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Abstract

Combustion devices are prone to combustion instabilities. Classically, they arise from a
constructive coupling between the unsteady heat release rate of the flame and the resonant
acoustic modes of the entire system. The occurrence of such instabilities can pose a threat
to both performance and integrity of combustion systems. Although these phenomena have
been known for more than a century, avoiding their appearance in industrial engines is still
challenging.

The objective of this thesis is threefold: (1) study the dynamics of the resonant acoustic
modes, (2) investigate the flame response of a liquid rocket engine under unstable con-
ditions using Large Eddy Simulation (LES) and (3) derive, use and study Time Domain
Impedance Boundary Conditions (TDIBCs), i.e. boundary conditions modeling complex
acoustic impedances.

First, a new method for the study of the dynamics of the entire acoustic field from a few
pressure probes is derived and used to analyze the acoustic field of a 42-flame liquid rocket
engine exhibiting transverse combustion instabilities. The results show that it can track the
evolution of each of the unstable acoustic modes in time and reconstruct the entire acoustic
pressure and velocity fields with good precision.

Second, a study of the individual flame response to transverse acoustic modes of a 42-
injector H2/O2 liquid rocket engine is performed from time-resolved 3D LES results. For
both considered modes, the results show that the flame response is maximum at the pressure
antinodes in the chamber. A flame response mechanism is proposed in which the bulk
pressure variation at the injector outlet generates unsteady shear through the variation of
the hydrogen velocity, ultimately resulting in heat release rate fluctuations.

Finally, a TDIBC method is presented and a novel formulation based on the reflection
coefficient is proposed. A modeling strategy allowing to impose a time-delay to the acoustic
waves reflection is derived and applied in time domain simulations in order to account for
truncated portions of the physical domain. The results show that the time-delay is accu-
rately reproduced in both 1D and 2D reactive DNS and the boundary condition is applied
to combustion instability prediction with an excellent agreement. The proposed formal-
ism is compared to another TDIBC method based on state-space modeling and the formal
equivalence between the two approaches is demonstrated.





Résumé

Les systèmes de combustion sont sujets aux instabilités de combustion (IC). Elles résultent
d’un couplage constructif entre le taux de dégagement de chaleur instationnaire et des modes
acoustiques du système. Les IC peuvent mettre en danger la performance et l’intégrité des
systèmes de combustion. Même si ces phénomènes sont connus depuis plus d’un siècle, éviter
qu’elles aient lieux dans les chambres de combustions industrielles reste difficile.

Les objectifs de cette thèse sont les suivants : (1) étudier la dynamique des modes
acoustiques, (2) analyser la réponse de flamme d’un moteur de fusée à propergol liquide
H2/O2 (appelé “BKD”), sujet aux IC, à l’aide de la Simulation aux Grandes Echelles (SGE)
et (3) dériver, utiliser et étudier des conditions limites permettant d’imposer des impédances
acoustiques complexes en SGE.

Tout d’abord une nouvelle méthode, visant à étudier la dynamique des modes acoustiques
à partir d’un faible nombre de capteurs de pression, est proposée. Elle est utilisée afin
d’analyser le champ acoustique dans le BKD. Les résultats montrent que la méthode permet
de suivre l’évolution temporelle des modes instables et qu’il est possible de reconstruire le
champ acoustique entier avec une bonne précision.

Ensuite, une étude de la réponse de flamme aux oscillations acoustiques transverses est
réalisée pour chacune de 42 flammes du BKD en analysant une base de données provenant
de la SGE 3D résolue en temps. Pour les modes considérés, la réponse de flamme est
maximale lorsque celles-ci font face aux ventres de pression dans la chambre de combustion.
Un mécanisme de réponse de flamme est proposé dans lequel les variations de pression à la
sortie des injecteurs génèrent une fluctuation du cisaillement de la couche de mélange par
des fluctuations de vitesse dans l’injecteur d’hydrogène. A leur tour, celles-ci provoquent des
fluctuations de taux de dégagement de chaleur des flammes.

Enfin, une méthode appelée “TDIBC”, permettant d’imposer des impédances acoustiques
complexes aux conditions limites, est présentée et une nouvelle formulation basée sur le
coefficient de réflexion est proposée. Une stratégie de modélisation permettant d’imposer
un retard temporel à la réflexion d’ondes acoustiques est dérivée et appliquée dans des
simulations temporelles, afin de modéliser la propagation d’ondes dans un tronçon tronqué
du domaine physique. Les résultats montrent que le retard temporel est reproduit avec
précision dans des Simulations Numériques Directes 1D et 2D réactives. La condition limite
est appliquée à la prédiction d’IC en utilisant des domaines tronqués et l’accord avec la
simulation non-tronquée est excellent. Dans un dernier temps, le formalisme mathématique
proposé est comparé à une méthode similaire utilisant un modèle de représentation d’état et
l’équivalence formelle entre les deux approches est démontrée.
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Chapter 1

Introduction

1.1 Background

The development of clean, efficient and sustainable energy systems has become a central
challenge in our society. Today, combustion still provides 80 to 90% of the world’s energy
needs [1, 2]. Most scenarios forecast that combustion will stay predominant in our energy
usage [3]. Although combustion has been studied for decades, it is still an active field of
research motivated by the reduction of pollutant emission.

The problem stems from the fact that combustion releases pollutants into the atmosphere.
The research effort to reduce pollutant emission concentrates particularly on: (1) carbon
dioxide (CO2) and (2) nitric oxide (NO) and nitrogen dioxide (NO2) often referred to as
“NOx”. CO2 is the largest single source of greenhouse gas emissions from human activities.
Apart from being greenhouse effect gases, NOx are also considered as air pollutants as they
may cause or worsen respiratory diseases.

On one hand, the mass of CO2 emitted is given by the mass of hydrocarbon fuel burnt
in the combustion chamber. The only lever to diminish the CO2 emissions is to increase
combustion systems’ efficiency. In practice, in most combustion systems, nearly all the fuel is
burnt and the optimization of such devices focuses on the efficiency of energy conversion (e.g.
in the form of mechanical or electrical energy).

On the other hand, NOx are highly dependent of the combustion conditions. For instance,
for premixed combustion, NOx production can be minimized by lowering the flame tempera-
ture as much as possible [4]. Other air pollutants, e.g. carbon monoxide (CO), follow opposite
trends so that low flame temperature yields high emission levels.

In order to cope with pollutant emission limits imposed by the legislation, the industry
needs to develop combustion devices that can perform in a narrow operating range in the lean
combustion regime [5]: all reactants are mixed before combustion and the gas composition
is such that the oxidizer is in excess, i.e. the gaseous mixture fuel-oxidizer ratio is below
stoichiometry

One of the benefits of lean combustion is that the flame temperature reached is lower than

1
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the adiabatic flame temperature, hence reducing the NOx production. One of the drawbacks of
this combustion regime is that the systems become prone to combustion instabilities (CIs) [6].

Like combustion noise, they arise from perturbations of the heat release rate [7–10] which
in turn cause flow perturbations and sound wave emissions [11].

When the heat release rate perturbations are caused by turbulence, they are mostly inco-
herent and they radiate low-frequency broadband sound waves [12]. If there is no coherent
feedback from the combustion chamber then the sound emitted is referred to as “combustion
noise” [13].

However, in some cases the feedback from the combustion chamber becomes coherent and
the heat release rate perturbations become tuned at resonant acoustic eigenfrequencies of the
entire combustion system [14, 15]. Such a feedback loop may result in self-sustained oscilla-
tions due to the constructive coupling between the unsteady heat release rate and acoustic
perturbations. These phenomena are called CIs, or thermoacoustic instabilities. Figure 1.1
shows a burner assembly before and after the failure of the engine due to the occurrence of
CIs.

Figure 1.1: Damaged (left) and undamaged (right) burner assembly. Reproduced from [16, 17].

For high-performance engines such as liquid rocket engines (LRE), the energy density is
very high. For instance, the F-1 engine developed for the Apollo mission has a power density
of 22 GW m−3 [18]. This is to be compared with typical solid rocket engines and fighter
aircraft’s afterburner which have a power density of about 1 GW m−3 and 0.3–0.4 GW m−3,
respectively [18]. With such power densities, high performance systems are extremely prone
to combustion instabilities as only a minute fraction of the energy released by combustion (as
low as 10−4) is sufficient to cause pressure oscillations resulting in structural vibration and
thrust fluctuations large enough to endanger the integrity of the system [19].
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A famous example of this phenomenon is the aforementioned F-1 engine development
where CIs were encountered and billions of dollars were spent to find a solution to mitigate
them [20, 21]. To reach performance and stability requisites, 108 different injector designs
and 1332 full-scale hot-fire tests were necessary [20, 22].

To reduce pollutant emissions and to develop more efficient high-performance engines it
is, hence, essential to: (1) be able to predict the appearance of CIs in real combustion devices
and (2) to eliminate such instabilities when they emerge.

1.2 Prediction of combustion instabilities

CIs in real engines are still challenging to master as they generally occur in the last stages of
development and are difficult to predict [21]. CI prediction requires, on one hand, an accu-
rate prediction of reacting flows so that it relies heavily on fluid mechanics, thermodynamics,
kinetics and transport and, on the other hand, the use of many fields of physics such as, for
instance, acoustics, control theory, heat transfers and hydrodynamic stability.

It is also a multiscale problem as the typical flame thickness is of the order of 100 µm [9] and
the acoustic wavelengths to capture are typically of the order of a few meters [21]. Similarly,
the typical sound speed in burnt gases is at least 600 m s−1 and the laminar flame speed
is below 1 m s−1 [9, 10]. The acoustic power generated by the flame is key information to
predict CIs but it is challenging to precisely compute it as the power released by combustion
is generally 108 times higher [8, 23].

In this context, it is a tedious task to predict the acoustic wave/heat release rate coupling
that is essential to predict CIs.

When CIs occur, the acoustic energy in the combustion system increases so that it is at
the basis of CI prediction. The acoustic energy balance1 in a system is given by [24, 25]:

∂Ea

∂t
+∇ · F = S −D (1.1)

where Ea is the acoustic energy, F represents the net flux of acoustic energy p′u′ at the
boundaries with the acoustic pressure p′ and the acoustic velocity u′, S is the acoustic energy
source/sink term also known as the “Rayleigh” term. It corresponds to the rate of heat
addition/extraction to/from the acoustic energy and D is the acoustic energy dissipation.
The values in Eq. 1.1 are integrated over the volume of the combustion device V and time-
averaged over at least one oscillation period T .

The Rayleigh term S is:

1This formulation is simplified as many assumption are used. Here, the volume forces, the heat sources,
the change of entropy and the viscous terms are neglected. Additionally, this expression stands in the linear
acoustics framework, i.e. in the small fluctuations hypothesis. Although the relevance of this acoustic energy
balance equation on the field of combustion instabilities is questionable, it provides some insights on basic
phenomenon occurring in thermoacoustically unstable devices.
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S =
1
T

∫

V

∫

T

γ − 1
γp0

p′(t)q′(t)dvdt (1.2)

where γ is the specific heat ratio, p0 is the mean pressure and q′ is the unsteady heat release
rate. The Rayleigh criterion states that it is necessary that S > 0 for thermoacoustic insta-
bilities to occur [26, 27]. Under such conditions, a constructive coupling between the heat
release rate and acoustic waves results in an increase of acoustic energy in the system.

For purely harmonic pressure and heat release rate fluctuations the sign of S is due to the
phase shift θpq between p′ and q′:

• if 0 < θpq < π/2 the Rayleigh term S is positive so that S is an acoustic energy source
term. In this case the heat injected by the flame into the flow will amplify the acoustic
oscillations.

• if π/2 < θpq < π the Rayleigh term S is negative and S becomes an acoustic energy sink
term. The heat release rate fluctuations will damp the acoustic fluctuations.

An analogy can be made with an oscillating pendulum. When one applies a periodic forcing
on the pendulum, the timing (i.e. the phasing between the oscillations and the forcing) de-
termines whether the amplitude of the pendulum’s oscillations increase or decrease: applying
a force in the direction of the pendulum’s motion will increase the oscillations’ amplitude
while applying a force in the opposite direction of the pendulum’s motion will decrease the
oscillations’ amplitude. Here, the gas expansion due to the perturbation of heat release rate
– the forcing – performs net work on the acoustic pressure waves – the pendulum –.

The Rayleigh criterion is a necessary but insufficient condition for CIs to occur. The
acoustic energy Ea in the domain (cf. Eq. 1.1) increases if S > ∇·F +D, that is if the source
term is high enough to overcome both acoustic fluxes at the boundaries and the acoustic
dissipation [9, 28]. It follows that CI predictions in a system can be made only if one accurately
measures or models the flame/acoustic coupled contribution S, the dissipation D and the
fluxes at the boundaries F .

Three computational approaches can be used to predict CIs in real engines: (1) the brute
force approach, (2) the joint use of an acoustic solver with a flame-response model and (3)
low (or reduced) order models.

1.2.1 The brute force approach

In most combustion devices, the flow is turbulent in order to increase the heat release levels
so that turbulence modeling is essential.

The Direct Numerical Simulation (DNS) approach consists in solving the Navier-Stokes
equations on a mesh with a cell size smaller than the smallest length scale present in the flow.
For turbulent flows, the length scale is the smallest turbulent vortex.



Section 1.2: Prediction of combustion instabilities 5

DNS is known to provide detailed information on turbulent flows and turbulent flame
fronts [29–35]. Unfortunately, Kolmogorov theory states that, for a uniform mesh, the mini-
mum number of mesh points necessary to solve for the smallest turbulent length scale – called
the Kolmogorov length scale – is Re9/4

t where Ret is the turbulent Reynolds number [36–38].
From this relation, it becomes obvious that such an approach is limited to low Reynolds num-
bers and, hence, cannot be used in high-performance engines such as rocket propulsion stages
or aeroengines.

A common approach to study turbulent flows is to utilize Reynolds Averaged Navier-Stokes
(RANS). This approach focuses on mean flow field prediction and does not produce high fi-
delity prediction of the turbulent flow. Given the high level of accuracy needed to predict CIs,
this approach yields only limited results [9].

An interesting compromise can be found in the Large-Eddy Simulation (LES) approach
which main idea lies in solving the large turbulent scales – containing most of the turbulent
kinetic energy – and to use a turbulent model to account for the small scales. As LES aims
to discriminate between large and small eddies, it is naturally based on a spatial filtering
procedure. While this approach is more expensive than RANS, its added value is recognized
in the CI community as it has been used numerous times to predict the thermoacoustic
stability of real combustion devices [39–46].

However, the computational cost associated with LES is such that generally only a few
milliseconds of physical time can be computed. The use of such computations has not become
a routine yet as the determination of stability maps is out of reach. In this context, more
affordable approaches are necessary.

1.2.2 Joint use of an acoustic solver and a flame-response model

A cost-effective approach to predict CIs is the joint use of an acoustic solver and a flame-
response model [47].

The acoustic solver can be either a Helmholtz solver or a Linearized Euler Equations
solver2 (LEE) [49, 50]. The Helmholtz equation will be presented in Chapter 2. Solving for
the acoustic eigenmodes and eigenfrequencies requires a sound speed field. If the LEE is used,
a mean sound speed field is required.

The flame-response model is necessary to model the flame/acoustic coupling without solv-
ing the reacting flow field. The first flame-response model, called the n – τ model, was
proposed by Crocco [51, 52]. The central idea is to relate p′ and q′ by a gain n and a time-
delay τ . The concept was later extended by the Flame Transfer Function FTF formalism to

2The low Mach number assumption allows the use of a cost-effective Helmholtz solver. However, Nicoud
and Wieczorek [48] have shown that in some cases the mean flow effects may contribute to the disturbance
energy equation in the same proportions than the Rayleigh term (i.e. the flame reponse term)
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account for a broadband description of the flame response [53, 54] further extended to consider
nonlinear effects by the Flame Describing Function (FDF) framework [55].

Although some attempt has been made on premixed laminar flames, flame-response mod-
els for real engines (e.g. for swirled or shear coaxial turbulent flames) are virtually impossible
to derive from theoretical considerations. In practice, FTF or FDF have to be measured in
an experiment or computed using the brute force approach.

If the flame-response is properly modeled, the linear stability of the eigenmodes can be as-
sessed, hence, allowing to identify the appearance of CIs. This approach has been successfully
used by several authors [47, 56–63].

1.2.3 Low Order Models

The use of Low Order Models (LOM) – also known as Reduced Order Models (ROM) – is
another approach for thermoacoustic stability prediction of a combustion chambers. Its low
CPU cost makes it useful as a design tool so that such computations have become a routine
in the industry.

LOM in CI studies are based on the joint use of an acoustic network and a flame-response
model. The latter has already been discussed above. Acoustic networks are based on the
representation of the system as acoustic elements where only one-dimensional acoustic wave
propagates.

The use and the derivation of such models are beyond the scope of this manuscript and
the interested reader is referred to the work of several authors that have used this approach
successfully to predict CIs [64–79], or at least characterized the thermoacoustic properties of
a combustion device [80–82].
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1.3 Objective & Outline of the work

In the CI community, the research effort is directed toward a single goal: be able to predict the
occurrence of CI in any system in order to design both cleaner and more efficient combustion
devices.

The purpose of the present work, although more modest, falls within the scope of this
objective.

First of all, the methods and concepts used in this manuscript are built upon the general
equations used in thermoacoustic, which will be presented in Chapter 2. At the exception of
a few canonical cases, these equations cannot be solved analytically so that, most of the time,
numerical methods must be used to approximate their solutions. The numerical framework
will be briefly discussed.

As discussed above, the acoustic energy balance equation (cf. Eq. 1.1) is at the foundation
of CI predictions and it is therefore essential to accurately account for each of its terms. All
the chapters in Part I and Part II are related to either the study or the evaluation of these
terms.

Part I: Transverse combustion instabilities in a liquid rocket engine

In Part I a liquid rocket engine (LRE) operated at DLR Lampoldshausen (Germany) is
studied: the BKD configuration. It is a reduced-scale LRE fed by 42 shear coaxial injectors
with cryogenic H2/O2 as fuel and oxidizer. This configuration exhibits transverse CIs, i.e. the
unsteady heat release rate couples with transverse resonant acoustic modes of the combustion
chamber.

First, a novel methodology, called Instantaneous Modal Decomposition (IMD), enabling
to study and reconstruct the three-dimensional acoustic field from pressure measurements is
presented and validated on a simplified LRE configuration in Chapter 3.

In Chapter 4, the BKD configuration is presented in details and the IMD method is
then applied to pressure measurements from both the numerical simulation (LES) and the
experimental rig.

As IMD allows the reconstruction of the entire acoustic field (pressure and velocity) at all
instants it allows to track the evolution of the acoustic energy (Ea in Eq. 1.1).

The BKD exhibits high-frequency CIs: the heat release rate fluctuations are coupled with
transverse resonant acoustic modes in the combustion chamber. Consequently, each of the 42
flames in the BKD experiences transverse and/or axial fluctuations of acoustic pressure and/or
acoustic velocity. In such conditions, it is unclear which variables drive the flame-response.
Chapter 5 focuses on the study of the flame-response (the Rayleigh term, S in Eq. 1.1) of each
of the 42 flames from a LES database. The unsteady heat release rate and the flame-response
of each of the 42 flames are studied for the two dominant transverse modes. The flames
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responsible for most of the heat addition to the acoustic energy are further investigated and
the question of which variables are the most relevant for a flame-response model is addressed.

Part II: Acoustic boundary conditions for time domain simulations

The acoustic fluxes, F in Eq. 1.1 are driven by the boundary conditions. It is vital to
accurately evaluate this flux if one is to predict CIs because the growth rate is a balance
between S and F (and other losses).

Acoustic boundaries can be described using many quantities (e.g. the impedance, the
admittance, the reflection coefficient, the wall softness, etc.) but all of them prescribe the
expression between the acoustic velocity u′ and the acoustic pressure p′ at the boundary. This
relation characterizes the reflection of an acoustic wave at the boundary as follows:

1. They specify the ratio of the acoustic wave’s amplitudes before and after reflection. This
condition imposes the acoustic energy fluxes (F in Eq. 1.1) at the boundaries.

2. They prescribe the phase difference between the acoustic wave before and after reflection.
As discussed above, the necessary condition for thermoacoustic instabilities to occur is
given by the Rayleigh criterion (cf. Eq. 1.2) which states that the physical mechanism
leading to an acoustic energy increase yields in the phase difference between the acoustic
fluctuations and the heat release rate perturbations.

From these two statements, it becomes clear that the boundaries’ acoustic properties need to
be accurately considered by the thermoacoustic studies in order to predict both the acoustic
fluxes and the Rayleigh source term in Eq. 1.1.

The imposition of acoustic properties at boundary conditions in DNS/LES studies is the
topic of Part II. As the acoustic properties are defined in the spectral domain, methods called
Time Domain Impedance Boundary Condition (TDIBC) are needed to efficiently compute the
time domain unsteady values imposed by the boundary conditions.

Chapter 6 presents the Pole & Residue TDIBC formulation of Fung and Ju [83–86] and
the proposed extension using the reflection coefficient as a modeling quantity [87–89]. The
new formulation is validated in simple test cases.

Although all TDIBC methods should, in principle, be able to impose any reflection coef-
ficient, in practice one case remains difficult: the imposition of a reflection coefficient corre-
sponding to a pure time-delay. Such a boundary condition allows to account for reflection of
acoustic waves after a time-delay τ and is useful to truncate computational domains.

This problem is tackled in Chapter 7. The proposed reflection-coefficient-based TDIBC is
used along with a specifically derived algorithm to accurately model any reflection coefficients
allowing the imposition of pure time-delays in DNS/LES.
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The method is validated on a one-dimensional test case before being used on a thermoa-
coustically unstable CH4/Air combustion chamber: the INTRIG Burner (IMFT, France).

Finally, the reflection-coefficient-based Pole & Residue method is compared to another
TDIBC method based on state-space models: the Characteristic Based State-space Bound-
ary Condition (CBSBC) method developed at TUM (Munich, Germany) by Kaess et al. [90]
and Jaensch et al. [91]. The formal equivalence between a reflection-coefficient-based Pole &
Residue model and a CSCBC model is demonstrated.
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Chapter 2

Governing equations & numerical
tools for thermoacoustics

The study of CIs relies on the reacting compressible Navier-Stokes equations. They are suffi-
cient to accurately study the phenomena present when thermoacoustic instabilities occur but,
most of the time, their solution can only be numerically approximated at a great computa-
tional cost. In practice, simplified formulations can be derived and used.

The objective of this chapter is to briefly recall the multi-species equations for thermoa-
coustics that will be used and solved for in this manuscript: the Navier-Stokes equations and
the acoustic equations.

2.1 Governing equations

2.1.1 Navier-Stokes equations for reactive flows

Quantities such as mass, momentum and total energy are conserved in the absence of external
forcing. The Navier-Stokes equations for compressible reactive flows are expressed here in the
conservative form.

Conservation of mass and species

Using the Einstein summation rule [92] (when the index i or j is repeated at least twice the
terms must be summed n times in a n-dimensional problem), the mass conservation equation
is:

∂ρ

∂t
+
∂ui

∂xi

= 0 (2.1)

From the mass conservation equation, it is clear that any local density change is thus due
to a mass flux.

11
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A reactive gas is a mixture of multiple species that must be handled individually. For
a chemical reaction evolving Nsp species, the mass fraction of a species k (k ∈ [1, Nsp]) is
denoted Yk. The mass conservation equation for the species k is:

∂ρYk

∂t
+
∂ρuiYk

∂xi

= −∂ρVk,iYk

∂xi︸ ︷︷ ︸
Diffusive fluxes

+ ω̇k︸︷︷︸
consumption/production

(2.2)

The first and second right-hand side terms correspond to the diffusive fluxes of species
of species k and to the consumption (or production) of species k, respectively. The diffusive
fluxes are controlled by the diffusion velocity Vk,i (ith component of diffusion velocity of the
species Vk). Depending on the sign of ω̇k, the mass fraction of species k can increase or
decrease.

Conservation of momentum

The reactive momentum equation is [93]:

∂ρui

∂t
+
∂ρuiuj

∂xj

= − ∂p

∂xi

+
∂τij

∂xi

+ ρ
Nsp∑

k=1

Ykfk,j (2.3)

In Eq. 2.3, the change in momentum ρui is linked to volume forces: the pressure gradient,
the viscous stress tensor τij and volume forces fk,j acting on species k in direction j. Although
Eq. 2.3 is identical to its non-reactive formulation, the momentum is strongly influenced by
combustion. Indeed, flow properties, such as density and viscosity, are different in the fresh
and burnt gases [93, 94].

Conservation of energy

Many formulations of the energy conservation can be written [9]. Choosing the total energy
et as the conserved quantity, the energy balance equation is:

∂ρet

∂t
+
∂ρuiet

∂xi

= − ∂qi

∂xi

+
∂σijui

∂xj

+ Q̇+ ρ
Nsp∑

k=1

Ykfk,i(ui + Vk,i) (2.4)

where qi is the enthalpy flux [9], σij = τij − pδij, Q̇ is the total energy volume source term
and fk,i are the volume forces acting on species k in the direction i.

2.1.2 Equation of state for a multi-species gas

For a mixture of Nsp perfect gases the density and pressure of the multi-species gas are:

ρ =
Nsp∑

k=1

ρk with ρk = ρYk (2.5)
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and

p =
Nsp∑

k=1

pk with pk = ρk
R

Wk

T (2.6)

where ρk and pk are the partial density and partial pressure of the species k, respectively, T
is the temperature, R = 8.314 J mol−1 K−1 is the perfect gas constant and Wk is the atomic
weight of species k.

The state equation for the perfect gas is:

p = ρrT with r =
R

W
= R

Nsp∑

k=1

Yk

Wk

(2.7)

2.1.3 Acoustic equations

Many thermoacoustic studies can be made without solving the reactive Navier-Stokes equa-
tions [9]. After recalling the reactive wave equation, linearized formulations are presented.
They can be recast in the spectral domain as Helmholtz equations.

Both reactive and non-reactive linearized wave equations are used in Chapters 3 and 4 to
study acoustic modes dynamics and in Chapters 6, 7 and 8 to derive and study time domain
impedance boundary conditions.

General acoustic equation for reactive flows

For reactive gaseous flows, the derivation of a wave equation is difficult. Contrary to non-
reactive flows where the waves are generally considered isentropic, entropy variations must be
considered here.

Assuming that no volume force nor heat source play a role in the considered reactive flow,
the Navier-Stokes equations presented in Sec. 2.1.1 can be used to derive a reactive wave
equation [9]:

∇ ·
(
c2

0

γ
∇ ln(p)

)
− D

Dt

(
1
γ

D

Dt
ln(p)

)
=

∇ ·
(
∇ · τ
ρ

)
− D

Dt

[
D

Dt

(
ln(r)

)]
− ∂ui

∂uj

∂ui

∂xj

(2.8)

− D

Dt


q −

Nsp∑

k=1

hskω̇k +
∂

∂xi

(
λ
∂T

∂xi

)
− ∂

∂xi




Nsp∑

k=1

Cp,kYkVk,i


+ τij

∂ui

∂xj




where∇·f = div(f) and∇f = grad(f) are the divergence and gradient operator, respectively.
c0 refers to the local sound speed, hsk is the sensible energy, q is the heat release rate and ω̇k

is the reaction rate per mass unit of the kth species.
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Linearized wave equation for reacting flows

Although generic, Eq. 2.8 is rarely used because of its complexity. In many studies, most of
the sink and sources terms in Eq. 2.8 can be neglected and a simplified reactive wave equation
can be used.

The assumptions generally used when studying combustion devices are:

• Low mach
For a mean flow u0, if u0 << c0 then the Mach numberM is close to zero: M≃ 0 This
assumption is fulfilled in many combustion devices.

• Same molecular weight
We assume that the molecular weight is the same for all the species.

• Constant heat capacities
The heat capacities Cp and Cv are assumed to be constant. As a consequence, the ratio
of specific heat capacities γ is also constant.

• Low diffusion
All the diffusive terms (viscous terms included) in Eq. 2.8 are neglected. In his work,
Kotake [95] has shown by an order of magnitude study that the diffusive terms are
negligible in comparison to the heat release rate term.

Using these assumptions, Eq.2.8 can be recast as:

∇ ·
(
c2

0∇ ln(p)
)
− ∂2

∂t2
ln(p) = − ∂

∂t

(
q

ρCvT

)
(2.9)

In order to linearize Eq. 2.9, one must decompose a quantity into a sum of mean value and
perturbations. The quantities of interest here are p, ρ, q and u, leading to:

p = p0 + p′ (2.10)

ρ = ρ0 + ρ′ (2.11)

q = q0 + q′ (2.12)

u = u0︸︷︷︸
≃0

+u′ = u′ (2.13)

where the mean value of the velocity vector u0 is set to zero due to the low Mach assumption.
Substituting Eqs. 2.10 to 2.13 into Eq. 2.9 and neglecting high order terms yields [9]:

∇ ·
(
c2

0∇p′

)
− ∂2

∂t2
p′ = (1− γ)

∂q′

∂t
(2.14)

The right-hand side term in Eq. 2.14 is the production of acoustic pressure due to the unsteady
heat release of the flame. This term of major importance when studying thermoacoustic
instabilities.
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Linearized wave equation for non-reacting flows

For non-reacting flows, the right-hand side of Eq. 2.14 is null which leads to the linearized
wave equation for non-reacting flows:

∇ ·
(
c2

0∇p′

)
− ∂2p′

∂t2
= 0 (2.15)

1D plane waves Considering one-dimensional waves, Eq. 2.15 can be written:

∂2p′

∂x2
− 1
c2

0

∂2p′

∂t2
= 0 (2.16)

The solution of Eq. 2.16 consists in the superposition of two characteristic traveling
waves [9, 96]. Figure 2.1 illustrates these two characteristic waves in a duct. The travel-
ing wave A+ propagates in the increasing x direction and the traveling wave A− propagates
in the decreasing x direction.

The acoustic pressure and velocity can be expressed from the characteristic waves:

p′ = A+
(
t− x

c0

)
+ A+

(
t+

x

c0

)
(2.17)

u′ =
1
ρc0


A+

(
t− x

c0

)
− A+

(
t+

x

c0

)
 (2.18)

Figure 2.1: One-dimensional wave propagation.

Resonant acoustic modes in cylindrical cavities Many combustion chambers of LRE
are cylindrical. When CIs occur in such devices, the unsteady heat release rate couples with
at least of its resonant acoustic modes. In practice, low-frequency CIs (i.e. coupling to
longitudinal modes) can be mitigated but high-frequency CIs (i.e. due to transverse modes)
are much more complex to deal with [97].

Solutions of the wave equation applied to a cylindrical cavity with homogeneous sound
speed are presented here. Using the cylindrical coordinate system (r, θ, z), the resonant acous-
tic pressure modes of a cylindrical cavity of radius a and length L are [9? ]:

p(r, θ, z) = Jn

(
πβmnr

a

)
cos

(
qπz

L

) (
A+e

inθ + A−e
−inθ

)
(2.19)
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where:

• (m,n, q) correspond to the radial, tangential and longitudinal mode number, respec-
tively.

• Jn is the Bessel function of order n.

• βmn is the root of J ′
n(πβmn) = 0.

• A+ and A− are the amplitudes of the tangential (i.e. azimuthal) waves rotating in the
directions +θ and −θ, respectively. If either amplitude is zero, the tangential mode is
a “rotating mode”. If both amplitudes are equal the resulting mode is referred to as
“standing mode”. Finally, mixed modes appear if A− 6= 0, A+ 6= 0 and A+ 6= A−.

The firsts transverse modes of a cylindrical cavity are illustrated on Fig. 2.2. The longitudinal
contribution is set to zero (q = 0 in Eq. 2.19). The dark blue and dark red colors correspond
to the minimum and maximum levels of p′, respectively, and white color corresponds to p′ = 0
(i.e. the pressure nodes). The modes are labeled such that, for instance, “Mode 1R2T” refers
to a mode made of the superposition of the first radial mode (m = 1 in Eq. 2.19) and the
second tangential mode (n = 2 in Eq. 2.19).

Helmholtz equation Determining the solutions of Eq. 2.15 can be eased by assuming
harmonic waves. By doing so, temporal and spatial information can be separated:

p′ = ℜ
(
p̂e−iωt

)
(2.20)

ρ′ = ℜ
(
ρ̂e−iωt

)
(2.21)

u′ = ℜ
(
ûe−iωt

)
(2.22)

where i is the imaginary unit (i2 = −1). p̂, ρ̂ and û are complex functions of space and angular
frequency ω. Using the harmonic waves defined in Eqs. 2.20, 2.21 and 2.22 the linearized mass
conservation equation and the momentum conservation equations can be recast as:

−iωp̂+ ρ0c
2
0∇ · u = 0 (2.23)

−ρ0iωû +∇p̂ = 0 (2.24)

As for the wave equation, Eqs. 2.23 and 2.24 can be combined, yielding the homogeneous
Helmholtz equation:

∇ ·

c2

0∇p̂

+ ω2p̂ = 0 (2.25)

The same derivation can be done from the reactive conservation equations yielding the
inhomogeneous Helmholtz equation with a single right-hand side source term: the chemical
heat release term.
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(a) Mode 0R0T (b) Mode 0R1T (c) Mode 0R2T

(d) Mode 1R0T (e) Mode 1R1T (f) Mode 1R2T

(g) Mode 2R0T (h) Mode 2R1T (i) Mode 2R2T

Figure 2.2: Pressure of transverse acoustic modes in a cylindrical cavity.
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∇ ·

c2

0∇p̂

+ ω2p̂ =

γ − 1
γp0

Ω̂T (2.26)

2.2 Numerical tools

Throughout this manuscript, numerical solvers are used. In this section, a brief description
of these tools is given. The flow solver used in AVBP and the acoustic solver is AVSP.

