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ABSTRACT

With the rapid advances of high-throughput technologies in the past decades, various

kinds of omics data have been generated from many labs and accumulated in the public

domain. These studies have been designed for different biological purposes, including the

identification of differentially expressed genes, the selection of predictive biomarkers, etc.

Effective meta-analysis of omics data from multiple studies can improve statistical power,

accuracy and reproducibility of single study. This dissertation covered a few methods for

differential expression (Chapter 2 and 3) and feature selection (Chapter 4) in the analysis of

multiple omics studies.

In Chapter 2, we proposed a full Bayesian hierarchical model for RNA-seq meta-analysis

by modeling count data, integrating information across genes and across studies, and mod-

eling differential signals across studies via latent variables. A Dirichlet process mixture prior

was further applied on the latent variables to provide categorization of detected biomarkers

according to their differential expression patterns across studies. We used both simulations

and a real application on multiple brain region HIV-1 transgenic rats to demonstrate im-

proved sensitivity, accuracy and biological findings of our method. In Chapter 3, we extended

the previous Bayesian model to jointly integrate transcriptomic data from the two platforms:

microarray and RNA-seq.

In Chapter 4, we considered a general framework for variable screening with multiple

omics studies and further proposed a novel two-step screening procedure for high-dimensional
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regression analysis in this framework. Compared to the one-step procedure and rank-based

sure independence screening procedure, our procedure greatly reduced false negative errors

while keeping a low false positive rate. Theoretically, we showed that our procedure possesses

the sure screening property with weaker assumptions on signal strengths and allows the

number of features to grow at an exponential rate of the sample size.

Public health significance:

The proposed methods are useful in detecting important biomarkers that are either differen-

tially expressed or predictive of clinical outcomes. This is essential for searching for potential

drug targets and understanding the disease mechanism. Such findings in basic science can

be translated into preventive medicine or potential treatment for disease to promote human

health and improve the global healthcare system.
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1.0 INTRODUCTION

1.1 OVERVIEW OF HIGH-THROUGHPUT OMICS DATA AND

TECHNOLOGIES

The rapid advances and prevalence of various high-throughput experimental technologies

have generated abundant omics data in the public repositories in recent years and effective

analytical approaches are crucial to fully understand the biological knowledge inside these

data. Ending with the same suffix, these “-omics” data are used to study an organism’s ge-

netic material (“Genomics”), RNA transcripts (“Transcriptomics”), proteins (“Proteomics”),

epigenetic modification (“Epigenomics”), etc., all of which play essential roles in the flow

of biological information in the central dogma paradigm (DNA ↔ RNA → Protein).

This section will briefly introduce the various types of omics data, the two major plat-

forms/technologies that generate these data and the public repository and databases of

omics datasets.

1.1.1 Genomic data

Genomics is the study of the complete set of genetic material within an organism usually

consisting of DNA (RNA for some viruses). Unlike genetics which studies individual genes,

it usually applies high-throughput technologies such as DNA sequencing to assemble and

analyze the function and structure of entire genomes including both coding and noncoding

regions.

The human genome contains approximately 3.2 × 109 base pairs distributed among 22

paired chromosomes plus the two sex chromosomes and the protein-coding sequences account
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for only 1.5% of the whole genome (Lesk, 2017). The average proportion of nucleotide

differences among different human individuals has been consistently estimated to lie between

1 in 1,000 and 1 in 1,500 (Jorde and Wooding, 2004). Considering this nucleotide diversity,

personal genomics is the branch of genomics that focused on determining the genetic make-

up (a.k.a. genotype) of an individual and comparing to another individual’s sequence or a

reference sequence.

Genetic variation among individuals can be attributed to independent assortment, cross-

over and recombination during meiosis as well as various mutational events. Mutation is a

permanent alteration of nucleotide sequence in the genome and the resulting change of DNA

is not repairable and the errors will proceed to DNA replication and RNA transcription.

It is associated with abnormal biological processes like cancer since changes in DNA can

cause errors in protein sequence, creating partially or completely non-functional proteins.

There are two types of major mutations: somatic mutation and germline mutation. Somatic

mutation takes place in somatic cells and is usually caused by environmental factors. It

is neither inherited from parents nor passed to offsprings. Germline mutation occurs in

reproductive cells such as sperm or ova and is inheritable. This type of mutation can be

transmitted to offspring.

Among the various types of genetic variation, single nucleotide polymorphism (SNP)

is the most common one and represents difference in a single nucleotide between members

that occurs in at least 1% of the population. Single-nucleotide variant (SNV) is a variation

in a single nucleotide without any limitations of frequency and may arise in somatic cells.

Genome-wide association study (GWAS) is known as a popular design to assess thousands

to millions of common SNPs associated with a disease or a trait. Thousands of disease-

susceptible variants have been discovered through the GWAS of hundreds or thousands of

individuals (Hindorff et al., 2009; McCarthy et al., 2008). Recently, rare-variant association

analysis has aroused more interest in the field which focuses on rare variants that might

explain disease risk or trait variability in addition to common variants found in GWAS (Lee

et al., 2014).

Other types of genetic variation include insertion/deletion (“indel”) polymorphism in

which a specific nucleotide sequence is present or absent; copy number variation (CNV),

2



a structure variation of DNA segment due to deletion or duplication of large regions of

DNA on some chromosome. CNV has been found to be related with disease phenotype and

also account for regulation of genes expression and other genomic process (McCarroll and

Altshuler, 2007).

1.1.2 Transcriptomic data

Transcriptomics studies the sum of all RNA molecules (a.k.a. transcripts) in an organism or

in a cell, including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA)

and other non-coding RNA such as microRNA (miRNA), etc. Unlike the genome which is

almost fixed for a given cell line, the transcriptome only reflect genes that are expressed at

given time and can vary with different external conditions. Microarray and RNA sequencing

(RNA-seq) are the two major platforms to quantify the transcriptome and will be introduced

in the next section.

mRNA is the major family of RNA molecules that convey genetic information from DNA

(known as “transcription”) and produce proteins (known as “translation”). In eukaryotes,

mRNA is first transcribed into precursor mRNA (pre-mRNA) and has to undertake a few

processing steps including 5’ cap addition, polyadenylation and splicing before it matures

to generate proteins. Splicing is the editing process that removes introns (intervening se-

quence) from RNA and joins exons (the actual coding part of a gene) together. Since a gene

contains multiple exons and mature mRNAs from the same gene can include different exons,

alternative splicing can take place and produces multiple protein isoforms in the translation

stage. Distinct from the stable DNA molecules, mRNA molecules have a short half life and

will ultimately end in degradation.

Other RNA molecules, though not necessarily translated into protein products, play

important roles in regulating and catalyzing the transcription, translation and other biolog-

ical processes inside the cell. For example, rRNAs are basic components of the ribosome

and catalyze the transcription; tRNAs transfers specific amino acids to a growing polypep-

tide to synthesize protein during translation; miRNAs function in RNA silencing and post-

transcriptional regulation of gene expression.
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Genetics have effects on the transcriptome. Expression quantitative trait loci (eQTLs)

are genomic loci that contribute to variation in mRNA expression. Using RNA-seq samples

from the 1000 Genome project, recent studies uncovered extremely widespread regulatory

variation, with 3773 genes having a classical eQTL for gene expression levels (Lappalainen

et al., 2013). Based on the distance to their gene-of-origin, eQTLs can be further divided

into two types: cis-eQTLs (locally) and trans-eQTLs (at a distance).

1.1.3 Other omics data

There are other important omics data that are not the focus of this thesis, for example the

epigenomics and the proteomics.

Epigenome is the complete set of epigenetic modifications, including DNA methylation,

histone modification and chromatin structure change. It plays an indispensable role in gene

expression and regulation and partially determines one’s phenotype in addition to genotype

and environment (Lesk, 2017). DNA methylation is the process methyl groups are added

to nucleotides in DNA and is associated with a number of key processes, e.g. genomic

imprinting, X-chromosome inactivation, silencing of repetitive DNA, etc. (Schübeler, 2015).

Methylation takes place at the cytosine nucleotide in eukaryotes and when it is followed by a

guanine nucleotide it forms a CpG site. Approximately 60% of CpG sites are methylated in

somatic cells in vertebrates and those DNA regions with high frequency of CpG sites are also

called CpG islands (Bird, 2002). To quantify the methylation level, scientists define the beta

value for a CpG site as the percentage of methylated events out of all events which ranges

between 0 and 1. The alteration of DNA methylation pattern has been outstanding in cancer,

where the loss of expression of genes is about 10 times more frequently by hypermethylation

of CpG islands in the promoter region than by mutations (Vogelstein et al., 2013).

Proteomics studies the entire set of protein products in an organism. Proteins are made

up of long chains of amino acids with 3D configuration and perform vast array of functions

inside the body. Like the transcriptome, proteome also varies with time and condition in

given cell or system. To detect and quantify proteins, researchers either apply antibody-

based methods (immunoassays) or mass spectrometry-based techniques. In addition to the
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expression profiling of proteins, computational biologists also use technologies like X-ray

crystallography and NMR spectroscopy to perform structural analysis of proteins looking

for e.g. potential drug binding sites.

There are multiple levels of molecular variation from different omics data that contribute

to disease risk in a nonlinear, interactive and complex way and there also exist cross-talk

among different types of omics data (Ritchie et al., 2015). For example, like eQTLs, re-

searchers also characterized DNA methylation quantitative trait loci (mQTLs) and showed

their important functions especially in the brain (Hannon et al., 2016). Other examples

include ChIP-sequencing (ChIP-seq) which combines chromatin immunoprecipitation and

DNA sequencing and is used to analyze protein (e.g. transcription factor) interaction with

DNA.

1.1.4 High-throughput technologies in omics research

1.1.4.1 Microarray Before the advent of microarray techniques, biologists use northern

plot or quantitative Polymerase Chain Reaction (qPCR) to study and quantify gene expres-

sion. These techniques are time consuming and expensive, since they perform gene-by-gene

analysis and can only detect up to dozens of genes. As one of the earliest high-throughput

technologies, the invention of DNA microarray in the early 1990s marks the start of the

omics era and makes it possible to measure the expression levels of thousands of genes up

to the whole genome or to genotype multiple regions of a genome simultaneously. In its

application to gene expression profiling, tens of thousands of transcript-specific probes are

immobilized on a solid support, such as a microscope glass slide or silicon chips, to make

up the “microarray.” RNA samples are reversely transcribed to cDNA, fluorescently labeled,

amplified and hybridized to the microarray. The array is then washed and the expression

level is quantified by measuring fluorescence intensity at each spot (Figure 1 left). In ad-

dition to gene expression profiling, the microarray technique can also be applied to detect

SNPs, CNVs, DNA methylation, and protein-DNA binding.

There are a few limitations with DNA microarrays. First, microarray has detection

limit at the lower end thus the intensities of low-expressed genes are un-distinguishable from
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background noise; Secondly, microarray only provides an indirect measure of relative con-

centration, at high concentrations it will become saturated and at low concentrations the

equilibrium will favor no binding; Finally, DNA microarray can only detect known sequences

it was designed to detect (Bumgarner, 2013; Mortazavi et al., 2008). Due to these disadvan-

tages, microarray is now gradually being replaced by the newer RNA-seq technique for gene

expression profiling.

1.1.4.2 Next generation sequencing In the past decade, there has been a fundamen-

tal shift from the more traditional Sanger sequencing to the next-generation sequencing

(NGS) for genomic analysis. With run time as short as a few hours to sequence the whole

genome of a sample, the arrival of NGS technologies has changed the way we think about

scientific approaches in basic, applied and clinical research (Metzker, 2010). NGS is also

called ultra-high-throughput sequencing which can process millions of sequence reads simul-

taneously and have been widely applied to genome sequencing (whole genome sequencing

and whole exome sequencing), transcriptome profiling (RNA-seq), DNA methylation (bisul-

fite sequencing), DNA-protein interaction (ChIP-sequencing), etc. In a typical RNA seq

workflow, the cDNA samples are chopped into DNA fragments (called “reads”) with specific

adapter oligos bound to both ends and the DNA fragments are then sequenced. The reads

generated by sequencers can vary by read lengths depending on user preference, technolo-

gies or platforms (e.g. Illumina, SOLiD, Roche). The sequenced reads are reassembled and

aligned to a reference genome to quantify the expression levels of genes or transcripts by

counting the number of mapped short reads (Figure 1 right).

Comparing to the DNA microarray, RNA-seq has quite a few advantages. First, RNA-seq

has higher sensitivity and accuracy in quantifying the low-expressed genes; Secondly, RNA-

seq can be used to detect novel transcripts or isoforms which is impossible in microarray with

only known probes. Last but not the least, it can also be used to examine transcriptome

fine structure such as allele-specific expression and splice junctions (Wang et al., 2009).

As shown in Figure 1, DNA microarray will generate a matrix of continuous intensity

values while RNA-seq will generate a matrix of count data after a series of preprocessing steps

for each platform. If we perform some normalization by both library size (i.e. total counts
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in a sample) and gene length, we can also generate continuous values such as RPKM (Reads

Per Kilobase Million) or FPKM (Fragments Per Kilobase Million) or TPM (Transcripts Per

Kilobase Million) from RNA-seq. However, such normalization introduces a length bias into

the variance and is less powerful than the count data (Oshlack and Wakefield, 2009). The

first paper of my thesis proposed a new method to integrate multiple RNA-seq count data

and the second paper extended the method to integrate continuous data from microarray

and count data from RNA-seq.

1.1.5 Public resource of omics data

With the rapid advances of high-throughput technologies and their reduction in cost in the

past decades, generation of various kinds of omic data becomes affordable and prevalent in

many labs. For example, large amount of transcriptomic data have been accumulated from

microarray or RNA-seq experiments for different biological aims and have been stored in large

data repositories such as Gene Expression Omnibus (GEO), ArrayExpress and Sequence

Read Archive (SRA). Hundreds of GWAS studies have been conducted since 2000s and

many datasets are stored in database of Genotypes and Phenotypes (dbGaP). In addition

to these public available databases, many worldwide and nationwide consortium projects

were launched in the last 10 to 15 years for different aims and generated omics data with

large sample size and high quality to serve the whole scientific community. For instance, The

Cancer Genome Atlas (TCGA), a “community resource project” initiated by National Cancer

Institute (NCI), has profiled and analyzed a total of 33 cancer types including 10 rare cancers

and generated rich amount of data at the DNA (mutation, copy number variation, etc.),

RNA (gene expression, miRNA expression, etc.), protein (protein expression) and epigenetic

(DNA methylation) levels. The Encyclopedia of DNA Elements (ENCODE) is a public

research project aiming to identify and annotate all functional elements in the human genome

including both coding and non-coding parts. The MODel organism ENCyclopedia Of DNA

Elements (modENCODE) project further extends the original ENCODE project to identify

the functional elements in selected model organism genomes. For omics data from in vitro cell
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Figure 1: Measuring gene expression: DNA microarray vs. RNA-seq
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cultures or immortal cell lines, the Cancer Cell Line Encyclopedia (CCLE) project conducted

detailed genetic characterization (copy number variation, mRNA expression, mutation and

more) for more than 1,000 cancer cell lines (Barretina et al., 2012).

The affluent omics datasets in the public domain provide opportunities and have mo-

tivated us to combine data from multiple cohorts (from different platforms) for different

biological purposes such as differential expression analysis (paper 1 & 2) and prediction

analysis with feature selection (paper 3)

1.2 OBJECTIVES OF OMICS STUDIES AND RELEVANT ANALYSIS

The various omics studies mentioned above are designed for different biological purposes. For

transcriptomic studies, the most common purpose is to identify genes that are differentially

expressed among predefined classes, e.g. between the diseased patients and normal controls.

In addition, researchers are also interested in identifying important biomarkers (e.g. genes,

SNPs, etc.) that can predict clinical outcomes or classify new patients. Some experiments

are designed to identify novel subtypes based on the omics data, and other experiments aim

at exploring the relationship among the genes or proteins via biological networks. In this

section, I will briefly introduce these biological objectives and the types of statistical analysis

involved.

1.2.1 Differential expression analysis

An important task in genomic data analysis is to identify candidate markers associated with

the disease status, disease progression or environmental perturbation. In a two class com-

parison scenario, genomic comparative studies applied differential expression (DE) analysis

methods on microarray or RNA-seq data to select genes that are differentially expressed

between case and control.
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The gene expression data from microarray is continuous and usually normally distributed.

In the simplest scenario, we can fit the following linear model for each gene to test whether

it is differentially expressed:

ygi = αg + βgXi +
P∑
p=1

γpgZpi,

where ygi is the expression value for the gth gene and ith sample, Xi the indicator of the

condition (e.g. 1 for case and 0 for control), αg is the gene-specific intercept and Zpi indicate

the known confounding covariates you wish to adjust. The purpose is to test whether βg is

zero or not. Simple linear model via e.g. traditional t-test will underestimate variance by

chance when the sample size n is small but the number of genes G is large, to overcome ,

Smyth (2004) proposed a specific linear model for microarray data (called “LIMMA”) using

empirical Bayes approach and suggested a moderated t-statistics by shrinking the estimated

sample variances towards a pooled estimate for more stable inference (Smyth, 2005). SAM

(short for “Significance Analysis of Microarray”) is another popular tool for differential

analysis in microarray that uses nonparametric statistics (Tusher et al., 2001).

For count data obtained from RNA-seq, the linear model has to be extended to a gener-

alized linear model (GLM) setting:

g(E(ygi)) = Ti + αg + βgXi +
P∑
p=1

γpgZpi,

where ygi is the expression value for the gth gene and ith sample, g(.) is the link function

(usually use “log”), Ti is the offset of ith sample adjusting for the sequencing depth of

each sample and αg is the gene-specific intercept. Negative binomial distribution is a more

popular choice than Poisson to fit y nowadays since over-dispersion is commonly seen in

RNA-seq data. edgeR and DESeq are the two most widely used tools for the differential

expression analysis in RNA-seq, both of which are under the GLM framework with more

careful estimation of the dispersion parameter (McCarthy et al., 2012; Anders and Huber,

2010).

For DE analysis of high-dimensional genomic data, multiple comparison is one big issue

always needs to be addressed. There are two general categories of methods for multiple
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comparison correction in the literature. The first category aims to control for the family-

wise error rate (FWER) (Hochberg and Tamhane, 2009), corresponding to the probability

of making at least one false discovery. Common methods falling in this category includes

the Bonferroni procedure which is a popular choice in GWAS. However, such methods are

usually too stringent for DE analysis in transcriptomic studies. The second less stringent

category is designed to control the false discovery rate (FDR) (Benjamini and Hochberg,

1995), defined as the expected proportion of false positives among all positive “discoveries”

(i.e. the type I error). Methods under this alternative category such as Benjamini-Hochberg

procedure or Bayesian FDR are more popular choices in genomic studies.

The identification of important biomarkers are useful to narrow down target for further

investigation, however, they may still contain little unifying biological theme for most re-

searchers. Thus, the pathway analysis (a.k.a. gene set enrichment test) usually following

the DE analysis is applied for functional annotation of the identified gene list, based on

one or multiple known pathway database. Commonly used pathway databases include Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, etc.

The first and second papers in this dissertation proposed new methods for differential

expression analysis when there are multiple transcriptomic datasets from multiple platforms.

1.2.2 Regression analysis with feature selection

In statistics, regression can be used to explore the relationship between independent variables

and a dependent variable. When there are many independent variables present (i.e. multiple

regression), we wish to identify those that are most predictive of the dependent variable. In

omics studies, this might include the identification of genes or SNPs that can predict the

disease status, survival or some specific quantitative measures, etc. When the outcome is

binary or categorical, it becomes a classification problem in machine learning.

Consider a linear regression setting with n samples and p features (e.g. genes):

yi = β0 +

p∑
j=1

βjXij + εi,
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where yi is the outcome for the ith sample, Xij is the (expression) value for the ith sample

and jth feature and εi is the error term. This regression model is very different from the one

in the DE analysis, where y corresponds to the feature.

Very frequently in omics studies, we are facing the high-dimension data with “small

n, large p” (p >> n). In that case, the matrix X is singular and most parameters are

not identifiable. Conventional methods such as principal component analysis (PCA) or

singular value decomposition (SVD) can be applied on X to reduce dimension, however, such

implementation will lose the individual feature identity and interpretability. Alternatively,

regularization approaches can be applied to solve such ill-posed regression problem. Over the

past two decades, many regularization methods have been developed and can be summarized

in the form penalized likelihood by solving the following objective function:

β̂ = argmin
β

(||y −Xβ||2 + λ||β||q),

where λ is penalty parameter. When q = 0 (L0 norm), it becomes the traditional model

selection by AIC/BIC; when q = 1(L1 norm), this is the least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996; Zou, 2006); when q = 2 (L2 norm) this is the group

version of the LASSO (Yuan and Lin, 2006); when the square of L2 norm is used, this is

the ridge regression; when both L1 norm and L2 norm are used, this is the elastic net (Zou

and Hastie, 2005). In particular, LASSO method and its extensions (i.e. group LASSO,

elastic net, adaptive LASSO, etc.) induce sparsity in the regression model and achieve the

goal of feature selection. In the Bayesian school, the feature selection is achieved by putting

sparsity-induced priors like Spike-and-slab prior (George and McCulloch, 1993; Ishwaran

and Rao, 2005) or shrinkage priors like Laplace prior (a.k.a. Bayesian LASSO) (Park and

Casella, 2008).

However, when p is very large, the computational cost can be a hurdle for most regu-

larization methods and some theoretical assumptions may no longer hold. Sure screening

methods such as sure independence screening (SIS) have been proposed as a natural way to

select relevant variables based on their marginal correlation (Fan and Lv, 2008). The gen-

eral idea is to first reduce a high dimensional model to a relatively lower dimensional model

which still contains the true model almost surely via sure screening and then performs model
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selection using one of the aforementioned regularization approaches. With improvement in

both speed and performance, sure screening methods have gained more popularity in various

statistical fields these years.

The third paper of this dissertation proposed a new screening method for the scenario

when datasets from multiple homogeneous studies are present.

1.2.3 Clustering and network analysis

In addition to those mentioned above, there are many omics studies designed for other

biological purposes and applied different analysis approaches.

When the class labels are unknown, researchers will apply clustering analysis looking for

novel subtypes based on e.g. gene expression profiles of the samples, which could serve as

a guide to precision medicine. There are two major classes of clustering methods: distance-

based clustering and model-based clustering. The former includes the most commonly used

and heuristic algorithms such as K-means and hierarchical clustering, etc, and the latter is

based on mixture model setting and usually require assumptions on data distributions. In

addition to sample clustering, researchers may also be interested in clustering genes look-

ing for tightly coexpressed gene modules in the transcriptomic studies. Similar clustering

approaches can be applied on the other dimension.

Other experiments are designed to understand the interactions between components (e.g.

genes, proteins) in a biological system. Graphical model and network analysis are the com-

mon tools to serve for this purpose. Typical networks include binary network, weighted

network, directed network and undirected network, etc. Directed graphs (e.g. Bayesian net-

work) puts directions on edges and can be used to model the causal relationship in omics

data, e.g. gene regulatory mechanism. The edges of undirected graphs, on the other hand,

are without direction and only represent either marginal dependence (e.g. co-expression

network) or conditional dependence (e.g. gaussian graphical model) between two linked

nodes.
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1.3 DATA INTEGRATION AND META-ANALYSIS

In high-throughput omics studies, individual studies usually have small sample size. Com-

bining multiple studies/cohorts using meta-analysis methods improve statistical power, es-

timation accuracy and reproducibility and has become popular in genomic research. Such

genomic information integration of multiple transcriptomic studies is also termed “horizontal

meta-analysis.” On the other hand, for large cohort such as TCGA which includes multiple

levels of omics data (e.g. gene expression, CNV, genotype, methylation, somatic mutation,

etc.) of the same patient cohort, we are also interested in jointly analyzing these data to in-

vestigate disease subtypes, disease associated or driver genes and related regulatory network.

We call such analysis “vertical integrative analysis.”

1.3.1 Horizontal meta-analysis

Many “horizontal meta-analysis” methods have been developed and widely applied in the

real data analysis for different biological purposes. Tseng et al. (Tseng et al., 2012) reviewed

a collection of 333 microarray meta-analysis papers, in which multiple microarray studies

are combined for a variety of purposes including differentially expressed gene detection,

pathway analysis, inter-study prediction analysis, network and co-expression analysis, etc.

More recently, methods were developed to combine multiple transcriptomic studies for other

purposes including simultaneous dimension reduction (MetaPCA) (Kim et al., 2017) and

robust disease subtype discovery (MetaClust) (Huo et al., 2016), etc.

