and cardiometabolic risk factor reduction (VCMRF) may 
impact cerebral small vessel integrity and cognitive impairment and dementia through the direct and indirect 
paths shown here. These relationships are likely moderated through other non-modifiable factors and other 
VCMRF. The relationships in red will be evaluated in this dissertation. 
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2.0  CANDIDATE PROMOTER: PHYSICAL ACTIVITY   

PA is a strong candidate promoter of cerebral small vessel integrity. It has beneficial 

effects on brain changes relevant to both AD and SVD, and the size of PA’s potential 

population level impact on AD dementia is large. The population attributable risk (PAR) 

of physical inactivity on AD dementia—the proportion of AD dementia in the population 

that could be eliminated if physical inactivity was eliminated—is estimated to be between 

21-32% percent.29,30 PAR is a function of both relative risk (RR) and prevalence of the 

risk factor in the population. In order to compare the PAR of several AD risk factors, I 

calculated a PAR of 26.35% based on a RR of AD dementia of 1.72 for low PA vs. high 

PA (PA < 3 times per week vs. ≥ 3 times per week)30 paired with an estimated prevalence 

of physical inactivity of 49.7% based on the proportion of the Pennsylvania state 

population 65 years and older not meeting guidelines for 150 minutes weekly of PA.22 

This is compared with the PAR of other risk factors in Figure 2-1. Physical inactivity has 

one of the largest known PARs of AD-related risk factors including depression, smoking, 

mid-life hypertension, low education, mid-life obesity, and type 2 diabetes. While many of 

these risk factors are intertwined, PA nevertheless has a large population effect on AD 

dementia. Given such a large population-level impact of increasing PA on reducing AD 

dementia risk, harnessing this intervention and understanding its mechanisms are 

critically important goals. PA may operate through VCMRF reduction or through a direct 

effect on small vessel integrity (Figure 2-2).  
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Figure 2-1. Population attributable risks (PAR) for select Alzheimer’s disease risk factors 
 
Physical inactivity PAR based on RR of 1.72 and prevalence of those ≥ 65 years of age in Pennsylvania 
not meeting physical activity recommendations of 150 minutes per week of 49.7%.22 Other PAR estimates 
(Based on Barnes, et al.29    from Beydoun, et al.30 ) 

 

 

 

Figure 2-2. Physical activity as a promoter of cerebral small vessel integrity 

Physical activity may promote cerebral small vessel integrity through vascular and cardiometabolic risk 
factor (VCMRF) reduction, by increasing growth factors (discussed in chapter 3), or through other 
mechanisms shown here as the direct effect of physical activity on cerebral small vessel integrity. 
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2.1 PA IS BENEFICIAL FOR BRAIN CHANGES RELATED TO AD AND SVD 

2.1.1 Hippocampal volume and vascularization 

PA is related to lower risk of poor functional cognitive outcomes including MCI31 and AD 

dementia,29,30 but why this is the case is not fully determined. In humans, changes in 

hippocampal volume in response to PA are seen on MRI.32-35 The ability of PA to slow or 

even reverse hippocampal atrophy, a key biomarker of cognitive impairment,36-42 MCI, 

and AD, make PA a promising candidate in their prevention. There are many possible 

functional or morphological changes that could explain the neuroprotective effects of PA 

including creation of new neurons, other morphologic improvements to existing neurons, 

better vascularization and nutritional supply of existing neurons, or better functioning or 

transmission in existing neurons. 

2.1.1.1 Creation of new neurons 

PA may beneficially impact hippocampal volume through promotion of neurogenesis43-48 

(for a recent review, see Patten et al.49). Unique multi-modal studies in animals and 

humans have been designed to investigate the mechanisms of PA effects on 

hippocampal atrophy. Several studies from the same group strongly suggest 

neurogenesis as the mechanism. They found that voluntary* wheel running in mice 

                                            

* Some murine experiments of the effects of running use forced running. Forced and voluntary running 
induce different effects. Voluntary runners have been shown to have greater hippocampal brain-derived 
neurotrophic factor levels and better motor recovery post-stroke,50 less stress/anxiety, 50.and possibly 
better recognition memory and reduced numbers of amyloid plaques in a transgenic model of AD.52 
Forced runners generate more surviving new neurons, but it comes with the cost of greater stress/anxiety. 
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reduced age-related hippocampal gray matter loss.53 54 They have shown that blocking 

hippocampal neurogenesis via focal irradiation abolishes PA-related hippocampal GM 

maintenance. 54 When the cellular and vascular correlates of this were evaluated through 

histologic exam, the factor that explained this best in regression modeling was 

neurogenesis as opposed to glial proliferation, vascular density or branching, or reduced 

cell death.55 Other researchers have shown that in male rats dihydrotestosterone can be 

synthesized locally in the hippocampus in response to exercise.56 Dihydrotestosterone 

binds to androgen receptors, and this mechanism is capable of inducing neurogenesis. 

These effects were confirmed when neurogenesis was abolished by administration of an 

androgen receptor antagonist.56 However, some reports indicate neurogenesis is actually 

quite rare in older adult humans,57 thus calling for more investigation of this mechanism. 

2.1.1.2 Other morphologic improvements to existing neurons 

Research in animals suggests other morphological mechanisms of PA effects on 

hippocampal atrophy. Combined use of 9.4T MRI and ex-vivo Golgi staining has shown 

that voluntary wheel running in rats increased hippocampal volume and thin dendritic 

spine count in dentate gyrus in a rat model of depression.58 This study did not 

simultaneously evaluate other mechanisms. 

In a highly multi-modal human study incorporating neuroimaging measures of 

structure, vascular function, and myelination to interrogate pathways of PA effects on the 

hippocampus in sedentary adults (N=62; mean age: 34), investigators concluded that the 

hippocampal volume increases induced by PA were more consistent with increases in 

myelination than with vascular changes.59  
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2.1.1.3 Better vascularization and nutritional supply of existing neurons 

PA may induce its beneficial effects through angiogenesis and alterations in small vessel 

density.60-64 Examination of neurovascular microstructure in living humans is not yet 

possible limiting our direct knowledge of PA-induced neurogenesis, spine formation, and 

the like. Nevertheless, multi-modal studies of humans have attempted to evaluate 

vascularization impacts of PA on hippocampal plasticity. In a study of 12 weeks of interval 

treadmill training vs. a stretching control in sedentary older adults, PA induced 

improvements in aerobic fitness and rCBF and rCBV (when adjusted for age) but not 

hippocampal head volume.65 However, across the full sample, percent changes in fitness 

were positively correlated with percent changes in rCBF, rCBV, and hippocampal head 

volume; changes in hippocampal head volume were positively correlated with changes in 

rCBF.65 Structural equation modeling with these variables indicated that improvements in 

recognition memory seen in the study could be plausibly mediated either by 1) vascular 

plasticity indirectly through its benefits on neural plasticity or 2) directly by vascular 

plasticity.65 Thus, this study is suggestive of a role for vascular integrity in reducing 

hippocampal atrophy. It is important to note that this study focused on participants with a 

far older mean age and had a PA intervention of far longer duration than Thomas, et al., 

and this may explain their differing conclusions regarding the importance of vascular 

plasticity. 

2.1.1.4 Better functioning or transmission in existing neurons 

By combining 9.4T MRI and MR spectroscopy in mice, investigators found that voluntary 

wheel running in mice was associated with decreased hippocampal glutamate post-

intervention, and glutamate was negatively correlated hippocampal volume.53 Therefore, 
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the glutamatergic system may be implicated in PA effects on hippocampus, but further 

studies will need to clarify whether this relationship is causal. 

2.1.2 Cerebral small vessel disease 

PA may also exert beneficial effects on brain health through impact on cerebral SVD. As 

part of the review of risk factors for neuroimaging markers of SVD which will be discussed 

in detail in chapter 4, we reviewed the literature for studies of the relationship between 

PA and both traditional and novel neuroimaging markers of SVD. We summarize the 

results below.  

2.1.2.1 Traditional neuroimaging markers of SVD 

WMH. PA is a promising intervention strategy for SVD. According to a meta-analysis of 

nine studies in healthy adults > 60 years of age, higher physical fitness and activity levels 

were associated with lower overall WMH volume.66  

2.1.2.2 Novel neuroimaging markers of SVD 

We found one study evaluating the association of PA with FA/MD.67 Gow, et al., found 

that higher levels of physical activity predicted higher FA approximately 3 years later in 

models adjusted for age, sex, age 11 IQ, and social class. However, when hypertension, 

cardiovascular disease, and stroke were added to the model, the effect was attenuated,67 

suggesting that VCMRF mediate associations between PA and white matter 

microstructure. Higher fitness by VO2  max was associated with higher CVR in 

periventricular white matter, but lower frontal CVR.68 The reason for this directionality in 
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frontal regions is unclear, and much future work remains to be done to fully interrogate 

this pathway. Older adults who have participated in higher self-reported levels of aerobic 

PA over the prior ten years have been found to have statistically significantly lower small 

artery tortuosity and a greater number of cerebral small arteries by time of flight (TOF) 

compared with less active older adults.69 

2.1.2.3 Summary 

Overall, results regarding physical fitness and activity and CVR remain unclear. Increased 

levels of physical fitness and activity seem to increase WM microstructural integrity and 

overall decrease WMH. We found no studies evaluating the PA-SVD relationship in 

groups <60 years of age. These studies and those evaluating CBF in response to physical 

fitness and activity should be carried out in the future. 

2.2 DOES PA WORK THROUGH VASCULAR/CARDIOMETABOLIC RISK 

FACTOR REDUCTION? 

PA imparts a host of systemic vascular benefits, including reducing blood pressure among 

individuals with hypertension,70 improving insulin sensitivity,71 preventing diabetes,72 and 

possibly others.73,74 Thus improvements in cerebral small vessel integrity could be 

mediated by vascular risk factor improvements. 



14 

2.3 CONCLUSION 

PA is a good candidate promoter of cerebral small vessel integrity. There is evidence 

supporting the mediation of this effect through VCMRF reduction, but there may be other 

mechanisms of this effect, and if so, these would also be candidate promoters of cerebral 

SVD. Growth factors are one such mechanism, and they are discussed in detail in the 

next chapter. 
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3.0  CANDIDATE PROMOTER: GROWTH FACTORS  

3.1 A MECHANISM OF PA EFFECTS ON BRAIN HEALTH 

Because of their role in neuro- and angiogenesis, brain-derived neurotrophic factor 

(BDNF)75-77 and vascular endothelial growth factor (VEGF)78-80 have received substantial 

attention as potential mediators of the neuroprotective effects of PA. In animal models, 

experimental studies show that both BDNF and VEGF increase with increasing PA.62,64,81-

85 Direct administration of BDNF is associated with neurogenesis,77,86 and direct 

administration of VEGF is associated with greater brain small vessel density.87 

Importantly, VEGF may be necessary for neurogenesis88,89 and blocking VEGF has been 

shown to reduce the effects of PA on neurogenesis.88  In humans, PA increases BDNF 

in many studies of older adults,90-93 while results with PA and VEGF among older adults 

remain unclear (for a review, see Vital94). Higher BDNF levels have been associated with 

lower risk of AD,95 and pioneering cross-sectional96 and experimental studies97 have also 

shown a positive relationship of BDNF with hippocampal volume. Studies evaluating a 

PA/BDNF/cognition pathway98 have recently emerged in humans, but the relationships of 

BDNF and VEGF with cerebral small vessel integrity are critically missing from the 

literature (see Figure 3-1).  
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Figure 3-1. Growth factors as candidate promoters of cerebral small vessel integrity 

Growth factors such as brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor 
(VEGF) are candidate promoters of cerebral small vessel integrity. 

3.2 CANDIDATE PROMOTERS IN THEIR OWN RIGHT 

Although BDNF and VEGF are the molecular basis for some of the PA’s beneficial effects 

on brain health, they are also important candidate promoters of cerebral small vessel 

integrity in their own right. Given the large PAR of physical inactivity on AD dementia 

discussed in chapter 2, explaining even some of that effect could be very beneficial to 

frail older adults. These individuals are simultaneously the least able to participate in PA 

and the most at risk for AD dementia. Although we do not have pharmaceutical 

approaches yet to increase BDNF levels in humans, there is exciting new research in 

animal models and selected patient populations testing the effectiveness of 

pharmaceutical inducers of BDNF.99 If evidence is found supporting a role for these 

growth factors as promoters of cerebral small vessel integrity, harnessing BDNF and 

VEGF as pharmaceutical interventions to prevent and treat cognitive impairment and 

dementia would be a promising intervention, especially among those most at risk. 
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I discuss the final candidate promoter of cerebral small vessel integrity which this 

dissertation will consider, VCMRF reduction, in the next chapter. 
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4.0  CANDIDATE PROMOTER: VASCULAR AND CARDIOMETABOLIC RISK 

FACTOR REDUCTION  

VCMRF reduction may promote cerebral small vessel integrity. Given the modifiability of 

these factors, reducing this small vessel VCID represents a promising area of prevention 

for both cerebral SVD and cognitive impairment and dementia. VCMRF have been 

studied extensively in relation to neuroimaging markers of cerebral SVD. 

 

Figure 4-1. Reducing the burden or severity of vascular and cardiometabolic risk factors may 
promote cerebral small vessel integrity 

4.1 VCMRF FOR NEUROIMAGING MARKERS OF SVD 

To understand the current state of research and knowledge surrounding relationships of 

vascular/cardiometabolic risk factors for SVD in otherwise healthy individuals, my co-

authors and I carried out a survey of the literature. The resulting review article has since 

been published.100 We searched PubMed for review and original articles examining both 

traditional (WMH, SBI/lacunes) and novel (CBF, CVR, FA/MD, direct vessel measures) 

neuroimaging markers of SVD and their risk factors. Due to the recent review by Ungvari, 

et al.,24 we did not include microbleeds in this review. When available, meta-analyses 
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were used in lieu of the original articles. Studies that were cited by the articles we included 

were reviewed and also included if appropriate. Vessel morphology articles were not 

found using these search terms, and therefore a hand search was carried out. Included 

populations had to be community-dwelling, neurologically healthy individuals. Exclusion 

criteria were: a) hospitalized populations or disease state only population without a control 

group, b) sample size<50, c) narrative reviews, and d) autopsy studies (Figure 4-2). For 

example, if a study dealt with recent stroke patients, that study was excluded. If a study 

was carried out only in individuals with diabetes and no controls, that study was excluded. 

Studies were later stratified by population <60 years of age and ≥60 years of age. Figure 

4-3. summarizes the search strategy, which follows PRISMA guidelines 

(http://www.prisma-statement.org/). Detailed search terms may be found in Appendix A. 

 

Figure 4-2. Study inclusion / exclusion for review of vascular and cardiometabolic risk factors for 
cerebral small vessel disease 

 

Results are summarized below highlighting the number of studies assessing each 

relationship, the number finding evidence of an association, and the number carried out 

in populations with a mean age <60. When a study’s results differ from the bulk of the 

evidence, an exploration of the possible reasons is provided. Study designs are described 

as either cross-sectional or longitudinal. Four longitudinal designs were noted in the 

http://www.prisma-statement.org/)
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articles included in the review: 1) the predictor precedes the outcome, and each are 

measured only once; 2) there are repeated measures of the predictor, and the outcome 

is measure only once at the end of follow up; 3) there are repeated measures of the 

outcome, with the predictor measured only once at baseline; and 4) there are repeated 

measures of both the predictor and the outcome. Both designs 3 and 4 allow progression 

or incident SVD markers to be captured. Given the strength of such designs, these results 

are emphasized. Figure 4-4 summarizes the results of the review graphically. 

 

Figure 4-3. PRISMA search strategy for review of vascular and cardiometabolic risk factors for 
cerebral small vessel disease 
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Figure 4-4. Review of associations of vascular and cardiometabolic risk factors with neuroimaging 
markers of cerebral small vessel disease 
 
L = longitudinal study in one of four designs as follows. L1: predictor precedes outcome, each measured 
once. L2: repeated measures of predictor, outcome measured only at end of follow-up. L3: predictor 
measured only once at baseline, repeated measures of the outcome. L4: repeated measures of both 
predictor and outcome. *: meta-analysis. red: <60 years of age. black: ≥60 years of age. ⌀: no significant 
association. 

4.1.1 Blood pressure related measures 

Blood pressure is the most studied SVD risk factor. A variety of blood pressure related 

measures have been evaluated for associations with SVD. These include hypertension, 

antihypertensive medication use, systolic blood pressure (SBP), diastolic blood pressure 

(DBP), mean arterial pressure (MAP), and pulse pressure (PP). MAP, a measure of organ 

perfusion, cannot be measured directly, but an estimate can be calculated based on the 

following equation: MAP≅ SBP+(2xDBP)
3

. Normal MAP values range from 70-110 mm/Hg, 
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and MAP values below 70 mm/Hg can lead to hypoxia. Pulse pressure is calculated by 

SBP-DBP, and it is a marker of pulsatility. 

4.1.1.1 Traditional neuroimaging markers of SVD 

WMH. Twelve papers have reported an association of hypertension with WMH.101-112 Six 

of these studies were longitudinal,101,102,104,105,107,110, and one of these examined WMH 

progression.104 Only one study reported this association in a population <60 years old.106 

Two studies, one cross–sectional113 and one longitudinal examining WMH progression in 

the ARIC study,114 found no significant association of hypertension and WMH. These 

results, which differ from the bulk of the literature, may be explained by factors relating to 

the population under study as well as those relating to study design. First, Nyquist and 

colleagues’ examination of this relationship in 1st degree relatives of individuals with 

coronary artery disease may explain their null results.113 This population may have 

different risk factors for SVD given their high risk of large artery disease. Second, the 

ARIC study evaluated WMH progression in relationship to baseline hypertension.114 The 

follow-up time in this study was 10 years. Studies with long follow-up times can be 

vulnerable to survival bias. This occurs when those who survive 10 years with 

hypertension are more resilient than those who survive fewer years and are lost to follow-

up. In such a resilient group of participants, the importance of hypertension at baseline 

would be diminished. 

Six studies evaluated the relationship of antihypertensive medication use with 

WMH. Three longitudinal studies found an association of antihypertensive medication use 

with reduced WMH risk.102,107,115 One of these studies reported on WMH progression. 

Investigators working in the ARIC study reported no significant cross-sectional 
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association of antihypertensive medication use with WMH after adjustment for multiple 

comparisons.112 Counterintuitively, two studies have reported an association of 

antihypertensive medication use with greater WMH. One was cross-sectional,116 and one 

was longitudinal.105 Heckbert, et al. compared WMH among individuals taking different 

kinds of antihypertensive drugs (calcium channel blockers, loop diuretics, and beta-

blockers). It may be that among hypertensive individuals any treatment is better than no 

treatment. Given their study design, which did not compare antihypertensive drug users 

to non-users, we cannot draw a clear conclusion. 

Ten of twelve studies examining the relationships between SBP and WMH found 

a positive association.101,104,105,107,110,112,115,117-119 Eight of these were longitudinal in 

design,101,104,105,107,110,115,117,119 and four of these examined WMH progression.104,115,117,119 

One cross-sectional study120 and one longitudinal study,121 found no significant 

association of SBP with WMH. Only one study examined these relationships in a 

population with a mean age under 60 years old and found no significant association.120 

This study’s results are particularly interesting given that the sample is much younger 

than other studies (mean age 39.8). There are several possibilities for this result. First, it 

is possible that one measure of SBP is inadequate to capture its effect on WMH. Indeed, 

certain measures of SBP are more sensitive markers for relationships with WMH. Havlik 

et al. found that while mean SBP was not significantly related to WMH, moderate and 

high variability in SBP was associated with 2-fold increased risk of WM lesions.118 

Furthermore, Gottesman, et al. not only found that cumulative mean SBP was a stronger 

predictor than SBP measured at individual study visits, but that SBP values measured 

earlier in the course of the study had stronger associations with change in WMH than did 
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SBP values measured later, thus illustrating the importance of timing and variable 

definition in evaluation of risk factors.117 Second, it is possible that people this young have 

not been exposed to higher SBP levels long enough to see an effect on WMH. In both 

the Aribisala, et al. and Dickie et al. studies, SBP measures taken earlier in the course of 

the study were more strongly related to later WMH. 101,121 However, the finding regarding 

WMH progression did not survive confounder adjustment.101,121 Importantly, both of these 

papers are from the Lothian Birth Cohort, making their findings consistent, but also raising 

the concern that their findings are due to some inherent bias in the study sample. SBP in 

these two studies was collected at an age generally older than the others (~70 years old). 

This indicates that other factors such as vascular stiffness, lipids, etc. may be more 

important for WMH at older ages than measurements of SBP. This is consistent with SBP 

and hypertension interactions with age seen in other studies.119,120 Furthermore, a more 

cumulative exposure to high SBP may be needed to truly assess these relationships. 

Six studies found an association of higher DBP with WMH.105,107,110,112,115,119 Five 

of the six were longitudinal in design,105,107,110,115,119 and two of those assessed WMH 

progression.115,119 Interestingly, Van Dijk et al. found that both increases and decreases 

in DBP over time were associated with severity of periventricular WM lesions, suggesting 

that blood pressure variability may be important to this process.110   

All three of the studies examining the relationship between MAP and WMH found 

a significant positive relationship.112,122,123 One of these three studies was longitudinal, 

examining WMH progression.122 

Of three studies evaluating the association between PP and WMH, the two 

longitudinal studies evaluating WMH progression found the relationship between pulse 
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pressure and WMH progression to be non-significant,115,122 while the one cross-sectional 

study found a significant positive relationship.123 It should be possible that PP could act 

in much the same way as a cumulative exposure to SBP variable, as prolonged exposure 

to higher SBP increases arterial stiffness over time and this would be reflected in a wider 

pulse pressure. We cannot draw a conclusion based on the evidence here though as only 

one of the three studies that evaluated PP also evaluated SBP; the investigators reported 

a significant positive association of SBP with WMH progression, but no significant 

relationship of PP with WMH progression.115 

There is an important age*blood pressure interaction observed in this literature. 

Exposure to high blood pressure during midlife has been repeatedly linked to increases 

in WMH.104,105 However, with advanced age, high blood pressure can either have no 

association with WMH or protect against the development of WMH.119 Given their 

ischemic origins,124  proper perfusion is critical to prevent WMH. High blood pressure may 

be required to maintain proper cerebral perfusion among those with arterial stiffness 

stemming from long-term hypertension, thus having a protective effect with advanced 

age. These relationships between hypertension and the development of WMH likely 

reflect age dependent processes. Hypertension may be an early target for intervention 

because long-term exposure of the brain to high blood pressure may irreversibly alter the 

physiologic structure of the arterioles and capillaries leading to a less modifiable state.125 

SBI/lacunes. All five studies examining the relationship of hypertension with 

SBI/lacunes found a positive association.106,126-129 Only one study examined the 

relationship in a population with a mean age <60 years of age.106 All of the studies were 

cross-sectional. 
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One cross-sectional study of a Japanese population found an association between 

the odds of SBI and antihypertensive medication use.130 This may simply be a result of 

confounding by indication as this study did not adjust for duration of hypertension.  

Two articles examined SBP and SBI/lacunes.119,130 Ochi et al. found a significant 

relationship between SBP and SBI in a cross-sectional Japanese cohort.130 van Dijk et al. 

found no relationship between SBP and incident lacunes over a three year period.119 

Similar to SBP, two articles examined the relationship of DBP with 

SBI/lacunes.119,131 Longstreth et al. found a significant relationship between DBP and SBI 

in their cross-sectional study.131 However, van Dijk et al. found no relationship between 

DBP and incident lacunes over a three year period.119 

No studies evaluating the association of MAP or PP with SBI/lacunes were found. 

4.1.1.2 Novel neuroimaging markers of SVD 

Very few studies have evaluated BP related measures and novel neuroimaging markers 

of SVD. There were especially few studies assessing the range of BP measures with 

CBF, CVR, and direct vessel measures. One cross-sectional study found no significant 

relationship between SBP and CVR but a significant association between DBP and CVR 

due to breath holding or in a ratio of whole brain change and whole brain signal.132 This 

study included only people with atherosclerosis, however, and may therefore have limited 

generalizability.  

