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Abstract

Our aim was to identify biophysical biomarkers of ventricular remodelling in tachy-

cardia-induced dilated cardiomyopathy (DCM). Our study includes healthy controls

(N = 7) and DCM pigs (N = 10). Molecular analysis showed global myocardial meta-

bolic abnormalities, some of them related to myocardial hibernation in failing hearts,

supporting the translationality of our model to study cardiac remodelling in dilated

cardiomyopathy. Histological analysis showed unorganized and agglomerated colla-

gen accumulation in the dilated ventricles and a higher percentage of fibrosis in the

right (RV) than in the left (LV) ventricle (P = .016). The Fourier Transform Infrared

Spectroscopy (FTIR) 1st and 2nd indicators, which are markers of the myofiber/col-

lagen ratio, were reduced in dilated hearts, with the 1st indicator reduced by 45%

and 53% in the RV and LV, respectively, and the 2nd indicator reduced by 25% in

the RV. The 3rd FTIR indicator, a marker of the carbohydrate/lipid ratio, was up-

regulated in the right and left dilated ventricles but to a greater extent in the RV

(2.60-fold vs 1.61-fold, P = .049). Differential scanning calorimetry (DSC) showed a

depression of the freezable water melting point in DCM ventricles – indicating
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structural changes in the tissue architecture – and lower protein stability. Our

results suggest that the 1st, 2nd and 3rd FTIR indicators are useful markers of car-

diac remodelling. Moreover, the 2nd and 3rd FITR indicators, which are altered to a

greater extent in the right ventricle, are associated with greater fibrosis.

K E YWORD S

biophysical markers, cardiac remodelling, collagen, differential scanning calorimetry, fourier

transform infrared spectroscopy, heart failure, myofiber

1 | INTRODUCTION

Non-ischemic dilated cardiomyopathy (DCM) is characterized by left

ventricular (LV) dilatation and global systolic dysfunction with normal

coronary arteries.1,2 Progressive heart failure, ventricular and supraven-

tricular arrhythmias, thromboembolisms and sudden death are the main

clinical manifestations.2-4 In addition, DCM constitutes the most com-

mon cause of heart failure referred for cardiac transplantation.5 The ven-

tricular remodelling resulting in ventricular dilatation and dysfunction has

been extensively studied in vivo by means of non-invasive techniques

and post-mortem in human and animal studies by histopathological and

biochemical analysis.6-9 However, the current knowledge of the mecha-

nisms involved in the genesis of DCM is still limited. As a result, the

treatments are scarce and have incomplete efficacy.

The molecular, conformational and physical characterization of the

myocardium has emerged as a novel approach to study remodelling in

diseased tissues. Spectrophotometric techniques, such as Fourier

Transform Infrared Spectroscopy (FTIR) are powerful techniques that

have been successfully applied to characterize cardiac and vascular tis-

sues.6-10 Differential scanning calorimetry (DSC) is another suitable

technique for characterizing biological tissues at the mesoscale, evalu-

ating freezable and unfreezable water 11 and assessing protein thermal

stability and conformational changes in tissues.12 DSC is particularly

appropriate for evaluating the thermal stability of collagen in its puri-

fied or aggregated form,13 directly in cardiovascular tissues14 or in bio-

materials.15 DSC has been also successfully applied to characterize the

protein components of muscle tissues, such as myosin and its subfrag-

ments, actin and sarcoplasmic proteins.16-18 Nevertheless, few DSC

data are available on the whole myocardium tissue, and no calorimetric

data exist on tachycardia-induced DCM.

The objective of the current investigation was to identify molec-

ular, conformational and biophysical alterations useful as biophysical

markers of cardiac remodelling in non-ischemic dilated cardiomyopa-

thy (DCM).