There are three main categories of meta-analysis methods for transcriptomic DE anal-

ysis. The most popular one is the two-stage method, where a single summary statistics is

first computed for each study by applying “state-of-the-art” methods introduced in the last

section and then meta-analysis methods are used to combine the summary statistics. These

methods include combining p-values (Fisher, 1925; Stouffer et al., 1949), combining effect

sizes (Choi et al., 2003) or combining rank statistics (Hong et al., 2006). Among them,

Fisher’s method and Stouffer’s method are the most popular ones to aggregate evidence

from multiple studies. Adaptive-weighted Fisher’s method (AW-Fisher) extends the equally
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weighted Fisher’s method and adds binary weights to handle the study heterogeneity and

categorization biomarkers (Li et al., 2011). The second category of methods merges the raw

data from all studies and normalizes simultaneously (a.k.a. mega-analysis), then standard

single-study analysis can be applied. These approaches have, however, been less favored in

the literature since they do not guarantee to remove cross-study discrepancy and may fail to

retain study-specific biomarkers. Lastly, the third category integrates DE information from

all studies by using a unified and joint stochastic model. Since they are joint hierarchical

models by nature, the more flexible Bayesian methods are usually applied. Depending on the

hypothesis and biological questions of interest, these approaches have the potential to offer

additional efficiency over the two-stage methods and, at the same time, retain the study-

specific features. The meta differential analysis methods proposed in the first and second

papers of this thesis applies Bayesian joint modeling and falls in the third category.

1.3.2 Vertical integrative analysis

With the large amount of omics data accumulated in public databases and depositories, ver-

tical integrative analysis becomes appealing to explore the regulatory relationships between

different levels of omics data. Omics integrative analysis has been found successful in many

applications to tumor studies including ovarian cancer (Network et al., 2011), breast cancer

(Network et al., 2012), stomach cancer (Network et al., 2014), to name a few.

In the field of bioinformatics, vertical integration methods have been developed for clus-

tering and prediction analysis. Lock and Dunson (2013) fit a finite Dirichlet mixture model

to perform Bayesian consensus clustering (namely “BCC”) that allows both common and

omic-type specific clustering patterns. Shen et al. (2009) applied a latent variable fac-

tor model (namely “iCluster”) to cluster tumor samples by integrating multi-omics data.

Huo and Tseng (2017) built on a sparse K-means framework to perform clustering with

overlapping feature groups (Jacob et al., 2009). Wang et al. (2012) proposed an integra-

tive Bayesian analysis of genomics data (called “iBAG”) framework to identify important

genes/biomarkers that can predict the clinical outcome and successfully applied their method

to TCGA glioblastoma datasets.
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1.4 FUNDAMENTALS OF BAYESIAN DATA ANALYSIS AND ITS

APPLICATION IN OMICS STUDIES

Building upon the famous Bayes’ theorem, the Bayesian statistics is characterized by its

explicit use of probability for quantifying uncertainty in inferences based on statistical data

analysis (Gelman et al., 2014). One major difference from the frequentist inference is that the

Bayesian methods start with the assumption that the parameter is random with population

or prior density while the data is fixed. In general, the process of Bayesian data analysis can

be summarized into three steps according to Gelman et al. (2014):

• Setting up a full probability model. Such a probabilistic model should clearly specify the

observed data/quantities and unknown parameters we wish to estimate, and take any

prior knowledge into consideration.

• Conditioning on observed data to compute the posterior distribution. In Bayesian statis-

tics, the main inference is drawn from an appropriate posterior distribution, i.e. the

conditional probability distribution of unknown parameters given the observed data.

According to the Bayes’ theorem, there is one simple memorable form to represent the

relationship among the prior, likelihood and posterior: Posterior ∝ Likelihood×Prior.

• Evaluating the model fit and implications of the posterior distributions. This step is

similar to most frequentist approaches and involves the assessment of model fit, checking

of model assumption and sensitivity analysis, etc.

Calculation of the posterior distribution in the second step usually requires elaborate

and efficient Bayesian computation. There are two main categories of methods in Bayesian

computation: one by obtaining samples from the posterior distribution (stochastic) and the

other by computing expectations and integrals under the posterior distribution (determin-

istic). The most popular method in the first category is the Markov chain Monte Carlo

(MCMC) approach, which draws parameter values from approximate distributions and then

correct the draws to better approximate the target posterior distribution (Gelman et al.,

2014). Metropolis-Hastings (MH) algorithm is one typical MCMC method which generates

a random walk using a proposal density and provides procedure to either accept or reject the

16



moves (Metropolis et al., 1953; Hastings, 1970). When the full conditional distribution of

each parameter is (usually requires conjugate prior) known, Gibbs sampling algorithm can

be applied instead (Geman and Geman, 1984). Sampling-based methods are usually compu-

tationally heavy, on the other hand, the second category of method tackles the problem by

constructing distributional approximations and finding the posterior mode. Methods falling

in this category include variational Bayes, Laplace approximation, etc.

As a general trend towards assumption-free and more robust statistics these years, the

Bayesian school has also turned to more nonparametric Bayesian models with parameter

space having infinite dimension. One typical example is the use of the nonparametric

Dirichelet process (DP) model (a.k.a. the Chinese Restaurant Process) in clustering problems

(Ferguson, 1973). Such models are assumption free and allow infinite number of clusters and

have extensive application in natural language processing and bioinformatics problems. The

full Bayesian model proposed in the first paper of the dissertation also includes a Dirichlet

process mixture model part for biomarker categorization across studies.

There is growing body of new Bayesian approaches that are developed for application

in omics studies over the years. For example, Lewin et al. (2006) proposed a full Bayesian

hierarchical model to detect differentially expressed genes and accounted for the array effects

in microarray. Sha et al. (2004) developed new Bayesian variable selection approach to

identify genes for the classification of disease stages. Tadesse et al. (2005) developed a

new method for sample clustering via finite mixture model with similar bayesian variable

selection approaches using the DNA microarray data. Medvedovic and Sivaganesan (2002)

developed a new procedure to cluster genes based on the Dirichlet mixture model. For

the omics data other than gene expression, Morris et al. (2008) proposed Bayesian wavelet-

based functional mixed models to analyze the mass spectrometry proteomic data. Zhang

et al. (2010) presented a new Bayesian partition method to detect pleiotropic and epistatic

eQTL modules. Li et al. (2010) proposed a two-stage hierarchical model with Bayesian lasso

to model and analyze multiple SNPs in GWAS.

Comparing to frequentist approaches, Bayesian approaches have at least two major ben-

efits which make them a popular choice especially in omics data application. First, it has the

flexibility and advantage to incorporate prior biological knowledge or evidence into the statis-
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tical models (Do et al., 2006). This is very common to see in most omics data which usually

involve quite some underlying biology, e.g. signaling pathway, gene regulatory mechanism,

etc. Secondly, the construction of hierarchy in Bayesian model is easy and straightforward.

This actually fits our perspective of the complex hierarchical biological relationships among

various molecular features (the different types of omics data as measured by different plat-

forms) inside our body.

In the first two papers in this dissertation, we developed new Bayesian hierarchical models

to integrate datasets from multiple RNA-seq studies or from both RNA-seq and microarray

platforms and showed the improved performance of the proposed Bayesian joint model in

DE gene detection.

1.5 OVERVIEW OF THE DISSERTATION

My dissertation contains five chapters. Chapter 1 contains overall introduction of omics

data, experimental techniques, high through-put analysis methods, motivation of genomic

integrative analysis and fundamental knowledge of Bayesian analysis and its omics applica-

tion. These contents serve as the background knowledge for the methodology development

for Chapter 2, 3 and 4.

Chapter 2 introduced a full Bayesian hierarchical model for the meta-analysis of RNA-

seq count data from multiple studies. We built the hierarchy based on a negative binomial

regression framework in each study and allowed the sharing of information across studies

(“meta-analysis”). In addition, we applied a Dirichlet process mixture (DPM) prior to the

latent differential expression indicators for simultaneous biomarker detection and categoriza-

tion across studies. The contents in this Chapter have been published in the Journal of the

Royal Statistical Society: Series C (Ma et al., 2017c).

Chapter 3 introduced a full Bayesian hierarchical model to jointly integrate microarray

continuous intensity data and RNA-seq count data from multiple transcriptomic studies. To

account for the systematic bias in fold change across RNA-seq and microarray for detecting

differentially expressed genes previously reported, we incorporated a normalization procedure
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to improve detection accuracy and power. The contents in this Chapter have been published

in the Journal of Computational Biology (Ma et al., 2017b).

Chapter 4 introduced a general framework as well as a two-step screening procedure for

feature selection in high-dimension regression analysis with multiple omics studies. The two-

step procedure greatly reduced the false negatives errors while keeping a low false positive

rate in practice and enjoyed the sure screening property with weaker assumptions.

Chapter 5 is discussion and future work. For omics data integration, we can readily

propose a full Bayesian hierarchical model to meta-analyze multiple epigenomic studies from

different platforms. For sure screening, we can extend our two-step screening procedure to

accommodate other model settings such as generalized linear models, quantile regression,

etc. by modifying the marginal measures.
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2.0 RNA-SEQ META-ANALYSIS USING BAYESIAN HIERARCHICAL

MODEL

2.1 INTRODUCTION

By using the next-generation sequencing technology to quantify transcriptome, RNA-seq

has rapidly become a standard experimental technique in measuring RNA expression levels

(Mortazavi et al., 2008; Wang et al., 2009). For RNA-seq, the abundance of transcript in

each RNA sample is measured by counting the number of randomly sequenced fragments

aligned to each gene. Compared to the popular microarray technology, RNA-seq has the

advantage of detecting novel transcripts and quantifying a larger dynamic range of expres-

sion levels. It has been shown that RNA-seq performs better than microarray at detecting

weakly expressed genes if sequencing is deep enough (Wang et al., 2014). However, new

statistical challenges emerge in the differential expression analysis of RNA-seq data. First,

the sequencing data are discrete counts rather than continuous intensities, so a count model

is more appropriate if parametric approach is used. Secondly, since long transcripts usually

have more mapped reads compared to short transcripts and the detection power of differen-

tial expression increases as the number of reads increases, short transcripts are always at a

statistical disadvantage relative to long transcripts in the same dataset. Analysis of RNA-

seq data needs to address such a read count bias considering the fact that many important

disease markers are of short length or low expression (Oshlack and Wakefield, 2009).

Many methods have been developed to identify differentially expressed genes between

two or more conditions for RNA-seq count data. Two most popular tools edgeR and DE-

Seq assume a negative binomial model that takes overdispersion into account and either

likelihood ratio test or exact test is used to test for differential expression (Robinson et al.,
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2010; Anders and Huber, 2010). Other methods such as baySeq or EBSeq applied empirical

Bayes approaches to detect patterns of differential expression (Hardcastle and Kelly, 2010;

Leng et al., 2013). Recently, more methods have been developed using Bayesian hierar-

chical model and have used either approximation methods or Markov chain Monte Carlo

(MCMC) sampling schemes to estimate the parameters (Van De Wiel et al., 2012; Chung

et al., 2013). No single method has been shown to outperform the other methods under all

circumstances in recent comparative studies (Rapaport et al., 2013; Soneson and Delorenzi,

2013). Bayesian approaches are advantageous in handling complex models and adopting

more flexible modelling of effect size and variance, and thus may increase DE detection

power for lowly expressed genes (Chung et al., 2013). However, all Bayesian hierarchical

models are limited to single transcriptomic study so far.

Meta-analysis in genomic research is a set of statistical tools for combining multiple “-

omics” studies of a related hypothesis and can potentially increase the detection power of

individual studies (Tseng et al., 2012). With the increasing availability of mRNA expres-

sion data sets, many transcriptomic meta-analysis methods for microarray data have been

developed in the past decade. These methods mainly fall into three categories. The first

and the most popular one is a two-stage method, where a single summary statistics is first

computed for each study and then meta-analysis methods are used to combine the summary

statistics. These methods include combining p-values (Fisher, 1925; Stouffer et al., 1949; Li

et al., 2011), combining effect sizes (Choi et al., 2003) or combining rank statistics (Hong

et al., 2006). The second category of methods merges the raw data from all microarray stud-

ies and normalize simultaneously (a.k.a. mega-analysis), then standard single-study analysis

can be applied (Lee et al., 2008; Sims et al., 2008). These approaches have, however, been

less favored in the literature since they do not guarantee to remove cross-study discrepancy

and may fail to retain study-specific biomarkers. Instead of using two-stage approaches (i.e.

DE analysis in single study + meta-analyze summary statistics in the first category, and

normalization and combined DE analysis in the second category), the third category inte-

grates differential expression information from all studies using a unified and joint stochastic

model (Conlon et al., 2006; Scharpf et al., 2009). Since they are joint hierarchical models by

nature, the more flexible Bayesian methods are usually applied. These approaches have the
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potential to offer additional efficiency over the two-stage methods and, at the same time, re-

tain the study-specific features. This motivates us to develop a Bayesian hierarchical model

for RNA-seq meta-analysis.

In the literature, almost no meta-analysis methods have been developed for RNA-seq

so far. Two existing R packages claimed for RNA-seq meta-analysis – metaRNASeq (Rau

et al., 2014) and metaSeq (Tsuyuzaki and Nikaido, 2013) – essentially applied naive two-

stage methods by using DESeq or NOISeq methods in single study and combining p-values

by Fisher’s or Stouffer’s method. The two-stage approach leads to loss of statistical power

especially when the observed counts in a given gene are small. In this paper, we propose

a Bayesian hierarchical model, BayesMetaSeq, under a unified meta-analytic framework, to

jointly analyze RNA-seq data from multiple studies. Bayesian hierarchical modelling allows

sharing of information across studies and genes to increases DE detection power for genes

with low read counts. In addition, a Dirichlet process mixture (DPM) prior is imposed on the

DE latent variables to model the homogeneous and heterogeneous differential signals across

studies. Model-based clustering embedded in the full Bayesian model provides categorization

of detected biomarkers according to their differential expression patterns across studies. The

result facilitates better biological interpretation and hypothesis generation.

Ramasamy et al. (2008) presented seven key issues when conducting microarray meta-

analysis, including identifying and extracting experimental data, preprocessing and annotat-

ing each dataset, matching genes across studies, statistical methods for meta-analysis, and

final presentation and interpretation. When combining RNA-seq studies for meta-analysis,

most preliminary steps and data preparation issues will similarly apply. Identification and

decision to include adequate transcriptomic studies into meta-analysis greatly impacts accu-

racy and reproducibility of biomarker detection (Kang et al., 2012). Many useful RNA-seq

preprocessing tools such as fastQC, tophat and bedtools are instrumental for alignment and

preparing expression counts for downstream analysis. Genes are matched across studies us-

ing standard gene symbols or isoforms through a common reference genome (e.g. hg18 or

hg19) (Oshlack et al., 2010). In the remaining of this paper, we assume that data collection

and preprocessing have been carefully done and we only focus on downstream meta-analytic

modeling and interpretation.
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The paper is organized as follows. Section 2.2 describes the Bayesian hierarchical model

and an MCMC algorithm for simulating posterior distributions of parameters. Section 2.3 ex-

plains how we perform differential expression analysis and cluster analysis based on Bayesian

inference with multiple comparison addressed from a Bayesian perspective. In Section 2.4 and

2.5, we apply BayesMetaSeq to both simulation and a multi-brain-region RNA-seq dataset

from HIV transgenic rat. Final conclusions and discussion are provided in Section 2.6.

2.2 BAYESIAN HIERARCHICAL MODEL

2.2.1 Notation and Assumptions

In this paper, we denote by ygik the observed count for gene g and sample i in study k,

Tik =
G∑
g=1

ygik the library size (i.e. the total number of reads) for sample i in study k and

Xik ∈ {0, 1} the phenotypic condition of sample i in study k. The observed data are:

D = {(ygik, Tik, Xik) : g = 1, . . . , G; i = 1, . . . , Nk; k = 1, . . . , K},

where G is the total number of genes, Nk is the sample size of study k and K is the number of

studies in the meta-analysis. The latent variable of interest δgk ∈ {0, 1} is the study-specific

indicator of differential expression for gene g in study k, meaning gene g is differentially

expressed in study k if δgk = 1 and non-differentially expressed if δgk = 0.

Here we assume that the raw RNA-seq count values follow a negative binomial distribu-

tion under each condition. We also assume that genes are matched across studies. Although

the model could be readily extended to analyze multiple studies with similar but not com-

pletely overlapped gene sets. In the next three subsections, we will introduce the generative

model within each study (Section 2.2.2), describe information integration of effect sizes across

studies (Section 2.2.3) and model clusters of genes with different DE patterns across studies

(Section 2.2.4). Figure 2 provides a graphical representation of the full Bayesian hierarchi-

cal model. Parameters within the rectangle form the main model and parameters outside

the rectangle are hyperparameters. The gray shaded parameters δgk (latent variable of DE
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Figure 2: “BayesMetaSeq”: Graphical representation of the Bayesian hierarchical model

indicator) and λg (DE effect size) are the parameters of interest in the model. The dashed

rectangle refers to a Dirichlet process mixture (DPM) model for DE gene categorization that

will be described in Section 2.2.4.

2.2.2 Generative model within each study

Below, we describe the generative model for observed data within each study. We assume

the counts ygik, conditioning on hyperparameters, are independent and follow a negative

binomial distribution. Denote by µgik = E(ygik) the mean expression level and φgk the

gene-specific dispersion parameter, we have:

ygik ∼ NB(µgik, φgk). (2.2.1)

We then fit a log-linear regression model for the mean µgik, where αgk denotes the baseline

expression relative to the library size and βgk denotes the effect size (i.e. the log fold change

24



of expression between the two conditions):

log(µgik) = log(Tik) + αgk + βgkXik. (2.2.2)

Note that we set βgk to depend on both g and k, allowing the existence of between study

heterogeneity for the same gene. If we re-parametrize the negative binomial model in (2.2.1)

in terms of proportion p (≡ φµ
1+φµ

) and dispersion φ, and let Ψ = logit(p) = log(
φµ

1+φµ
1

1+φµ

) =

log(φµ), we can re-write equation (2.2.2) as:

Ψgik = log(Tik) + αgk + βgkXik + log(φgk). (2.2.3)

The above equation is useful when we later use Gibbs sampling to update the parameters

αgk and βgk. Taking equation (2.2.1) and (2.2.2) together form our basic GLM model as

follows:

ygik|αgk, βgk, φgk ∼ NB(log(Tik) + αgk + βgkXik, φgk). (2.2.4)

2.2.3 Information integration of effect size across studies among DE genes

Next, we select appropriate prior distributions for the model parameters in equation (2.2.4)

to allow information integration across studies. We first define the following vectors:

~αg = (αg1, . . . , αgK)T , ~βg = (βg1, . . . , βgK)T , log(~φg) = (log(φg1), . . . , log(φgK))T ,

which represent the baseline, effect size and dispersion vectors for gene g respectively. The

three vectors are assumed to be a priori independent of each other. In addition, we define the

vector for the differential expression indicators of gene g: ~δg = (δg1, . . . , δgK)T . We assume

each of the vectors ~αg, log ~φg follows a multivariate Gaussian distribution:

~αg ∼ NK(ηg,Λ), log ~φg ∼ NK(mg,Π), (2.2.5)

where ηg and mg are the gene-specific grand means for ~αg and log ~φg, respectively. The

covariance matrices Λ and Π are shared by all genes to be described below. For ~βg, we

assume a multivariate Gaussian prior, with different means for DE and Non-DE genes:

~βg ∼ NK(λg~δg,Σ), (2.2.6)
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where λg is the gene-specific grand mean for DE genes (i.e. δgk 6= 0 for some k). For Non-DE

genes (~δg = 0), the grand mean is 0. We also allow a different covariance matrix of ~βg for

DE and Non-DE genes, i.e. Σ = Σ1 for DE genes and Σ = Σ0 for Non-DE genes.

Adopting the separation strategy on modelling covariance matrices by Barnard et al.

(2000), we propose independent prior distributions on the diagonal variance components

and the off-diagonal correlation matrix for all the four covariance matrices mentioned above.

Let [ρ(1)kk′ ]
K

1
, [ρ(0)kk′ ]

K

1
, [rkk′ ]

K
1 and [tkk′ ]

K
1 denote the correlation matrices corresponding

to the covariance matrices Σ1, Σ0, Λ and Π respectively, and let [σ2
(1),k]

K

1
, [σ2

(0),k]
K

1
,

[τ 2
k]
K
1 and [ξ2k]

K
1 denote the corresponding diagonal matrices with the variance terms on

the diagonal. It is widely known that:

Σ1 = ([σ2
(1),k]

K

1
)
1/2

[ρ(1)kk′ ]
K

1
([σ2

(1),k]
K

1
)
1/2
,

Σ0 = ([σ2
(0),k]

K

1
)
1/2

[ρ(0)kk′ ]
K

1
([σ2

(0),k]
K

1
)
1/2
,

Λ = ([τ 2
k]
K

1 )
1/2

[rkk′ ]
K
1 ([τ 2

k]
K

1 )
1/2
,

Π = ([ξ2k]
K

1 )
1/2

[tkk′ ]
K
1 ([ξ2k]

K

1 )
1/2
.

For each variance component, we propose a Jeffrey’s prior, that is to say:

σ2
(1),k ∝

1

σ2
(1),k

, σ2
(0),k ∝

1

σ2
(0),k

, τ 2
k ∝

1

τ 2
k

, ξ2
k ∝

1

ξ2
k

.

For the correlation matrices, we propose an inverse-Wishart prior distribution with identity

matrix as its scale matrix and v = K + 1 degrees of freedom, which is equivalent to putting

a uniform prior on each element of the correlation matrices marginally (Gelman et al., 2014;

Scharpf et al., 2009; Barnard et al., 2000), more specifically we have:

[ρ(1)kk′ ]
K

1
, [ρ(0)kk′ ]

K

1
, [rkk′ ]

K
1 , [tkk′ ]

K
1 ∼ W−1(I, v).

For gene-specific grand means λg, ηg and mg, we assume that they follow normal priors,

e.g. λg ∼ N(µλ, σ
2
λ), ηg ∼ N(µη, σ

2
η), mg ∼ N(µm, σ

2
m) with mean µλ = 0, µη = 0, µm = 0,

and variance σ2
λ = 102, σ2

η = 102, σ2
m = 102. We performed sensitivity analysis on the

hyperparameter values, since the variance σ2
λ, σ

2
η and σ2

m are fairly large, the results show little
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change when the means µλ, µη and µm change (see Appendix for the result of a sensitivity

analysis on hyperparameter µη).

In addition to the informative parameters listed above, we introduce one supporting

parameter ωgik into the model to help obtain closed-form posterior distribution for βgk and

αgk by exploiting conditional conjugacy (Polson et al., 2013; Zhou et al., 2012b). The prior

for ωgik is specified as:

ωgik ∼ PG(ygik + φ−1
gk , 0),

where PG refers to the Polya-Gamma distribution, details about this distribution and how

the supporting parameter facilitates conditional conjugacy are provided in the Appendix.

The closed-form posterior distribution for βgk and αgk by conditional conjugacy speeds up

MCMC simulation.

2.2.4 Model-based clustering to categorize DE genes

We next utilize the differential expression indicators δgk to cluster the DE genes and model

the homogeneous and heterogeneous differential signals across studies. Since clustering based

on the binary latent variable is unstable and does not take effect size into consideration, we

first transform the binary vector into a standard normal vector and use Dirichlet process

Gaussian mixture model to cluster the DE genes, following Medvedovic et al. (2004). Suppose

P (δgk = 1) = πgk is the prior probability that a gene g is DE in study k, the effect size is used

to turn πgk into a signed probability measure π±gk = πgk × sign(βgk) where sign(.) is the sign

function. We further rescale π∗gk = (π±gk + 1)/2, so the score falls in the range [0, 1]. Lastly,

we transform π∗gk to a Z-score zgk = Φ−1(π∗gk) where Φ is the standard normal cumulative

distribution function. Following Ferguson (1983) and Neal (2000), we construct a Dirichlet

process mixture (DPM) framework to cluster the DE genes:

~zg|cg,θ ∼ F (~θcg),

P (cg = c) = pc,

~θc ∼ G0,

~p ∼ Dirichlet(a/C, . . . , a/C).