Results from the Rotterdam Scan Study show that individuals with severe 

hypertension had decreased FA in 4 of 6 specific association tracts and 1 of 2 

commissural tracts as well as increased MD in 4 of 6 specific association tracts, 1 of 2 

commissural tracts, and 1 of 2 limbic tracts. These findings were independent of age, sex, 
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intracranial volume (ICV), and tract-specific volume and WML volume.133 Results among 

middle-aged adults (mean age 39.2 (8.4)) were consistent with this, with brain integrity 

was usually higher in normotensive individuals than in prehypertensive and hypertensive 

participants.120 Higher SBP was in this cross-sectional analysis was also linearly 

associated with decreased FA and increased MD, especially in the anterior corpus 

callosum, the inferior fronto-occipital fasciculi, and the fibers that project from the 

thalamus to the superior frontal gyrus.120 Their results also hint again at important 

interactions which take place with vascular and cardiometabolic factors. The relationship 

of hypertensive status with brain microstructural integrity differed as a function of age, 

such that at younger ages the differences in brain integrity between hypertension, 

prehypertension and normotensives were greater than at older ages.  

4.1.1.3 Summary 

The evidence for a positive association of hypertension, SBP, DBP, and MAP with WMH 

is strong. Overall, antihypertensive medication treatment appears to be protective against 

WMH, with opposing results likely due to confounding by indication. Few studies have 

assessed these relationships in populations <60 years old. Multiple studies demonstrate 

that hypertension is positively associated with SBI/lacunes. Fewer studies have evaluated 

this outcome in relation to SBP and DBP, and none have evaluated the outcome in 

relation to MAP or PP. Few longitudinal studies have been carried out to assess 

relationships of BP-related measures with SBI/lacunes, and few studies have been 

carried out in populations <60 years old. There is a paucity of literature evaluating novel 

SVD markers in relation to BP-related measures, with the greatest evidence for a link 

between hypertension and worse white matter microstructural integrity. 
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Future studies of BP-related measures of SVD should control for duration of risk 

factor exposure and incorporate measures of BP-variability and cumulative mean BP. 

Studies should examine SBP and DBP in conjunction with one another because the 

response of one to the other may reveal important information about stiffness and 

compliance of the underlying vascular structure. For example, as DBP increases, SBP is 

expected to increase but the extent of this increase is determined by the stiffness and 

compliance of the artery.134 MAP and PP are measures that combine information from 

both variables, are easy to incorporate without additional equipment or measurement, 

and provide more insight into organ perfusion and vascular stiffness. Truly clarifying the 

nature of the relationships of antihypertensives with SVD outcomes will require: 1) 

controlling for duration of exposure to hypertension; 2) controlling for confounding by 

indication; and 3) classifying individuals as not on antihypertensives, treated but poorly 

controlled, and treated and well controlled. 

4.1.2 Dyslipidemia 

4.1.2.1 Traditional neuroimaging markers of SVD 

WMH. Hypercholesterolemia has been positively associated with WM lesions in cross-

sectional PATH analysis.109 However, it is unclear whether these results are statistically 

significant and whether these results are adjusted for important covariates. In the 

Northern Manhattan Study, although total cholesterol was not related to WMH volume 

(WMHV) approximately 6 years later, conversion from low to high risk total cholesterol as 

well remaining at a high-risk total cholesterol over the six-year period was associated with 

greater WMHV on the follow-up MRI.135 However, when WMH progression over time was 
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examined, neither hypercholesterolemia in mid-life nor total cholesterol in late life were 

significantly associated with WMH progression.104,119 It may be that there is a threshold 

effect for late-life total cholesterol and/or a critical duration of exposure to high cholesterol 

that is key for risk of WMH. 

Next, we will review the evidence regarding HDL and WMH. A meta-analysis of 

data from the Dijon and the Epidemiology of Vascular Aging (EVA) studies found that 

HDL was not significantly associated with WMHV in cross-sectional analysis.136 In the 

Northern Manhattan Study, HDL was not related to WMHV approximately 6 years later, 

however, conversion from low risk to high risk HDL levels over 6 years was associated 

with a greater WMHV at the 6 year follow up.135 In the Rotterdam Scan Study, HDL was 

not associated with WMH progression.119 However, data from the Lothian Birth Cohort 

demonstrated that a low ratio of HDL to total cholesterol was significantly associated with 

WMH progression.121 These mixed results indicate that more work remains to be done to 

clarify the role of HDL in WMH. It may be that HDL ratio is more important than absolute 

value or that there is a critical threshold below which HDL is associated with WMH. 

We found no evidence to support a link between LDL and WMH either cross-

sectionally136 or longitudinally with LDL measured 6 years prior to WMHV.135 

Finally, with regard to triglycerides, Schilling, et al., found that high triglycerides, 

were significantly associated with greater WMHV in a cross-sectional meta-analysis of 

data from the Dijon Study and the Epidemiology of Vascular Aging Study (total 

N=2608).136 While data from the Northern Manhattan Study showed that baseline 

triglycerides were not related to WMHV approximately 6 years later, transition from high 

to low risk triglyceride levels was associated with lower WMHV at 6-year follow-up.135 
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Thus, the evidence overall indicates a positive association between triglycerides and 

WMHV. 

SBI/Lacunes. We found three studies reporting on the association between various 

lipid profile components and SBI.119,126,136 

In the Rotterdam Scan Study, total cholesterol was not significantly associated with 

incident infarcts.119 

Regarding HDL, in both cross-sectional126,136 and longitudinal analyses,119 no 

significant association of HDL with SBI/lacunes has been reported. 

We found one study which assessed the relationship between LDL and 

SBI/lacunes. This cross-sectional study found no significant association.136 

Finally, regarding triglycerides, the meta-analysis from the Dijon and EVA studies 

found that triglycerides were cross-sectionally positively associated with frequency of 

lacunes.136 However, in cross-sectional analysis within the Atherosclerosis Risk in 

Communities Study (ARIC), triglycerides were not significantly associated with silent 

cerebral infarctions.126 There are important population differences between the studies 

that may explain these differing results. For example, the ARIC sample is approximately 

5-10 years younger than the two French samples in the meta-analysis. In addition, the 

ARIC sample is approximately 48% Black, while the French samples are likely all white. 

48% of the ARIC sample was hypertensive while 77% of the Dijon sample and 55% of 

the EVA sample were hypertensive. This is a large difference and given the relationship 

of hypertension with SBI/lacunes, this alone may explain the different results. Perhaps 

most importantly, Howard, et al., do not report the proportion of their sample on a lipid 

lowering drug, while this proportion was >30% in both French cohorts. Differences in 
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medication prescribing and dietary patterns over time and in the US vs. Europe are likely 

sources of varying results. 

4.1.2.2 Novel neuroimaging markers of SVD 

We found no studies evaluating the association of dyslipidemia with CBF, CVR, or direct 

measures of cerebral arteries or veins. We found one study assessing the relationship of 

dyslipidemia with WM microstructural integrity. In cross-sectional analyses within the 

Rotterdam Scan Study, a large cohort of over 4,000, no significant association was found 

between hypercholesterolemia and WM microstructural integrity in specific association, 

commissural, and limbic tracts after adjustment for HDL and lipid lowering medication.133 

4.1.2.3 Summary 

Some evidence suggests a role of dyslipidemia in WMH and SBI/lacunes. However, all 

studies we found assessing the role of dyslipidemia in SVD were carried out in those >60 

years of age, and no studies evaluated relationships with novel markers of SVD such as 

CBF and CVR. This represents a range of modifiable risk factors, and some evidence we 

reported suggests that intervention on lipids could impact SVD, especially WMH.  

4.1.3 Diabetes 

4.1.3.1 Traditional neuroimaging markers of SVD 

WMH. Cross-sectional and longitudinal assessments have failed to find a significant 

association of diabetes with WMH.104,108,112-114,119 It is important to note that when fasting 

blood glucose was treated as a continuous predictor instead of the dichotomous diabetes, 
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Knopman, et al., found a positive association with WM grade progression over 

approximately 10 years in the ARIC cohort.114 Diabetics with long sleep duration had a 

greater log-WMHV in cross-sectional analysis in the Northern Manhattan Study.137 Two 

additional studies found that insulin resistance was not related to WMH cross-

sectionally106 or WMH progression.138 

 

SBI/Lacunes. Longstreth, et al., reported a positive cross-sectional association in 

the Cardiovascular Health Study.131 The remaining found no significant 

association.119,126,129 These studies were a cross-sectional report from ARIC126 and both 

the cross-sectional129 and longitudinal reports119 from the Rotterdam Scan Study. The 

primary difference between the Cardiovascular Health Study and the Rotterdam Scan 

Study is the racial makeup, with CHS having 16% Black participants at the time of the 

report and the Rotterdam cohort being 100% white. If the Black participants of CHS were 

more likely to have diabetes, this may explain differing results. Two additional studies 

found that insulin resistance was related to single and multiple SBI/lacunes as well as a 

greater number of SBI/lacunes cross-sectionally106 and to incident lacunes.138 Thus, 

insulin resistance may be a more sensitive risk factor for SBI/lacunes than diabetes itself. 

Finally, in the ARIC cohort, there was a synergistic effect of fasting glucose with high SBP 

such that those in the highest tertile of each measure were at far higher risk of incident 

infarcts than those in the lowest tertile of each measure.114 

4.1.3.2 Novel neuroimaging markers of SVD 

We found no studies evaluating the association of diabetes with CBF, CVR, or direct 

measures of the vasculature. However, one large study reported that diabetes was 
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associated with decreased FA in specific white matter tracts including association tracts 

and forceps major.133 

4.1.3.3 Summary 

Overall, the bulk of the evidence does not support a strong link between diabetes and 

SVD. However, few studies have been carried out assessing this risk factor in individuals 

<60 years of age, and few studies have evaluated its association with early markers of 

SVD. Given the relationship of midlife hypertension with SVD outcomes in later life, 

assessing younger individuals will be important in future studies to understand whether 

other vascular risk factors during midlife confer risk of late life SVD. Insulin resistance 

may be a more sensitive risk factor for SBI/lacunes than diabetes. Diabetes may interact 

with other risk factors such as sleep and SBP, and these interactions should be evaluated 

in future studies. 

4.1.4 Inflammation 

4.1.4.1 Traditional neuroimaging markers of SVD 

WMH. The most studied inflammatory factor is C-reactive protein (CRP), and results 

regarding its relationship with WMH are mixed. Cross-sectional assessment in the 

Austrian Stroke Prevention Study139 found no association while the Three City Dijon 

Cohort showed a positive association of CRP with WMH.140 Of note, the Three City Dijon 

cohort is approximately 10 years older on average than the Austrian cohort, so older age 

or longer duration of exposure to inflammation may explain these differences. When 

evaluating progression of WMH, there was a positive association with progression of 
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periventricular WMH in the Rotterdam Scan Study, 141 but not of WMH overall, 

periventricular WMH, or deep WMH in the Dijon cohort 140 nor with WM lesions in the 

Austrian Stroke Prevention Study 139. The Rotterdam Scan Study used a visual rating 

scale while the Dijon Study used WMH volumes. It is possible that visual rating scales 

may be prone to more error than volumes, the more sensitive measure, thus resulting in 

greater misclassification of the outcome. In addition, the Rotterdam Scan Study adjusted 

results for carotid plaques and IMT, which the Dijon Study did not do. These issues may 

explain the differing results.  

Interleukin 6 (IL-6) has also been evaluated in relation to WMH in both the Dijon 

Study140 and the Health ABC study. 142 The overall evidence suggests that one-time, 

cross-sectional measures of IL-6 may not adequately capture the risk factor of interest for 

future WMH or WMH progression. Cross-sectional associations were significant in the 

Dijon Study,140  but not Health ABC.142 This could be due to the smaller sample size in 

the Health ABC study. While no association of IL-6 with WMH progression was found in 

the Dijon Study,140 and no association of rate of change of IL-6 over 10 years was found 

with later WMH in Health ABC, Nadkarni, et al., did find that mean 10 year IL-6 was 

positively associated with follow-up WMH volume. This suggests that cumulative 

exposure to IL-6 is more important than exposure at any one time 142. No other studies 

found have taken this into account, and it is likely quite important for exposure to all 

inflammatory factors. 

Regarding other inflammatory factors and composite factors, when fibrinogen was 

evaluated cross-sectionally with WMH, that association was found to be non-

significant.108 When a latent inflammation variable was constructed of the measurement 



35 

variables fibrinogen, CRP, and IL-6, no association was found in cross-sectional SEM 

analysis with a latent WMH variable in the Lothian Birth Cohort.143 In the Austrian Stroke 

Prevention Study, intercellular adhesion molecule (ICAM) but not thrombomodulin, tissue 

factor plasma inhibitor, prothrombin fragments 1 and 2, or D-dimers was positively related 

to WMH progression, and this survived adjustment for CRP in addition to other typical 

covariates.144   

SBI/Lacunes. In the Austrian Stroke Prevention Study, both the cross-sectional 

baseline association of CRP with SBI/lacunes and the longitudinal association of CRP 

with incident lacunes were non-significant in models adjusted for age, sex, and vascular 

risk factors.139 These results stand in contrast to the other main finding of this study, which 

demonstrated that higher CRP was associated with greater carotid atherosclerosis. 

These results may be reflective of the clear inflammatory pathway to atherosclerosis, but 

a different underlying pathophysiology in SVD. Findings in the Three City Dijon cohort 

confirm those of Schmidt, et al., with no cross-sectional associations of IL-6 or CRP with 

SBI/lacunes nor any associations with incident SBI/lacunes. 140 

4.1.4.2 Novel neuroimaging markers of SVD 

No studies evaluated the relationship of inflammation with CBF, CVR, or direct vessel 

measures. One study evaluated the association of interleukin 6 (IL-6) with white matter 

microstructural integrity in 179 individuals from the Health ABC study.142 They found no 

association of IL-6 measured concurrently with FA, rate of change of IL-6 over 10 years, 

and mean 10-year IL-6 with FA. It is possible that there was no significant association 

with rate of change of 1L-6 because IL-6 changed so little over the course of the study. 

However, given that mean 10-year IL-6 was also non-significantly associated with FA in 



36 

models well controlled for appropriate confounders, the current state of the evidence 

indicates no association of IL-6 with FA in older adults. 

4.1.4.3 Summary 

The state of the evidence is strongest for a positive association of inflammatory factors 

with WMH. We found no evidence to support an association between inflammatory factors 

and FA/MD or SBI/lacunes. No studies evaluated inflammatory factors in relation to CBF, 

CVR, or direct vessel measures, and no studies evaluated these associations in those < 

60 years of age. Future studies should focus on those areas and attempt to account for 

cumulative exposure to inflammatory factors. 

4.1.5 Obesity by body mass index (BMI) 

4.1.5.1 Traditional neuroimaging markers of SVD 

WMH. Among people less than 60 years of age, one study found an association of obesity 

with WMH, 113 while two found no significant association.138,145 In people with a family 

history of early onset coronary artery disease BMI>30 was associated cross-sectionally 

with extreme WMH scores, however obesity by this definition was not related to WMH 

volume in this study. 113 Conversely, both cross-sectional analysis in a Japanese 

population, and longitudinal analysis within the ARIC study showed that BMI was not 

significantly associated with WMH or WMH progression.138,145 The Framingham Offspring 

Study demonstrated that among individuals>60 years of age BMI was not associated with 

WMHV progression.104 
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Thus, these results suggest overall that BMI is not associated with increased 

WMH. However, more specific measures lead to different conclusions. Though some 

studies report that waist circumference and waist to hip ratio are not associated with 

WMH, 104,138, Yamashiro, et al., showed that waist circumference (in unadjusted models) 

and visceral fat accumulation are associated with WMH among younger Japanese. In 

fact, there is an independent contribution of visceral fat accumulation beyond BMI and 

waist circumference when all are included in the same age and hypertension adjusted 

model.145 

SBI/Lacunes. No significant associations were found in cross-sectional analyses 

with Japanese <60 years of age 145 nor with ARIC study participants>60 years of age.126  

However, as with WMH, other markers of obesity are likely more sensitive for 

associations with SBI. Yamashiro, et al., showed that large waist circumference and 

visceral fat accumulation were independently associated with silent lacunar infarcts when 

adjusted for age, hypertension, and obesity by BMI cutoff.145 Dearborn, et al., found that 

waist circumference was positively associated with incident lacunes >7mm, and waist to 

hip ratio was associated with all incident lacunes. 138 

4.1.5.2 Novel neuroimaging markers of SVD 

We found no studies evaluating the association of obesity with CBF, CVR, WM 

microstructural integrity, or direct small vessel measures. 

4.1.5.3 Summary 

These results suggest that visceral fat may be most important in relation to SVD and likely 

represents the most sensitive measure of central fat mass, an important factor in 



38 

endocrine and cytokine signaling, inflammation, and subclinical cardiovascular 

disease.146-148 Few studies have evaluated these relationships, however. Future studies 

should examine relationships of earlier markers of SVD in relation to visceral fat mass. 

4.1.6 Smoking 

4.1.6.1 Traditional neuroimaging markers of SVD 

WMH. In both individuals <60 years of age,113 and those older than 60,104,112,119,121,149 

smoking is associated with WMH. Two of these studies examined WMH 

progression.104,119 Results may be dependent on the treatment of the WMH progression 

variable. When Debette, et al. examined progression continuously, associations with 

smoking were non-significant.104 But when they were examined as a dichotomous 

variable of extensive progression (>1.34 cm3, the equivalent of one grade on the CHS 

visual rating scale) vs. non-extensive progression (≤1.34 cm3), associations were 

significant. 

SBI/Lacunes. Both ARIC and CHS investigators found a cross-sectional 

relationship of smoking with SBI/lacunes,126,150 while both a cross-sectional and 

longitudinal assessment of this relationship in the Rotterdam Scan Study demonstrated 

no significant association.119,129 The stronger longitudinal design shows no association, 

but these study samples have differing sizes and characteristics which may also explain 

differing results. CHS and ARIC were far larger studies, evaluating 3660 participants and 

1737 participants respectively potentially affording more statistical power to detect an 

effect if one is present. Rotterdam evaluated associations in 1077 (cross-sectional) and 

668 (longitudinal). CHS and Rotterdam had a similar mean age around 71, but the sample 
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in ARIC was nearly 10 years younger. CHS and ARIC had a greater proportion of females 

and non-white participants, while Rotterdam has only white participants. If associations 

of smoking and SBI/lacunes are stronger in young-old adults, females, and non-whites, 

this could explain differing results. Finally, scanning protocols were different in the 

studies, and this could also explain differing results. 

4.1.6.2 Novel neuroimaging markers of SVD 

There were no studies evaluating the relationship of smoking with CVR or direct vessel 

measures. One study evaluating the relationship of smoking and CBF showed no 

significant cross-sectional association among individuals <60 years of age.151 Two 

studies evaluated the relationship of smoking with WM microstructure.133,149 In cross-

sectional analyses in the Radboud University Nijmegen Diffusion Tensor and Magnetic 

Resonance Cohort (RUN DMC), smoking was associated with higher MD values in both 

normal appearing white matter (NAWM) and WM lesions.133,149 RUN DMC data show that 

associations of smoking with lower FA and relationships of smoking with FA/MD in WM 

lesions were not significant.149 This may indicate that macrostructural damage is 

significant enough that associations with microstructural integrity cannot be detected. The 

associations within the Rotterdam Scan Study were within specific WM tracts.133 More 

years since quitting smoking was associated with better WM microstructural integrity in 

NAWM, but not within WM lesions.149 
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4.1.6.3 Summary 

Smoking is associated with WM microstructural integrity, WMH, and potentially with 

SBI/lacunes. Results may be affected by differing sample sizes, characteristics, and 

scanning protocols. Future studies in individuals <60 and diverse cohorts are needed. 

4.1.7 Subclinical vascular disease measures 

4.1.7.1 Traditional neuroimaging markers of SVD 

WMH. We found eighteen analyses evaluating the relationship between large vessel 

characteristics and WMH. Nine found a positive association 152 123,153-157 158,159 and ten 

found non-significant.101,112,119,122,123,152,153,155,156,160 One study examined relationships in 

a population with a mean age under 60 years old 161,  two were meta-analyses 158,159, 

eight were cross-sectional 101,112,123,152,153,157,160,161, one was a case-control 156, three were 

longitudinal 154,155 119, with one examining progression of neuroimaging markers 119. Many 

different measures of subclinical vascular disease were used across studies, for simplicity 

we will present the results from three major categories: Atherosclerosis, IMT, and PWV.  

Atherosclerosis. Atherosclerosis, as measured by atherosclerotic lesions, calcified 

deposits, and/or plaques, were examined in 4 studies 119,152,155,159. Two original 

investigations 152,155 and a meta-analysis }159 found significant relationships between 

Atherosclerosis and WMH cross-sectionally 152 and longitudinally 155,159. By contrast, van 

Djik et al 119 did not find a significant association longitudinally; however, in this study 

participants with both MRIs were younger and healthier overall than those who were 

ineligible for a second MRI. Thus, participants with both MRIs were less likely to have 

plaques, potentially explaining the null results. 
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It is worth mention that the study of de Leeuw et al. had somewhat mixed findings: 

where aortic atherosclerosis during midlife was associated with periventricular WML 

about 20 years later, but if the measure of aortic atherosclerosis occurred later in life, 

closer to the time of the MRI there was no longer an association between aortic 

atherosclerosis and WMH.155 

IMT. Four studies examined carotid IMT and WMH, three of which found it to be 

non-significantly related 112,119,152 and only one finding a significant relationship 156. The 

Hajdarević et al. study used a case-control design with age, gender, and risk factor 

matching. The risk factors on which cases and controls were matched are not explicitly 

stated, but there was no statistical difference in hypertension, diabetes, hyperlipidemia, 

atrial fibrillation, coronary artery disease, peripheral artery disease, smoking, alcoholism, 

or previous TIA between the groups.  

PWV. Four of six studies including one meta-analysis found that vascular stiffness, 

(as measured by carotid-femoral pulse wave velocity (cfPWV), brachial-ankle PWV 

(baPWV), aortic pulse wave velocity) found a significant relationship with WMH,123,156-158 

two studies found no significant relationships.122,161 Tsao et al. was one of the few studies 

to examine progression, while Nakano et al. was the only study in a population with a 

mean age under 60 years old. Furthermore, Nakano was in a Japanese population setting 

it apart from the other studies.161 In the meta-analysis which pooled the analysis of 5 

cross-sectional studies with mean ages of 41-67 years, it was found that for every 1 SD 

increase in arterial stiffness the odds of having WMH increased by 30% (OR 1.30 (95% 

CI: 1.16-1.46).158 
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Other measures. Wardlaw et al. found no association with a component measure 

of large artery disease measure, which included: ischemic heart dx, peripheral vascular 

disease, other circulatory problems and currently measured ankle brachial pressure 

index, carotid stenosis, and IMT 160. Other non-significant findings included Carotid lumen 

diameter 152, ICA pulsatility index,101 carotid artery stiffness 153,156, an index of STRAIN 

153, and brachial artery endothelial function.123 However, one study found that increased 

carotid diastolic diameter was associated with higher log WMH volumes.153 

SBI / Lacunes. All seven analyses examining the relationship between large artery 

characteristics and SBI found significant relationships.119,123,128,150,152,153,159 Five of these 

studies were cross-sectional,123,128,150,152,153 one was longitudinal looking at progression 

of markers,119 and one was a meta-analysis.159 

Atherosclerosis. Three out of five studies which examined the relationship between 

atherosclerosis and SBI / lacunes found a positive relationship between atherosclerosis, 

atherosclerotic lesions, or plaques and SBI / lacunes.119,128,150,152,159 Uehara fount the 

relationship to be significant in the basal ganglia but not white matter.  