2 | MATERIAL AND METHODS

2.1 | Generation of a pig model of tachycardia-
induced DCM and experimental procedure

This study includes seventeen female domestic swine (Landrace-Large

White cross) weighing 54 � 3 kg: seven control healthy animals (con-

trol group) and ten animals with tachycardia-induced NIDCM (DCM

group). The study protocol was approved by the Animal Care and Use

Committee of our Institution, in accordance with the regulation for

animal treatment established by the Guide for the Care and Use of

Laboratory Animals (Eighth edition, National Research Council, Wash-

ington DC, The National Academies Press 2010). Detailed information

about the generation of the pig model has been included in the Mate-

rial and Methods section of the Supporting information. An electrocar-

diogram (ECG) and an echocardiogram were obtained (Model iE33,

Philips Healthcare, The Netherlands) 15 minutes after the pro-

grammable pulse generator device was switched off in the DCM group

to obtain an accurate calculation of the parameters. The heart rhythm

and QRS width complex in the ECG were calculated. In the echocar-

diogram, the LV ejection fraction (LVEF) and the end-diastolic (ED) and

end-systolic (ES) LV dimensions were measured. The femoral vein and

artery were cannulated, and two catheters (Millar Instruments, Inc.,

Houston, TX, USA) were placed into the right (RV) and the left (LV)

ventricles for measurement of the LV and RV pressures. Subsequently,

a mid-thoracotomy was performed. Before death, a bolus of pentobar-

bital was administered. The heart was excised, and samples from the

RV and LV were immediately frozen at �80°C for molecular, biochemi-

cal and biophysical characterization. For the histological analysis, the

myocardial samples were fixed, cryopreserved in 30% sucrose in phos-

phate-buffered saline, embedded in Tissue-Tek O.C.T. (Sakura�), and

snap-frozen in liquid nitrogen-cooled isopentane.

2.2 | Human control samples

Human autopsy hearts (n = 3) were obtained at Department of

Pathology, Hospital Santa Creu i Sant Pau from deceased patients

who died of non-cardiac causes. Hearts were weighed, measured

and samples from RV and LV ventricles were excised and frozen at

�80°C for lipid characterization. The project was approved by the

local Ethics Committee of Hospital de la Santa Creu i Sant Pau, Bar-

celona, Spain, and conducted in accordance with the guidelines of

the Declaration of Helsinki. All patients gave written informed con-

sent that was obtained according to our institutional guidelines.

2.3 | Immunohistochemical analysis

2.3.1 | Myocardial fibrosis

It was assessed at the molecular level [analysis of the collagen type I

and type III mRNA expression and protein levels] and by histological
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Masson’s trichromic staining. For the latter, interstitial collagen depo-

sition was assessed as the percentage of blue staining of 5 myocar-

dial areas of 10 different immunohistochemical sections per heart

using the ImageJ software.

2.3.2 | Determination of cardiomyocyte number

The amount of cardiomyocytes was calculated as the sum of nuclei

observed in 5 fields at 409 of 10 different immunohistochemical sections.

2.3.3 | Determination of cardiomyocyte size

Sections of both venticles were stained with haematoxylin/Eosin. All

the slides were analysed using an Olympus VANOX AHBT3 micro-

scope and were photodocumented using a Sony DXC-S500 camera.

Longitudinal and transversal diameter of the cardiomyocytes were

measured in at least 5 microscopic uniformly distributed fields at

409 of 10 different immunohistochemical sections per heart.

2.3.4 | Determination of presence of macrophages

For macrophage staining, after deparaffinization, antigen retrieval

was performed for 20 minutes in 10 mmol/L/HCl buffer (pH 0) at

95°C. Endogenous peroxidase was blocked by 10% H2O2 in metanol

for 30 minutes and after that with PBS-Tween 0.1%-serum horse

5% for 30 minutes at RT. Sections were then incubated with Avidin/

Biotin blocking solution (Vector Laboratories Inc., Burlingame, CA,

USA) for 15 minutes each. After washing with phosphate buffered

saline (PBS) twice, sections were incubated with a mouse mono-

clonal [MAC387] (Abcam, ab22506) 1:200 in PBS-Tween 0.1%-

serum horse 1% overnight. MAC387 stained sections were incu-

bated with biotinylated antimouse made in horse for 1 hours fol-

lowed by an incubation using a Vectastain ABC Elite kit (Vector

Laboratories Inc.) for 1 hours. Reaction sites were visualized using

an ImmPACTTM DAB Peroxidase Substrate Kit (Roche).