(2.2.7)
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where ~zg = (zg1, . . . , zgK)T and cg indicates the “latent cluster” for gene g, F (.) is a mixture of

K-dimensional multivariate Gaussian distributions with mean ~θc and covariance matrix being

identity matrix. C is the number of clusters, which is stochastic and allowed to go to infinity

under DPM. G0 is the base distribution, in this case, G0 = NK(~0, I) and ~p = (p1, . . . , pC) is

the mixing proportions for the clusters. a/C is the concentration parameter. In our model,

we specify a = C so the marginal prior distribution of each mixing proportion pc would be

Unif(0,1) under the constraint
C∑
c=1

pc = 1.

The above descriptions fully define the hierarchical Bayesian model proposed. The ob-

served data are the raw counts, the library size and the phenotypic indicator {ygik, Tik, Xik},

the parameters we need to update through sampling include δgk, βgk, αgk, φgk, λg, ηg, mg, σ
2
k,

τ 2
k , ξ2

k, ρkk′ , rkk′ , tkk′ , ωgik, cg and C. The hyperparameters we prespecify include v = K + 1,

µλ = 0, µη = 0, µm = 0, σ2
λ = 102, σ2

η = 102, σ2
m = 102 and Cinit = 10.

2.2.5 Simulating posterior distribution via MCMC

We use the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) as

well as the Gibbs sampling algorithm (Geman and Geman, 1984) to infer the posterior distri-

bution of the parameters. Depending on the form of the distribution, 5 types of mechanisms

are proposed to update the 16 groups of parameters.

1. The full conditional for αgk and βgk are bivariate normal with known ~ωgk. The full

conditional for ~ωgk is Polya-Gamma distribution with known αgk and βgk (Polson et al.,

2013; Zhou et al., 2012b). We use Gibbs sampling to update them sequentially for each

gene g in study k.

2. The full conditional for λg, ηg and mg are multivariate Gaussian distribution for each

gene g. The full conditional for each element in [σ2
k]
K
1 , [τ 2

k]
K
1 and [ξ2k]

K
1 is an inverse-

gamma distribution. The full conditional for [ρkk′ ]
K
1 , [rkk′ ]

K
1 and [tkk′ ]

K
1 are inverse

Wishart distributions. For all the above with closed form conditional distributions, we

use Gibbs sampling to update them.

3. For ~φg, we propose a MH algorithm to update it for each gene g. In particular, we sample
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a new value of ~φg from a multivariate log-normal jump distribution with mean equal to

the old value and covariance matrix equal to Π. The acceptance ratio r is defined as the

ratio of two posterior density functions, and the new value is accepted with probability

min[1, r].

4. For the pair (βgk, δgk), since the support for βgk depends on δgk, we jointly update them

(Scharpf et al., 2009). First, a potential new value of δgk is proposed by inverting the

current value, i.e. δ̃gk = 1−δgk and a new update β̃gk is then sampled from the associated

full condition given δ̃gk. We define the ratio of the two joint posterior distributions as r

and jointly accept the new proposed values (β̃gk, δ̃gk) with probability min[1, r].

5. Since our DPM model is in a conjugate context, to update the cluster assignment cg, we

follow Algorithm 3 in Neal (2000) to draw a new value from cg|c−g, ~zg for g = 1, . . . , G at

each iteration, where c−g is the cluster assignment of all genes other than g. The number

of clusters C is updated at each iteration based on cg.

The detailed updating functions and algorithms for each group of parameters are de-

scribed in the Appendix. For both simulation and real data, we ran 10,000 MCMC iter-

ations. The selected traceplots (see Appendix) from Simulation I below showed that all

parameters reached convergence after relatively small number of iterations (roughly 3,000).

In light of this, the first 3,000 iterations were dropped as burn-in period in all later analysis.

The remaining 7,000 of 10,000 iterations are used for inference.

2.3 BAYESIAN INFERENCE AND CLUSTERING

2.3.1 Bayesian inference and control of false discovery rate

In the Bayesian literature, Newton et al. (2004) proposed a direct approach to control FDR

and defined a Bayesian false discovery rate as:

BFDR(t) =

∑G
g=1 Pg(H0|D)dg(t)∑G

g=1 dg(t)
,
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where Pg(H0|D) is the posterior probability of gene g being non-DE (H0) given data (D)

and dg(t) = I{Pg(H0|D) < t}. The tuning parameter t can be tuned to control the BFDR

at a certain α level. Throughout this paper, the Bayesian false discovery rate BFDR will be

used to address the multiplicity issue for the Bayesian method so that it is comparable to

the FDR control from the two-stage methods.

For fair comparison with the Fisher’s method in meta-analysis, we adopt a union-

intersection (UIT) hypothesis (a.k.a. conjunction hypothesis) setting following Li et al.

(2011): H0 :
⋂
{βk = 0} vs Ha :

⋃
{βk 6= 0}, i.e. reject the null when the gene is differentially

expressed in at least one study, where βk is the effect size of study k, 1 ≤ k ≤ K. Corre-

spondingly, we define a null set Ω0 = {~βg :
K∑
k=1

I(βgk 6= 0) = 0} and the respective DE set

Ω1 = {~βg :
K∑
k=1

I(βgk 6= 0) > 0}. To control BFDR at the gene level, we introduce a Bayesian

equivalent q-value. From the Bayesian posterior, we can calculate the probability of each

gene falling in the null space: P̂g(H0|D) = P̂ (~βg ∈ Ω0|D) =

T∑
t=1

I{~δ(t)g =~0}

T
, where T is the

total number of MCMC samples and ~0 is a K-dimensional zero vector. We then define the

Bayesian q-value of gene g as qg = min
t≥P̂g(H0|D)

BFDR(t). This qg will be treated similarly as

q-value in the Frequentist approach by Fisher’s method. Aside from detection of a DE gene

list from meta-analysis, the posterior mean of δgk, E(δgk|D), can be used to infer differential

expression for gene g in study k.

2.3.2 Summarization of clustering posterior to categorize DE genes

Addressing the differential expression in multiple studies is more difficult than that in a

single study because the gene may be concordantly or discordantly (up-regulated in some

studies but not in the others) differentially expressed. The proposed Bayesian method is

based on effect size, thus it would favor DE genes concordant across studies. Following

Section 2.4, we use the posterior estimate of πgk as an indicator of cross-study differential

expression pattern to cluster the DE genes. To stabilize the estimation, we estimated πgk

by non-overlapping windows of every 20 MCMC simulations, i.e. π̂
(b)
gk =

20∑
t(b)=1

δt
(b)

gk /20, for

the bth simulation and then transformed into ẑgk as in Section 2.4. After each chain of 20
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simulations, the cluster assignment cg is updated from the DPM model. At the end of all

chains, to summarize the posterior estimates of cg, we follow from Medvedovic et al. (2004)

and Rasmussen et al. (2009) and calculate the co-occurrence probability pg,h for any two

genes g and h as the number of times the two genes are assigned to the same cluster divided

by the total number of assignments. Then we use 1−pg,h as a dissimilarity measure to further

cluster the genes using consensus clustering (Monti et al., 2003). Consensus clustering is a

stable clustering method by summarizing hierarchical clustering results with Ward linkage

in repeated subsampling. The default consensus clustering method does not allow scattered

genes (i.e. genes not belonging to any cluster) but one can apply other methods such as

tight clustering for that purpose (Tseng and Wong, 2005). As a result, genes with similar

differential expression patterns over the chains are grouped together, while those with very

different cross-study differential expression patterns will be separated.

2.3.3 Methods for comparison

Since other existing Bayesian methods in RNA-seq DE analysis such as “baySeq” and “EB-

Seq” are developed for a single study (Hardcastle and Kelly, 2010; Leng et al., 2013), they

cannot be immediately extensible to meta-analysis framework and compare to our method.

Thus, we will compare our method to selected two-stage approaches as frequently adopted

in the literature so far. For the first stage of single study differential expression analysis

of RNA-seq, we will compare two most popular tools edgeR and DESeq (Robinson et al.,

2010; Anders and Huber, 2010). For meta-analysis, since no other methods have been pro-

posed specifically for RNA-seq, Fisher’s method will be applied to combine edgeR or DE-

Seq p-values from multiple RNA-seq studies (Fisher, 1925). The meta-analysed p-values

are then adjusted for multiple comparison by Benjamini-Hochberg procedure (Benjamini

and Hochberg, 1995). In this paper, we will compare BayesMetaSeq with the two-stage

edgeR/Fisher and DESeq/Fisher approaches.
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2.4 SIMULATION

We performed three types of simulation to compare BayesMetaSeq, edgeR/Fisher and DE-

Seq/Fisher. Details are described below.

(I) Simulating homogeneous study effects to assess power and accuracy

In the first part of simulation, we assessed the performance of BayesMetaSeq for genes

with low, medium and high read counts when the effects were homogeneous across

all studies. We simulated expression counts of G = 1000 genes for K = 2, 5 studies,

Nk = 10 (5 cases and 5 controls), 1 ≤ k ≤ K. Library sizes for all samples were

sampled from 0.3 to 0.5 millions so the average counts range roughly from 300 to

500. Baseline expressions were either high (αgk ∼ Unif{−5.5,−4.5}; mean counts ∼

1500-4500), medium (αgk ∼ Unif{−8.5,−6.5}; mean counts ∼ 80-600) or low means

(αgk ∼ Unif{−11,−9}; mean counts ∼ 5-50). The log-scaled dispersion were gen-

erated accordingly (log(φgk) ∼ Unif{−3.5,−2.5} for high mean counts, log(φgk) ∼

Unif{−2.5,−1.5}) for medium mean counts and log(φgk) ∼ Unif{−1.5,−0.5} for low

mean counts), assuming genes with larger means had smaller dispersion (Anders et al.,

2013). We let the first 20% genes (N = 200) be differentially expressed in all studies,

among them, 1/2 was generated from high means and the other 1/2 from the low

means. The rest of genes (N = 800) were non-differentially expressed, 1/4 of them

were generated from high means, 1/4 from the medium means, and the other 1/2 from

the low means. For differentially expressed genes, the effect size βgk was drawn from

Unif{0.8, 2} or Unif{−2,−0.8} (positive or negative log fold change, respectively). For

non-differentially genes, βgk was drawn from N(0, 0.52). We repeated the above pa-

rameter sampling for all the K studies. Under the same homogeneous scenario, we also

repeated the above simulations for weaker DE signals (Simulation IB), i.e. log-scaled

effect size βgk was drawn from Unif{0.7, 1.5} or Unif{−1.5,−0.7} for DE genes and

from N(0, 0.72) for Non-DE genes.

(II) Simulating heterogeneous study effects to assess power and accuracy

In the second part of simulation, we assessed the performance of BayesMetaSeq when

the effects were heterogeneous in different studies. We simulated expression counts of
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G = 1000 genes for K = 2, 5 studies with Nk = 10, 1 ≤ k ≤ K. Library size, baseline

expression and the corresponding log-scaled dispersion were generated in the same

way as in Simulation I. We assumed the first 30% of genes (N = 300) be differentially

expressed. For K = 2, 2/3 of those genes are DE only in the first study or the second

study, and 1/3 are common DE; for K = 5, 1/3 of those genes are DE only in one

study, 1/3 are DE only in two studies, and 1/3 are DE in more than two studies.

Similar to the previous simulation, 1/2 of the DE genes were from high means and

1/2 from the low means. The other 70% of genes (N = 700) were non-differentially

expressed, 1/4 of them were generated from high means, 1/4 from the medium means,

and 1/2 from the low means. For differentially expressed genes, the effect size βgk was

drawn from Unif{1, 2.5} or Unif{−2.5,−1}, however, no discordance was allowed. For

non-differentially genes, βgk was drawn from Unif{−0.3, 0.3}.

(III) Simulating cross-study differential patterns to evaluate DE gene clustering

In the fourth part of simulation, we assessed the clustering performance of our method

when the DE genes were generated from varying cross-study differential patterns. We

simulated expression counts of G = 1000 genes for K = 3 with Nk = 10, 1 ≤ k ≤ K.

Library size was generated in the same way as in Simulation I. The baseline expression

αgk was drawn from Unif{−8.5,−6.5} (mean counts ∼ 80-600) and the dispersion

parameter φgk was drawn from Unif{−2.5,−1.5}. We assumed the first 30% of genes

(N = 300) were differentially expressed in at least 2 studies. Among them, 1/6 were

up-regulated in all studies (“+++”), 1/6 were down-regulated in all studies (“- - -”),

the other 2/3 were either up-regulated or down-regulated in two studies but non-

DE in the third study (e.g. 50 genes with the pattern “++0”, 50 genes with the

pattern “- - 0”, 50 genes with the pattern “+0+”, 50 genes with the pattern “- 0

-”). For differentially expressed genes, the effect size βgk was drawn from N(2, 0.52)

or N(−2, 0.52) (up-regulated or down-regulated, respectively). For non-differentially

expressed genes, βgk was 0.

For comparison with the other methods (edgeR/Fisher and DESeq/Fisher), we assessed

both power and accuracy by plotting the number of true positives against the top number

of declared DE genes, as well as the ROC curves respectively for each method.
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2.4.0.1 Simulation I, II The posterior means and standard errors of selected param-

eters were summarized and compared to their true values from Simulation IA as shown in

the Appendix. The result demonstrated validity of BayesMetaSeq. In Simulation IA of ho-

mogeneous study effects, we found that BayesMetaSeq was more powerful and accurate than

the edgeR/Fisher and DESeq/Fisher methods in low mean counts while performed almost

equally well in high means counts (for simplicity, we combined both high mean and medium

mean in this group), as shown in Figure 3(A). Comparing to the other two methods, only

BayesMetaSeq had AUC above 0.9 in low mean region with both high sensitivity and speci-

ficity. As the number of study K increased, we saw more noticeable advantage of Bayesian

method over the other methods in detecting DE genes with low means. Since the signals for

high means were very strong, the three approaches performed almost perfectly even when

K = 2. For Simulation IB with weaker signals, the results were similar to Simulation IA

and the difference was more noticeable between BayesMetaSeq and the other two methods

in low mean region, while for high mean region, the performance for all three methods were

alike (Figure 3(B)).

Similarly, in Simulation II with heterogeneous study effects, though the overall signals

became weaker, we found that BayesMetaSeq still performed better than the edgeR/Fisher

and DESeq/Fisher methods in terms of both power and accuracy for low mean counts genes,

while their performances were similar in high mean region, as shown in Figure 3(C). One thing

to notice here is that, even though the Bayesian method increased the power of detecting true

DE signals in low mean regions, the detection power for low mean genes was still relatively

weaker than high mean genes under the same scenario, due to the inherent read count bias.

2.4.0.2 Simulation III In Simulation III, we found that BayesMetaSeq clearly identi-

fied the six clusters of DE genes with pre-specified cross-study differential patterns (Figure

4 Left). Each of the six clusters corresponded to one particular cross-study differential pat-

tern as reflected in the heatmap of signed E(δgk|D) (Figure 4 Right), for example, cluster 1

included genes up-regulated in all studies and cluster 3 included genes down-regulated in all

studies.
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Figure 3: ROC Curve (left) and Power (right) comparison of the three methods.

Panel (A) is the results from Simulation IA, panel (B) is for Simulation IB and panel (C)

is for Simulation II. The solid line is for BayesMetaSeq, the dashed line is for edgeR/Fisher

and dotted line is for DESeq/Fisher.
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Figure 4: Clustering results from Simulation III.

Left: Correlation heatmap of DE genes based on the co-occurrence probability pg,h with con-

sensus clustering. Right: The heatmap of signed posterior mean of the DE latent indicator

(i.e. E(δgk|D) ×sign(βgk)) in the six clusters.
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2.5 REAL DATA ANALYSIS

We applied BayesMetaSeq to a multi-brain-region HIV-1 transgenic rat experiment

(GSE47474) comparing the normal F344 strain and the HIV strain (Li et al., 2013). Samples

from three brain tissues (hippocampus (HIP), striatum (STR), prefrontal cortex (PFC))

were sequenced and we regarded those as 3 studies to adopt our meta-analysis framework.

There were 12 samples from each brain region in each strain (N1 = N2 = N3 = 24; K =

3). The experiment was designed to determine expression differences in brain regions of

F344 and HIV-1 transgenic rats, in order to identify the mechanisms involved in HIV-1

neuropathology and develop efficient therapy for neuropsyhchiatric disorders associated with

HIV-1 infection (Li et al., 2013). Following the guidance in edgeR (Robinson et al., 2010),

we first filtered out genes with mean counts smaller than 1 in any study. After filtering,

10,280 genes remained for analysis. We applied BayesMetaSeq as well as edgeR/Fisher

and DESeq/Fisher to the data. After we obtained the DE genes from each approach, we

performed pathway enrichment analysis using Fisher’s exact test based on the Gene Ontology

(GO) database to annotate the identified genes (Khatri et al., 2012). In addition, we also

analyzed the DE genes categories from BayesMetaSeq using Ingenuity Pathway Analysis

(IPA) for more biological insight. IPA is a commercial curated database that contains rich

functional annotation, gene-gene interaction and regulatory information (IPAr, QIAGEN

Redwood City, www.qiagen.com/ingenuity).

2.5.1 Differential expression analysis

Controlling FDR at 0.1, edgeR/Fisher detected 51 DE genes and DESeq/Fisher 46 DE

genes respectively, while BayesMetaSeq detected 245 DE genes (Table 1). A Venn Diagram

showing the number of overlapping genes indicated good agreement among the three methods

(see Appendix). As shown in Figure 4(A), the DE genes detected by BayesMetaSeq have

wider detection range, especially for genes with smaller read counts, smaller RPKM (reads

per kilobase per million) or shorter transcript length (Mortazavi et al., 2008). Table 2

lists three DE genes detected only by BayesMetaSeq but not by the other two methods.
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They typically have rare counts (a table and boxplots of normalized counts shown in the

Appendix) due to short length of the transcripts (e.g. Mir212, Mir384) and/or small RPKM

(e.g. Alb). microRNA-212 has been reported in previous studies to promote interleukin-

17-producing T-helper cell differentiation (Nakahama et al., 2013). miRNA-384 has been

found to regulate both amyloid precursor protein (APP) and β-site APP cleaving enzyme,

which play an important role in the pathogenesis of Alzheimer’s disease (Liu et al., 2014).

Gene Alb encodes for albumin which is a primary carrier protein for steroids, fatty acids and

steroid hormones in the blood, and has been used as markers of HIV disease progression in

the highly active antiretroviral therapy (Shah et al., 2007).

2.5.2 Pathway enrichment analysis on detected DE genes

Detecting more DE genes does not necessarily indicate a better performance of our method.

Since the underlying truth is not known in real data, we performed a pathway enrich-

ment analysis on identified DE genes by each method. For fair comparison, we used the

top 200 genes from each of the three methods and regarded them as DE genes in the

pathway analysis. We tested on three pathway databases in MSigDB (http://software.

broadinstitute.org/gsea/msigdb): GO, KEGG and Reactome, and only GO reported

significant (q-value<0.05) pathways for all three methods. Controlling FDR at 0.05 by

Benjamini-Hochberg correction, we found 50 GO pathways enriched with the DE genes from

the BayesMetaSeq, while only 20 and 22 GO pathways were enriched for edgeR and DESeq,

respectively. A cluster of enriched pathways was identified on the left of the Manhattan

plot for BayesMetaSeq (circled), implying the enrichment in a major functional domain

(Figure 5; pathways sorted by GO IDs). These pathways were mainly related to cell killing,

leukocyte mediated cytotoxicity and T-cell mediated cytotoxicity (GO:0001906, GO:0001909,

GO:0001910, GO:0001912, GO:0001913, GO:0001914, GO:0001916) and were enriched with

BayesMetaSeq only (Table 3; p-values obtained from Fisher’s exact test). The enrichment

in these GO pathways might reflect changes in adaptive immune response against the HIV.
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Table 1: Comparison of three approaches in real rat data

Method FDR at 0.05 FDR at 0.1

BayesMetaSeq 169 245

edgeR+Fisher 36 51

DESeq+Fisher 37 46

Table 2: Three example genes that show better detection power of BayesMetaSeq to detect

low expressed or short length genes.

edgeR DESeq BayesMetaSeq Ave. normalized counts

Gene Study p-value Fisher’s

q-value

p-value Fisher’s

q-value

Posterior

means

Bayesian

q-value

HIV

strain

Normal

strain

Ave.

RPKM

Transcript

length(bp)

Mir212 HIP 0.02 0.21 0.05 0.51 0.89 2e-3 2.08 3.92 20.27 23

STR 0.02 0.03 0.99 2.20 4.93 21.31

PFC 0.07 0.09 0.83 2.99 5.08 22.56

Mir384 HIP 0.06 0.39 0.10 0.86 0.88 8e-3 1.59 2.84 15.53 20

STR 0.65 0.77 0.33 2.54 2.12 14.50

PFC 0.004 0.01 0.98 2.02 4.59 19.28

Alb HIP 0.002 0.10 0.06 0.88 0.95 6e-3 8.58 2.93 1.31 2676

STR 0.61 0.60 0.41 9.17 7.65 1.67

PFC 0.006 0.03 0.99 20.09 10.90 2.89
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Figure 5: Comparison of three methods in real rat RNA-seq data.

(A) Boxplot of average normalized counts, log(RPKM) and transcript lengths for the declared

DE genes by each method. From left to right: BayesMetaSeq, edgeR/Fisher, DESeq/Fisher.

(B) Manhattan plot of GO pathways enriched by the top 200 DE genes from each method.
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Table 3: Selected GO pathways enriched only with BayesMetaSeq from Figure 4(B)

GO ID GO Term BayesMetaSeq
p-value (logOR)

edgeR p-value
(logOR)

DESeq p-value
(logOR)

GO:0001906 cell killing 2.2e-4 (1.87) 0.033 (1.25) 0.12 (0.95)
GO:0001909 leukocyte mediated cytotoxicity 1e-3 (1.77) 0.105 (1.01) 0.102 (1.03)
GO:0001910 regulation of leukocyte mediated

cytotoxicity
2.3e-4 (2.07) 0.056 (1.30) 0.055 (1.31)

GO:0001912 positive regulation of leukocyte
mediated cytotoxicity

1.3e-4 (2.18) 0.04 (1.40) 0.043 (1.42)

GO:0001913 T cell mediated cytotoxicity 9.9e-5 (2.25) 0.039 (1.46) 0.038 (1.47)
GO:0001914 regulation of T cell mediated cy-

totoxicity
5e-5 (2.39) 0.029 (1.59) 0.028 (1.60)

GO:0001916 positive regulation of T cell me-
diated cytotoxicity

3.5E-5 (2.46) 0.024 (1.66) 0.24 (1.67)

2.5.3 Categorization of DE genes by study heterogeneity

We calculated the co-occurrence probability pg,h and used 1− pg,h as a dissimilarity measure

to cluster the DE genes of BayesMetaSeq. As shown in Figure 6(A), we identified seven

major clusters from the 245 DE genes. Each of the seven clusters corresponded to one

particular cross-study differential patterns based on the signed E(δgk|D) (Figure 6(B)). For

example, genes in Cluster 1 were up-regulated in all three studies and genes in Cluster 5 were

down-regulated only in STR, but not in HIP and PFC. Moreover, when we analyzed each

cluster of genes separately through IPA pathway enrichment analysis, we noticed that each

cluster of genes represented different functional domains that were changed in the HIV strain

as compared to the normal strain in different brain regions. For example, Cluster 1 which

included genes up-regulated in all three brain regions was mainly involved in antimicrobial

response, while Cluster 5 which included genes down-regulated in STR region only was

mainly related to nervous system development (Figure 6(C)). Cluster 7 was not shown here

since it included very few DE genes and only one enriched pathway was identified. Detailed

list of significant pathways in each cluster with corresponding p-values and log odds ratios

can be found in the Appendix. In our analysis, we detected more region-specific DE markers

(Cluster 2-7) than common DE markers (Cluster 1) which was consistent with the results

reported from the original paper of this data (Li et al., 2013).
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Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

Cluster 5 

HIP STR PFC 

(B) (A) 

(C) 

Cluster 1: Pattern recognition, 
Antimicrobial response 

Cluster 2: Cell 
signaling, 
Cell Survival 

Cluster 4: Cell Signaling,  
Inflammatory disease 

Cluster 3: Complement system, 
Immune response 

Cluster 5: Nervous system 
development 

Cluster 6 
Cluster 7 

Cluster 6: Immune cell function 

Figure 6: Real rat data clustering results.