IMT. CIMT was found to be related to progression in a longitudinal study119, but 

not to prevalence of SBI / lacunes cross-sectionally 152.  

PWV. Additionally, CFPWV  was found to be related to SBI / lacune.123  

Other measures. Carotid diastolic diameter153 and increasing carotid lumen 

diameter152 were both found to be related to SBI / lacunes. 

4.1.7.2 Novel neuroimaging markers of SVD 

CBF. One cross-sectional study examined the relationship between CBF and subclinical 

vascular disease measures 151. Jennings et al. found that increased carotid intima-media 
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thickness was related to lower total CBF in a population with a mean age under 60. This 

relationship remained after adjustment for age, race, current smoking status, sex, total 

brain volume, CMR measure, metabolic syndrome, or the Framingham index. 

CVR. We found no studies evaluating the association of large vessel 

characteristics with CVR. 

FA/MD. We found one study investigating the relationship between FA/MD and 

subclinical vascular disease.162 In this cross-sectional study, they found that increases in 

carotid-femoral pulse wave velocity was associated with decreased regional FA, in both 

the corpus callosum and the corona radiata (8.7 and 8.6 cc, respectively, P<0.001), in a 

population with a mean age less than 60 years old. 

4.1.7.3 Summary 

In summary, there have been many studies examining subclinical vascular disease and 

SVD outcomes. The majority of these studies have been in populations older than 60 

years old, are cross-sectional, and have examined WMH or SBI. It seems that some large 

vessel characteristics may be related more strongly to WMH than others (e.g. vascular 

stiffness and plaques compared to IMT), while almost all studies of various components 

of subclinical vascular disease and SBI found significant relationships. More prospective 

studies are needed to examine why some large vessel characteristics appear to have 

stronger relationships to certain markers of SVD than others, as well as, in younger 

populations and evaluating earlier markers or brain health. For example, everyone at an 

older age may have advanced IMT, limiting the variation and ability to detect associations 

in older populations. However, as IMT reaches the limits of progression, plaque will occur 

making it a better late stage marker for advanced vascular disease in older populations. 
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The opposite might be true as well, where IMT may be better at detecting risk of SVD if 

measured in younger populations, while plaque would be extremely rare at young ages.   

4.1.8 Composite Cardiovascular Disease Risk Scores 

4.1.8.1 Traditional neuroimaging markers of SVD 

WMH. A composite score of cardiovascular disease including diabetes, hypertension, 

heart disease, and clinical stroke was cross-sectionally associated with higher WMH 

burden, particularly in Blacks.163 Wardlaw et al. had similar results when using a 

composite measure of vascular risk history including hypertension, diabetes, 

hypercholesterolemia, smoking, and currently measured blood pressure, hemoglobin a1c 

(HbA1c), and plasma cholesterol. Importantly, although this cross-sectional relationship 

was statistically significant, the vascular risk factors explained only ~2% of variance in 

WMH, suggesting that non-vascular factors have more explanatory power.  

SBI/lacunes. No studies evaluated composite cardiovascular disease risk scores 

with SBI/lacunes. 

4.1.8.2 Novel neuroimaging markers of SVD 

No studies evaluated the relationship of composite cardiovascular disease risk scores 

with CVR, FA/MD, or direct vessel measures. In a community-based study with a mean 

age of 42.6, Jennings, et al. found that increased Framingham risk scores were 

significantly associated with decreased total CBF, even after adjustment for age, race, 

current smoking status, sex, total brain volume, CMR measure, and metabolic 

syndrome.151 
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4.1.8.3 Summary 

Few studies examined the relationship between composite cardiovascular disease risk 

scores and markers of SVD. Only one study examined this relationship in a population 

with a mean age <60.151 Among these studies, cardiovascular disease risk was 

consistently related to increased risk of SVD markers, however vascular risk factors may 

only explain a small amount of the variance in SVD markers,160 and therefore, other 

explanatory factors and markers of subclinical disease should be investigated.  

4.1.9 Clinical Vascular Disease 

4.1.9.1 Traditional neuroimaging markers of SVD 

WMH. Two cross-sectional studies found no significant relationships with clinical vascular 

disease and WMH.108,112  

SBI/lacunes. In a cross-sectional study in a Japanese population ischemic heart 

disease was related to an increase in SBI within the basal ganglia but not within the 

WM.128 

4.1.9.2 Novel neuroimaging markers of SVD 

No studies evaluating the association of clinical vascular disease with novel markers of 

SVD were found. 

4.1.9.3 Summary 

The overall findings suggest that clinical vascular disease is not related to markers of 

SVD. However, there are several reasons that this may be an artifact rather than the true 
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relationship. First and foremost, this could be an artifact of the inclusion/exclusion criteria 

of this literature review. The included studies were selected to evaluate relationships in 

healthy populations, and specifically excluded any group that was hospitalized or 

recovering from an acute event. Second, it could be that many individuals with overt 

disease are too ill to participate in research, leaving only the healthiest and most resilient 

individuals in the reviewed studies. Finally, it could be that other factors confound this 

relationship, especially given that all the reviewed studies were cross-sectional. Future 

prospective studies are needed to clarify the nature of the relationship between clinical 

vascular disease and SVD. 
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5.0  BARRIERS TO PROGRESS AND GAPS IN KNOWLEDGE 

There are several barriers preventing progress in the field, as well as gaps in knowledge 

that this dissertation will address. 

5.1 SVD NEUROIMAGING CAPTURES LATE-STAGE CHANGES 

First, traditional neuroimaging markers of SVD capture late-stage changes, and these 

have become substituted for direct knowledge of diseased vessels. This quote from 

Pantoni is an apt summary of the problem: 

 

“Unlike large vessels, small vessels cannot be currently visualised in vivo; 

therefore, the parenchyma lesions that are thought to be caused by these vessel 

changes have been adopted as the marker of small vessel disease, and small 

vessel disease has become a synonym of brain parenchyma lesions.”3 

 

While WMH demonstrate parenchymal damage (myelin pallor, axonal loss, gliosis, 

and edema), they also show reduced CBF and abnormalities of the small penetrating 

vessels seen on post-mortem exam, such as tortuosity, venous collagenosis, and 

arteriolar thickening.2 However, researchers have been unable to measure the vessels in 

vivo in humans. 
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5.2 RISK FACTOR INTERACTIONS ARE NOT EVALUATED 

Second, prior studies of VCMRF and brain health typically do not examine interactions of 

the VCMRF with one another nor with important other non-modifiable factors such as sex, 

age, and APOE*4 positivity. This is likely because these factors tend to be correlated, 

and the number of interactions of interest is large. But we are living longer with multiple 

chronic conditions, and such multimorbidity increases with age.164,165 In this era of 

multimorbidity among older adults, these interactions are critical to evaluate in order to 

understand which combinations of risk factors and non-modifiable factors increase risk 

the most. This will allow us to target specific preventions and treatments to specific sub-

groups based on risk profile, moving us toward the promise of precision medicine. 
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6.0  PROPOSED SOLUTIONS TO ADDRESS GAPS IN KNOWLEDGE 

6.1 PROPOSED SOLUTION FOR PROBLEM 1: SVD NEUROIMAGING 

CAPTURES LATE-STAGE CHANGES 

Ultra-high field neuroimaging such as 7T MRI has emerged as a way to image the small 

deep medullary veins in the brain. The high strength of the magnet increases signal to 

noise ratio,166 resulting in exceptionally clear images. SWI uses both phase and amplitude 

information for endogenous contrast. It exploits the paramagnetic properties of the 

deoxyhemoglobin in deoxygenated blood to visualize the cerebral small veins. Although 

seminal SWI papers describe the ability of the modality to visualize these veins,27,167 they 

describe neither how to measure them nor their implications for brain health. To address 

this limitation, I develop a method using SWI for direct small vein measurement in older 

adults. Relationships of small vein characteristics with potential neurovascular integrity 

promoters are evaluated cross-sectionally.  

Second, whether neurovascular integrity promoters are related over time with 

improvement in direct measures of small vessel health is unknown. In the second 

analysis, within the context of a randomized controlled trial, I evaluate whether candidate 

neurovascular promoters including physical activity and growth factors can improve 

cerebral small vein health profiles as characterized by this 7T SWI method. 
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6.2 PROPOSED SOLUTION FOR PROBLEM 2: RISK FACTOR INTERACTIONS 

ARE NOT EVALUATED 

Existing evidence demonstrates that there are some known interactions of interest such 

as those of VCMRF with age and sex. Female sex is associated with SBI/lacunes119,150,168 

progression of WMH119 in those >60 years of age. This impact of sex on brain health 

appears to vary by age, although few studies have been designed to evaluate this. In 

addition, there are specific interactions of VCMRF which have been suggested by existing 

literature. These include interactions of diabetes with SBP169 and sleep.137 An 

understanding of interactions is crucial given the propensity of older adults to have 

multiple chronic health conditions. Evidence regarding these interaction effects can be 

used for both risk-stratification and to tailor interventions. To address this gap, I carry out 

a study across 10 years of follow-up in an observational cohort to 1) evaluate several a 

priori interactions of interest as described above and 2) explore new interactions via a 

classification and regression tree (CART).  
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7.0  POPULATION NEUROSCIENCE FRAMEWORK 

The three papers presented next in this dissertation are based on a population 

neuroscience framework, and as such, it is important to understand some background 

regarding this approach and how the papers of this dissertation fit into that framework. 

The bodies of literature in both human psychology170 and neuroscience171 have been 

critiqued as being based on those who are Western, educated, industrialized, rich, and 

democratic (WEIRD). It is also worth pointing out that studies of human neuroscience are 

generally small and often use convenience samples of healthy college undergraduates 

as study participants. Of primary interest in this dissertation is the problem this poses 

when our population of interest turns to those who are older and less healthy.  

It is in this context that the field of population neuroscience of aging has evolved. 

Population neuroscience applies epidemiological methods and translational research to 

draw conclusions that are more generalizable or more adequately leverage population 

heterogeneity to study determinants of health and disease.172,173 Falk, et al. point out that 

in this approach, sampling strategy and mechanisms of health and disease are 

emphasized.172 Other features include: multilevel views of exposures including 

environment, behavior, medical conditions, and molecular markers; well-characterized 

study samples; life-course and longitudinal study designs; and both descriptive and 

interventional epidemiology. Such an approach requires multidisciplinary teams of 

researchers from epidemiology, biostatistics, psychology, neuroscience / neuroimaging, 

and other fields to carry out studies fusing brain and behavior.  
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Ganguli, et al. have recently suggested re-conceptualizing neuroepidemiology and 

psychiatric epidemiology studies of dementia as population neuroscience.174 This 

dissertation focuses on promoting cerebral small vessel integrity in order to prevent 

cognitive impairment and dementia—exactly the kind of work that can be done with a 

population neuroscience approach. Papers 1 and 2 present descriptive and intervention 

work respectively in the context of an MRI sub-study within a randomized controlled trial 

of physical activity. The focus is on understanding of biologically plausible pathways to 

cerebral small vessel integrity. These studies employ careful characterization of the study 

participants, use of molecular markers, and advanced neuroimaging methods. Paper 3 is 

a population-based study of incident cognitive impairment. Participants were selected 

from voter rolls to be representative of the population. Once again, careful 

characterization of the study participants, including detailed neuropsychological testing, 

is used. What unites these three papers is the population neuroscience framework. 

Carrying out the work represented in the three papers together has provided me with the 

skills and insights that prepare me to carry population neuroscience research forward in 

the next stage of my academic career. 
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Interventions and Independence for Elders Magnetic Resonance Imaging study; 3MS = 

Modified Mini-Mental State Examination 
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8.1 ABSTRACT 

Background and Purpose. Traditional neuroimaging markers of small vessel disease 

focus on late-stage changes. We aimed to adapt a method of venular assessment at 

7Tesla for use in older adults. We hypothesized that poorer venular morphological 

characteristics would be related to other small vessel disease neuroimaging markers and 

higher prevalence of small vessel disease-Alzheimer’s disease risk factors. 

 

Materials and Methods. Venules were identified in periventricular regions of interest on 

SWI and defined as tortuous or straight. Tortuosity ratio was defined as total tortuous 

venular length divided by total straight venular length. WMH burden (visually rated from 

0 to 3) and number of microbleeds (0, 1, >1) were determined. Differences in tortuous 

and straight venular lengths were evaluated. Relationships with demographic variables, 

APOE4, growth factors, pulse pressure, physical activity, and Modified Mini-Mental State 

examination were assessed via Spearman correlations. 

 

Results. Participants had 42% more tortuous venular tissue than straight (median [95% 

CI]: 1.42 [1.13, 1.62]). APOE4 presence was associated with greater tortuosity ratio 

(rho=0.454, p=0.001), and these results were robust to adjustment for confounders and 

multiple comparisons. Associations of tortuosity ratio with sex and vascular endothelial 

growth factor did not survive adjustment. Associations of tortuosity ratio with other 

variables of interest were not significant.  
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Conclusion. Morphological measures of venules at 7T could be useful biomarkers of 

early stages of small vessel disease and Alzheimer’s disease. Longitudinal studies should 

examine the impact of APOE and VEGF on risk of venular damage. 
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8.2 INTRODUCTION 

Cerebral small vessel disease (SVD) increases dementia risk175 and vulnerability to 

Alzheimer’s disease (AD) neuropathology.176 Neuroimaging methods investigating SVD 

have traditionally relied on WM hyperintensities (WMH). However, WMH is a marker of 

late-stage SVD, reflecting advanced parenchymal damage, reduced CBF, and 

abnormalities of the small penetrating vessels.2 Thus, there is a need for radiological 

markers that capture the earlier stages of SVD relating directly to vessel health.  

With aging and hypertension, arteries have reduced ability to absorb flow 

pulsatility, thus transmitting highly pulsatile flow to the venules. Venular walls are well 

equipped to handle low pulsatile and slow flow, but not highly pulsatile flow. Pulsatility-

related damage can induce venular morphological changes such as collagenosis, leading 

to loss of elasticity and lumen narrowing/occlusion, which in turn promote ischemia. Both 

collagenosis and tortuosity lead to reduced CBF and increased upstream resistance, 

exacerbating arterial pathology. Extravasation and inflammatory response, including focal 

perivascular parenchymal infiltration, can also occur facilitated by the lack of tight 

junctions on the venous side circulation.177 Inflammatory cascades further damage the 

vasculature, reduce CBF, and compromise the BBB. These phenomena can become 

apparent as morphological changes such as tortuosity, collagenosis, and thicker basal 

lamina. Such changes have been seen in vivo in AD,178 and in postmortem studies appear 

more common with older age and in proximity to regions with WMH.179-181 Although it has 

not been tested directly, venular morphological alterations are considered to precede 

radiologically overt WMH. 
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Ultra-high field (7Tesla) MRI has emerged as a non-invasive method to visualize 

venous microcirculation.27,167 Specifically, SWI exploits the paramagnetic properties of 

deoxyhemoglobin to visualize venules without a contrast agent. Methods to quantify 

venules in multiple sclerosis,182 sickle cell anemia,183 CADASIL,180,184 and recently AD185 

have been reported. However, venular characteristics in relation to cerebral SVD in aging 

are unknown. 

Our primary aim was to demonstrate the feasibility of adapting published 

methods182,183 to study venular characteristics in older adults. Our secondary aim was to 

evaluate relationships of venular characteristics with neuroimaging markers of SVD—

WMH and microbleeds—and variables relevant to SVD and AD. We hypothesized that 

poorer venular morphological characteristics would be related to other SVD neuroimaging 

markers and higher prevalence of SVD-AD risk factors. 

8.3 METHODS 

8.3.1 Participants 

The Lifestyle Interventions and Independence for Elders MRI study (LIFE MRI) is a 

neuroimaging study within a randomized controlled trial, which demonstrated that 

physical activity prevents major mobility disability in at-risk community-dwelling older 

adults vs. health education control (hazard ratio, 0.82, p=0.03).186 The study protocol was 

approved by the University of Pittsburgh Institutional Review Board. All participants 
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provided written informed consent. The present study (N=53) uses images from the 

baseline visit. 

The LIFE study design was previously reported.187 Supplemental Table 1 shows 

inclusion/exclusion criteria. Participants were not screened for MRI based on caffeine use 

due to minimal reported average caffeine-related signal change of veins in white matter 

(-2±1.2%).188. Supplemental Figure 1 shows participant flow. 

8.3.2 Sample characteristics 

Age, race, and sex, self-reported by participants, were evaluated because of their 

association with SVD and AD.11-13,189,190 Apolipoprotein E (APOE) was genotyped using 

TaqMan (TaqMan probe C__904973_10, Applied Biosystems, Life Technologies, CA) 

and Pyrosequencing.191 APOE4 is the strongest genetic risk factor for late-onset AD.192 

Pulse pressure (systolic blood pressure-diastolic blood pressure (average of two seated 

measurements)) and physical activity were assessed because of their associations with 

AD30,193 and SVD.194,195 Physical activity was measured for seven days using hip-worn 

accelerometry (GT3X, Actigraph, LLC) as minutes per day of moderate physical activity. 

Finally, Modified Mini-Mental State Examination (3MS)196 was included as a measure of 

global cognition.  

8.3.3 Growth factors 

The angiogenic factors vascular endothelial growth factor (VEGF)79 and brain-derived 

neurotrophic factor (BDNF)197 were measured via the Luminex system using kits (Bio-
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Rad Human Cancer Panel EMD Millipore Human Neurodegenerative Disease Panel). 

Fasting blood, collected by venipuncture, remained at room temperature for 30-60 

minutes to clot, and was then centrifuged at 1600xg for 15 minutes at 4°C. Serum was 

aliquoted and immediately frozen at <-70°C and stored until analysis. Concentrations 

were determined with two sets of standard curves, with final values calculated according 

to standardized procedures we have validated.198  

8.3.4 Potential Confounders 

Self-reported antihypertensive medication use, which may affect pulse pressure, was 

recorded. Blood hemoglobin was measured as it may affect venular conspicuity on SWI. 

We also recorded SWI voxel size, which varied among the participants. 

8.3.5 Outcome Variables 

8.3.5.1 Venular characteristics 

Axial SWI MRIs were obtained at the University of Pittsburgh MR Research Center using 

a Siemens 8-Channel head coil on a 7Tesla scanner (TR=2000 ms; TE=15 ms; 64 slices). 

Voxels were 0.25x0.25x1.50 mm (x, y, z; N=40). Some scans were initially acquired with 

0.23x0.23x3.00 mm voxels, inter-leave gap=0.60 mm (N=12), or with 0.50x0.50x1.00 mm 

voxels (N=5) and were resampled to 1.50 mm slice thickness.  

A 4X1cm ROI was placed in each hemisphere, one slice below the uppermost slice 

on which ventricular CSF was visible. To maintain consistency, the ROI was placed based 

on native-space landmarks, centered along the anterior-posterior length of the ventricle, 
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and placed on the ventricle’s lateral wall (Supplemental Figure 2). The ROI was chosen 

because it corresponds to regions known to be vulnerable to SVD,178,184,185 is consistent 

with published methods,182,183 and allows for the greatest consistency in vessel 

orientation, with a clear course perpendicular to the length of the lateral ventricles. The 

minimum intensity projection (MinIP) was applied over three slices (4.5 mm) to improve 

visualization.27  

Three raters (CES, DRJ, NAM), were trained and overseen by a certified 

neuroradiologist (JM) and the study PI (CR). First, published protocols were studied and 

discussed among the raters, neuroradiologist, PI, and coinvestigators (HJA, RLM). Next, 

the same five MRIs were rated by the raters, each blinded to the tracings of the other two. 

Last, each venular tracing was discussed among the raters with the neuroradiologist and 

PI regarding presence/absence and straight/tortuous course. This was done until the 

raters were proficient in tracing and the results of their consensus were consistent with 

the judgment of the neuroradiologist/PI. Tracing was done using OSIRIX.199 Criteria to 

identify a venule were: a linear structure of intensity darker than the surrounding 

parenchyma; length >3 mm; and coursing through the ROI for > 3mm (to reduce inter-

rater variability of inclusion for vessels along the edge of the ROI). Most venules could be 

followed to obvious deep veins, and the dark appearance and orientation axial to the 

ventricles and deep within the WM also helped to identify the origin of the vessels as 

venous. Venules were traced across their full length, even if they continued outside of the 

ROI, to avoid artificial truncation. After all venules were traced, presence/absence of a 

venule was adjudicated by consensus among raters. A venule was included only if >2 of 

the three raters had traced it (Figure 1). Next, venular course (straight/tortuous) was rated 
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during the consensus meeting. A vessel that ran free of inflexion points ≥30° for the 

majority of its total length (> 60%) was defined “straight”; otherwise the vessel was defined 

“tortuous”. The length of each venule was computed as the median value of the lengths 

measured by the raters tracing that venule. Number and length of all consensus-traced 

venules were summed and total length and average length (total length/venule number) 

obtained for each participant. Tortuous venules are present in areas with WMH,179 thus 

we evaluated tortuous and straight venules separately. Tortuosity ratio was calculated as 

total tortuous length divided by total straight length. Thus, a tortuosity ratio>1 indicates 

greater tortuous venular length than straight length. Due to BOLD-related signal 

blooming, measures of diameter may not be accurate, thus we did not quantify diameter. 

8.3.5.2 White matter hyperintensities 

WMH was imaged using T2WI (TR=12500 ms; TE=55 ms; voxel size=0.5x0.5x6.0 mm) 

and MPRAGE (TR=3430 ms; TE=3.54 ms; voxel size=0.7mm3 isotropic) and rated by 

consensus of two raters (CR, HJA) using a 0-3 modified Fazekas rating scale.200 Ratings 

consisted of the following: 0=none: no punctate hyperintense areas or periventricular 

rims; 1=mild: few punctate hyperintense areas and/or limited amount of hyperintense rims 

around the ventricular horns; 2= moderate: multiple punctate hyperintense areas and/or 

larger rims around the ventricular horns; or 3=severe: confluent subcortical hyperintense 

areas and/or rims all around the ventricles, including horns and sides. Only 4/53 had no 

WMH (WMH=0), leaving 92% with at least mild WMH; thus, we combined 0 and 1 to 

create a “none/mild” category. Because the distinction between periventricular and deep 

WMH is not consistently meaningful, we did not differentiate between them.201 
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8.3.5.3 Microbleeds 

We classified cerebral microbleeds based on Greenberg, et al.202 Two trained raters 

(NAM, ELT) characterized microbleeds under the supervision of a neuroradiologist (JM). 

Microbleeds were defined as: black or substantially hypointense on SWI; round or ovoid 

(confirmed on adjacent slices); and at least half surrounded by brain parenchyma. To take 

advantage of the 7T magnet’s ability to capture quite small microbleeds, no minimum size 

criterion was used. Final ratings were based on consensus with disagreements mediated 

by the neuroradiologist. We counted total number of microbleeds across all 64 slices of 

the axial SWI and categorized totals as 0, 1, or >1 microbleed. 

8.3.6 Statistical Analysis 

Descriptive statistics were calculated as counts and percentages, means and standard 

deviations (SD), or medians and interquartile ranges (IQR). Differences were tested with 

t-tests, Wilcoxon rank sum tests, or chi-square tests, α=0.05. We also determined the 

median tortuosity ratio and calculated the 95% CI using 10,000 bootstrapped samples.  

We explored relationships of tortuosity ratio with other neuroimaging markers of 

SVD including WMH and microbleeds; non-modifiable factors including demographic 

variables (age, race, and sex) and APOE4; potentially modifiable factors including growth 

factors (VEGF and BDNF), pulse pressure (adjusted for antihypertensive medication 

use), and physical activity; 3MS; and hemoglobin, with Spearman correlations, α=0.10. 