2.4 | Real-time PCR

Gene expression analyses of collagen type I (Ss03373340_m1; Applied

Biosystems, Foster City, CA) and collagen type III (Ss04323794_m1;

Applied Biosystems, Foster City, CA), Hexokinase 2 (Hk-2;

Hs00606086_m1; Applied Biosystems, Foster City, CA), glycogen

phosphorylase (Ss03377042_u1; Applied Biosystems, Foster City, CA),

and glycogen Synthase 1 (Ss03376867_u1; Applied Biosystems, Fos-

ter City, CA) were performed at the mRNA level by semi-quantitative

real-time reverse transcriptase-polymerase chain reaction (RT-PCR).

18S rRNA (Mm.PT.58.43894205, IDT Conda, Integrated DNA Tech-

nologies, Inc.) was used as the internal control gene for amplification.

2.5 | Western blot analysis

The protein levels of collagen and HSP70 were determined by Wes-

tern blot analysis. Equivalent amounts of total protein were

electrophoresed under reducing conditions on SDS-polyacrylamide

gels. The samples were electrotransferred to nitrocellulose mem-

branes, which were then saturated at room temperature for 1 hours

in TTBS (20 mm Tris-HCl, pH 7.5, 500 mm NaCl, 0.01% Tween 20,

and 5% non-fat milk). Western blot analyses were performed with

specific monoclonal antibodies against collagen type III (Abcam, clone

FH-7A ab6310) and heat shock proteins 70 (HSP70; Abcam,

ab47455) and their corresponding secondary antibodies (1:10,000

dilution; Dako). Equal protein loading in each lane was verified stain-

ing filters with Pounceau and also by incubating the blots with mon-

oclonal antibodies against Troponin T (Thermo Scientific, clone 13-

11, cardiac isoform Ab-1).

2.6 | Myocardial lipid content

Myocardial-pulverized tissue (7 mg) from the porcine RV and LV

was weighed and homogenized in 0.1 mol/L NaOH. The protein

content of the extracts was quantified by a Pierce BCA Protein

Assay (Thermo Fisher Scientific, Waltham, MA) to normalize the

lipid content. Lipid extraction was performed as previously

described.19-22 The lipid extract was concentrated by evaporating

the organic solvent under a N2 stream to prevent lipid oxidation.

The cholesteryl ester (CE), free cholesterol (FC), triglyceride (TG)

and phospholipid (PL) contents in the lipid extract were analysed

by thin layer chromatography (TLC). Lipid extracts were loaded on

silica G-25 plates (DC-Fertigplatten SIL G-25 UV254) for CE, FC

and TG and on an HPTLC glass plates silica gel 60 matrix for PL.

A mixture of FC, CE and TG or a mixture of L-a-phosphatidylcho-

line (PC), L-a-phosphatidylethanolamine (PE), sphingomyelin (SM)

and cardiolipin (CL) was applied to each of these types of plates

plate type, respectively, as standards. The spots corresponding to

CE, TG, FC, PE, PC, SM and CL were quantified by densitometry

using a ChemiDoc system and Quantity-One software (Bio-Rad,

Hercules, CA).