(A) Correlation heatmap of 245 Bayesian DE genes based on the co-occurrence probability

pg,h with consensus clustering. (B) The heatmap of signed posterior mean of DE latent

indicator (i.e.E(δgk|D) ×sign(βgk)) in the five major clusters. (C) A collection of overlapping

IPA pathways enriched with each cluster of genes (deeper color refers to more significant

pathways).
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2.6 DISCUSSION AND CONCLUSION

In this paper, we proposed a Bayesian hierarchical model called BayesMetaSeq to conduct

meta-analysis of RNA-seq data and biomarker categorization by study heterogeneity. Based

on a negative binomial framework, the model assumed study-specific differential expression

pattern for each gene and allowed the shrinkage of multiple parameters. MCMC algorithm

was applied to update the posterior distribution of model parameters and the multiplicity

issue was addressed by global FDR from a Bayesian perspective. A Dirichlet process mixture

(DPM) model embedded in the Bayesian framework automatically clustered the detected

biomarkers based on cross-study differential patterns. Both the simulations and real rat

data analysis showed that the Bayesian unified model was more powerful than the two-stage

methods (e.g. edgeR/Fisher, DESeq/Fisher), especially in lowly expressed genes without the

loss of power in highly expressed genes, and the false discovery rate was well controlled. The

differentially expressed genes identified by BayesMetaSeq between HIV strains and normal

strains in the real data were further validated by pathway analysis and many DE genes

were enriched in pathways related to immune response. Clustering analysis of the DE genes

showed that genes with unique cross-study differential patterns were involved in specific

functional domains such as antimicrobial response, inflammatory response and so on.

Bayesian models have long been used in differential analysis of genomic studies such as

microarray, RNA-seq and methylation (Hardcastle and Kelly, 2010; Leng et al., 2013; Van

De Wiel et al., 2012; Chung et al., 2013; Park et al., 2014). Compared to other approaches,

Bayesian methods can handle more complex generative mechanisms and allows the sharing

of information across studies and across genes, both of which are essential for meta-analysis.

Our unified Bayesian meta-analysis model increases the detection power for genes with low

counts by accumulating small counts from multiple studies and encourages the sharing of

information across different studies, which is not seen in the two-stage meta-analysis meth-

ods. In addition, the flexible and adaptable modelling of variance across samples in our

approach also contributes to the improvement of detection power (Chung et al., 2013). Sim-

ilar advantage of unified model over two-stage method has been seen in categorical analysis

literature where joint modelling of count data to combine multiple sparse contingency tables

was shown to be more powerful than traditional two-stage methods (Bradburn et al., 2007).
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The current model relies on a fixed effects model, which assumes that differences of

effect sizes are from sampling error alone. It can be readily extended to a random effects

scenario, where each effect size is assumed to be drawn from a study-specific distribution

(Choi et al., 2003). Model checking can be performed to determine whether the fixed effect

model or the random effect model is more adequate for a given dataset. Recent statistical

research on RNA-seq proposed zero-inflated negative binomial model as an alternative to

the regular negative binomial model and found that it fits better to real data since excessive

zeros have always been observed in the NGS data (Van De Wiel et al., 2012). Our model

can be easily extended to a zero-inflation framework, and its performance and computing

feasibility for applications can be assessed through simulation or real data analysis. In

our current approach, only binary outcome is considered. The framework is applicable

for continuous outcome or multi-class outcome, where dummy variable regression approach

can be applied. Moreover, potential confounding covariates such as age, gender and other

individual attributes can be included in the model.

Our real data application presents an example using the same RNA-seq platform across

studies. In practice, it is possible that studies from different RNA-seq platforms are included

and thus introduce significant bias. For example, the Sequencing Quality Control (SEQC)

consortium performed extensive comparison on three RNA-seq platforms (Illumina HiSeq,

Life Technology SOLiD and Roche 454) and determined pros and cons of different platforms

(Consortium et al., 2014; Xu et al., 2013). As of 07/30/2016, more than 95% of data in

GEO used Illumina sequencing systems. As a result, unless different experimental protocols

(e.g. mRNA preparation kits) are used in different studies, the platform bias in RNA-seq

meta-analysis is not as severe as in microarray. We, however, acknowledge that platform

bias may exist or may become more serious if new competing sequencing platforms become

popular in the future. Practitioners should apply batch effect diagnostic or removal tools

(Leek, 2014; Liu and Markatou, 2016), or extend with random effects in our model to account

for cross-platform bias.

Currently, the Bayesian hierarchical model allows study-specific DE status, but favors

concordant differential expression across studies. In some applications, discordant DE genes

(e.g. a biomarker is up-regulated in one brain region but down-regulated in another brain
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region) may be expected and another hierarchical layer will be needed to accommodate.

Another limitation of our method is the relatively high computational cost. To speed up the

computation, we randomly partition the whole dataset into independent gene chunks and

apply explicit parallelism using “snowfall” package in R, while merging intermediate outputs

for cluster analysis with all genes. It takes about 1 hour for 10,000 MCMC iterations and

10,280 genes with K=3 using 128 computing threads (8 CPUs each with Sixteen-core AMD

2.3GHz and 128GB RAM) in R code. Since the reduction of computing time is almost linear

when more computing threads are used, we expect further computing time reduction when

powerful computing clusters are used. Optimization of code in C++ and applying further

parallel computing such as Consensus Monte Carlo Algorithm and Asynchronous Distributed

Gibbs Sampling (Scott et al., 2013; Terenin et al., 2015) should further reduce computing

time for general applications in the future. An R package, BayesMetaSeq, is publicly available

to perform the analysis (http://tsenglab.biostat.pitt.edu/software.htm).
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3.0 INTEGRATING MICROARRAY AND RNA-SEQ

TRANSCRIPTOMIC DATA USING BAYESIAN HIERARCHICAL MODEL

3.1 INTRODUCTION

Gene expression profiling based on DNA microarray technique is a mature and powerful ap-

proach that has been widely applied in large-scale genomic analysis and biomedical research

in the past two decades. More recently, with the development in next-generation sequencing

technology and decreasing running cost, RNA sequencing (RNA-seq) has become a more

popular tool in profiling transcriptome. Compared with the traditional probe hybridiza-

tion based microarray, RNA-seq has many advantages (Mortazavi et al., 2008; Consortium

et al., 2014). Firstly, RNA-seq has a wider detection range of expression levels compared

to microarray. For low-expressed genes, the intensities obtained from microarray are mostly

un-distinguishable from background noise. On the other hand, sequencing reads from RNA-

seq can accurately quantify these genes. Secondly, RNA-seq can be used to detect novel

transcripts, which is impossible in microarrray with only known probes. Thirdly, RNA-seq

can also be used to examine transcriptome fine structure such as allele-specific expression

and splice junctions. Despite the aforementioned benefits, there are potential biases and

artefacts that needed to be appropriately addressed in the analysis of RNA-seq data as well.

Due to the random RNA fragmentation and sampling nature in RNA-seq, transcript length

bias is inherent to the RNA-seq studies where short transcripts with less mapped reads are

usually at a statistical disadvantage relative to long transcripts in the same sample (Oshlack

and Wakefield, 2009). In addition, read mapping uncertainty and sequence base composition

(e.g. GC content bias) (Zheng et al., 2011) are also factors that can confound the analysis

results of RNA-seq.
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Many studies have been conducted to compare the two platforms in various aspects. As

one of the earliest studies to introduce RNA-sequencing into the field, Marioni et al. showed

that RNA-seq was comparable to microarray in differential expression analysis between hu-

man kidney and liver samples (Marioni et al., 2008). Sultan et al. further explored the

performance of two platforms in the analysis of human HEK and B cells and found that

RNA-seq was more sensitive than microarrays, where differentially expressed genes detected

only by RNA-seq fell in the lowest range of expression levels (Sultan et al., 2008). Other

studies, though restricted by small sample size, reached similar conclusions using different

datasets under different scenarios (Xiong et al., 2010; Bradford et al., 2010; Su et al., 2011).

As part of the third phase of large-scale MicroArray Quality Control Consortium (MAQC-

III) launched by FDA (a.k.a. SEQC), Wang et al. (2014) conducted a comprehensive rat

study to assess the concordance of RNA-seq and microarray using a range of chemical treat-

ment conditions. They found that RNA-seq outperformed microarray at detecting weakly

expressed genes, and the concordance between two platforms for detecting the number of

differentially expressed genes (DEGs) depended on treatment effects and the abundance of

genes. Furthermore, they showed a systematic difference between log fold change of RNA-

seq and that of microarray for DEGs. Similar results have been reported in Robinson et al.

(2015) that microarray was more systematically biased in DE analysis of low-intensity genes

than RNA-seq, while the detection power of RNA-seq is more sensitive to the per-gene read-

ing depth. In addition, they showed that the correlation between microarray and RNA-seq

effect size was low for lowly expressed genes. The systematic difference in effect size between

two platforms can be partially attributed to the ratio compression problem in microarray

(i.e. the observed expression fold change is consistently underestimated) caused by inefficient

hybridization (Draghici et al., 2006).

Meta-analysis in genomic research is a set of statistical tools for combining multiple

“-omics” studies of a related hypothesis and can potentially increase the detection power

of individual studies. With the increasing availability of mRNA expression data sets, many

transcriptomic meta-analysis methods for microarray and some for RNA-seq have been devel-

oped in the past decade. As far as we know, no meta-analysis methods have been developed

to jointly analyze the data from both microarray and RNA-seq yet. Considering the avail-
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ability of both data types in the public domain, a well integration of the two platforms can

potentially increase the detection power by utilizing the advantages and overcoming the dis-

advantages of each platform. Particularly, the cross-platform meta-analysis method needs

to adjust for the systematic bias in log fold change between the two platforms, as pointed

out above.

The most popular type of meta-analysis is a two-stage approach, where a summary

statistics such as p-value or effect size is first computed for each study and then meta-

analysis methods are used to combine the summary statistics (Tseng et al., 2012). One

naive two-stage method to perform cross-platform meta-analysis is to apply some state-

of-the-art tools for DE analysis in each platform individually (e.g. edgeR or DESeq2 for

RNA-seq and LIMMA or SAM for microarray) (Robinson et al., 2010; Love et al., 2014;

Smyth, 2005; Tusher et al., 2001), and then combine the p-values by Fisher’s or Stouffer’s

method (Fisher, 1925; Stouffer et al., 1949). Another alternative is to integrate raw data

from all studies using a joint stochastic model. These approaches have the potential to offer

improved efficiency over the two-stage methods and, at the same time, retain the platform-

specific features. Moreover, as one essential issue mentioned above, it is relatively simpler

to adjust for the systematic bias in effect sizes between two platforms under an integrative

framework than under a two-stage framework. The more flexible Bayesian methods are most

adequate to fit such joint hierarchical models.

Two Bayesian hierarchical models have been developed to meta-analyze multiple mi-

croarray datasets (Conlon et al., 2006; Scharpf et al., 2009). Ma et al. (2017c) recently

developed a full Bayesian hierarchical model to combine multiple RNA-seq count data. In

this paper, we will combine the existing models for microarray meta-analysis (Conlon et al.,

2006; Scharpf et al., 2009) and RNA-seq meta-analysis (Ma et al., 2017c) and propose a

Bayesian hierarchical model to jointly analyze the data from the two platforms. To address

the issue of systematic bias in effect size, we incorporated a normalization algorithm into

our full model.

Ramasamy et al. (2008) presented seven key issues when conducting microarray meta-

analysis, including identifying and extracting experimental data, preprocessing and annotat-

ing each dataset, matching genes across studies, statistical methods for meta-analysis, and
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final presentation and interpretation. When combining RNA-seq and microarray studies

for meta-analysis, most preliminary steps and data preparation issues will similarly apply.

In RNA-seq, preprocessing tools such as fastQC, tophat and bedtools are instrumental for

alignment and preparing expression counts for downstream analysis, and lumi and affy are

very popular R packages for processing microarray from different array platforms. Genes can

be matched across studies using standard gene symbols from e.g. BioMart databases. In the

remaining of this paper, we assume that data collection, preprocessing and gene matching

have been carefully done for both platforms and we only focus on downstream meta-analytic

modeling and interpretation.

In recent years, “Big data” research has rapidly become a hot topic that attracted exten-

sive attention from academia, industry, and policy makers. In the field of genomics, the large

amount of transcriptomic studies on both microarray and RNA-sequencing platforms have

generated petabytes of data that constitute “Big data” from the perspective of scale and

complexity. Our paper proposed one analytic method under a Bayesian framework to jointly

model and analyze such high volume genomic big data and demonstrated improved biological

findings. Bayesian methods have brought substantial benefits to big data research and the

high-speed computation nowadays has made these methods computationally effective and

scalable with the big data.

The paper is organized as follows. Section 3.2 describes the Bayesian hierarchical model

as well as the embedded normalization algorithm and explains how we perform differential

expression analysis based on Bayesian inference. In Section 3.3.1, we used simulation to

demonstrate the benefits of our Bayesian model over two-stage methods after including the

normalization algorithm. In Section 3.3.2, we apply our method to a histological subtype

(“ILC”) of breast cancer samples comparing early stage vs. late stage patients as the first ex-

ample, and comparing PR+ vs. PR- as the second example. Final conclusion and discussion

are provided in Section 3.4.
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3.2 METHODS

3.2.1 Notation

Throughout the paper, we denote by Ψk the platform indicator where Ψk = 1 if the kth

study is an RNA-seq study and Ψk = 0 if the kth study is a microarray study. ygik is the

observed RNA-seq count (Ψk = 1) or microarray intensity (Ψk = 0) for gene g and sample

i in study k. Here we assume the intensity of microarray is already log transformed for

fair comparison with the log link function used in RNA-seq count model. Tik =
G∑
g=1

ygik is

the corresponding library size (i.e. the total number of reads) for sample i in study k for

RNA-seq studies, and Xik ∈ {0, 1} the phenotypic condition of sample i in study k. The

observed data are:

D = {(ygik, Tik, Xik,Ψk) : g = 1, . . . , G; i = 1, . . . , Nk; k = 1, . . . , K},

where G is the total number of genes, Nk is the sample size of study k and K is the number

of studies in the meta-analysis, including both platforms. The latent variable of interest

δgk ∈ {0, 1} is the study-specific indicator of differential expression for gene g in study

k, meaning gene g is differentially expressed in study k if δgk = 1 and non-differentially

expressed if δgk = 0.

3.2.2 Bayesian Hierarchical Model

Figure 7 provides a graphical representation of the full Bayesian hierarchical model we pro-

pose. Circles denote parameters that need to be updated, squares denote observed data or

constants and dashed circles denote auxiliary parameters. Each dashed rectangle includes

all parameters in a single platform model, and the parameters outside both rectangles are

the parameters to be shared across two platforms in the meta-analysis.
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Figure 7: “CBM”: Graphical representation of the Bayesian hierarchical model

For each individual study, we accommodate the widely used negative binomial regression

model for RNA-seq and linear regression model for microarray respectively as follows:

ygik ∼ NB(µgik, φgk), log(µgik) = log(Tik) + αgk + βgkXik, for Ψk = 1,

ygik ∼ N(µgik, τ
2
gk), µgik = agk + βgkXik, for Ψk = 0,

where µgik = E(ygik) is the mean expression level (mean counts in RNA-seq and mean

intensity in microarray), φgk is the dispersion parameter for RNA-seq, and τ 2
gk is the variance

parameter for microarray. αgk denotes the baseline expression relative to the library size for

RNA-seq, agk denotes the baseline intensity level for microarray, βgk denotes the effect size.

We then specify the prior distributions for βgk, allowing the information integration of

effect size across the two platforms:

~βg ∼ NK(λg~δg,Σ),

where ~βg = (βg1, . . . , βgK), ~δg = (δg1, . . . , δgK). The latent variable of interest δgk ∈ {0, 1} is

the study-specific indicator of differential expression for gene g in study k, meaning gene g

51



is differentially expressed in study k if δgk = 1 and non-differentially expressed if δgk = 0. λg

is the gene-specific grand mean across all studies for DE genes.

Here we assume the effect sizes are independent among the studies a priori (which is

reasonable if no overlapping samples across studies), so Σ is a diagonal matrix with the

kth diagonal component being the variance σ2
k. We give different variance σ2

(1),k and σ2
(0),k

for DE and Non-DE genes, respectively. Each variance component is assumed to follow a

non-informative Jeffrey’s prior, i.e. σ2
(1),k ∼

1
σ2
(1),k

, σ2
(0),k ∼

1
σ2
(0),k

.

For the prior of dispersion parameter φgk, we follow from Wu et al. (2013) and assume a

log normal prior with a study-specific mean and variance common to all genes:

log φgk ∼ N(mk, κ
2
k),

where mk is assumed to follow normal prior N(µm, σ
2
m) with pre-specified mean µm = 0 and

variance σ2
m = 52. κ2

k is assumed to follow a non-informative Jeffrey’s prior, i.e. κ2
k ∼ 1

κ2k
.

Similarly, the variance of the linear model τ 2
gk is assumed to follow a non-informative Jeffrey’s

prior, i.e. τ 2
gk ∼ 1

τ2gk
.

For the baseline expression αgk, agk as well as the grand mean effect size λg, we assume

a normal prior with pre-specified mean and variance:

αgk ∼ N(µα, σ
2
α), agk ∼ N(µa, σ

2
a), λg ∼ N(µλ, σ

2
λ),

where µα = 0, σ2
α = 52, µa = 0, σ2

a = 52, µλ = 0, σ2
λ = 52. To complete the hierarchy, we

also specify the prior for the DE indicator δgk: P (δgk = 1) = πk, πk ∼ Unif(0, 1).

In addition to the informative parameters listed above, we introduce one auxiliary param-

eter ωgik (dashed circle in Fig 7) into the negative binomial model to help obtain closed-form

posterior distribution for βgk and αgk by exploiting conditional conjugacy (Polson et al.,

2013; Zhou et al., 2012b). The prior for ωgik is specified as:

ωgik ∼ PG(ygik + φ−1
gk , 0),

where PG refers to the Polya-Gamma distribution. The description above fully defines the

proposed Bayesian hierarchical model. The observed data are RNA-seq count or microarray

intensity, the library size for RNA-seq samples, the phenotypic indicator and the platform
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indicator {ygik, Tik, Xik,Φk}. We use Markov chain Monte Carlo (MCMC) sampling algo-

rithm to sample the posterior distribution of unknown parameters that need to be updated,

including δgk, βgk, αgk, agk, φgk, τ
2
gk, λg, σ

2
k, mk, κ

2
k and ωgik. A brief summary of updating

functions and algorithms for each parameter is described in the Appendix.

3.2.3 Normalization Algorithm

Previous comparative studies on RNA-seq and microarray data found a systematic difference

in log fold change (logFC) between the two platforms (Wang et al., 2014; Robinson et al.,

2015), where RNA-seq always has a larger absolute logFC than microarray. To adjust for this

inherent cross-platform bias in our full model, we hereby introduce a simple normalization

algorithm:

1. The logFCs are first computed from each study. We then choose genes with absolute

logFC greater than a pre-specified threshold in at least half of the studies as our candi-

date gene list for calculating the normalization factors. The threshold can be based on

quantiles or values of biological significance (e.g. 2-fold change), and in the examples we

show below, the selection of threshold based on effect size is quite robust. The selected

set is denoted as G .

2. Using one RNA-seq data as the reference, a simple linear model is used to test for the

difference in absolute logFC between a test study k (k = 1, 2, . . . , K−1) and the reference

study:

abs(logFC)gk = pk + εgk,

where g ∈ G , abs(logFC)gk is the observed absolute log fold change of gene g in kth

study, pk denotes the platform effect of the kth study.

3. If the difference between platforms is significant (i.e. p-value for the coefficient pk is

smaller than 0.05
(K−1)

after Bonferroni correction), the normalization factor fk is calculated

as the median difference of logFC between two platforms in the gene set G ; otherwise,

no normalization is required (i.e. fk = 0).
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4. Lastly, the normalization factor is incorporated into the Bayesian model while updating

the grand mean effect size parameter λg. More specifically, the new study-specific effect

size becomes β′gk = βgk + fk and then λg is sampled using the new β′gk. Details of this

modification in MCMC algorithm can be referred to the Appendix.

Remarks:

• Normalization works by adding constant normalization factor to the effect size estimates

of microarray which is usually underestimated due to inefficient hybridization. The new

estimates become more commensurate to that of RNA-seq while updating the grand

mean.

• A normalization algorithm can be potentially incorporated into a two-stage effect size

model. The effectiveness of normalization in such scenario needs to be further explored

and is beyond the scope of this paper. Note that the normalization is infeasible for

two-stage Fisher’s method since it involves the combination of p-values.

• For the ILC example in our application, there is only one RNA-seq study so we will just

use that study as the reference. In the case when there are multiple RNA-seq studies

present, we will choose the study with the largest sample size, whose logFC estimates

are more reliable (with smaller variability).

3.2.4 Evidence for necessity of normalization

We give three examples to show the necessity of performing normalization and demonstrate

our normalization algorithm, using three publicly available datasets (GSE11045, GSE5350,

GSE65365) from previous studies (Marioni et al., 2008; Su et al., 2011; Robinson et al.,

2015). Each study consists of same samples measured by both RNA-seq and microarray

from human, rat, and yeast respectively. We first selected a list of candidate genes using

absolute logFC threshold of 0.5 in all three studies. In Figure 8, we showed the boxplots of

logFC in the two platforms separately for up-regulated and down-regulated genes selected.

As we can see, RNA-seq has a significantly larger absolute logFC than microarray in Marioni

and Su’s data for both up-regulated and down-regulated genes (p < 0.05), while no significant
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difference is found between the two platforms in Storey’s data (p > 0.05). Thus, in this case,

we will need to perform normalization for Marioni and Su’s data, but not for Storey’s data.

3.2.5 Inference for Differential Expression

In the Bayesian literature, Newton et al. (2004) proposed a direct approach to control FDR

and defined a Bayesian false discovery rate as:

BFDR(t) =

∑G
g=1 Pg(H0|D)dg(t)∑G

g=1 dg(t)
,

where Pg(H0|D) is the posterior probability of gene g being non-DE (H0) given data (D)

and dg(t) = I{Pg(H0|D) < t} as the indicator of claiming DE genes. t is a tuning parameter

to control the BFDR at a certain α level. The Bayesian false discovery rate BFDR will be

used to address the multiplicity issue for the Bayesian method throughout this paper so that

it is comparable to the FDR control from the frequentist two-stage methods.

For fair comparison with the other frequentist meta-analysis methods (e.g. Fisher’s

method), we adopt an union-intersection (UIT) hypothesis (a.k.a. conjunction hypothesis)

setting following Li et al. (2011): H0 :
⋂
{βk = 0} vs Ha :

⋃
{βk 6= 0}, i.e. reject the null when

the gene is differentially expressed in at least one study, where βk is the effect size of study

k, 1 ≤ k ≤ K. Correspondingly, we define a null set Ω0 = {~βg :
K∑
k=1

I(βgk 6= 0) = 0} and the

respective DE set Ω1 = {~βg :
K∑
k=1

I(βgk 6= 0) > 0}. To control BFDR at the gene level, we

introduce a Bayesian equivalent q-value. From the Bayesian posterior, we can calculate the

probability of each gene falling in the null space: P̂g(H0|D) = P̂ (~βg ∈ Ω0|D) =

T∑
t=1

I{~δ(t)g =~0}

T
,

where δ
(t)
g = (δ

(t)
g1 , . . . , δ

(t)
gK) is the vector of DE indicators at the tth MCMC iteration, T is

the total number of MCMC samples and ~0 is a K-dimensional zero vector. We then define

the Bayesian q-value of gene g as qg = min
t≥P̂g(H0|D)

BFDR(t). This qg will be treated similarly

as q-value in the frequentist approach.
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Figure 8: Boxplot of logFC from either microarray or RNA-seq in three public studies.

The up-regulated or down-regulated genes are separately plotted. p-values from the linear

model are attached to each plot.
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3.2.6 Methods for comparison

Since no other cross-platform meta-analysis methods for integrating microarray and RNA-

seq have been proposed, we will compare our method to three widely used two-stage methods

in this paper: Fisher’s method with edgeR (for RNA-seq) and limma (for microarray) used

in single study DE analysis, the Fixed Effect Model (FEM) and the Random Effect Model

(REM) (Fisher, 1925; Choi et al., 2003) with single study log fold change and variance esti-

mated by DESeq2 (for RNA-seq) and limma (for microarray). The meta-analysed p-values

are then adjusted for multiple comparison by Benjamini-Hochberg procedure (Benjamini and

Hochberg, 1995).