Significant correlations with tortuosity ratio were re-evaluated as partial correlations 

adjusted for hemoglobin and voxel size. A false discovery rate (FDR) of 0.10 was used to 

correct for multiple comparisons.  
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Statistical analysis was performed in SAS version 9.4203 and SPSS version 22.204 

8.4 RESULTS 

MRI study participants were younger and less likely to be non-Hispanic white than the 

non-MRI study participants (Table 1). Of MRI study participants, 15/47 with APOE data 

had at least one copy of the APOE4 allele. Thus, representation of APOE4 was higher 

than the 14% estimate among controls worldwide,205 but did not differ significantly from 

non-MRI participants. No or mild WMH were seen in 58.5% of participants while 20.8% 

each had moderate and severe WMH. Regarding microbleeds, 39.6% of the sample had 

0, 20.8% had 1, and 24.5% had >1. 

Total length of tortuous vessels ranged from 26.25-246.36 mm, while total straight 

length ranged from 16.72-217.65 mm. Overall length of tortuous venules was greater than 

that of straight venules (Table 2). Total tortuous length was 42% greater than total straight 

length (median tortuosity ratio [95% bootstrapped CI]: 1.42 [1.13, 1.62]); (Supplemental 

Figure 3). To examine whether this was due to venular number or average length, we 

evaluated differences in those measures. Total number of tortuous venules ranged from 

4-32, while total straight venules ranged from 2-24. There were more tortuous venules 

than straight venules. The range of average tortuous length was 6.56-10.93 mm while the 

range of average straight length was 4.35-11.57 mm, and these average lengths were 

not significantly different. Thus, the difference in total tortuous and straight venular lengths 

was driven by greater numbers of tortuous venules.  
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Correlations between neuroimaging markers of SVD and tortuosity ratio were not 

significant. WMH correlated at rho= -0.125, p=0.37 and microbleeds correlated at rho= -

0.059, p=0.70. 

Among non-modifiable variables associated with AD and SVD, sex was associated 

with tortuosity ratio (Table 3). Males had a higher tortuosity ratio (median (IQR), 2.15 

(0.98)) than females (median (IQR), 1.31 (0.71)). Those with at least one copy of the 

APOE4 allele had a higher tortuosity ratio (median (IQR), 2.15 (1.78)) than those without 

(median (IQR), 1.21 (0.75)). Associations with age and race were not significant (p>0.10).  

Among modifiable factors potentially influencing venular characteristics, higher 

VEGF was associated with lower tortuosity ratio. There were no significant associations 

with BDNF, pulse pressure (adjusted for antihypertensive use), physical activity, or 3MS 

score (p>0.10). Results were similar when using a ratio of vessel counts instead of the 

ratio of total lengths.  

The relationship of APOE4 with venular tortuosity, but not the other findings, 

remained significant after FDR correction of the p-value (p=0.01). Further adjustment for 

hemoglobin and voxel size did not modify the association with APOE4. 

8.5 DISCUSSION 

We found that application of 7T SWI is feasible to image cerebral venular characteristics 

in vivo in older adults. This method is a novel way to visualize an understudied component 

of the cerebral vasculature. Given associations of venular tortuosity with SVD179 and 

AD,206,207 as well as increases in microvascular changes with age,181 venular tortuosity 
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may serve as a marker of declining cerebrovascular integrity. This method may afford 

earlier detection of SVD and has the advantage of characterizing venular morphology 

without contrast.  

We also found that APOE4 was associated with higher tortuosity ratio, and this 

association was robust to adjustment for potential confounders and multiple comparisons. 

This result supports studies implicating APOE4 in reduced vascular integrity. APOE4 

protein can directly damage the vasculature.208 APOE is associated with neuroimaging 

manifestations of SVD,209,210 and there are indications that it is associated with 

microvascular changes. Mice expressing transgenic human APOE4 have altered 

basement membrane protein expression.211 In humans with AD, APOE4 is associated 

with BBB disruption.212 APOE4 is associated with both increased deposition and reduced 

clearance of aβ.208 Clearly, APOE4 is central to development of AD pathology, and our 

results suggest it could be implicated in venular damage. It is possible that aβ deposition 

induces venular damage. An AD mouse model showed that as aβ built up in the arterioles 

beginning at 5 months of age, venular mural cells were damaged by 7 months of age.207 

However, it is also possible that venular damage induces aβ deposition. In this same 

experimental model, further venular mural cell damage led to increased arteriolar aβ 

deposition, and interestingly, induction of venular tortuosity.207 Temporality of venular 

damage and aβ deposition remains an open question. We were unable to collect amyloid 

imaging. Hence, future multimodal neuroimaging studies need to evaluate timing and 

relationship of aβ burden and venular tortuosity.  

Although our result is remarkably consistent with proposed APOE4-mediated 

reduction of vascular integrity,208 our study cannot clarify the underlying mechanism(s). 
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This limitation notwithstanding, the fact that APOE4 is associated with venular tortuosity 

indicates the potential for risk stratification as an intervention strategy. Thus, other factors 

should be evaluated to offset APOE4-related risk.  

We found a non-significant association of tortuosity ratio with WMH and 

microbleeds, which could be due to lack of sensitivity in our visual ratings or the small 

sample size. Future larger studies should evaluate associations of tortuosity ratio with 

WMH volume, a more sensitive measure as compared to visual ratings. Alternatively, this 

lack of association may indicate that tortuosity ratio is capturing novel, early information 

regarding vascular integrity. Future work should examine relationships of tortuosity ratio 

with other SVD neuroimaging markers and related cognitive and mobility impairment and 

clarify temporal order of venular damage and other SVD neuroimaging manifestations. 

We predict that venular damage comes before traditional neuroimaging markers of SVD. 

Our study has several limitations. The sample was not selected to have particularly 

low or high SVD burden. Future studies should compare venular tortuosity ratio in those 

two groups. Larger samples will be needed to confirm associations with sex and VEGF. 

The venular measures are also two-dimensional, and therefore do not account for venules 

running out of the plane. However, this bias is non-differential across our sample. Finally, 

MRI participants were younger and had a higher proportion of non-whites indicating this 

sample may differ from the general community-dwelling older adult population.  

Despite these limitations, our study has notable strengths. We applied ultra-high 

field neuroimaging with higher SNR than typically used to visualize novel venular 

characteristics. This allows for smaller sample sizes at ultra-high field than would be 

required at lower field strength. Because this neuroimaging study was also within a 
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randomized controlled trial, these participants were extremely well-characterized, 

allowing us to control for potential confounding factors. 

8.6 CONCLUSIONS 

SWI at 7T offers a non-invasive method to image markers of cerebral venular integrity 

and fills an important gap in knowledge. Morphological measures of venules at 7T could 

be useful biomarkers of early stages of SVD and AD. Risk and protective factors, 

especially those that are modifiable, for these pathophysiologic changes should be 

evaluated. Future longitudinal multimodal studies characterizing venular integrity at 7T 

are warranted. 
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8.8 FIGURES AND TABLES 

 

Figure 8-1. A sample consensus venular tracing on SWI MRI at 7 Tesla across ROIs in both 
hemispheres in the LIFE MRI study 
 
Each rater traces the venules. A different color (green, purple, orange) is assigned to each rater, and the 
three sets of tracings are then overlaid. Inset in white is shown at larger magnification at the bottom of the 
figure to illustrate: A) an example of a venule that would not be included in the dataset because it was 
traced only by one of the three raters (green); B) an example tortuous venule; and C) an example straight 
venule.  
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Figure 8-2. Supplemental Figure 8-1. LIFE MRI study flow at baseline 

 
*LIFE study began in March 2010 and LIFE MRI began in December 2010. 
 
 
 
 

 

Figure 8-3. Supplemental Figure 8-2. Example ROI placement in the right hemisphere 

A: The last slice on which CSF is visible is found. B: Then the 4X1cm ROI (green box) is placed on the slice 
where the ventricle is visible, one slice below A. The minimum intensity projection is used over three slices 
(4.5 mm) to improve visualization of continuity of low intensity venous structures. 
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Figure 8-4. Supplemental Figure 8-3. Example right hemisphere ROIs of individuals with low (A) and 
high (B) tortuosity ratios 
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Table 8-1. Study sample characteristics in the LIFE study at the Pittsburgh Site 

 MRI Study 
N=53 

Non-MRI Study 
N=163 

p-value 

Age (years), Median (IQR)     76.0 (5.8)   79.4 (9.0) <0.01 
Race, non-Hispanic white, N (%)     30 (56.6) 124(76.1) <0.01 
Sex, female, N (%)     42 (79.2) 123 (75.5) 0.57 
APOE4 allele presence,a N (%)     15 (31.9)   27 (20.0) 0.10 
VEGF, pg/mL, Median (IQR)   414.61 (370.17) --  
BDNF, pg/mL, Median (IQR) 1978.30 (27492.00) --  
Pulse pressure, median (IQR)     53 (13)   57 (18) 0.06 
Physical Activity—Minutes of 

daily moderate activity,  
Median (IQR) 

    24.6 (31.6)   18.3 (22.7) 0.05 

3MS, Median (IQR)     93 (7)   92 (9) 0.46 
Severe WMH burden,b N (%)     11 (20.8) --  
No microbleeds,c N (%)     21 (39.6) --  
Confounders    
On antihypertensive 

medication, N(%) 
    39 (73.6) 119 (73.0) 0.93 

Hemoglobin, g/dL,d Median 
(IQR) 

    12.7 (1.2)   13.2 (2.0) 0.22 

Note: aAvailable on N=47 (MRI) and N=135 (non-MRI). bWMH: white matter hyperintensities, rated as 0= 
none/mild, 1= moderate, 2= severe. cAvailable on N=45 due to scan quality or motion; the remaining 24 
were split nearly evenly between 1 and >1. dAvailable on N=47 (MRI) and N=139 (non-MRI). APOE4: 
Apolipoprotein E e4 allele. 3MS: Modified Mini-Mental State Examination. VEGF: Vascular endothelial 
growth factor. BDNF: Brain-derived neurotrophic factor.  
 
 
 
 
Table 8-2. Venular length measures in LIFE MRI (N=53) for tortuous and straight venules separately 

 Straight Tortuous P-value* 
Total length of venules (mm), mean (SD)a 156.87 (53.18) 111.41 (50.11) <0.0001 
Number of venules, mean (SD)   18.09 (5.87)   13.11 (5.34) <0.0001 
Average length of venules (mm), mean  
     (SD) 

    8.64 (0.87)    8.30 (1.42)   0.07 

Note: *P-values based on paired t-tests comparing tortuous and straight venule characteristics; a Venule 
lengths:  For each participant, venules are traced in 4 cm2 regions of interest (one in each hemisphere), 
their length measured by three raters, and median length computed for each vessel. Venules are 
characterized as straight or tortuous. The total straight and tortuous venular length in mm is calculated for 
each participant. b Tortuosity ratio: Total tortuous venular length in mm divided by total straight venular 
length in mm. 
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Table 8-3. Spearman correlations of tortuosity ratio with variables of interest to small vessel disease 
and Alzheimer’s disease in LIFE MRI (N=53) 

 rho p 
Age -0.023 0.87 
Race 0.202  0.15 
Sex -0.304 0.03 
APOE4 0.454 0.001 
Pulse pressurea 0.206 0.14 
VEGF -0.236 0.096 
BDNF 0.227 0.11 
Hemoglobin 0.266 0.07 
Physical Activity—Minutes 
     of daily moderate activity 

-0.187 0.20 

3MS 0.199 0.15 
Note: a Partial correlation of pulse pressure and tortuosity ratio adjusted for antihypertensive drug use. 
APOE4: Apolipoprotein E e4 allele. VEGF: Vascular endothelial growth factor. BDNF: Brain-derived 
neurotrophic factor. 3MS: Modified Mini-Mental State Examination. 
 
 
 
 
Table 8-4. Supplemental Table 8-1. Inclusion / exclusion criteria for the LIFE MRI study 

Inclusion Exclusion 
Parent Study Criteria 

1) age 70-89 
2) sedentary activity level: <20 minutes 
per week of regular physical activity in 
the past month and <125 minutes per 
week of moderate physical activity 
3) high risk of mobility disability: ≤ 9 on 
the Short Physical Performance Battery  
4) ability to walk 400 m in less than 15 
minutes without sitting, leaning, or 
getting assistance 

1) 3MS score ≥ 1.5 standard deviations 
below education and race-specific norms 
2) inability to safely participate in the 
intervention as determined by medical 
record review, physical exam, and 
electrocardiogram 

LIFE MRI Specific Criteria 
1) willingness to complete an MRI scan 
at study baseline and after two years 

1) meeting any MRI exclusion criteria 
including metal in the body or 
claustrophobia 

Note: 3MS=Modified Mini-Mental State examination 
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9.1 ABSTRACT 

Identifying promoters of cerebral small vessel integrity is important to counter vascular 

contributions to cognitive impairment and dementia. In this preliminary investigation, the 

effects of a randomized 24-month physical activity (PA) intervention on changes in 

cerebral small vessel integrity were compared to those of a health education (HE) control. 

Cerebral small vessel integrity was measured in 24 older adults (n=8, PA; n=16, HE) 

using ultra-high field MRI before and at the end of the 24-month intervention. Deep 

medullary veins were defined as straight or tortuous; percent change in straight length, 

tortuous length, and tortuosity ratio were computed. Microbleed count and white matter 

hyperintensities were also rated. Accelerometry-based values of PA increased by 17.2% 

in the PA group but declined by 28.0% in the HE group. The PA group, but not the HE 

group, had a significant increase in straight veins length from baseline to 24-month follow-

up (p=.02 and p=.21, respectively); the between group difference in percent change in 

straight length was significant (median (IQR) increase: 93.6%(112.9) for PA, 28.4%(90.6) 

for HE; p=.07). Between group differences in other markers were non-significant. 

Increasing PA in late-life may promote cerebral small vessel integrity. This should be 

confirmed in larger studies.  

 

KEYWORDS: cerebral small vessel disease, physical activity, susceptibility-weighted 

imaging, vascular contributions to cognitive impairment and dementia, ultra-high field MRI 
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9.2 INTRODUCTION 

Loss of cerebral small vessel integrity is increasingly recognized as a key vascular 

contributor to cognitive impairment and dementia (VCID), including Alzheimer’s disease 

(AD).4,5,175,213,214 Thus, focus on identifying promoters of cerebral small vessel integrity is 

increasing,6 as they could represent new intervention targets for cognitive impairment. 

Physical activity (PA) has gained interest as a good candidate promoter of 

cerebrovascular integrity. In addition to well-known effects on the hippocampus,35,97,215 

recent work suggests that PA may have effects on neuroimaging markers of lesions of 

presumed vascular origin.66-68 A limitation of current studies is their use of indirect markers 

of late-stage cerebral small vessel disease. Research directly examining the influence of 

PA on cerebral small vessel integrity has been limited to one small, observational study 

of self-reported high vs. low aerobic exercise level over the past 10 years on cerebral 

arteries of healthy older adults by MR angiogram.216 Longitudinal observational studies 

with prospective, repeated measures of PA and cerebral small vessel integrity as well as 

even short-term intervention studies of PA effects on cerebral small vessel integrity are 

critically missing from the literature as are studies with more rigorous measures of PA. 

Thus, the effects of PA  on in vivo direct measures of early stages of cerebral small vessel 

abnormalities are currently unknown. 

Several growth factors have been proposed as potential mechanisms underlying 

the beneficial effects of PA on brain vasculature, including brain-derived neurotrophic 

factor (BDNF) and vascular endothelial growth factor (VEGF). VEGF is a well-recognized 

angiogenic factor;78-80 emerging evidence from animal models suggests an angiogenic 

role also for BDNF217,218 in addition to its neurogenic effects.75-77 We have recently shown 



79 

in cross-sectional analysis that lower peripheral blood levels of VEGF are associated with 

a higher tortuosity ratio of deep medullary veins in older adults.219 Abnormalities in deep 

medullary venous morphologic characteristics including tortuosity have been found on 

neuropathological exam in areas affected by cerebral small vessel disease179 and 

associated with AD in both animal models207 and recent human studies.178,206 Whether 

PA and PA-related changes in BDNF and VEGF are associated with changes in cerebral 

small vein integrity has not been tested.  

In this preliminary investigation, we conducted a secondary analysis of a 

randomized controlled trial of 24-month PA vs. health education (HE) control to evaluate 

the effects of PA on several markers of cerebral small vessel abnormalities. We have 

recently shown a beneficial effect of PA on hippocampal volume in this cohort.35 In this 

analysis, we hypothesized that the PA intervention would be associated with less 

morphological change of deep medullary veins (e.g. less tortuosity) and less accrual of 

white matter hyperintensities and microbleeds. Our secondary exploratory aim was to 

assess the association between PA-related changes in BDNF, VEGF, and neuroimaging 

markers of cerebral small vessel integrity.  
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9.3 MATERIALS AND METHODS 

9.3.1 Participants 

Study participants were from the Lifestyle Interventions and Independence for Elders 

(LIFE) randomized controlled trial in which 1635 participants were randomized either to 

PA or HE. The study demonstrated a beneficial effect of the PA intervention on the 

prevention of major mobility disability.186 Participants in this analysis are from the 

magnetic resonance imaging (MRI) sub-study carried out at the Pittsburgh field center. 

Both the parent and sub-study inclusion/exclusion criteria have been previously 

reported.186,219 Briefly, participants had to be sedentary, community-dwelling, 70-89 years 

old, at risk of mobility disability as demonstrated by a Short Physical Performance 

Battery220 score of ≤ 9, but able to walk 400 meters, and agreeable to completing an MRI 

at study baseline and at the 24-month follow-up visit. Participants were excluded if they 

were cognitively impaired based on the Modified Mini-Mental State Examination,196 

determined unsafe to participate in the study based on medical record review, or if they 

met any MRI exclusion criteria such as claustrophobia or metal in the body. The University 

of Pittsburgh Institutional Review Board reviewed and approved the study protocol, and 

informed consent was carried out prior to completion of any study procedures.  

9.3.2 Intervention 

A detailed description of the intervention has been previously reported.186,187 In summary, 

participants were randomized either to PA intervention or HE control. PA was multi-
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component, involving aerobic activity (walking), light resistance training, and flexibility 

exercises. PA training included two clinic visits per week and three to four days per week 

of at-home PA. Moderate intensity walking was defined based on a rate of perceived 

exertion of 13 / “somewhat hard” on the Borg scale.221 In a sub-group (N=14; n=7 PA 

group, n=7 HE group), accelerometry was collected as a more objective measure of PA 

completion. The HE group received healthy aging classes weekly for the first six months 

and twice monthly thereafter. Classes covered topics like health screenings, preventive 

services, and the like, and specifically avoided PA-related topics.  

9.3.3 Physical activity 

PA was characterized by PA intervention as well as minutes of moderate PA. At study 

baseline, 6 months, 12 months, and 24 months, daily minutes of moderate PA were 

measured across seven days using the GT3X hip-worn accelerometer by Actigraph 

(Pensacola, FL). Moderate PA by accelerometry was defined by a 760 count per minute 

cutoff.186 

9.3.4 Sample characteristics 

Age, race, and sex were self-reported by participants. Apolipoprotein E (APOE) 

genotyping was carried out using TaqMan (Applied Biosystems, Life Technologies, Foster 

City, California) and Pyrosequencing. 191 We present results here for APOE*4 allele 

presence.  
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9.3.5 Growth factors 

Blood was collected while participants were fasting and was centrifuged at 1600 x g for 

15 minutes at 4°C after clotting at room temperature for 30-60 minutes. Serum was then 

aliquoted and stored at ≤ -70°C until analysis. We used Luminex with multiplex kits (EMD 

Millipore Human Neurodegenerative Disease Panel, Danvers, MA; Bio-Rad Human 

Cancer Panel, Hercules, CA) to test BDNF and VEGF levels. We used two sets of 

standard curves to determine concentrations and standardized procedures we have 

validated in a variety of clinical settings to calculate final values.198,222,223 

9.3.6 Cerebral small vessel integrity 

The full method for characterizing cerebral small veins was previously reported.219 In 

summary, we traced deep medullary veins in periventricular regions of interest in both 

cerebral hemispheres on susceptibility-weighted MRI at ultra-high field strength (7T). 

Veins were characterized as either straight or tortuous, and using a consensus method 

with three raters (CES, DRJ, NAM) under the direction of the study PI (CR) and 

neuroradiologist (JM) we determined total straight and tortuous venous length across both 

hemispheres for each participant at both baseline and 24-month follow-up. To summarize 

all information in one metric, we also calculated the tortuosity ratio for each participant. It 

was defined as total tortuous venous length over total straight venous length. 
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9.3.7 Microbleeds 

Our method for analyzing microbleeds has been previously published.219 Briefly, under 

the direction of the neuroradiologist (JM), two raters (NAM, ET) counted microbleeds 

across 64 axial slices on 7T susceptibility-weighted imaging following Greenberg, et al.,202 

with no minimum size criterion. This allowed for the 7T imaging to capture smaller 

microbleeds than is possible at lower field strength. Raters came to agreement on counts 

through a consensus process. 

9.3.8 White matter hyperintensities 

Our method for analyzing WMH has been previously published.219 In summary, WMH on 

T2 weighted MRI and MPRAGE at 7T were rated by two raters (CR, HJA) using a 

consensus process. Ratings ranged from 0-3 (none-severe) based on a modified Fazekas 

rating scale.200 

9.3.9 Other variables 

Certified raters administered the Modified Mini-Mental State Examination.196 This is a 

global measure of cognition. The score ranges from 0-100 with higher scores indicating 

better performance. The 4-meter walk from the Short Physical Performance Battery was 

used to calculate gait speed in meters per second. Participants were asked to walk at 

their usual pace. 
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9.3.10 Statistical analysis 

Differences between the PA and HE group were evaluated to determine whether 

randomization of baseline variables held within this sub-study. Differences between the 

group with MRI at both study baseline and 24-month follow-up and the group with MRI at 

baseline only were also evaluated. For each of these comparisons, non-parametric tests 

including the Mann Whitney U test and chi-square tests were used. 

To account for baseline values in analyses, percent change from baseline to 24 

months was computed for all vein outcomes. These variables were calculated for each 

individual as (follow-up – baseline) / baseline * 100. Thus, a positive percent change 

indicates an increase from baseline to follow-up, while a negative percent change 

indicates a decline from baseline to follow-up. We calculated summary statistics for 

baseline, 24-month follow-up, and percent change as median (interquartile range (IQR)). 

Non-parametric tests of median comparisons were used to evaluate differences from 

baseline to 24 months within intervention groups and differences in percent changes 

between intervention groups for vein outcomes. Variables indicating worsening 

microbleed count and WMH grade were created. We defined worsening as present if the 

24-month follow-up microbleed count or WMH grade was greater than the baseline value 

for that variable. Fisher’s exact tests were used to assess differences in worsening 

microbleed count and WMH grade by intervention group.  

We visually inspected scatterplots of associations of vein outcomes with PA. Given 

the small sample size, we repeated the plots with the most extreme values withheld to 

confirm that the direction of association was maintained. Spearman partial correlations 

were used to assess relationships of percent change in vein outcomes with PA adjusting 
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one at a time for percent change in BDNF and VEGF. As a sensitivity analysis, we 

repeated these correlations of percent changes of vein outcomes with total minutes of 

moderate PA by accelerometry. For this analysis, the PA variable was a cumulative 

exposure variable to minutes of moderate PA created by summing accelerometry minutes 

of moderate PA across all study visits. Finally, we carried out exploratory analyses with 

growth factors. Percent change variables were created and non-parametric tests of 

median comparisons within and between intervention groups were carried out in the same 

way as with the vein outcomes. For any percent change vein outcome found to be related 

to PA, we visually inspected scatterplots of the percent change vein outcome by the 

percent change in growth factors across the full combined study sample. These were 

repeated with extreme values withheld. We used Spearman correlations to assess 

relationships of percent change in relevant vein outcomes with percent change in growth 

factors across the full sample. These were repeated as partial correlations adjusting for 

PA. Due to the small sample size, alpha was set at 0.10 to reduce likelihood of false 

negatives. When studies are preliminary and exploratory in nature, adjustment for multiple 

comparisons is likely to result in false negatives and abandonment of potentially 

promising but nascent lines of inquiry.224 Thus, in order to preserve interesting results in 

some of the earliest work in this area, we have not adjusted for multiple comparisons. 