2.7 | Vibrational characterization

One portion (5 mg) of myocardial tissue was freeze-dried and

used for vibrational characterization. Fourier transform infrared

spectroscopy/attenuated total reflectance (FTIR/ATR) spectra of

the freeze-dried tissues were acquired using a Nicolet 5700

FTIR instrument (Thermo Fisher Scientific, Waltham, MA)

equipped with an ATR device with a KBr beam splitter and a

MCT/B detector. The ATR accessory used was a Smart Orbit

with a type IIA diamond crystal (refractive index 2.4). Samples

were directly deposited on the entire active surface of the crys-

tal. For each sample, 80 interferograms were recorded in the

4000-450/cm region, co-added and Fourier transformed to gen-

erate an average spectrum of the segmented heart part with a

nominal resolution of 1/cm using Omnic 8.0 (Thermo Fisher Sci-

entific, Waltham, MA). A single-beam background spectrum was

collected from the clean diamond crystal before each experi-

ment, and this background was subtracted from the spectra.
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Spectra were then subjected to ATR and baseline corrections

and normalized in the amide II region. These spectra were next

used in calculation of integrated bands intensities and their

ratios. To quantify these various components, the areas of the

different absorption bands were computed from the individual

spectrum of each tissue, and the appropriate ratio of areas was

used according to the literature data.23,24 Second derivatives and

Fourier self-deconvolution (using k = 1.7 and half-width = 13.5/

cm) were used to enhance the chemical information present in

overlapping infrared absorption bands of spectra. All spectra pro-

cessing was performed using Omnic 8.0. The spectra presented

for each group were calculated by averaging the spectra of all

samples within each group.

2.8 | Differential scanning calorimetry

Calorimetric analyses were performed using a DSC Pyris calorimeter

(Perkin Elmer, Waltham, MA). The calorimeter was calibrated using

Hg and In as standards, resulting in a temperature accuracy of

�0.1°C and an enthalpy accuracy of �0.2 J/g. Fresh samples, 5-

10 mg in weight, were set into hermetic aluminium pans and equili-

brated at the initial temperature for 5 minutes before cooling to

�100°C at 10°C/min. Then, the thermograms were recorded during

the heating at 10°C/minutes until reaching 90°C. Once DSC mea-

surements were performed, the pans were reweighted to check that

they had been correctly sealed. A second series of experiments were

performed on freeze-dried samples; in this case, freeze-dried seg-

mented parts of myocardium tissues (2-3 mg) were set into standard

aluminium pans and equilibrated at 20°C before recording thermo-

grams during heating at 10°C/minutes until reaching 200°C. A

detailed description of the procedure to calculate the amount of

total, freezable and unfreezable water in hydrated proteins and tis-

sues has been included in the material and methods section of the

Supporting information.

2.9 | Statistical analysis

Continuous variables are shown as the mean � standard deviation

(SD). Variables were compared between the groups using Student0s

t-test for independent samples and one-way ANOVA, followed by

Tukey’s post hoc test, for comparison between each subgroup. Dif-

ferences were considered to be statistically significant when P < .05.

3 | RESULTS

3.1 | Phenotype of pacing-induced heart failure in
DCM pigs

Animals in the DCM group underwent 23 � 2 days of RV rapid

pacing (detailed in Figure 1), and all developed dilated cardiomy-

opathy according to cardiac function parameters. As shown in

Table 1, the left ventricle of these animals was dilated, and the

RV tissue sample

LV tissue sample

Active pacing electrode

A B

F IGURE 1 Pacing-induced heart failure
procedure in pigs. A, Fluoroscopy capture
showing active pacing electrode fixed at
the RV apex. B, Schematic heart
representation depicting active pacing
electrode position and LV and RV areas,
where the tissue sample were collected.
RV: right ventricle. LV: left ventricle

TABLE 1 Electrocardiographic and echocardiographic parameters
of the control and DCM groups

Control DCM P

Electrocardiographic parameters

Heart rate, bpm 80 � 3 78 � 6 ns

QRS width, ms 62 � 2 97 � 6 <.001

Echocardiographic parameters

LVEF, % 72 � 7 31 � 10 <.001

LVEDD, mm 47 � 5 59 � 9 <.001

LVESD, mm 26 � 4 48 � 8 <.01

Haemodynamic parameters

LV systolic pressure, mmHg 85 � 5 73 � 4 <.01

LV end diastolic pressure,

mmHg

10 � 2 11 � 2 ns

LV dP/dt max, mmHg/s 1415 � 173 557 � 183 <.001

RV systolic pressure, mmHg 25 � 7 28 � 4 ns

RV end diastolic pressure,

mmHg

3 � 3 5 � 3 ns

Central venous pressure,

mmHg

5 � 2 8 � 2 .07

Pulmonary capillary pressure,

mmHg

9 � 2 9 � 1 ns

Data are shown as the mean � SEM. Control (N = 7), DCM (N = 10).