3.3 RESULTS

3.3.1 Simulation

Simulation setting

In this section, we provide one simulation example to show the benefits of the Bayesian

integrative method over the other two-stage methods, especially after the inclusion of nor-

malization algorithm. To mimic the real data, we randomly picked up 2000 genes from the

TCGA-BRCA study (which includes both RNA-seq and microarray data) and used the es-

timated baseline expression (i.e. α and a) of these genes to simulate four studies, including

two RNA-seq studies and two microarray studies. For RNA-seq, the library sizes for all

samples were sampled from 0.4 to 0.8 million reads so the average counts range roughly from

200 to 400. The average intensity after log transformation is around 5 for microarray. We

assumed the first 400 genes as DE genes, and the rest 1600 genes as Non-DE. For DE genes,

we fixed the effect size of RNA-seq studies to be ±1.25, the effect size of microarray studies

to be ±1 considering the systematic fold change difference between the two platforms. For

Non-DE genes, the effect size is 0. The variance of microarray τ 2 is assumed to be 1, and

the log dispersion log φ is sampled from Unif(−2,−1).
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Simulation results

We compared our Bayesian method with and without normalization scheme (BayesNorm

& Bayes, respectively) to the three two-stage meta-analysis methods: Fisher’s method, FEM

and REM. For a fair comparison, we assessed the power by plotting the number of detected

true positives against the top number of declared DE genes in each method. As we can see

from Figure 9, the full Bayesian model with normalization algorithm detected more true DE

genes than any of the other four methods among the declared DE genes. In addition, the

BayesNorm method was also more accurate than the other methods (ROC and PR curves

shown in the Appendix). Note that even though both our method and the FEM/REM

methods were effect size based, the integrative model was more powerful than the two-stage

methods since two-stage approaches involve data reduction and theoretically lose efficiency.

3.3.2 Application

Data description

We applied the proposed model to two real datasets of invasive lobular carcinoma (ILC)

breast cancer. ILC is the secondly most frequently diagnosed histological subtype of invasive

breast cancer, consisting of ∼ 10%−15% of all cases. As opposed to the most frequent inva-

sive ductal carcinoma (IDC), ILC is less studied in its molecular mechanism, thus provides

limited insight into the biological characteristics of the disease. In general, ILC cases usu-

ally express estrogen receptors (ER) but show no over-expression for HER2 protein (Ciriello

et al., 2015). Here we collected one RNA-seq data from TCGA-BRCA study (Network et al.,

2012), one microarray data from METABRIC (Curtis et al., 2012), one microarray data from

Sotiriou study (Metzger-Filho et al., 2013), and a combination of 4 microarray datasets from

GEO repository (GSE2109, GSE21653, GSE5460, GSE5764). Here, the four GEO studies

contained four microarray datasets using Affymetrix U133 Plus 2.0, all are of small sample

size. As a result, we obtained the raw data (CEL files) for simultaneous preprocessing and
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Figure 9: Power comparison of different methods in simulation.

All genes are ordered by the significance levels, the number of true positives among the top

declared DE genes are compared. Red is the Bayesian method with normalization algorithm

added, blue is without normalization algorithm, green is Fisher’s method, brown and gray

are fixed effect model and random effect model, respectively.
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directly merged all qualified samples as the fourth study. All ILC samples used in the anal-

ysis are restricted to ER+ only. A summary of the ILC studies used in this paper can be

found in the Appendix.

In the first example, we aim to identify biomarkers differentially expressed between early

vs. late stage ILC breast cancer. To avoid confusing or erroneous tumor staging, we regarded

pathological stage 0 and 1 as early stage and stage 3 and 4 as late stage and exclude the

intermediate stage 2. Taking the stage information into account, we collected 69 (Nearly =

16, Nlate = 53), 57 (Nearly = 50, Nlate = 7), 57 (Nearly = 29, Nlate = 28) and 15 (Nearly =

5, Nlate = 10) samples from the four ILC studies, respectively. We first preprocessed the

TCGA RNA-seq study by filtering out genes with mean counts less than 1. After merging

and gene matching, 14621 genes were retained for ILC stage analysis.

In the second example, we aim to identify biomarkers differentially expressed between

progesterone-receptor-positive (PR+) vs. progesterone-receptor-negative (PR-) ILC breast

cancer. Taking the PR information into account, we collected 162 (NPR+ = 144, NPR− = 18),

130 (NPR+ = 80, NPR− = 50), 130 (NPR+ = 93, NPR− = 37) and 43 (NPR+ = 33, NPR− =

10) samples from the four studies, respectively. We similarly preprocessed the TCGA RNA-

seq study by filtering out genes with mean counts less than 1. After merging and gene

matching, 14636 genes were used for ILC PR analysis.

ILC stage example

As described in Section 3.2.3, for stage data, we first took genes with absolute logFC

greater than 0.2 in at least 3 studies and used them to calculate the normalization factor.

In Figure 10 (A), we noticed a significant difference in logFC between the TCGA RNA-seq

study and the first two microarray studies (p < 0.05
3

) for ILC stage data. On the other

hand, there was no significant difference in logFC between the RNA-seq study and the third

microarray study (p > 0.05
3

). As a result, we performed embedded normalization on the first

two microarray studies but not the third one while applying BayesNorm. The normalization

factor was calculated as the median absolute difference of logFC (where RNA-seq always has

a larger absolute logFC than microarray) for those selected genes.

60



●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−1.0

−0.5

0.0

0.5

1.0

down up
group_direction

lo
g

F
C

group_platform

array

ref

ILC_PR array1 (p<1e−4)

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

−1.0

−0.5

0.0

0.5

1.0

down up
group_direction

lo
g

F
C

group_platform

array

ref

ILC_PR array2 (p<1e−4)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

−1.0

−0.5

0.0

0.5

1.0

down up
group_direction

lo
g

F
C

group_platform

array

ref

ILC_PR array3 (p=0.79)

●●

●

●

●
●

●

●

●
●

●

−2

−1

0

1

down up
group_direction

lo
g

F
C

group_platform

array

ref

ILC_stage array1 (p<1e−4)

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

−1.0

−0.5

0.0

0.5

1.0

down up
group_direction

lo
g

F
C

group_platform

array

ref

ILC_stage array2 (p<1e−4)

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

−1.0

−0.5

0.0

0.5

1.0

down up
group_direction

lo
g

F
C

group_platform

array

ref

ILC_stage array3 (p=0.75)

(A) 
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Figure 10: Cross-platform logFC comparison.

Panel (A) is from ILC-stage and panel (B) is from ILC-PR. White is the reference RNA-seq

study from TCGA, boxplots of logFC from different platforms stratified by the directionality

were included. p-values from the linear model are attached to each plot.
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We applied five approaches (Bayes, BayesNorm, Fisher, FEM and REM) to the ILC

stage example. As shown in Table 4, the Bayesian method without normalization detected

267 DE genes at q<0.05. With normalization, there were 279 DE genes detected. Both

Bayesian models were more powerful than the two stage methods. We selected 3 representa-

tive genes that benefitted from normalization (Table 5). The log fold change and standard

error (in the parenthesis) obtained from DESeq2 or limma are shown for all four studies.

Without normalization, these genes are only marginally significant. After normalization, the

significance level has been increased showing the necessity of normalization. “GLYATL2” is

a gene coding for transferase that produces N-acyl glycines in humans and has been found

to be differentially expressed across different breast cancer subtypes (Milioli et al., 2015).

“FOSB” is an oncogene belonging to the FOS family and has been implicated as regula-

tors of cell proliferation, differentiation, and transformation. Previous studies found that

this gene was down-regulated in poorly differentiated breast carcinomas (Milde-Langosch

et al., 2003). “KCNQ5” gene is a member of the KCNQ potassium channel gene family

that yields currents which activate slowly with depolarization and recent review papers have

regarded them as potential biomarkers for various types of cancer including breast cancer,

glioblastoma and colorectal cancer (Lastraioli et al., 2015).

For the 279 DE genes detected by BayesNorm at q<0.05, we further performed a single-

platform DE analysis using Bayesian model and compared the significance levels of the two

platforms. Overall, RNA-seq is more significant than microarray in this dataset as shown

in Figure 11 (A). Further, we found that for genes with lower RPKM (i.e. lowly expressed

genes), RNA-seq is even more significant than microarray. This is consistent with the features

of the two technologies: RNA-seq has a wider detection range and delivers low background

signal, while microarray has a detection limit in the lower end.

To associate the detected biomarkers with the biological functions, we further performed

pathway enrichment analysis using Fisher’s exact test. For fair comparison, we used the top

500 genes identified from BayesNorm and Fisher’s method for ILC data (FEM and REM

are excluded due to too weak signals). For Fisher’s method, this roughly corresponded to a

q-value cutoff at 0.15. In Figure 6 (A), controlling FDR at 0.05, we identified 37 significant

GO pathways from the BayesNorm method, while no significant pathways were identified
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Table 4: Number of DE genes detected by five approaches at varying cutoff

Example Method q<0.01 q<0.05 q<0.1

ILC-stage Bayes 167 267 365

BayesNorm 161 279 400

Fisher 19 57 195

FEM 0 18 45

REM 0 0 0

ILC-PR Bayes 283 543 822

BayesNorm 286 549 825

Fisher 45 262 890

FEM 0 1 176

REM 0 1 44

Table 5: ILC stage: Three example genes that show the necessity of applying normalization

Gene logFCseq1
(SE)

logFCarray1
(SE)

logFCarray2
(SE)

logFCarray3
(SE)

qBayes qBayesNorm

GLYATL2 0.78 (0.28) 0.13 (0.17) 0.14 (0.24) -0.68 (0.60) 0.02 0.002
FOSB -0.85 (0.28) -0.63 (0.44) -0.08 (0.25) -0.64 (0.52) 0.07 0.02
KCNQ5 0.82 (0.28) 0.05 (0.05) 0.56 (0.24) 0.05 (0.18) 0.07 0.04

Normalized Normalized No Norm.
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Figure 11: Comparison of significance of RNA-seq vs. microarray in BayesNorm detected

DE genes.

Panel (A) is for ILC stage and panel (B) is for ILC PR. Y-axis is the negative log q-value,

i.e. -log10(q), from the single platform DE analysis. White is for RNA-seq and black is for

microarray. In the figure on the left, we included all DE genes, while on the right, we focused

only on the genes with lower RPKM (bottom 25%).
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from the Fisher’s method. Intriguingly, we identified many cell fate and lineage pathways to

be differentially activated comparing early and late stage ILC tumors (see pathway enrich-

ment q-values and odds ratios in Table 6). Genes include members of the HOX and NKX

gene family, SOX genes, EYA1 and others. This finding implies that early and late stage

ILC tumors might have different precursors, or that significant changes in differentiation

pathways contribute to progression of the disease.

ILC PR example

For ILC PR data, we took genes with absolute logFC greater than 0.2 in at least 3 studies

and used them to calculate the normalization factor. In Figure 10 (B), we noticed a significant

difference in logFC between the TCGA RNA-seq study and the first two microarray studies

(p < 0.05
3

) for ILC stage data. On the other hand, there was no significant difference in

logFC between the RNA-seq study and the third microarray study (p > 0.05
3

). As a result,

we only performed normalization for the first two microarray studies with normalization

factor calculated from the median absolute difference of logFC for those selected genes.

As shown in Table 4, the Bayesian method with normalization detected 549 DE genes

at q<0.05 while Fisher’s method only detected 262. We also selected 2 representative genes

with increased significance level after normalization (Table 7) and among them for example,

PTPRD is a tumor suppressor that is frequently inactivated in human cancers and has been

identified to predict for poor prognosis in breast cancer (Veeriah et al., 2009). For the 549

DE genes detected by BayesNorm at q<0.05, we further performed a single-platform DE

analysis using Bayesian model and compared the significance levels of the two platforms. As

shown in Figure 11 (B), similar to that in the stage example, RNA-seq is more significant

than microarray for genes with lower RPKM. For the PR example, there are 30 GO pathways

identified by Bayesian method and 6 GO pathways identified by Fisher’s method at FDR

cutoff of 0.05 (Figure 3.3.2 (B)). As shown in Table 8, our pathway analysis showed a

significant enrichment of genes involved in proteolysis and regulation of peptidase activity.

These include many members of the serpin family, such as SERPINB5, SERPINA3, and

SERPINA1. These proteins are inhibitors of serine proteases, and are known to mediate
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Figure 12: GO enrichment analysis results using the top 500 genes from the two methods.

Panel (A) is for ILC stage and panel (B) is for ILC PR. Manhattan plot of GO pathways

enriched by the top 500 DE genes from each method. X axis refers to the GO pathways

sorted by GO IDs, Y axis refers to the -log10(p-values) from the Fisher’s exact test, the

highlighted points are the GO pathways with FDR < 0.05.

Table 6: ILC stage: Selected top pathways enriched with BayesNorm

Pathway Name BayesNorm q-value Fisher q-value

(Odds Ratio) (Odds Ratio)

GO:0007267: cell-cell signaling 6e-5 (2.21) 1 (1.43)

GO:0010817: regulation of hormone levels 3e-4 (2.74) 1 (1.28)

GO:0048665: neuron fate specification 0.02 (8.72) 1 (0)

GO:0048663: neuron fate commitment 0.03 (3.87) 1 (1.16)

KEGG Neuroactive ligand-receptor interaction 0.01 (2.91) 0.68 (1.62)

KEGG Steroid hormone biosynthesis 0.05 (4.21) 1 (0.94)

Reactome GPCR ligand binding 1e-3 (2.76) 1 (1.06)
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Table 7: ILC PR: Three example genes that show the necessity of applying normalization

Gene logFC.seq1
(SE)

logFC.array1
(SE)

logFC.array2
(SE)

logFC.array3
(SE)

qBayes qBayesNorm

PTPRD -0.44 (0.21) -0.07 (0.06) -0.02 (0.14) -0.10 (0.20) 0.05 0.02
SULF2 -0.49 (0.17) -0.25 (0.10) -0.01 (0.10) -0.51 (0.29) 0.05 0.02

Normalized Normalized No Norm.

breast cancer cell invasion and metastases, and some of the genes have been shown to be

strong predictive biomarkers (Duffy et al., 2014).

3.4 DISCUSSION AND CONCLUSION

In this paper, we proposed a Bayesian hierarchical model to meta-analyze gene expres-

sion data generated from two popular transcriptome profiling platforms: microarray and

RNA-seq. Within each platform, we adopted a negative binomial model for RNA-seq and

linear model for microarray and we allowed the information integration of effect sizes across

platforms among DE genes. An additional normalization algorithm was embedded in the

Bayesian model to correct for the systematic cross-platform bias in effect sizes, as shown in

previous studies and in the examples provided in our paper. To the best of our knowledge,

the proposed model is the first cross-platform joint model for integrating microarray and

RNA-seq transcroptomic data. Through simulation, we found that normalization was nec-

essary and had increased the detection power of biomarkers. The application to ILC breast

cancer data showed the advantage of our model in identifying DE genes comparing to the

two-stage methods such as Fisher’s method or the fixed/random effect models, and identified

DE genes were validated by functional annotation (pathway) analysis.

During the analysis, we found that RNA sequencing was more powerful than microarray

for lowly expressed genes. Similar findings have been shown in previous comparative studies

(Sultan et al., 2008; Su et al., 2011; Wang et al., 2014). Using a comprehensive study design

with 15 chemical treatments, Wang et al. (2014) showed that the concordance between two
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Table 8: ILC PR: Selected top pathways enriched with BayesNorm

Pathway Name BayesNorm q-value Fisher q-value

(Odds Ratio) (Odds Ratio)

GO:0010466: negative regulation of peptidase ac-

tivity

1.e-4 (3.78) 1 (1.40)

GO:0010951: negative regulation of endopeptidase

activity

5e-4 (3.53) 1 (1.46)

GO:0052547: regulation of peptidase activity 5e-4 (2.80) 1 (1.09)

GO:0045861: negative regulation of proteolysis 7e-4 (2.82) 1 (1.36)

GO:0052548: regulation of endopeptidase activity 8e-4 (2.73) 1 (1.16)

KEGG Drug metabolism - other enzymes 0.04 (7.14) 1 (2.64)

platforms dropped to below 40% for genes with below median expression, and a direct com-

parison to qPCR results indicated a better performance of RNA-seq in detecting differential

gene expression at low expression levels than microarray. These results are consistent with

the pros and cons of the two technologies where RNA-seq has a wider detection range and

delivers low background signal, while on the other hand, microarray has a detection limit

in the lower end. Though no advantage of microarray has been found in our application

examples, we expect that microarray would be more powerful than RNA-seq in detecting

DE genes with short lengths, considering the transcript length bias of RNA-seq.

Many studies have previously reported the systematic difference in log fold change be-

tween the two platforms (Wang et al., 2014; Robinson et al., 2015). In this paper, we

reproduced the results using the same datasets and suggested that this difference was quite

universal. More specifically, RNA-seq tend to have consistently larger absolute value of

logFC than microarray under the same set of DE genes. Thus, to adjust for the differ-

ence, we introduced a simple normalization algorithm into the Bayesian model by taking

the median difference of absolute logFC of representative genes between the two platforms

as a constant normalization factor. Other normalization algorithm such as using adaptive
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normalization factor (e.g. varies according to expression levels, etc.) can also apply. In the

ILC data application, the normalization algorithm increased the significance levels of some

DE genes which were otherwise underpowered due to the log fold change difference.

Comparing to other methods, the Bayesian method has a few benefits. Firstly, it is

relatively flexible to incorporate the normalization algorithm under Bayesian framework.

Since the Bayesian estimation is sampling based (MCMC), the normalization factor can be

directly put into the updating functions; Secondly, our Bayesian model includes a latent

DE indicator, an individual effect size parameter and the overall effect size parameter. With

this setting, the underpowered study/platform will be down-weighted automatically for some

genes in a sense that its individual effect size will less likely contribute to the overall effect

size. Such analysis to allow heterogeneity is relatively hard to achieve in a two-stage scenario.

Thirdly, under Bayesian, we can allow the information of dispersion parameter to be shared

across genes, which is fairly important in the entity of dispersion estimation.

There exist different “platforms” for both microarray and RNA-seq technologies. For

example in microarray, data can be generated from Illumina platform, Affymetrix platform,

etc; while in RNA-seq, the most popular platform is Ilumina which generates 95% of all se-

quencing data stored in GEO repository. Each platform has its own technical characteristics

and protocol for handling and processing data. While combining microarray and RNA-seq,

our Bayesian model only considers single platform from each technology. It can be readily

extended to accommodate the multi-platform scenarios by including random effects or one

more layer to explain for the account for the cross-platform difference within each technology.

Since the advent of next generation sequencing technology, RNA-seq has gradually be-

come a standard experimental technique in measuring RNA expression levels while taking

the place of traditional microarray technology. However, the large availability of historical

microarray datasets in the GEO repository gives us a good reason of utilizing microarray in

addition to RNA-seq in the DE analysis. Some of our findings in comparing the two plat-

forms were consistent with the results reported from the third phase of MicroArray Quality

Control (MAQC) project (a.k.a. SEQC) initiated by FDA (Consortium et al., 2014; Wang

et al., 2014).

69



One limitation of our current method is that the normalization factors were estimated

a priori and inserted into the Bayesian full model. Joint estimation of these parameters

inside the model could be a potential extension in the future. Secondly, our model failed

to take gene lengths into account, which could be one potential factor that will affect the

detection power of different platforms. Our core MCMC updating algorithms were written in

C++ and Rcpp was used to integrate the C++ codes into R. An R package, CBM (“Cross-

platform Bayesian Model”), is publicly available to perform the analysis on the author’s

website (http://tsenglab.biostat.pitt.edu/software.htm).
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4.0 VARIABLE SCREENING WITH MULTIPLE STUDIES

4.1 INTRODUCTION

In many areas of scientific disciplines nowadays such as omics studies (including genomics,

transcriptomics, etc.), biomedical imaging and signal processing, high dimensional data with

much greater number of features than the sample size (i.e. p >> n) have become rule rather

than exception. For example, biologists may be interested in predicting certain clinical

outcome (e.g. survival) using the gene expression data where we have far more genes than

the number of samples. With the advancement of technologies and affordable prices in recent

biomedical research, more and more experiments have been performed on a related hypothesis

or to explore the same scientific question. Since the data from one study often have small

sample size with limited statistical power, effective information integration of multiple studies

can improve statistical power, estimation accuracy and reproducibility. Direct merging of the

data (a.k.a. “mega-analysis”) is usually less favored due to the inherent discrepancy among

the studies (Tseng et al., 2012). New statistical methodologies and theories are required to

solve issues in high-dimensional problem when integrating multiple related studies.

Various regularization methods have been developed in the past two decades and fre-

quently used for feature selection in high-dimensional regression problems. Popular methods

include, but are not limited to, Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic

net (Zou and Hastie, 2005) and adaptive Lasso (Zou, 2006). When group structure exists

among the variables (for example, a set of gene features belonging to a pre-specified path-

way), group version of regularization methods can be applied (Yuan and Lin, 2006; Meier

et al., 2008; Nardi et al., 2008). One can refer to Fan and Lv (2010) and Huang et al. (2012)

for a detailed overview of variable selection and group selection in high-dimensional models.
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When the number of features grows significantly larger than the sample size, most regulariza-

tion methods perform poorly due to the simultaneous challenges of computation expediency,

statistical accuracy and algorithmic stability (Fan et al., 2009). Variable screening methods

become a natural way to consider by first reducing to a lower or moderate dimensional prob-

lem and then performing variable regularization. Fan and Lv (2008) first proposed a sure

independent screening (SIS) method to select features based on their marginal correlations

with the response in the context of linear regression models and showed such fast selection

procedure enjoyed a “sure screening property”. Since the development of SIS, many screen-

ing methods have been proposed for generalized linear models (Fan et al., 2009, 2010; Chang

et al., 2013), nonparametric additive models or semiparametric models (Fan et al., 2011;

Chang et al., 2016), quantile linear regression (Ma et al., 2017a), Gaussian graphical models

(Luo et al., 2014; Liang et al., 2015) or exploit more robust measures for sure screening (Zhu

et al., 2011; Li et al., 2012, 2017). However, all these screening methods are limited to single

study so far.

In this paper, we first propose a general framework for simultaneous variable screening

with multiple related studies. Compared to single study scenario, inclusion of multiple studies

gives us more evidence to reduce dimension and thus increases the accuracy and efficiency

of removing unimportant features during screening. To our knowledge, our paper is the first

to utilize multiple studies to help variable screening in high-dimensional linear regression

model. Such a framework provides a novel perspective to the screening problem and opens

a door to the development of methods using multiple studies to perform screening under

different types of models or with different marginal utilities. In this framework, it is natural

to apply a selected screening procedure to each individual study, respectively. However,

important features with weak signals in some studies may be incorrectly screened out if only

such a one-step screening is performed. To avoid such false negative errors and fully take

advantage of multiple studies, we further propose a two-step screening procedure, where one

additional step of combining studies with potential zero correlation is added to the one-step

procedure for a second check. This procedure has the potential to save those important

features with weak signals in individual studies but strong aggregate effect across studies

during the screening stage. Compared to the naive multiple study extension of SIS method,
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our procedure greatly reduces the false negative errors while keeping a low false positive

rate. These merits are confirmed by our theoretical analysis. Specifically, we show that

our procedure possesses the sure screening property with weaker assumptions on signals and

allows the number of features to grow at an exponential rate of the sample size. Furthermore,

we only require the data to have sub-Gaussian distribution via using novel self-normalized

statistics. Thus our procedure can be applied to more general distribution family other than

Gaussian distribution, which is considered in Fan and Lv (2008) and Bühlmann et al. (2010)

for a related screening procedure under single study scenarios.

After screening, we further apply two general and applicable variable selection algorithms:

the multiple study extension of PC-simple algorithm proposed by Bühlmann et al. (2010) as

well as a two-stage feature selection method to choose the final model in a lower dimension.

The rest of the paper is organized as follows. In Section 4.2, we present a framework for

variable screening with multiple related studies as well as notations. Then we propose our

two-step screening procedure in Section 4.3. Section 4.4 provides the theoretical properties

of our procedure, and demonstrates the benefits of multiple related studies as well as the

advantages of our procedure. General algorithms for variable selection that can follow from

our screening procedure are discussed in Section 4.5. Section 4.6 and 4.7 include the simula-

tion studies and a real data application on three breast cancer transcriptomic studies, which

illustrate the advantage of our method in reducing false negative errors and retaining impor-

tant features as compared to the rank-based SIS method. We conclude and discuss possible

extensions of our procedure in Section 4.8. The technical proofs to the major theorems are

provided in the Appendix.