2.2.1 AVBP

The AVBP solver is jointly developed by CERFACS (Toulouse, FRANCE) and IFPEN (Rueil-
Malmaison, FRANCE). It is a parallel solver for the laminar and turbulent compressible reac-
tive 3D Navier-Stokes equations on unstructured and hybrid grids. Using such meshes allows
the quick generation of meshes for complex geometries and makes AVBP a Computational
Fluid Dynamics (CFD) code suited for research of industrial interest. AVBP uses the perfect
gas assumption and a real-gas version called AVBP-RG exists [98–100]. The latter accounts
for multicomponent real-gas thermodynamics and transport [101, 102].

Explicit numerical schemes are used in AVBP and the solver relies on cell-vertex and
finite-volume methods [103–105]. The numerical convection schemes in AVBP are (1) the
well-known Lax-Wendroff scheme [106] and (2) Finite-Element type low-dissipation Taylor-
Galerkin schemes. While the Lax-Wendroff scheme is second order accurate in both space
and time, the Taylor-Galerkin schemes implemented in AVBP have higher orders [107–110].

The Taylor-Galerkin schemes used in this manuscript are:

1. TTG4A
TTG4A is a two-step Taylor-Galerkin which is third-order in space and fourth-order
in time. It has excellent dispersion properties and low dissipation for large wave num-
bers [111].

2. TTGC
TTGC is a two-step Taylor-Galerkin similar to TTG4A which has been developed to
lower the levels of numerical dissipation in order to accurately predict the turbulent
kinetic energy transfers in LES [111].

For laminar and moderate Reynolds number flows AVBP can fully solve the Navier-Stokes
equations, i.e. using the DNS approach. For higher Reynolds number, the LES approach
requires the use of subgrid-scale (SGS) models to close the subgrid stress tensor [38]. The
SGS model used in this manuscript is the Wall Adapting Linear Eddy (WALE) model [112]
and an eddy-diffusivity approach is adopted for thermal and species subgrid contributions
(constant turbulent Prandtl and Schmidt number: Prt = 0.6, Sct = 0.6).
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Combustion usually involves a large number of species and chemical reactions. Trans-
porting all of the species and solving for all the chemical reactions is too cumbersome for
computationally intensive approaches such as DNS/LES. In practice, only a few species are
transported. Moreover, the turbulent flames thickness is typically smaller than the mesh res-
olution used in LES so that flame models are requires.

In this manuscript, two reactive simulations are carried out.

1. A LES of a H2/O2 liquid rocket engine is performed and four species are transported
(H2, O2, OH and H2O) and source terms are computed following the method described
in [100]. An infinitely-fast chemistry model [100], relying on the assumption of lo-
cal chemical equilibrium and a β-pdf description of the filtered mixture fraction Z̃, is
adopted.

2. A DNS of a CH4/Air premixed laminar flame is realized. The flame thickness is fully
resolved and 19 species are transported [113] for the modeling of chemical kinetics.

Finally, AVBP uses characteristic boundary conditions under the Navier-Stokes Charac-
teristic Boundary Condition (NSCBC) framework [114]. Characteristic boundary conditions
allow the separation of acoustic, convective and entropic information at the boundaries. Using
such methods, low levels of acoustic reflection can be achieved [114–116].

2.2.2 AVSP

AVSP is developed at CERFACS (Toulouse, FRANCE). It is a parallel solver for the low-
mach Helmholtz equation recast as an eigenvalue problem. If the inhomogeneous Helmholtz
equation is solved for then a flame response model is needed.

The solutions consist of a set of eigenvalues and eigenmodes. The eigenvalues, i.e. the
eigenfrequencies, are complex: their real and imaginary parts correspond to the frequencies
of the resonant acoustic modes and to their linear growth rates, respectively. Hence, the
linear thermoacoustic stability of a system can be inferred using this tool. The eigenmodes
correspond to the spatial structure of each of the modes. The AVSP simulations performed
in this manuscript use the Arnoldi solver [117–120].

AVSP simulations have a reasonable cost compared to AVBP simulations. Indeed, in
combustion devices the focus is mainly on low-frequency modes that have length scales sig-
nificantly larger than the length scales usually present in the flow. As a consequence, AVSP
computations permit coarser meshes than AVBP computations.

The numerical schemes used in AVSP are cell-vertex volume methods inherited from AVBP.
High-order schemes are not needed so that the Taylor-Galerkin scheme used is second order
accurate. The interested reader is referred to Nicoud et al. [47] where a more detailed descrip-
tion is made.



20 Chapter 2: Governing equations & numerical tools for thermoacoustics



Part I

Transverse combustion instabilities in
a liquid rocket engine
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Context & Outline

When occurring in high-performance devices such as gas turbines, aero-engines or rocket
propulsion stages, combustion dynamics can have serious consequences on the system’s per-
formance. In many cases, the phenomena responsible for such combustion dynamics are com-
bustion instabilities (CIs). They result from a constructive coupling between the unsteady
heat release rate (due to the unsteadiness of the flame in combustion systems) and the reso-
nant acoustic modes of the combustion device.

In Liquid Rocket Engines (LREs), the occurrence of combustion instabilities has prevented
the developement of more efficient high-performance propulsion systems. Both reduced and
full-scale hot-fire liquid rocket engines tests have revealed that these propulsion systems, when
unstable, exhibit high-frequency oscillations which are hard to mitigate. These peculiar os-
cillations are due to transverse CIs: the unsteady heat release rate is coupled with transverse
(i.e. orthogonal to the mean flow direction) resonant acoustic modes of the chamber. These
phenomena can jeopardize the integrity of the combustion device by (1) enhancing the heat
fluxes (leading to the melting of chamber walls), (2) cause large structural vibrations and (3)
thrust fluctuations [19].

Although experimental studies in the field of LRE are essential to gain understanding of
mechanisms leading to transverse CIs, the diagnostics available are limited by the extreme
conditions of the flow field. Pressure measurements are the easiest experimental diagnostics
to implement in such conditions. On the contrary, velocity measurements in the chamber or
in the fuel/oxidizer injectors cannot be achieved.

In this part of the manuscript, a 42-injector reduced-scale LRE is studied: the BKD setup
operated at DLR Lampoldshausen (Germany). The objective of this work is twofold:

1. Chapters 3 and 4: Study of acoustic modes dynamics in a LRE
A method, called Instantaneous Modal Decomposition (IMD), is proposed to study the
acoustic mode dynamics from pressure measurements. The goal is to gain understanding
in the evolution of transverse modes in the BKD and to reconstruct the three-dimensional
pressure and velocity acoustic fields. Both experimental and numerical (LES) results
are studied.

2. Chapter 5: Study of the Rayleigh source term in the BKD
The numerical investigation of the BKD by Urbano et al. [121] allows the study of
the flame response. Two unstable transverse modes are observed in the LES and the
contribution of each mode to the unsteady heat release rate and to the Rayleigh index is
investigated. The goals are: (1) to identify which flames are feeding most of the energy
to the acoustic field and (2) to develop a deeper knowledge of the mechanisms leading
to such transverse CIs.
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Chapter 3

Modal Analysis & Reconstruction of
3D acoustic fields

Pressure measurements are the most common experimental diagnostics in the liquid rocket en-
gines (LREs). They are useful to develop a deeper knowledge of the transverse thermoacoustic
instabilities taking place in such devices.

In this chapter, a method specifically developed to analyze pressure signals, called Instan-
taneous Modal Decomposition (IMD), is presented. It has the double objective of analyzing
the contribution of each acoustic mode to the acoustic field in time and to reconstruct the
entire acoustic field (pressure and velocity) from a few local pressure measurements.

The IMD method is based on the decomposition of pressure signals as a superposition of
individual contributions of eigenmodes. The temporal evolution of an eigenmodes’ contribu-
tion is obtained by projecting the pressure signals onto the eigenmodes shape.

The general principle is presented in Sec. 3.1 and the details of the method are presented
in Sec. 3.2. In Section 3.3, the method is applied to pressure signals of a Navier-Stokes
simulation of a simplified LRE configuration. The setup comprises injectors mounted on a
cylindrical cavity such as typical LRE combustors. The temporal evolution of an injector-
chamber coupled acoustic mode is studied and the acoustic pressure and velocity fields are
reconstructed in the areas of interest.

3.1 Introduction

In many thermoacoustically unstable devices the acoustic velocity fluctuations have been
found to drive the flame dynamics [6, 9, 10, 18, 53, 54, 122, 123]. Consequently, it has been
used by many authors [47, 56–63, 72] as the input variable for a flame-response model. The
joint use of acoustic solvers and flame-response models – FTF or FDF (cf. page 6)– is a com-
putationally efficient procedure to predict the thermoacoustic stability of real engines that
can be applied in the industry [57, 121]. Hence, the acoustic velocity field is key information
to study and predict combustion instabilities.
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When investigating high performance propulsion systems such as aero-engines or rocket
engines, the extreme conditions at which such a device is operating make the acoustic velocity
field challenging to measure. However, pressure measurements techniques have become a
routine even in high-pressure liquid rocket engines [124–127].

In this context, there is a need for advanced pressure signal post-processing techniques
allowing to have a better insight into the entire acoustic field. In this work we present a
method, called Instantaneous Modal Decomposition (IMD), that is developed in order to pro-
vide a diagnostic on the dynamics of the acoustic modes of the system and a procedure to
reconstruct the acoustic field.

The method relies on pressure measurements at several spatial locations. These mea-
surements provide both spatial and temporal information. The IMD method identify the
contribution of a set of acoustic modes to the pressure measurements. The benefits of the
method are multiple:

1. Dominant mode identification
IMD gives access to the amplitude of each mode and, thus, provides a methodology to
identify which acoustic modes are dominant and how they evolve in time.

2. Acoustic pressure field reconstruction
Using the amplitudes determined by the IMD methodology from local measurements,
the acoustic pressure field can be reconstructed everywhere in the domain.

3. Acoustic velocity field reconstruction
The acoustic pressure and acoustic velocity fields are linked by the momentum equation.
Using this equation and the amplitudes determined by IMD, the acoustic velocity field
can be reconstructed everywhere in the domain. This is especially useful in thermoa-
coustic as the acoustic velocity have been found to be driving the flame response in
many unstable configurations [6, 9, 10].

4. Tangential mode orientation identification
Due to the high-power density in LRE, the flames’ heat release rate perturbations couples
with many acoustic modes. Such CIs are discriminated by their frequency contents:

(a) Low-frequency acoustic modes. Their shapes are mainly longitudinal (i.e. pressure
and velocity fluctuations are parallel to the mean flow). The CIs due to these modes
can be dealt with using passive control such as baffles or resonators [20, 128, 129].

(b) High-frequency acoustic modes. These modes often have a transverse shape in the
combustion chamber (i.e. pressure and velocity fluctuations are orthogonal to the
mean flow) [18, 20, 130]. In practice, transverse CIs are hard to mitigate so that it
is essential to gain understanding on the mechanisms leading to such phenomenon.

In a cylindrical geometry, the orientation of tangential modes is an important parameter
that can be determined using IMD results. This is discussed in details in Chapter 4.
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3.2 Method

The general principles of the IMD method and the expected results were presented in the
previous section. In this section, the method is presented in details.

3.2.1 Modal decomposition

In the linear acoustic framework, it is a common practice to decompose the acoustic field as
temporal and spatial fluctuation assuming harmonic waves [9? ]. In this context, the acoustic
pressure field can be written as [18]:

p′(x, t) = ℜ




∞∑

k=1

Ak(t)e−iωkt

︸ ︷︷ ︸
Temporal

pH
k (x
︸ ︷︷ ︸
Spatial

)


 (3.1)

where p′(x, t) is the acoustic pressure field, ℜ[·] denotes the real part, the subscript k refers
to the kth mode, Ak is the envelope (i.e. zero-to-peak) amplitude of a mode oscillating
at an angular frequency ωk and pH

k (x) is the Helmholtz pressure mode (i.e. the pressure
associated to the solution of the Helmholtz equation at the angular frequency ωk). The
temporal contribution of the kth mode can be reduced to a single complex amplitude ak(t):

ak = Ak(t)e−iωkt (3.2)

Using the definition of ak, Eq. 3.1 can then be expressed as follows:

p′(x, t) = ℜ
[

∞∑

k=1

ak(t) pH
k (x)

]
(3.3)

The goal of IMD is to identify the ak from a known set of pH
k and known pressure mea-

surements p′(t). To do so, it is proposed to extend the pressure measurements to the complex
space so that the real part operator in Eq. 3.1 is not dealt with while seeking for ak.

A convenient method to obtain these complex-valued pressure signals is to build analytic
signals. In signal processing theory, an analytic signal is a complex-valued function, obtained
from a real-valued function, which facilitates many mathematical operations, especially the
determination of the envelope and the instantaneous phase of the signal. Obtaining an analytic
signal from a real-valued signal is done by the use of the Hilbert transform H[·]. Here, the
complex-valued pressure measurements are, hence, called the analytic pressure signals and
denoted pA.

They are defined as:

pA(x, t) = p′(x, t) + iH
[
p′(x, t)

]
(3.4)

An example of analytic pressure signal pA(t) built from an acoustic pressure measurement
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p′(t) is illustrated in Fig. 3.1. Here, p′(t) = cos(2πf0∗t+φ) where f0 = 10 Hz and φ = 0.79 rad.
As the pressure signal p′(t) is monochromatic, the imaginary part signal is phase-shifted by
π/2 when taking the Hilbert transform. A consequence of this property is that the modulus
of pA is the envelope of the signal. Figure 3.1 was obtained by numerical approximation using
the scipy.signal.hilbert function of the scientific library SciPy of the Python programming lan-
guage [131]. The numerical algorithm of the scipy.signal.hilbert function gives a very good
overall estimate of the Hilbert transform with the exception of the beginning and the end of
the signal where spurious oscillations are present. The experimental or numerical pressure
signals are usually quite long compared to the time scale of the change of amplitude of an
acoustic mode. Hence, this end-effect is not a strong limitation when tracking the envelope
amplitude of a mode.
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Figure 3.1: Real part, imaginary part and modulus of an analytic pressure signal pA(t).

It should be noted that taking the real part of the analytic signal yields the original signal.
From this observation, Eq. 3.3 can obtained by taking the real part of the following modal
decomposition:

pA(x, t) =
∞∑

k=1

ak(t)pH
k (x) (3.5)

Equation 3.5 will be used to determine the ak. By building a vector space where the
Helmholtz eigenmodes are orthogonal, there is a unique solution for the set of (a1(t), a2(t), . . . ).
The study of the acoustic modes in IMD is therefore an optimization problem. Vector spaces
are convenient mathematical tools that allow to solve such problems. As all functions are
complex valued in Eq. 3.5, the formalism of IMD will therefore be expressed in a complex
vector space: the Hilbert space.

IMD vector space: the Hilbert space

A vector space is a collection of unit vectors, that can be used to construct any vector as
a linear combination. As seen in Eq. 3.5, the vector pA(x, t) can be constructed as a linear
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combination of pH
k (x). The Helmholtz eigenmodes will therefore be chosen to be the unit

vectors.

Hilbert space are commonly used for the study of vibrations, making it a very popular
choice in fields such as quantum mechanics. The Hilbert space is a normed vector space: the
vector space comes with a metric allowing to measure the length and angles of the vectors:
the inner product. The inner product used here is the Hermitian inner product, defined as:

〈f, g〉 =
∫
f(x) · g∗(x)dx (3.6)

where g∗ denotes the conjugate of g. The inner product defined in Eq. 3.6 allows to define
the L2-norm:

L2(f) = ||f ||2 =
√
〈f, f〉 (3.7)

The unit vectors pH
i (x) are normed, that is:

||pH
i (x)||2 =

√
〈pH

i (x), pH
i (x)〉 = 1 (3.8)

As pH
i (x) are solutions of the homogeneous Helmholtz equation, they are orthogonal:

〈pH
i , p

H
j 〉 =





0, for i 6= j

1, for i = j
(3.9)

Under these conditions, the collection of vectors pH
i (x) form an orthonormal basis B. In an

orthonormal basis, the unit vectors are: (1) Orthogonal (the inner product of a vector by
another is zero – checked in Eq. 3.9 –) and (2) Normed (the norm of each vector is one –
checked in Eq. 3.8 –).

B = (pH
1 (x), pH

2 (x), . . . ) (3.10)

The properties of the orthonormal basis B allow directly the determination of the ak(t) by
projecting the analytic acoustic pressure signal pA(x, t) on the unit vector pH

k (x):

ak(t) = 〈pA(x, t), pH
k (x)〉 (3.11)

Practical considerations for real case applications

Although mathematically exact, the formulation of IMD such as presented in Sec. 3.2.1 cannot
be used in many real case applications. Several strong assumptions were made and some of
them may not be fulfilled in complex setups such as in propulsion systems. Yet, if special care
is taken, some of these assumptions can be weakened and IMD can still yield accurate results.
In this section, we discuss the weakened assumptions often made for real case applications.
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1. Reduced set of points χ

In real case applications, the modal decomposition is made of a finite set of point χ =
(χ1, χ2, . . . , χk). These χk corresponds to the location of the pressure measurements.
For instance, in Cartesian coordinates:

pA(χk, t) = pA(xk, yk, zk, t) (3.12)

pA(χ, t) =




pA(χ1, t)
pA(χ2, t)

...
pA(χk, t)




(3.13)

The analysis is thus local as it is performed on a reduced set of location χ where
χ ∈ x. The same set of points is used for the Helmholtz eigenmodes pH

k (χ) where
pH

k (χ) ∈ pH
k (x).

2. Truncation of the series
Although the Helmholtz equation has an infinite number of solutions, in many real
case applications the acoustic field is dominated by a few modes only. Taking this into
consideration, the modal decomposition in Eq. 3.5 can be truncated to a number of
modes m considered1:

pA(χ, t) =
m∑

k=1

ak(t) pH
k (χ) (3.14)

Figure 3.2 illustrates the modal decomposition of an analytic pressure vector pA using
two (cf. Fig. 3.2(a)) and three (cf. Fig. 3.2(b)) modes in Eq. 3.14 at time tj. The
determination of the ak coefficients by a projection onto the unit vectors pH

i is illustrated.
As in an Euclidian space, the values of ak are the component of the vector pA. For a
number of modes considered higher than three, no direct visualization of the projection
can be made but the principle remains.

At each instant t of the pressure signal, a projection of the analytic pressure onto each
mode is performed and the ak coefficients are determined.

3. Helmholtz eigenmodes
For simple geometries (e.g. rectangular and cylindrical cavities) and homogeneous
sound speed fields, the Helmholtz modes are known [9? ]. For more complex cases,

1The number of modes m considered in the modal decomposition imposes a criterion on the minimum
number of points l necessary in the set χ: l ≥ m. However, the number l often needs to be strictly greater
than m if mixed modes are considered (e.g. acoustic eigenmodes with both longitudinal and transverse
contributions)
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(a) 2D projection (b) 3D projection

Figure 3.2: Illustrations of the determination of the complex coefficients a1, a2 (and a3) by
projection (Eq. 3.11) for a time T = tj considering two (a) and (three) modes.

the Helmholtz eigenmodes are determined using a Helmholtz solver. It is a numerical
tool that approximates the solution of the Helmholtz equation (Eq. 2.26), yielding the
Helmholtz eigenmode. In this manuscript, the Helmholtz solver used is called AVSP
[47, 132] and is developed by CERFACS (Toulouse, France) as discussed in Sec. 2.2.2
(cf page 19).

4. Quasi-orthogonality condition
As discussed above, the IMD method is based on the decomposition on a vector pA as a
linear combination of unit vectors of an orthonormal basis. Therefore, to be exact, IMD
should be limited to purely orthogonal Helmholtz eigenmodes. This is the case if no
complex acoustic impedance is considered at the boundaries and if no flame contribution
is considered. Altough IMD is not exact in the more complex aforementioned cases, the
error caused by these effects is marginal and the decomposition yields relevant results if
the vectors of the basis B in Eq. 3.10 fulfill the quasi-orthogonality condition, that is:

〈pH
i (χ),pH

j (χ)〉
||pH

i (χ)||2 · ||pH
j (χ)||2

≪ 1 , for i 6= j (3.15)

5. Degenerate modes
Some acoustic modes are referred to as “degenerate modes”. These modes have different
mode shapes but oscillate at the same frequency. For IMD to be able to reproduce the
acoustic oscillations at a frequency of degenerate modes it needs to take into account
all them.
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3.2.2 Acoustic field reconstruction

The modal decomposition presented in Sec. 3.2.1 allows the determination of the complex
pressure amplitudes ak at each instant t of pressure measurements. In this section, we present
how the acoustic field can be reconstructed from the amplitudes ak.

First, the methodology to reconstruct the 3D acoustic pressure field is presented. Then,
this acoustic reconstruction is extended to the acoustic velocity field. Finally, an analysis can
be made to track the envelope amplitude corresponding to a single mode and to investigate
its evolution in time.

Acoustic pressure reconstruction

Once the ak(t) have been determined using the analytic pressure measurements the acous-
tic pressure field can be reconstructed. Although the ak were determined at the pressure
measurements locations only2, they are valid for the entire acoustic field.

pA(x, t) =
m∑

i=1

ak(t) pH
k (x) (3.16)

As defined in Eq. 3.4, the acoustic pressure field can be reconstructed by taking the real part
of the analytic signal:

p′(x, t) = ℜ
[

m∑

i=1

ak(t) pH
k (x)

]
(3.17)

The contribution of a single mode pH
k (x) to the analytic pressure field is:

pA
k (x, t) = ak(t) pH

k (x) (3.18)

Consequently, the contribution of a single mode pH
k (x) to the acoustic pressure field p′

k(x, t)
is:

p′
k(x, t) = ℜ

[
ak(t) pH

k (x)
]

(3.19)

Acoustic velocity reconstruction

Similarly to the modal decomposition of the pressure field using the Helmholtz pressure modes,
the acoustic velocity field can be decomposed as:

uA(x, t) =
m∑

i=1

bk(t) uH
k (x) (3.20)

Considering a single mode k, Eq. 3.20 becomes:

2The ak have been determined using a reduced set of point rather than the entire field.
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uA
k (x, t) = bk(t) uH

k (x) (3.21)

The coefficient bk(t) is the complex velocity amplitude and is unknown. As presented in
Sec. 2.1.3 the linearized inviscid momentum equation (Eq. 2.24 on page 16) gives a direct
link between the acoustic pressure and the acoustic velocity. Considering a single Helmholtz
eigenmode k, the linearized inviscid momentum equation reads:

ρ0
∂uA

k (x, t)
∂t

= −∇pA
k (x) (3.22)

Using the modal decomposition of both pressure and velocity yields:

ρ0u
H
k (x)

∂bk(t)
∂t

= −ak(t)∇pH
k (x) (3.23)

The linearized inviscid momentum equation for a Helmholtz eigenmode k is (Eq. 2.24):

iωρ0u
H
k (x) = −∇pH

k (x) (3.24)

Introducing Eq. 3.24 in Eq. 3.23 leads to:

∂bk(t)
∂t

= iωak(t) (3.25)

In order to determine the complex velocity amplitude bk(t), let’s assume that it is the com-
position of two functions: an envelope function E(t) and a pure complex harmonic signal3:

bk(t) = E(t)× e−iωt (3.26)

This assumption is reasonable as the eigenmodes are known to oscillate at a given eigenfre-
quency ω. The time derivative of bk(t) is:

∂bk(t)
∂t

= (ǫ− iω)bk(t) (3.27)

where ǫ is the rate of change of the envelope function (in s−1):

ǫ =
1

E(t)
∂E(t)
∂t

(3.28)

Equations 3.25 and 3.27 give the exact value of the complex velocity amplitude bk(t):

bk(t) =
−1

1 + i ǫ
ω

ak(t) (3.29)

Although mathematically correct4, Eq. 3.29 is not practical as one needs to know the envelope
function E(t) to compute the coefficient bk(t) from ak(t). Luckily, in many real case applica-

3In this manuscript the −iωt convention is used.
4For the +iωt convention bk(t) = +1

1+i
ǫ

ω

ak(t)
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tions the rate of change of the modes envelope is small compared to the angular frequency ω.
In such cases the complex velocity amplitude bk(t) reduces to5:

bk(t) = −ak(t) (3.30)

Using Eqs. 3.20 and 3.30, both analytic and real acoustic velocity fields can be recon-
structed.

Acoustic mode envelope amplitude

The temporal amplitude for a mode k is defined in Eq. 3.2 from the envelope amplitude k,
i.e. zero-to-peak amplitude. Taking the norm (cf. Eq. 3.8) of the complex amplitude ak(t)
yields the envelope amplitude Ak(t):

||ak(t)||2 = ||Ak(t)eiωkt||2 (3.31)

=
(
Ak(t)eiωktAk(t)eiωkt

) 1
2 (3.32)

=


A2

k(t) eiωkteiωkt
︸ ︷︷ ︸

=1




1
2

(3.33)

= Ak(t) (3.34)

The same derivation can be done on the acoustic velocity but the acoustic velocity vectors
are not normed. In Cartesian coordinates, it leads to:

Au
k(t) = ||bk(t)||2 ||uH

k (x)||2 (3.35)

Av
k(t) = ||bk(t)||2 ||vH

k (x)||2 (3.36)

Aw
k (t) = ||bk(t)||2 ||wH

k (x)||2 (3.37)

5For the +iωt convention bk(t) = ak(t)
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3.3 Validation

This section presents the validation of the IMD methodology on a simple configuration.

3.3.1 Test case presentation

The geometry and mesh used in the study are presented in Fig. 3.3. It is a simplified Liq-
uid Rocket Engine (LRE). The main part of the Simplified LRE configuration is made of a
cylindrical cavity mimicking the combustion chamber such as the one used in the BKD (cf.
Chapter 4). In LRE configurations, a strong coupling between the transverse modes in the
chamber and the longitudinal modes in the injectors have been observed [18, 20, 121, 127, 130].
Five small cylinders are mounted on a cylindrical cavity: they represent the acoustic impact
of coaxial injectors such as in the BKD.

Figure 3.3: Simplified LRE configuration setup.

Table 3.1 summaizes the dimensions of the setup. The diameter of the chamber is the same
as the one of the BKD. Its length corresponds to the one used in the Helmholtz simulation
of the BKD in Urbano et al. [121] and Douasbin et al. [133]. The injection faceplate (surface
where the injectors and the main cylinder meet) is located at x = 0 m. The inner injector is
located on the center of the chamber. The center of the other four outer injectors are located
at 3 cm at the inner injector’s center. These injectors are located at an equiangular spacing
of 90◦.

Part Length [m] Diameter [m] Aspect Ratio [-]
chamber 2.16× 10−1 8× 10−2 2.7
injectors 3.28× 10−2 5× 10−3 6.556

Table 3.1: Geometric properties of the Simplified LRE configuration.

The mean flow conditions are summarized in Table 3.2. The setup is a cavity, so that
every boundary condition is set as a slip wall. The working fluid is air and is considered as a
perfect gas.



36 Chapter 3: Modal Analysis & Reconstruction of 3D acoustic fields

Name Variable Value Unit
Specific Heat ratio γ 1.4 -
Mean Density ρ0 1.172 kg m−3

Mean sound speed c0 347 m s−1

Mean Temperature T0 300 K
Mean Pressure P0 1.01325× 105 Pa
Mean speed (x axis) u0 0 m s−1

Mean speed (y axis) v0 0 m s−1

Mean speed (z axis) w0 0 m s−1

Table 3.2: Mean flow conditions for the Simplified LRE case.

3.3.2 Helmholtz simulation

A Helmholtz simulation of the setup is conducted with the AVSP solver [47, 132] for the flow
parameters presented in Table 3.2. Transverse modes in LRE are very difficult to mitigate so
that they are the focus of the present study. Two degenerte 1T (i.e. first tangential) eigen-
modes are found by the Helmholtz solver at a eigenfrequency of f1T = 2428 Hz: they will be
referred to as 1T and 1T ′. These solutions are presented in Fig. 3.4.

On Fig. 3.4(a) and 3.4(c) the modulus of the pressure modes is shown in a transverse cut
(left) and in longitudinal cut (right) in the chamber. The dark blue represents the minimum
amplitude of the pressure fluctuation, i.e. the pressure node (p1T||(ω)|| = 0.), and the dark
red represents the maximum of the modulus. The 1T and 1T ′ modes have a nodal line ori-
ented along the y and z axis, respectively: they are shifted by a 90◦ angle.

On Fig. 3.4(b) and 3.4(d) the argument (or phase) of the pressure modes is shown in a
transverse cut (left) and in longitudinal cut (right) in the chamber. The dark blue represents
the minimum phase of arg (p(ω)) and the dark red represents the maximum phase arg (p(ω)).
The phasing is different on both sides of the nodal line for both 1T and 1T ′ modes. The values
indicated in the colormaps can be misleading: the values of the maximum and minimum are
in the interval [−π, π] and the phase difference between the two sides of the nodal line is of
±π so that the pressure oscillations are in phase opposition.

Both modes have a similar transverse structure to the one presented in Fig. 2.2(b): the first
order tangential mode of a cylindrical cavity. Because of the asymmetry in the x direction,
the modes also have a longitudinal structure. The longitudinal structure exists both in the
chamber and in the injectors. The longitudinal mode structure in the chamber can be seen
in Fig. 3.4(a) and 3.4(c) as the modulus is high in the faceplate region and low about x ≃
2.16 × 10−1 m: it corresponds to a quarter-wave mode. The longitudinal modal structure in
the injectors cannot be visualized on these figures due to the saturation of the color map. One-
dimensional plots of the pressure modulus along the longitudinal coordinate x are presented
in Fig. 3.5 for injectors facing a pressure anti-node for modes 1T and 1T ′, respectively. The
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(a) ||p1T(ω)||

(b) arg(p1T(ω))

(c) ||p1T′(ω)||

(d) arg(p1T′(ω))

Figure 3.4: Modulus and argument of the pressure eigenmodes 1T and 1T ′.

pressure modulus profile illustrates that the pressure mode has a longitudinal structure in the
injectors (negative x). The maximum pressure modulus in the chamber is about an order of
magnitude lower that the one in the injectors: a pressure oscillation of 1 Pa in the chamber
will trigger a pressure oscillation of about 10 Pa in the injector facing the pressure antinode.

3.3.3 Temporal simulation

In order to validate the IMD method Navier-Stokes simulation is conducted to study the evo-
lution of the acoustic modes in the domain.

The initial solution consists in superimposing the 1T standing mode found using the
Helmholtz solver (cf. Fig. 3.4) to the mean flow conditions presented in Table 3.2. The
pressure field is initialized as:
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Figure 3.5: Pressure modulus over the x axis for injectors facing a pressure anti-node.

p(x, y, z) = p0 + A× |p1T (x, y, z, ω)| cos [arg (p1T (x, y, z, ω))]
︸ ︷︷ ︸

p′

1T

(3.38)

where A is the maximum pressure amplitude of the mode (in Pa) at time t = 0 s. The ampli-
tude A chosen for the validation test case is A = 10 Pa.

The temporal simulation has been carried out with the perfect-gas version of the AVBP
code, jointly developed by CERFACS (Toulouse, FRANCE) and IFPEN (Rueil-Malmaison,
FRANCE). The temporal integration is performed with a two-step Taylor-Galerkin scheme
called TTG4A, which is third order accurate in space and fourth order accurate in time
[134, 135]. The walls are assumed to be adiabatic and are treated as slip boundaries everywhere
(in the injectors, in the injection faceplate and in the chamber). The computational domain
is discretized with a 1.5 M element mesh.

3.3.4 Instantaneous Modal Decomposition

An IMD is performed using the results from the temporal simulation. In order to do so:

• The pressure traces of the probes of the “Ring C” (C1-C8) (cf. Fig. 3.6(b)) are used to
build the analytic pressure signals as defined in Sec. 3.2.1,

• The values of the Helmholtz pressure modes 1T and 1T ′ at the aforementioned probes
(C1-C8) (cf. Fig. 3.4) are used to build the vectors of the basis.

Figure 3.6(a) shows the location where the pressure measurements are performed. In the
numerical simulation, four probes are added to the Ring C: the probes C9, C10, C11 and C12.
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They are at a 90◦ angle with each other’s and are located at the minima and maxima of the
considered transverse modes (cf. Fig 3.6(a)).

(a)

0 1 2 3 4 5

Time [ms]

−0.5

0.0

0.5

p
’
[P
a]

C1

C2

C7

C8

(b)

Figure 3.6: (a) Pressure probes located on the “Ring C” at x = 5.5 mm, (b) pressure traces
of the simplified LRE configuration.

Pressure signals used for the modal decomposition
The pressure traces at the probe locations are extracted from the temporal simulation and

presented in Fig. 3.6(b). Only four probes are presented here.

Construction of the basis for IMD
As explained in Sec. 3.2.1, the instantaneous modal decomposition consists in a projection

of pressure measurements onto acoustic modes at the same locations and at each time step of
the signal. Here, we use the pressure signals at the probe C1 to C8 for the IMD (cf. Fig. 3.6),
hence, the reduced set of point χ (cf. Eq. 3.12) used here is:

χ = (C1, C2, C3, C4, C5, C5, C7, C8) (3.39)

The basis will be made of only two Helmholtz pressure eigenmodes from the numerical sim-
ulation (AVSP): 1T and 1T ′ (cf. Fig. 3.4). For instance, the vector corresponding to the 1T
will be constructed as follows:

• An unormed vector ϕ1T is created for the set of points χ. This vector contains the com-
plex values of the Helmholtz pressure eigenmodes at the 8 considered probe locations.