LVEF, LV ejection fraction; LVEDD, LV end-diastolic diameter; LVESD,

LV end-systolic diameter.
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ejection fraction was reduced. Furthermore, compared to the con-

trol group, DCM animals exhibited a wider QRS complex on the

ECG (P < .001). The RV appeared to be subjectively dilated on

echocardiography, and the dilatation was confirmed after the hearts

were explanted. Haemodynamic measurements showed decreased

contractility without a significant increase in the ventricular filling

pressures. Previous studies have suggested that mechanical dyssyn-

chrony, in the absence of coronary stenosis, can cause myocardial

hibernation.25-27 Therefore, we tested the presence of molecular

mechanisms associated to myocardial hibernation in our in vivo

model. Western blot analysis showed that protein levels of HSP70,

a protective heat shock protein, were significantly increased in both

right and left ventricle of DMC compared to controls (Figure 2A),

suggesting that this mechanism of cardiac protection is activated in

DCM pigs. In addition, glycogen storage seems to be a key feature

in the protection of hibernated myocytes.28,29 Therefore, we mea-

sured cardiac gene expression of hexokinase 2 (HK-2), glycogen

phosphorylase (PYGM) and glycogen synthase (GYSI), enzymes

involved in glycogen synthesis. Real-time PCR results showed that

HK-2 was significantly increased in RV but not in LV of DCM pigs

compared to controls (Figure 2B), GYSI was unaltered (Figure 2C),

and PYGM was significantly down-regulated in both ventricles (Fig-

ure 2D) of our in vivo model, suggesting an inactivation of glyco-

gen degradation pathway in the heart of DCM pigs. Taken

together, these results suggest that hybernation mechanisms are

presented in both ventricles of DCM pigs. Masson’s trichrome

staining (Figure 3) showed extensive fibrosis in dilated ventricles

consistent with the deposition of unorganized and agglomerated

interstitial collagen. Quantification of the percentage of blue stain-

ing in immunohistochemical images revealed higher interstitial fibro-

sis in RV compared to LV of DCM pigs (Figure 3A and B).

Haematoxilin/eosin staining allowed the measurement of cardiomy-

ocyte amount, length and width. DCM pigs showed similar nuclei/

area, length (Figure 3A and C) and width (Figure 3A and D) than

control pigs, both in RV and LV. Comparing cardiomyocyte size

from control pigs and humans, we have found that cardiomyocyte

width is similar between pigs and humans, however, cardiomyocyte

length in both RV and LV ventricles is lower in pigs than in

humans (Figure S1). According to the scarce MAC387 staining,

inflammation seems to be almost absent in porcine myocardial sam-

ples (Figure 3A).

3.2 | Pattern of FTIR bands in the myocardium of
DCM pigs

A detailed Table (Table S1) and description of the FTIR bands

detected in porcine myocardial control tissue can be found in the

Supporting Information. As shown in Figure 4A-C, the major pro-

tein absorption bands reported in Table S1 for the control ventri-

cles were conserved at the same wave numbers in the averaged
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F IGURE 2 Molecular candidates of
myocardial hibernation in the heart of
DCM pigs. (A) Western blot showing the
HSP70 band and bar graphs showing the
quantification of HSP70 normalized to
TnT, N = 7/group. Bar graphs showing the
relative mRNA expression of hexokinase-II
(HK-2) (B), glycogen synthase (GYSI) (C)
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ventricle
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spectra of the dilated ventricles, excepted the shift from 1234 to