4.2 MODEL AND NOTATION

Suppose we have data from K related studies, each has n observations. Consider a random

design linear model in each study k ∈ [K] ([K] = 1, . . . , K):

Y (k) =

p∑
j=1

β
(k)
j X

(k)
j + ε(k), (4.2.1)
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where each Y (k) ∈ R, each X(k) = (X
(k)
1 , . . . , X

(k)
p )T ∈ Rp with E(X(k)) = µ

(k)
X and

cov(X(k)) = Σ
(k)
X , each ε(k) ∈ R with E(ε(k)) = 0 and var(ε(k)) = σ2 such that ε(k) is

uncorrelated with X
(k)
1 , . . . , X

(k)
p , and β(k) = (β

(k)
1 , . . . , β

(k)
p )T ∈ Rp. We assume implicitly

with E(Y (k)2) <∞ and E{(X(k)
j )2} <∞ for j ∈ [p] ([p] = 1, . . . , p).

When p is very large, we usually assume that only a small set of covariates are true

predictors that contribute to the response. In other words, we assume most of βj =

(β
(1)
j , . . . , β

(K)
j )T , where j ∈ [p], are equal to a zero vector. In addition, in this paper, we

assume β
(k)
j ’s are either zero or non-zero in all K studies. This framework is partially moti-

vated by a high-dimensional linear random effect model considered in literature (e.g. Jiang

et al. (2016)). More specifically, we can have β = (βT(1), 0
T )T , where β(1) is the vector of the

first s0 non-zero components of β (1 ≤ s0 ≤ p). Consider a random effect model where only

the true predictors of each study are treated as the random effect, that is, β(k) = (β
(k)
(1) , 0)T

and β
(k)
(1) is distributed as N(β(1), τ

2Is0), where τ 2 is independent of ε and X. Consequently,

β
(k)
j ’s are either zero or non-zero in all K studies with probability one. Such assumption

fits the reality well, for example, in a typical GWAS study, a very small pool of SNPs are

reported to be associated with a complex trait or disease among millions (Jiang et al., 2016).

With n i.i.d. observations from model (4.2.1), our purpose is to identify the non-zero

β(1), thus we define the following index sets for active and inactive predictors:

A = {j ∈ [p]; βj 6= 0} = {j ∈ [p]; β
(k)
j 6= 0 for all k};

AC = {j ∈ [p]; βj = 0} = {j ∈ [p]; β
(k)
j = 0 for all k},

(4.2.2)

where A is our target. Clearly, under our setting, A and AC are complementary to each

other so that the identification of AC is equivalent to the identification of A. Let |A| = s0,

where | · | denotes the cardinality.
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4.3 SCREENING PROCEDURE WITH MULTIPLE STUDIES

4.3.1 Sure independence screening

For a single study (K = 1), Fan and Lv (2008) first proposed the variable screening method

called sure independence screening (SIS) which ranked the importance of variables according

to their marginal correlation with the response and showed its great power in preliminary

screening and dimension reduction for high-dimensional regression problems. Bühlmann

et al. (2010) later introduced the partial faithfulness condition that a zero partial correlation

for some separating set S implied a zero regression coefficient and showed that it held almost

surely for joint normal distribution. In the extreme case when S = ∅, it is equivalent to the

SIS method.

The purpose of sure screening is to identify a set of moderate size d (with d << p) that

will still contain the true set A. Equivalently, we can try to identify AC or subsets of AC

which contain unimportant features that need to be screened out. There are two potential

errors that may occur in any sure screening methods (Fan and Lv, 2010):

1. False Negative (FN): Important predictors that are marginally uncorrelated but

jointly correlated with the response fail to be selected.

2. False Positive (FP): Unimportant predictors that are highly correlated with the im-

portant predictors can have higher priority to be selected than other relatively weaker

important predictors.

The current framework for variable screening with multiple studies is able to relieve us

from the FP errors significantly. Indeed, we have multiple studies in our model setting thus

we have more evidence to exclude noises and reduce FP errors than single study. In addition,

sure screening is used to reduce dimension at a first stage, so we can always include a second

stage variable selection methods such as Lasso or Dantzig selection to further refine the set

and reduce FP errors.

The FN errors occur when signals are falsely excluded after screening. Suppose ρj is

the marginal correlation of the jth feature with the response, with which we try to find the

set {j : ρj = 0} to screen out. Under the assumption of partial faithfulness (for explicit
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definition, see Section 4.4.3), these variables have zero coefficients for sure so the FN errors

are guaranteed to be excluded. However, this might not be true for the empirical version

of marginal correlation. For a single study (K = 1), to rule out the FN errors in empirical

case, it is well-known that the signal-to-noise ratio has to be large (at least of an order of

(log p/n)1/2 after Bonferroni adjustment). In the current setting with multiple studies, the

requirement on strong signals remains the same if we naively perform one-step screening in

each individual study. As we will see next, we propose a novel two-step screening procedure

which allows weak signals in individual studies as long as the aggregate effect is strong

enough. Therefore our procedure is able to reduces FN errors in the framework with multiple

studies.

Before closing this section, it is worthwhile to mention that, to perform a screening test,

one usually applies Fisher’s z-transformation on the sample correlation (Bühlmann et al.,

2010). However, this will require the bivariate normality assumption. Alternatively, in this

paper, we propose to use the self-normalized estimator of correlation that works generally well

even for non-Gaussian data (Shao, 1999). Similar ideas have been applied in the estimation

of large covariance matrix (Cai and Liu, 2016).

4.3.2 Two-step screening procedure with multiple studies

In the presence of multiple studies, we have more evidence to reduce dimension and ρ
(k)
j = 0

for any k will imply a zero coefficient for that feature. On one hand, it is possible for features

with zero βj to have multiple non-zero ρ
(k)
j ’s. On the other hand, a non-zero βj will have

non-zero ρ
(k)
j ’s in all studies. Thus, we aim to identify the following two complementary sets

while performing screening with multiple studies:

A[0] = {j ∈ [p]; min
k
|ρ(k)
j | = 0},

A[1] = {j ∈ [p]; min
k
|ρ(k)
j | 6= 0}.

(4.3.1)

We know for sure that A[0] ⊆ AC and A ⊆ A[1] with the partial faithfulness assumption.

For j ∈ A[0], the chance of detecting a zero marginal correlation in at least one study has
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been greatly increased with increasing K, thus unimportant features will more likely be

screened out as compared to single study scenario.

One way to estimate A[1] is to test H0 : ρ
(k)
j = 0 of each k for each feature j. When any

of the K tests is not rejected for a feature, we will exclude this feature from Â[1] (we call it

the “One-Step Sure Independence Screening” procedure, or “OneStep-SIS” for short). This

can be viewed as an extension of the screening test to multiple study scenario. However, in

reality, it is possible for important features to have weak signals thus small |ρ(k)
j |’s in at least

one study. These features might be incorrectly classified into Â[0] since weak signals can be

indistinguishable from null signals in individual testing. It will lead to the serious problem

of false exclusion of important features (FN) from the final set during screening.

This can be significantly improved by adding a second step to combine those studies

with potential zero correlation (i.e., fail to reject the null H0 : ρ
(k)
j = 0) identified in the

first step and perform another aggregate test. For the features with weak signals in multiple

studies, as long as their aggregate test statistics is large enough, they will be retained. Such

procedure will be more conservative in screening features as to the first step alone, but will

guarantee to reduce false negative errors.

For simplicity, we assume n i.i.d. observations (X
(k)
i , Y

(k)
i ), i ∈ [n], are obtained from all

K studies. It is straightforward to extend the current procedure and analysis to the scenarios

with different sample sizes across multiple studies, and thus omitted. Our proposed “Two-

Step Aggregation Sure Independence Screening” procedure (“TSA-SIS” for short) is formally

described below:

Step 1. Screening in each study

In the first step, we perform screening test in each study k ∈ [K] and obtain the estimate

of study set with potential zero correlations l̂j for each j ∈ [p] as:

l̂j = {k; |T̂ (k)
j | ≤ Φ−1(1− α1/2)} and T̂

(k)
j =

√
nσ̂

(k)
j√

θ̂
(k)
j

, (4.3.2)

where σ̂
(k)
j = 1

n

∑n
i=1(X

(k)
ij − X̄

(k)
j )(Y

(k)
i − Ȳ (k)) is the sample covariance and

θ̂
(k)
j = 1

n

∑n
i=1[(X

(k)
ij − X̄

(k)
j )(Y

(k)
i − Ȳ (k)) − σ̂

(k)
j ]2. T̂

(k)
j is the self-normalized estimator of
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covariance between X
(k)
j and Y (k). Φ is the CDF of standard normal distribution and α1 the

pre-specified significance level.

In each study, we test if |T̂ (k)
j | > Φ−1(1 − α1/2), if not, we will include study k into

l̂j. This step does not screen out any variables, but instead separates potential zero and

non-zero study-specific correlations for preparation of the next step. Define the cardinality

of l̂j as κ̂j = |l̂j|. If κ̂j = 0 (i.e., no potential zero correlation), we will for sure retain feature

j and not consider it in step 2; Otherwise, we move on to step 2.

Remark 1. By the scaling property of T̂
(k)
j , it is sufficient to impose assumptions on the stan-

dardized variables: W (k) = Y (k)−E(Y (k))√
var(Y (k))

, Z
(k)
j =

X
(k)
j −E(X

(k)
j )√

var(X
(k)
j )

. Thus T̂
(k)
j can also be treated

as the self-normalized estimator of correlation. We thus can define θ
(k)
j = var(Z

(k)
j W (k)) and

σ
(k)
j = cov(Z

(k)
j ,W (k)) = ρ

(k)
j .

Remark 2. In our analysis, the index set in (4.3.2) is shown to coincide with lj(j ∈ A[0])

and lj(j ∈ A[1]) which will be introduced in more details in Section 4.4.

Step 2. Aggregate screening

In the second step, we wish to test whether the aggregate effect of potential zero cor-

relations in l̂j identified in step 1 is strong enough to be retained. Define the statistics

L̂j =
∑
k∈l̂j

(T̂
(k)
j )2 and this statistics will approximately follow a χ2

κ̂j
distribution with degree

of freedom κ̂j under null. Thus we can estimate Â[0] by:

Â[0] = {j ∈ [p]; L̂j ≤ ϕ−1
κ̂j

(1− α2) and κ̂j 6= 0}, (4.3.3)

or equivalently estimate Â[1] by:

Â[1] = {j ∈ [p]; L̂j > ϕ−1
κ̂j

(1− α2) or κ̂j = 0}, (4.3.4)

where ϕκ̂j is the CDF of chi-square distribution with degree of freedom equal to κ̂j and α2

the pre-specified significance level.

The second step takes the sum of squares of T̂
(k)
j from studies with potential zero cor-

relation as the test statistics. For each feature j, we test if
∑
k∈l̂j

(T̂
(k)
j )2 > ϕ−1

κ̂j
(1 − α2). If

rejected, we conclude that the aggregate effect is strong and the feature needs to be retained,
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Table 9: Toy example to demonstrate the strength of two-step screening procedure.

S1 (signal) S2 (signal) N1 (noise)

k=1 |T̂ (1)
1 | = 3.71 |T̂ (1)

2 | = 3.70 |T̂ (1)
3 | = 0.42

k=2 |T̂ (2)
1 | = 3.16 |T̂ (2)

2 | = 2.71 |T̂ (2)
3 | = 0.54

k=3 |T̂ (3)
1 | = 3.46 |T̂ (3)

2 | = 2.65 |T̂ (3)
3 | = 0.56

k=4 |T̂ (4)
1 | = 3.63 |T̂ (4)

2 | = 2.68 |T̂ (4)
3 | = 0.12

k=5 |T̂ (5)
1 | = 3.24 |T̂ (5)

2 | = 1.94 |T̂ (5)
3 | = 0.69

TSA-SIS

l̂j ∅ {2, 3, 4, 5} {1, 2, 3, 4, 5}

κ̂j 0 4 5

L̂j - 25.31 > ϕ4(0.95) 1.27 < ϕ5(0.95)

Â[0] N N Y

Â[1] Y Y N

OneStep-SIS
Â[0] N Y Y

Â[1] Y N (FN) N

otherwise, we will screen it out. This step performs a second check in addition to the indi-

vidual testing in step 1 and potentially saves those important features with weak signals in

individual studies but strong aggregate effect.

In Table 9, we use a toy example to demonstrate our idea and compare the two approaches

(“OneStep-SIS” vs. “TSA-SIS”). In this example, suppose we have five studies (K = 5)

and three features (two signals and one noise). “S1” is a strong signal with β = 0.8 in all

studies, “S2” is a weak signal with β = 0.4 in all studies and “N1” is a noise with β = 0.

In hypothesis testing, both small β and zero β can give small marginal correlation and are

sometimes indistinguishable. Suppose T = 3.09 is used as the threshold (corresponding to

α1 = 0.001). For the strong signal “S1”, all studies have large marginal correlations, so both

“OneStep-SIS” and “TSA-SIS” procedures include it correctly. For the weak signal “S2”,

since in many studies it has small correlations, it is incorrectly screened out by “OneStep-
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SIS” procedure (False Negative). However, the “TSA-SIS” procedure saves it in the second

step (with α2 = 0.05). For the noise “N1”, both methods tend to remove it after screening.

4.4 THEORETICAL PROPERTIES

4.4.1 Assumptions and conditions

We impose the following conditions to establish the model selection consistency of our pro-

cedure:

(C1) (Sub-Gaussian Condition) There exist some constants M1 > 0 and η > 0 such that for

all |t| ≤ η, j ∈ [p], k ∈ [K]:

E{exp(tZ
(k)2
j )} ≤M1, E{exp(tW (k)2)} ≤M1.

In addition, there exist some τ0 > 0 such that min
j,k

θ
(k)
j ≥ τ0.

(C2) The number of studies K = O(pb) for some constant b ≥ 0. The dimension satisfies:

log3(p) = o(n) and κj log2 p = o(n), where κj is defined next.

(C3) For j ∈ A[0], lj(j ∈ A[0]) = {k; ρ
(k)
j = 0} and κj = |lj|. If k /∈ lj, then |ρ(k)

j | ≥

C3

√
log p
n

√
1.01θ

(k)
j , where C3 = 3(L+ 1 + b).

(C4) For j ∈ A[1], lj(j ∈ A[1]) = {k; |ρ(k)
j | < C1

√
log p
n

√
0.99θ

(k)
j } and κj = |lj|, where C1 =

L+ 1 + b. If k /∈ lj, then |ρ(k)
j | ≥ C3

√
log p
n

√
1.01θ

(k)
j . In addition, we require

∑
k∈lj
|ρ(k)
j |2 ≥

C2(log2 p+
√
κj log p)

n
, where C2 is some large positive constant.

The first condition (C1) assumes that each standardized variable Z
(k)
j or W (k), j ∈ [p],

k ∈ [K], marginally follow a sub-Gaussian distribution in each study. This condition relaxes

the normality assumption in (Fan and Lv, 2008; Bühlmann et al., 2010). The second part

of (C1) assumes there always exist some positive τ0 not greater than the minimum variance

of Z
(k)
j W (k). In particular, if (X

(k)
j , Y (k)) jointly follows a multivariate normal distribution,

then θ
(k)
j = 1 + ρ

(k)2
j ≥ 1, so we can always pick τ0 = 1.
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The second condition (C2) allows the dimension p to grow at an exponential rate of

sample size n, which is a fairly standard assumption in high-dimensional analysis. Many

sure screening methods like “SIS”, “DC-SIS” and “TPC” have used this assumption (Fan

and Lv, 2008; Li et al., 2012, 2017). Though the PC-simple algorithm (Bühlmann et al.,

2010) assumes a polynomial growth of pn as a function of n, we notice that it can be readily

relaxed to an exponential of n level. Further, we require the product κj log2 p to be small,

which is used to control the errors in the second step of our screening procedure. It is always

true if K log2 p = o(n).

Conditions (C3) assumes a lower bound on non-zero correlation (i.e. k /∈ lj) for features

from A[0]. In other words, if the marginal correlation |ρ(k)
j | is not zero, then it must have a

large enough marginal correlation to be detected. While this has been a key assumption for

a single study in many sure screening methods (Fan and Lv, 2008; Bühlmann et al., 2010;

Li et al., 2012, 2017), we only impose this assumption for j ∈ A[0] rather than all j ∈ [p].

This condition is used to control for type II error in step 1 for features from A[0].

Condition (C4) gives assumptions on features from A[1]. We assume the correlations to

be small for those k ∈ lj and large for those k /∈ lj so that studies with strong or weak

signals can be well separated in the first step. This helps control the type II error in step

1 for features from A[1]. For those studies in lj, we further require their sum of squares of

correlations to be greater than a threshold, so that type II error can be controlled in step 2.

This condition is different from other methods with single study scenario, where they usually

assume a lower bound on each marginal correlation for features from A[1] just like (C3). We

relax this condition and only put restriction on their L2 norm. This allows features from A[1]

to have weak signals in each study but combined strong signal. To appreciate this relaxation,

we compare the minimal requirements with and without step 2. For each j ∈ A[1], in order to

detect this feature, we need |ρ(k)
j | ≥ C(log p/n)1/2 with some large constant C for all k ∈ lj,

and thus at least
∑
k∈lj
|ρ(k)
j |2 ≥ C2κj log p/n. In comparison, the assumption in (C4) is much

weaker in reasonable settings κj >> log p.
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4.4.2 Consistency of the two-step screening procedure

We state the first theorem involving the consistency of screening in our step 1:

Theorem 1. Consider a sequence of linear models as in (4.2.1) which satisfy assumptions and

conditions (C1)-(C4), define the event A = {l̂j = lj for all j ∈ [p]}, there exists a sequence

α1 = α1(n, p)→ 0 as (n, p)→∞ where α1 = 2{1−Φ(γ
√

log p)} with γ = 2(L+ 1 + b) such

that:

P (A) = 1−O(p−L)→ 1 as (n, p)→∞. (4.4.1)

The proof of Theorem 1 can be found in the Appendix. This theorem states that the

screening in our first step correctly identifies the set lj for features in both A[0] and A[1] (in

which strong and weak signals are well separated) and the chance of incorrect assignment is

low. Given the results in Theorem 1, we can now show the main theorem for the consistency

of the two-step screening procedure:

Theorem 2. Consider a sequence of linear models as in (4.2.1) which satisfy assumptions

and conditions (C1)-(C4), we know there exists a sequence α1 = α1(n, p) → 0 and α2 =

α2(n, p) → 0 as (n, p) → ∞ where α1 = 2{1 − Φ(γ
√

log p)} with γ = 2(L + 1 + b) and

α2 = 1 − ϕκj(γκj) with γκj = κj + C4(log2 p +
√
κj log p) and some constant C4 > 0 such

that:

P{Â[1](α1, α2) = A[1]} = 1−O(p−L)→ 1 as (n, p)→∞. (4.4.2)

The proof of Theorem 2 can be found in the Appendix. The result shows that the two-step

screening procedure enjoys the model selection consistency and identifies the model specified

in (4.3.1) with high probability. The choice of significance level that yields consistency is

α1 = 2{1− Φ(γ
√

log p)} and α2 = 1− ϕκj(γκj) .

4.4.3 Partial faithfulness and Sure screening property

Bühlmann et al. (2010) first came up with the partial faithfulness assumption which theoret-

ically justified the use of marginal correlation or partial correlation in screening as follows:

ρj|S = 0 for some S ⊆ {j}C implies βj = 0, (4.4.3)
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where S is the set of variables conditioned on. For independence screening, S = ∅.

Under the two conditions: the positive definiteness of ΣX and non-zero regression coeffi-

cients being realization from some common absolutely continuous distribution, they showed

that partial faithfulness held almost surely (Theorem 1 in Bühlmann et al. (2010)). Since

the random effect model described in Section 4.2 also satisfies the two conditions, the partial

faithfulness holds almost surely in each study.

Thus, we can readily extend their Theorem 1 to a scenario with multiple studies:

Corollary 1. Consider a sequence of linear models as in (4.2.1) satisfying the partial faith-

fulness condition in each study and true active and inactive set defined in (4.2.2), then the

following holds for every j ∈ [p]:

ρ
(k)
j|S = 0 for some k for some S ⊆ {j}C implies βj = 0. (4.4.4)

The proof is straightforward and thus omitted: if ρ
(k)
j|S = 0 for some study k, then with

partial faithfulness, we will have β
(k)
j = 0 for that particular k. Since we only consider

features with zero or non-zero β
(k)
j ’s in all studies in (4.2.2), we will have βj = 0. In the case

of independence screening (i.e. S = ∅), ρ(k)
j = 0 for some k will imply a zero βj.

With the model selection consistency in Theorem 2 and the extended partial faithfulness

condition in Corollary 1, the sure screening property of our two-step screening procedure

immediately follows:

Corollary 2. Consider a sequence of linear models as in (4.2.1) which satisfy assumptions

and conditions (C1)-(C4) as well as the extended partial faithfulness condition in Corollary

1, there exists a sequence α1 = α1(n, p) → 0 and α2 = α2(n, p) → 0 as (n, p) → ∞

where α1 = 2{1 − Φ(γ
√

log p)} with γ = 2(L + 1 + b) and α2 = 1 − ϕκj(γκj) with γκj =

κj + C4(log2 p+
√
κj log p) such that:

P{A ⊆ Â[1](α1, α2)} = 1−O(p−L)→ 1 as (n, p)→∞. (4.4.5)

The proof of this Corollary simply combines the results of Theorem 2 and the extended

partial faithfulness and is skipped here.
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4.5 ALGORITHMS FOR VARIABLE SELECTION WITH MULTIPLE

STUDIES

Usually, performing sure screening once may not remove enough unimportant features. In our

case since there are multiple studies, we expect our two-step screening procedure to remove

many more unimportant features than in single study. If the dimension is still high after

applying our screening procedure, we can readily extend the two-step screening procedure

to an iterative variable selection algorithm by testing the partial correlation with gradually

increasing size of the conditional set S. Since such method is a multiple study extension of

the PC simple algorithm in Bühlmann et al. (2010), we call it “Multi-PC” algorithm (Section

4.5.1).

On the other hand, if the dimension has already been greatly reduced with the two-step

screening, we can simply add a second stage group-based feature selection techniques to

select the final set of variables (Section 4.5.2).

4.5.1 Multi-PC algorithm

We start from S = ∅, i.e., our two-step screening procedure and build a first set of candidate

active variables:

Â[1,1] = Â[1] = {j ∈ [p]; L̂j > ϕ−1
κ̂j

(1− α2) or κ̂j = 0}. (4.5.1)

We call this set stage1 active set, where the first index in [, ] corresponds to the stage

of our algorithm and the second index corresponds to whether the set is for active variables

([, 1]) or inactive variables ([, 0]). If the dimensionality has already been decreased by a large

amount, we can directly apply group-based feature selection methods such as group lasso to

the remaining variables (to be introduced in Section 4.5.2).

However, if the dimension is still very high, we can further reduce dimension by increasing

the size of S and considering partial correlations given variables in Â[1,1]. We follow the
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similar two-step procedure but now using partial correlation of order one instead of marginal

correlation and yield a smaller stage2 active set:

Â[2,1] = {j ∈ Â[1,1]; L̂j|q > ϕ−1
κ̂j|q

(1− α2) or κ̂j|q = 0, for all q ∈ Â[1,1]\{j}}, (4.5.2)

where each self-normalized estimator of partial correlation can be computed by taking the

residuals from regressing over the variables in the conditional set.

We can continue screening high-order partial correlations, resulting in a nested sequence

of m active sets:

Â[m,1] ⊆ . . . ⊆ Â[2,1] ⊆ Â[1,1]. (4.5.3)

Note that the active and inactive sets at each stage are non-overlapping and the union

of active and inactive sets at a stage m will be the active set in a previous stage m− 1, i.e.,

Â[m,1] ∪ Â[m,0] = Â[m−1,1]. This is very similar to the original PC-simple algorithm, but now

at each order-level, we perform the two-step procedure. The algorithm can stop at any stage

m when the dimension of Â[m,1] already drops to low to moderate level and other common

group-based feature selection techniques can be used to select the final set. Alternatively,

we can continue the algorithm until the candidate active set does not change anymore. The

algorithm can be summarized as follows:

Algorithm 1. Multi-PC algorithm for variable selection.

1. Set m = 1, perform the two-step screening procedure to construct stage1 active set:

Â[1,1] = {j ∈ [p]; L̂j > ϕ−1
κ̂j

(1− α2) or κ̂j = 0}.