ϕ1T =




p1T (C1)
p1T (C2)

...
p1T (C8)




(3.40)
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• The normed vector pH
1T (used for the projection) is created from ϕ1T .

pH
1T =

ϕ1T

||ϕ1T ||2
=

1√
〈ϕ1T , ϕ1T 〉

×




p1T (C1)
p1T (C2)

...
p1T (C8)




(3.41)

The same procedure is used to build the second vector of the basis pH
1T ′ .

Construction of the analytic pressure signals vector
Using Eq. 3.4 yields the analytic signals vector:

pA(t) =




p′(C1, t) + iH (p′(C1, t))
p′(C2, t) + iH (p′(C2, t))

...
p′(C8, t) + iH (p′(C8, t))




(3.42)
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Results
Figure 3.7(a) shows the modulus of the complex amplitudes a1T and a1T ′ . As shown in

Fig. 3.1, the modulus of a complex amplitude yields the envelope of the signals. The modulus
is representative of the acoustic energy of an acoustic mode [9]. As expected, the energy
contained by the 1T mode is dominant: the envelope of the signal is an order of magnitude
higher than the one of the 1T ′ mode.
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Figure 3.7: IMD complex amplitudes a1T and a1T ′ obtained by projection.

The signal of the modulus of a1T in time is noisy. This may be due to the fact that a1T is
not purely monochromatic and to the saturation effect observed on the pressure signals (cf.
Fig. 3.6(b)) Additionally, the Hilbert transform has an impact on the IMD results: at the
beginning (t < 0.5 ms) and at the end of the signal (t > 4.5 ms) the modulus of the complex
amplitude a1T has spurious oscillations. This “end-effect” was discussed in Sec. 3.2.1 and is
due to the numerical approximation of the Hilbert transform.

Performing the Fourier transform F(·) of the amplitudes’ real part and taking their modu-
lus gives the spectra shown in Figure 3.7(b). The Fourier transform of the imaginary part (not
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shown here) yields the same spectra6. Both amplitudes have a strong frequency content at
2400 Hz. This is in agreement with the eigenfrequency found by the Helmholtz solver which is
of 2428 Hz. Interestingly, only spatial information was taken from the Helmholtz eigenmodes
to perform IMD: the frequencies of the pressure oscillations are given by the flow conditions.
Here, the fact that IMD yields the correct frequencies should be considered as a sanity check.

Figure 3.7(c) shows the real part, imaginary part and modulus of the amplitude a1T . The
modulus (red solid line) is the same that on Fig. 3.7(a) and it is confirmed that it is a good
approximation of the envelope of the real and imaginary parts of ai signals.

Acoustic energy seems to dissipate fast as the envelope at t = 4.5 ms is about 0.3 Pa lower,
that is 25% less, than its initial value in 11 periods. The mechanisms involved in the acoustic
energy dissipation are beyond the scope of this study and will not be discussed here.

The amplitudes obtained here are useful to analyze which modes are dominant, i.e. which
modes drive the acoustic field. They can also be used to determine the gain or loss of acous-
tic energy of a given acoustic mode. In the next sections, the amplitudes will be used to
reconstruct the acoustic pressure and acoustic velocity fields in the entire domain from the
amplitudes obtained locally using only 8 probes.

3.3.5 Acoustic pressure reconstruction

The methodology presented in Sec. 3.2.2 in order to reconstruct the acoustic pressure field
is used here. Applying Eq. 3.17, the acoustic pressure field reconstructed everywhere in the
domain. It combines the amplitudes determined by IMD and the Helmholtz pressure modes.

The signals reconstructed using IMD are shown in Figs. 3.8 to 3.13. The acoustic pressure
signals from the temporal simulation are shown in black solid line (labeled “AVBP”) and the
reconstruction signals are shown in dashed blue lines and circle markers (labeled “IMD Rec.”).
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Figure 3.8: Acoustic pressure signals from temporal simulation (“AVBP”) and signals recon-
structed (“IMD Rec.”) at Ring C (data used for IMD).

6A property of analytic signals is that both their real and imaginary parts have the same frequency content.
The ak are inheriting this property.
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First, the pressure signals are reconstructed at the locations where acoustic pressure sig-
nals and Helmholtz pressure modes were used for the determination of the amplitudes: the
8 pressure probes from C1 to C8 at Ring C. Two probes are shown here: the probe C1 in
Fig. 3.8(a) and the probe C2 in Fig. 3.8(b). The acoustic pressure signals reconstructed from
the IMD amplitudes are in excellent agreement with the simulation.
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Figure 3.9: Acoustic pressure signals from temporal simulation (“AVBP”) and signals recon-
structed (“IMD Rec.”) at Ring C (data not used for IMD).

Figures 3.9(a) and 3.9(b) show the pressure signals obtained at the same axial location
(Ring C). Contrary to the probes C1 and C2, the probes C11 and C12 were not used for the
determination of the amplitudes a1T and a1T ′ . Once again, the pressure signals reconstructed
from the IMD are in excellent agreement with the signals from the simulation.

Ch1 Ch2InjA2InjA1

InjN2

InjN1

Figure 3.10: Drawing of the chamber and injector probes’ location.

Figure. 3.10 is an illustration of other probes location studied here. The probes Ch1 and
Ch2 shown in Figs. 3.11(a) and 3.11(b) are located in the chamber, far from the Ring C.
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Figure 3.11: Acoustic pressure signals from temporal simulation (“AVBP”) and signals
reconstructed (“IMD Rec.”) in the chamber.

Both probes are located at x = 10.75 cm, y = 0 m and zCh1 = 3.1 cm and zCh2 = 1.55 cm,
respectively. The probe Ch2 is closer to the nodal line of the 1T modes than probe Ch1 and
thus has lower amplitude fluctuations. As they stand on the same side of the nodal line, they
oscillate in phase. The IMD reconstruction is in good overall agreement with the simulation
signals.

For LRE configurations, the coupling between the chamber transverse modes and the lon-
gitudinal modes in the injector is of interest as several studies have highlighted the fact that
the flame response in LREs could be driven by the acoustic fluctuations in and/or near the
injectors [18, 20, 121, 126, 127, 130, 136]. On the 5 injectors present in this setup, we distin-
guish them by creating two categories: injectors A and injectors N.

On one hand, injectors A are the injectors facing the pressure antinode of the transverse
1T mode in the chamber. In an injector A, the pressure fluctuations are strongly coupled to
the transverse pressure fluctuations in the chamber. Injectors A see the maximum pressure
fluctuation as described by Fig. 3.5 and maximum axial velocity u fluctuations. Finally, they
see small transverse velocity fluctuations.

On the other hand, injectors N are facing the pressure node of the transverse 1T mode in
the chamber. These injectors see near-zero pressure and axial velocity fluctuations but the
maximum transverse velocity fluctuations.
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Figure 3.12: Acoustic pressure signals from temporal simulation (“AVBP”) and signals
reconstructed (“IMD Rec.”) in an injector A.
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Figures 3.12(a) and 3.12(b) show pressure fluctuations in an injector A for distinct axial
locations (xInjA1 = −3 cm and xInjA2 = −3 mm). For both axial locations, the pressure
signal obtained by IMD reconstruction is in good agreement with the signals extracted from
the temporal simulation.
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Figure 3.13: Acoustic pressure signals from temporal simulation (“AVBP”) and signals
reconstructed (“IMD Rec.”) in an injector N.

Finally, pressure signals in an injector N are plotted in Figs. 3.13(a) and 3.13(b) for
two axial locations (xInjN1 = −3 cm and xInjN2 = −3 mm). In this region, the pressure
levels are 500 times lower that in an injector A. This low-pressure levels is retrieved by IMD
reconstruction.
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3.3.6 Acoustic velocity reconstruction

The acoustic field reconstructed by IMD is compared with the one extracted from temporal
simulation.

First, the pressure oscillations in the chamber trigger transverse acoustic fluctuations. As
the contribution of the 1T ′ mode is small compared to the one of the 1T mode, the velocity
fluctuations in the chamber can be simply explained from the shape of the eigenmode 1T . As
the nodal line of the 1T mode is along the y axis, there is a strong pressure gradient along
the z axis inducing w velocity fluctuations.
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Figure 3.14: Acoustic velocity signals from temporal simulation (“AVBP”) and signals re-
constructed (“IMD Rec.”) in the chamber.

Figures 3.14(a) and 3.14(b) show the w velocity component in the chamber for the probes
Ch1 and Ch2. The probe Ch2 is closer to the nodal line than the probe Ch1, and is thus
exhibiting higher amplitude w velocity fluctuations. Some discrepancies are observed even
though there is a good overall agreement. As for its pressure signal, the velocity signal of
probe Ch1 is not fully monochromatic and, hence, cannot be perfectly reconstructed with the
IMD basis used here as only two modes with the same eigenfrequency are considered. The
amplitude tends to be overpredicted for probe Ch2. Nevertheless, the acoustic velocities are
fairly well reconstructed.
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Figure 3.15: Acoustic velocity signals from temporal simulation (“AVBP”) and signals re-
constructed (“IMD Rec.”) in a injector N.

Figures 3.15(a) and 3.15(b) show the w velocity fluctuations in probes InjN1 and InjN2
(xInjN1 = −3 cm and xInjN2 = −3 mm). As the injector N is facing the pressure node of the
chamber, it exhibits high w velocity fluctuations (twice as high as for probes Ch1 and Ch2).
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The acoustic velocity reconstructed are in excellent agreement with the temporal simulation.
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Figure 3.16: Acoustic velocity signals from temporal simulation (“AVBP”) and signals re-
constructed (“IMD Rec.”) in an injector A.

Finally, the u velocity signals obtained in an injector A are plotted in Figs. 3.16(a) and
3.16(b). The axial velocity fluctuations are extremely high compared to the one in the cham-
ber. The reconstructed axial velocity signals are in good agreement with the temporal simu-
lation signals.
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3.4 Conclusion

A novel method called Instantaneous Modal Decomposition (IMD) is presented and vali-
dated. It is based on the decomposition of pressure measurement signals onto contributions
of Helmholtz eigenmodes for every signal’s sample. The analysis takes place in a complex
Hilbert vector space where successive projections of the pressure signals onto the Helmholtz
eigenmodes yield the temporal evolution of each modes, which is harvested as complex signals
called “the complex amplitudes”.

The IMD methodology allows to identify the dominant modes in numerical and experi-
mental setups and to study the temporal evolution of the contribution of the modes to the
acoustic field. Although IMD uses local pressure signals to analyze the acoustic field, it pro-
vides results which can, in turn, be used to reconstruct the entire acoustic field. This can
be useful in the combustion instability community as the acoustic velocity fluctuations are
known to be a driving mechanism of flame/acoustic coupling.

The method was validated on a temporal simulation of a simplified LRE configuration
where IMD was found to give accurate prediction of the mode dynamics and to produce a
satisfactory approximation of the 3D acoustic field.

In the next chapter, a more ambitious use of IMD is made: experimental and LES pressure
signals are analyzed using IMD.



Chapter 4

Acoustic field in the BKD: analysis &
reconstruction

In the previous chapter, the IMD methodology was presented and validated. It allows to
study the evolution of the acoustic modes from pressure measurements in a reduced set of
locations and to reconstruct both acoustic pressure and acoustic velocity fields.

Some assumptions used to derive IMD cannot be satisfied in real thermoacoustically un-
stable engine. In such systems, as discussed in Chapter 3, IMD can still yield insights on the
acoustic field if particular care is taken.

In this chapter, IMD is applied to an actual configuration: a 42-flame liquid rocket engine
operated at DLR Lampoldshausen (Germany) called BKD.

After introducing the experimental setup in Sec. 4.1.1, some experimental and numerical
results will be presented in Sec. 4.1.3. Section 4.1.4 will discuss the set of Helmholtz eigen-
modes dominant in an unstable operating point before using them as an IMD basis to study
both LES and experimental results in Sec. 4.2 and Sec.4.3, respectively.

4.1 Introduction

4.1.1 Experimental setup

The BKD is a LRE at DLR Lampoldshausen (Germany), which operates under conditions
representative of a liquid propellant rocket engine. The cylindrical thrust chamber is fed by 42
shear coaxial injectors and has a diameter of 8 cm and a length of slightly more than 20 cm.
It is closed by a choked nozzle. The injection plate pattern comprises three concentric rings of
respectively 6, 12 and 24 injectors. The propellants, liquid oxygen (LOx) and gaseous hydro-
gen (H2) are introduced in the domes through 2 and 6 manifolds, respectively. Geometrical
details are given in Fig. 4.1, which also shows the location of the pressure transducers (HF
measurement sensors). A more complete description of the experimental setup can be found
in Gröning et al. [124–126].

The BKD is operating under extreme conditions (high pressure and temperature levels

49
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Figure 4.1: Drawing of the BKD setup: (a) Detailed view of the HF measurement ring and
(b) split view of the BKD.

in addition to very large fluctuations) which makes it a challenging setup for experimental
diagnostics. The experimental diagnostics used by DLR are :

1. 8 HF water cooled dynamic pressure sensors located on one ring, i.e. at a single axial
location

2. 2 static pressure sensors.

3. 3 or 10 fiber-optical probes – depending on the version of the setup [137] – which outputs
can be transferred to a photomultiplier (PM) which recognize the OH∗ radiations [138].

These diagnostics are located near the faceplate region where moderate temperature con-
ditions (in comparison to further downstream) are present.

In this manuscript, two operating points labeled LP1 and LP4 are considered. They
correspond to thermoacoustically stable and unstable operating points, respectively. The
injection rates, temperature and pressure of the propellants are summarized in Table 4.1.

Assuming that chemical equilibrium is reached in the chamber and that the nozzle throat
is choked, Urbano et al. [121] have estimated the chamber pressure pc using the Chemical
Equilibrium and Applications (CEA) software developed by the National Aeronautics and
Space Administration (NASA) [139]. The resulting theoretical equilibrium conditions are a
chamber pressure of pc = 70 bar and pc = 80 bar and a temperature of Tc = 3066 K and
Tc = 3627 K for LP1 and LP4, respectively [121]. Finally, the theoretical thermal power
produced is approximately 66 MW for LP1 and 86.2 MW for LP4. The thrust of the BKD
has been approximated to be about 25 kN [137].
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LP1 LP4 Unit
ROF 4 6 -
ṁH2

1.11 0.96 kg s−1

ṁO2
4.44 5.75 kg s−1

Ti,H2
94 96 K

Ti,02
112 111 K

pi,H2
100 103 bar

pi,02
78 94 bar

Table 4.1: Injection conditions in the BKD experiment for the two load points considered.
“ROF” denotes the Oxidizer/Fuel mass ratio. and the “i” subscript refers to the values at the
injection stage.

4.1.2 Real gas effects

High pressure jets studies have been driven by the need of performance gains in the field of
cryotechnical liquid rocket engines. In such conditions, both thermodynamic and transport
properties are modified with respect to perfect gases.

Typical non-reacting jets of liquid nitrogen (LN2) in gaseous Helium (GHe) have been
studied experimentally by Mayer et al. [140, 141] and shadowgraphs of the experiment are
shown in Fig. 4.2. In Fig. 4.2a The nitrogen is injected at 10 bar (cf. Fig. 4.2a) and 60 bar
(cf. Fig. 4.2b). The jets observed in the two cases are very distinct.

a)

b)

P < Pc

P > Pc

Figure 4.2: LN2/GHe coaxial jet. Reproduced from Mayer and Smith [141]
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In the case of the low-pressure LN2 jet, the typical behavior of a spray is observed. The
jet destabilizes and finger-like structures are present. These structures further destabilize to
form droplets as typically noticed in coaxial jet atomization. Here, both liquid and gaseous
phases can be seen and the interface between the two phases is clear.

For the high-pressure case (60 bar), no droplets are present and the interface between the
two phases becomes blurry. Here, only a dense phase and a light phase can be identified and
the thermodynamic properties between the two phase evolve smoothly rather than abruptly
as seen in Fig. 4.2a. The topology of the jet becomes similar to a gaseous jet with density
variations.

These two kinds of jet topologies can be explained by the pressure levels used in both cases
with respect to the critical pressure of nitrogen PC .

The phase diagram of a single species is shown in Fig. 4.3 and the critical point is illus-
trated. For subcritical values of pressure P and temperature T ( i.e. for P < PC and T < TC),
the phase diagram indicates the phase of the species at the thermodynamic equilibrium (solid,
liquid or gas).

The interface between two phases (red lines in Fig. 4.3) is clear and at these values of T and
P two phases may coexist. These lines are often referred to as the coexistence lines [142, 143].
Between two phases, the properties of the fluid, such as its density, evolve discontinuously.
The intersections of the three lines is the triple point, i.e. the only temperature and pressure
conditions at which the three phases can be present.

Finally, for high pressure and high temperature conditions, the supercritical regime is
indicated. Such a regime is achieved when both pressure and temperature exceed the critical
pressure (PC) and critical temperature (TC). For supercritical fluids, the interface between
the liquid and gaseous phases becomes unclear and the properties are varying continuously.
It is well established that under such conditions a fluid will not experience surface tension nor
enthalpy of vaporization.

The jet in Fig. 4.2a is at subcritical condition while the one in Fig. 4.2b is at supercritical
pressure.

The transcritical regime, typical of liquid rocket engines, is reached when the fluid is, at
first, at a pressure above the critical pressure, but at a temperature below the critical value
and when the temperature rises in the system to reach supercitical conditions.

Accounting for the properties of transcritical and supercritical fluids in LES is vital in
order to accurately reproduce the physics. It can be achieved by the use of a “real-gas” (by
opposition to perfect gas) equation of state. More details on cubic equation of states can be
found in [101, 144–148].

The critical properties of oxygen and hydrogen are recalled in Table 4.2.
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Figure 4.3: Phase diagram for a single species. The pressure P and the temperature T of the
triple and the critical points are indicated by the subscripts T and C .

In the BKD, the fuel (gaseous H2) is injected at supercritical conditions. Even though
the BKD operates at nominal pressure above oxygen’s critical point, the oxidizer is not at
supercritical condition in the injection stage: the oxidizer’s injection temperature is below
Tcr,O2. Hence, the transcritical regime is reached in the BKD.

As a comparison, in the Vulcain and Vinci engines – the liquid propellant engines of
ArianeGroup, the main contractor of the Ariane Rocket propulsion system – the ratio of the
pressure chamber (pc) to critical pressure of the O2 (pcr,O2) are of 2.18 and 1.19, respectively [6].
Here, this ratio is of 1.39 and 1.59 for LP1 and LP4, respectively.

Propellant Quantity Notation Value Unit
H2 Critical pressure pcr,H2 13 bar

Critical temperature Tcr,H2 33 K
O2 Critical pressure pcr,O2 50.4 bar

Critical temperature Tcr,O2 155 K

Table 4.2: Critical conditions for H2 and O2.
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4.1.3 Transverse combustion instabilities in the BKD

The BKD configuration exhibits self-sustained transverse combustion instabilities such as
typically observed in such systems. It was used in the HF-7 test case for the French-German
cooperation on rocket engine stability (REST) where the goal was to compare several state-
of-the-art approaches to study high-frequency pressure oscillations [137]. In particular, the
mean flow field, the acoustic field and flame excitation mechanisms were being investigated.
Airbus DS, EM2C, IMFT, and TUM have participated to the workshop and the results from
IMFT and TUM can be found in [97, 121, 133, 136, 149] and [49, 50], respectively. A complete
comparison between all approaches can be found in Hardi et al. [137]. In this workshop four
load points were considered, comprising LP1 and LP4 presented in Sec. 4.1.1.

The Power Spectral Density (PSD) of the experimental pressure measurements provided
by DLR Lampoldshausen (Germany) are shown in Fig. 4.4. The PSD is calculated on each of
the 8 HF pressure sensors of the ring C (cf. Fig. 4.1(a)) using the Welch method [150] and,
consistently to the procedure used by DLR in the REST workshop, the modulus of the 8 PSDs
are averaged [137]. Figure 4.4 shows two spectra corresponding to LP1 and LP4, respectively.
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Figure 4.4: Power Spectral Density of p′ for (a) LP1 and (b) LP4.

First, LP1 exhibits low levels of acoustic fluctuations. The pressure fluctuations at fre-
quencies above 2 kHz are of 1 kPa at the maximum, that is, only 1.5% of the pressure chamber.
The low-frequency content exhibits high fluctuation levels but are not the object of the HF-7
test case, which focuses on high-frequency oscillations.

On the contrary, high levels of pressure oscillations are observed for the operating point
LP4. Two high-frequency peaks are clearly identified (labeled “1” and “2” in Fig. 4.4(b)).

The first peak, at f = 10, 260 Hz, has been identified by DLR to be the resonant acoustic
mode with a first order tangential structure (cf. Fig. 2.2(b)). The placement of the dynamic
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pressure transducers in the experiment is optimized to provide accurate measurement of the
amplitude of this mode [137]. Sliphorst et al. [151] have developed a method based on a
least-square fit of the pressure signals in order to yield accurate evaluations of both the first
tangential amplitude and its nodal line orientation. First the pressure signals are oversampled
and filtered using a bandpass filter centered at the frequency of the first tangential (peak 1).
Since a pure tangential mode has a sine structure in the azimuthal direction, the least-square
fit is performed so that the pressure signals are decomposed as follows:

p′(θ, t) = A(t) sin (θ + ϕ(t)) (4.1)

where A(t) is the zero-to-peak amplitude, θ is the azimuth in the cylindrical coordinates
system (r, θ, z) and ϕ is the angle corresponding to the orientation of the nodal line.

IMD is capable of performing a similar analysis and it was, in fact, the starting point for
the development of this approach. The results obtained by IMD are compared to the ones
obtained by Sliphorst’s method [151] in Sec. 4.2 and Sec. 4.3 for LES and experimental results,
respectively.

The second peak, at f = 20, 500 Hz, cannot, in principle, be identified in the experiment as
all of the pressure probes are located at the same radial and axial location. At this frequency,
neither a first order tangential structure nor a second order tangential structure was found.
At 20.5 kHz, it is observed that all pressure signals are in phase, which makes it impossible
to discriminate between a radial or a longitudinal mode.

Large-Eddy Simulations of the complete setup, from the injection domes to the choked
nozzle, have been performed by Urbano et al. [121, 136] (cf. Chapter 5) and Douasbin et
al. [133].

The details of the LESs are given in Chapter 5. Nonetheless, it is interesting to note
that LES allows the determination of both peaks in Fig. 4.4(b): the first peak is identified
to be a mode with a first order tangential structure and the second peak to a mode with a
first order radial structure [121] (cf. Figs. 2.2(b) and 2.2(d), page 17). These modes are not
purely tangential or radial but coupled with longitudinal structures in the chamber and, as
typically observed in liquid rocket engines, coupled with longitudinal structures in the injector
posts. The frequencies of the transverse combustion instabilities predicted by the LES are in
excellent agreement with the experimental measurements with a relative error lower than 5%.

As discussed in Chapter 3, the IMD methodology requires a basis of eigenmodes for the
projection. We now discuss the use of a Helmholtz solver to obtain this basis.

4.1.4 Helmholtz simulation of the BKD

The acoustic modes shapes are evaluated by solving the homogeneous Helmholtz equation
(Eq. 2.25). This approach was used by Urbano et al. [121] to identify the modes shapes of the
unstable modes in the BKD under the LP4 operation point.
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As discussed in Chapter 2, several assumptions are necessary to derive the homogeneous
Helmholtz equation. Some of these assumptions are questionable and are discussed here.

First, the determination of acoustic modes requires a baseline flow. As the homogeneous
Helmholtz equation is used here, only the sound speed field c0(x) is needed. If the lin-
earized Euler equations were used, a mean velocity field would also have been needed, that is:
u0(x), v0(x), w0(x).

The sound speed field used by the Helmholtz solver is the time-averaged sound speed field
predicted by the LES in the limit cycle [121].

This sound speed field is believed to be (1) accurately predicted as the LES results are
in excellent agreement with the experimental data and (2) of high impact on the triggering
mechanisms of the thermoacoustic instabilities as discussed in [97, 136].

The derivation of the homogeneous Helmholtz equation requires the use of the wave equa-
tion. When deriving the homogeneous Helmholtz equation (Eq. 2.25), the mean flow effects
are neglected.

In the BKD, the mean Mach number in the chamber is about M ≃ 0.25, before being
accelerated by the choked nozzle. Obviously, the low-Mach assumption does not stand near
(or inside) the nozzle. Moreover, the longitudinal structure of the chamber eigenmodes is
expected to be impacted by the Mach number. However, in this study we focus on the
structure and eigenfrequencies of the transverse modes in the combustion chamber and their
coupling with the injectors.

In the chamber, no mean flow is present in the transverse direction so that the transverse
structure of the eigenmodes is expected to be well predicted by the Helmholtz solver. In the
O2 injectors, the Mach number is M≃ 0.04 so that, in these regions, the low-Mach assump-
tion should be considered fulfilled.

As demonstrated by several authors [57, 61, 62, 130], solving the inhomogeneous Helmholtz
equation with the acoustic source term being modeled by a flame-response model – a Flame
Transfer Function1 (FTF) – allows the determination of the mode shapes and their associ-
ated growth rate. This approach is computationally efficient and is very useful to study the
thermoacoustic linear stability of industrial burners.

The goal of the current study is much more modest as we only seek for the mode shapes in
order to define a IMD basis. In this context, the use of the homogeneous Helmholtz equation
is sufficient. In addition, the question of which flow variable is relevant to model the flame-
response of a transcritical H2/O2 coaxial flame is yet to be addressed so that no trustworthy
flame-response model can be used. Here, the influence of the heat release rate fluctuation q′

on the eigenfrequency and the spatial structure of the eigenmodes is neglected2 [121].

1A Flame Describing Function (FDF) can also be used [55]. It is the nonlinear representation a FTF [6].
The basic idea is to define a FTFs taking into consideration the input level of the velocity fluctuations upstream
of the flame. It allows to predict limit cycles, mode switching and nonlinear triggering [152–154].

2It should be noted that the sound speed field – and consequently the eigenfrequencies and the spatial
structures of the eigenmodes – is strongly impacted by the transverse combustion instabilities: the flame are
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When deriving the inhomogeneous Helmholtz equation (cf. Eq. 2.25, page 16), no equation
of state is needed. Here, real gas thermodynamics is accounted for indirectly by the mean
sound speed field solved by LES (AVBP-RG, real gas version of AVBP). If the Rayleigh source
term is considered, real gas thermodynamics is required in the Helmholtz solver.

The details and the results of the Helmholtz simulation carried out to determine the BKD
eigenmodes are now discussed. Two simplifications of the geometry are done for the acoustic
simulation:

• Impedance of the nozzle:
The low-Mach assumption used to derive the Helmholtz equation makes it impossible
to compute the entire domain. The Mach number reaches high values at the end of
the cylinder segment (cf. Fig. 4.1(b)), that is when the convergent of the choked nozzle
accelerates the fluid. To avoid this issue, only the cylinder segment is kept and the
nozzle is replaced by its equivalent impedance boundary condition [155, 156].

• Hydrogen post:
In the LES, small acoustic fluctuation levels are observed in the hydrogen dome. This
portion of the setup is also modeled by an impedance boundary condition. The actual
impedance of the injector posts is computed from the LES in [121] for the two unsta-
ble frequencies of the LP4 operating point. The resulting impedances are3: Z(f1) =
−1.160 − i0.255 and Z(f2) = −1.454 − i0.261. In preliminary simulations, Urbano et
al. [121] have found that the hydrogen post impedance only has a marginal impact on
the predicted eigenfrequencies and mode shapes.

It should be pointed out that the Helmholtz eigenmodes obtained by the AVSP solver are
not independent from the LES results as the sound speed field used for the baseline flow is
the time-averaged field predicted by the LES.

The simulation is conducted with a 4.3 million cells mesh. The boundary conditions are
set to hard walls (u′ = 0) with the exception of the H2 injectors and the nozzle that have been
replaced with their equivalent impedance as discussed above.

Two modes are identified for the peak 1 and a single mode is identified for the peak 2
in Fig. 4.4(b). The two first modes have the same eigenfrequency f1 = 10900 Hz and they
are denoted 1T and 1T ′. The real pressure field corresponding to the modes 1T and 1T ′ are
shown in Figs. 4.5(a), 4.5(b) and 4.5(c), 4.5(d).

shortened. This is especially true for the inner flames at the maximum transverse velocity fluctuation location
of the 1T mode. This effect is accounted for indirectly by the sound speed field used in the acoustic solver.

3In this manuscript the −iωt convention is used.
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(a) x planes for mode 1T (b) y and z planes for mode 1T

(c) x planes for mode 1T ′ (d) y and z planes for mode 1T ′

(e) x planes for mode 1R (f) y and z planes for mode 1R

Figure 4.5: Real part of pressure eigenmodes 1T , 1T ′ and 1R.
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Both modes share similar modal structures:

1. A strong first order tangential structure in the chamber such as shown in Fig. 2.2(b) for
a cylindrical cavity,

2. The oxygen dome also has a first order tangential modal structure but it is phase shifted
by π in comparison with the chamber’s structure,

3. A quarter-wave like longitudinal structure can be seen in the chamber,

4. A three-quarter-wave like longitudinal structure in the oxygen posts.

These two modes are tangential standing modes. The nodal lines of the modes 1T and
1T ′ are almost perfectly oriented along the y = 0 and z = 0 planes, respectively. Any other
orientation of the nodal line can be obtained as a superimposition of these two modes.

The mode corresponding to the eigenfrequency f2 = 21800 Hz is denoted 1R and is shown
on Figs. 4.5(e) and 4.5(d). In the chamber, near the injection faceplate, the modal structure
is a first order radial mode (cf. Fig. 2.2(d), page 17) and the same structure is present in the
O2 injection dome. The pressure oscillations in the dome are in phase with the ones of the
chamber. Similarly to the 1T and 1T ′ modes, the radial pressure fluctuations in the chamber
are coupled with longitudinal pressure modes of the oxidizer posts.

For the three modes presented in Fig. 4.5, a strong acoustic activity is observed in the
near-injector region of the chamber.

4.2 IMD of LES signals

In this section, IMD is applied to 4 LESs of the BKD in order to gain understanding on
the complex dynamics of the 2 resonant acoustic modes playing a role in the combustion
instabilities: the 1T and 1R modes. Each of the LESs corresponds to the LP4 operating
point, which is thermoacoustically unstable. The orientation of the nodal lines is different in
each of the 4 LESs and the resulting combustion instabilities exhibit various non-linear limit
cycles.

4.2.1 Acoustic triggering & initial solutions

The experimental and numerical setups have been presented in Sec. 4.1.1. In addition to the
database generated by Urbano et al. [121], three LESs were conducted. The objective of this
section is to use IMD to study the mode dynamics in 4 LESs of the BKD setup.

In experiments, self-excited combustion instabilities may occur after a few seconds or even
minutes. For example, the walls of an experiment can take a few minutes to heat up to the
equilibrium temperature and it is known that the wall heat fluxes have a large impact on
thermoacoustic stability [157–159].
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The computational burden of high-fidelity simulations, such as LES, is such that only a
few milliseconds of physical time can be simulated. In this context, Urbano et al. [121] have
used a “bomb-test-like” triggering technique in order to excite the acoustic energy.

The “bomb-test” is an experimental technique where actual explosive charges are used to
produce an acoustic perturbation in the combustion chambers. When designing a LRE, one
has to ensure that no combustion instability can arise as it could lead to a lack of performance,
failure or explosion of the system [18, 19]. The explosive charge would excite all the resonant
acoustic modes of the chamber which would trigger potential combustion instabilities (if the
system is prone to such phenomenon). In the space propulsion industry, this test is a common
practice as it is part of the guidelines for design and flight certification of rocket engines [160].

The triggering approach of Urbano et al. [121] consists in superimposing an acoustic per-
turbation to the pressure field as shown in Fig. 4.6. This perturbation is the transverse
contribution of first tangential resonant mode – i.e. neither radial nor longitudinal contri-
bution is used – similarly to the cross-section view in Fig. 2.2(b). This choice is justified
by the fact that authors [18, 20, 130] have shown that the dominant resonant mode in LRE
when subject to combustion instabilities is, most of the time, the first tangential mode. This
statement is also valid for the BKD setup, as discussed by [121, 127].

The resulting solution is used as an initial solution for the next LES. The pressure field is,
hence, initialized as:

pinit(x, y, z, t) = p(x, y, z, t) + A× p′
1T(x, y, z) (4.2)

where A is the maximum pressure amplitude of the mode (in Pa) at time t = 0 s.

Figure 4.6: Pressure perturbation shape p′
1T superimposed to the thermoacoustically stable

unsteady pressure field. (Reproduced from [121])

The BKD configuration operating at the load point LP4 was found to be linearly stable
at relatively low amplitudes A (2.5 and 5 bar, i.e. 3 % and 7 % of the mean pressure in
the chamber pc, respectively). However, for an amplitude of A = 10 bar (13 % of pc), the
triggering resulted in a self-sustain limit cycle [121]. This phenomenon is called nonlinear
triggering and it has been observed in experimental setups [161] and discussed by several
authors [162, 163].
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Figure 4.7: Nodal line orientation of initial solution of the 4 LESs used in the study.

Each of the LESs considered in this study are conducted with this initialization strategy.
Every bomb-test solution uses the same initial field but the superimposed perturbation is
different:

1. Same amplitude: the mean-to-peak amplitude is A = 10 bar for all the perturbations,

2. Same mode shape: the mode shape is the same as the one shown in Fig. 4.6,

3. Different orientation: the nodal line orientation of the first tangential mode changes
for each solution.

The angle of the orientation, denoted θ, and the four resulting initial solutions are shown in
Fig. 4.7. The angle θ is defined such that:

• θ = 0◦ when the nodal line is aligned with the y axis,

• θ > 0◦ when the nodal line moves toward the z axis counter clockwise (cf. Fig. 4.7),

• θ = 90◦ when the nodal line is aligned with the z axis,

• θ ∈ [0◦, 180◦].