1227/cm of the mixed absorption band in the amide III zone

specifically in the dilated RV (Figure 4C, asterisk in the dotted

box). There was also a smaller shift in LV, however, differently to

that of RV, it did not reach statistical significance. The averaged

second derivative spectra in the 1400-900/cm zone showed an

increase in the minima at 1338 (specific to collagen), 1220 (mainly

proteoglycans), 1188 (mixed band, hardly assignable) and 1040

(collagens, carbohydrates residues and polysaccharides) per cm in

the dilated ventricles (see arrows) (Figure 4D). The increase in the

minima of these bands was more marked in the dilated RV. These

results indicate molecular and conformational alterations in not

only extracellular matrix proteins but also lipids and proteoglycans

in dilated ventricles. The pattern of FTIR bands obtained in our

in vivo DCM pig model indicates greater conformational remod-

elling associated with stronger alterations in the extracellular

matrix proteins (collagen and proteoglycans) of the RV than of the

LV.

3.3 | FTIR indicators of myofibrillar and
extracellular matrix proteins altered in DCM
ventricles

Two distinct FTIR indicators of the myofiber/collagen ratio, the 1st

[A(1171/cm)/A(1338/cm)] and 2nd [A(1304/cm (/A(1338/cm)] indi-

cators (Figure 5A and B), revealed an imbalance between myofibers

and collagen in dilated ventricles. FTIR 1st and 2nd indicators were

reduced in dilated hearts, although the extent differed in each ven-

tricle; the 1st indicator decreased by 45% in the RV and by 53% in

the LV, and the 2nd indicator decreased by 25% in the RV. RT-

PCR and Western blot analysis showed a strong increase in colla-

gen I mRNA (Figure 5C), collagen III mRNA (Figure 5D) and colla-

gen III protein (Figure 5E) in dilated ventricles. Accordingly, the

FTIR collagen/protein ratio indicator (Figure 5F) also showed a

strong increase in the collagen fraction of dilated ventricles. Taken

together, these results indicated exacerbated levels of collagen in

dilated ventricles as a main cause of the imbalance between myofi-

ber and collagen. In addition, the specific reduction of the 2nd indi-

cator in the dilated RV suggested additional conformational

alterations in this ventricle.

As shown in Figure S2B, the amounts of different protein sec-

ondary structures were mostly preserved in dilated ventricles. We

only observed a slight increase in the band 1632/cm, which is

assigned to b sheets structures, in the dilated samples.

3.4 | Neutral lipid content (cholesteryl ester, free
cholesterol, triglycerides, fatty acids and
phospholipids) alterations in dilated ventricles

Quantitative analysis of neutral lipids by thin layer chromatography

(TLC) after lipid extraction showed that in control pigs, the

RV contained much higher triglyceride (TG; Figure 6A) and

cholesteryl ester (CE) levels (Figure 6B) than the LV. This strong

difference in TG and CE between control RV and LV was
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reflected in the total neutral lipid content, as calculated from TLC

data (P < .005; Figure 6C). There was also a clear tendency of

neutral lipid content decrease in control LV measured by FITR

indicators (Figure 6D), although in this case there were not signifi-

cant differences at .05 level. To note, that differently to TLC data,

FITR data included fatty acids. A detailed explanation of the FTIR

bands assigned to lipids was provided in the Results section of

the Supporting Information. The strong difference in myocardial

TG and CE contents between the RV and LV in control was lost

in the DCM group. This seems to be because of a decrease in

the neutral lipid content in the RV concomitant with the increase

in the LV in dilated cardiomyopathy (Figure 6A and B). Accord-

ingly, there were no differences in the total lipid content mea-

sured by TLC (Figure 6C) or FTIR indicators (Figure 6D) between

the dilated ventricles. The phospholipid pattern of the myocardium

(described in detailed in the Result section of the Supporting

Information) did not show differences between ventricles or

groups (Figure S3).