Statistical analysis was performed in SAS version 9.4.203 
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9.4 RESULTS 

This study sample consisted of 24 participants who had 7T MRIs at both baseline and 24-

month follow-up. Eight were randomized to PA intervention, and 16 were randomized to 

HE control. Figure 9-1 illustrates the participant flow. Overall, the sample had a median 

(IQR) age of 76.0 (6.7), was 58.3% non-Hispanic white, and was 83.3% female. Medians 

and interquartile ranges or numbers and percentages of baseline characteristics are 

presented in Table 9-1. The PA and HE groups were well-balanced on demographic and 

general health characteristics. Similarly, participants with MRIs at baseline only were not 

significantly different from those with MRIs at baseline and 24-month follow-up (Table 9-

2). Moderate PA minutes by accelerometry increased by 17.2% in the PA group but 

declined by 28.0% in the HE group. Regarding the cumulative totals, the PA group had a 

median of 158.8 minutes of total daily moderate PA across all study visits, while the HE 

group had 86.7 total PA minutes.  

Figure 9-2 shows an example of baseline and 24-month follow-up vein tracings in 

one participant from each intervention group. The PA group, but not the HE group, had a 

significant percent increase in straight length from baseline to 24-month follow-up (p=.02 

and p=.21, respectively; Table 9-2). Most participants in the PA group had an increase in 

straight venous length from baseline to the 24-month follow-up (Figure 9-3). There was a 

significant between group difference in percent change of straight vein length such that 

the PA group had a greater percent increase than the HE group (p=.07; Table 9-3).  

Tortuosity ratio declined from baseline to follow-up by 33.2% within the PA group 

and 10.8% within the HE group. There were no significant within or between group 

differences for percent change in tortuous length or tortuosity ratio. PA did not have a 
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significant effect on worsening microbleed count or WMH grade. Approximately 42.9% of 

the PA group and 41.7% of the HE group had a worsening microbleed count (Fisher’s 

exact p>.99). None of the PA group had a worsening WMH grade, while 18.8% of the HE 

group worsened by at least one WMH grade (Fisher’s exact p=.53; Figure 9-3). 

The PA intervention was correlated with percent increases in straight venous 

length, and adjusting for percent change in BDNF and VEGF did not attenuate this 

relationship (Table 9-4). The PA intervention was not significantly associated with percent 

change in tortuous venous length or tortuosity ratio. These associations remained similar 

in sensitivity analyses using total moderate PA minutes by accelerometry in lieu of 

intervention group assignment; the association of PA with increases in straight length 

remained significant (unadjusted rho=0.499, p=.07) while the association of PA minutes 

with decreases in tortuosity ratio became significant (unadjusted rho= -0.538, p=.05). 

APOE*4 presence was not significantly related to any of the vein outcomes. 

Within and between group differences in BDNF and VEGF were not significant 

(p>0.1 for all). Percent changes in BDNF were positively correlated with percent changes 

in straight venous length (rho=0.404, p=.07), and adjusting for intervention arm did not 

attenuate this association. Percent change in VEGF was not associated with percent 

change in straight venous length. 
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9.5 DISCUSSION 

In this preliminary study, participating in a 24-month randomized PA intervention was 

associated with greater percent increases in straight length of deep medullary veins than 

the HE control. This could suggest that one pathway of PA’s beneficial impacts on the 

brain is through its role as a promoter of cerebral small vessel integrity. If these results 

can be replicated in the context of a larger trial designed to test this hypothesis, we can 

conclude that cerebral small vessel integrity can be altered through PA. These results 

begin to lend support to existing evidence that PA is associated with cerebral artery health 

and lower burden of neuroimaging lesions of presumed vascular origin.66,216,225,226 

Associations of PA with the cerebral vasculature have been evaluated previously in a 

small, observational study comparing differences between high and low aerobic PA 

groups among healthy older adults (mean ages: 64, high PA; 68, low PA).216 PA 

assessment was based on self-report and generally mapped onto ≥180 minutes per week 

of moderate PA over the prior 10 years (high PA) or <90 minutes of weekly PA with no 

specific PA program over the prior 10 years (low PA). The results indicated lower 

tortuosity and increased numbers of vessels <0.6 mm in diameter in the high PA vs. low 

PA group. This study captured mid-sized arteries, while our study focuses on small deep 

medullary veins. 

We found no significant difference in worsening microbleed count by intervention 

group. More participants in the HE group demonstrated worsening WMH grade, although 

this was not statistically significant. Others have found that PA may be associated with 

lower burden or severity of WMH of presumed vascular origin, an indirect marker of later 

stage cerebral small vessel disease. A meta-analysis of nine studies (all with mean age 



89 

>60) found a small protective effect of PA and physical fitness on WMH volume.66 Even 

among adults 40-65 years old (mean age 59) with risk factors for AD dementia, greater 

fitness was associated with reduced WMH burden.225 While none of these studies 

evaluated impact on WMH progression, which would require multiple MRIs, a secondary 

analysis of an RCT with pre- and post-intervention MRIs found that resistance training 

reduced WMH progression among women with baseline WMH (mean age 69).226 Our 

differing results may be due to our small sample size and lack of power to detect such 

small differences. Nevertheless, our results suggest that veins of even older, sedentary 

adults can be altered, and taken together, these results suggest that PA may have the 

capacity to promote cerebral small vessel integrity across several decades of mid- to late-

life. 

We found that straight venous length increased in both the PA and HE arms, 

although the increase in the HE arm was non-significant. This raises two questions. The 

first is whether PA can actually increase straight venous tissue as opposed to just 

reducing the loss of straight veins. In addition to promoting endothelial function, PA can 

also result in increased production or bioavailability of growth factors which could 

beneficially impact blood vessels.227 While we did not find PA-related increased peripheral 

serum BDNF and VEGF, our results do not rule out increased central production or 

bioavailability of these factors. The second question is why both intervention groups 

would demonstrate increasing straight venous length. These results could be due to the 

exposure of the HE group to social activity. The HE classes were carried out in groups, 

potentially exposing HE participants to increased social activity, and social activity is 
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beneficial for brain health.228,229 If this is the case, social activity may also be beneficial 

for cerebrovascular health. This result should be evaluated further in additional studies. 

Interestingly, PA was associated with straight venous length but not tortuous 

venous length. This may indicate two separate pathophysiological pathways for the 

cerebral small veins: 1) decreasing straight venous length, which our results suggest PA 

may be able to counter, and 2) increasing tortuous venous length, which our results 

suggest PA does not counter. It is possible that through PA’s action to generate rhythmic 

pulsing of the veins, either through the increased heart rate seen with aerobic activity or 

through rhythmic stretching of the vessels that may be seen with resistance activity, PA 

effectively maintains shear stress and flow parameters which help to promote endothelial 

function and nitric oxide production thus keeping the vessels healthy.227,230 It is feasible 

for this to preferentially benefit straight vessels as shear stress is altered in tortuous 

vessels.231 

We found that APOE*4 was not associated with changes in vein outcomes over 

time. We had shown in our cross-sectional analyses that APOE*4 was associated with 

greater tortuosity ratio.219 Together these results suggest that APOE*4 is associated with 

one’s starting point with regard to tortuosity, but not how rapidly tortuosity changes over 

time. This result should be confirmed in a larger study with multiple MRIs over time. 

While we found no difference in BDNF between the intervention groups, we found 

that percent change in BDNF was positively associated with percent change in straight 

venous length. We interpret these results cautiously given that they are the result of 

exploratory analyses. If confirmed, these results may indicate that much like BDNF’s 

beneficial impact on hippocampal volume97 and functional connectivity,232 it may also be 
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a promoter of cerebral small vessel integrity. This supports animal evidence of BDNF’s 

role in angiogenesis and vessel health,217,218 and work in humans finding that a genetic 

predisposition to lower and less efficient BDNF levels233 was associated with greater 

WMH volume in older adults (mean age 70).234  

Several limitations to this study should be kept in mind while interpreting these 

results. First, the IQRs we present here for BDNF and VEGF are quite large. Serum 

markers like these are known to have high variance, and this variance can make 

differences hard to detect or significant values hard to trust. Future studies incorporating 

such markers should be designed with a large enough sample to account for this. Second, 

this study was a secondary analysis of an RCT, and included exploratory analyses. As 

such we interpret these findings cautiously. For these reasons, the results of this study 

should be tested in a larger study as part of a pre-specified analytic plan. 

There are several strengths of this study. First, our study design incorporates many 

advantages over existing studies. While most prior studies of PA and cerebral small 

vessel integrity and disease have relied on observational studies, ours is the first study of 

the impact of a randomized controlled PA intervention on deep medullary veins. In 

addition, most existing studies have been cross-sectional analyses or longitudinal 

analysis with MRI only at study follow-up. However, this study evaluates change over time 

through use of MRI at baseline and 24-month follow-up. In addition, our assessments of 

PA are more objective than retrospective self-report. We have collected data on PA both 

by random assignment to the PA intervention group and by cumulative moderate minutes 

of PA based on accelerometry. Second, we studied a novel, direct vessel neuroimaging 

marker of cerebral small vessel integrity as opposed to traditional late-stage markers of 
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parenchymal damage of presumed vascular origin. This allows us a closer appreciation 

of the vessels themselves in studying promoters of cerebral small vessel integrity. Third, 

randomization was maintained in this sub-study. Thus the results of our primary analytic 

aim are controlled for potential confounding baseline factors.  

Our study represents some of the earliest work in this important area of research. 

Future larger studies will be needed to confirm our results. 
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9.7 FIGURES AND TABLES 

Table 9-1. Baseline characteristics in the LIFE study 

 Physical Activity 
N=8 

Health Education 
N=16 

p 

Age (years) 74.3 (5.5) 76.1 (6.9) 0.98 
Race, non-Hispanic white 5/8 (62.5) 9/16 (56.3) >0.99 
Sex, female 7/8 (87.5) 13/16 (81.2) >0.99 
APOE*4 allele presence 3/8 (37.5) 5/15 (33.3) >0.99 
Modified Mini-Mental State Examination 94.5 (10.5) 91.5 (8.0) 0.88 
Gait speed, m/s 0.80 (0.27) 0.82 (0.20) 0.81 
VEGF, pg/mL a  482.9 (603.3) 391.3 (255.8) 0.77 
BDNF, pg/mL a 18143.1 (23782.0) 19780.3 (24036.0) 0.87 
Physical activity minutesb, c 41.7 (14.9) 28.4 (37.6) 0.64 
Severe WMH burden,d No./ Total No.  

   (%) 
3/8 (37.5) 3/16 (18.7) 0.71 

No microbleeds, No./ Total No. (%) 5/8 (62.5) 7/14 (50.0) 0.58 
Notes: Numbers are median (IQR) or No. / Total No. (%). aN=15, Health Education. bMinutes of daily moderate physical activity by accelerometry.  
c N=13, Health Education. dWMH rated as 0= none, 1=mild, 2= moderate, 3= severe.  
Abbreviations: APOE*4, Apolipoprotein E e4 allele; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; WMH, white matter 
hyperintensities. 
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Table 9-2. Baseline characteristics in those with and without follow-up venous outcomes 

 Venous outcomes at both visits 
N=24 

Baseline venous outcomes only 
N=29 

p 

Age (years) 75.2 (6.8) 77.0 (5.9) 0.37 
Race, non-Hispanic white 14/24 (58.3) 16/29 55.2 0.82 
Sex, female 20/24 (83.3) 22/29 (75.9) 0.74 
APOE*4 allele presence 8/23 (34.8) 7/24 (29.2) 0.68 
Modified Mini-Mental State Examination 92.0 (8.5) 94.0 (6.0) 0.96 
Gait speed, m/s 0.81 (0.20) 0.80 (0.20) 0.37 
VEGF, pg/mLa  391.3 (324.6) 484.07 (506.2) 0.33 
BDNF, pg/mLa  19780.3 (24036.0) 20707.9 (28312.0) 0.89 
Physical activity minutesb, c 36.0 (25.3) 23.50 (33.5) 0.26 
Severe WMH burden, No./ Total No.  
  (%)d 

6/24 (25.0) 5/29 (17.2) 0.70 

No microbleeds, No./ Total No. (%) 12/22 (54.6) 9/23 (39.1) 0.25 
Notes: Numbers are median (IQR) or No. / Total No. (%). aN=23 for both visits; N=28 for baseline only. bMinutes of daily moderate physical activity 
by accelerometry. cN=21 for both visits; N=26 for baseline only. dWMH rated as 0= none, 1=mild, 2= moderate, 3= severe. 
 
Abbreviations: APOE*4, Apolipoprotein E e4 allele; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; WMH, white 
matter hyperintensities. 
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Table 9-3. Impact of the physical activity intervention on venous outcomes 

 Physical Activity 
(N=8) 

Health Education 
(N=16) 

 

 Baseline Follow-up %Δ p Baseline Follow-up %Δ p between 
arm p 

Straight venous 
length 

99.9 (49.9) 153.2 (82.7) 93.6 (112.9) 0.02 105.0 (104.8) 144.9 (131.6) 28.4 (90.6) 0.21 0.07 

Tortuous venous length 147.2 (93.3) 154.7 (52.0) 11.6 (64.5) 0.31 137.7 (69.5) 155.9 (79.9) -12.9 (49.9) 0.63 0.41 
Tortuosity ratio 1.4 (1.1) 1.1 (0.7) -33.2 (63.5) 0.15 1.2 (1.1) 1.0 (1.5) -10.8 (105.9) 0.98 0.38 

Note: Tortuosity ratio=total tortuous length / total straight length. Due to small samples sizes, all values presented as median(IQR) and non-
parametric tests. 

 

 

Table 9-4. Unadjusted and partial Spearman correlations assessing relationships of physical activity with venous outcomes 

 % Change 
Straight Venous 
Length 

% Change 
Tortuous Venous 
Length 

% Change 
Tortuosity Ratio 

 Rho p Rho p Rho p 
PA Groupa 0.383 0.07 0.179 0.40 -0.192 0.37 
   Adjusted for %Δ BDNFb 0.426 0.06 0.247 0.30 -0.200 0.40 
   Adjusted for %Δ VEGFb 0.415 0.07 0.185 0.44 -0.191 0.42 

Abbreviations: BDNF, brain-derived neurotrophic factor; PA, physical activity; VEGF, vascular endothelial growth factor. 
aN=24. bN=21. 
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N=29 No 24-month follow-
up MRI 

N=24 With 24-
month follow-up 
MRI 

N=8 Physical 
activity intervention 

N=16 Health 
education control 

Figure 9-1. Study participant flow diagram 

N=216 Enrolled in 
LIFE study at MRI 
field center 

N=101 Screened 

N=115 Not screened due 
to late MRI study start 
date 

N=39 Refused or ineligible 

N=62 Enrolled at 
baseline 

N=53 With included 
baseline scan 

N=9 Not used in this 
analysis 
   N=3 at 3T MRI 
   N=2 no SWI sequences 
   N=4 poor quality scans 
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Figure 9-2. Sample vein tracings on 7T susceptibility-weighted MRI at baseline and 24-month follow-
up in the Health Education and Physical Activity groups 
 
Caption: The participant in the health education group had the following percent changes in their vein 
outcomes: straight vein length, 9.3%; tortuous vein length, 57.2%; and tortuosity ratio, 43.9%. The 
participant in the physical activity intervention had the following percent changes in their vein outcomes: 
straight vein length, 25.0%; tortuous vein length,  -22.5%; and tortuosity ratio, -38.1%. Positive percent 
change indicates an increase from baseline to follow-up while negative percent change indicates a 
decrease from baseline to follow-up. 
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Figure 9-3. Change in straight venous length and white matter hyperintensity grade from baseline 
to 24-month follow-up by intervention group 
 

Red stars=Physical activity group; blue circles=health education control group. The diagonal line represents 
no change from baseline to 24-month follow-up. Above the line=increase; below the line=decrease. Note: 
The white matter hyperintensity grade figure is jittered to make all points visible because many were layered 
on top of one another. N=3 from the health education group worsened in white matter hyperintensity grade, 
while N=0 from the physical activity group worsened. 
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10.1 ABSTRACT  

Increasingly, vascular and cardiometabolic risk factors (VCMRF) are recognized 

risk factors for cognitive impairment and dementia, including Alzheimer’s disease (AD). 

In an era of increasing multimorbidity with increasing age, the interactions of these risk 

factors and non-modifiable factors are critical to evaluate and to inform prevention and 

treatment efforts. Existing studies have been limited in that they have not evaluated 

multiple VCMRF and interactions in the same model. The primary aim of this work was to 

identify VCMRF interactions related to incident all-cause dementia. We used an algorithm 

to select interactions of interest based on a review of the literature, univariable 

associations of variables with our outcomes, and focused on those variables with impacts 

on vessel health and cerebral blood flow. Our secondary aim was to repeat these 

analyses with incident mild cognitive impairment (MCI), AD dementia, and overall 

cognitive performance. Finally, we explored for new important interactions. The 

Monongahela-Youghiogheny Healthy Aging Team (MYHAT) Study is an observational 

cohort study of cognitive impairment with 10 cycles of study visits (N=1982, median (IQR) 

age, 78 (12), 61.1% female, 94.7% white). Over the study follow-up time, 373 participants 

developed MCI, 109 developed dementia (90 of whom developed AD), and 881 remained 

cognitively normal. Time dependent Cox regression for incident all-cause dementia, MCI, 

and AD dementia and linear mixed modeling for overall cognitive performance were used 

to test the interactions of interest first in minimally adjusted models and then in models 

adjusted for non-modifiable factors and confounders. For the exploratory analyses, 

classification and regression trees (CART) with 10-fold cross-validation were used to 

screen for interactions using PROC HPSPLIT in SAS in a training set that was 50% of the 



101 

full dataset. The candidate interactions were tested in the test set, the remaining 50% of 

the full dataset, using Cox proportional hazards (PH) regression. The risk of all-cause 

dementia conferred by stroke was even greater among those with congestive heart failure 

(CHF) (p for interaction=0.04). Among those who ever drank alcohol, history of stroke 

reduced cognitive performance nearly 1/10th of a standard deviation, coefficient (95% CI): 

-0.085 (-0.135, -0.035), but there was no significant effect of stroke on cognitive 

performance among those who never drank alcohol, 0.046 (-0.071, 0.162). These results 

did not survive adjustment for multiple comparisons. None of our candidate interactions 

were significantly associated with incident AD dementia or MCI. In our exploratory CART 

modeling, we found that greater age was significantly associated with increased risk of 

AD dementia among those walking less per week, Hazard Ratio (HR) [95% CI], 31.19 

[4.24, 229.70], but not among those walking more per week, 1.22 [0.22, 6.93]. Physical 

activity and prevention of multimorbidity should be prioritized for prevention of cognitive 

impairment and dementia. 
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10.2 INTRODUCTION 

Increasingly, vascular and cardiometabolic risk factors (VCMRF) are recognized risk 

factors for cognitive impairment, and this is embodied in the relatively new term “vascular 

contributions to cognitive impairment and dementia (VCID)”. Co-occurrence of 

cerebrovascular lesions with neurodegenerative Alzheimer’s disease (AD) pathology 

nearly doubles dementia prevalence,235 and in vivo neuroimaging confirms that presence 

of VCMRF is associated with reduced glucose metabolism by FDG-PET and reduced 

cortical thickness in brain regions implicated in AD.236  

Not only are large vessel lesions such as stroke implicated in cognitive impairment 

and dementia,237 but cerebral small vessel disease (SVD), pathology of the cerebral small 

arteries, veins, and capillaries,3 is as well238,239 and is garnering increased attention and 

priority from researchers and funders. One new initiative demonstrating this priority is the 

MarkVCID consortium, which calls itself a “consortium of US academic medical centers 

whose mission is to identify and validate biomarkers for the small vessel diseases of the 

brain that produce vascular contributions to cognitive impairment and dementia 

(VCID).”240 Studies examining VCMRF have found that blood pressure related 

markers,101-112,115,117-120,122,123,126-133 subclinical vascular disease markers,123,151-159 clinical 

cardiovascular disease,128 smoking,104,112,113,119,121,126,133,149,150 inflammation,140-142,144 

dyslipidemia,109,135,136 and visceral fat accumulation138,145 are associated with poorer 

cerebral small vessel health. Neuroimaging markers of SVD are known risk factors for 

cognitive impairment and dementia.175,241,242 

As we have undergone the epidemiologic transition, mortality rates have declined 

and chronic diseases have become commonplace.164 We are living longer, but with 
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multiple chronic conditions. Given how commonplace such multimorbidity is among older 

adults, the impact of VCMRF co-occurrence and the impact of sub-group specific VCMRF 

are critical to evaluate. An analysis of Medicare claims data showed that the prevalence 

of multimorbidity, defined as the presence of 2 or more chronic health conditions, ranged 

from 50.3% of beneficiaries under 65 years of age up to 81.5% of beneficiaries 85 and 

older.165 Thus, most older adults present to their primary care practitioners with multiple 

chronic conditions. Understanding which interactions of VCMRF contribute to cognitive 

impairment and dementia would allow us to understand risk of these outcomes in 

individuals with overlapping risk factors as well as to tailor preventions and treatments. 

Examining differences in risk conferred by VCMRF in different sub-groups and in the 

context of different behavioral and lifestyle factors is critical for the promise of precision 

medicine. Despite the importance of examining interactions of VCMRF and other non-

modifiable factors, we recently reviewed the literature and found that studies of VCMRF 

impacts on cerebral small vessel health have been limited in that they have tended not to 

evaluate multiple interactions of VCMRF with one another and other non-modifiable risk 

factors.100 Traditional statistical modeling approaches cannot examine all possible 

interactions and thus require the subjective input of the modeler to select which 

interactions to evaluate. 

Our review identified interactions which are important for SVD in adults 65 and 

older. For example, in a study evaluating the relationship of APOE*4 carrier status and 

hypertension with white matter lesion volume, APOE*4 carriers with hypertension had the 

greatest lesion volumes.103 In addition to interactions with non-modifiable factors such as 

APOE*4, VCMRF may interact with one another. For example, diabetes may interact with 
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SBP to increase risk of infarcts.114 Understanding whether such interactions extend to risk 

of dementia is critically important. 

Thus, our primary aim was to evaluate interactions of VCMRF with one another 

and with non-modifiable factors for associations with incident all-cause dementia. Our 

secondary aim was to repeat the primary analysis with incident AD dementia, incident 

mild cognitive impairment (MCI), and global cognitive performance. For these two aims, 

interactions were carefully selected based on an algorithm incorporating our literature 

review described above and univariable associations of VCMRF with the outcome of 

interest. Our exploratory aim was to explore for new important interactions using a novel, 

data-driven approach. We evaluated interactions for incident all-cause dementia, AD 

dementia, MCI, and global cognitive performance in a population-based cohort study with 

10 years of follow-up. 
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10.3 METHODS 

10.3.1 Study participants 

The Monongahela-Youghiogheny Healthy Aging Team (MYHAT) Study, is an 

observational cohort study of cognitive impairment. Participants were selected from voter 

rolls to be representative of older adults of the area, a group of contiguous former steel 

towns in southwestern Pennsylvania. Participants were seen either in their home or in the 

study field office and had up to 10 yearly study visits. Study visits examined here took 

place between 3/20/2006 (first date of study visit 1) and 9/8/2017 (last date of study visit 

10). The University of Pittsburgh Institutional Review Board reviewed and approved the 

study, and written informed consent was received from all participants before initiation of 

any study procedures. 

10.3.2 Demographics 

Participants self-reported age, sex, race, and education level at the baseline visit. 