In the following, the four LESs triggered by the perturbations presented in Fig. 4.7 will
be referred to as: “LES0”, “LES45”, “LES90” and “LES135”.

4.2.2 Instantaneous Modal Decomposition of LES pressure signals

The 4 LES are conducted with AVBP-RG with the same numerical setup as presented in
Sec. 4.2.1. In this section, the data used to perform the IMD analysis is presented.

Pressure signals used for IMD

The pressure signals used in the current IMD analysis are the 8 probes of the “ring C” such
as defined in Figs. 3.6(a). These pressure probes correspond to the HF transducers present in
the experimental setup (cf. Fig. 4.1(a)).
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Figure 4.8 shows the acoustic pressure signals obtained in the LES90 (the LES for the
initial perturbation with the nodal line oriented as θ = 90◦) for the probes C1, C2, C3 and
C4 between 1 ms and 2 ms. These pressure signals are much more complex than the ones
studied in Sec. 3.3 (cf. Fig. 3.6(b)) to validate the IMD methodology.

A few observations can be made on the presented signals:

1. The maximum mean-to-peak amplitude goes as high as 30 bar i.e. about 40% of the
mean pressure in the chamber. Such a high value indicates that the linear acoustic
theory might not be sufficient to accurately describe the acoustic phenomena in the
BKD.

2. The signals are non-monochromatic which indicates the presence of several acoustic
modes.

3. The peak values observed in the signals are changing quickly. Under such conditions,
the “slow varying envelope” assumption used to reconstruct the acoustic velocity field
might not be fulfilled (cf. Eqs. 3.29 and 3.30, Sec. 3.2.2, page 33), hence, introducing
an error in the acoustic velocity field reconstructed.
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Figure 4.8: Pressure traces LP4 LES90.

Construction of the basis for IMD

Similarly to the construction of the IMD basis for the Simplified LRE configuration (cf.
Sec. 3.3.4), the basis used for the IMD analysis is constructed using the values of the complex
pressure eigenmodes found by the Helmholtz solver AVSP. Since the investigation of Urbano et
al. [121] has found that the high-frequency CIs present in the BKD are due to two transverse
modes (1T and 1R, cf. Fig. 4.5), the IMD basis chosen here comprises the eigenmodes needed
to capture the dynamics of these two transverse modes. Three eigenmodes are considered:
the 1T , 1T ′ – two eigenmodes are needed to study the first tangential mode (cf. Chapter 3) –
and the 1R – a single eigenmode is needed to study the first radial mode –. These eigenmodes
are shown in Fig. 4.5.
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4.2.3 Results

The modal decomposition is used to analyze the four LESs: “LES0”, “LES45”, “LES90”
and “LES135”(cf. Fig. 4.7). In this section, a spectral analysis will be conducted on complex
amplitude signals and the nodal line orientation will be recovered from the complex amplitudes
a1T and a1T ′ . At last, the acoustic field will be reconstructed and compared to the LES signals.

Mode dynamics

As three modes are considered in the IMD analysis (1T , 1T ′ and 1R), three complex ampli-
tudes signals are obtained: a1T (t), a1T ′(t) and a1R(t). Figure 4.9 shows the modulus of the
complex amplitudes signals for the four cases.

For instance, in Fig. 4.9(a) the modulus of the amplitudes is shown for LES0. At t = 0 ms,
the first tangential mode is triggered. As explained above, θ = 0◦ corresponds to the case
where the nodal line is on the y. Consequently, the acoustic field is dominated by the 1T
contribution as the contribution of |a1T | is roughly one order of magnitude higher that |a1T ′|.

Similarly, the case LES90 corresponds to an initial solution very close to the eigenmode
1T ′ so that the acoustic field is dominated by the 1T ′ contribution.

On the contrary, for LES45 and LES135 (cf. Figs. 4.9(b) and 4.9(d)) the amplitudes of
|a1T | and |a1T ′| are the same at t = 0 ms.

Unlike in the simplified LRE configuration (cf Chapter 3) where the envelope amplitude
was decreasing monotonously, here the envelope has a cyclic regime as observed by Urbano et
al. [121]: a rough peak-to-peak analysis indicates that this cyclic regime has a frequency of
about 1 kHz. This cyclic regime is triggered in the four LESs. However, the exact period of
these fluctuations varies for each of the four cases considered.

In the case LES0, |a1T ′| increases while |a1T | decreases. This corresponds to a rotation
of the nodal line. For LES90, |a1T ′| decreases while |a1T | maintains a constant level. This
indicates both a nodal line rotation and a dampening of the CIs.

IMD predicts that the first radial mode appears naturally in each of the four cases al-
though, contrary to the first tangential mode, no radial contribution was added to the initial
solution. However, the first radial mode does not play a major role here as its amplitude does
not get higher than 3 bar.



64 Chapter 4: Acoustic field in the BKD: analysis & reconstruction

0 2 4 6

Time [ms]

0

5

10

15

20

25

30

A
m
p
lit
u
d
e
[b
ar
]

|a1T |

|a1T ′|

|a1R|

(a) Modulus of amplitudes for case θ = 0◦

0 2 4 6

Time [ms]

0

5

10

15

20

25

30

A
m
p
lit
u
d
e
[b
ar
]

|a1T |

|a1T ′|

|a1R|

(b) Modulus of amplitudes for case θ = 45◦

0 1 2 3 4 5 6

Time [ms]

0

5

10

15

20

25

30

A
m
p
lit
u
d
e
[b
ar
]

|a1T |

|a1T ′|

|a1R|

(c) Modulus of amplitudes for case θ = 90◦

0 2 4 6

Time [ms]

0

5

10

15

20

25

30
A
m
p
lit
u
d
e
[b
ar
]

|a1T |

|a1T ′|

|a1R|

(d) Modulus of amplitudes for case θ = 135◦

Figure 4.9: Temporal evolution of the modulus of the complex amplitudes corresponding to
the modes 1T , 1T ′ and 1R for θ = 0◦, θ = 45◦, θ = 90◦ and θ = 135◦.

Maximum amplitudes of acoustic pressure fluctuations

Knowing the complex amplitudes, one can retrieve the maximum amplitudes yielded by the
fluctuation of a single mode, e.g. 1R, or a combination of two modes, e.g. 1T and 1T ′.

The temporal evolution of the maximum combined amplitude of the two transverse modes
is plotted in Fig. 4.10. As seen in Fig. 4.9, the case LES90 shows a decrease in overall
fluctuation level while the others are quite steady.
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Figure 4.10: Maximum of acoustic pressure in time for the four cases.

Spectral analysis of the complex amplitudes

A spectral analysis of IMD’s complex amplitudes is conducted using the Welch method [150].
The Power Spectral Densities (PSDs) of the 4 cases are shown in Fig. 4.11.

For each case, the PSDs corresponding to the 1T , 1T ′ and 1R modes are shown. The
spectra of the four cases are similar. The dominant modes identified in Fig. 4.10 are recovered
in the PSD spectra:

• the mode 1T is dominant for LES0,

• the mode 1T ′ is dominant for LES90,

• the modes 1T ′ and 1T ′ have the same contribution for LES45 and LES135.

Despite the fact that the IMD analysis does not constrain the frequency of a given mode,
the spectra of the 1T and 1T ′ are found to peak at 11 kHz, which is the expected values from
the experiment, the LES and the Helmholtz simulations. The 1R also peaks at the correct
frequency (21 kHz) but, it also has a lot of low-frequency content.

This effect is caused by the fact that IMD is a spatial method: only the mode’s shape is
constrained so that the locations of the pressure measurements are essential for the determi-
nation of the modes’ contribution to the pressure field.

For instance, here all the probes are located at an identical axial and radial position so
that pressure oscillations having a “bulk” contribution to the pressure measurements4 can be
either attributed to a longitudinal or radial mode.

Hence, it can be speculated that the low-frequency content of the 1R mode is caused by
longitudinal modes. Similarly, the peak observed at 32 kHz for 1T and 1T ′ can be due to a
higher order tangential/longitudinal coupled modes.

4That is, pressure oscillations that are of the same amplitude and phase at for all probes
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Figure 4.11: Power Spectral Density (PSD) of the complex amplitudes for the four cases.

Nodal line orientation

Experimental studies have highlighted the fact that, in the BKD, the first tangential mode
is dominant [121, 127, 136, 149] and that, for the operating point LP4, the nodal line has a
preferred orientation [137, 151, 164]. The goal of this section is to recover the evolution of the
nodal line orientation of the first tangential mode from the complex amplitude ai provided by
the IMD.

At this point it is useful to recall that any first tangential mode, i.e. for any orientation
and amplitude, can be expressed as a superposition of two degenerate first tangential modes.
These modes – often called “basis” – can be standing or rotating [9? ]. Here, the IMD was
performed using a standing basis as the Helmholtz solver (AVSP) determines the standing
modes. The two standing modes of a first tangential mode are similar but their nodal lines
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are perpendicular. The nodal line orientation of the tangential mode resulting from the
superposition of these complementary modes can be simply expressed as:

A1T + A1T ′ei(δ+ π
2 ) = A0e

iθ (4.3)

The maximum amplitude A0 in the ring C can be found at the angle θ±π/2 and is calculated
as:

A0 =
√
A2

1T + A2
1T ′ + 2A2

1TA
2
1T ′ cos(δ) (4.4)

The phasing difference δ is given by:

δ(t) = ∠ℜ(a1T′(t))− ∠ℜ(a1T(t)) (4.5)

It can be determined on the interval [0, π] using the arctan function5

θ = ∠ arctan

(
A1T ′ sin δ

A1T + A1T ′ cos δ

)
(4.6)

Equation 4.6 is used here to track the evolution of θ in the 4 LESs considered here (cf.
Fig. 4.7). The evolution of θ(t) obtained by this method are shown in Fig. 4.12 for the 4
LESs. In order to provide meaningful information, two additional treatments were used:

1. A Savitzky-Golay filter was applied to the raw signal θ(t) obtained when using Eq. 4.6.
The Savitzky-Golay filter used is a digital filter designed for smoothing the data to
increase the signal-to-noise ratio [165, 166]. They perform much better than standard
averaging FIR filters (in particular unweighted moving average filters), which tend to
filter out a significant portion of the signal’s high frequency content along with the
noise [167]. Here, the temporal window used by the Savitzky-Golay filter is the period
of the 1T mode: TSG = 1/11600 ≃ 90 µs. Such a window is a reasonable assumption as
long as the time scale of the nodal line orientation change is long when compared to the
period of the 1T fluctuations, which is thought to be the case here.

2. the signal obtained for the initial orientation θ0 = 0◦ is oscillating around 0◦. As θ is
defined within the interval θ ∈ [0, π], the values of the angle “jumps” from 0◦ to 180◦.
In order to visualize the evolution of the angle in this case, the angle was expressed on
the interval [−π/2, π/2].

Figure 4.12 shows the evolution of the angle θ, i.e. the nodal line orientation, in time for
the 4 LESs. At first, the angle θ is close to the initial value (cf. Fig. 4.7). The case LES90
have variations from -10◦ to +25◦ and there seems to be a slow increase of θ but a longer
simulation would be required to confirm this trend.

The other three cases stay fairly constant even if a few abrupt changes in θ are present
due to sudden changes in the ratio ||a1T ||2/||a1T ′||2 (cf. Fig. 4.9).

5Mathematically speaking, the angle θ can be determined for θ ∈ [0, 2π] using the values of A1T (t), A1T ′

and δ. Here, as we consider the first tangential mode, the angle θ is within the interval θ ∈ [0, π].
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Figure 4.12: Angle θ of the nodal line of the first tangential mode in time using the complex
amplitudes a1T and a1T ′ .

The DLR team in Lampoldshausen have also developed a method to track the nodal line
orientation [127, 151, 164]. This method is based on a least-square fit of the pressure signals
onto a cosine function. The amplitude and offset of the fitted cosine allows to determine the
angle of the nodal line. Before the least-square fit, the signals are oversampled (interpolation
on smaller time steps) and filtered around the 1T frequency. This filtering procedure is a
major difference with the method used here and this signal pre-processing step should be
borne in mind when comparing the results of the two methods.

The LES pressure signals were analyzed by DLR Lampoldshausen using their method [127,
151, 164].

A comparison between DLR method and IMD method is drawn in Fig. 4.13. For each
case, the results are presented as histogram charts. The abscissa corresponds to the angle θ
sliced into 18 intervals of 10◦ each. The height of the bars refers to the percentage of samples
were the angle θ was found to be in a given interval: it is a Probability Density Function
(PDF).

For instance, in the LES0 case IMD and DLR method found that 37% and 38% of the
samples are corresponding to θ ∈ [0◦, 10◦], respectively.

The overall agreement between IMD and DLR methods is good but some differences can
be observed.

The general trend is that the DLR method tends to provide a narrower range of angle θ
than IMD. This is thought to be due to the filtering procedure in the preprocessing stage.
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Figure 4.13: Probability Density Functions (PDFs) of the angle θ on 10◦ intervals for the
four cases.
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The Savitzky-Golay filter utilized to provide the angle θ from IMD’s complex amplitude is
less selective but works without knowing a priori the frequency of the dominant tangential
mode. Furthermore, a similar filtering can be used for IMD instead of using a Savitzky-Golay
filter. This is done to analyze the experimental pressure measurements of the BKD in Sec. 4.3.

Finally, the broad range of θ in the case LES90 (cf. Fig. 4.12) is retrieved by both methods.
In fact, for this particular case, the agreement is excellent.

Acoustic pressure reconstruction

As shown in Sec.3.3.5, the acoustic pressure field can be reconstructed everywhere in the do-
main using the complex amplitudes determined by IMD and the 3D Helmholtz eigenmodes
determined by AVSP.

The results of the acoustic pressure reconstruction are shown in Figs. 4.14 to 4.19. For
clarity’s sake, only the case LES90 is shown here and only 2 ms are plotted.

1.0 1.5 2.0 2.5 3.0

t [ms]

−20

0

20

40

p′
[b
ar
]

AVBP

IMD Rec.

(a) Probe C1 (RingC)

1.0 1.5 2.0 2.5 3.0

t [ms]

−20

0

20

40

p′
[b
ar
]

AVBP

IMD Rec.

(b) Probe C2 (RingC)

Figure 4.14: Acoustic pressure from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
at Ring C (data used for IMD).

First, the pressure signals used for IMD are reconstructed as a sanity check (cf. Figs. 4.14(a)
and 4.14(b)). The reconstructed signals are in excellent agreement with the original signals.

Figures 4.15(a) and 4.15(b) correspond to the maximum and minimum pressure fluctua-
tions on the Ring C but these probes are not used for the IMD. The reconstructed signals
are well reproduced, in particular for the maximum amplitude at C11 while at C12 some
discrepancies are observed.

Figures 4.16(a) and 4.16(b) correspond to the pressure signals in the chamber, i.e. far
from the measurement transducers. The overall agreement is good as the fluctuations are well
reproduced but the peak amplitudes tend to be underpredicted.

Acoustic pressure signals are also reconstructed in the injectors. Injectors facing the anti-
node and node of pressure are referred to as “Injector A” and “Injector N”, respectively.
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Figure 4.15: Acoustic pressure from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
at Ring C (data not used for IMD).
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Figure 4.16: Acoustic pressure from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
in the chamber.

Figure 4.17 shows the location 1 and 2 corresponding to InjA1 (Injector A, location 1) and
InjN1 (Injector N, location 1) as well as InjA2 and InjN2.

Pressure signals for an injector A are presented in Figs. 4.18(a) and 4.18(b) for Probes
InjA1 and InjA2, respectively. For Probe InjA2, the reconstructed signal is in excellent agree-
ment with the LES.Even though the oscillations are globally in phase, the reconstructed signal
is not predicting at the correct amplitudes.

Figures 4.19(a) and 4.19(b) illustrate the pressure signals of an injector N at locations
x = −1.7 cm and x = −0.2 mm (cf Fig. 4.17) for Probe InjN1 and Probe InjN2, respectively.
Similarly to the injector A, the reconstructed pressure signals for the injector N give an
accurate prediction near the injection faceplate.

As for the validation test case in Sec. 3.3.5, the pressure field reconstructed by IMD predict
accurately the high-pressure amplitudes but some discrepancies exist at low amplitudes.
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Figure 4.17: Drawing of the injector probes’ location.
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Figure 4.18: Acoustic pressure from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
in an injector A.
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Figure 4.19: Acoustic pressure from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
in an injector N.
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Acoustic velocity reconstruction

In this section, the reconstructed velocity signals are compared to signals measured in the
LES90 case where the orientation of the first tangential induces v′ velocity fluctuations in the
chamber and in the injectors facing the nodal line (“injector N”) and u′ velocity fluctuations
in the injectors facing the pressure antinode (“injector A”). Hence, these quantities will be
shown here.

The results are presented in Figs. 4.20 to 4.24.
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Figure 4.20: Acoustic velocity v′ from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
at Ring C (data used for IMD).

First, the acoustic velocity is reconstructed at the probes C1 and C2 used for the determi-
nation of the complex amplitudes (cf. Figs. 4.20(a) and 4.20(b)). Small velocity fluctuations
are present in probe C1 when compared to probe C2. The overall agreement between IMD
reconstructed signals and AVBP signals is good although more complex flow features seem to
be present in the LES.
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(b) Probe C12 (RingC)

Figure 4.21: Acoustic velocity v′ from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
at Ring C (data not used for IMD).

Probe C11 and C12 are shown in Figs. 4.21(a) and 4.21(b). They are located on the
ring C but are not used for the IMD analysis. Extremely high levels of acoustic fluctuation
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are observed for probe C12 with a maximum acoustic velocity of 400 m s−1 for t ≃ 0.5 ms (not
shown here). The low velocity levels in probe C11 are reproduced by IMD. Even though the
amplitudes are not well predicted, the reconstructed signals give a qualitatively good estimate
of the acoustic velocity in these locations.

1.0 1.5 2.0 2.5 3.0

t [ms]

−20

−10

0

10

20

v
′
[m

.s
−
1
]

AVBP

IMD Rec.

(a) Probe InjA1 (chamber)

1.0 1.5 2.0 2.5 3.0

t [ms]

−20

−10

0

10

20

v
′
[m

.s
−
1
]

AVBP

IMD Rec.

(b) Probe InjA2 (chamber)

Figure 4.22: Acoustic velocity v′ from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
in the chamber.

In the chamber, in probes InjA1 and 255, the pressure signals are noisy due to the turbulent
flow and combustion noise. Nonetheless, both probes are fairly well reconstructed.
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Figure 4.23: Acoustic velocity u′ from LES (“AVBP”) and signals reconstructed (“IMD
Rec.”) in an injector A.

The u′ velocity signals for an injector A are presented in Figs. 4.23(a) and 4.23(b). For
Probe InjA1, the acoustic velocity is qualitatively well reconstructed although more complex
features, e.g. the low-frequency content of the signal, seem to be present. The signal recon-
structed in Probe 105 is poorly reconstructed as the fluctuations are 2 orders of magnitudes
lower that in the LES.

Finally, the maximum v′ fluctuations due to the first tangential mode are located at the
pressure nodes in the chamber. Hence, for an injector N, the quantity of interest is v′. Probes
InjN1 and InjN2 (xInjN1 = −1.7 cm and xInjN2 = −0.2 mm, cf Fig. 4.17) corresponding
to an injector N are shown in Figs. 4.24(a) and 4.24(b), respectively. Probe InjN1 has v′
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Figure 4.24: Acoustic velocity v′ from LES (“AVBP”) and signals reconstructed (“IMD Rec.”)
in an injector N.

fluctuations of about 1 m s−1 but these fluctuations do not seem to be due to acoustics. The
v′ signal reconstructed by IMD has extremely low fluctuation level (about 10−4 m s−1, not
shown here). Conversely, the signal reconstructed in Probe InjN2 is in excellent agreement
with the LES signal as both phase and peak amplitudes are accurately reproduced.
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4.3 IMD of experimental signals

So far, the IMD methodology was used on signals obtained in numerical simulations. In
this section, IMD is applied to the experimental pressure measurement of the LP1 and LP4
provided by the DLR (Lampoldshausen, Germany).

The IMD basis is identical to the one used in the previous section (cf. Sec. 4.2). The
pressure measurements are located at the same locations (probes C1-C8).

Figure 4.25 shows the evolution of the modulus (i.e. the envelope) of the temporal am-
plitudes a1T , a1T ′ and a1R for the two operating points studied: LP1 (cf. Fig. 4.25(a)) and
LP4 (cf. Fig. 4.25(b)).

For LP1 the levels of |a1T | and |a1T ′| fluctuate around 0.6 bar and around 0.2 bar for |a1R|.
For LP4 the levels of |a1T | and |a1T ′| fluctuate around 2 and 3 bar, respectively, and around
0.25 bar for |a1R|. The cyclic-regime observed in the 4 LESs is not present in the experimental
setup for these operating points.
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Figure 4.25: Modulus of complex amplitudes in time for (a) LP1 and (b) LP4.

The spectra shown in Fig. 4.26 correspond to the Power Spectral Density of the real part
of the complex amplitudes ai for the operating points LP1 (cf. Fig. 4.26(a)) and LP4 (cf.
Fig. 4.26(b)).

For both operating points, the frequency contents of ℜ(a1T ) and ℜ(a1T ′) are similar: the
main peak is located at 10.5 kHz and the secondary peaks are also captured. The PSD of
ℜ(a1R) has a main peak at 20.5 kHz but it also has a strong low-frequency content. This effect
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is caused by the choice of the probe locations making the IMD basis unable to discriminate
between radial and longitudinal acoustic fluctuations.

The spectra shown here have the same frequency content as the ones in Fig. 4.4 (page
54) corresponding to the raw pressure measurements. The IMD spectra allow to identify the
modes responsible for the peaks, e.g. the 20.5 kHz peak is mainly due to ℜ(a1R). It is an
additional evidence that this peak is, in fact, due to the first radial mode as found in the
numerical study of Urbano et al. [121].
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Figure 4.26: Power Spectral Density for the complex amplitudes ai for (a) LP1 and (b) LP4.

The orientation of the nodal line of the transverse mode is now analyzed in the experiment.
The amplitudes and spectra shown here correspond to an IMD analysis of the raw experimental
pressure measurements. As discussed in Sec. 4.2.3, DLR Lampoldshausen use a preprocessing
stage in order to study the orientation of the nodal line of the first tangential mode.

This preprocessing comprises two steps: (1) an interpolation of the signal in order to pro-
vide shorter samples and (2) of a band-pass filtering stage with a bandwidth centered on the
1T’s frequency. The objective of the filtering procedure is to remove from the analysis the
perturbations that may have a transverse shape similar to the 1T but not the same longitu-
dinal structure. It was used here in order to track the orientation θ of the nodal line of the 1T.

Equation 4.6 was used in order to study the angle θ. The obtained data is compared to the
data of DLR Lampoldshausen in the histograms shown in Fig. 4.27. These histograms can be
seen as Probability Density Functions (PDFs) as they indicate that probability for the angle
θ to be in a 10◦ interval. Both method are used to analyze the experimental measurements
of DLR Lampoldshausen over 1 s.

The agreement between IMD and the DLR method [127, 151, 164] is excellent for both
operating points. The maximum error between the two methods is of 0.1%.
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The results for LP1 show that the probability for θ to be in an interval is around 5 to 6%.
The maximum probability is at θ = 90◦. No strong preferred orientation is observed in this
operating condition.

Conversely, the PDF of θ for the operating point LP4 shows a strong preferred orientation
around θ = 130◦. For instance, the probability of the angle θ to be in the interval [120◦, 130◦]
is 7 times higher than the probability of the angle θ to be in the interval [20◦, 30◦].

It can be speculated that the preferred orientation in the experiment is caused by a breaking
of the symmetry in the geometry and/or the flow distribution. Indeed, the pattern of the
injectors may favor a given orientation through the dynamic response of the flames. Also,
manufacturing tolerances may further break the geometric symmetry. Finally, asymmetric
pressure distribution and turbulent flow phenomena in the injection manifolds may result in
differential flow rates through the injection elements.
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Figure 4.27: Histograms of the percentage of the presence of the angle θ on 10◦ intervals for
the operating points (a) LP1 and (b) LP4.



Section 4.4: Conclusion 79

4.4 Conclusion

The BKD experimental setup (DLR Lampoldshausen, Germany) was presented along with
the operating points considered in this study (LP1 & LP4). After discussing some previous
studies results, the Helmholtz eigenmodes corresponding to the resonant modes of the trans-
verse combustion instability were presented. Then, the pressure signals from both numerical
simulations and experimental measurements were analyzed using the IMD method presented
and validated in Chapter 3.

The study is beyond some theoretical limitations of IMD:

1. a non-linear acoustic regime is reached, while IMD was derived in the linear acoustic
framework.

2. the Helmholtz eigenmodes used to build the IMD basis are non-orthogonal due to the
nozzle and H2 injectors impedances considered in the Helmholtz simulation. However,
the quasi-orthogonality condition is verified for the basis used here (Eq. 3.15, page 31).

3. consequently to the probe location choice, the discrimination between radial and longi-
tudinal fluctuations is impossible. This issue could have been easily resolved as many
probes are available in the LESs considered. However, the study was conducted under
conditions similar to the diagnostics present in the experimental setup.

Although these limitations are present, IMD yields encouraging results. The contribution of
each mode and the maximum associated acoustic fluctuations was satisfactorily found.

The frequency content of IMD’s complex amplitudes yields insights on potential modes
with first tangential and first radial structures. The orientation of the nodal line was studied
for the four cases and the results were compared with the method of DLR [127, 151, 164] and
a good agreement between the two methods was found.

The acoustic velocity field reconstructed from IMD’s complex amplitude was found to be
in overall good agreement with the LES signals, especially in the areas of interest: in the
chamber (near the injection faceplate) and in the injectors (A & N).

Finally, experimental measurements provided by the P8 bench of DLR Lampoldshausen
were studied with the proposed methodology. The spectral analysis of IMD’s complex am-
plitudes is an additional information than, in agreement with Urbano et al. [121], the mode
responsible for the 21 kHz combustion instability was found to be the first radial mode of the
basis. The orientation of the nodal line found by IMD was compared to the results obtained
by DLR with identically filtered signals and an excellent agreement was found between the
two methods. It was found that, for the LP4 operating point, the nodal line has a preferred
orientation around 130◦ while no clear preferred orientation was identified for the LP1 orien-
tation point.
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Chapter 5

Flame response to transverse acoustic
modes in LRE

Although the IMD method, presented in Chapter 3 and used in Chapter 4, is a valuable source
of information when investigating the evolution of the acoustic modes in the BKD, it does
not bring a deeper understanding of the mechanisms leading to combustion instabilities.

One identified mechanism is that the unsteady heat release rate can add or remove acoustic
energy from the acoustic field depending on its phasing with acoustic pressure fluctuations.
Historically, this acoustic source/sink term is at the basis of the very first criterion used to
predict the presence of thermoacoustic instabilities: Rayleigh’s criterion [26, 27]. It states
that if the time averaged product of these quantity is positive then energy is injected into the
acoustic field, which might lead to thermoacoustic instabilities.

In this chapter, a LES database of transverse combustion instabilities in a 42-flame liquid
rocket engine is used to identify, for each flame, the associated: (1) unsteady heat release,
(2) Rayleigh source term. This is done for each of the two dominant transverse chamber
modes. The goal of study is to identify which flames are to be held liable for the transverse
combustion instabilities and to develop a deeper knowledge of the mechanisms responsible for
such phenomena. These questions are timely to be addressed and their study give insights on
which flow variables are the most relevant for an eventual flame-response model.

After recalling the context of the study in Sec 5.1, the used LES dataset is described in
Sec. 5.2. The limit cycle predicted in the LES is analyzed in Sec. 5.3. Section 5.4 is devoted
to the description of the global structure of the flame response and the relative contributions
of the two dominant modes are discussed. Finally in Sec. 5.5 the physical mechanisms that
drive the unsteady flame response are identified, with a focus on the specific injectors that
play the most important role in the destabilization of the transverse mode.

This chapter is the product of a collective work which has been published in the Proceedings
of the Combustion Institute (2017) [136].

81
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5.1 Introduction

The occurrence of combustion instabilities has plagued many development programs for high-
performance propulsion systems [6, 9, 10, 18]. In the aerospace industry, one of the most
striking examples may be the development of the F1 engine for the Apollo mission, which
required 1332 full-scale hot-fire tests and 108 injector design changes before meeting both
stability and performance requirements [22]. The cost associated with such trial-and-error
procedure can be prohibitive justifying the search for methods allowing the prediction of sta-
bility characteristics at the design stage.

With growing computational resources available to researchers and engineers, and the
development of High Performance Computing, it is timely to address this problem with nu-
merical tools that simultaneously solve for turbulence, acoustics and combustion. Indeed,
high fidelity modeling strategies such as Large-Eddy Simulation (LES) have had consider-
able successes in predicting unstable operating points for gas turbine combustors [43, 44] or
gaseous coaxial injectors [62, 168, 169]. With the recent development of LES for transcriti-
cal flows [100, 170–172], high-pressure liquid rocket engine stability can now be numerically
studied [121]. Nevertheless, these methods are usually too cumbersome to allow explorations
of the whole range of operating conditions. Moreover, it might even be a waste of resources
to systematically use LES because it is likely that there are generic features pertaining to the
injection units and system or to the combustion chamber, which do not require a high-fidelity
simulation to be predicted.

One alternative to this “brute force” approach is the joint use of a flame-response model
and an acoustic solver [130]. This has been demonstrated in a generic configuration [55] but
also in more complex geometries including turbulent flames [57]. This strategy can help the
analysis of unstable modes and deliver good predictions of stability maps [61]. This has also
been tried for rocket engine configurations [62, 63] with some success. However, two key
ingredients are required as inputs for this approach:

1. A baseline flow field:
When solving the Helmholtz equation, the field of speed of sound is needed. If linearized
Euler equations are chosen, the mean velocity field is also required.

2. A model for the response of the flame to acoustic perturbations:
The driving mechanism for the amplification of acoustic perturbations involves the cou-
pling with unsteady heat release rate fluctuations. This often arises through a complex
mechanism combining nonlinear fluid mechanics and the flame response to incident
acoustic perturbation. A global model for this complex interaction is then required to
feed the acoustic solver.

The baseline flow can usually be obtained from lightweight computations or theory, but
in some cases high-fidelity simulations are required because it directly influences the eigenfre-
quency values. However, the flame response is virtually impossible to derive from theoretical
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considerations, except in some simple cases, and its accurate determination is central to the
prediction of stability maps. Experimental determinations are easily obtained for atmospheric
pressure systems but there are technical difficulties when operating at high-pressure. This is
where the high-fidelity numerical simulations of the “brute force” approach can be of help.

In what follows, calculations will not be used to derive stability maps but for more modest
goals:(1) Understanding physical mechanisms that drive the flame responses and (2) Obtain
a quantitative evaluation of this flame response.

The objective of the present work is to use a time-resolved dataset of 3D solutions obtained
by LES for the study of injector response during the limit cycle of a combustion instability.
Also, with the intent to model the unsteady flame response to be fed into an acoustic solver,
the question of which flow variables are most relevant is addressed. It is indicated by Yang and
Anderson [22, chap. 1, p. 9] that the physical and chemical processes in the immediate vicinity
of the chamber backplane are generally quite sensitive to the transverse velocity perturbations
parallel to that plane and less susceptible to the unsteady motions acting in the main flow
direction at right angles to that plane. On the other hand, much of the work in this domain
(e.g. Crocco et al. [173]) emphasizes effects of unsteady pressure as the input for the flame
response and this has led to some meaningful results. It is thus interesting to identify the
processes that feed energy into the coupling modes and drive the unstable oscillations and
more specifically compare effects of transverse velocities with those of pressure perturbations
in the near vicinity of the injector backplane. This will be done here by making use of the
high-fidelity simulation dataset.

5.2 LES dataset

The configuration studied is the BKD. It has been described in Chapter 4 (cf. Sec. 4.1.1) and
more complete description can be found in Gröning et al. [124–126].

The LES has been carried out with the real-gas flow solver AVBP-RG [99] jointly devel-
oped by CERFACS, IFPEN and EM2C. A two-step Taylor-Galerkin scheme called TTG4A, is
used, which is third order in space and fourth order in time [134, 135]. The solver accounts for
multicomponent real-gas thermodynamics and transport [101, 102]. The Wall Adapting Lin-
ear Eddy (WALE) model is used to close the subgrid stress tensor [112] and an eddy-diffusivity
approach is adopted for thermal and species subgrid contributions (constant turbulent Prandtl
and Schmidt number: Prt = 0.6 , Sct = 0.6). An infinitely-fast chemistry model [100], relying
on the assumption of local chemical equilibrium and a β-pdf description of the filtered mixture
fraction Z̃, is adopted. Four species are considered (H2, O2, OH and H2O) and source terms
are computed following the method described in [100]. Specific mass flow rates and temper-
ature of O2 and H2 (ṁO2

= 5.75 kg.s−1, ṁH2
= 0.96 kg.s−1, T inj

O2
= 111 K and T inj

H2
= 96 K)

are imposed at the domes manifolds inlets using characteristic treatment of the boundary
conditions [174], adapted to real-gas thermodynamics. The outlet nozzle is choked, requiring
no boundary treatment. The walls are assumed to be adiabatic and are treated as no-slip
boundaries in the injectors and as slip-boundaries in the chamber and in the domes.
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The computational domain shown in Fig. 5.1 is discretized with a 70 M element mesh.
The typical mesh resolution in the zone where the flames are established is ∆ = 50 µm. The

Figure 5.1: Overview of the computational domain for the BKD (top). Transverse (bottom
left) and longitudinal (bottom right) cuts of instantaneous temperature field.

resulting CPU requirements are 100, 000 h on a BlueGene Q for the simulation of 1 ms (which
corresponds to about ten times the period of the typical oscillation of the first azimuthal
mode). A typical run is performed in parallel on 16, 384 cores so that the restitution time is
reasonable despite the significant computational burden.1

A limit cycle is reached in the LES and the dynamics of the system is computed over a
period of 7.5 ms. A detailed presentation of this simulation is given in [121] and the aim of
the present work is to perform an in-depth analysis of the limit cycle and analyze the flame
response. For this purpose, 200 snapshots of the full 3D solution were saved over 2 ms of
the limit cycle (between 5 and 7 ms), which corresponds to 330 Gb of data. Acoustic and
combustion fluctuations are analyzed, making use of Fourier transform of the 3D fields at the
frequencies of interest.