2. Set m = m+ 1. Construct the stagem active set:

Â[m,1] = {j ∈ Â[m−1,1]; L̂j|S > ϕ−1
κ̂j|S

(1− α2) or κ̂j|S = 0,

for all S ⊆ Â[m−1,1]\{j} with |S| = m− 1}.

3. Repeat Step 2 until m = m̂reach, where m̂reach = min{m : |Â[m,1]| ≤ m}.
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4.5.2 Two-stage feature selection

As an alternative to “Multi-PC” algorithm for variable selection, we also introduce here a

two-stage feature selection algorithm by combining our two-step screening procedure and

other regular feature selection methods together. In single study, for example, Fan & Lv

(2008) performed sure independence screening in the first stage followed by model selection

techniques including Adaptive Lasso, Dantzig Selector and SCAD, etc., and named those

procedures as “SIS-AdaLasso”,“SIS-DS”, “SIS-SCAD” , accordingly.

In our case, since the feature selection is group-based, we adopt a model selection tech-

nique using group Lasso penalty in the second stage:

min
β

K∑
k=1

||y(k) −X(k)

Â[1]
β

(k)

Â[1]
||22 + λ

∑
j∈Â[1]

||βj||2 , (4.5.4)

where Â[1] is the active set identified from our two-step screening procedure and the tuning

parameter λ can be chosen by cross-validation or BIC in practice just like for a regular group

Lasso problem. We call such two-stage feature selection algorithm as “TSA-SIS-groupLasso”.

In addition, at any stages of the “Multi-PC” algorithm when the dimension has already

been dropped to a moderate level, the group Lasso-based feature selection techniques can

always take over to select the final set of variables.

4.6 NUMERICAL EVIDENCE

In this section, we demonstrate the advantage of TSA-SIS procedure in comparing to the

multiple study extension of SIS (named “Min-SIS”), which ranks the features by the min-

imum absolute correlation among all studies. We simulated data according to the linear

model in (4.2.1) including p covariates with zero mean and covariance matrix Σ
(k)
i,j = r|i−j|

where Σ
(k)
i,j denotes the (i, j)th entry of Σ

(k)
X .

In the first part of simulation, we fixed the sample size n = 100, p = 1000, the number

of studies K = 5 and performed B = 1000 replications in each setting. We assumed that the

true active set consisted of only ten variables and all the other variables had zero coefficients
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(i.e., s0 = 10). The indices of non-zero coefficients were evenly spaced between 1 and p.

The variance of the random error term in linear model was fixed to be 0.52. We randomly

drew r from {0, 0.2, 0.4, 0.6} and allowed different r’s in different studies. We considered the

following four settings:

1. Homogeneous weak signals across all studies: nonzero βj generated from Unif(0.1, 0.3)

and β
(1)
j = β

(2)
j = . . . = β

(K)
j = βj.

2. Homogeneous strong signals across all studies: nonzero βj generated from Unif(0.7, 1)

and β
(1)
j = β

(2)
j = . . . = β

(K)
j = βj.

3. Heterogeneous weak signals across all studies: nonzero βj generated from Unif(0.1, 0.3)

and β
(k)
j ∼ N(βj, 0.5

2).

4. Heterogeneous strong signals across all studies: nonzero βj generated from Unif(0.7, 1)

and β
(k)
j ∼ N(βj, 0.5

2).

We evaluated the performance of Min-SIS using receiver operating characteristic (ROC)

curves which measured the accuracy of variable selection independently from the issue of

choosing good tuning parameters (for Min-SIS, the tuning parameter is the top number of

features d). The OneStep-SIS procedure we mentioned above was actually one special case

of the Min-SIS procedure (by thresholding at α1). In presenting our TSA-SIS procedure,

we fixed α1 = 0.0001 and α2 = 0.05 so the result was just one point on the sensitivity vs.

1-specificity plot. We also performed some sensitivity analysis on the two cutoffs based on

the first simulation (see Table 10) and found the two values to be optimal since they had

both high sensitivity and high specificity. Thus we suggested fixing these two values in all

the simulations.

Figure 4.6 showed the results of simulation 1-4. When the signals were homogeneously

weak in all studies as in (1), TSA-SIS clearly outperformed the Min-SIS procedure (above its

ROC curve). It reached about 90% sensitivity with controlled false positive errors (specificity

∼ 95%). In order to reduce false negatives, Min-SIS had to sacrifice the specificity and

increased the false positives, which in the end lost the benefits of performing screening

(i.e. end up keeping too many features). When the signals became strong as in (2), both

procedures performed equally well. This fit our motivation and theory and showed the
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Table 10: Sensitivity analysis on the choice of α1 and α2 in simulation

Sensitivity/Specificity α2 = 0.15 0.05 0.01 0.001

α1=0.01 0.793/0.901 0.525/0.984 0.210/0.999 0.142/1.000

0.001 0.947/0.826 0.864/0.943 0.691/0.990 0.373/0.999

0.0001 0.966/0.816 0.922/0.932 0.840/0.985 0.681/0.998
Note: All value are based on average results from B = 1000 replications.

strength of our two-step procedure in saving weak signals without much increase in false

positive rates. When the signals became heterogeneous as in (3) and (4), both procedures

performed worse than before. But the Min-SIS procedure never outperformed the TSA-

SIS procedure since it only examined the minimum correlation among all studies while the

two-step procedure additionally considered the aggregate statistics.

4.7 REAL DATA APPLICATION

We next demonstrated our method in three microarray datasets of triple-negative breast

cancer (TNBC, sometimes a.k.a. basal-like), an aggressive subtype of breast cancer usually

with poor prognosis. Previous studies have shown that the tumor suppressor protein “p53”

played an important role in breast cancer prognosis and its expression was associated with

both disease-free survival and overall survival in TNBC (Yadav et al., 2015). Our purpose

was to identify the genes most relevant and predictive to the response - the expression level

of TP53 gene, which encodes p53 protein. The three datasets are publicly available on

authors’ website or at GEO repository including METABRIC (a large cohort consisting

of roughly 2000 primary breast tumours), GSE25066 and GSE76250 (Curtis et al., 2012;

Itoh et al., 2014; Liu et al., 2016). We subset the data to focus on the TNBC cases only

and ended up with 275, 178 and 165 TNBC samples in each dataset, respectively. After
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Figure 13: Simulation results 1-4.

The ROC curve is for Min-SIS, the black point is for our TSA-SIS using α1 = 0.0001 and

α2 = 0.05.

routine preprocessing and filtering by including genes sufficiently expressed and with enough

variation, a total of 3377 genes remained in common for the analysis.

We applied our Multi-PC algorithm and compared to the OneStep-SIS procedure as

well as the Min-SIS method by using d = n/ log(n) = 49 (as suggested by their paper).

We used α1 = 0.0001 and α2 = 0.05 (as determined by sensitivity analysis in simulation)

and the “Multi-PC” algorithm only ran up to the first order (i.e. m = 2) and stopped
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Table 11: The six genes selected by our TSA-SIS procedure.

Gene METABRIC GSE25066 GSE76250 Min-SIS Rank in OneStep-SIS

Est (SE) Est (SE) Est (SE) d=49 Min-SIS |S|=25

Intercept 7.600 (1.502) 0.213 (0.553) -1.783 (0.971) - - -

EXOC1 0.251 (0.081)∗∗ 0.278 (0.157). 0.293 (0.167). N 164 N

ITGB1BP1 -0.134 (0.045)∗∗ 0.003 (0.111) -0.178 (0.194) N 123 N

RBM23 0.168 (0.078)∗ 0.144 (0.167) 0.367 (0.168)∗ N 152 N

SETD3 -0.166 (0.081)∗ 0.366 (0.184)∗ -0.080 (0.175) N 101 N

SQSTM1 -0.114 (0.050)∗ 0.029 (0.099) 0.245 (0.183) N 98 N

TRIOBP -0.126 (0.062)∗ 0.084 (0.118) 0.628 (0.261)∗ N 91 N

Adjusted-R2 0.151 0.522 0.359

Note: “.” indicates significant level of 0.1, “∗” for level of 0.05, “∗∗” for level of 0.01.

with six features. This again showed the power of screening with multiple studies. After

feature selection, we fit the linear model in each study to obtain the coefficient estimates and

adjusted R2. Table 11 showed the coefficient estimates and standard errors of the final set of

six genes selected by our procedure. We added three columns to indicate whether they were

also retained by the Min-SIS (and their relative rank) or OneStep-SIS procedures. As we

can see from the table, all the six genes selected by our procedure were missed by the other

methods. Those genes typically had weak signals in one or more studies thus were very likely

to be incorrectly excluded if only one step screening is performed. Since the METABRIC

study had a larger sample size, all the coefficients appeared to be more significant than the

other two studies.

The gene EXOC1 and p53 are both components of the Ras signaling pathway which

is responsible for cell growth and division and can ultimately lead to cancer (Rajalingam

et al., 2007). RBM23 encodes for an RNA-binding protein implicated in the regulation of

estrogen-mediated transcription and has been found to be associated with p53 indirectly via
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a heat shock factor (Asano et al., 2016). ITGB1BP1 encodes for an integrin protein which is

essential for cell adhesion and other downstream signaling pathways that are also modulated

by p53 (Brakebusch et al., 2002).

4.8 DISCUSSION

In this paper, we proposed a two-step screening procedure for high-dimensional regression

analysis with multiple related studies. In a fairly general framework with weaker assumptions

on the signal strength, we showed that our procedure possessed the sure screening property

for exponentially growing dimensionality without requiring the normality assumption. We

have shown through simulations that our procedure consistently outperformed the rank-

based SIS procedure independent of their tuning parameter d. As far as we know, our paper

is the first proposed procedure to perform variable screening in high-dimensional regression

when there are multiple related studies. In addition, we also introduced two applicable

variable selection algorithms following the two-step screening procedure.

Variable selection in regression with multiple studies have been studied in a subfield of

machine learning called multi-task learning (MTL) before and the general procedure is to

apply regularization methods by putting group Lasso penalty, fused Lasso penalty or trace

norm penalty, etc. (Argyriou et al., 2007; Zhou et al., 2012a; Ji and Ye, 2009). However, at

ultra-high dimension, such regularization methods usually fail due to challenges in computa-

tion expediency, statistical accuracy and algorithmic stability. Instead, sure screening can be

used as a fast algorithm for preliminary feature selection, and as long as it exhibits compara-

ble statistical performance both theoretically and empirically, its computational advantages

make it a good choice in application (Genovese et al., 2012). Our method has provided an

alternative to target the high-dimensional multi-task learning problems.

The current two-step screening procedure is based on the linear models but relaxes the

Gaussian assumption to sub-Gaussian distribution. One can apply a modified Fisher’s z-

transformation estimator rather than our self-normalized estimator to readily accommodate

general elliptical distribution families (Li et al., 2017). In biomedical applications, non-
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continuous outcomes such as categorical, count or survival outcomes are more commonly

seen. Fan et al. (2010) extended SIS and proposed a more general independent learning

approach for generalized linear models by ranking the maximum marginal likelihood esti-

mates. Fan et al. (2011) further extended the correlation learning to marginal nonparametric

learning for screening in ultra-high dimensional additive models. Other researchers exploited

more robust measure for the correlation screening (Zhu et al., 2011; Li et al., 2012; Balasub-

ramanian et al., 2013). All these measures can be our potential extension by modifying the

marginal utility used in the screening procedure. Besides, the idea of performing screening

with multiple studies is quite general and is applicable to relevant statistical models other

than the regression model, for example, Gaussian graphical model with multiple studies. We

leave these interesting problems in future study.
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5.0 DISCUSSION AND FUTURE WORKS

5.1 DISCUSSION

The first and second papers proposed Bayesian hierarchical models for the meta-analysis

of transcriptomic data to identify important differentially expressed genes. The Bayesian

approach is preferred for its flexibility in constructing hierarchical model to share the infor-

mation (in our case, multiple transcriptomic studies and multiple genes) and incorporating

prior knowledge and its easiness in computation and parameter estimation (via MCMC sam-

pling). We expect increasing Bayesian applications in omics data integration (combine ex-

perimental data, prior biological knowledge, external biological databases and clinical data)

in the near future. In addition, our cross-platform Bayesian model can be readily modified to

meta-analyze epigenomic studies using methyl-seq and methylation array platforms as well.

The third paper proposed a general framework and a novel two-step screening procedure

for the feature selection in high dimension regression analysis with multiple omics studies.

The regression problem when we have multiple studies has already been considered in “multi-

task learning”, a subfield of machine learning, however, our approach is the first to apply

screening method to such setting. Moreover, the two-step procedure proposed was more

beneficial than the naive one-step procedure or the rank-based SIS for its capability in

reducing the serious false negative errors.

93



5.2 EXTENSION OF THE SCREENING PROCEDURE TO NON-LINEAR

CASE

(Zhu et al., 2011) and (Li et al., 2012) proposed more robust and model-free marginal mea-

sures in place of the Pearson correlation for feature screening and ranking when the linearity

assumption is not met. (Li et al., 2017) extended the PC simple algorithm (Bühlmann et al.,

2010) to a wider family of elliptical linear regression models for robustness. (Li et al., 2017)

proposed several marginal measures for sure screening in quantile regression. We can also

generalize our procedure to accommodate a wide variety of commonly used parametric and

semiparametric models (e.g. survival model) by modifying our marginal measure. Such

methods will be likely to have more applications in the biomedical field.
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APPENDIX A

APPENDIX FOR “BAYESMETASEQ”

A.1 PARAMETER ESTIMATION BY GIBBS SAMPLING AND THE

METROPOLIS-HASTINGS ALGORITHM

In this section, we described the detailed updating conditional distributions or algorithms if

there were no closed form conditional distributions for some parameters. The full conditional

posterior is as follows:

P (−|Ygik, Tik, Xik) ∝ P (Ygik|αgk, βgk, φgk)×

f(αgk|ηg, τ 2
k , r)f(βgk|λg, δgk, σ2

k, ρ)f(φgk|mg, ξ
2
k, t)

f(ηg|N(µη, σ
2
η))(1/τ

2
k )f(r|InvWishart(I,K + 1))

f(λg|N(µλ, σ
2
λ))(1/σ

2
k)f(ρ|InvWishart(I,K + 1))

f(mg|N(µm, σ
2
m))(1/ξ2

k)f(t|InvWishart(I,K + 1))

f(δgk|πgk)f(πgk|θ, cg)f(θ|G0)f(cg|p)f(p|a, C). (A.1.1)

To update each parameter, we simply integrate out the rest from the above.

Step 1

Gibbs sampling is used to update αgk, βgk. The two sets of parameters would be updated for

each gene in each study, for simplicity, I will drop the suffix g and k here. The posterior distri-

butions of these two parameters have closed form conditioning on the supporting parameter

95



ω from the Polya-Gamma (PG) distribution. Following Polson et al. (2013), ω ∼ PG(b, c)

is an infinite convolution of gamma distributions defined as:

ω
D
=

1

2π2

∞∑
k=1

gk

k − 1/22 + c2/(4π2)
.

where each gk ∼ Gamma(b, 1) is an independent gamma random variable with b > 0, c ∈ <,

and
D
= denotes equality in distribution.

The PG distribution has two important properties. Firstly, if ω ∼ PG(b, 0), then by Laplace

transform, we would have E{exp(−ωt)} = cosh−b(
√
t/2), where cosh(x) = ex+e−x

2
. Let

ω ∼ PG(y+φ−1, 0), the negative binomial likelihood in terms of proportion p and dispersion

φ can thus be expressed as:

L(p, φ) ∝ py(1− p)φ
−1

=
[exp(Ψ)]y

[1 + exp(Ψ)]y+φ−1 =
2−(y+φ−1) exp( (y−φ−1)Ψ

2
)

coshy+φ−1(Ψ
2

)

∝ exp(
(y − φ−1)Ψ

2
)Eω{exp(−ωΨ2

2
)}. (A.1.2)

In other words, conditioning on ω, the above will end up with some negative quadratic form

of Ψ (see equation 2.2.3 in the main text) within the exponential. Thus, the normal prior on

Ψ would be a conjugate prior conditioning on ω. Let’s go back to equation 2.2.3 in the main

text, assume B = (α, β)T and Zi = (1, Xi)
T , then conditioning on known ωi’s, we know the

likelihood of B is equal to:

L(B) ∝
N∏
i=1

exp{−ωi
2

(ZT
i B − (

yi − φ−1

2ωi
− log Ti))

2

}. (A.1.3)

Let Ω = diag(ω1, . . . , ωn) and ui = yi−φ−1

2ωi
− log Ti, U = (u1, . . . , un)T , and we have the prior

B ∼ N(c,C), where c = (η, λδ)T ,C = diag(τ 2, σ2), so the conditional posterior we used to

update B would be:

(B|−) ∼ N(m,V ), where V = (ZΩZT + C−1)
−1
,m = V (ZΩU + C−1c). (A.1.4)

Another important property of PG distribution is that any PG(b, c) random variable ω has

the following pdf (where the expectation in the denominator is taken w.r.t. PG(b, 0)):

p(ω|b, c) =
exp(− c2

2
ω)p(ω|b, 0)

Eω{exp(− c2

2
ω)}
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In other words, the posterior distribution of ω ∼ PG(b, 0) given c still belongs to the PG

class (in our case, b = y + φ−1, c = Ψ):

P (ω|Ψ) ∝ exp(−ωΨ2

2
)PG(y + φ−1, 0) ∝ PG(y + φ−1,Ψ). (A.1.5)

We can update each ωi based on the above distribution using Gibbs sampling.

Step 2

For φg, since no closed form posterior distribution is available, we used Metropolis Hasting

(MH) algorithm to update φg for all studies together. For each g, we proposed a new vector

log(~φnew) = (log(φ1), . . . , log(φK))T from some jump distribution NK(log(~φold),Π). The

proposal is accepted with probability min(1, r), where r is the acceptance ratio:

r =
NK(log ~φgnew;mg,Π)

∏K
k=1

∏I(k)
i=1 NB(ygik; log Tik + αgk + βgkXik, φgknew)

NK(log ~φgold;mg,Π)
∏K

k=1

∏I(k)
i=1 NB(ygik; log Tik + αgk + βgkXik, φgkold)

. (A.1.6)

If the proposal is accepted, we replace the old log(~φ) with the new one, otherwise, we keep

the current value of log(~φ).

Step 3

We used Gibbs sampling to update λg, ηg,mg based on their full conditional Gaussian dis-

tributions as follows:

(λg|−) ∼ NK(λµ,Σλ), where Σλ = (diag(1/(σ2
λ)) +KΣ−1)

−1
,

λµ = Σλ(diag(1/(σ2
λ))~µλ +KΣ−1~βg)

(ηg|−) ∼ NK(ηµ,Ση), where Ση = (diag(1/(σ2
η)) +KΛ−1)

−1
,

ηµ = Ση(diag(1/(σ2
η))~µη +KΛ−1~αg)

(mg|−) ∼ NK(mµ,Σm),Σm = (diag(1/(σ2
m)) +KΠ−1)

−1
,

mµ = Σm(diag(1/(σ2
m))~µm +KΠ−1 log ~φg)

(A.1.7)

To update λg, we will only use those βgk for which δgk = 1, if ~δg = ~0, we would redraw from

its prior N(µλ, σ
2
λ). Since we only need one value for each of the above parameters in every

iteration, we took the average of each result.
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Step 4

The full conditional for [σ2
(1),k]

K

1
, [σ2

(0),k]
K

1
, [τ 2

k]
K
1 and [ξ2k]

K
1 have closed forms and are

updated using Gibbs sampling for each k:

σ2
(1),k ∼ InvGamma(

∑G
g=1 δgk

2
,
1

2

G∑
g=1

δgk(βgk − λg)2)

σ2
(0),k ∼ InvGamma(

∑G
g=1(1− δgk)

2
,
1

2

G∑
g=1

(1− δgk)(β2
gk))

τ 2
k ∼ InvGamma(

G

2
,
1

2

G∑
g=1

(αgk − ηg)2)

ξ2
k ∼ InvGamma(

G

2
,
1

2

G∑
g=1

(log φgk −mg)
2)

(A.1.8)

Step 5

The full conditional for [ρ(1)kk′ ]
K

1
, [ρ(0)kk′ ]

K

1
, [rkk′ ]

K
1 , [tkk′ ]

K
1 have closed forms and are updated

using Gibbs sampling:

For ~δg 6= 0 , [ρ(1)kk′ ]
K

1
∼ InvWishart(Ψ = I +

K∑
k=1

(β̄k − λ̄)(β̄k − λ̄)
T
, v = 2K + 1)

For ~δg = 0 , [ρ(0)kk′ ]
K

1
∼ InvWishart(Ψ = I +

K∑
k=1

(β̄k)(β̄k)
T
, v = 2K + 1)

[rkk′ ]
K
1 ∼ InvWishart(Ψ = I +

K∑
k=1

(ᾱk − η̄)(ᾱk − η̄)T , v = 2K + 1)

[tkk′ ]
K
1 ∼ InvWishart(Ψ = I +

K∑
k=1

(log φ̄k − m̄)(log φ̄k − m̄)
T
, v = 2K + 1)

(A.1.9)

where the average is taken over all genes for βk, λ, αk, η, log φk and m. After drawing a new

covariance matrix from the above posterior, the actual correlation matrix can be obtained

by integrating out the variance components.

Step 6

Since the support for βgk depends on the choice of δgk, we update (δgk, βgk) together for

each g and k. Specifically, a new value δnewgk = 1 − δoldgk is proposed, and we then generate
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βnewgk from the posterior in Step 1 based on δnewgk . The proposal is accepted with probability

min(1, r), where r is the acceptance ratio:

r =
N(βnewgk ; δnewgk λg, σ

2)
∏I(k)

i=1 NB(ygik; log Tik + αgk + βnewgk Xik, φgk)

N(βoldgk ; δoldgk λg, σ
2)
∏I(k)

i=1 NB(ygik; log Tik + αgk + βoldgk Xik, φgk)
(A.1.10)

We accept or reject the proposed values jointly from the above.

Step 7

Lastly, upon obtaining the updates of δgk, we can estimate πgk for every 20 chains, and we

transform it into zgk through the steps described in Section 2.3.2. Based on the vector ~zg,

we can update the cluster assignment cg for each gene by Gibbs sampling using the following

conditional probabilities:

If c = ch for some h 6= g : P (cg = c|c−g, ~zg) = b
nc

G− 1 + a

∫
F (~zg, θc)dH−g,c(θc)

P (cg 6= ch for all h 6= g|c−g, ~zg) = b
a

G− 1 + a

∫
F (~zg, θ)dG0(θ)

where H−g,c is the posterior distribution of θc based on the prior G0 and all observations ~zh

for which h 6= g and ch = c, nc is the cluster size of cluster c, b is the normalizing constant

to make the probability sum to 1. More specifically,
∫
F (~zg, θc)dH−g,c(θc) = f(~zg;NK(µK =

nc
nc+1

~̄zh,Σ = diag(nc+2
nc+1

, K)),
∫
F (zg, θ)dG0(θ) = f(~zg;NK(µK = 0K ,Σ = diag(2, K)).

A.2 SUPPLEMENTAL FIGURES AND TABLES
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Table 12: Comparison of parameters estimates by BayesMetaSeq with their true values from

Simulation IA, K=2

Parameters True values Posterior mean (SE)

β0 0 -0.01 (0.42)

β+
1 (0.8,2) 1.21 (0.50)

β−1 (-2,-0.8) -1.25 (0.59)

αhigh (-8.5,-4.5) -7.06 (1.32)

αlow (-11,-9) -11.17 (0.84)

Table 13: Sensitivity analysis on hyperparameter µη

Value of µη αhigh Posterior mean (SE) αlow Posterior mean (SE)

0 -7.06 (1.32) -11.17 (0.84)

-3 -7.05 (1.31) -11.11 (0.79)

-5 -7.03 (1.31) -11.10 (0.78)

-7 -7.04 (1.31) -11.11 (0.78)
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Figure 14: Traceplots of selected parameters from Simulation IA.
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Figure 15: Venn Diagram of number of overlapping DE genes (FDR < 0.1) among the three

methods applied in real data
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Table 14: Normalized counts (rounded) for the three genes shown in Table 2.