10.3.3  VCMRF 

Four categories of VCMRF were collected: physical exam measures, laboratory tests, 

chronic health conditions, and behavioral factors. 
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10.3.3.1 Physical exam measures 

Blood pressure, apical pulse, and height, waist, and hip circumference in inches were 

measured by the examiner during the physical exam. Weight was self-reported by 

participants until visit 9 when it was measured by the examiner. Mean arterial pressure 

(MAP), a measure of organ perfusion was estimated as: MAP≅ SBP+(2xDBP)
3

. Pulse 

pressure (PP), a measure of pulsatility, was calculated as systolic blood pressure (SBP)-

diastolic blood pressure (DBP). Body mass index (BMI) was calculated as: 

weight in pounds
(height in inches2∗703)

. Waist to hip ratio (WHR) was calculated and used as a measure of 

central obesity. 

10.3.3.2 Laboratory tests 

Participants were invited to participate in blood tests. Among those who consented, the 

blood markers that follow were included. ApoA1 and ApoB were measured, and the ratio 

of ApoB to ApoA1 was calculated. ApoB:ApoA1 is a measure of atherogenic to anti-

atherogenic lipoprotein particles, and is a risk factor for cardiovascular events.243 

Hemoglobin A1C is a running average measure of blood glucose within the past 3 months, 

and 6.5% is used as the cutoff for diabetes.244 Cystatin C is a marker of glomerular 

filtration that is also related to cardiovascular disease.245 Homocysteine, an amino acid 

produced through methionine metabolism, has been correlated with SVD.246,247 C-

reactive protein was included as an inflammatory marker which may be related to SVD.141 

APOE genotyping was carried out. The presence or absence of APOE*4 was coded as 

APOE*4 carrier or non-carrier. Finally, non-fasting lipids were also tested. Total 
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cholesterol and high-density lipoprotein cholesterol (HDL-C) were measured, and low-

density lipoprotein cholesterol (LDL-C) was calculated as total cholesterol-HDL-C.  

The Chemistry and Nutrition Lab at the University of Pittsburgh Graduate School 

of Public Health completed the assays. 

10.3.3.3 Chronic health conditions and behavioral factors 

At study baseline, participants were asked whether they had ever been told by a doctor 

or nurse that they have or had: a stroke, transient ischemic attack (TIA), diabetes, 

hypertension (HTN), myocardial infarction (MI), high cholesterol, congestive heart failure 

(CHF), irregular heartbeat (including atrial fibrillation or arrhythmia), depression, anxiety 

(“nerves” or “nervousness”), or sleep apnea. At each follow-up visit, they were asked 

whether a doctor or nurse told them they have or had any of these conditions since they 

were last seen by the study. Study staff administered the modified centers for 

epidemiologic studies-depression (mCESD) inventory at each study visit.248 The score 

ranges from 0-20, and a higher score indicates more depressive symptoms. Medications 

for diabetes and hypertension were self-reported by participants. We defined uncontrolled 

hypertension as those with SBP≥130 or DBP≥80249 among those on antihypertensive 

medications. Ever and current smoking and drinking alcohol were self-reported by 

participants. Number of days per week and minutes per day walking for exercise was 

obtained by participant self-report, and the minutes per week spent walking for exercise 

was calculated. 
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10.3.4 Cognitive assessments and cognitive outcomes 

Incident all-cause dementia and MCI diagnoses were based on clinical dementia rating 

(CDR) scores,250 without an etiological determination. The CDR is an assessment of 

impairment severity due to declines in cognitive functioning. In this study, it is completed 

based on interview questions and observations made by the interviewer during the 

evaluation. For these analyses, dementia is defined as CDR≥1 and MCI as CDR=0.5. 

Later in the conduct of the study, an online consensus adjudication system was used to 

determine etiology in incident dementia cases. Study clinicians reviewed subjective 

concerns, activities of daily living (ADL) and instrumental activities of daily living (IADL), 

depression data, medical history and medication use, physical and neurological exam, 

neuropsychological data, and any available medical records including neuroimaging 

reports. They determined whether the dementia etiology was AD, vascular, mixed AD and 

vascular, or a variety of other conditions including medication, depression, and other 

dementias. Clinicians could review each other’s etiology ratings and edit their own ratings 

until consensus was achieved. 

We combined cases of incident dementia due to AD or mixed vascular and AD 

presentation to create the incident AD dementia events for this analysis. The risk set for 

incident all-cause dementia and AD dementia included all participants without prevalent 

dementia at baseline. The risk set for incident MCI included all study participants without 

prevalent MCI or dementia at baseline. If a participant’s cognitive outcomes fluctuated 

from visit to visit, the first occurrence of CDR=0.5 or CDR≥1 was used to define the 

incident event. We censored those without an event at their last available study visit. For 

those who had an event, the visit at which they were diagnosed with the event was used 
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as the event visit. For the AD dementia risk set, the date of last follow-up was cut off at 

1/27/2016, the date of last follow-up of the incident dementia cases with etiological 

determination. By that date, the first 100/109 incident dementia cases had been 

adjudicated for etiology. Thus, participants without the event were censored at the last 

visit prior to 1/27/2016, and those who developed incident dementia after the cut-off date 

were censored at the last visit prior to 1/27/2016. 

Trained study staff administered cognitive tests at each study visit. The Mini-

Mental State Examination (MMSE) was administered as a measure of global cognition.251 

Several neuropsychological tests were administered in each cognitive domain (Table 10-

1). We standardized each test score to a z score by centering at the baseline sample 

mean and dividing by the baseline sample standard deviation. Then we created domain 

z scores by averaging the z scores of each cognitive test within the domain, and an overall 

cognitive z score, which was the average of all available domain z-scores. This overall 

cognitive domain z score was used as the outcome of interest in the global cognitive 

performance analyses. 

10.3.5 Statistical analyses 

10.3.5.1 Criteria to select the interaction terms of interest 

We selected the interactions of interest using an algorithm based on the following criteria. 

First, based on the interactions identified in our literature review of risk factors for SVD, 

we selected the following interactions of interest which focused on blood flow and vessel 

health and which could be tested in our population: APOE*4*hypertension and 

diabetes*SBP. In order for the candidate interaction to be tested, the component variables 
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had to be significantly related to incident all-cause dementia in univariable analysis. 

Second, we measured the univariable associations between VCMRF and incident all-

cause dementia; those variables significantly associated with the outcome at p<0.05 were 

ordered by effect size. If the variable was protective, the hazard ratio (HR) was inverted 

(1/HR) to format all effect sizes in the same direction. The VCMRF with the top three 

largest effect sizes were selected as candidate factors impacting vessel health or blood 

flow. Thus, our final list of interactions consisted of the following: any of our literature 

review-based candidates in which the component variables were also significantly 

associated with incident all-cause dementia at p<0.05 and two-way interactions formed 

by the three variables with the largest effect sizes. We used the same approach to select 

interactions of interest for incident MCI, AD dementia, and global cognitive performance. 

10.3.5.2 Modeling the interactions 

To evaluate the relationship of VCMRF with incident all-cause dementia, MCI, and AD 

dementia, we used time dependent Cox regression models using the counting process to 

deal with time dependent covariates. The counting process converts the data into 

intervals of time, for example the interval from visit 1 to visit 2, with covariates for that 

interval. This allows for covariates to change at each interval. This continues up to the 

visit with the incident event or censoring from the study. To test the interactions of interest, 

we fit three models: 1) a minimally adjusted time dependent Cox model with the main and 

interaction variables of interest, 2) a model further adjusted for non-modifiable variables 

including age, sex, race, education, and APOE*4, and 3) a model further adjusted for 

confounders. Confounders are any variables significantly related to both the predictor and 

outcome, but not on the causal path between the predictor and outcome. We corrected 
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for multiple comparisons for our primary and secondary aims using Sidak’s correction. 

This modeling was carried out using the survival package in R. 

To evaluate the relationships of these interactions with global cognitive 

performance, we used linear mixed modeling. The relationship of each variable of interest 

with the overall average cognitive z-score was tested first in a minimally adjusted model 

1 that included study visit as the time variable and the variables of interest. We included 

fixed effects of study visit and the variables of interest. We allowed the intercept and visit 

to vary by participant by including a random intercept and a random slope for visit. Model 

2 included model 1 further adjusted for fixed effects of the non-modifiable characteristics. 

This was further adjusted for fixed effects of confounders in model 3. The linear 

relationship of visit with cognitive performance was assessed by visual inspection of a 

plot of average cognitive performance at each visit, and quantile-quantile plots of 

residuals were reviewed to assess normality. These tests were carried out using the lme4, 

lmertest, and psycholing packages in R.  

10.3.5.3 Exploring new interactions 

New interactions were explored via a two-step process. The first step consisted of using 

classification and regression trees (CART). CART uses recursive partitioning to split the 

sample into terminal leaves composed of as homogenous a sample of the outcome of 

interest as possible. For example, for all-cause dementia, CART will try split the sample 

of those in the risk set by the variables included for consideration in the model such that 

each terminal leaf is either primarily dementia or primarily non-dementia. In this way, the 

algorithm learns to predict dementia. 
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The baseline datasets for the all-cause dementia, AD dementia, and MCI risk sets 

were each randomly split into a 50% training set and a 50% test set using the package 

caTools in R with a seed set to 123. Setting a seed allows re-creation of the same data 

split thus facilitating replication. For each of these incident outcomes, a classification tree 

was built without including the laboratory tests in order to maximize sample size. Baseline 

data and incident event indicators only were used, given that it would become quite 

complicated for CART to deal with repeated measures. Time to the event was not 

incorporated into these CART models. The classification trees were run with 10-fold cross 

validation on each training set using PROC HPSPLIT in SAS 9.4. The splitting criterion 

used was entropy. Based on this metric, splits were made such that the purest groups 

possible were created. Splits of continuous variables suggest the best cutpoints of those 

variables. The algorithm splits the data into so many leaves that it will overfit the data. 

Therefore, the classification trees were also pruned. This allows the model to generalize 

more easily to other datasets. If the proportion of those with and without the outcome in 

leaves split on variable B are dependent on variable A, this represents an interaction. We 

selected the first three relevant splitting variables that made up the interactions in CART 

(a three-way interaction) to test in the second step. For more background about CART 

and why and how it was used, see Appendix 3. 

In the second step, these candidate interactions were modeled in Cox PH 

regression models using only the baseline covariates just as the CART modeling did. 

Binary variables were created from continuous variables based on the best cutpoints 

selected by the CART models. The proportional hazards assumption was tested by 

running models including interactions of the variables of interest with time and log(time). 
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If proportional hazards was violated, a Cox PH model stratified on the offending variable 

was used. The interactions were then tested in a minimally adjusted model of the 

interaction(s) and component variables and in a model further adjusted for the non-

modifiable variables. If the model with the three-way interaction could not run, the 

component two-way interactions were tested in separate models.  
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10.4 RESULTS 

The original full study sample included 1,982 participants (see Figure 10-1 for disposition 

of all participants). A summary of number of participants with each study visit is shown in 

Table 10-2. Baseline descriptive statistics are shown in Table 10-3. Overall, participants 

were a median (IQR) age of 78.0 (12.0) years old, 61.1% female, 94.7% white, and 86.2% 

had at least a high school education. VCMRF chronic health condition prevalence/history 

ranged from <5% for stroke to approximately 65% of participants with a history of 

hypertension. Even more were on an antihypertensive medication (72.2%), but among 

those on antihypertensive medication, hypertension was uncontrolled in about 2/3. This 

is within the range of previously reported uncontrolled hypertension prevalence estimates 

for older adults (50.6%-87.6%).252,253 

Table 10-4 presents baseline characteristics by cognitive outcome. Out of N=1,413 

who were cognitively normal at baseline, N=881 remained cognitively normal throughout 

their time in the study while N=373 developed incident MCI. Out of N=1,959 free from 

prevalent dementia at baseline, N=109 developed incident all-cause dementia, and out 

of the first 100 incident dementia cases, N=90 were adjudicated to be due to AD (see 

Figures 10-2 and 10-3 for study flow for the all-cause dementia, AD dementia, and MCI 

risk sets). As expected, older age, lower education, APOE*4 carrier status, and lower 

MMSE were found in those who developed MCI, all-cause dementia, and AD dementia 

vs. those who remained cognitively normal. In addition, they had lower baseline 

cholesterol and BMI levels; greater prevalence of hypertension and stroke; and lower 

prevalence of ever or current drinking.  
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10.4.1 Primary Outcome: Incident all-cause dementia 

Hazard ratios (HR) and 95% confidence intervals (CI) for univariable relationships with 

incident all-cause dementia are shown in Table 10-5. All of the non-modifiable variables, 

except sex, were significantly related to incident all-cause dementia in the expected 

direction. Among the VCMRF and behavioral and factors, the three with the largest effect 

sizes were stroke HR[95% CI]: 9.90 [4.76, 20.58]; current drinking: 0.30 [0.19, 0.46]; and 

CHF: 2.91 [1.60, 5.31]. Hypertension, cardiac arrhythmia, and depression were 

associated with increased risk of incident all-cause dementia, while larger BMI, self-

reported high cholesterol, greater minutes walked for exercise, and ever smoking were 

associated with decreased risk. 

The interactions that made it through our selection algorithm were: 

APOE*4*hypertension, stroke*current drinking, stroke*CHF, and CHF*drank alcohol in 

the past year. Despite the component variables being strongly related to incident all-

cause dementia in univariable time dependent Cox models, none of their interactions 

were significantly associated with dementia in models 1 or 2 (Table 10-6). The 

stroke*CHF interaction term became significant in the model adjusted for confounders (p 

for interaction =0.04) indicating that the risk of all-cause dementia associated with stroke 

history is greater among those with CHF. However, this did not withstand correction for 

multiple comparisons (n=4 comparisons; all p>0.013 (Sidak corrected p-value)). 
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10.4.2 Secondary Outcomes: Incident AD dementia and MCI 

Univariable associations with incident AD dementia were similar to incident all-cause 

dementia (data not shown). The interactions examined with this outcome were the same 

as with incident all-cause dementia. For the models with stroke*current drinking, a 

warning was generated indicating that the coefficient may be infinite. In these cases, the 

author of the “survival” package in R advises that the standard errors and Wald-test p-

values should not be trusted, but that the Likelihood ratio test (LRT) is still accurate.254 

Thus, the p-value for the interaction term in these models is the LRT p-value comparing 

the model with the interaction term to the model without the interaction term. None of 

these interactions of interest were significantly associated with incident AD dementia 

(Table 10-7). 

Univariable associations with incident MCI were overall similar to incident all-cause 

dementia and AD dementia. However, with MCI, females had a four-fold increased risk 

of MCI, HR: 4.05 [3.22, 5.10], and DBP, PP, HbA1C, cystatin C, TIA, and MI were also 

significant risk factors (data not shown). The interactions selected by our algorithm 

include APOE*4*hypertension, MI*TIA, TIA*stroke, MI*stroke. Stroke and TIA both 

violated PH, so the relevant models were stratified on those variables. For models 1 and 

2 of the myocardial infarction*TIA interaction, a warning was generated indicating that the 

beta may be infinite. Thus, the LRT p-value comparing the model with the interaction term 

to the model without the interaction term is used. Model 3 of that interaction could not run 

due to small sample size for the interaction of interest once all confounders were entered 

into the model. The model with TIA*stroke could not run at all, perhaps because it is the 
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model examining the interaction of two stratified variables. None of the interactions of 

interest were significantly associated with incident MCI (Table 10-8). 

10.4.3 Secondary Outcome: Global cognitive performance 

Univariable analyses with global cognitive performance indicated that higher 

cystatin C and homocysteine levels were associated with poorer global cognitive 

performance as were stroke, MI, HTN, arrhythmia and depression (data not shown). 

Interestingly, APOE*4 carrier status was not significantly related to global cognitive 

performance. Greater BMI, more minutes walked for exercise, and drinking were 

associated with better cognitive performance. The interactions of interest were 

determined to be ever drank alcohol*stroke, ever drank alcohol*cystatin C, and 

stroke*cystatin C. The interaction term for ever drank alcohol*stroke became significant 

in the model adjusted for non-modifiable factors and the model further adjusted for 

confounders (Table 10-9). This did not survive adjustment for multiple comparisons. We 

repeated the analysis stratified by history of ever drinking. Among those who never drank 

alcohol, stroke was not significantly associated with cognitive performance, coefficient 

(95% CI): 0.046 (-0.071, 0.162). However, among those who ever drank alcohol, stroke 

was associated with worse cognitive performance, -0.085 (-0.135, -0.035; Figure 10-4). 

This indicates among those who ever drank alcohol, history of stroke reduces cognitive 

performance nearly 1/10th of a standard deviation, but there is no significant effect of 

stroke on cognitive performance among those who never drank alcohol. Put another way, 

those with a history of stroke do not receive as much benefit from history of drinking as 
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those who have not had a stroke. None of the other interactions of interest were 

significantly associated with global cognitive performance. 

10.4.4 CART modeling 

The CART models using the training sets generated 41-63 leaves when grown, and after 

pruning ranged from 6-9 leaves. The three-way interactions suggested based on CART 

modeling were: age*SBP*waist to hip ratio for the primary outcome of incident all-cause 

dementia; age*DBP*BMI for incident MCI; and age*waist to hip ratio*minutes walked 

weekly for exercise for incident AD dementia.  

These interactions were tested in Cox PH regression models using the test sets to 

attempt to confirm these results. For incident all-cause dementia, both models 1 and 2 of 

the three-way interaction of age, SBP, and waist to hip ratio, the significance of the three-

way interaction term was tested with the Likelihood Ratio Test due to the instability of the 

Wald test. Neither the three-way interaction term nor any of the component two-way 

interaction terms were significant in the dementia models. The coefficient for the three-

way interaction term for age*DBP*BMI for the MCI model could not be generated, perhaps 

due to small sample size in the groups of interest. Thus, the lower order interaction 

models were run separately. No interactions were significant in these models. Finally, for 

model of the interaction of age*waist to hip ratio*minutes walked weekly for exercise for 

incident AD dementia, none of the coefficients could be estimated for terms involving 

waist to hip ratio. When we tested the component interaction models separately, 

age*minutes walked was significantly associated with lower risk of incident AD dementia 

(p for interaction=0.02; Table 10-10). When we stratified by walking status, age was not 
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significantly associated with AD dementia among those walking more per week: 1.22 

[0.22, 6.93]. However, greater age (here ≥ 76.2 years) was significantly associated with 

increased risk of AD dementia among those walking less per week: 31.19 [4.24, 229.70]. 

Using the cutpoints selected by the CART modeling, this indicates that the effect of age 

on AD dementia risk is mitigated among those who completed ≥ 33.6 minutes of walking 

weekly.   
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10.5 DISCUSSION 

10.5.1 Primary outcome: Incident all-cause dementia 

We selected interactions of VCMRF with non-modifiable variables and with other VCMRF 

through an algorithm incorporating a review of the literature, model based large effect 

sizes, and biological plausibility for impacts on vessel health and blood flow. We tested 

these interactions for relationships with our primary outcome of incident all-cause 

dementia and found that the risk of dementia among those with a stroke history is even 

greater among those who have CHF than among those who do not, although this did not 

survive adjustment for multiple comparisons. Stroke was the greatest risk factor for 

dementia in our study, with nearly a 10-fold increased risk among those with vs. without 

stroke history. Most prior population-based studies report a doubling of risk of dementia 

among those with stroke,255-257. Our results are more in line with a medical records linkage 

analysis, which demonstrated up to a 9-fold increased risk of dementia in those with vs. 

without stroke.258  

In our univariable model of incident all-cause dementia, CHF was associated with 

nearly a 3-fold increased risk. Results from several European population cohort studies 

suggest a link between CHF and dementia.259-261 There is good biological plausibility for 

the interaction of stroke and CHF in dementia risk. CHF is cross-sectionally associated 

with lower cerebral blood flow.262,263 Adding poor oxygen and nutrient delivery on top of 

parenchymal death from stroke is more likely to overburden the brain’s compensation 

abilities. CHF may be secondary to both myocardial infarction and hypertension. Long-

term exposure to hypertension causes left-ventricular hypertrophy, and poorer pumping 



121 

capability. Hypertension, but not myocardial infarction was associated with greater risk of 

incident all-cause dementia in our univariable modeling.  

Despite strong univariable associations of the component variables, we did not 

confirm the presence of any of our other algorithm-based selected interactions. Others 

have reported such an interaction in relation to SVD103 and cognitive trajectories264 such 

that APOE*4 carriers with hypertension have greater WMH burden and more rapid 

cognitive decline than non-carriers, but we did not find a significant APOE*4*hypertension 

interaction for all-cause dementia. It is possible that this interaction is more relevant for 

mid-life hypertension and APOE*4. Indeed, such a relationship has been reported in 

relation to poor late-life cognitive function.265 Our youngest participants began the study 

at age 65, and we do not have data on the duration of hypertension, so we were unable 

to study the effect of mid-life hypertension in combination with APOE*4 carrier status. We 

also did not find a significant interaction of history of stroke or CHF and current drinking. 

10.5.2 Secondary outcomes: Incident AD dementia, incident MCI, and overall 

cognitive performance 

None of our candidate interactions in models of incident AD dementia or MCI were 

significant. We found strong and consistent beneficial effects of ever drinking alcohol 

across all of our outcomes, and this is consistent with others’ results,266,267 and when 

examining overall cognitive performance, we found a significant interaction of ever 

drinking alcohol with stroke such that a stroke history lessened the beneficial effect of 

ever drinking. However, this did not survive adjustment for multiple comparisons. Clearly 

parenchymal death outweighs the benefits associated with light to moderate drinking. 
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10.5.3 Exploratory outcomes: Interactions suggested by CART 

Our CART modeling suggested an interaction of age with minutes of walking for exercise. 

We confirmed the presence of this interaction by testing it in a Cox PH model. The 

interaction indicates either that walking mitigates the effect of age on AD dementia risk, 

or, given the long and intertwined trajectories of cognitive decline and physical function, 

those who are less likely to get AD dementia also happen to be functioning well enough 

to keep walking. We cannot clarify possible reverse causality with this modeling approach. 

Nevertheless, many have reported beneficial effects of physical activity on AD-spectrum 

changes.29-34,97,215  

The interaction of age with minutes walking was the only CART-generated 

interaction supported by our confirmatory testing with Cox PH models. At least one 

component of our ability to detect this interaction has to do with AUC of each model. The 

AUC for the dementia and MCI models was fair, while that for the AD dementia model 

was good (data not shown). Having greater prediction accuracy in this classification tree 

increased our chances of confirming the result with our Cox PH modeling.  

10.5.4 Strengths and limitations 

It is important to keep some limitations in mind when considering these results. When we 

corrected our analyses of interactions in incident all-cause dementia for multiple 

comparisons, the interaction of stroke with CHF was no longer significant. Nevertheless, 

given the strong relationship of both of these variables with incident all-cause dementia, 

testing this interaction in additional studies may be worthwhile. In a similar vein, the 
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interaction of stroke with ever drinking in relation to overall cognitive performance did not 

survive correction for multiple comparisons. Additionally, it is unclear if and how one 

should address this with our CART modeling given that the algorithm is essentially 

comparing all possible variables for splits. Therefore, we view the CART results as 

hypothesis generating. 

Our study also has many strengths. First, we have a well-characterized cohort who 

has yearly follow-up data for up to 10 years. This allowed us to test relationships of many 

VCMRF and non-modifiable factors, adjust for potential confounding, and test longitudinal 

associations. Second, we tested interactions that were selected based on a combination 

of evidence in the literature, effect sizes in univariable associations, and biological 

plausibility. We also applied a machine learning technique that allows for examination of 

all possible splits within the data to generate additional candidate interactions. This is 

helpful as researchers cannot include all possible interactions within regression 

frameworks, but the CART algorithm can. In addition, this removes subjectivity in 

interaction selection on the part of the modeler. Finally, we tested these CART-suggested 

interactions in a test set of the data using Cox PH modeling in order to confirm them. 

10.5.5 Future directions 

There are other interactions of VCMRF with one another as well as with non-modifiable 

factors, which we found were important for SVD, but which could not be tested here. For 

example, mid-life hypertension is associated with greater risk of poor brain health as 

opposed to late-life hypertension,102,104,105,121 and higher risk of silent brain 

infarcts/lacunes than in men may be found in older, but not younger, pre-menopausal 
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women.119,128,150,168 130,268 We began following our participants when they were age 65 or 

older, thus we could not address interactions that split age between mid- and late-life. 