5.3 Description of the limit cycle

During the limit-cycle predicted by the LES, pressure fluctuations of very large magnitude
are recorded. The rms2 value reaches p′

rms = 0.15 pc which corresponds to 10.7 bar. Pressure
spikes reaching +44 bar are sometimes observed.

The power spectral density (PSD) of pressure fluctuations at a sensor placed on the cham-
ber wall 5.5 mm downstream the injector plate is displayed in Fig. 5.2. There are two dom-

1Because the AVBP solver can make use of hyperthreading on BlueGene Q architectures, there are 4 MPI
processes per core resulting in a total of 65, 536 MPI processes for this computation.

2Root Mean Square
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Figure 5.2: Power spectral density of pressure fluctuations at the chamber wall 5.5 mm down-
stream the injection plate.

inant frequencies at f1 = 10, 700 Hz and f2 = 21, 400 Hz, which are close and within 5 % of
experimentally observed frequencies [124].

It is possible to extract the pressure distributions corresponding to these two frequencies
by taking the Fourier transform of the 200 pressure fields accumulated in the dataset. While
f1 corresponds to the first transverse mode (labelled 1T) of the chamber (cf. Fig. 5.3), the
mode shape at f2 resembles the first radial mode (labelled 1R). In both cases these chamber

Figure 5.3: Spatial structure of the pressure fluctuations for the two dominant frequencies of
Fig. 5.2 from the 3D-FT of 200 instantaneous LES fields.

modes are strongly coupled with the oxygen injectors where longitudinal fluctuations are ob-
served. The hydrogen injectors do not seem to be affected by the pressure fluctuations in the
chamber, which is consistent with their small radii (of the order of 0.25 mm). Nevertheless,
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an examination of the velocity fields from the PSD (not shown) indicates that the hydrogen
stream, at the injector exhaust and further downstream, experiences strong velocity fluctua-
tions because of the eigenmodes in the chamber. This mechanism is discussed in Sec. 5.5.

Finally, the mode structures of Fig. 5.3 suggest that injectors located on the nodal line of
the 1T mode will mostly experience transverse velocity fluctuations. Similarly, the 1R mode
will produce a transverse acoustic velocity on the second injector ring.

5.4 Maps of flame response

The objective of this section is to quantify the unsteady response of the flames and deduce
maps of the contribution of the two eigenmodes identified in Sec. 5.3. To this purpose, it is
convenient to define boxes that isolate individual flames. First the three rings are separated
by cylindrical boundaries, then neighboring flames by radial planes. All these boundaries are
chosen to be at equal distances from neighboring injectors. Various quantities can then be
integrated in these boxes over the whole length of the combustion chamber.

This processing method is applied to the unsteady heat release rate, q′, extracted from the
3D-FT of both modes. The resulting maps of q′ for each injector and both modes are displayed
in Fig. 5.4. Regarding the 1T mode, the flames that exhibit the greatest response are those

Figure 5.4: Maps of unsteady heat release rate integrated around each flame.

located in the region where the pressure fluctuations reaches its maximum (cf. Fig. 5.3). On
the nodal line of the pressure field, the flame response is found to nearly vanish. This indi-
cates that the flames respond weakly to the transverse velocity fluctuations of the 1T mode.
Similar conclusions are drawn from the map of q′ in the 1R mode: the inner and outer ring,
corresponding to pressure antinodes, respond strongly and out of phase, while the middle
injector ring is virtually inactive.

In order to quantify the impact of these fluctuations on the growth of the instability, it is
useful to consider the Rayleigh index, defined as:3

3This definition would not be consistent with the acoustic energy conservation in a real gas because the
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Here, we used γ = 1.146, which is the value in the burnt gases and p0 = 74.5 bar, which is
the mean static pressure in the chamber.

R =
1
T

γ − 1
γp0

∫

T

∫

V
p′(t) q′(t)dV dt (5.1)

where T is a time span that covers at least one period of the oscillations and V a volume
that contains all the flames. This total Rayleigh index accounting for all pressure and heat
release rate perturbation is R = 125 kW in the LES. This positive value is consistent with the
fact that combustion is driving the instability and a limit cycle is reached in the LES. With
the intent to separate the impact of the two dominant eigenmodes, the Rayleigh index, Ri, of
each individual mode can be evaluated as:

Ri =
γ − 1
2γp0

∫

V
|q̃i| |p̃i|cos(φq̃i

− φp̃i
)dV (5.2)

where p̃i (respectively q̃i) is the 3D-FT of pressure (respectively heat release rate) fluctuations.
The phases φ correspond to the definition where p̃ = |p̃|eiφ. Using Eq. (5.2), the respective
contributions of the 1T and 1R modes are R1 = 42.2 kW and R2 = 8.8 kW. It follows that
both modes are driving the instability and that the 1T mode accounts for 33.8% of the desta-
bilization while the 1R mode contribution amounts to 7.0% of the total.

One may now focus on the contribution of individual injectors by examining maps of
Rayleigh index integrated around each injector. Figure 5.5 presents the contributions of the
1T and 1R modes, normalized by the total Rayleigh index. First, regarding the 1T mode, the

Figure 5.5: Maps of individual flames Rayleigh index for both 1T and 1R modes, normalized
by the total Rayleigh index of the chamber.

shape of q′ maps is recovered (cf. Fig. 5.4) with injectors at a pressure antinode contributing
the most and those on the nodal line being virtually inactive. The maximum contribution of
an individual injector is 1.8 %. For the 1R mode, only the six injectors of the inner ring have
a significant contribution, with a maximum of 0.6%. It is interesting to note that despite the

normalization (γ − 1)/(γp0) corresponds to a perfect gas. Here, we used constant values corresponding to the
burnt gases in the chamber. The evaluation of the resulting discrepancies are left to further studies.
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significant levels of q′ on the outer ring (cf. Fig. 5.4), their phase does not seem to allow a
positive contribution to the instability.

5.5 Individual injector dynamics

The question that one may now address is that of the physical mechanisms driving the un-
steady response of these coaxial flames. The focus is set on the 1T mode, which contributes
the most to the driving process, and two typical flames are singled out:

• An A-flame located at a pressure antinode. It was shown in Figs. 5.4 and 5.5 that these
flames respond strongly to the bulk pressure fluctuation in the chamber.

• An N-flame located at a pressure node. These flames experience little pressure variations
but a strong transverse velocity fluctuation. It was shown in Figs. 5.4 and 5.5 that they
respond weakly in terms of heat release rate fluctuation.

The heat release rate fluctuations q′, averaged over a volume comprising each flame are com-
pared in Fig. 5.6, where q0 is the time averaged heat release of the flame. As expected, the
response of the A-flame is larger, consistent with Fig. 5.4. This confirms that these coaxial
diffusion flames are more sensitive to pressure fluctuations than to the transverse velocity
induced by the eigenmode.

q
’/

q
0
 

t [ms] 

A 

N 

Figure 5.6: Comparison of heat release rate fluctuations for a: A-flame (thin gray line) and
N-flame (bold black line).

One may now proceed with a detailed analysis of the A-flame. A schematic representation
of the recessed coaxial injector of the BKD is shown in Fig. 5.7. When an acoustic mode is
excited in the combustion chamber, the injector of an A-flame experiences a back-pressure
fluctuation, p′, at its exit plane, which in turn generates velocity fluctuations in both propellant
streams. The velocity fluctuations, u′

H2
and u′

O2
, averaged over their respective cross section

(an annulus for H2 and a disk for O2), at the location of the recess are compared in Fig. 5.8.
They are normalized by the mean velocity um = (u0,H2

+ u0,O2
)/2 where subscript 0 indicates
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Figure 5.7: Schematic of the coaxial injector and reference surfaces for the extraction of
velocities and pressure fluctuations used to evaluate the flame responses.
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Figure 5.8: Velocity fluctuation at the location of the recess: u′
H2

(thin gray line) and u′
O2

(bold black line).

a time averaging. This choice for the normalization is supported by the fact that the flow
downstream the coaxial injector resembles a pulsated mixing layer. It shows which stream
oscillates the most with respect to the mean velocity. When each stream is normalized by its
own mean velocity, which is much lower for the dense oxygen, the relative fluctuation levels
are comparable and around 10%.

It appears that the O2 velocity fluctuations are negligible compared to those of H2. Both
streams experience the same pressure perturbation but the corresponding u′ depends on the
impedance which is related both to geometric (area ratios) and thermodynamic (compress-
ibility) effects. Specifically, the u′ amplitude is inversely proportional to the characteristic
impedance of the gas, which is the product of the density and speed of sound: ρc. The
thermodynamic conditions at the location of the recess are: (ρc)O2

= 7 105 kg.m−2.s−1 and
(ρc)H2

= 1.8 104 kg.m−2.s−1, which is 40 times higher for O2 than for H2. This possibly
explains why the velocity fluctuations in the H2 stream dominate in the present conditions.

To quantify the correlation between velocities or pressure and heat release perturbations
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one may calculate the normalized cross correlation defined by:

rfg =
(f ⋆ g)(τ)
σfσg

(5.3)

where σ is the standard deviation. The maximum correlation between p′ and q′ is rpq = 80%
while it is 67% between u′

H2
and q′ and falls down to 47% between u′

O2
and q′. These observa-

tions are confirmed by single injector simulations (not shown here), where the flame responses
induced by H2 or O2 streams fluctuations are compared. Forcing the individual propellants
velocities at the level measured in the full engine, i.e. around 10% of their mean, yields a
much weaker flame response for O2 than for H2. Nevertheless bulk pressure fluctuations at
the outlet of the injector also triggered significant levels of q′.

From these observations we can assume that u′
O2

is not the most relevant input variable
for the flame response. One may then speculate that q′ is driven by u′

H2
through the forcing

of the shear layer, generating unsteady coherent structures affecting both wrinkling and local
stretch of the flame eventually leading to heat release rate fluctuations. A mechanism for the
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Figure 5.9: Fluctuations over two periods of the 1T mode (T = 1/f1) for an A-flame: p′ (solid
line), u′

H2
(dashed line) and q′ (dotted line). Reference surfaces are indicated in Fig.5.7

flame response is now proposed, based on the above rationale. Hydrogen velocity fluctuations
are supposed to be central in this mechanism but the validation of this hypothesis requires
additional tests. Mechanisms involving a direct response to pressure fluctuations, for example,
should also be considered. The mechanism is summarized in Fig. 5.9, where the temporal
evolution of p′, u′

H2
and q′, extracted from the FT at the 1T frequency, are shown over two

cycles of the instability. Three time-delays are identified:

• The delay of u′
H2

with respect to p′: τup.

• The delay of q′ with respect to u′
H2

: τqu.

• The delay of q′ with respect to p′: τqp.
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Figure 5.9 suggests the present scenario for the A-flame response: the pressure fluctuation
at the injector outlet generates a hydrogen velocity fluctuation after a time τup, which drives
the shear layer and subsequently heat release rate fluctuations with a delay τqu. The overall
delay τqp = τup + τqu is such that p′ and q′ are almost perfectly in phase, resulting in a positive
Rayleigh index. While τup is mainly acoustic by nature, τqu represents the time for hydrody-
namics and combustion to respond to the unsteady shear.

Finally, the overall response of an A-flame can be quantified by the gain, n and time-delay,
τ of q′ versus p′:

n =
|q̃|/q0

|p̃|/p0

τ =
φq̃ − φp̃

2πf
(5.4)

The present dataset is used to compute n and τ for the A-flames of the 1T mode. Here we give
averaged values for the 8 outer A-flames that have the highest Rayleigh index (red regions in
Fig. 5.5): n = 1.1 and τ = 0.9 T .

5.6 Conclusions

In this chapter, the Large-Eddy Simulation of a 42-injector reduced-scale rocket engine is
used to analyze the limit cycle of a combustion instability. The post-processing of a time-
resolved dataset of 3D solutions allows to isolate individual flame dynamics as well as the
influence of different eigenmodes of the chamber. In this configuration two chamber modes
dominate, one with a transverse shape and the other with a radial structure. For both modes,
the magnitude of the flame response is maximum at pressure antinodes, while the flames
located at a pressure node respond weakly, suggesting that the lateral motion caused by
transverse velocity fluctuations does not effectively feed energy into acoustics for sustaining
this instability. A mechanism is proposed in which the bulk pressure variation at the injector
outlet generates unsteady shear through the variation of the hydrogen velocity, ultimately
resulting in heat release rate fluctuations. For modeling purposes, it is suggested to consider
the fluctuating pressure in the injection plane as the relevant input for the flame response.
This option has been considered since the early studies on transverse combustion instabilities
in rocket engines [173] and it receives here additional support from 3D unsteady numerical
simulation.
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Part II

Acoustic boundary conditions for time
domain simulations
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Context & Outline

Heat release rate oscillations and acoustic perturbations are linked through the thermoa-
coustic feedback loop. Combustion Instabilities (CIs) occur when these fluctuations become
coherent, creating constructive interferences. In order to predict the occurrence of CIs in
combustion devices, the flame response (i.e. the heat release oscillations caused by a given
acoustic oscillation) and the acoustic oscillations in the entire combustion system must be
accurately reproduced. The correct acoustic fluctuations can be obtained only if the acoustic
properties of the boundaries are considered.

Acoustic properties, such as impedance or reflection coefficient, are defined in the spectral
domain while the Navier-Stokes equations are in the time domain. Imposing acoustic prop-
erties at boundary conditions in DNS/LES thus requires attention and specific methods are
needed to achieve this in a computationally efficient way, especially for high-fidelity Navier-
Stokes simulations. These methods are referred to as “Time Domain Impedance Boundary
Condition" (TDIBC) methods.

In this part of the manuscript, the focus is on such methods.

1. Chapter 6: Derivation of a TDIBC method based on the reflection coefficient
The method is based on Fung and Ju’s formalism [83, 84], referred to as “the Pole &
Residue approach” here, which was further extended by Lin et al. [86]. The background
and Fung and Ju’s methodology are recalled before deriving and validating a TDIBC
based on the reflection coefficient.

2. Chapter 7: Use of TDIBC to impose time-delay
Although TDIBC methods should be able to impose any acoustic properties, one case
remains difficult: the imposition of a time-delay. Such an acoustic property allows to
truncate large portion of the domain to focus of areas of interest (e.g. the flame region).
A modeling procedure is developed in order to use the TDIBC derived in Chapter 6
to impose time-delays. The method is validated for a one-dimensional wave simulation
and is then used to truncate a portion of a combustion chamber where CIs occur: the
INTRIG Burner operated at IMFT (Toulouse, France).

3. Chapter 8: State-space approach for TDIBC and comparison with the Pole
& Residue approach
The fundamentals of state-space modeling are recalled and the TDIBC method of Jaen-
sch et al., called Characteristic Based State-space Boundary Condition (CBSBC), is
presented. The Pole & Residue and the state-space approaches are then compared and
their mathematical equivalence is shown.
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Chapter 6

Time domain impedance boundary
condition

Boundary conditions are a critical issue in unsteady Navier-Stokes simulations of compressible
flows, especially when acoustic plays a major role such as in Computational Aero-Acoustics
(CAA) and thermoacoustic studies. In this context, unsteady boundary conditions allow-
ing low levels of acoustic reflection called Navier-Stokes Characteristic Boundary Conditions
(NSCBC) have been developed [114, 115, 175–179]. The acoustic reflection of NSCBC behave
as a first order low pass filter: it reflects low frequency waves and absorbs high frequency
waves [115, 116, 180–182]. In reality, acoustic elements can have much more diverse acoustic
properties. As boundaries play a major role in acoustics, it is crucial to be able to accu-
rately impose acoustic properties at the boundary conditions in Navier-Stokes simulations.
As acoustic properties are complex-valued quantities defined in the frequency domain, a time
domain translation of these quantities has to be found.

A possible approach is to evaluate numerically the time domain equivalent of those com-
plex properties. This approach is to be avoided as it is conditionally unstable (causality
constraint) and that both memory storage and CPU cost are high and, most of all, increasing
in time. An alternative to this approach is to derive an equivalent mathematical expression
that can be evaluated recursively. This leads to a constant memory storage and CPU cost
in time. The Time Domain Impedance Boundary Condition (TDIBC) method used in this
chapter is based on Fung and Ju’s methodology [83, 84].

In this chapter the background on impedance boundary condition will be presented (Sec. 6.1).
Section 6.2 will focus on the description of Fung and Ju’s method [83, 84] and a new formu-
lation using the reflection coefficient as a modeling quantity will be derived. Finally, the
reflection coefficient based TDIBC will be validated in Sec. 6.3.

97



98 Chapter 6: Time domain impedance boundary condition

6.1 Introduction

Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) have become standard
approaches for high-fidelity simulations of unsteady fully-compressible flows. In many config-
urations, accurate flow predictions can be reached only if the reflection of the acoustic waves
at the boundaries is precisely defined and controlled [9, 114, 116, 183]. Impedance is a widely-
used quantity to characterize the reflection of acoustic waves at boundaries. It is defined
in the frequency domain whereas DNS/LES are performed in the time domain. There is a
need for numerical methods permitting the imposition of impedance at the boundaries of a
computational domain. This has been achieved by the derivation of Time Domain Impedance
Boundary Conditions (TDIBC).

Both DNS and LES strive to lower numerical dissipation of acoustic waves so that they ac-
curately propagate in the computational domain without energy loss. Additionally, the proper
specification of impedances at boundary conditions can be critical for the flow stability. For
example, using simplistic boundary conditions such as imposed velocity or pressure leads to
fully-reflective acoustic conditions at the boundaries and to an artificial acoustic energy in-
crease.

Acoustic waves are the manifestation of perturbations around a mean state: using the
Reynolds decomposition, the pressure field can be expressed as p(t) = p0+p′(t), where p0 is the
mean pressure and p′(t) is the acoustic perturbation [9]. The characterization of an acoustic
element is usually performed in the frequency domain by the use of a complex transform, such
as the Fourier transform F , e.g. the complex acoustic pressure is defined as p(ω) = F(p′(t)),
where ω represents the angular frequency. The specific impedance Z∗(ω) is defined in the
frequency domain as the non-dimensional ratio of complex pressure and velocity [96]:

Z∗(ω) =
1

ρ0 c0

p(ω)
un(ω)

, (6.1)

where ρ0 and c0 are the mean density and speed of sound of the fluid, respectively. Z∗(ω)
is a frequency-dependent complex-valued function. It is unbounded, and is thus not always
convenient numerically so that TDIBC uses the reflection coefficient R and the wall softness
S, which are acoustic quantities yielding the same information. They are defined using the
impedance Z∗(ω):

R(ω) =
1− Z∗(ω)
1 + Z∗(ω)

(6.2a)

S(ω) = R(ω) + 1 (6.2b)

Unlike the specific impedance Z∗, both the reflection coefficient R and the wall softness
S are bounded, which make them suitable quantities in a computational context. Figure 6.1
illustrates the definition of the outgoing and ingoing acoustic waves Aout

n and Ain
n , respectively.
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Computational
Domain

Impedance
Boundary

Figure 6.1: Orientation of ingoing and outgoing acoustic waves Ain
n and Aout

n on an Impedance
Boundary Condition defined from the outward pointing normal ~n.

Aout
n is oriented in the direction as the outward normal ~n and Ain

n is oriented in the opposite
direction of ~n. Following the definition of Fig. 6.1, outgoing and ingoing characteristic waves
are:

Aout
n (ω) = ~u(ω) · ~n+

p(ω)
ρ0 c0

, Ain
n (ω) = ~u(ω) · ~n− p(ω)

ρ0 c0

(6.3)

Substituting Eq. 6.1 in Eqs. 6.2a and 6.2b yields:

R(ω) =
Ain

n (ω)
Aout

n (ω)
(6.4a)

S(ω) =
Ain

n (ω) + Aout
n (ω)

Aout
n (ω)

(6.4b)

Impedance, reflection coefficient and wall softness are defined in the frequency domain whereas
DNS/LES are performed in the time domain. The time domain equivalent of R(ω) is obtained
by using the inverse Fourier transform R(t) = F−1(R(ω)) and S(t) = F−1(S(ω)). However,
the inverse Fourier transform of a product F−1(R(ω) · Aout

n (ω)) yields a convolution inte-
gral. Equations 6.4a and 6.4b can be expressed in the time domain by using the inverse
Fourier transform, leading to the following convolution integrals for Eq. 6.5a and 6.5b, respec-
tively [184, 185]:

Ain
n (t) =

∫ t

0
R(τ) Aout

n (t− τ) dτ (6.5a)

= −Aout
n (t) +

∫ t

0
S(τ) Aout

n (t− τ) dτ (6.5b)

The bounds of the integrals in Eqs. 6.5a and 6.5b are reduced to τ ∈ [0, t] as:

• we assume that S(t), R(t), Ain
n (t) and Aout

n (t) are defined on the interval t ∈ [0,+∞],

• Ain
n (t) must depend only on past and present values of S(t), R(t), Aout

n (t) but cannot
depend on future values for the causality constraint not to be violated.

These assumptions restrict the bounds of the convolution integrals as it is the case when
using the causal inverse Laplace transform [186, 187]. Although mathematically equivalent to
Eqs. 6.4a and 6.4b, Eqs. 6.5a and 6.5b are not directly applicable in high-fidelity compressible
solvers because the direct evaluation of the convolution integral requires a large amount of
memory. Indeed, Aout

n (t) and R(t) need to be stored at every iteration and at each of the
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boundary faces.

For simple geometries, Nottin [188, 189] has solved Eq. 6.5a directly. In computationally
intensive frameworks such as DNS/LES of turbulent flows, a more efficient compact-in-time
method is required for the evaluation of Ain

n (t), as shown in recent papers on this topic [83–
86, 90, 91, 190, 191].

Advancements in the time domain impedance imposition in the electromagnetic commu-
nity have driven novel acoustic boundary conditions for computational aeroacoustics [192–195].
For a time domain impedance imposition method to be robust and physically admissible, care
must be taken not to violate the causality constraint [84, 196].

Özyoruk et al. [192, 193, 197] and Tam and Auriault [194] have developed a first formula-
tion of TDIBC based on the z-transform and a Laurent series development of the impedance
in the frequency domain resulting in a time domain Ordinary Differential Equation (ODE)
problem. This formulation is conditionally unstable and may violate both physical admissi-
bility and causality constraints, and thus is a threat to numerical stability [194].

Fung and Ju [83, 84] have proposed a causal formulation for TDIBC, based on the wall
softness S. It relies on single partial fraction modeling in the frequency domain as discussed
in Sec. 6.2.2. Fung and Ju’s formulation has been validated for both Euler [83, 84] and,
more recently, Navier-Stokes simulations [85, 86]. Originally based on a single partial fraction
model, Fung and Ju’s modeling technique has been extended to a sum of partial fractions by
Lin et al. [86].

In the combustion community, a State-Space approach, called Characteristic Based State-
space Boundary Condition (CBSBC), has been developed by Schuermans et al. [198], Kaess et
al. [90] and Jaensch et al. [91], and used in Navier-Stokes simulations [90, 190, 191, 199–201].
CBSBC relies on control theory of linear time-invariant (LTI) systems to build a reflection
coefficient model through first-order differential matrix equations [91]. Two formulations of
CBSBC were proposed.

The first formulation of CBSBC is a state-space approach under the so called controllable
form, i.e. based on the modeling of a transfer function as a rational polynomial. The transfer
function represents the broadband reflection coefficient. It aims to impose a reflection coef-
ficient with near-zero time-delay, similarly to Fung and Ju’s method. For practical reasons,
this formulation fails to handle pure time-delay. In pure time-delay imposition problems, the
rational polynomial transfer function modeling requires a high number of Padé polynomial
coefficients leading to ill-conditioned matrices, making this formulation difficult to use.

A second formulation of CBSBC was proposed by Jaensch et al. [190] specifically to im-
pose pure time-delays. This approach consists in implementing a Linearized Euler Equations
(LEE) solver for each of the impedance boundary conditions in the domain and perform the
temporal integration using a first-order upwind scheme. The 1D spatial discretization needed
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by the LEE solver is done by storing in memory a state matrix of dimension 2N × 2N , and
three matrices of dimension 2×N , where N is the number of nodes considered in the spatial
discretization. In their work, Jaensch et al. [190] have shown that to impose a pure time-delay
for a 1D wave propagation problem it was necessary to consider a number of nodes as high
as N = 1000 in order to avoid acoustic energy dissipation. This formulation of CBSBC will
be discussed in depth in Chapter 8 and the similarities with the formulation presented in
Sec. 6.2.2 will be emphasized.

In this chapter, a reformulation of Fung and Ju’s method based on the reflection coefficient
R is proposed. This new formulation is mathematically equivalent to the extended formula-
tion of TDIBC used by Lin et al. [86] but is more convenient when the acoustic boundary to
be modeled is an inlet or an outlet. By contrast, the wall softness formulation is more suited
for acoustic boundaries having near-wall acoustic properties, such as acoustic liners. Another
benefit of the reflection coefficient formulation is that it can handle the imposition of pure
time-delays. This specific topic will be discussed in Chapter 7.

In Sec. 6.2 the TDIBC method, based on the wall softness coefficient, developed by Fung
and Ju and extended by Lin et al. [86], will be presented. It will then be extended to reflection
coefficients. Section 6.3 will focus on the validation of TDIBC under the reflection coefficient
formalism for both single-pole models (as Fung and Ju [83, 84]) and multi-pole models (as
Lin et al. [86]).

6.2 Method

In this section, two formulations of TDIBC are presented. The first formulation, is the ex-
tended Fung and Ju method [83, 84, 86]. It is based on the wall softness coefficient (Eq. 6.2b)
as an acoustic modeling quantity. The equations presented here are equivalent to the ones in
Lin et al. [86] but they have been expressed so they are consistent with the current manuscript.
The second formulation is based on the reflection coefficient (Eq. 6.2a) as an acoustic model-
ing quantity. The same mathematical procedure is followed as in Fung and Ju’s method. It
is especially suited for low-pass-filter-like acoustic boundaries such as open-end ducts (often
used as inlet and outlets). It is also well suited for the imposition of pure time-delays as
discussed in the next chapter.

6.2.1 Time domain imposition of complex wall softness coefficient

As discussed in Sec. 6.1, the resolution of Eq. 6.5b allows imposing a complex wall softness
coefficient in the time domain but is memory and CPU consuming in DNS/LES simulations.
The methodology developed by Fung and Ju [83, 84] and extended by Lin et al. [86], the wall
softness S(ω) is approximated by the wall softness coefficient of the boundary condition SBC

expressed as a sum of rational function:



102 Chapter 6: Time domain impedance boundary condition

S(ω) ≃ SBC(ω, n0) =
2n0∑

k=1

µk

iω − pk

(6.6)

where SBC(ω, n0) is the reflection coefficient model and the poles & residues (pk, µk) must
come as n0 conjugate pairs:

p2k = p∗
2k−1 ; µ2k = µ∗

2k−1 ; k ∈ [1;n0] (6.7)

The poles and residues are complex-valued so that these conjugate pairs are needed to ensure
that the wave imposed by TDIBC in the time domain is real-valued. The time domain
equivalent of Eq. 6.6 is:

SBC(t, n0) =
2n0∑

k=1

µke
pkt (6.8)

The temporal wave Ain
n (t) corresponding to SBC(ω, n0) is obtained by introducing SBC(t, n0)

in Eq. 6.5b:

Ain
n (t) = −Aout

n (t) +
2n0∑

k=1

∫ t

0
µke

pkτAout
n (t− τ)dτ (6.9)

The convolution integral in Eq. 6.5b has been split into 2n0 convolution integrals, denoted Ik:

Ain
n (t) = −Aout

n (t) +
2n0∑

k=1

Ik(t) (6.10)

Using the properties of the exponential, Ik can be split into two contributions while integrating
by part:

Ik(t) = Ik(t−∆t)epk∆t + µk

∫ t

t−∆t
epkτAout

n (t− τ)dτ (6.11)

Equation 6.11 shows that Ik(t) can be evaluated recursively: the first term corresponds to the
temporal integration over the interval τ ∈ [0, t − ∆t] and the second term to the temporal
integration over the interval τ ∈ [t − ∆t, t]. It provides a low memory storage method to
compute the ingoing wave Ain

n (t). Indeed, the only stored quantities needed are Ik(t−∆t) and
Aout

n (t−∆t) as all the other quantities can be evaluated at time t. The associated CPU cost
is also constant at every iteration. As the integral in Eq. 6.11 is over a time step ∆t it is not
computationally expensive. Using a trapezoidal quadrature rule, Eq. 6.11 can be numerically
approximated at low computational cost [83, 84]:

Ik(t) = Ik(t−∆t)epk∆t + αkA
out
n (t) + βkA

out
n (t−∆t) (6.12)

αk = µk

(
epk∆t − 1
p2

k∆t
− 1
pk

)
; βk = µk

(
epk∆t − 1
p2

k∆t
− epk∆t

pk

)
(6.13)
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The initial values of Ik(t) and Aout
n are set to zero in the simulations [83–86]. However, one

can make a checkpoint restart by initializing the Ik(t) using stored values from previous a
simulation. Using Eqs. 6.12 and 6.13, complex impedances can be imposed in DNS/LES
solvers. A checkpoint restart is possible if the values of Ik(t) are stored from the last iteration
of the previous simulation.

6.2.2 Time domain imposition of complex reflection coefficient

In Sec. 6.2.1 the methodology to impose a complex wall softness coefficient in Fung and Ju’s
formalism was described. Here, the same mathematical properties will be used to resolve
Eq. 6.5a, that is, using the reflection coefficient as an acoustic modeling quantity. Thus, this
method provides a memory and CPU efficient way of imposing a complex reflection coefficient
in DNS/LES. We approximate the reflection coefficient R(ω) with the reflection coefficient of
the boundary condition RBC expressed as a sum of rational function:

R(ω) ≃ RBC(ω, n0) =
2n0∑

k=1

µk

iω − pk

(6.14)

where RBC(ω, n0) is the reflection coefficient model and the poles & residues (pk,µk) must
come as n0 conjugate pairs (Eq. 6.7) to ensure that the imposed wave Ain

n (t) is real valued.
In the time domain, Eq. 6.14 becomes:

RBC(t, n0) =
2n0∑

k=1

µke
pkt (6.15)

The temporal wave Ain
n (t) corresponding to RBC(ω, n0) is obtained by introducing RBC(t, n0)

in Eq. 6.5a:

Ain
n (t) =

2n0∑

k=1

∫ t

0
µke

pkτAout
n (t− τ)dτ =

2n0∑

k=1

Ik(t) (6.16)

Equation 6.5a has been split into 2n0 convolution integrals Ik as in Eq. 6.10. Using Eqs. 6.12
and 6.13, we can impose a complex reflection coefficient in DNS/LES in cost-effective way.
The convolution integrals can be evaluated using Eqs. 6.12 and 6.13.

6.2.3 Block diagram representation of multi-pole TDIBC

As discussed above, Fung and Ju’s TDIBC [83, 84] was extended by Lin et al. [86]. In their
work, Lin et al. extended the modeling procedure to a sum of 2n0 rational fractions while
it was previously limited to 2 rational fractions (n0 = 1 in Eq. 6.6). Figure 6.2 illustrates
the resulting block diagram of the multi-pole formulation of TDIBC based on the reflection
coefficient. The multi-pole TDIBC can be split into n0 Linear Time Invariant (LTI) sub-
systems. Each of these sub-systems is a single-pole single-residue LTI system (this will be
the topic of Sec. 8.3.1). It takes the temporal outgoing wave Aout

n (t) as an input and gives
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Figure 6.2: Block diagram of a multi-pole TDIBC under Fung and Ju’s formalism.

an output Ik(t). The sum of the contributions of each sub-system gives the ingoing wave
(Eq. 6.16).

6.3 Validation of reflection-coefficient-based TDIBC

The validation of TDIBC will be conducted in this section. The test case consists in a
one-dimensional wave propagation problem. The initial solution (cf. § Initial solution) is a
right-traveling wave packet – the outgoing wave Aout

n (t) – that will reflect on an impedance
boundary condition on the right-hand side of the domain. The impedance boundary will
have a given TDIBC model: a set of (pk, µk) coefficients. The impedance boundary condition
will impose an ingoing wave Ain

n (t) that must fulfill the frequency-domain properties of the
TDIBC model. This ingoing wave computed by TDIBC will then be compared to its analytical
solution (cf. § Analytical solution), i.e. by computing the convolution integral (Eq. 6.5a).

Initial solution

The domain is one-dimensional and is defined by the coordinate x ∈ [−1, 1] m. The initial
solution is a wave packet centered in x = 0 m:

Aout
n (x, t = 0) = Ae−αk2x2

cos(2πkx) (6.17)

where A = 1, α = 0.8 and k = 7. The exponential in Eq. 6.17 is a Gaussian wave of maximum
amplitude A giving a compact support nature to the initial solution. Equation 6.17 is similar
to the one used in Scalo et al. [85] to validate Fung and Ju’s TDIBC (based on wall softness
S(ω)) in Navier-Stokes simulations. The cosine in Eq. 6.17 allows to give a strong frequency
content at the wave of wavenumber k = ω/c0. The initial solution for the right traveling
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wave is shown in Fig. 6.3 and the left traveling wave is set to zero. The acoustic pressure and
velocity fields corresponding to Aout

n (x, t = 0) are thus:

p
′

(x, t = 0) = Aout
n (x, t = 0) (6.18)

u
′

(x, t = 0) =
1
ρ0c0

Aout
n (x, t = 0) (6.19)

The mean density is ρ0 = 1.14 kg m−3 and the mean sound speed is c0 = 350 m s−1.