3.5 | FTIR indicators of proteoglycans and
polysaccharides altered in DCM ventricles

Proteoglycans mainly contribute to the 1079/cm band and the speci-

fic band at 1226/cm, overlapping with protein amide III (Table S1).

Glycogen and other polysaccharides contribute to the FTIR spectrum

of the myocardium in the 1200-1000/cm region (Figure 4C). The

indicator A[(1043/cm)/A(2800-3000/cm)], which is proportional to

the carbohydrate/lipid ratio, was significantly increased in the right

dilated ventricles (Figure 7). These results also suggest greater modi-

fications in proteoglycans and polysaccharides in the right versus left

dilated ventricle.

3.6 | Thermal alterations in the myocardium of
DCM pigs

Figure 8A shows representative DSC thermograms (normalized to

the initial mass) of fresh ventricles corresponding to the heating

F IGURE 4 Averaged FTIR spectra of control and dilated ventricles. Line graph showing the 4000-2500/cm (A), 1800-1350/cm (B), 1350-
900/cm (C) spectra of control and dilated RV and LV. The asterisk indicates a shift of the absorption band in the dilated RV. Line graph
showing the averaged second derivative spectra in the 1370-900/cm region (D). Arrows indicate minima altered in dilated ventricles.
N = 5/group. RV: right ventricle; LV: left ventricle
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between �100 and 25°C. Thermograms were characterized by an

endothermic peak in the [�10; 10°C] zone corresponding to the

melting of previously frozen water. This peak is useful to calculate

the amount of total, freezable and unfreezable water as explained

in Material and Methods section of the Supporting Information. As

shown in Figure S4, there were no differences in the total (Fig-

ure S4A), freezable (Figure S4B) or unfreezable H2O (Figure S4C)

between the RV and LV of the control or DCM pigs. However,

there was a significant depression of the onset of the ice-melting

temperature in dilated ventricles (Figure 8B). Figure 8C shows rep-

resentative DSC thermograms (normalized to the initial mass) of

freeze-dried ventricles corresponding to the heating between 25

and 200°C. These thermograms were characterized by multiple

endothermic events that correspond to the denaturation zone of

cardiac muscle proteins. According to data in the DSC litera-

ture,18,30 the major transitions characteristic of muscle are related

to myosin, sarcoplasmic proteins, collagen and actin and occur in

the [50-85°C] range in the hydrated state. Although there are few

DSC data available on freeze-dried muscles, it is well-known that

the collagen denaturation occurring in the [60-75°C] window in

fresh sample is shifted towards the [180-230°C] window in the

freeze-dried state because of the replacement of water–protein

hydrogen bonds by protein–protein ones.31,32 Therefore, the ther-

mal transitions of other proteins of ventricles could follow a similar

shift toward high temperature in the freeze-drying process. In the

current study, the thermal signature of the main proteins of control

ventricles was localized in the [150-200°C] zone, and it was largely

altered in dilated ventricles. In particular, minor endothermic events

were still found in the [150; 200°C] zone, but new and intense

thermal phenomena were recorded in the [100; 150°C] zone.

Taken together, our results indicate that the myocardial proteins in

DCM pigs acquired reduced stability.

4 | DISCUSSION

Our work identifies for the first time new biophysical markers of car-

diac remodelling in non-ischemic dilated cardiomyopathy. We have

shown that the FTIR 1st and 2nd indicators (myofiber/collagen ratio),

the FTIR 3rd indicator (carbohydrate/lipid ratio) and the DSC onset
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melting temperature of freezable water are biophysical markers of

cardiac remodelling in dilated ventricles. Moreover, the FTIR 2nd

and 3rd indicators, altered to a higher extent in right ventricle, are

associated with greater fibrosis in a pig model of tachycardia-

induced cardiomyopathy.