APOE*4 may also interact with cholesterol. Willey, et al. found that among APOE*4 

carriers, those with total cholesterol ≥200 mg/dL trended toward having lower white matter 

hyperintensity volume than those with lower total cholesterol.135 We did not test this 

interaction because of our particular interest in VCMRF associated with vessel health and 

blood flow and cholesterols stronger connection to myelin, synapse formation and 

maturation, and cellular membrane. These interactions should be tested in appropriate 

cohorts (for example mid-life cohorts that are now evolving into studies of aging). Our 

results, especially those based on CART, should be confirmed in other cohorts. 

10.5.6 Conclusions 

Physical activity and prevention of multimorbidity should be prioritized for prevention of 

cognitive impairment and dementia. 
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10.7 TABLES AND FIGURES 

Table 10-1. Cognitive domains and tests used in the MYHAT study 

Cognitive domain Tests 
attention/processing speed Trailmaking Test A 

Digit span 
executive function Trailmaking Test B 

Initial letter fluency 
Clock drawing 

language Boston Naming Test 
Category fluency 
Modified Token Test 

memory Immediate and delayed logical memory 
Visual reproduction 

visuospatial skill Block design 

Table 10-2. MYHAT study participants at each visit 

Visit N 
1 1982 
2 1697 
3 1497 
4 1320 
5 1161 
6 1022 
7 922 
8 834 
9 745 
10 623 
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Table 10-3. Baseline characteristics of all MYHAT study participants 

Total N Median (IQR) or N (%) 
Non-modifiable factors 
Age strata 

65-74
75-84
85+

1982 
680 (34.31) 
916 (46.22) 
386 (19.48) 

Female Sex 1982 1210 (61.05) 
White Race 1982 1877 (94.70) 
≥ HS education 1982 1709 (86.22) 
APOE*4 carrier 1778 372 (20.92) 
Vascular and cardiometabolic factors 
  Physical exam measures 

BMI 1934 27.0 (6.6) 
Waist to hip ratio 1863 0.9 (0.1) 
Pulse 1967 68.0 (12.0) 
SBP 1969 132.0 (20.0) 
DBP 1967 74.0 (12.0) 
MAP 1967 93.3 (12.7) 
PP 1967 58.0 (18.0) 

  Laboratory tests 
HbA1C 960 6.2 (1.0) 
Total Cholesterol 1037 187.0 (59.0) 
HDL-C 1037 45.5 (8.2) 
LDL-C 1037 140.1 (53.4) 
ApoB:ApoA1 ratio 1023 0.7 (1.2) 
Homocysteine 1019 11.7 (4.9) 
Cystatin C 1023 1.1 (0.4) 
C-reactive protein 1023 2.0 (3.1) 

  Chronic health conditions 
History of stroke 1978 98 (4.95) 
History of TIA 1975 187 (9.47) 
History of MI 1977 292 (14.77) 
History of hypertension 1977 1282 (64.85) 
Current antihypertensive 
medication use 

1982 1430 (72.15) 

Hypertension uncontrolled with 
medication 

1420 951 (66.97) 

History of diabetes 1979 432 (21.83) 
Antidiabetic medication 1982 255 (12.87) 
History of high cholesterol 1972 1188 (60.24) 
History of congestive heart 
failure 

1977 188 (9.51) 

History of cardiac arrhythmia 1978 595 (30.08) 
  Behavioral factors 

Walking for exercise 
(min/week) 

1981 0.0 (90.0) 

History of smoking (ever) 1977 1049 (53.06) 
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Smoked in the past year 1975 145 (7.34) 
Smoke now 1975 137 (6.94) 
History of alcohol use (ever) 1978 1697 (85.79) 
Current alcohol use (within past 
year) 

1978 1298 (65.62) 

History of Depression 1979 283 (14.30) 
mCESD 1975 0.0 (1.0) 
History of Anxiety 1979 211 (10.66) 
Sleep apnea 1971 164 (8.32) 
Cognition and functioning 
CDR=0 1982 1413 (71.29) 
MMSE 1982 27.0 (3.0) 
Attention 963 0.5 (0.7) 
Executive 1007 0.5 (0.6) 
Language 1116 0.5 (0.5) 
Memory 1011 0.5 (0.6) 
Visuospatial 904 0.5 (1.0) 

 
Note: BMI=body mass index; SBP=systolic blood pressure; DBP=diastolic blood pressure; MAP=mean 
arterial pressure; PP=pulse pressure; CRP=c-reactive protein; TIA=temporary ischemic attack; MI: 
myocardial infarction; HTN=hypertension; DM=diabetes mellitus; CHF=congestive heart failure; mCESD= 
modified centers for epidemiologic studies-depression scale; CDR=clinical dementia rating scale; 
MMSE=Mini-Mental State Examination 
 

 

  

Table 10-3 Continued 
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Table 10-4. Baseline characteristics by cognitive outcome among those with at least one follow-up 
visit 
Median (IQR) 
or N (%) 

Cognitive Outcome 

Baseline 
Measures 

Cognitively 
Normal 
N=881 

N Incident 
MCI 

N=373 

N Incident 
All-cause 
Dementia 

N=109 

N Incident 
AD 

Dementia 
N=90 

N 

Non-modifiable factors 
Age by strata 

65-74
75-84
85+

419 (47.56) 
471 (42.11) 
91 (10.33) 

881 
64 

(17.16) 
209 

(56.03) 
100 

(26.81) 

373 
12 (11.01) 
55 (50.46) 
42 (38.53) 

109 
5 (5.56) 

45 
(50.00) 

40 
(44.44) 

100 

Female Sex 547 (62.09) 881 258 
(69.17) 

373 71 (65.14) 109 59 
(65.56) 

90 

White Race 851(96.59) 881 352 
(94.37) 

373 96 (88.07) 109 80 
(88.89) 

90 

>= HS 
education 

808 (91.71) 881 306 
(82.04) 

373 81 (74.31) 109 67 
(74.44) 

90 

APOE*4 carrier 156 (19.16) 814 85 
(24.64) 

345 34 (34.00) 100 27 
(32.53) 

83 

Vascular and cardiometabolic factors 
  Physical exam measures 

BMI 27.6 (6.8) 863 27.1 (6.5) 368 26.3 (7.0) 108 26.3 (6.2) 89 
Waist to hip 
ratio 

0.9 (0.1) 834 0.9 (0.1) 359 0.9 (0.1) 106 0.9 (0.1) 89 

Pulse 68.0 (14.0) 877 68.0 
(12.0) 

371 68.0 
(13.5) 

108 68.0 
(12.0) 

89 

SBP 132.0 (20.0) 875 132.0 
(20.0) 

371 132.0 
(16.0) 

109 132.0 
(14.0) 

90 

DBP 76.0 (10.0) 874 72.0 
(12.0) 

371 72.0 
(12.0) 

109 72.0 
(12.0) 

90 

MAP 94.5 (12.7) 874 92.7 
(12.0) 

371 93.3 
(11.3) 

109 93.3 
(11.3) 

90 

PP 58.0 (14.0) 874 58.0 
(18.0) 

371 58.0 
(18.0) 

109 58.0 
(18.0) 

90 

  Laboratory Tests 
HbA1C 6.2 (0.9) 454 6.3 (1.0) 182 6.2 (0.9) 48 6.2 (0.9) 36 
Total 
Cholesterol 

192.0 (58.0) 487 185.5 
(59.0) 

190 179.0 
(34.0) 

51 177.0 
(39.0) 

39 

HDL-C 46.2 (17.8) 487 45.6 
(17.7) 

190 45.2 
(15.1) 

51 45.2 
(12.3) 

39 

LDL-C 143.4 (52.7) 487 134.1 
(58.8) 

190 134.5 
(40.1) 

51 131.8 
(41.7) 

39 

ApoB:ApoA1 
ratio 

0.7 (0.2) 480 0.7 (0.3) 188 0.7 (0.2) 51 0.7 (0.3) 39 

Homocysteine 11.3 (4.4) 478 11.7 (5.0) 188 11.7 (4.5) 51 11.7 (5.3) 39 
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Cystatin C 1.0 (0.3) 480 1.1 (0.4) 188 1.1 (0.3) 51 1.0 (0.3) 39 
C-reactive 
protein 

2.0 (3.1) 480 1.8 (2.4) 188 1.8 (2.1) 51 1.9 (2.2) 39 

     Chronic Health Conditions 
History of stroke 20 (2.27) 880 14 (3.76) 372 6 (5.50) 109 4 (4.44) 90 
History of TIA 58 (6.59) 880 35 (9.41) 372 13 (11.93) 109 10 

(11.11) 
90 

History of MI 
(heart attack) 

118 (13.41) 880 55 
(14.78) 

372 14 (12.84) 109 11 
(12.22) 

90 

History of 
hypertension 

540 (61.43) 879 247 
(66.40) 

372 74 (67.89) 109 62 
(68.89) 

90 

Current 
antihypertensive 
medication use 

594 (67.42) 881 277 
(74.26) 

373 85 (77.98) 109 73 
(81.11) 

90 

Hypertension 
uncontrolled 
with medication 

399 (67.86) 588 191 
(69.20) 

276 56 (65.88) 85 47 
(64.38) 

73 

History of 
diabetes 

180 (20.43) 881 75 
(20.16) 

372 23 (21.10) 109 14 
(15.56) 

90 

Antidiabetic 
medication 

97 (11.01) 881 48 
(12.87) 

373 14 (12.84) 109 8 (8.89) 90 

History of high 
cholesterol 

539 (61.32) 879 227 
(61.52) 

369 52 (48.15) 108 40 
(44.94) 

89 

History of 
congestive 
heart failure 

66 (7.49) 881 38 
(10.22) 

372 8 (7.34) 109 4 (4.44) 90 

History of 
cardiac 
arrhythmia 

225 (25.54) 881 110 
(29.57) 

372 34 (31.19) 109 26 
(28.89) 

90 

     Behavioral factors 
Walking for 
exercise 
(min/week) 

0.0 (90.0) 881 0.0 (90.0) 373 0.0 (60.0),  108 0.0 (30.0) 90 

History of 
smoking (ever) 

469 (53.30) 880 166 
(44.62) 

372 43 (39.45) 109 34 
(37.78) 

90 

Smoked in the 
past year 

75 (8.53) 879 21 (5.65) 372 6 (5.50) 109 4 (4.44) 90 

Smoke now 71 (8.08) 879 19 (5.11) 372 6 (5.50) 109 4 (4.44) 90 
History of 
alcohol use 

778 (88.31) 881 295 
(79.30) 

372 87 (50.46) 109 71 
(78.89) 

90 

Current alcohol 
use (within past 
year) 

632 (71.74) 881 218 
(58.60) 

372 55 (50.46) 109 46 
(51.11) 

90 

History of 
Depression 

110 (12.49) 881 44 
(11.83) 

372 16 (14.68) 109 10 
(11.11) 

90 

mCESD 0.0 (0.0) 881 0.0 (1.0), 
371 

371 0.0 (1.0) 109 0.0 (1.0) 90 

History of 
Anxiety 

73 (8.29) 881 35 (9.41) 372 13 (11.93) 109 8 (8.89) 90 

Sleep apnea 69 (7.88) 876 30 (8.09) 371 10 (9.17) 109 8 (8.89) 90 

Table 10-4 Continued 
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Cognition and functioning 
CDR=0 881 (100.0) 881 373 

(100.00) 
373 43 (39.45) 109 34 

(37.78) 
90 

MMSE 28.0 (2.0) 881 27.0 (4.0) 373 25.0 (5.0) 109 26.0 (5.0) 90 
 
Note: BMI=body mass index; SBP=systolic blood pressure; DBP=diastolic blood pressure; MAP=mean 
arterial pressure; PP=pulse pressure; CRP=c-reactive protein; TIA=temporary ischemic attack; MI: 
myocardial infarction; HTN=hypertension; DM=diabetes mellitus; CHF=congestive heart failure; mCESD= 
modified centers for epidemiologic studies-depression scale; CDR=clinical dementia rating scale; 
MMSE=Mini-Mental State Examination 
 

  

Table 10-4 Continued 
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Table 10-5. Univariable relationship of variables with incident all-cause dementia 

Variables HR lower .95 
upper 
.95 z Pr(>|z|) 

Baseline age (≥ 78 y) 5.82 3.58 9.48 7.09 <0.001 
Sex, female 1.05 0.71 1.55 0.23 0.82 

Race, white 0.38 0.21 0.67 -3.30 <0.01 
Education 

  <HS (ref) -- -- -- -- -- 

  HS 0.42 0.26 0.68 -3.59 <0.001 
>HS 0.31 0.19 0.50 -4.65 <0.001 

APOE*4 carrier 2.02 1.33 3.05 3.32 <0.001 
BMI 0.58 0.43 0.77 -3.73 <0.001 
Waist to Hip Ratio 0.84 0.67 1.04 -1.60 0.11 

Pulse 1.22 1.00 1.48 1.98 0.05 

SBP 0.92 0.75 1.12 -0.85 0.39 

DBP 0.83 0.68 1.01 -1.91 0.06 

MAP 0.85 0.69 1.03 -1.66 0.10 

PP 1.02 0.84 1.25 0.25 0.81 

HbA1c 0.99 0.74 1.34 -0.04 0.97 

Total cholesterol 0.79 0.59 1.07 -1.51 0.13 

HDL-C 0.85 0.63 1.16 -1.02 0.31 

LDL-C 0.83 0.62 1.12 -1.22 0.22 

ApoB:ApoA1 0.97 0.70 1.35 -0.16 0.87 

Homocysteine 1.03 0.80 1.32 0.23 0.81 

Cystatin C 1.13 0.84 1.52 0.80 0.42 

CRP 0.93 0.63 1.37 -0.37 0.71 

Stroke 9.90 4.76 20.58 6.13 <0.001 
TIA 1.78 0.44 7.23 0.81 0.41 

MI 0.80 0.11 5.71 -0.23 0.82 

HTN 1.64 1.04 2.58 2.12 0.03 
DM 1.09 0.71 1.69 0.40 0.69 
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Table 10-5 Continued 

High cholesterol 0.61 0.42 0.89 -2.54 0.01 
CHF 2.91 1.60 5.31 3.49 <0.001 
Cardiac arrhythmia 1.52 1.01 2.30 2.00 0.05 

Walking for exercise (minutes per week) 0.65 0.47 0.90 -2.64 0.01 
Ever smoked 0.62 0.42 0.91 -2.47 0.01 
Smoked in the past year 0.88 0.36 2.16 -0.27 0.78 

Smoke now 0.95 0.39 2.34 -0.10 0.92 

History of alcohol use (ever)  0.58 0.36 0.93 -2.27 0.02 
Current alcohol use (within past year) 0.30 0.19 0.46 -5.45 <0.001 
Depression 1.81 1.08 3.04 2.25 0.02 
mCESD 1.39 1.26 1.53 6.62 <0.001 
Anxiety 1.24 0.64 2.37 0.64 0.52 

 
Note: BMI=body mass index; SBP=systolic blood pressure; DBP=diastolic blood pressure; MAP=mean arterial 
pressure; PP=pulse pressure; CRP=c-reactive protein; TIA=temporary ischemic attack; MI: myocardial infarction; 
HTN=hypertension; DM=diabetes mellitus; CHF=congestive heart failure; mCESD= modified centers for 
epidemiologic studies-depression scale 
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Table 10-6. Relationship of interactions of interest with incident all-cause dementia 

Model 1 Model 2 Model 3 
Variables HR 95% CI p HR 95% CI p HR 95% CI p 
APOE*4*HTNa

APOE*4 2.04 0.86 4.86 0.10 2.50 1.04 6.00 0.04 2.64 0.76 9.14 0.13 
HTN 1.65 0.91 2.98 0.10 1.41 0.77 2.55 0.26 2.32 1.00 5.36 0.05 
APOE*4*HTN 1.00 0.37 2.69 >0.99 1.04 0.39 2.81 0.93 1.08 0.28 4.23 0.9102 
Stroke*current drinkingb

stroke 10.65 4.81 23.56 <0.001 10.48 4.09 26.86 <0.001 11.45 4.40 29.77 <0.001 
current drinking 0.31 0.20 0.49 <0.001 0.43 0.26 0.69 <0.001 0.50 0.31 0.82 <0.01 
stroke*current 
drinking 0.48 0.06 4.11 0.50 0.57 0.06 5.20 0.62 0.46 0.05 4.24 0.50 
Stroke*CHFc 

stroke 6.93 2.78 17.27 <0.001 5.47 1.70 17.59 <0.01 4.54 1.40 14.75 0.01 
CHF 2.31 1.17 4.59 0.02 1.83 0.91 3.66 0.09 1.65 0.80 3.39 0.18 
stroke*CHF 3.35 0.67 16.80 0.14 4.40 0.73 26.42 0.11 6.46 1.06 39.35 0.04 
CHF*current drinkingd 

CHF 2.57 1.33 4.99 <0.01 2.25 1.15 4.40 0.02 2.41 1.18 4.91 0.02 
current drinking 0.31 0.19 0.48 <0.001 0.43 0.26 0.70 <0.001 0.53 0.32 0.87 0.01 
CHF*current 
drinking 0.98 0.20 4.76 0.98 0.85 0.17 4.18 0.84 0.71 0.14 3.51 0.67 

Model 1: variables and interaction of interest. 
Model 2: Model 1 + non-modifiable factors (baseline age, sex, race, education, APOE*4) 
Model 3: Model 2 + vascular and cardiometabolic risk factors and behavioral factors that are confounders as follows: 

a high cholesterol, BMI, minutes per week walking for exercise, current drinking, history of depression 
b hypertension, pulse, minutes per week walking for exercise, ever smoked  
c hypertension, arrhythmia, high cholesterol, minutes per week walking for exercise, history of depression  
d hypertension, arrhythmia, high cholesterol, pulse, minutes per week walking for exercise, ever smoked, history of 
  depression 

Note: HTN=hypertension; CHF=congestive heart failure; 
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Table 10-7. Relationship of interactions of interest with incident Alzheimer’s disease dementia 

Model 1 Model 2 Model 3 
Variables HR 95% CI p HR 95% CI p HR 95% CI p 
APOE*4*HTNa

APOE*4 1.95 0.78 4.89 0.15 2.66 1.05 6.75 0.04 2.96 0.85 10.29 0.09 
HTN 1.47 0.79 2.74 0.22 1.21 0.65 2.27 0.55 1.91 0.81 4.53 0.14 
APOE*4*HTN 0.97 0.33 2.79 0.95 1.02 0.35 2.96 0.97 0.98 0.24 3.99 0.97 
Stroke*current drinking**b 

stroke 9.02 3.57 22.80 <0.001 10.00 3.46 28.87 <0.001 11.48 3.84 34.37 <0.001 
current drinking 0.28 0.17 0.46 <0.001 0.38 0.22 0.65 <0.001 0.38 0.21 0.68 <0.001 
stroke*current 
drinking 1.37*10-7 -- -- 0.12 1.32*10-7 -- -- 0.15 1.17*10-7 -- -- 0.16 
Stroke*CHFc 

stroke 4.99 1.56 15.95 <0.01 4.55 1.10 18.86 0.04 3.48 0.82 14.83 0.09 
CHF 2.47 1.19 5.13 0.01 1.80 0.86 3.76 0.12 1.59 0.71 3.59 0.26 
Stroke*CHF 3.31 0.47 23.27 0.23 3.41 0.40 29.16 0.26 5.53 0.63 48.22 0.12 
CHF*current drinkingd 

CHF 2.41 1.16 5.05 0.02 1.96 0.93 4.14 0.08 2.07 0.90 4.78 0.09 
Current drinking 0.26 0.15 0.44 <0.001 0.36 0.20 0.63 <0.001 0.37 0.20 0.70 <0.01 
CHF*current 
drinking 1.45 0.28 7.45 0.66 1.23 0.23 6.40 0.81 1.37 0.25 7.43 0.72 

Model 1: variables and interaction of interest. 
Model 2: Model 1 + non-modifiable factors (baseline age, sex, race, education, APOE*4) 
Model 3: Model 2 + vascular and cardiometabolic risk factors and behavioral factors that are confounders as follows: 

a high cholesterol, BMI, waist to hip ratio, minutes per week walking for exercise, drank in the past year 
b waist to hip ratio, minutes per week walking for exercise, ever smoked 
c arrhythmia, high cholesterol, mCESD 
d arrhythmia, high cholesterol, waist to hip ratio, minutes per week walking for exercise, ever smoked, mCESD 

**Note: For these models, a warning was generated indicating that the beta may be infinite. In these cases, the author of the “survival” package in 
R advises that the standard errors and Wald-test p-values should not be trusted, but that the Likelihood ratio test is still accurate. Thus, the p-value 
for the interaction term here is the LRT p-value comparing the model with the interaction term to the model without the interaction term. 
HTN=hypertension; CHF=congestive heart failure 
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Table 10-8. Relationship of interactions of interest with incident mild cognitive impairment 

Model 1 Model 2 Model 3 
Variables HR 95% CI p HR 95% CI p HR 95% CI p 
APOE*4*HTNa

APOE*4 1.46 0.98 2.17 0.06 1.50 1.00 2.23 0.05 1.70 0.94 3.07 0.08 
HTN 1.19 0.91 1.54 0.20 0.92 0.70 1.20 0.53 1.11 0.75 1.66 0.59 
APOE*4*HTN 0.86 0.52 1.42 0.55 0.95 0.57 1.58 0.84 0.83 0.39 1.77 0.63 
MI*TIA**b

MI 2.97 1.63 5.41 <0.001 2.40 1.31 4.42 <0.01 1.78 0.69 4.61 0.23 
MI*TIA 0.00 -- -- 0.22 0.00 -- -- 0.32 NA NA NA NA 
MI*Strokec 

MI 2.77 1.48 5.20 <0.01 2.30 1.22 4.35 0.01 2.11 0.78 5.72 0.14 
MI*stroke 0.73 0.04 12.62 0.83 0.49 0.03 6.98 0.60 0.41 0.02 8.44 0.56 

Model 1: variables and interaction of interest. 
Model 2: Model 1 + non-modifiable factors (baseline age, sex, race, education, APOE4) 
Model 3: Model 2 + vascular and cardiometabolic risk factors and behavioral factors that are confounders as follows: 

a Pulse pressure, BMI, Cystatin C, minutes per week walking for exercise, drank in the past year, mCESD 
b NA 
c DBP, Cystatin C, ever smoke 

**Note: For models 1 and 2 of this interaction, a warning was generated indicating that the beta may be infinite. In these cases, the author of the 
“survival” package in R advises that the standard errors and Wald-test p-values should not be trusted, but that the Likelihood ratio test is still accurate. 
Thus, the p-value for the interaction term here is the LRT p-value comparing the model with the interaction term to the model without the interaction 
term. NA: This model was not able to run due to small sample size for the interaction of interest once all of the covariates were entered into the 
model. HTN=hypertension; MI=myocardial infarction; TIA=temporary ischemic attack. 
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Table 10-9. Relationship of interactions of interest with overall cognitive performance 

Model 1 Model 2 Model 3 
Variables Estimate 95% CI SE t Estimate 95% CI SE t Estimate 95% CI SE t 
Ever drank* 
Strokea

ever drank 0.095 0.054 0.135 0.021 4.60 0.050 0.011 0.089 0.020 2.51 0.049 0.010 0.088 0.020 2.48 
stroke 0.023 -0.089 0.135 0.057 0.40 0.038 -0.076 0.151 0.058 0.65 0.039 -0.074 0.153 0.058 0.68
ever drank* 
stroke -0.106 -0.229 0.017 0.063 -1.69 -0.125 -0.249 -0.001 0.063 -1.97 -0.125 -0.249

-0.482
* 10-3 0.063 -1.97

Ever drank* 
Cystatin Cb

ever drank 0.062 0.006 0.118 0.029 2.18 0.015 -0.036 0.067 0.026 0.59 0.017 -0.034 0.069 0.026 0.66
cystatin C -0.029 -0.079 0.022 0.026 -1.11 -0.009 -0.055 0.037 0.024 -0.39 -0.004 -0.050 0.042 0.024 -0.17
ever drank*  
cystatin C -0.027 -0.080 0.027 0.027 -0.98 -0.007 -0.055 0.042 0.025 -0.27 -0.008 -0.056 0.041 0.025 -0.30
Stroke* 
Cystatin Cc

stroke -0.043 -0.115 0.030 0.037 -1.16 -0.032 -0.104 0.039 0.037 -0.89 -0.028 -0.100 0.044 0.037 -0.77
cystatin C -0.052 -0.069 -0.036 0.008 -6.26 -0.015 -0.030 0.001 0.008 -1.80 -0.010 -0.026 0.007 0.008 -1.18
stroke* 
cystatin C -0.009 -0.061 0.043 0.027 -0.34 -0.015 -0.067 0.036 0.026 -0.58 -0.019 -0.071 0.034 0.027 -0.70
Model 1: variables and interaction of interest. 
Model 2: Model 1 + non-modifiable factors (baseline age, sex, race, education, APOE*4) 
Model 3: Model 2 + vascular and cardiometabolic risk factors and behavioral factors that are confounders as follows: 

a Hypertension, minutes per week walking for exercise, mCESD 
b Hypertension, myocardial infarction, arrhythmia, homocysteine, minutes per week walking for exercise, mCESD 
c Hypertension, myocardial infarction, arrhythmia, homocysteine, minutes per week walking for exercise, drank in the past year, mCESD 
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Table 10-10. Cox proportional hazards model of CART generated candidate interaction of age and walking for incident AD dementia 

Model 1 Model 2 
Variables HR lower .95 upper .95 p HR lower .95 upper .95 p 
age 33.89 4.65 247.26 <0.001 31.69 4.30 233.26 <0.001 
walking minutes 4.22 0.44 40.59 0.21 4.46 0.46 42.84 0.20 
age*walking minutes 0.06 0.05*10-1 0.67 0.02 0.04 0.03*10-1 0.55 0.02 

Model 1: variables and interaction of interest. 
Model 2: Model 1 + non-modifiable factors (baseline age, sex, race, education, APOE*4) 
Note: The three-way interaction of age*walking minutes*waist to hip ratio and two-way interactions involving waist to hip ratio were also 
tested. However, the models involving waist to hip ratio would not run, likely due to small sample size. 
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Figure 10-1. Study flow for all MYHAT study participants 

 
 
 
 

 
 

Figure 10-2. Creation of the all-cause dementia and AD dementia risk set 
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Figure 10-3. Creation of the MCI risk set 

 
 

 

Figure 10-4. Relationship of stroke with overall cognitive performance by history of drinking 

  



140 

11.0  DISCUSSION 

With no good disease modifying treatments for AD and related disorders, determining 

whether the most promising candidates actually promote cerebral small vessel integrity 

and thereby prevent cognitive disorders can point to new intervention strategies, a critical 

public health goal. Therefore, in this dissertation, I have used a population neuroscience 

approach to examine whether PA, growth factors, and VCMRF reduction are plausible 

pathways to small vessel integrity and cognitive health. 