Figure 6.3: Initial solution for the outgoing wave Aout
n (x, t = 0) for A = 1, α = 0.8 and k = 7

in Eq. 6.17.

As the wave number chosen is k = ω/c0 = 7, the frequency content of the initial solution
should be mostly around f = kc0 = 2450 Hz. This is verified by taking the Fourier transform
of the temporal outgoing wave Aout

n (x = 1, t). The result is shown in Fig. 6.4. The Fourier
transform of the wave packet is a Gaussian wave centered at the frequency fmax = kc0 =
2450 Hz where the maximum is Aout

n (2πfmax) = 1.35e−2 Pa. The frequency content of the
initial solution will be used in the multi-pole model validation to analyze the results.

Analytical solution

The reflection coefficient modeled by TDIBC is known (Eq. 6.14) and its expression in
the time domain is given by Eq. 6.15. The analytical solution of the ingoing wave Ain

n (t) is
then:
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Figure 6.4: Modulus of the Fourier transform of the initial temporal Gaussian wave
F(Aout

n (x = xBC, t)).

Ain
n (t) =

∫ t

0
RBC(τ) Aout

n (t− τ) dτ

=
n0∑

k=1

∫ t

0
Rk(τ) Aout

n (t− τ) dτ

=
n0∑

k=1

∫ t

0

[
µke

ipkτ + µ∗
ke

ip∗

k
τ
]
Aout

n (t− τ) dτ (6.20)

6.3.1 Validation of TDIBC based on reflection coefficient: single-

pole

In this section, we validate TDIBC formulation based on the reflection coefficient for single
pair of conjugate pole pk and residue µk as a reflection coefficient model, that is n0 = 1. The
pole & residue used here are

p1 = −16600 + i16600

µ1 = 13531 + i13531 (6.21)

The reflection coefficient modeled by p1 and µ1 is defined by Eq. 6.14 and is plotted in
Fig. 6.5. The modulus of the reflection coefficient is shown in Fig. 6.5(a) and its phase is
shown in Fig. 6.5(b). This model has a maximum modulus and a null phase at f1 = 3745 Hz.

The simulation is conducted with the AVBP solver (c.f. Sec. 2.2.1) with TDIBC was
implemented in this solver under the reflection coefficient formulation presented in Sec. 6.2.2.
Here, the Euler equations are solved on a 500 cell mesh. The numerical scheme (TGCC) is
third-order accurate in space and time [134, 135] and no artificial viscosity model is used.
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The ingoing wave Ain
n (t) prescribed by TDIBC is shown in Fig. 6.6. The TDIBC wave is

compared with a numerical evaluation of Eq. 6.20. This numerical integration is performed
using the integrate.quad function of the SciPy scientific library in Python [131].

As presented in the TDIBC methodology in Sec. 6.2.2, TDIBC is mathematically equiva-
lent to the convolution integral in Eq. 6.20. Fig. 6.6 shows that the wave imposed by TDIBC
is exactly equivalent to the analytical solution for a single pair of pole & residue. The ingoing
wave has a lower maximum amplitude that the initial wave (cf. Fig. 6.6). This is consistent
with the modeled reflection coefficient RBC shown in Fig. 6.5 as its modulus is lower that
unity at all frequencies. Additionally, we observe that the reflected wave is asymmetric while
the initial wave is symmetric. This distortion of the wave was introduced by the phase of
RBC. If RBC were purely real the reflected wave would be symmetric. This illustrates that
TDIBC can, in fact, impose complex impedances (using the reflection coefficient) in time
domain simulations.
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Figure 6.5: Modulus (a) and phase (b) of the reflection coefficient modeled by the boundary
condition for p1 and µ1 in Eq. 6.21.
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Figure 6.6: Validation of TDIBC based on the reflection coefficient for a single pair of
conjugate pole p1 and residue µ1 (n0 = 1 in Eq. 6.14). The ingoing wave imposed by TDIBC
corresponds to model reflection coefficient RBC (cf. Fig. 6.5) as it is exactly equal to the
analytical solution. The analytical solution is computed by resolving the integral in Eq. 6.20.
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6.3.2 Validation of TDIBC based on reflection coefficient: multi-

pole

In this section, we validate the formulation of TDIBC based on the reflection coefficient for
a multi-pole reflection coefficient model, as presented in Sec. 6.2.2. The test case used in
Sec. 6.3.1 is used here to validate the multi-pole TDIBC.

Three poles reflection coefficient model

It is done using a three poles model: three pairs of conjugate poles pk and residues µk

for k ∈ [1, n0] and n0 = 3. The poles & residues parameters are given in Table 6.1.

Rk ak bk ck dk ω0,k [rad s−1] f0 [Hz]
k = 1 5.00e+02 8.33e+00 -1.00e+03 6.00e+04 6.00e+04 9.55e+03
k = 2 -1.00e+03 -1.00e+04 -1.00e+03 1.00e+02 1.00e+03 1.60e+02
k = 3 5.00e+03 5.00e+03 -1.00e+04 1.00e+04 1.41e+04 2.25e+03

Table 6.1: Parameters of the poles & residues used for the validation of the multi-pole TDIBC.

The details of the model are shown in Fig. 6.7 where each of the sub-systems’s reflection
coefficients is plotted. Figure 6.7(a) shows the modulus of R1, R2 and R3 computed from
Eq. 6.14 (page 103) using the parameters presented in Table 6.1. The properties of a single
PBFs, presented in Sec. 6.2.2, can be observed on Fig. 6.7. For example, the resonant frequen-
cies of each system (each PBF) can be seen at 160 Hz, 2.25 kHz and 9.55 kHz corresponding
to f0,2, f0,3 and f0,1, respectively. At these frequencies the phase is zero for each sub-system
and the modulus (and the real part) is maximum.

The resulting broadband reflection coefficient RBC(ω) is given by the sum of the three PBFs
and is shown in Fig. 6.8. Figure 6.8(a) shows the modulus of modeled reflection coefficient
RBC(ω) and Fig. 6.8(b) its phase. The resulting broadband reflection coefficient could not be
model by a single-pole single-residue model.

Results

The test case simulation used to validate the reflection coefficient based TDIBC for a single-
pole model is used here. The reflection coefficient at the boundary condition located a x = 1 m
is modeled by the three poles model (Table 6.1). The simulation is performed with AVBP
using the same parameters than previously.

The results are shown in Fig. 6.9. The contributions I1, I2 and I3 of each of the PBFs R1,
R2 and R3, respectively, to the ingoing wave Ain

n – the resulting ingoing wave imposed by the
multi-pole TDIBC (black dashed line) – are shown.
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Figure 6.7: Modulus (a) and phase (b) of each sub-system Rk(ω) in Table 6.1.
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Figure 6.8: Modulus (a) and phase (b) of the reflection coefficient RBC(ω) modeled by the
boundary condition the three poles & residues presented in Table 6.1.
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Figure 6.9: Output signal (Ik) from each sub-system Rk giving the global response, the ingoing
wave Ain

n , of the multi-pole TDIBC (black dashed line).

I1, I2 and I3 are not contributing to the ingoing wave at the same level and this behavior
can be clarified by the frequency content of R1, R2 and R3 (c.f. Fig. 6.7) on one hand and of
the outgoing wave (c.f. Fig. 6.4) on the other hand:

1. The contribution I1 to the ingoing wave is very small. This can be explained by the fact
that the outgoing wave’s frequency content is mainly contained in a frequency range
between 1 kHz and 4 kHz (with a peak at 2.45 kHz, c.f. Fig. 6.4). On this frequency
range, the modulus of R1 is close to zero. As a consequence, the PBF R1 only has a
marginal impact on the imposed ingoing wave.

2. By performing the same analysis on R2, the I2 contribution can be explained. The
modulus of R2 is non-zero on the frequency range of interest and, hence, the contribution
I2 to the ingoing wave is significant.

3. Finally, contribution I3 to the ingoing wave is predominant. This can be explained
by the frequency content of R3: the modulus is maximum on the frequency range of
interest and the peak is located at the same frequency than the outgoing wave’s peak
(c.f. Fig. 6.4). On this frequency range the modulus of R3 is higher than the modulus
of R2 and, thus, I3 contributes more to the ingoing wave than I2.

The ingoing wave Ain
n (t) prescribed by the multi-pole TDIBC is compared to the analytical

solution in Fig. 6.10. The procedure used to obtain the analytical solution in the single-pole
model is used here: Eq. 6.20 is evaluated numerically. The multi-pole TDIBC is found to give
exactly the same ingoing wave that the analytical solution and, similarly to the single-pole
validation results:

1. The ingoing wave has a lower maximum amplitude than the initial wave (cf. Fig. 6.10)
because the modulus of RBC(ω) is strictly lower than unity for all frequencies.
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2. The reflected wave (ingoing wave) is asymmetric even though the impinging wave (out-
going wave) is symmetric. This is due to the fact the RBC(ω) is complex and thus the
phasing of the reflected wave is modified.
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Figure 6.10: Ingoing wave prescribed by TDIBC compared to the analytical solution.
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6.4 Conclusion

The need for Time Domain Impedance Boundary Conditions (TDIBC) was discussed and the
concept necessary to understand Fung and Ju’s methodology was presented. Lin et al. [86]
extended the Fung and Ju’s TDIBC [83, 84] framework and their method was derived.

Building upon these methods, a novel formulation of TDIBC, based on the reflection
coefficient instead of the wall softness coefficient, was derived. In comparison to the wall soft-
ness TDIBC, the reflection coefficient based TDIBC is more suited for open-end-like acoustic
boundaries as the high frequency behavior of the model is inherently correct. Another benefit
of this formulation is that it is well suited for modeling a reflection coefficient corresponding
to the imposition of a pure time-delay in the time domain: this will be the topic of the next
chapter.

The reflection coefficient TDIBC was then validated for both single-pole model (as pro-
posed by Fung and Ju [83, 84] and Scalo et al. [85]) and for a multi-pole model (as proposed
by Lin et al. [86]).
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Chapter 7

Delayed-time domain impedance
boundary condition

A major benefit of impedance modeling is that it allows to truncate large portions of the
computational domain. This is possible as inviscid planar acoustic wave propagation can be
reproduced by imposing a so called time-delayed reflection coefficient. This property allows:
(1) a gain of computational resources, (2) to study several geometries using the same com-
putational domain along with D-TDIBC models. This chapter focusses on the imposition of
time-delayed reflection using the formulation of TDIBC presented in Sec. 6.2.2.

Section 7.1 will present the definition of delayed reflection. Section 7.2 will introduce the
fitting technique necessary to model a delayed reflection coefficient. In Sec. 7.3, D-TDIBC
will be used to impose a time-delay in a 1D wave propagation test case. Finally, in Sec. 7.4
a thermoacoustically unstable combustion chamber is studied via a 2D DNS, while using a
reduced domain along with D-TDIBC to model the truncated portion.

7.1 Time-delayed reflection coefficient

In many simulations of industrial systems, longitudinal acoustic waves propagate over large
portions of the computational domain (e.g. in the exhaust pipe of a car engine, in the chim-
ney on an industrial furnace or, in general, for ducts of both constant section and speed of
sound). In such configurations the computational domain can be truncated of the portions
corresponding to longitudinal acoustics and replaced by a model.

Figure 7.1 shows a system in which the portion from x1 to x2 is truncated (grey area).
In this computational setup, the boundary condition located in x = x1 must account for the
acoustic properties of the truncated domain. This is possible if the boundary condition at
x = x1 imposes a time-delay, i.e. in the time domain, to the wave reflection [9? ]: the resulting
reflection coefficient is called delayed reflection coefficient, i.e. in the frequency domain. The
delayed reflection coefficient Rτ is:

115
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Rτ = R(ω)e−iωτ ; τ = 2(x2 − x1)/c0 (7.1)

where τ is the time-delay (acoustic time for a wave to propagate back and forth over the
distance x2 − x1 at a mean speed of sound c0) and i =

√
−1 is the imaginary unit.

Figure 7.1: Typical case where the computational domain can be cut at x = x1. The
propagation of acoustic waves in the truncated portion (between x1 and x2) is accounted for
by the reflection coefficient Rτ (Eq. 7.1).

Figure 7.2 illustrates the impact of an arbitrary time-delay τ on two classical limit cases:
the flanged open end, i.e. p(ω) = 0, (cf. Fig. 7.2(a)) and the closed end, i.e. u(ω) = 0,
(cf. Fig. 7.2(b)). These cases have real reflection coefficients R(ω) at the acoustic boundary
located in x = x2. For all frequencies ω, the flanged open end corresponds to a reflection coef-
ficient of R(ω) = 1 and the closed end to R(ω) = −1 (c.f. bottom right figures in Figs 7.2(a)
and 7.2(b)). The delayed reflection coefficient Rτ (ω) becomes complex-valued and frequency-
dependent even though R(ω) is real and constant (c.f. bottom left figures in Figs 7.2(a) and
7.2(b)).

The methodology proposed by Fung and Ju [83, 84] is used to create a TDIBC formu-
lation based on the reflection coefficient (c.f. Sec. 6.2.2). It relies on the determination of
the poles and zeros of the reflection coefficient. The complex exponential e−iωτ introduced
by the time-delay (c.f. Eq. 7.1 and Fig. 7.2) has many poles and zeros and is, hence, chal-
lenging to model using Fung and Ju’s methodology. The main objective of this paper is to
propose and validate a methodology, called Delayed-Time Domain Impedance Boundary Con-
dition (D-TDIBC), to model any delayed reflection coefficient under Fung and Ju’s formalism.

Here we focus on the reflection coefficient R as a modeling quantity even though the
methodology proposed in Sec. 7.2 is generic and could apply for wall softness S.

7.2 Methodology

As discussed in Sec. 6.2.2, in order to impose the reflection coefficient R(ω) we need to de-
termine the set of poles & residues (pk, µk). There is no evidence of the uniqueness of the
solution for a set of (µk, pk). We propose here a method to determine the poles & residues
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(a) Flanged open end: p′(ω) = 0

(b) Closed end: u′(ω) = 0

Figure 7.2: Acoustic variables for two theoretical limit cases: (a) the flanged open end, and
(b) the closed end (hard wall) cases. Both configurations are fully reflective and have a purely
real reflection coefficient R at all frequencies in x = x2. The truncation of the grey areas can be
modeled by the imposition of a time-delay τ . The delayed reflection coefficient Rτ , expressed
in x = x1, is complex. At the bottom of the figure both real (solid lines) and imaginary parts
(dashed lines) of Rτ and R are shown on the left and right-hand sides, respectively.
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Figure 7.3: Real part of a typical PBF Rk (Eq. 7.3). Three properties are visualized: ω0,k,
h0,k and ∆ωǫ. At the resonant angular frequency ω0,k, the real part of Rk is maximum. The
peak heigh h0,k is the value of Rk(ω) at ω = ω0,k. For a given percentage ǫ (ǫ ∈ [0, 1]), the
half-width ∆ωǫ is defined on the right-hand side. ω− and ω+ are the solutions of the equation
ℜ (Rk) = ǫ and are used to define the width.

that is viable when modeling delayed reflection coefficients (Eq. 7.1). It is a tedious task as
the delayed reflection coefficient Rτ (ω) has many zeros introduced by the complex exponen-
tial e−iωτ . The method consists in an iterative least-square fit. At each iteration a rational
fraction is added to the model until the model reflection coefficient RBC(ω) converges to the
desired reflection coefficient R(ω).

In order to develop this fitting method, we will first describe the properties of the rational
fractions in Eq. 6.14.

7.2.1 Pole Base Function properties

The reflection coefficient of the boundary conditionRBC(ω, n0) is a sum of n0 rational fractions,
called the Pole Base Functions (PBF), denoted Rk:

RBC(ω, n0) =
n0∑

k=1

Rk(ω) =
n0∑

k=1

[
µk

iω − pk

+
µ∗

k

iω − p∗
k

]

︸ ︷︷ ︸
Pole Base Function

(7.2)

Equation 7.2 can be recast by expressing the poles & residues in their algebraic forms, i.e. as
µk = ak + ibk and pk = ck + idk with ak, bk, ck, dk ∈ R. For each Rk, the causality constraint
requires that ck < 0. Lin et al. [86] demonstrated that a physical behavior of the boundary
conditions in the low-frequency limit requires bk = −akck/dk, leading to:

Rk(ω) =
2akiω

−ω2 − 2ckiω + (c2
k + d2

k)
(7.3)

There are three degrees of freedom in Eq. 7.3, namely ak, ck and dk. The objective of
this section is to link these degrees of freedom to the properties of a PBF. A typical PBF is
presented in Fig. 7.3 where three properties of the PBF can be identified: ω0,k, h0,k and ∆ωǫ.
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ω0,k is the frequency where the real part of Rk is maximum: it is referred as the resonant
frequency. h0,k is the peak height, that is, the value of Rk(ω) at ω = ω0,k. The last property
shown in Fig. 7.3 is the half-width ∆ωǫ defined for a given percentage ǫ of h0,k (ǫ ∈ [0, 1]). Be-
cause the PBF is not symmetric, at a given percentage ǫ, two half-widths ∆ωǫ can be defined:
one on the left hand side (using ω−) and one on the right-hand side (using ω+). A choice
is made to consider only the right half-width shown in Fig. 7.3, hence overestimating the width.

One can show that [85, 86]:

ω2
0,k = c2

k + d2
k (7.4)

Equation 7.4 gives a first constraint, say on dk. Substituting Eq. 7.4 into Eq. 7.3 and evaluating
the resulting equation at ω = ω0,k yields:

Rk(ω0,k) = h0,k = −ak

ck

(7.5)

Using the constraints in Eqs. 7.4 and 7.5, Rk becomes:

Rk(ω) =
2h0,kckiω

ω2 + 2ckiω − ω2
0,k

(7.6)

In Eq. 7.6, ck is the only remaining degree of freedom. Figure 7.4(a) illustrates its effect on
the width of a PBF Rk for a peak height h0,k = 1 at the resonant frequency f0,k = ω0,k/2π =
100 Hz. In the case of a pure delay the width is known: R(ω) is a periodic function of period
T = 2π/τ (cf. Fig. 7.4(b)). As shown in Fig. 7.4(a), the real part of Rk goes to zeros for
ω << ω0,k and ω >> ω0,k. A consequence of this property is that a single PBF can fit a
single peak between two consecutive zeros. For the pure delay the frequency range between
two consecutive zeros is T/2. To adjust the width to the pure delay case, we need to find the
value of ck for a given ǫ such that:

ℜ
[
Rk

(
ω0,k +

T

4

)]
= ℜ

[
Rk

(
ω0,k +

π

2τ

)]
= ǫ (7.7)

where ℜ(·) and ℑ(·) are the real and imaginary parts, respectively. Solving for ck in Eq. 7.7,
we obtain the criterion for a given time-delay τ :

ck(ǫ, ω0,k) =
τω0,k + π

4

2πω0,k + τ

√
ǫ

1− ǫ (7.8)

Equations 7.4, 7.5 and 7.8 give constraints allowing to control the height and the width of
a PBF for any resonant angular frequency ω0,k. These constraints are used in the algorithm
allowing the determination of the set of poles & residues (pk, µk) presented in the next section.
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(a) (b)

Figure 7.4: (a) Influence of the ck parameters for f0,k = 1
2π
ω0,k = 100 Hz and h0,k = 1. (b)

Real part of a purely delayed reflection coefficient Rτ for a time-delay τ . The real part is a
periodic function (cosine) of period T = 2π

τ
.

7.2.2 Iterative multi-pole modeling technique

Now that the properties of a single PBF are known, it is possible to go back to Eq. 7.2 where a
sum of n0 PBFs are used to match a reflection coefficient R(ω). In the case of pure delay, it is
a tedious task as the complex exponential function, introduced by the time-delay (cf. Eq. 7.1),
has a large number of zeros. To tackle this issue an iterative fitting technique has been devised.

The least-square fit algorithm is used to minimize the distance of the target function R(ω)
to the fit function RBC(ω) (Eq. 7.3) on both real and imaginary parts. The global least-square
residual ξ is defined as the sum of the squared distance between R(ω) and RBC(ω):

ξ = ξR + ξI (7.9)

where ξR and ξI are the least-square residuals on the real and imaginary parts, respectively.
They are defined as the squared sum of the point-to-point oriented distance, ER and EI ,
between R(ω) and RBC(ω):

ξR =
m∑

i=1

E2
R(ωi) =

m∑

i=1

ℜ

R(ωi)−RBC(ωi)




2

(7.10)

ξI =
m∑

i=1

E2
I (ωi) =

m∑

i=1

ℑ

R(ωi)−RBC(ωi)




2

(7.11)

where m is the number of discrete values considered in the frequency array, i is the index of
the points, R(ωi) is the value of the target reflection coefficient at the ith point of the discrete
angular frequency array ωi and RBC(ωi) is the value of the fit function at point i.

The fitting procedure is presented in the Algorithm 1. It starts with only one term: n = 1
in Eq. 7.2 (line 1 in the Algorithm 1). The conditional loop iterates until the number of PBF
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n reaches the final value n = n0. In line 3, we seek for the frequency where the error on the
real part is maximum. The resonant frequency of Rn is then set to this frequency (line 4) and
its peak height h0,n is chosen to cancel the error on the real part at that point (line 5). The cn

parameter is initialized using ǫ = 1% in Eq. 7.8. Equations 7.4 and 7.5 are used to determine
the values of dn and an (line 7 and 8). Finally, the pole & residue (pn, µn) of the nth PBF
are initialized (lines 9 and 10). The optimization stage (line 11) minimizes the least-square
residual ξ (cf. Eq. 7.9) and all of the values of the parameters pk and µk are optimized for
k ∈ [1;n]. Finally, the order of the model n is incremented so that an additional PBF can be
added (line 12).

An example of iterative fit is presented in Sec. 7.3.2 where the model RBC(ω) is shown at
several iterations of the Algorithm 1.

Algorithm 1: Preprocessing for D-TDIBC: find (pk, µk) in Eq. 7.2 to model the
target function R(ω)

Input : n0, ωi, R(ωi), τ
Output: (pk, µk) for k ∈ [1, n0]

1 n← 1
2 while n < n0 do
3 Find ωmax such that the error on the real part is maximum

≡ {ωmax | ∀ωi : ER(ωi) ≤ ER(ωmax)}
4 Set ω0,n = ωmax using Eq. 7.4
5 Set the resonant peak height to cancel the error on the real part h0,n = ER(ωmax)

using Eq. 7.5
6 Set the parameter cn using Eq. 7.8
7 Set the parameter dn using Eq. 7.4
8 Set the parameter an using Eq. 7.5
9 µn ← an + i(−ancn/dn)

10 pn ← cn + idn

11 Least-square fit: modify the values of pk and µk for k ∈ [1, n] to minimize ξ (cf.
Eq. 7.9)

12 n← n+ 1
13 end
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7.3 Validation for one-dimensional waves

Section 6.2.2 has provided the modeling methodology necessary to account for acoustic delays.
In this section, the objective is twofold: (1) to demonstrate the applicability of the modeling
procedure on a limit case: the delayed pure reflection, (2) to validate the ability of TDIBC to
impose a time-delay to account for acoustic wave propagation in the truncated portion of the
domain. In Sec. 7.3.1 we present the one-dimensional numerical setup used for validation. The
methodology proposed in Sec. 7.2 will be used to model a reflection coefficient corresponding
to a pure delay. In Sec. 7.3.3 a time domain simulation is used to demonstrate that D-TDIBC
imposes the correct time-delay τ , wave amplitude and phase.

7.3.1 Test case presentation

The aim of the simulation is to study the propagation of a Gaussian acoustic wave in the
domain Ω defined on x ∈ [−1, 1.75] m (cf. Fig. 7.5(a)). The mean speed of sound is c0 =
350 m s−1. This perturbation will propagate on the positive x direction. The physical domain
is split into two sub-domains: Ω = Ωc + Ωm. The computational domain Ωc is x ∈ [−1, 1] m
and the modeled domain Ωm is x ∈ [1, 1.75] m (gray area in Fig. 7.5(a)). The D-TDIBC is
used to model the wave propagation in Ωm. At the left boundary condition (x = xl = −1 m)
the reflection coefficient is Rl = 1 and at the right boundary condition (x = xr = 1.75 m)
the reflection coefficient is Rr = −1. In the computational domain, the reflection coefficient
at x = 1 m accounting for Rr has to be modeled by a time-delay (cf. Sec. 7.1) leading to
Rr|x=1 m = −e−iωτ . The time-delay corresponding to this modeled domain is τ = 2(xr −
xBC)/c0 = 4.28 ms. The acoustic time for the initial wave located in x0 to travel back at its
initial position is T = 2(xr − x0)/c0 = 10.0 ms.

7.3.2 Delayed reflection coefficient modeling

To impose a pure time-delay, the D-TDIBC method first requires to build a model for the
delayed reflection coefficient using the Algorithm 1 (cf. Sec. 7.2). In theory, the delayed
reflection coefficient Rr|x=1 m = −e−iωτ must be modeled up to infinite frequencies. In practice
it is not feasible as it would require an infinite number of PBFs. In numerous applications the
frequencies of interest are limited to a given range (cf. Fig. 7.5(b)) and it is sufficient to model
R(ω) below a cutoff frequency fc. For f > fc, a non-reflecting boundary condition is used. For
example, for the setup presented in Fig. 7.5(a), the frequency content of the initial Gaussian
wave is below 1 kHz so that the chosen cutoff frequency is fc = 1 kHz. A low-pass filter is
applied to the theoretical delayed reflection by multiplying the delayed reflection coefficient
by an envelope function ψ allowing a smooth transition from 1 to 0 over a frequency range:

ψ(f) =
1
2

[
1− tanh

(
f − fc

δ

)]
(7.12)
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where f is the frequency and δ is a constant that specifies the frequency range of the transition
from 1 to 0 (cf. Fig. 7.5(b)). The envelop function ψ keeps the phase of the delayed reflection
coefficient unchanged. The target function to be modeled is then:

R(ω) = ψ(f)×Rr|x=1 m (7.13)

Figure 7.6 shows the model at iterations 1, 2, 5 and 20 of the Iterative Multi-Pole Modeling
Technique (Algorithm 1). R(ω) is the filtered delayed reflection coefficient shown in Fig. 7.5(b)
and RBCω) is the reflection coefficient model at a given iteration defined in Eq. 6.14. Their real
and imaginary parts are shown in the top and bottom plots, respectively. At each iteration the
method finds the biggest point-to-point oriented distance between the real parts (Eq. 7.10) of
R(ω) and RBCω). Figure 7.6(a) shows the model at the end of the first iteration. The initial
solution of RBC(ω) targets the first peak in the real part where ℜ(R(ω)) = 1. In Fig. 7.6(b),
the targeted peak is where ℜ(R(ω)) = −1. At an iteration i, initial guesses for pi and µi

are found to target a single peak at the time. Figure 7.6 illustrates how the fit propagates
from low to high frequencies. The algorithm is considered converged after 20 iterations as
the maximum point-to-point error on the modulus is below 1%, where we define the error as
E = max ( |R(ω)−RBC(ω, n0 = 20)| ). The D-TDIBC model used here is, thus, made of 20
poles & residues (pk, µk), i.e. only 40 complex constants.

7.3.3 One-dimensional wave propagation

In this section, the behavior of the D-TDIBC is investigated first on a basic one-dimensional
wave propagation problem. Then the time domain response of each PBF is inspected to
highlight the mechanism of D-TDIBC.

The one-dimensional wave propagation is computed using the AVBP solver. AVBP is
a three-dimensional fully compressible Navier-Stokes equation solver. A two-step Taylor-
Galerkin scheme, called TTGC is used. TTGC is third-order accurate in space and time [134,
135]. Characteristics boundary conditions (NSCBC) are used [114, 115, 176, 183]. In the
NSCBC framework, the characteristic waves are evaluated at the boundaries. TDIBC pre-
scribes the ingoing characteristic wave from the outgoing characteristic wave and is, thus,
consistent with the NSCBC formalism.

As the reflection coefficient modeled in xr is Rr = −1, the wave is a priori expected to be
fully reflected: the amplitude of the reflected wave must be equal to the one of the incident
wave. As Rr is real-valued, the reflected wave is expected to be centered in x = 0 m after a
time t = T (cf. Sec. 7.3.1).

Figure 7.7 illustrates the propagation of the pressure wave from time t = 0 up to t = T . At
t = 0 the pressure field corresponds to the initial solution shown in Fig. 7.5(a). At t = 0.25T
the wave has propagated in the positive x direction and is crossing the boundary condition
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Figure 7.5: (a) Initial solution and visualization of the computational (Ωc) and modeled (Ωm)
domains. (b) Theoretical (gray solid line) and filtered (black solid line) delayed reflection
coefficients. The filter shape (Eq. 7.12) is shown (black dashed line).
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(d) Iteration 20

Figure 7.6: Reflection coefficient RBC(ω) modeled by the Iterative Multi-Pole Modeling
Technique algorithm (Algorithm 1 in Sec. 7.2.2) a several iterations. An accurate model is
obtained for n0 = 20, where n0 is the number of PBF Rk as in Eq. 7.2.
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Figure 7.7: Propagation and reflection of a Gaussian pressure wave in the domain Ωc + Ωm

by simulating only Ωc. The acoustic properties of Ωm are imposed using D-TDIBC.

at x = xBC = 1 m. At t = 0.5T the pressure wave has completely left the computational
domain. This result is expected: at time t = 0.5T the wave is propagating inside the modeled
domain Ωm, i.e. the truncated portion (gray area in Fig. 7.5(a)). If one were to compute the
complete domain, at t = 0.5T the acoustic pressure p′(x) would be zero for x ∈ [−1, 1] m.
At t = 0.75T the pressure wave is re-injected in the computational domain by the boundary
condition. The reflected pressure wave has the same amplitude than the incident wave (1 Pa)
as expected. At t = T the reflected Gaussian wave is centered at x = 0 m which means that
the time-delay is precisely prescribed by D-TDIBC.

The acoustic pressure and velocity at the boundary are recorded at the boundary condition
at xBC = 1 m during the simulation. The results are shown in Fig. 7.8(a). Additionally, the
acoustic energy Ea contained in the domain is shown. For the sake of clarity, each variable
is normalized by its maximum. At first no acoustic activity is seen as the wave propagates
inside the domain, the acoustic energy is maximum.

The acoustic pressure p′ at the boundary in Fig. 7.8(a) is consistent with the results in
Fig. 7.7. At first no acoustic pressure is seen by the boundary until the Gaussian wave crosses
the boundary at t ≃ 0.25T ≃ 2.5 ms. After the wave has crossed the boundary, the acoustic
pressure returns to zero. After the time-delay τ (cf. Fig. 7.8(a)) at t ≃ 0.75T ≃ 7.5 ms the re-
flected wave is re-entering the computational domain with the same amplitude as the incident
wave. Finally the acoustic pressure p′ returns to zero. The amplitude of the reflected acoustic
velocity u′ (t ≃ 0.75T ≃ 7.5 ms) is also the same as the incident wave (t ≃ 0.25T ≃ 2.5 ms)
although the sign is changed: u′ is negative. This indicates that the wave is traveling in the
negative x direction after the reflection at xr = 1.75 m. This result is consistent with the
imposition of a reflection coefficient Rr = −1 in xr. When the wave crosses the boundary
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the acoustic energy initially contained in the domain is lost due to the acoustic flux at the
boundary condition in xBC. The acoustic energy contained in the domain retrieves its initial
value when the reflected wave re-enters the domain. This stresses the fact that D-TDIBC
conserves the acoustic energy while imposing a time-delay.

In their work, Jaensch et al. [190] solve a similar problem: they impose a pure time-
delay at a boundary condition with a one-dimensional incident Gaussian wave. As discussed
in Sec. 6.1, their method uses a first order upwind numerical scheme to discretize the one-
dimensional LEE over the truncated domain. Their method is, thus, inherently dissipative
and the dissipation decreases linearly with the cell size of the spatial discretization1. In order
to achieve a dissipation level comparable to the one obtained here, it was necessary to use
1000 points. As a consequence, in the state-space model used, the state matrix is of dimen-
sion 2000 × 2000, i.e. 4 million scalar values. D-TDIBC seems to yield comparable results
for a lower memory storage requirement as only 40 complex constants were used to model the
delayed reflection coefficient.

Figure 7.8(b) illustrates the contribution Ik of each PBF Rk (scaled by the maximum
amplitude of the resulting ingoing wave Ain

max = max(Ain
n (t)) = 1 Pa). The ingoing wave

Ain
n (t) imposed by D-TDIBC is the sum of all the Ik. Before t ≃ 7 ms the ingoing wave is

null: the PBFs are canceling each other out. At t ≃ 7 ms this canceling effect stops and
the individual contributions of the PBFs add up to create the re-entering characteristic wave.
This stresses how the modeling procedure of R(ω) is critical for an accurate prediction of
acoustic delays as the canceling effect is due to a complex interaction with each of the PBFs
Rk of the model.

1The numerical scheme used in their study is first order accurate in space and time. Other formulations
with higher spatial and temporal order schemes are possible.
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(a)

(b)

Figure 7.8: (a) Acoustic velocity (dashed line) and pressure (solid line with circles) at the
boundary condition. (b) Temporal response of 20 PBF (dashed and dotted lines) and of the
ingoing wave imposed by the D-TDIBC (black solid line)
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Figure 7.9: Sketch of a transverse cut of the INTRIG Burner (top). The computational domain
of the FULL configuration goes from the glass balls array (x = −0.367 m) to the exhaust
(x = 0.35 m) while it is cut (at x = xBC = 0.1 m) in the TRUNCATED configuration. A
zoom (bottom) of the flame region of the initial solution used in DNS is shown. The light grey
and dark grey regions represent the zero and high CO2 mass fraction levels. The streamlines
are plotted in white.