Gene Study HIV strain Normal strain

Mir212 HIP (0,0,1,1,1,1,2,2,3,4,4,6) (2,2,3,3,3,3,4,4,4,5,6,7)
STR (1,1,1,1,2,2,3,3,3,3,3,4) (0,1,1,2,2,4,4,4,7,9,11,13)
PFC (0,1,1,1,2,2,3,3,4,5,6,7) (0,1,2,4,5,6,6,6,7,7,8,9)

Mir384 HIP (0,1,1,1,1,1,1,2,2,3,3,3) (0,1,1,2,2,2,3,4,4,5,5,5)
STR (0,0,0,1,1,2,2,2,3,5,6,8) (0,0,1,1,1,2,2,2,3,3,5,5)
PFC (1,1,1,1,1,1,2,2,3,3,4,4) (2,2,3,3,4,4,5,5,7,7,7,7)

Alb HIP (3,4,4,4,5,5,5,6,6,8,13,41) (1,2,2,2,2,2,3,3,3,3,4,8)
STR (0,3,3,4,4,4,8,11,14,18,20,21) (1,1,2,3,3,4,7,8,11,12,13,26)
PFC (10,13,14,14,14,14,15,15,16,19,37,60) (5,8,8,9,9,9,10,11,14,14,15,19)
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Figure 16: Distribution of normalized counts for the three genes shown in Table 2.

Left: HIV strain; Right: Normal strain. The values above the boxplots correspond to 

the respective p-values or posterior means from edgeR/DESeq/BayesMetaSeq, with stars 

indicating the significance (e.g. p-value ≤0.1 or E(δgk|D) ≥ 0.8).
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Table 15: List of significant IPA pathways (p-value < 0.05) from Cluster 1-4 in Figure 6.

Cluster Pathway Name p-value logOR
Cluster 1 Role of Pattern Recognition Receptors in Recogni-

tion of Bacteria and Viruses
0.003 3.79

Role of JAK1, JAK2 and TYK2 in Interferon Sig-
naling

0.017 4.67

Allograft Rejection Signaling 0.023 4.33
Autoimmune Thyroid Disease Signaling 0.023 4.33
OX40 Signaling Pathway 0.030 4.08
Role of RIG1-like Receptors in Antiviral Innate Im-
munity

0.031 4.03

Interferon Signaling 0.033 3.98
Activation of IRF by Cytosolic Pattern Recognition
Receptors

0.046 3.60

Cluster 2 PI3K Signaling in B Lymphocytes 0.002 3.11
G-Protein Coupled Receptor Signaling 0.002 2.55
Protein Kinase A Signaling 0.003 2.45
ERK/MAPK Signaling 0.005 2.72
cAMP-mediated signaling 0.010 2.44
Acute Phase Response Signaling 0.043 2.31

Cluster 3 Maturity Onset Diabetes of Young (MODY) Signal-
ing

0.014 4.85

Acyl-CoA Hydrolysis 0.016 4.67
Stearate Biosynthesis I (Animals) 0.039 3.69
Complement System 0.042 3.63

Cluster 4 Catecholamine Biosynthesis 0.008 5.99
Adenine and Adenosine Salvage III 0.008 5.99
Serotonin and Melatonin Biosynthesis 0.020 4.60
Sphingomyelin Metabolism 0.020 4.60
Adenine and Adenosine Salvage II 0.023 4.38
Purine Nucleotides Degradation II (Aerobic) 0.035 3.91
Tryptophan Degradation X (Mammalian, via
Tryptamine)

0.046 3.59

Primary Immunodeficiency Signaling 0.050 3.50
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Table 16: List of significant IPA pathways (p-value < 0.05) from Cluster 5-7 in Figure 6.

Cluster Pathway Name p-value logOR
Cluster 5 Regulation of the Epithelial-Mesenchymal Transition

Pathway
7e-4 2.51

Dendritic Cell Maturation 0.003 2.44
Intrinsic Prothrombin Activation Pathway 0.003 3.77
IL-4 Signaling 0.004 2.81
Wnt/β-catenin Signaling 0.004 2.34
Fc Epsilon RI Signaling 0.006 2.63
Atherosclerosis Signaling 0.006 2.63
Role of NANOG in Mammalian Embryonic Stem
Cell Pluripotency

0.010 2.44

Gα12/13 Signaling 0.010 2.44
Human Embryonic Stem Cell Pluripotency 0.018 2.19
Docosahexaenoic Acid (DHA) Signaling 0.018 2.78
CTLA4 Signaling in Cytotoxic T Lymphocytes 0.020 2.74
Melanoma Signaling 0.021 2.71
Role of JAK1 and JAK3 in Cytokine Signaling 0.024 2.64
Virus Entry via Endocytic Pathways 0.026 2.58
IL-15 Signaling 0.028 2.55
Endometrial Cancer Signaling 0.029 2.52

Cluster 6 Role of Cytokines in Mediating Communication be-
tween Immune Cells

0.008 5.48

Altered T Cell and B Cell Signaling in Rheumatoid
Arthritis

0.029 4.16

Cluster 7 Serotonin Receptor Signaling 0.034 3.71
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APPENDIX B

APPENDIX FOR “CBM”

B.1 SAMPLE THE POSTERIOR DISTRIBUTION BY MCMC

In this section, we described the detailed updating functions and algorithms in MCMC for

the 12 groups of parameters in our model. We use both the Metropolis-Hastings (MH)

algorithm (Metropolis et al., 1953; Hastings, 1970) as well as the Gibbs sampling algorithm

(Geman and Geman, 1984) to infer the posterior distribution of the parameters depending

on whether closed form conditional distributions exist:

1. The full conditional of αgk and βgk for Ψk = 1 (i.e. RNA-seq) are bivariate normal with

known ~ωgk. We use Gibbs sampling to update them sequentially for each gene g in study

k (subscript omitted for simplicity):

(B|−) ∼ N(m,V ), with V = (ZΩZT + C−1)
−1
,m = V (ZΩU + C−1c).

where Zi = (1, Xi)
T , Ω = diag(ω1, . . . , ωn), c = (µα, λδ)

T , C = diag(σ2
α, σ

2), U =

(u1, . . . , un)T and ui = yi−φ−1

2ωi
− log Ti.

2. The full conditional of ~ωgk is Polya-Gamma distribution with known αgk, βgk and log(φgk)

(Polson et al., 2013; Zhou et al., 2012b). We use Gibbs sampling to update each ωi:

P (ω|Φ) ∝ exp(−ωΦ2

2
)PG(y + φ−1, 0) ∝ PG(y + φ−1,Φ).

where Φi = log(Ti) + α + βXi + log(φ).
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3. The full conditional of βgk for Ψk = 0 (i.e. microarray) is Gaussian distribution for each

gene g in each study k:

(βgk|−) ∼ N(

(λgδgk)/σ
2
k +

Nk∑
i=1

(Xikygik − agk)/τ 2
gk

1/σ2
k +

Nk∑
i=1

Xik/τ 2
gk

; (1/σ2
k +

Nk∑
i=1

Xik/τ
2
gk)
−1)

4. The full conditional of agk is Gaussian distribution for each gene g in each study k:

(agk|−) ∼ N(

µa/σ
2
a +

Nk∑
i=1

(ygik −Xikβgk)/τ
2
gk

1/σ2
a +Nk/τ 2

gk

; (1/σ2
a +Nk/τ

2
gk)
−1)

5. If ~δg 6= ~0, we use Metropolis Hasting (MH) algorithm to update λg. For each g, we

proposed a new λnew from a jump distribution N(λold, σ
2
λ). The proposal is accepted

with probability min(1, r), where r is the acceptance ratio:

r =
N(λnew;µλ, σ

2
λ)NK( ~β + fk; ~λnewδk, diag(σ2

(1),k))

N(λold;µλ, σ2
λ)NK( ~β + fk; ~λoldδk, diag(σ2

(1),k))
.

where the normalization factor fk is included in this step to adjust for the difference in

effect size across studies. If the proposal is accepted, we replace λold with λnew, otherwise,

we keep the current value of λold. If ~δg = ~0, we will redraw from its prior N(µλ, σ
2
λ).

6. For φgk, since no closed form posterior distribution is available, we use Metropolis Hasting

(MH) algorithm to update. For each g and k, we proposed a new log(φnew) from a jump

distribution N(log(φold), σ
2
m). The proposal is accepted with probability min(1, r), where

r is the acceptance ratio:

r =
N(log(φnew);m,κ2)

∏N
i=1 NB(yi; log Ti + α + βXi, φnew)

N(log(φold);m,κ2)
∏N

i=1 NB(yi; log Ti + α + βXi, φold)
.

If the proposal is accepted, we replace log(φold) with log(φnew), otherwise, we keep the

current value of log(φold).
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7. We update mk and κ2
k for each k from the following distributions:

(mk|−) ∼ N(

µm/σ
2
m +

G∑
g=1

log(φg)/κ
2
k

1/σ2
m +G/κ2

k

; (1/σ2
m +G/κ2

k)
−1);

(κ2
k|−) ∼ InvGamma(

G

2
;
1

2

G∑
g=1

(log(φg)−mk)
2)

8. We update σ2
(1),k (for those genes with ~δg 6= ~0) and σ2

(0),k (for those genes with ~δg = ~0)

for each k from the following distributions:

σ2
(1),k ∼ InvGamma(

∑G
g=1 δgk

2
,
1

2

G∑
g=1

δgk(βgk − λg)2)

σ2
(0),k ∼ InvGamma(

∑G
g=1(1− δgk)

2
,
1

2

G∑
g=1

(1− δgk)(β2
gk))

9. We update τ 2
gk for each g and k (for Ψk = 0) from the following distribution:

τ 2
gk ∼ InvGamma(

Nk

2
,
1

2

Nk∑
i=1

(ygik − agk − bgkXik)
2)

10. To update δgk, we apply the MH algorithm. We propose a new value of δgk from the

Bernoulli distribution with P (δnewgk = 1) = πk. If δnewgk = δoldgk , we just keep the same

value. If δnewgk 6= δoldgk , we define the ratio of the two posterior density functions as r and

accept the new proposed value δnewgk with probability min[1, r] (here we suppose δnewgk = 1,

similar r can be derived for δnewgk = 0):

r =
N(βgk;λg, σ

2
(1),k)

N(βgk; 0, σ2
(0),k)

If the proposal is accepted, we replace δoldgk with δnewgk , otherwise, we keep the current

value of δoldgk .

11. Lastly, we update πk from Dir(1 +
∑
g

δgk, 1 +
∑
g

(1− δgk)) and take the first element.

For both simulation and real data, we ran 10,000 MCMC iterations, the first 3,000 iterations

were dropped as burn-in period in all analysis. The remaining 7,000 of 10,000 iterations are

used for inference.
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B.2 SIMULATION RESULTS: ROC AND PR CURVES
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Figure 17: ROC Curve (left) and PR Curve (right) comparison of different methods.

The AUC or partial AUC values are attached to each plot.
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B.3 DESCRIPTION OF ILC DATASETS

Table 17: Overview of ILC datasets used in the application

Study Platform Stage sample
size

PR sample size Reference

(early/late) (PR+/PR-)

TCGA BRCA RNA-seq
(Illumina)

69 (16/53) 162 (144/18) Network et al. (2012)

METABRIC microarray
(Illumina)

57 (50/7) 130 (80/50) Curtis et al. (2012)

Sotiriou microarray
(Affymetrix)

57 (29/28) 130 (93/37) Metzger-Filho et al. (2013)

GSE2109,
GSE21653,
GSE5460,
GSE5764

microarray
(Affymetrix)

15 (5/10) 43 (33/10) Sabatier et al. (2011); Lu
et al. (2008); Turashvili
et al. (2007)
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APPENDIX C

APPENDIX FOR “TSA-SIS”

C.1 PROOFS

We start by introducing three technical lemmas that are essential for the proofs of the main

results. By the scaling property of T̂
(k)
j and Remark 1, without loss of generality, we can

assume E(X
(k)
j ) = E(Y (k)) = 0 and var(X

(k)
j ) = var(Y (k)) = 1 for all k ∈ [K], j ∈ [p].

Therefore in the proof we do not distinguish between σ
(k)
j and ρ

(k)
j . The first lemma is on

the concentration inequalities of the self-normalized covariance and θ̂
(k)
j .

Lemma 1. Under the assumptions (C1) and (C2), for any δ ≥ 2 and M > 0, we have:

(i) P (max
j,k
| σ̂

(k)
j −σ

(k)
j

(θ̂
(k)
j )1/2

| ≥ δ
√

log p
n

) = O((log p)−1/2p−δ+1+b),

(ii) P (max
j,k
|θ̂(k)
j − θ

(k)
j | ≥ Cθ

√
log p
n

) = O(p−M),

where Cθ is a positive constant depending on M1, η and M only.

The second and third lemmas, which will be used in the proof of Theorem 2, describe

the concentration behaviors of Ĥ
(k)
j :=

1√
n

n∑
i=1

[(X
(k)
ij −X̄

(k)
j )(Y

(k)
i −Ȳ (k))−ρ(k)j ]√

θ
(k)
j

= T̂
(k)
j

√
θ̂
(k)
j

θ
(k)
j

−
√
nρ

(k)
j√

θ
(k)
j

and Ȟ
(k)
j :=

1√
n

n∑
i=1

(X
(k)
ij Y

(k)
i −ρ(k)j )√

θ
(k)
j

.

Lemma 2. There exists some constant c > 0 such that,

P (|
∑
k∈lj

[Ȟ
(k)2
j − 1]| > t) ≤ 2 exp(−cmin[

t2

κj
, t1/2]),

where c depends on M1 and η only.
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Lemma 3. There exists some constant CH > 0 such that,

P (max
j,k
|Ȟ(k)

j − Ĥ
(k)
j | > CH

√
log2 p

n
) = O(p−M),

P (max
j,k
|Ȟ(k)2

j − Ĥ(k)2
j | > CH

√
log3 p

n
) = O(p−M),

where CH depends on M1, η, M and τ0 only.

The proofs of the three lemmas are provided in the supplemental materials.

Proof of Theorem 1. We first define the following error events:

EI,A[0]

j,k = {|T̂ (k)
j | > Φ−1(1− α1/2) and j ∈ A[0], k ∈ lj},

EII,A[0]

j,k = {|T̂ (k)
j | ≤ Φ−1(1− α1/2) and j ∈ A[0], k /∈ lj},

EI,A[1]

j,k = {|T̂ (k)
j | > Φ−1(1− α1/2) and j ∈ A[1], k ∈ lj},

EII,A[1]

j,k = {|T̂ (k)
j | ≤ Φ−1(1− α1/2) and j ∈ A[1], k /∈ lj}.

To show Theorem 1 that P (A) = 1−O(p−L), it suffices to show that,

P{
⋃
j,k

(EI,A[0]

j,k ∪ EII,A[0]

j,k )} = O(p−L), (C.1.1)

and

P{
⋃
j,k

(EI,A[1]

j,k ∪ EII,A[1]

j,k )} = O(p−L). (C.1.2)

One can apply Lemma 1 to bound each component in (C.1.1) and (C.1.2) with α1 = 2{1−

Φ(γ
√

log p)} and γ = 2(L+ 1 + b). Specifically, we obtain that,

P (
⋃
j,k

EI,A[0]

j,k ) = P ( max
j∈A[0],k∈lj

|T̂ (k)
j | ≥ γ

√
log p) = O(

1√
log p

p−γ+1+b) = o(p−L), (C.1.3)
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where the second equality is due to Lemma 1 (i) with δ = γ, noting that σ
(k)
j = 0 and

T̂
(k)
j =

√
nσ̂

(k)
j /

√
θ̂

(k)
j . In addition, we have that,

P (
⋃
j,k

EI,A[1]

j,k ) =P{ max
j∈A[1],k∈lj

|T̂ (k)
j | ≥ γ

√
log p}

≤P ( max
j∈A[1],k∈lj

|
σ̂

(k)
j − ρ

(k)
j

(θ̂
(k)
j )1/2

| ≥ (γ − C1)

√
log p

n
) +O(p−L)

=O(
1√

log p
p−(γ−C1)+1+b) +O(p−L)

=O(p−L),

(C.1.4)

where the inequality on the second line is due to assumption (C4) on lj for j ∈ A[1], Lemma

1 (ii) with M = L, and assumption (C1) minj,k θ
(k)
j ≥ τ0, i.e., θ̂

(k)
j ≥ θ

(k)
j − Cθ(log p/n)1/2 ≥

0.99θ
(k)
j . The equality on the third line follows from Lemma 1 (i) where δ = γ−C1 = L+1+b.

In the end, we obtain that,

P{
⋃
j,k

(EII,A[0]

j,k ∪ EII,A[1]

j,k )} =P (max
j,k/∈lj

|T̂ (k)
j | < γ

√
log p)

≤P (max
j,k/∈lj

|
σ̂

(k)
j − ρ

(k)
j

(θ̂
(k)
j )1/2

| ≥ (C3 − γ)

√
log p

n
) +O(p−L)

=O(
1√

log p
p−(C3−γ)+1+b) +O(p−L)

=O(p−L),

(C.1.5)

where the inequality on the second line is due to assumptions (C3) and (C4) on lj, Lemma

1 (ii) with M = L and assumption (C1) on sub-Gaussian distributions, i.e., θ̂
(k)
j ≤ θ

(k)
j +

Cθ(log p/n)1/2 ≤ 1.01θ
(k)
j . In particular, we have implicitly used the fact that maxj,l θ

(k)
j is

upper bounded by a constant depending on M1 and η only. The equality on the third line

follows from Lemma 1 (i) where δ = C3 − γ = L+ 1 + b.

Finally, we complete the proof by combining (C.1.3)-(C.1.5) to show (C.1.1)-(C.1.2).
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Proof of Theorem 2. We first define the following error events:

EA
[0],2

j = {|L̂j| > ϕ−1(1− α2) or κ̂j = 0} for j ∈ A[0],

EA
[1],2

j = {|L̂j| < ϕ−1(1− α2) and κ̂j 6= 0} for j ∈ A[1].

To prove Theorem 2, we only need to show that,

P (
⋃

j∈A[0]

EA
[0],2

j ) = O(p−L) and P (
⋃

j∈A[1]

EA
[1],2

j ) = O(p−L), (C.1.6)

with α2,κj := 1− ϕκj [κj + C4(log2 p+
√
κj log p)] := 1− ϕκj(γκj).

Recall the event A defined in Theorem 1. Thus we have that,

P{(∪j∈A[0]E
A[0],2
j )

⋃
(∪j∈A[1]E

A[1],2
j )}

≤P (AC) + p max
j∈A[0]

P (
∑
k∈lj

T̂
(k)2
j > γκj) + p max

j∈A[1],κj 6=0
P (

∑
k∈lj

T̂ (k)2 < γκj).

Therefore, given the results in Theorem 1, it suffices to show,

P (
∑
k∈lj

T̂ (k)2 > γκj) = O(p−L−1) for any j ∈ A[0], (C.1.7)

and

P (
∑
k∈lj

T̂ (k)2 < γκj) = O(p−L−1) for any j ∈ A[1] and κj > 0. (C.1.8)
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We first prove equation (C.1.7). Since j ∈ A[0], we have Ĥ
(k)
j = T̂

(k)
j

√
θ̂
(k)
j

θ
(k)
j

. We are ready

to bound the probability of
∑

k∈lj T̂
(k)2
j > γκj below.

P (
∑
k∈lj

T̂
(k)2
j > γκj)

≤P (
∑
k∈lj

Ĥ
(k)2
j > (1− Cθ

τ0

√
log p

n
)γκj) +O(p−L−1)

≤P (
∑
k∈lj

(Ȟ
(k)2
j − 1) > (1− Cθ

τ0

√
log p

n
)γκj − κj − κjCH

√
log3 p

n
) +O(p−L−1)

=P (
∑
k∈lj

(Ȟ
(k)2
j − 1) > κj + C4(log2 p+

√
κj log p)− Cθ

τ0

√
κ2
j log p

n

− CθC4

τ0

(

√
log5 p

n
+

√
κj log2 p

n
)− κj − κjCH

√
log3 p

n
) +O(p−L−1)

≤P (
∑
k∈lj

(Ȟ
(k)2
j − 1) > C ′2(log2 p+

√
κj log p)) +O(p−L−1)

=O(p−L−1).

The inequality on the second line is due to assumption (C1) that min
j,k

θ
(k)
j ≥ τ0 > 0 and

Lemma 1 (ii) with M = L+ 1. The inequality on the third line follows from Lemma 3 with

M = L + 1. The inequality on the fifth line is by the choice of γκj with a sufficiently large

C4 > 0 and the assumption (C2) that log3 p = o(n) and κj log2 p = o(n). The last equality

follows from Lemma 2.
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Lastly, we prove (C.1.8) as follows,

P (
∑
k∈lj

T̂
(k)2
j < γκj)

=P (
∑
k∈lj

(Ĥ
(k)
j +

√
nρ

(k)
j√

θ
(k)
j

)2
θ

(k)
j

θ̂
(k)
j

< γκj)

≤P (
∑
k∈lj

(Ĥ
(k)
j +

√
nρ

(k)
j√

θ
(k)
j

)2 ≤ (1 +
Cθ
τ0

√
log p

n
)γκj) +O(p−L−1)

≤P (
∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ κjCH

√
log3 p

n
− κj + (1 +

Cθ
τ0

√
log p

n
)γκj − Cmn

∑
k∈lj

ρ
(k)2
j

− 2
∑
k∈lj

Ȟ
(k)
j

√
nρ

(k)
j√

θ
(k)
j

+ 2CH

√
log2 p

n

∑
k∈lj

√
n|ρ(k)

j |√
θ

(k)
j

) +O(p−L−1).

(C.1.9)

The inequality on the third line is due to assumption (C1) that min
j,k

θ
(k)
j ≥ τ0 > 0 and

Lemma 1 (ii) with M = L + 1. The inequality on the fourth line follows from Lemma 3

(both equations) and min
j,k

(θ
(k)
j )−1 := Cm > 0, guaranteed by the sub-Gaussian assumption

in assumption (C1).

We can upper bound the term 2CH

√
log2 p
n

∑
k∈lj

√
n|ρ(k)j |√
θ
(k)
j

in (C.1.9) as follow,

2CH

√
log2 p

n

∑
k∈lj

√
n|ρ(k)

j |√
θ

(k)
j

≤ 2CH

√
log2 p

n

√
n
√
τ0

√
κj

√∑
k∈lj

ρ
(k)2
j = o(

√
n
∑
k∈lj

ρ
(k)2
j ). (C.1.10)

The first inequality is by the Cauchy-Schwarz inequality and assumption (C1), and the

second equality by the assumption (C2) that κj log2 p = o(n).

We next upper bound the term −2
∑

k∈lj Ȟ
(k)
j

√
nρ

(k)
j√

θ
(k)
j

with high probability. Note that

θ
(k)
j is bounded below and above, i.e., τ0 ≤ θ

(k)
j ≤ C−1

m by assumption (C1). In addition,

Ȟ
(k)
j has zero mean and is sub-exponential with bounded constants by assumption (C1). By

Bernstein inequality (Proposition 5.16 in Vershynin (2010)), we have with some constant

c′ > 0,

P (|2
∑
k∈lj

|Ȟ(k)
j

√
n|ρ(k)

j |√
θ

(k)
j

| > t) ≤ 2 exp(−c′min[
t2

n
∑
k∈lj

ρ
(k)2
j

],
t

max
k∈lj

√
n|ρ(k)

j |
).
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We pick t = CB

√
n
∑

k∈lj ρ
(k)2
j log2 p with a large constant CB in the inequality above and

apply (C.1.10) to reduce (C.1.9) as follows,

P (
∑
k∈lj

T̂
(k)2
j < γκj)

≤P (
∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ −Cmn

∑
k∈lj

ρ
(k)2
j + 2CB

√
n
∑
k∈lj

ρ
(k)2
j log2 p

+ 2C4

√
κj log p+ 2C4 log2 p) +O(p−L−1)

≤P (
∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ −CmC2(log2 p+

√
κj log p) + 2CB

√
C2 log2 p(log2 p+

√
κj log p)

+ 2C4

√
κj log p+ 2C4 log2 p) +O(p−L−1)

≤P (
∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ −C ′2(log2 p+

√
κj log p)) +O(p−L−1)

=O(p−L−1).

The inequality on the first line is obtained by the choice of γκj with the chosen C4 > 0

and the assumption (C2) that κj log2 p = o(n). The inequalities on the second line and third

line are by the assumption (C4) that
∑

k∈lj |ρ
(k)
j |2 ≥

C2(log2 p+
√
κj log p)

n
for a sufficiently large

C2 > 0. The last equality is by Lemma 2.

This completes the proof of (C.1.7) and (C.1.8), which further yields to

P{(∪j∈A[0]E
A[0],2
j )

⋃
(∪j∈A[1]E

A[1],2
j )} = O(p−L),

with the results from Theorem 1. Therefore we complete the proof of Theorem 2.
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