11.1 RESULTS SUMMARY 

I wanted to know whether PA and growth factors could promote integrity of the cerebral 

small vessels themselves, rather than neuroimaging markers of later stage disease. 

Before I could answer this question, I needed to find a way to measure the vessels directly 

in vivo. In paper 1, I developed a method to image deep medullary veins in older adults 

using 7T SWI. This approach was feasible to apply in older, community-dwelling adults. 

In cross-sectional analysis, I found that APOE*4 allele presence, lower VEGF, and male 

sex were associated with greater tortuosity ratio. The relationship of APOE*4 with 

tortuosity ratio was a robust result that survived adjustment for confounders and multiple 

comparisons.  

Confident in this method, I could thus wade into my main question. In a randomized 

controlled trial in paper 2, I discovered that indeed, PA appeared to be a promoter of 
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cerebral small vessel integrity. I also found an indication that greater percent increases in 

BDNF were positively associated with percent changes in straight venous length. 

Next, I wanted to know whether VCMRF interact with one another and non-

modifiable factors to confer differential risk of cognitive disorders. I found that the risk of 

all-cause dementia conferred by stroke was even greater among those with CHF; the 

beneficial effects of alcohol consumption on overall cognitive performance varied by 

stroke history; and in exploratory analyses I found that the detrimental effect of age on 

AD dementia risk was lower among those who walked more. 

11.2 DISCUSSION & FUTURE DIRECTIONS 

Next, I will discuss the implications of these results and future directions, ending 

with a proposal of a research program to address my next questions. I successfully 

adapted a method to image the cerebral deep medullary veins in older adults. This 

represents a major advance in methodology that could significantly benefit research into 

cerebral SVD. Traditional neuroimaging markers of SVD do not directly image the 

vessels, but instead image markers more distal in the pathophysiological process. SWI 

at ultra-high field strength provides a window to the cerebral small vessels in living 

humans. Future multimodal studies of SVD should incorporate markers of parenchymal 

health (gray matter volume, white matter volume, cortical thickness), traditional 

neuroimaging markers of SVD (WMH, SBI/lacunes, microbleeds) and novel markers of 

SVD visualizing both structure (7T SWI, TOF, FA, MD) and function (CBF, CVR). The 
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application of such modalities across the lifespan could allow this research field to make 

substantive progress in understanding the pathophysiological natural history of SVD.  

In addition, 7T SWI provides a way to study the venous side small vasculature, 

which has remained generally unstudied until now. The cerebral venous circulation is 

important for three key reasons: it is critical for healthy blood flow, it is the site of initial 

inflammatory response, and it is implicated in deposition and clearance of aβ. The 

cerebral veins are unique. Unlike veins in the limbs, they have no valves, and unlike 

arteries they have less muscle and thus thinner walls. This makes them susceptible to 

loss of elasticity, damage, and venous congestion, and perhaps in a process similar to 

the development of varicose veins, this leads to tortuosity. When blood pools due to 

venous congestion, the pressure on the venous walls is increased. This can damage the 

vein, making it more tortuous. Whether this is the same process impacting cerebral small 

veins needs to be tested more mechanistically, perhaps in studies in which venous tissue 

is exposed to various pressures to assess impact on tortuosity. Evaluating changing 

tortuosity over a lifespan could also help to rule this in or out. Blood flow in the veins is 

low and slow. This allows for leukocyte capture and transmigration. Interestingly, both the 

increased pressure from venous congestion and the inflammatory process will push fluid 

through the vessel walls and into the interstitial space. Whether this can explain WMH, 

which are essentially marking fluid in the brain, should be determined. I found no 

association of tortuosity ratio with WMH in paper 1. Finally, if the venous side is the site 

of initial aβ deposition as has been suggested by animal work,269 early deposits in the 

veins potentially block effective clearance via perivenular spaces. In addition, anything 

blocking bulk flow, which is proposed as a key mechanism of glymphatic clearance,270 
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could be implicated in AD-spectrum pathophysiology. For all of these reasons, 7T SWI of 

cerebral small veins may have utility as a biomarker of small vessel VCID. A quest to 

identify and validate biomarkers of small vessel VCID for use in clinical trials is currently 

underway.240 In addition, while my work so far has focused on the deep medullary veins, 

this imaging approach could be extended throughout the brain. Of particular interest to 

me would be using this approach to study the venous system of the hippocampus in vivo 

as a way to extend multimodal research regarding mechanisms of PA’s beneficial effects 

on the hippocampus as discussed in section 2.1.1. This approach would allow me to 

continue to assess the importance of vascularization to PA effects on hippocampal 

volume. 

In my cross-sectional analysis, I found that APOE*4 allele presence was 

associated with a larger tortuosity ratio, while it was not associated with percent change 

in venous markers. Therefore, it seems that APOE*4 is related to where one starts with 

regard to straight and tortuous venous length and tortuosity ratio, but not to changes over 

time. Confirming these relationships of the APOE*4 allele with small vein morphology in 

younger, healthy individuals would strengthen this conclusion. Therefore, future studies 

should extend the use of 7T SWI into mid-life, young adulthood, and childhood. 

I found that lower VEGF was cross-sectionally associated with a greater tortuosity 

ratio, but that percent increases in BDNF were associated with percent increases in 

straight venous length in my PA intervention analysis. This result with VEGF did not 

survive adjustment but is worth investigating in a larger study to confirm whether this is 

the true relationship or due to lack of power. I found that my measures of BDNF and 

VEGF were very noisy, and this difficulty was compounded by my small sample size. My 
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future studies incorporating peripheral makers like this will need to take this into account 

when determining sample size. 

Male sex was associated with greater tortuosity ratio at study baseline in paper 1. 

Why this is the case when female sex has been associated with SBI/lacunes119,150,168 and 

WMH progression,113,119 especially for black females,113 is important to explore further. It 

is possible that women are at greater risk of cerebral SVD because they are more likely 

than men to have coronary heart disease due to microvascular disease,271 but research 

evaluating the relationship of coronary microvascular disease with cerebral SVD and 

shared risk and protective factors is lacking. Understanding sex-differences in VCID could 

suggest tailored intervention strategies for cognitive disorders. Interestingly, sex-

differences are also found in AD dementia, and it may be that some of these AD dementia 

sex differences can be explained by SVD sex differences. Although others have found 

that females have a greater risk of AD dementia that is not explained by longevity alone,272 

I did not find an association of female sex with incident all-cause dementia, AD dementia, 

or overall cognitive performance in univariable analyses in paper 3. I did find a univariable 

association of female sex with greater risk of MCI. Our study participants were all 65 or 

older, so I could not evaluate a potential interaction of interest in which women 65 or older 

may be at greater risk of SBI/lacunes than men, but not women <65.119,126,128-130,150 

Interestingly, CART, which can explore all possible variable combinations and also 

determine best cut-points, also did not suggest sex-based interactions. 

There are many outstanding questions that this research has suggested. For 

example, are the promoters of vessel integrity and pathophysiological factors different for 

straight and tortuous veins? I discovered that only straight veins only seemed capable of 



145 

increasing over time in response to PA and BDNF. Confirming that cerebral small veins 

are truly malleable is a perfect question for back-translation into experimental animal 

models in which conditions can be tightly controlled and PA and growth factors precisely 

administered and measured. The effect of wheel-running, administration of BDNF and 

VEGF, and blockade of BDNF and VEGF receptors on straight and tortuous veins of mice 

or rats would help researchers understand whether it is biologically plausible that these 

promoters of small vessel integrity can alter straight but not tortuous veins.  

There are many opportunities for this neuroimaging method to grow and improve. 

Our method of tracing the deep medullary veins was manual and two dimensional. A way 

for this method to continue to evolve will be to develop automated, three dimensional 

approaches. During the course of my dissertation, others have been pushing this 

neuroimaging modality forward in these ways.178,185 This group has implemented a three-

dimensional method of venous tracing. This is advantageous because it reduces bias 

associated with veins that may run out of plane in two dimensional images. Their metric 

of tortuosity places the full vein length over the straight-line length drawn from end to end 

of the vein. This approach to tortuosity is appealing in that no subjective human judgement 

on length or degree of curvature is required. This allows more reliable measurement 

which can be automated. Finally, this approach to measuring the veins via SWI could 

likely be implemented at a lower field strength. This is important to reduce selection bias 

that occurs with neuroimaging studies at higher field strength due to their more stringent 

exclusion criteria. 

I found several interactions with VCMRF including stroke*congestive heart failure 

in relation to incident all-cause dementia, age*minutes walking for incident AD dementia, 
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and ever drinking alcohol*stroke in relation to overall cognitive performance. That older 

adults who exercise more have a lower risk of AD dementia is consistent both with my 

own hypothesis that PA is a promoter of cerebral small vessel integrity which in turn 

promotes cognitive function and with the extant literature. For example, I discovered that 

the total length of small straight vessels increases in response to PA even among very 

old adults (70-89 years old). Our research group has also shown that hippocampal 

volume was beneficially impacted by PA in this age group.35 In addition, the parent study 

of this neuroimaging study found a beneficial effect of PA on executive function only 

among those 80 and older.273 

Most of my analyses of interactions in paper 3 were hypothesis generating or did 

not survive corrections for multiple comparison. As such, they should be replicated. One 

option for such replication testing would be within the Monongahela Valley Independent 

Elders Study (MoVIES; PI: Ganguli), a similar cohort study of dementia epidemiology. As 

opposed to training in 50% of the MYHAT datasets and testing in 50%, this would afford 

the opportunity to retrain the CART models on 100% of the MYHAT dataset, and then 

validate in the MoVIES cohort. 

The approach I used for modeling exposure to variables of interest over time in 

survival analyses employed time dependent covariates in Cox regression. However, this 

approach may be biased when the time dependent covariates are endogenous—internal 

variables in which the current value of the covariate is dependent on a prior value of the 

covariate. For example, current BMI or HbA1c are internal variables in which current value 

is dependent on past values. Time dependent Cox models can underestimate the 

association of the evolution of the covariate with the survival outcome. Therefore, when 
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the covariates of interest are endogenous, the joint modeling framework is a better 

approach.274 In this application, joint modeling uses linear or generalized linear mixed 

modeling to create an evolution of the covariate of interest. The strength of association of 

this evolution with a survival outcome can be assessed by using this evolution as an 

exposure of interest in Cox regression. While I attempted this approach using the 

JMBayes package in R, the models would not converge. Nevertheless, this is a promising 

approach that incorporates a whole pattern of exposure to a factor over many years. 

Attempting to implement joint modeling in these analyses using SAS or some custom 

code may be worthwhile. The joint modeling framework also allows for dynamic 

prediction—given an individual’s exposure evolution up to a certain time at which they 

had not yet had the event, what is their probability of survival after that time. The prediction 

is dynamic because the survival probabilities can be updated as each new measure of 

the exposure variable is taken. Such dynamic individual prediction is a tool that can 

advance precision medicine. 

There were several non-modifiable factors that I was unable to study in paper 3. 

The MYHAT study population is majority white, and thus racial differences could not be 

evaluated. Many important interactions reported in the literature relate to mid-life VCMRF 

effects on late-life small vessel integrity and cognitive health. I could not assess any of 

these relationships since we began following our sample at age 65. Based on my review 

of the literature regarding risk factors for SVD,100 the importance of pushing the study of 

SVD earlier in the life course is clear. We must push back to mid-life or earlier to truly 

understand the pathogenesis of SVD. Better assessment of critical periods of exposure 

to risk factors for development of SVD as well as duration of exposure must be 
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incorporated into these studies. Without these measures, whether these associations of 

VCMRF in mid-life are due to onset or duration of exposure cannot be clarified. 

One way to assess the impact of duration of exposure with risk of cognitive 

disorders that can be implemented immediately is the use of a simulation. In the MYHAT 

study, durations of hypertension, diabetes, and other VCMRF are not known. From a 

publicly available dataset in which duration of chronic diseases is known, durations of 

individuals similar to MYHAT study participants could be selected and assigned to the 

respective MYHAT participant. The association of duration of exposure with cognitive 

disorders could then be tested. A likely source of this data is the Health and Retirement 

Survey,275 a population representative survey of 20,000 older U.S. adults. This study has 

information on year of diagnosis for diabetes, congestive heart failure, and cardiac 

arrhythmia. 

As researchers we often apply stringent exclusion criteria to both descriptive and 

interventional epidemiologic studies. Individuals with multiple chronic conditions may be 

excluded, or we as researchers may disregard the possible complexities of comorbidities 

and evaluate these conditions one at a time. But I have shown that there are important 

interactions of VCMRF. My study results, and the real-world experience of clinicians who 

see that older adults do not simply present with one chronic illness, demonstrate that 

reductive analyses focusing only on individual risk or protective factors are both failing to 

harness population heterogeneity to answer research questions and condemning 

clinicians to apply population average care. Instead, we must harness heterogeneity to 

find the groups that are differentially at risk of SVD and cognitive disorders and those who 
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will preferentially benefit from specific interventions. Next, I detail more of my vision of a 

research program to answer some of the questions I have identified above. 

11.3 RESEARCH PROGRAM PROPOSAL 

Given all of these remaining questions, I would like to propose a research program 

that could be used to answer them. The program would use a population neuroscience 

approach. Basic science and human research (both observational and interventional) 

would be integrated and allow for translation of basic science findings to humans and 

back-translation from humans to basic science. This process is not constrained to be 

linear, but rather represents an iterative cycle of questions, discovery, surprise, and 

investigation. In this paradigm, unexpected or unexplained clinical or research-based 

observations in humans generate new tests of mechanism in basic science research. The 

team would be multidisciplinary, incorporating vascular biologists, physiologists, basic 

scientists, neuroscientists, psychologists, epidemiologists, neuroimaging specialists, 

biostatisticians, and clinicians. 

A key place to start would be with a large, racially / ethnically diverse population-

based cohort of men and women. Ideally, I would follow individuals across the entire 

lifespan to distinguish the influence of maximal development of brain and cognitive health 

(which may be seen as the starting point in a study starting at mid- or late-life) from 

declines with age and morbidity. An alternative approach to recruiting a new birth cohort 

would be to add additional measures to or combine existing cohorts. Combining cohorts 

may be the most resource efficient approach and is already in progress for studies of 
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VCID in late-life.276 This approach should be extended to studies of adolescence and mid-

life including the Adolescent Brain Cognitive Development Study,277 Adult Health and 

Behavior project, phase II (AHAB-II)278, the Pittsburgh Imaging Project (PIP)279, Study of 

Women’s Health Across the Nation (SWAN), Ms. Heart.280, and the UK Biobank, a very 

large (N=500,000) prospective study of mid- and late-life.281 Such cohorts could be 

followed through late-life.  

A life course approach would increase our understanding of the natural history of 

SVD pathophysiology and identify potential time dependent processes and critical / 

vulnerable periods. Participants would agree to donate their brains and be eligible and 

willing to undergo serial exams, until as close as possible to death, for multimodal 

neuroimaging scans, medical examination, interviews on lifestyle, blood draws, and 

behavioral assessment. Primary measures of interest would include neuroimaging, serum 

biomarkers, genotype, behavior and function, postmortem neuroimaging, and 

histopathology. Neuroimaging measures should be multimodal and integrative including 

the modalities listed in section 11.2 as well as PET imaging of aβ and tau. Integrating 

modalities could yield new insights, and such integration is beginning to occur (see 

Bangen, et al. 282 for an example of such a study). Assessing the functional and clinical 

relevance of such changes would be achieved by including measures of cognitive and 

physical functioning and following participants for critical endpoints such as cognitive 

decline, dementia, and death. The size of the samples must be large enough to conduct 

well-powered sex- and race-stratified analyses of data thus obtained, with a focus on 

interactions between multimorbidities. 
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Tools to handle large amounts of data should be used. For example, machine 

learning and decision tree algorithms can combine high dimensional neuroimaging data, 

demographics, and clinical variables obtained at repeated time points to produce 

predictive models of clinically relevant outcomes.283  This approach can be effective if 

integrated with an understanding of the underlying conditions and principles of rigorous 

study design. Simulations can also be used to model possible influence of variables not 

currently contained in the datasets. 

11.4 PUBLIC HEALTH SIGNIFICANCE 

Taken together, my results suggest that PA, growth factors, and VCMRF reduction are 

promoters of cerebral small vessel integrity. The rates of meeting weekly PA guidelines 

among older adults are very low. Evidence-based approaches to increase PA among 

older adults should be prioritized. Whether the benefits of PA may be conferred on those 

who are too frail for PA, potentially through administration of growth factors, should be 

tested. Multimodal interventions to prevent multimorbidity and thus increased risk of 

cognitive disorders should be tested among individuals who already have one VCMRF 

chronic condition. These approaches could yield reductions in late-life cognitive disorders 

through promotion of cerebral small vessel integrity. 
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APPENDIX A: SVD RISK FACTORS LITERATURE REVIEW METHODS 

A PubMed search was carried out to assess the current state of knowledge regarding 

VCMRF for SVD in healthy adults. Using the search terms described below, the search 

was carried out on June 20, 2017. 

 

Search terms. We searched for “cerebral small vessel disease” in conjunction with the 

following terms: 

• “leukoaraiosis” or “white matter hyperintensities” or “white matter lesions” or “white 

matter changes” 

• “lacunes” 

• “silent brain infarcts” 

• “cerebrovascular reactivity” 

• “cerebral blood flow” 

 

All of those were combined with AND with the following added with NOT: 

• “cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy” or “CADASIL” 

• “acute stroke” 
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APPENDIX B: RESEARCH INVESTIGATORS FOR THE LIFE STUDY, PAPERS 1 & 2 
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APPENDIX C: BACKGROUND ON MACHINE LEARNING WITH A FOCUS ON 

CLASSIFICATION AND REGRESSION TREES 

Classification and regression trees (CART) comprise a machine learning approach to 

prediction of a categorical outcome in the case of a classification tree or a continuous 

outcome in the case of a regression tree. Both approaches use recursive partitioning of 

the data in order to predict an outcome. When a continuous outcome is predicted by a 

regression tree, the prediction will be the mean outcome value for that partition. 

Alternately, when a categorical outcome is predicted by a classification tree, the outcome 

value is the outcome with the greatest proportion for that partition. For example, if a 

classification tree is attempting to predict dementia vs. no dementia and the dataset is 

split into three terminal leaves (endpoints of the decision tree), the outcome assigned to 

each terminal leaf is based on the proportion of dementia and no dementia contained 

within it. If terminal leaf A has 75% dementia and 25% no dementia, that terminal leaf 

predicts an outcome of dementia.  

While a plethora of machine learning approaches exist, paper 3 uses CART 

because it is ideal to solve a very specific problem: screen for multiple possible 

interactions simultaneously and predict a categorical outcome. With typical regression 

approaches, when multiple main effects and interactions are of interest, the researcher 

cannot test all possible combinations, especially when sample sizes are limited. On the 

other hand, with a classification tree, the investigator need only run one test and all 

possible splits are tested with the best selected. In this way, it is certainly testing more 

possible interactions than a researcher can in a typical regression framework.284 A 
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classification tree proceeds in a branching pattern from the top downward. Interactions 

can be of two types. First, the proportion of the outcome of interest in terminal daughter 

nodes split on variable A may vary by variable B.284 This is a symmetric branching pattern. 

Alternately, a split on variable A may result in a terminal leaf on one branch, but be split 

again by variable B on the other branch.284 This is an asymmetric branching pattern. 

The recursive partitioning criterion we used was based on reducing entropy—a 

splitting criterion designed to reduce impurity and create the most homogenous groups. 

After this growing phase, the will have many terminal leaves, and this is likely to overfit 

the data. Thus, the tree must also be pruned, and we used cost-complexity pruning. This 

approach tries to balance correct classification with tree complexity to reduce the number 

of leaves. We also used 10-fold cross validation with our classification trees. This 

approach randomly splits the sample into 10 equally sized groups and develops a 

decision tree in 10 groups—each one holding out one fold. An error term for that 

classification tree is calculated on the held-out fold. The cost-complexity parameter (the 

parameter that penalizes complexity and misclassification) with the minimum error is then 

selected to grow the final tree.  

One limitation of CART is that it is highly dependent on the dataset and can 

produce unstable results.285 A natural machine learning extension of this classification 

tree approach which can address this limitation is an ensemble learning approach known 

as random forests. Here, bootstrapping is used to select multiple sub-samples with 

replacement from the data. The subset of variables in each tree generated can also be 

randomly sampled. The predicted probability an observation has of being in a certain 

outcome category is based on the proportion of times it is assigned to that outcome 
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category during the bootstrap sampling. That case is then assigned to the category for 

which it has the largest probability of being assigned. By essentially averaging over many 

selected trees (the forest in “random forests” and ensemble in “ensemble learning”), the 

random forests approach thus generates results with lower variance.285 Its drawback is 

that a single tree is not produced, thus making interpretation more complicated. 
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