7.4 Validation for a combustion chamber

In this section, we investigate the thermoacoustic instability [202] in a laminar experimental
setup called INTRIG Burner (IMFT, Toulouse). First, a DNS of the full setup (called “FULL”)
is conducted. A second DNS (called “TRUNCATED”) in which the computational domain is
truncated after the flame is conducted. In the TRUNCATED case, D-TDIBC is used to model
the acoustic properties of the truncated domain as in Sec. 7.3.3. The results obtained using
D-TDIBC will be compared with those of the FULL configuration. Several recent studies
have used TDIBCs methods in combustion setups [190, 199–201].

7.4.1 Experimental setup

The INTRIG Burner is used to study a lean premixed laminar methane-air flame attached
on a cylinder. The operating point corresponds to an equivalence ratio φ = 0.75 and a bulk
velocity of the fresh gases of ub = 0.8 m s−1. The associated laminar flame speed and adiabatic
temperature are sl = 0.23 m s−1 and Tad = 1920 K.

The experimental rig is shown in Fig. 7.9. The gaseous methane-air premixture is injected
upstream of the glass ball array located at x = −0.367 m. The flow is then laminarized by the
glass balls and the honey comb panels. A lean premixed methane-air laminar flame attaches
to a cylindrical stainless steel flame holder of with a diameter d = 8 mm. The combustion
chamber has a constant cross section of h = 34 mm by l = 94 mm.
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FULL

D-TDIBC

Figure 7.10: Schematic of the computational domains and BC used for the two simulations:
FULL and TRUNCATED cases.

Case Length Ncell ∆xmin Inlet BC Outlet BC BC type
FULL 0.717 m 625000 60 µm R(ω) = −1 RFULL(ω) = 1 NSCBC
TRUNCATED 0.467 m 545000 60 µm R(ω) = −1 RD-TDIBC(ω) = e−iωτ D-TDIBC

Table 7.1: Parameters used in the two simulations.

7.4.2 Numerical setup

As the flow is two-dimensional, 2D Direct Numerical Simulation (DNS) approach can be
used [79, 159, 203]. A 19-species mechanism (called LU19) is used [113] for the modeling
of chemical kinetics. Schmidt and Prandtl numbers are assumed constant: Pr = 0.6 and
Sc = 0.6. The FULL mesh is composed of 625 000 cells. The reduced mesh is composed
of 545 000 cells, i.e. a reduction of 13 %. The flame thickness is δ0

L = 680 µm and at
least 11 points are used to resolve the flame front with a mesh resolution at the flame of
∆x = 60 µm [79, 159, 203]. A typical flame, here at a stable operating point, is shown in
Fig. 7.9 (bottom).

The inlet acoustic boundary (glass balls at x = −0.367 m) is a hard wall (i.e. u(ω) =
0 m s−1 at all frequencies). It was checked in the experiment that this is a good approxi-
mation [79]. This assumption is close to realistic conditions as the inlet BC corresponds to
the glass balls array. The outlet acoustic boundary (at x = 0.35 m) is an open end (i.e.
p(ω) = 0 Pa at all frequencies). A more accurate model of the outlet’s reflection coefficient
should be considered if one were willing to compute precisely the thermoacoustic stability
of the configuration. However, the goal of this section is more modest: it aims to validate
D-TDIBC. The simple acoustic conditions used here are, hence, acceptable as the reference
case is a numerical simulation.

Two simulations are carried out and investigated in this section (cf. Fig. 7.10): the “FULL”
and the “TRUNCATED” cases. The outlet boundary condition of the FULL domain is located
as x = 0.35 m and the outlet D-TDIBC boundary condition of the TRUNCATED domain
is located at x = 0.1 m. Figure 7.10 shows the computational domain and the boundary
conditions used in the three simulations. The grey area in the TRUNCATED case corresponds
to the domain where the acoustic wave propagation is modeled by a time-delay imposed by
D-TDIBC. Table 7.4.2 summarizes the parameters used in the simulation.
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Figure 7.11: Model of the delayed reflection coefficient RBC(ω) with n0 = 18 (cf. Eq. 6.14)
for a time-delay of τ = 0.30 ms in the laminar combustor of Fig. 7.9.

7.4.3 D-TDIBC: reflection coefficient model

The Iterative Multi-Pole Modeling Technique presented in Sec. 7.2 is used to model the
acoustic wave propagation in the truncated part of the INTRIG Burner. The outlet bound-
ary condition of the FULL and TRUNCATED domains are located at xmax = 0.35 m and
xBC = 0.10 m, respectively. Consequently the length of the domain to be modeled by D-
TDIBC is L = 0.25 m. The value of xBC must be large enough to ensure that combustion
is complete and only acoustics take place between xBC and xmax. Moreover the sound speed
must be homogeneous in this zone. This condition has been verified a posteriori by analyzing
the results of the FULL configuration simulation: the sound speed fluctuations are less than
0.5% of the mean value c0 = 830 m s−1. The time-delay to impose is thus τ = 2L/c0 = 0.3 ms.

According to duct acoustics theory, plane waves propagates in ducts at frequencies lower
that a cutoff frequency fc [? ]. This frequency is given by the speed of sound c0 and the lowest
height in the cross section. In the INTRIG setup, the plane waves propagate at frequencies
lower that fc = 3.5 kHz. The filtering procedure used in (Sec. 7.3.2) is applied here so that
the frequencies lower than fc = 3.5 kHz are accurately modeled. The results are shown in
Fig. 7.11. The reflection coefficient model used here consists in a set of 18 (pk, µk).

7.4.4 Results and discussion

When carrying out DNS, thermoacoustic instabilities are found in the two cases of Fig. 7.10:
the flame oscillates and couples to the acoustic modes of the setup [202]. Figure 7.12(a)
illustrates the Sound Pressure Level (SPL) spectra expressed in dB and defined as SPL =
20 log(p/pref) based on a reference pressure level of pref = 2 · 10−5 Pa.

The FULL simulation, i.e. computing the full domain, shows a strong acoustic activ-
ity with many amplified acoustic modes. The four first modes have frequencies of 203 Hz,
534 Hz, 782 Hz and 1150 Hz, respectively. The mode shapes can be obtained by (1) perform-
ing a spectral analysis at several axial locations of the burner, (2) extracting the amplitude
of the Fourier transform at the peak frequency in Fig. 7.12(a) and (3) normalizing by the
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Figure 7.12: (a) spectra obtained for the FULL and the TRUNCATED simulations. D-
TDIBC allows an accurate prediction of the thermoacoustic stability observed in the FULL
configuration. The spectra are based on a probe located at x = −8.5 mm. The shapes of the
first (b), second (c) and third (d) modes are shown. The markers correspond to the probes in
the simulation (lines are added for the sake of clarity).
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maximum pressure amplitude. The three first modes observed in the FULL simulation are
a quarter wave mode (cf. Fig. 7.12(b)), a three-quarter wave mode (cf. Fig. 7.12(c)) and a
five-quarter wave mode (cf. Fig. 7.12(d)).

The TRUNCATED simulation also exhibits thermoacoustic instabilities and is in good
agreement with the FULL simulation. Figure 7.12(a) illustrates the ability of D-TDIBC to
accurately predict: the frequencies, the amplitudes and the broadband acoustic activity levels.
Figures 7.12(b), (c) and (d) illustrate the mode shapes of the unstable modes obtained with
D-TDIBC. The agreement on the modes shapes is excellent.

Figure 7.12 demonstrates that D-TDIBC can recover the acoustic eigenmodes of a domain
while simulating only a part of it. It also gives the opportunity to investigate the thermoacous-
tic stability of different setups while simulating the same computational domain: the length
of the truncated domain can be adjusted in the same DNS simply by introducing a different
time-delay at the boundary x = xBC (cf. Fig. 7.9).
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7.5 Conclusion

Truncating large portions of a computational domain where only inviscid plane waves propa-
gate is possible using a TDIBC. In the time domain, modeling the truncated part is equivalent
to adding a “time-delay” to the reflection of the waves. In the frequency domain, it is equiv-
alent to imposing a “delayed reflection coefficient”. The reflection coefficient based TDIBC
derived in Chapter 6 requires a model, i.e. a set of complex poles pk and residues µk, in the
frequency domain. For delayed reflection coefficient, this modeling is a tedious task due to
the complex exponential introduces by the delay.

In this chapter, a novel modeling strategy allowing to model delayed reflection coefficients
has been derived from the properties of a Pole Base Function (i.e. the “template” function of
the Pole & Residue modeling). The modeling methodology relies on an iterative least-square
fitting procedure where the number of degrees of freedom increases at each iteration. Once
the model of the delayed reflection coefficient is obtained, one can use the Pole & Residue
TDIBC based on the reflection coefficient proposed in Chapter 6 to impose a time-delay in
temporal simulations such as in LES/DNS. The joint use of the modeling method for delayed
reflection coefficients and the reflection coefficient based TDIBC is referred here as “Delayed-
Time Domain Impedance Boundary Condition” (D-TDIBC).

The methodology is validated on a one-dimensional Gaussian wave propagation case simu-
lated with AVBP. The results show that the delayed reflection coefficient is accurately modeled
using the iterative least-square fitting procedure. The time-delay is correctly imposed in the
temporal simulation without any loss of acoustic energy.

A thermoacoustically unstable combustion setup – the INTRIG burner operated at IMFT
(Toulouse, FRANCE) – is used as a final test case: 2D DNS of an unstable laminar methane-
air flame is performed using a reduced domain along with D-TDIBC to model the truncated
portion. Results are in excellent agreement with the DNS over the complete domain. The
unstable modes frequencies, amplitudes and shapes are accurately predicted.

The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for
numerical investigations of aeroacoustics and thermoacoustics.



Chapter 8

TDIBC: the state-space approach

State space modeling is a common practice in control theory of linear time-invariant (LTI)
systems, i.e. systems with fully linear response and constant properties. As pointed by several
authors [90, 190, 198, 204], an acoustic boundary in the linear regime can be considered as a
LTI system as its properties do not evolve in time and, consequently, a state-space model can
be used to implement impedance boundary conditions in Navier-Stokes simulations.

The goal of this chapter is to highlight the links between two TDIBC methods: (1) the
pole & residue approach (Fung and Ju [83, 84], Scalo et al. [85], Lin et al. [86]) and (2) the
state-space approach (Jaensch et al. [190]).

Section 8.1 will recall the background of state-space modeling before discussing its appli-
cation to time domain impedance boundary conditions in Sec. 8.2: the CBSBC method of
Jaensch et al. [190] is presented. In Sec. 8.3, the pole & residue approach will be recast under
the CBSBC formalism. First, a single-pole model will be considered and an elementary state-
space corresponding to any single-pole model will be presented. Finally, a generic state-space
model under the CBSBC formalism will be derived from a multi-pole TDIBC model of order
n0. Numerical simulations will be conducted and the two aforementioned state-space models
will be compared to the pole & residue TDIBC and to analytical solutions.

8.1 Introduction to the state-space representation

Many dynamical systems can be modeled by a finite order differential equation in the time
domain, which can be recast as a set of first order ordinary differential equations (ODEs).
From this set of ODEs a matrix-based representation, called a state-space models, can be
derived.

Many state-space models (also known as “the Markovian representation") can be con-
structed from a set of ODEs. State-space models rely on the fact that any finite order linear
differential equation can be expressed as a vector of first-order differential equation [187]. In
particular, LTI systems can be easily modeled using the state-space representation. In fact,
the state-space modeling is a mathematical tool that is convenient to model and study many
complex dynamical systems in a simple and generic representation.

135
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A state-space model relies on the so called state variables. They are the variables fully
describing the evolution of a system in absence of external forcing. For example, to describe
a free-falling object (that is neglecting the drag force) the system can be fully described us-
ing two state variables: the position and velocity of the object. Although many state-space
models can be derived from a single set of first order ODEs, the minimum number of state
variables needed to model a system is unique. The number of state variables is referred to as
the “order of the state-space”.

Figure 8.1: Linear time-invariant system with n state variables, r inputs and m outputs.

Figure 8.1 shows a schematic of a generic LTI system with r inputs, m outputs and n state
variables. The state variables form the state vector x, the inputs form the input vector u, and
the outputs form the output vector y as in Eq. 8.1. The order n of the state-space model is
given by the size of the state vector x. If r = 1 and m = 1 the system is a single-input single-
output (SISO) system and if r > 1 and m > 1 the system is a multiple-input multiple-output
(MIMO) system.
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(8.1)

The choice of the state variables xi is not unique but the minimum order n of a system is.
It corresponds to the number of Degrees Of Freedom (DOF) of the system. The state-space
model is built using two matrix equations: the state equation and the output equation.

8.1.1 The state equation

A mathematical description of dynamical systems can be made using n-th order differential
equations. These equations can be recast as a set of coupled first-order ordinary differential
equations. In the general case, each state variable’s time derivative can be expressed as a
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function of all the state variables, inputs and time. The general state equation is:

ẋ1 = f1(x,u, t) (8.2)

ẋ2 = f2(x,u, t)
... =

...

ẋn = fn(x,u, t)

where the Newton notation is used to expressed the time derivative ẋi ≡ dxi/dt. In the general
case, the functions fi can be dependent in time and non-linear. However, when studying LTI
systems many simplifications can be done. First, the linearity of the system implies that the
superposition principle is respected. Hence, the functions fi are linear operators: the time
derivative of the state variables xi can be expressed as a linear combination of x and u. The
second useful property of an LTI system is that its characteristics do not evolve in time (time-
invariant). Consequently, the coefficients used in the linear combination are constant in time.
Equation. 8.2 can thus be simplified for LTI systems leading to a set of coupled first-order
linear differential equations with constant coefficients:

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn + b11u1 + b12u2 + · · ·+ b1rur (8.3)

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn + b21u1 + b22u2 + · · ·+ b2rur

... =
...

ẋn = an1x1 + an2x2 + · · ·+ annxn + bn1u1 + bn2u2 + · · ·+ bnrur

This set of equations can be recast in the matrix form as:




ẋ0

ẋ1

...
ẋn




=




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann







x0

x1

...
xn




+




b11 b12 . . . b1r

b21 b22 . . . b2r

...
...

bn1 bn2 . . . bnr







u1

u2

...
ur




(8.4)

The state equation is usually expressed in the matrix form. Making abstraction of the size of
the input, output and state vectors, Eq. 8.4 can be written in the compact form:

ẋ = Ax + Bu (8.5)

In Eq. 8.5, the bold upper case refers to the matrices in Eq. 8.4 and the bold lower case to the
vectors in Eq. 8.1. The matrix A is referred to in the literature as “the state matrix” or “the
system matrix” and is of dimension: dim[A(·)] = n×n where n is the order of the state-space
model (i.e. the number of state variables). It corresponds to the aij coefficients in Eq. 8.4.
The state matrix predicts the future values of the state variables xi(t) at time t knowing the
values of the state variables xi(t0) at the initial time t0 if no input is given to the system.

The matrix B is referred to in the literature as “the input matrix” and is of dimension:
dim[B(·)] = n× r where r is the number of inputs of the system (cf. Fig. 8.1). It corresponds
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to the bij coefficients in Eq. 8.4. The B matrix accounts for the change of the state variables
values due to the input vector u.

The state equation, thus, describes the evolution of the system through the change of
the state variables values. However, in many cases the variables of interest for engineering
purposes are not the state variables. In order to provide meaningful engineering quantities, a
second step is necessary: the so-called output equation.

8.1.2 The output equation

As for the state variables, the choice of the output of a system is not unique. The output
variables yi are the system variable of interest. As seen in Sec. 8.1.1, LTI systems allow
simplifications. In this context, the output variables can directly be written as a linear combi-
nation of the state variables xi and the input variables ui. For m output variables, the output
equation can then be written:

y1 = c11x1+ c12x2+. . .+ c1nxn + d11u1+ d12u2+· · ·+ d1rur (8.6)

y2 = c21x1+ c22x2+. . .+ c2nxn + d21u1+ d22u2+· · ·+ d2rur

... =
...

ym = cm1x1+cm2x2+. . .+cmnxn + dm1u1+dm2u2+· · ·+dmrur

Similarly to the state equation, the output equation (Eq. 8.6) is usually expressed in the
matrix form:




y0

y1

...
yn




=




c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

cm1 cm2 . . . cmn







x0

x1

...
xn




+




d11 d12 . . . d1r

d21 d22 . . . d2r

...
...

dm1 dm2 . . . dmr







u1

u2

...
ur




(8.7)

Equation 8.7 can be synthesized in the compact form as:

y = Cx + Du (8.8)

In Eq. 8.8, the bold upper case refers to the matrices in Eq. 8.7 and the bold lower case to
the vectors in Eq. 8.1.

The matrix C is referred to in the literature as “the output matrix” and is of dimension:
dim[C(·)] = m × n. It corresponds to the cij coefficients in Eq. 8.7. The C matrix account
for the change in the output variables due to the state variables.

The matrix D is referred to in the literature as “the feedthrough matrix” or “the feedfor-
ward matrix”. The feedthrough matrix accounts for the direct impact of the system inputs to
the system outputs without any change of state variables. For many systems, the D matrix
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is the zero matrix. In the general case, the D matrix is of dimension: dim[D(·)] = m× r. It
corresponds to the dij coefficients in Eq. 8.7.

8.1.3 Block diagram of a state-space

Any state-space model can be represented as a block diagram. This representation gives
insight on the role played by the matrices in both the state equation and the output equation.
In Fig. 8.2 the LTI system shown in Fig. 8.1 is expanded: it shows a block diagram of the LTI
system modeled using a state-space model. The SSM is represented using the compact form
of Eqs. 8.5 and 8.8.

Figure 8.2: Block diagram of a linear time-invariant system modeled using a state-space
representation.

The s−1 block is an integration block (x = s−1ẋ) as s = iω = i2πf is the Laplace variable,
i is the imaginary unit (i =

√
−1), f is the frequency and ω is the angular frequency.

On the left hand side of Fig. 8.2 we can see the input vector u(t) (cf. Eq. 8.1) and on
the right-hand side the output vector y(t). The red box corresponds to the state equation
(Eq. 8.5) and the blue box corresponds to the output equation (Eq. 8.8). The block diagram
allows to visualize several features of the state-space model:

• the state equation:

– The state matrix A corresponds to the change of state vector x due to itself. This
change is made through the modification of the time derivative of the state vector
ẋ.

– The input matrix B corresponds to the change of state vector x due to the input
vector u. This change is made through the modification of the time derivative of
the state vector ẋ.

• the output equation:

– The output matrix C gives the contribution of the state vector x to the output
vector y.

– The feedthrough matrix D gives the contribution of the input vector u to the
output vector y.
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8.2 CBSBC: the state-space model approach for TDIBC

Acoustic boundary conditions are dynamical systems and, in the linear regime, can be con-
sidered as LTI systems. their properties are defined in the frequency domain and the time
domain response fulfilling these properties can be prescribed by the use of a state-space model.
This approach was used by several authors.

Zhong et al. [204] used the state-space approach to model the acoustic admittance (inverse
of impedance). The state-space model utilized by Zhong et al. is in the Controllable Canonical
Form.

Similarly, the Characteristic Based State-space Boundary Condition (CBSBC) has been
developed by Schuermans et al. [198], Kaess et al. [90] and Jaensch et al. [91] and used in
Navier-Stokes simulations [90, 91, 190, 191]. This method relies on state-space modeling of
the reflection coefficient.

Two formulations of CBSBC were proposed by Jaensch et al. [91]:

1. CBSBC-LEE: Linearized Euler Equations in a 1D cavity
A first formulation of CBSBC, referred to in this manuscript as “CBSBC-LEE", is pro-
posed by Jaensch et al. specifically to impose pure time-delays. This approach consists
in implementing a Linearized Euler Equation (LEE) solver for each of the impedance
boundary conditions in the domain and in performing the temporal integration using a
first-order upwind scheme. It will not be further discussed in this manuscript.

2. CBSBC-TF: Transfer Function
The second formulation of CBSBC, referred to in this manuscript as “CBSBC-TF", is
a state-space approach under the so-called Controllable Canonical Form. This form of
state-space model can be built by:

(a) Identifying the transfer function between the inputs and outputs of the system in
the frequency domain. In the CBSBC-TF formalism the only input is the outgoing
wave Aout(t) and the only output is the ingoing wave Ain(t). In this case, the
transfer function is the reflection coefficient.

(b) Fitting the broadband reflection coefficient as a rational polynomial fraction. The
order of the state-space is given by the order of the denominator’s polynomial and
the numerator’s polynomial order should be lower or equal to the order of the
denominator.

(c) Using the inverse Laplace transform in order to obtain an ODE (cf. Appendix C).

(d) Recasting the ODE as a set of first order ODE.

(e) Deriving a state-space model from the set of first order ODEs.
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This formulation of CBSBC aims to imposing broadband reflection coefficients in the
time domain. In theory, this formulation should be capable of imposing pure time-delays
such as in Chapter 7.

However, in practice, modeling a delayed reflection coefficient as a rational polynomial is
exceedingly difficult as the reflection coefficient is a complex exponential in the frequency
domain. It is due to the high number of zeros introduced by the complex exponential as
discussed in Chapter 7 (Sec. 7.1 on page 115). In this case, the CBSBC model requires
a very high number of Padé polynomial coefficients leading to very large matrices and
numerical issues (such as inverting ill-conditioned matrices).

The CBSBC-TF method will be detailed in Sec. 8.2.1. For the sake of readability, the
CBSBC method will be formulated here under the notations used in Chapters 6 and 7.

8.2.1 Characteristic Based State-space Boundary Condition: trans-

fer function modeling

As discussed above, a popular way of building a state-space model is by modeling the transfer
function as a rational polynomial. This choice was made by Jaensch et al. [91]. In their
work, the authors propose to model the complex reflection coefficient in the Laplace space (cf.
Appendix C) as a rational polynomial function:

R(s) =
Ain(s)
Aout(s)

=
βns

n + βn−1s
n−1 + · · ·+ β1s+ β0

αmsm + αm−1sm−1 + · · ·+ α1s+ α0

(8.9)

where the coefficients βi with i ∈ [0, n] and αi with i ∈ [0,m] are real-valued constants and
m ≥ n. Equation 8.9 can be written:

R(s) =
N(s)
D(s)

=
∑n

k=0 βks
k

∑m
k=0 αksk

(8.10)

where N(s) and D(s) are the polynomials in the numerator and denominator, respectively.
As N(s) and D(s) are polynomials in the frequency domain, Eqs. 8.9 and 8.10 correspond to
an ODE of order m in the time domain:

dmAin

dtm
+αm−1

dm−1Ain

dtm−1
+ · · ·+α1

dAin

dt
+α0A

in = βn
dnAout

dtn
+βn−1

dn−1Aout

dtn−1
+ · · ·+β1

dAout

dt
+β0

(8.11)
where dif

dti is the ith time derivative of a function f .
A single-input single-output (SISO) state-space model can be built from Eq. 8.11 [190]

ẋ = Ax + Bu (8.12)

y = Cx + Du (8.13)
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The state vector x is defined as the time derivative of the temporal outgoing wave Aout(t):

x =




1
d
dt
...

dm−1

dtm−1



· Aout(t) (8.14)

Following the definition of the waves Ain(t) and Aout(t) shown in Fig. 6.1 (page 99), the state-
space model has only a single input, i.e. the input vector u in Eq. 8.5 reduces to a scalar
input u,

u(t) = Aout(t) (8.15)

and a single output, i.e. the output vector y in Eq. 8.8 reduces to a scalar output y.

y(t) = Ain(t) (8.16)

The state matrix A is built using the polynomial coefficient of the denominator D(s) in
Eq. 8.10 [190]:

A =




0 1 0 . . . 0

... 0 1
. . .

...

...
. . . . . . 0

0 . . . . . . 0 1

−α0 −α1 . . . −αm−2 −αm−1




(8.17)

The input matrix B (cf. Eq. 8.12) is [190] :

B =




0
...
0
1




(8.18)

The output matrix C in Eq. 8.13 is [190] :

C = [β0 − βmα0, β1 − βmα1, . . . , βm−2 − βmαm−2, βm−1 − βmαm−1] (8.19)

and the D matrix in Eq. 8.8 reduces to a scalar [190] :

D = βm (8.20)

This method has been successfully applied to Navier-Stokes simulations by several au-
thors [90, 91, 190, 191]. The objective of the next section is to investigate the links between
the CBSBC method and the pole & residue TDIBC method of Fung and Ju.
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8.3 Link between state-space and pole & residue method

In Chapter 6 the theory of TDIBC as proposed originally by Fung and Ju has been presented.
This method uses the wall softness S(ω) as the impedance modeling quantity. A similar
method has been derived in Sec. 6.2.2 based on the reflection coefficient R(ω). The objective
of this section is to highlight the links between the reflection-coefficient-based pole & residue
TDIBC and CBSBC-TF.

In Sec. 8.3.1 a state-space model will be derived from a single-pole model (i.e. a single
pair of residues and poles) which is compared to the CBSBC-TF formalism. Section 8.3.2 will
focus on the generalization of the TDIBC multi-pole model under the CBSBC-TF formalism.

8.3.1 Single pole base function as a controllable form state space

The objective of this section is to build a CBSBC-TF model corresponding to a generic single-
pole TDIBC (n0 = 1 in Eq. 6.14, cf page 103).

Derivation

As presented in Chapter 6 (Sec. 6.2.2), the use of the pole-based TDIBC requires the modeling
of the reflection coefficient as a sum of partial fraction as in Eq. 6.14. Since the pole-based
TDIBC consists of a linear superimposition of partial fraction we focus, first, on a single
conjugate pair of pole & residue pk and µk. For a single Pole Base Function (cf. Sec. 6.2.2),
that is n0 = 1 in Eq. 6.14, the reflection coefficient modeled by TDIBC is:

R(s) =
Ain(s)
Aout(s)

=
µ1

s− p1

+
µ∗

1

s− p∗
1

(8.21)

The reflection coefficient in Eq. 8.21 can be expressed as a rational polynomial:

R(s) =
β1s+ β0

s2 + α1s+ α0

(8.22)

where: 



α0 = c2 + d2

α1 = −2c
β0 = −2(ac+ bd) = 0
β1 = 2a

(8.23)

for:
µ1 = a+ ib ; p1 = c+ id (8.24)

The coefficient β0 (the phase parameter at the low frequency limit) is set to zero [86]. The
rational polynomial function of Eq. 8.22 can be expressed as in Eq. 8.10 where:

• the numerator N1(s) is a polynomial of order n = 1,

• the denominator D1(s) is a polynomial of order m = 2.
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The reflection coefficient of a single Pole Base Function model can, hence, be expressed as
follows:

R(s) =
Ain(s)
Aout(s)

=
β1s

s2 + α1s+ α0

(8.25)

Applying the inverse Laplace transform (cf. Appendix C) to Eq. 8.25 we can recover a
temporal ODE (cf. Eq. 8.11):

d2Ain

dt2
+ α1

dAin

dt
+ α0A

in = β1
dAout

dt
(8.26)

Or, in the state-space form:

d

dt

[
Aout

dAout

dt

]

︸ ︷︷ ︸
ẋ

=

[
0 1
−α0 −α1

]

︸ ︷︷ ︸
A

[
Aout

dAout

dt

]

︸ ︷︷ ︸
x

+

[
0
1

]

︸ ︷︷ ︸
B

·Aout(t)
︸ ︷︷ ︸

u

(8.27)

Ain(t)
︸ ︷︷ ︸

y

=
[

0 β1

]

︸ ︷︷ ︸
C

[
Aout

dAout

dt

]

︸ ︷︷ ︸
x

+ 0︸︷︷︸
D

·Aout(t)
︸ ︷︷ ︸

u

(8.28)

Using Eq. 8.23 the state-space model that uses the Pole Base Function parameters (Eq. 7.3)
is:

d

dt

[
Aout

dAout

dt

]
=

[
0 1

−c2 − d2 2c

] [
Aout

dAout

dt

]
+

[
0
1

]
· Aout(t) (8.29)

Ain(t) =
[

0 2a
] [ Aout

dAout

dt

]
(8.30)

A mathematical proof that any single-pole model can be expressed as a CBSBC model
has been derived. Equations. 8.29 and 8.30 are mathematically equivalent to the single-pole
model presented in Eq. 8.21.

The next section focuses on generalizing this result as it presents the derivation of a CBSBC
model from multi-pole models.

8.3.2 Multiple Pole Base Functions as a controllable form state

space

The objective of this section is to build a CBSBC-TF model corresponding to a multi-pole
TDIBC model of order n0 (cf. Sec. 6.2.2).

Derivation

The sum in Eq. 6.14 can be truncated to an arbitrary order n0. The truncated sum to the order
n0 is referred to as Sn0

and can be expressed as a sum of n0 rational polynomial functions:
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Sn0
(s) =

n0∑

k=1

β1,ks

s2 + α1,ks+ α0,k

=
n0∑

k=1

Ak

Bk

(8.31)

where Ak and Bk are the numerator and denominator of the kth rational polynomial function,
respectively. The sum Sn0

itself can be expressed as a rational polynomial function with a
numerator Nn0

and a denominator Dn0
.

Sn0
=

n0∑

k=1

2aks

(s− pk)(s− p∗
k)

=
n0∑

k=1

Ak

Bk

=
Nn0

Dn0

(8.32)

For a single Pole Base Function (n0 = 1 in Eq. 6.14), we have:

S1 =
N1

D1

=
A1

B1

(8.33)

Equation 8.33 was used directly to determine N1 and D1 in Sec. 8.3.1. which is equivalent to
Eq. 8.25. For a higher order n0, we can evaluate Nn0

and Dn0
. Recursively for n0 = 2, n0 = 3

and n0 = 4, we have:

S2 =
N2

D2

=
A1

B1

+
A2

B2

=
A1B2 + A2B1

B1B2

(8.34)

S3 =
N3

D3

=
A1

B1

+
A2

B2

+
A3

B3

=
A1B2B3 +B1A2B3 +B1B2A3

B1B2B3

(8.35)

S4 =
N4

D4

=
A1

B1

+
A2

B2

+
A3

B3

+
A4

B4

=
A1B2B3B4 +B1A2B3B4 +B1B2A3B4 +B1B2B3A4

B1B2B3B4

(8.36)

Equations 8.34, 8.35 and 8.36 show by recurrence that the generic expression for the numerator
Nn0

and the denominator Dn0
of the sum Sn0

are:

Nn0
=

n0∑

k=1

Ak

n0∏

i=1
i6=k

Bi (8.37)

Dn0
=

n0∏

i=1

Bi (8.38)

In order to build a state-space model as in CBSBC, we need to express Sn under the form:

Sn0
=
Nn0

Dn0

=
∑n

l=0 βls
l

∑m
k=0 αksk

(8.39)

where we have to find the αk and βl coefficients corresponding to the Pole Base Functions
parameters and αm = 1 by definition. As seen in Eq. 8.31, Ak and Bk are polynomials of
order 1 and 2, respectively. From Eqs. 8.37 and 8.38 it follows that the polynomials Nn0

and
Dn0

are of order n = 2n0 − 1 and m = 2n0, respectively.
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Denominator

The denominator Dn0
in Eq. 8.38 can be expressed as:

Dn0
(s) =

n0∏

i=1

Bk(s) =
n0∏

i=1

(s− pk)(s− p∗
k) (8.40)

We can define a vector s containing all of the roots si of the polynomials Dn0
(s):

s =
[
p1, p

∗
1, p2, p

∗
2, . . . , pn0

, p∗
n0

]
= [s1, s2, . . . , s2n0

] (8.41)





si = 0 ; i = 0
s2i = pi ; i ∈ [1;n0]
s2i−1 = p∗

i ; i ∈ [1;n0]
(8.42)

The first root s0 = 0 is not useful for the determination of the coefficients αk in Eq. 8.39.
However, it is used in the next section to determine the coefficients βl. Using the roots si,
Eq. 8.40 can be recast:

Dn0
=

2n0∏

i=1

s− si (8.43)

In Eq. 8.43, the polynomial Dn0
is factorized. In the TDIBC formalism proposed by Douas-

bin et al. [87–89] the si are found while fitting the reflection coefficient. To build a state-space
model as in CBSBC we need to identify the coefficients of the polynomial as in Eq. 8.10.
To do so, one can use Viète’s formula [205–207] which allows to determine the polynomials
coefficients if its roots are known. As the pole-based TDIBC modeling is based on the deter-
mination of the roots si, the αk in Eq. 8.10 can be found. The coefficients αk of the polynomial
Dn0

of order m = 2n0 are:

αk = (−1)2n0−k · σ(2n0 − k, s) (8.44)

which further simplifies into1:

αk = (−1)k · σ(2n0 − k, s) (8.45)

where σj(s) = σ(j, s) denotes the elementary symmetric polynomial of order j of the vector
s [207, 208]:

σ(j, s) = σj(s1, s2, · · · , s2n0−1, s2n0
) =

∑

1≤i1<i2···<ij≤2n0

si1
si2
· · · sij

(8.46)

1The expression (−1)2n0 is always equal to unity for all n0 ∈ N. The function f(x) = (−1)x is an even
function, hence: (−1)−k = (−1)k ; ∀k ∈ N.
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For example, for n0 = 2 the elementary symmetric polynomials from the order j = 0 to
j = 2n0 = 4 are:

σ(0, s) = σ0(s1, s2, s3, s4) = 0 (8.47)

σ(1, s) = σ1(s1, s2, s3, s4) = s1 + s2 + s3 + s4 (8.48)

σ(2, s) = σ2(s1, s2, s3, s4) = s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4 (8.49)

σ(3, s) = σ3(s1, s2, s3, s4) = s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4 (8.50)

σ(4, s) = σ4(s1, s2, s3, s4) = s1s2s3s4 (8.51)

Computationally, the elementary symmetric polynomial σ(j, s) can be computed using the
Newton-Girard formula by taking the determinant of a matrix Ng [209–211]:

σ(j, s) = (−1)j−1 det Ng (8.52)

where Ng is the j × j matrix:

det Ng =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1s1 1 0 0 · · · 0

2s3 s1 1 0
. . . 0

3s3 s2 s1 1
. . . 0

4s4 s3 s2 s1
. . . 0

...
...

...
...

. . . 1
jsj sj−1 sj−2 · · · · · · s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(8.53)

Numerator

In order to find the βk coefficients we have to recast Eq. 8.37. First, the Ak in Eq. 8.32 can
be factorized:

Ak = 2aks = 2ak(s− s0) (8.54)

where ak is the real part of the residue µk as defined in Sec. 6.2.2 and s0 = 0 as defined by
Eq. 8.42. Using Eq. 8.54, Eq. 8.37 can be recast as:

Nn0
=

n0∑

k=1

2ak(s− s0)
n0∏

i=1
i6=k

(s− pi)(s− p∗
i ) (8.55)

As in Eq. 8.43 the product in Eq. 8.55 can be recast using the s vector defined in Eq. 8.41.

Nn0
=

n0∑

k=1

2ak(s− s0)
2n0∏

i=1
i6=[k,k+1]

s− si (8.56)
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The s − s0 term can be introduced in the product as well by changing the starting index to
i = 0:

Nn0
=

n0∑

k=1

2ak

2n0∏

i=0
i6=[k,k+1]

s− si (8.57)

Equation 8.57 is not convenient as the index i in each of the term of the sum k can take all
the values form i = 0 to i = 2n0 except i = k and i = k + 1. For clarity’s sake, we can define
a new vector r:

r(k) = [r1(k), r2(k), . . . , r2n0−2(k)] (8.58)

where ri(k) is:

{
ri(k) = si if i < k

ri(k) = si+2 if i ≥ k
(8.59)

The numerator Nn0
in Eq. 8.57 can then be recast as:

Nn0
= 2

n0∑

k=1


ak

2n0−2∏

i=0

s− ri(k)


 (8.60)

The factorized form of the numerator polynomial Nn0
in Eq. 8.60 allows to apply Viète’s

formula as in Eq. 8.44, leading to [205–207]:

βl = (−1)l · 2
n0∑

k=1


ak · σ

(
2n0 − 1− l, r(k)

)
 (8.61)

State-space model of pole-based TDIBC model of order n0

Once the αk and βl polynomial coefficients have been determined using Eq. 8.45 and Eq. 8.61, a
state-space model in the CBSBC formalism can be built using Eqs. 8.12 to 8.20. In Sec. 8.3.2
it was shown that the polynomials Nn0

and Dn0
are of order n = 2n0 − 1 and m = 2n0,

respectively. As n = m − 1, the coefficients βm = 0 in Eqs. 8.12 to 8.20, leading to the
simplified SISO CBSBC model:
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ẋ =




0 1 0 . . . 0

... 0 1
. . .

...

...
. . . . . . 0

0 . . . . . . 0 1

−α0 −α1 . . . −αm−2 −αm−1




︸ ︷︷ ︸
A

x +




0
...
0
1




︸ ︷︷ ︸
B

Aout(t) (8.62)

Ain(t) = [0, β1, . . . , βm−2, βm−1]︸ ︷︷ ︸
C

x (8.63)

The output matrix C (Eq. 8.19) is modified and the feedthrough matrix D (Eq. 8.20)
is the zero matrix as βm = 0. The coefficients α and β are found using Eqs. 8.45 and 8.61,
respectively. It should be noted that for n0 = 1, the state-space model in Eqs. 8.62 and 8.63
reduces to the one presented for a single-pole model (Eqs. 8.29 and 8.30).

The derivation above is a mathematical proof that any multi-pole TDIBC model of order
n0 (cf. Eq. 8.31) can be recast as a state-space model in the CBSBC formalism (cf. Eqs. 8.62
and 8.63).

8.3.3 Numerical simulations: CBSBC & pole & residue

In Sec. 8.3, a state-space model in the CBSBC-TF formalism has been derived from a single-
pole TDIBC models. It was generalized to a sum of n0 single-pole models in Sec. 8.3.2.

The objective of this section is to run numerical simulations with the state-space models
for both single-pole and multi-pole models and to draw a comparison with the validation
results obtained in Chapter 6 (Sec. 6.3.1 and 6.3.2).

CBSBC-TF model from single-pole model TDIBC

The test case used in Sec. 6.3.1 to validate TDIBC based on the reflection coefficient is used
in this section. A state-space model corresponding to a single pair of conjugate pole p1 and
residue µ1 is built here using the relations presented in Sec. 8.3.1. The pole p1 and residue µ1

are the ones used the in Sec. 6.3.1 (Eq. 6.21, cf page 106).

The simulation is conducted using the temporal signals recorded from the AVBP simu-
lation2 in Sec. 6.3.1 at the TDIBC. This state-space model corresponds to the pole-based
TDIBC in the formalism of CBSBC-TF for a single conjugate pair of poles. The state-space
model is built using the scipy.signal.StateSpace function of the SciPy library (Scientific Python
library). The function scipy.signal.lsim is used to simulate the output of the system, that is,

2From the pressure, the velocity, the density and the speed of sound, the temporal amplitude of the outgoing
characteristic wave can be reconstructed and used as the input signal in a state-space model for a TDIBC in
the CBSBC-TF formalism.
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the temporal amplitude of the ingoing wave Ain
n (t).

The results of the simulation are shown in Fig. 8.3. The ingoing wave Ain
n (t) prescribed

by CBSBC-TF is in excellent agreement with the one prescribed by the pole & reside TDIBC
formalism. As both methods are mathematically equivalent under the formalism proposed in
Sec. 8.3.1 this result is expected. Obviously, CBSBC-TF is in excellent agreement with the
analytical solution (convolution integral in Eq. 6.20) as it prescribes the same ingoing wave
as TDIBC, which was found to give an exact solution in Sec. 6.3.1.
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Figure 8.3: Comparison of the ingoing wave corresponding to the analytical solution, the
state-space model built from the multi-pole TDIBC model and the multi-pole TDIBC model.

CBSBC-TF model from multi-pole model TDIBC

This section aims to running a numerical simulation with the CBSBC-TF model derived from
a multi-pole TDIBC model as presented in Sec. 8.3.2. The formulation of CBSBC-TF pro-
posed in Sec. 8.3.2 is generic and should be mathematically equivalent to a multi-pole model
for any order n0 in Eq. 6.14 (cf page 103) .

A CBSBC-TF model is constructed from the reflection coefficient model used in Sec. 6.3.2
to validate the multi-pole TDIBC based on reflection coefficient. This model is composed of
three pairs of conjugate poles & residues and its parameters are compiled in Table 6.1 on page
109.

The test case used here is identical to the one used for the validation of the multi-pole
TDIBC based on the reflection coefficient (Sec. 6.3.2). Here, the reflection coefficient at x =
1 m is imposed using CBSBC-TF [90, 91, 190] rather than using Fung and Ju’s formulation.
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Figure 8.4: Comparison the ingoing wave for the analytical solution, the CBSBC-TF model
built from the multi-pole model and the multi-pole model.

The simulation is conducted and the temporal ingoing wave prescribed by CBSBC-TF is
compared to:

• TDIBC based on the reflection coefficient as presented in Sec. 6.2.2 and validated in
Sec. 6.3.2,

• the analytical solution computed from Eq. 6.20.

Figure 8.4 shows the results. The CBSBC-TF based on the multi-pole model gives the same
temporal ingoing wave that the multi-pole TDIBC. As the multi-pole TDIBC was validated in
Sec. 6.3.2, CBSBC-TF obviously retrieves the wave corresponding to the analytical solution.

8.4 Discussion

8.4.1 Limitations

The simulations conducted with the state-space models derived from pole & residue models
were found to give identical results with both original models and analytical solutions. Due
to the mathematical equivalence between the two models, this result was expected.

However, an attempt to construct a high order state-space in the CBSBC-TF formalism
lead to numerical issues. D-TDIBC models, e.g. the one used in Sec. 7.3 (Chapter 7, page
122), consists in a high number n0 of conjugate pairs of poles and residues. It was used here in
an attempt to derive a CBSBC-TF model suited for time-delays. In the D-TDIBC framework,
a high order n0 does not lead to numerical issues as the outgoing is simply the sum of each
single-pole model contribution.

Conversely, numerical issues are encountered when determining the polynomial coefficients
α and β in the equivalent state-space (such as in Eqs. 8.62 and 8.63). These numerical issues
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are due to the computation of the determinant (in Eq. 8.53) when evaluating the elementary
symmetric polynomials using the Newton-Girard formula. In other words, the determination
of the polynomial coefficients α and β requires 2n0 multiplications of complex variables (the
poles pk) which may lead to very high numbers, returning “Not-a-Number” values.

There is a need for further studies on the possible use of matrices preconditioner to compute
this determinant.

8.4.2 Perspectives

Both the pole & residue and CBSBC-TF approaches are robust and flexible methods allowing
the imposition of the acoustic properties at a boundary conditions in LES and DNS. Also,
both of them have advantages and drawbacks:

1. CBSBC-TF

+ This approach allows a great flexibility in the modeling of a broadband reflection
coefficient due to the rational polynomial fit technique.

+ It allows to use network models easily.

+ It allows to introduce external acoustic forcing.

− Pure time-delays cannot be modeled as the rational polynomial fitting fails to model
the complex exponential function.

− It requires an integration of ODEs in the matrix form in the DNS/LES solver.

− Large matrices may need to be stored.

2. Pole & Residue

+ This approach does not require matrix manipulations.

+ Only a few constants need to be stored.

+ Easy to implement.

+ Stable and causal by construction of the model.

+ Can impose pure time-delays in a CPU & memory efficient way.

− Modeling procedure is more tedious than the rational polynomial fit.

Moreover, Jaensch et al. [91] have proposed another formulation to impose time-delays
(referred to as CBSBC-LEE in this manuscript). This formulation has not been deeply dis-
cussed in this manuscript. CBSBC-LEE should be considered as one-dimensional linearized
Euler equations solver. The boundary condition is to be considered as a one-dimensional
cavity where: (1) the beginning of the cavity is the boundary condition in the simulation
and (2) the end of the cavity is a boundary with a real reflection coefficient (no phase-shift
is introduced). The time-delay is reproduced as the LEE solves for the wave propagation in
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the cavity: the time-delay is the time taken by the wave to travel back and forth in the trun-
cated domain (cf. Sec.7.1, page 115). It was found by Jaensch et al. [91] that this approach
was both dispersive and dissipative (due to the first-order upwind scheme used) and that the
resulting state-space needs to be of high order (around 2000 state variables). Consequently,
large matrices need to be stored to achieve results comparable to the pole & residue approach.

An interesting perspective is to conjugate the various formulations of TDIBC in order to
take advantage of the benefits of each of the methods used. Figure 8.5 shows an example of
block diagram were TDIBCs are used in cascade.

As D-TDIBC was found to impose pure time-delays accurately [87], it is used here to
tackle this specific task. The input signal of D-TDIBC is the outgoing wave Aout(t) evaluated
by the LES/DNS solver at the impedance boundary condition.

The output signal of D-TDIBC (the delayed outgoing wave) is given to a near-zero delay
TDIBC (e.g. CBSBC-TF) as an input signal. Contrary to CBSBC-LEE, the reflection coeffi-
cient of this TDIBC is complex and the reflection coefficient has been modeled using a robust
method suited for this purpose.

The output of the system is the ingoing wave Ain(t) that is imposed by a Dirichlet boundary
condition in the LES/DNS solver.

Pure time delay Near-zero delayOutgoing wave Ingoing wave

Figure 8.5: Block diagram of a example of Time Domain Impedance Boundary Conditions
used in cascade.
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8.5 Conclusion

The treatment of acoustic waves at the boundary conditions is a critical issue in LES and
DNS, especially when studying combustion instabilities. Indeed, the thermoacoustic stability
of a system can be assessed by the acoustic energy balance equation which is highly depen-
dent on two factors: (1) the source/sink term (the Rayleigh criterion) and (2) the acoustic
fluxes at the boundaries. Acoustic boundaries influence both of the aforementioned factors
as: (1) the Rayleigh term may stabilize or destabilize the system depending on the phasing of
the acoustic waves and (2) the acoustic fluxes depend on the modulus of reflection coefficients.

In this chapter, the fundamentals of Linear Time Invariant state-space modeling were
recalled and the state-space representation of an acoustic boundary used by Jaensch et al. [91]
in the Characteristic Based State-space Boundary Condition (CBSBC) was presented.

The focus was on the controllable canonical form formulation of CBSBC (referred to in
this manuscript as CBSBC-TF). The link between the pole & residue TDIBC formulation
(presented in Chapter 6 used in Chapter 7) and CBSBC-TF was discussed. It was shown that
any pole & residue model can be recast as a state-space model in the CBSBC-TF formalism.

Numerical simulations were conducted to verify that no numerical issues were induced by
the CBSBC-TF model create from a set of poles & residues. A perfect agreement was found
between the two TDIBC formulations. However, when taking into account a large number
of poles & residues (such as needed when imposing a pure time-delay), numerical issues were
encountered when constructing the equivalent CBSBC-TF model. These numerical issues are
due to ill-condition matrices when determining the coefficients of the state-space.

From this analysis, it follows that both approaches (pole & residue and CBSBC-TF) are
flexible and reliable methods to impose an impedance (using the reflection coefficient) at a
boundary condition. On one hand, the pole & residue is causal and stable by construction (the
real part of the poles is negative which ensure the stability) and it was found to be robust and
efficient to model both broadband reflection coefficients and pure time-delays. On the other
hand, CBSBC-TF offers a great flexibility when modeling a broadband reflection coefficient
due to the rational polynomial fit but this formulation was found to be inadequate to model
time-delays.

CBSBC-LEE is an alternative characteristic-based state-space formulation which was de-
veloped specifically to handle time-delays. However, the reflection coefficient imposed by this
method is a real delayed reflection coefficient (real reflection coefficient imposed after a time-
delay τ) when, in fact, the physical reflection coefficient could be complex (complex reflection
coefficient imposed after a time-delay τ).

An interesting perspective would be to keep the best of the two methods by combining
them. This is possible, in theory, in the LTI framework where both TDIBC can be used
in cascade. The advantage of such a system is that time-delay imposition and the complex
physical reflection coefficient are dealt with separately making the modeling stage easier.
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Time delays were found to be imposed in a cheap, memory efficient way by D-TDIBC (cf.
Chapter 7) while undelayed reflection coefficient modeling is, in principle, effortless using
CBSBC-TF. This broadband reflection coefficient can also be imposed by TDIBC such as in
Chapter 6.
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Conclusion and perspectives

In this manuscript, the study of several aspect allowing the investigation of combustion insta-
bilities have been discussed. After recalling the governing equations and the numerical tools
used here, the focus was on (1) the behavior of the dynamics of the acoustic modes during
limit cycle, (2) the study of the flame response in a liquid rocket engine and (3) their possible
driving mechanisms and the development and use of boundary conditions allowing to impose
complex acoustic impedance in Euler and Navier-Stokes simulations.

Part I was dedicated on the study of a 42 H2/O2 injectors reduced-scale liquid rocket en-
gine. First, a method called Instantaneous Modal decomposition (IMD) has been derived. It
relies on the decomposition of a small number of pressure probes’ signals as a weighted sum
of Helmholtz eigenmodes. The weights are called “complex amplitudes” as they correspond
to the temporal evolution of each of the eigenmodes. They are identified by projection of the
pressure signals onto an orthogonal basis where the eigenmodes are the unit vectors. Although
only a few pressure probes are needed for the analysis, the eigenmodes are three dimensional
so that, the entire 3D acoustic field can be approximated using IMD’s complex amplitudes.
This can be useful in the combustion instability community as the acoustic velocity fluctua-
tions are known to be a driving mechanism of flame/acoustic coupling.

IMD was validated on a cavity where five small cylinders are plugged to a larger cylinder as
a simplified liquid rocket engine system. IMD gives a good estimate of the temporal evolution
of the acoustic modes in the setup and the frequency of oscillation is recovered. The entire
acoustic field is reconstructed with good agreement.

Second, IMD is applied to the BKD setup under one stable and one unstable conditions.
Both LES and experimental pressure signals are studied using the eigenmodes identified in
previous studies as the dominant modes in the setup.

The temporal amplitudes identified from the LES’ pressure signals allow to study the
dynamics of each acoustic mode considered and the initial orientation of the first tangential
nodal line is found to affect the level of acoustic oscillation. The evolution of the nodal line
orientation is further investigated using IMD’s amplitudes which yields results in agreement
with a method developed by DLR to this purpose. Although the first tangential mode is not
identified as a rotating mode, the orientation varies by about 20◦ to 30◦ during the simulation.

157
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The acoustic velocity and pressure fields are well approximated, especially in areas of interest
for such applications, i.e. in the chamber near the injection faceplate and in the injector posts.

The temporal amplitudes corresponding to the experimental measurements have a much
richer dynamics than in the LES and the spectra of IMD’s amplitudes support the fact that
the CIs in the operating point LP4 are due to the first tangential and the first radial modes.
The orientation of the nodal line is reconstructed using IMD and the result are in excellent
agreement with the DLR method. It is found that the nodal line has a preferred orientation
around 130◦ while no clear preferred orientation was identified for the LP1 orientation point.

Next, a study a 3D time-resolved LES database of the BKD is done by a post-processing
that allows to isolate the individual flame dynamics. The flame response to the two dominant
acoustic modes – the first tangential and first radial modes – is studied. For both of these
modes, the magnitude of the flame response is maximum for the flames facing the pressure
anti-nodes of the combustion chamber. Conversely, the flames located at a pressure node
respond weakly, suggesting that the lateral motion caused by transverse velocity fluctuations
does not effectively feed energy into acoustics for sustaining this instability.

Focusing on the flame feeding most of the energy to the acoustic field, a mechanism is
proposed in which the bulk pressure variation at the injector outlet generates unsteady shear
through the variation of the hydrogen velocity, ultimately resulting in heat release rate fluc-
tuations. The results indicate that the fluctuating pressure in the injection plane may be the
relevant input for the flame response model. In fact, this input variable has been considered
in the pioneer work of L. Crocco [173] in 1962 on transverse combustion instabilities in rocket
engines. It receives here additional support from 3D unsteady numerical simulation.

Part II was focusing on Time Domain Impedance Boundary Conditions. The methodology
of Fung and Ju [83, 84] and it was extended to model any reflection coefficient. The results
show that the reflection coefficient is accurately imposed for both single-pole and multi-pole
models.

A feature of impedance (or reflection coefficient) modeling is that it can account for one-
dimensional acoustic wave propagation in the domain so that it can be used to truncate
portion of the computational mesh. To achieve such a result, the TDIBC should model a
complex exponential in the frequency domain which is equivalent to imposing a delay, called
“time-delay”, to the waves’ reflection in the time domain. A modeling algorithm able to build
TDIBC models accounting for such reflection coefficient was proposed and validated. The
results show that the time-delay is accurately reproduced for one-dimensional wave propaga-
tion. Then, a thermoacoustically unstable methane-air laminar combustion setup was used as
a final test case. A reference simulation comprising the entire domain was performed and the
Delayed-TDIBC (D-TDIBC) was used to simulate the same setup on a shorter domain. The
results show that both simulations are in excellent agreement as the power spectral density
spectra are very close and that the mode shapes of the three first unstable modes are found
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to be identical. The results demonstrate that D-TDIBC offers a flexible and cost-effective
approach for numerical investigations of aeroacoustics and thermoacoustics.

Finally, another strategy for TDIBC, called Characteristic Based State-space Boundary
Condition (CBSBC) [91], is presented. The controllable canonical form formulation of CB-
SBC was studied and it was shown that any Pole & Residue TDIBC model can be recast as a
CBSBC model. Numerical simulations were performed with the two TDIBC strategies using
(1) Pole & Residue models and (2) Pole & Residue models recast as CBSBC models. The
agreement between both TDIBCs is excellent. However, high-order Pole & Residue models,
such as the ones necessary for time-delay imposition, may result in ill-conditioned matrices
when being recast as CBSBC models. From this study, it becomes clear that each of the
approaches offers a reliable and flexible method to impose complex reflection coefficients in
Euler and Navier-Stokes simulations.

The results presented in this manuscript offer new perspectives for future work.
First, as IMD’s main interest relies on the acoustic velocity reconstruction, it should be

used on experimental setup where hot wire measurements can be easily performed. Such a
study will be useful to validate the added value of IMD in experimental studies were the
velocity measurement are not possible.

The study of the individual response of each of the 42 flames has allowed to gain insights
on the possible driving mechanisms for such flames. This topic should be further studied to
determine the influence of bulk pressure fluctuations in the injection plane and bulk velocity
fluctuations in the hydrogen and oxygen posts. Preliminary LESs of a single BKD flame have
shown that the BKD flames are influenced differently by two kinds of velocity fluctuations.
This study is in progress and has not been discussed in the manuscript. Preliminary results
are shown in discussed in the Appendix D.

The Pole & Residue TDIBC based on the reflection coefficient is promising and should be
applied on other configurations to test the robustness of such methods. Recent studies [212]
have stressed the fact that most of the acoustic dissipation taking place in aero-engines are due
to perforated plates and dilution holes. Although acoustic dissipation due to these features
have been studied [213–217] and that dissipation models exists [218–221], it is still an active
field of research and the systematic use of TDIBC could lead to significant improvements in
the assessment of thermoacoustic instability.

Imposing a time-delay is now possible and this feature should be used on more complex
geometries. Although it has been mentioned in this thesis, the capacity to investigate several
geometries with a single domain has not been demonstrated. In future work, D-TDIBC should
be used to study the effect of the length of a part of the domain, e.g. the length of a plenum,
on the stability of the system.

Finally, the state-space (CBSBC) and the Pole & Residue approaches could be used in
cascade in order to take advantage of the benefits of both methods.
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Appendix A

D-TDIBC Model: 1D wave
propagation problem

Rk ak bk ck dk ω0,k [rad s−1] f0 [Hz]
k = 1 4.91e+05 4.56e+05 -3.23e+03 3.48e+03 4.75e+03 7.56e+02
k = 2 -1.10e+04 -7.38e+03 -9.52e+02 1.42e+03 1.71e+03 2.72e+02
k = 3 -8.21e+04 -3.92e+04 -1.38e+03 2.89e+03 3.20e+03 5.09e+02
k = 4 -1.33e+05 -4.66e+04 -1.50e+03 4.29e+03 4.54e+03 7.23e+02
k = 5 -6.17e+04 -1.39e+04 -1.30e+03 5.79e+03 5.93e+03 9.44e+02
k = 6 -3.22e+04 -5.12e+03 -1.15e+03 7.26e+03 7.35e+03 1.17e+03
k = 7 -1.73e+04 -2.04e+03 -1.03e+03 8.73e+03 8.79e+03 1.40e+03
k = 8 -1.19e+02 2.65e+07 -2.17e+02 -9.77e-04 2.17e+02 3.46e+01
k = 9 -2.11e+00 6.77e+04 -1.89e+00 -5.88e-05 1.89e+00 3.01e-01
k = 10 -9.15e+03 -8.40e+02 -9.34e+02 1.02e+04 1.02e+04 1.63e+03
k = 11 -1.32e+05 -1.15e+05 -7.95e+03 9.11e+03 1.21e+04 1.92e+03
k = 12 6.55e+02 5.49e+02 -5.20e+02 6.20e+02 8.09e+02 1.29e+02
k = 13 -5.04e+03 -4.09e+02 -9.40e+02 1.16e+04 1.16e+04 1.85e+03
k = 14 -2.25e+03 -1.70e+02 -9.78e+02 1.30e+04 1.30e+04 2.07e+03
k = 15 -3.80e+01 -8.77e+07 -7.84e+01 3.40e-05 7.84e+01 1.25e+01
k = 16 -7.67e+03 -9.34e+02 -1.80e+03 1.48e+04 1.49e+04 2.37e+03
k = 17 6.89e+00 1.17e-01 -1.61e+02 9.46e+03 9.46e+03 1.51e+03
k = 18 -1.50e+01 1.75e+06 -2.93e+01 -2.51e-04 2.93e+01 4.67e+00
k = 19 3.82e+03 3.80e+02 -1.50e+03 1.50e+04 1.51e+04 2.40e+03
k = 20 -6.06e+00 -7.54e+05 -9.40e+00 7.56e-05 9.40e+00 1.50e+00

Table A.1: poles & residues used in the one-dimensional pure delayed Gaussian wave propa-
gation problem.
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Appendix B

D-TDIBC Model: 2D reactive DNS of
the INTRIG Burner

Rk ak bk ck dk ω0,k [rad s−1] f0 [Hz]
k = 1 1.91e+05 -5.06e+04 -8.06e+03 -3.04e+04 3.14e+04 5.00e+03
k = 2 -3.24e+06 -1.10e+07 -1.83e+04 5.39e+03 1.91e+04 3.04e+03
k = 3 1.47e+06 1.97e+06 -1.17e+04 8.74e+03 1.46e+04 2.32e+03
k = 4 5.20e+05 2.55e+05 -9.61e+03 1.96e+04 2.18e+04 3.47e+03
k = 5 1.33e+03 -3.60e+09 -2.74e+03 -1.01e-03 2.74e+03 4.37e+02
k = 6 5.06e+02 -1.41e+09 -1.06e+03 -3.81e-04 1.06e+03 1.69e+02
k = 7 7.45e+05 1.08e+06 -3.97e+04 2.75e+04 4.83e+04 7.69e+03
k = 8 -2.45e+03 -2.62e+02 -3.78e+03 3.54e+04 3.56e+04 5.66e+03
k = 9 3.15e+04 4.45e+03 -5.68e+03 4.02e+04 4.06e+04 6.46e+03
k = 10 6.28e-03 -1.01e+05 -6.28e-03 -3.93e-10 6.28e-03 1.00e-03
k = 11 2.16e+02 -3.31e+07 -3.85e+02 -2.51e-03 3.85e+02 6.13e+01
k = 12 1.86e+01 2.39e-03 -1.08e-02 8.46e+01 8.46e+01 1.35e+01
k = 13 7.04e-01 3.79e-14 -4.51e-12 8.38e+01 8.38e+01 1.33e+01
k = 14 5.11e+03 6.29e+02 -6.01e+03 4.88e+04 4.92e+04 7.83e+03
k = 15 2.66e+05 1.33e+05 -2.10e+04 4.20e+04 4.70e+04 7.47e+03
k = 16 1.89e+01 2.85e+05 -6.39e+01 4.24e-03 6.39e+01 1.02e+01
k = 17 6.76e+03 1.68e+03 -5.56e+03 2.23e+04 2.30e+04 3.66e+03
k = 18 5.92e+01 -6.50e+01 -1.14e+02 -1.04e+02 1.54e+02 2.45e+01

Table B.1: poles & residues used in the two-dimensional reactive DNS of the INTRIG Burner.
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Appendix C

Laplace transform

The study of a time varying function f(t) is often done using spectral analysis, that is the
study of the function f in the frequency domain. In the frequency domain, one can either
use the Fourier or the Laplace space. The Fourier space uses the frequency f of the angular
frequency ω = 2πf , which are real-valued. The study in Fourier space is performed using
the bi-lateral Fourier Transform F , that is for negative and positive times: t ∈ [−∞,∞]. In
the Laplace space, the Laplace variable s = σ + iω is the complex frequency where i it the
imaginary unit i =

√
−1. Studies in the Laplace space are often limited to positive times,

that is t > 0 as the one-sided causal Laplace transform L is used.

F (s) = L [f(t)] =
∫ ∞

0
f(t)e−stdt (C.1)

A following property of the one-sided Laplace transform in Eq. C.1 is that the Laplace trans-
form of a function is a holomorphic function of the variable s, that is infinitely complex
differentiable at the neighborhood of all points in the domain [186, 187]. This property allows
for the time derivative of a function to map to the Laplace transform F (s):

L
[
df(t)
dt

]
= sF (s) (C.2)

This property makes it very-well suited to the linear differential equations problems found in
many engineering applications. Using Eq. C.2, time domain linear differential equations can
be transformed into a polynomial in the frequency domain and vice versa.

The inverse Laplace transform of the one-sided Laplace transform is:

f(t) = L−1 [F (s)] =
1

2πi
lim

R→∞

∫ σ1+iR

σ1−iR
F (s)estds (C.3)

These relations are extremely useful in control theory and are fundamental for the state-
space modeling approach.
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Appendix D

Single BKD flame simulation

A preliminary study of a single-injector configuration illustrated how the flame responds to a
pulsation in the hydrogen stream with the formation of large coherent structures at the edges
of the dense oxygen core. Further studies will be dedicated to the quantification of the flame
response, through Flame Transfer Functions, as well as the comparison of the response to
hydrogen and oxygen stream pulsation. This appendix is from Urbano et al. [222] (EUCASS
conference paper).

The analysis conducted in Chapter. 5 indicates that the coaxial diffusion flames typically
used in liquid rocket engines respond in a fairly complex way to transverse acoustic modes. The
overall picture is that the flames driving the instability are those near the pressure antinode,
which in fact only experience a bulk pressure fluctuation at the injector outlet and negligible
transverse velocity fluctuations. It was speculated by Urbano et al. [121] that these flames do
not directly respond to the pressure fluctuation but rather to the subsequent fluctuations of
reactants’ mass flow rates. As a consequence, it is assumed that the study of a single flame
submitted to fluctuating flow rate could be relevant for the understanding of the physical
mechanisms driving the response of flames located at a pressure antinode in a transverse
mode. In this Section, we present preliminary results in this line of thought.

The computational domain and mesh are presented in Fig. D.1. The fuel and oxidizer
manifolds have been cut out and only a short length of the injector was kept. The length
of the combustion chamber is equal to that of the full engine (cf. Fig. D.1(a)) and in order
to maintain the confinement of the flame, the cross-section corresponds to 1/42 of the real
chamber. A zoom on the mesh in the near-injector region is shown in Figs. D.1(b) and D.1(c).
The resolution in the wake of the lip separating the two streams is ∆ = 35 µm and it is kept
over one injector diameter. The mesh is then slowly coarsened. Finally, this computation is
performed with the exact same numerical parameters and models as that of the full engine
and only the operating conditions of LP4 are considered.

The dynamics of this type of flame is very strong, even under steady-state conditions.
Indeed, the large velocity difference between the hydrogen (uH2

= 318 ms−1) and oxygen
(uO2

= 12.9 ms−1) streams generates a strong shear enhancing the heat release rate and
favoring the development of vortices. An instantaneous iso-surface of the temperature field

167



168 Appendix D: Single BKD flame simulation

(a) Computational domain.

(b) Injector. (c) Recess.

Figure D.1: Longitudinal cuts through the mesh for the LES of the single injector.

Figure D.2: Instantaneous temperature iso-surface colored by axial velocity, without acoustic
forcing.

is shown in Fig. D.2. In the recessed region, the flame remains almost cylindrical but at the
entrance of the combustion chamber, vortical structures quickly develop. After two injector
diameters, the flame expands abruptly, a behavior typically observed in experiments under
these conditions. Downstream of this sudden expansion, the flame is much less convoluted as
seen at the far right of Fig. D.2.

Once the flame length is statistically converged (in this case after 25 ms, which corresponds
to 1.5 flow-through time of the oxygen stream), the configuration is submitted to acoustic
fluctuations. As shown in Chapter 5, the flames responding the most to the transverse mode
are those located at a pressure anti-node. Consequently, forcing a single flame with a bulk
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pressure fluctuation may be a valid procedure. However, it is suspected that the actual
mechanism through which the flame responds involves velocity fluctuations in the oxygen
and/or hydrogen streams. In this preliminary study, we focus on the influence of hydrogen
velocity fluctuations. Indeed, because the hydrogen stream is much faster, at similar levels
of relative fluctuations, the variations of shear stress and strain on the flame can be expected
to be larger. These parameters are known to favor the formation of vortical structures and
increase the reaction rates, two mechanisms usually involved in the unsteady flame response.

We choose here to force the hydrogen stream at 15 % of its bulk velocity, which is in the
range observed in the LES of the full engine [136]. The frequency is that of the first transverse
mode, which is unstable for LP4. Figure D.3 compares instantaneous fields of the forced and
unforced cases. An iso-surface of density (ρ = 500 kg.m−3) illustrates the dynamics of the
dense oxygen jet and a longitudinal cut of instantaneous temperature shows the shape of the
flame. The differences in the temperature fields are not obvious on these snapshots: both

(a) No acoustic forcing.

(b) Acoustic forcing of hydrogen stream.

Figure D.3: LES of the single injector: longitudinal cut of temperature and iso-surface of
density (ρ = 500 kg.m−3) colored by axial velocity.

show a fairly flat flame in the recessed region, followed by an intense wrinkling at the region
of sudden expansion. the flame then becomes smoother. However, the dense oxygen cores
appear qualitatively different. For the case without acoustic forcing (Fig. D.3(a)), small-scale
wrinkles are formed from the beginning of the mixing layer. These structures grow and merge
to form structures of the same size as the jet diameter around the location of the flame radial
expansion. For the forced case (Fig. D.3(b)), the small-scale structures are not apparent in
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the early stages. Instead, structures of roughly constant wavelength grow after the recessed
region, which are dictated by the frequency of the acoustic forcing. The dense core length
appears to be shortened which must be confirmed on averaged fields. At this point is the
study, only a qualitative analysis has been performed. In the next steps, time series of heat
release rate will be used to measure the gain and phase of the flame response.
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