First, we have validated our in vivo pig model as a translational

model of dilated cardiomyopathy. It has been previously reported

that heart failure is associated with global myocardial metabolism

abnormalities typical of myocardial hibernation in different in vivo

pig models.33,34 Therefore, we tested several molecular candidates

of myocardial hibernation in our in vivo model. We have measured

protein levels of HSP70, heat shock proteins ubiquitously expressed

that play a role in protein folding and exert protective effects. The

high HSP70 levels that we have found in the dilated ventricles of

our pig model indicate that this protective mechanism found in dif-

ferent in vivo models of heart failure also is present in our in vivo

model. Previous studies also reported that glycogen storage is a key

feature in the protection of hibernated myocytes.28,29 Our results

show that glycogen phosphorylase, mainly involved in the glycogen

degradation pathway, was significantly down-regulated in the both,

RV but also in LV. These results indicate that, in our in vivo model,

myocardial hybernation is not a restricted phenomena limited to the

pacing site or pacing ventricle but a more extensive process affecting

the whole heart, as previously described in other in vivo models of

heart failure.33,34 Like in these in vivo models, global myocardial

metabolism alterations are compatible with differences in regional

contractility. Indeed, we found crucial mechanical differences

between right and left ventricles in our in vivo model. In addition,

we have found other characteristics in the heart of our pigs, such as
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lower inflammatory state and minor variations in cardiomyocyte size

that have been reported as associated to human DCM phenotype.35

Taken together, these results support the translationality and clinical

utility of our in vivo model to analyse molecular and structural alter-

ations associated with dilated cardiomyopathy. Our highly transla-

tional pig model showed dilatation in both cardiac chambers and

decreased contractility with severe impairment of systolic function,

in agreement with previous studies in in vivo models and patients.36-

39 In the current work, the physical parameters, in line with the

immunohistochemical and molecular parameters, indicated strong

cardiac remodelling of the extracellular matrix in dilated ventricles

associated with the accumulation of collagen in an unorganized and

agglomerated manner. The FTIR 1st and 2nd indicators suggest alter-

ations in the myofiber/collagen ratio as a major factor contributing

to collagen disorganization. Complementary information obtained by

calorimetric parameters, particularly the onset melting temperature

of freezable H2O, indicates a greater alteration in the tissue architec-

ture of dilated ventricles. The shift of the denaturation zone towards

low temperature in the freeze-dried state marks the presence of

newly synthesized collagen and proteins of lower thermal stability,

which are susceptible to fragmentation or degradation. These results

suggest that the reduction in the myofiber/collagen ratio underlying

A

B

RV
LVTª

 O
nc

e 
Fr

ee
za

bl
e

H
20

 (º
C

)

C

–3 

–2.5 

–2

–1.5

–1 

–0.5

0
Control                DCM

#
#

F IGURE 8 Thermal characterization of right and left ventricles in control and dilated pigs. A, DSC thermograms of fresh pig ventricles in
the [�100; 25°C] region at 10°C/min. B, Onset melting temperature of freezable H2O.C, DSC thermograms of freeze-dried pig ventricles in
the [�20; 200°C] region at 10°C/min, N = 5/group. #P < .05 vs control

10 | BENITEZ-AMARO ET AL.



cardiac remodelling in DCM is caused not only by the increase in

collagen but also by the presence of fragmented myofibrillar and

extracellular matrix proteins.

Our model showed a high degree of fibrosis in both dilated ven-

tricles, although the extent was greater in the right ventricle. The

extended fibrosis in the RV is associated with a greater reduction of

2nd FTIR indicator (myofiber/collagen ratio) and a significant

increase in FTIR 3rd indicator (carbohydrate/lipid ratio). The 3rd indi-

cator augmentation seems to be related, at least in part, to the

decrease in triglyceride (TG) content specifically in the right dilated

ventricles. Our study revealed higher TG and CE contents in the RV

than in the LV of control animals. This phenotype is consistent with

the higher effort and energetic consumption needs of a healthy LV.

In DCM pigs, these differences in the neutral lipid content between

ventricles are lost because of decrease in the RV, concomitant with

an increase in the LV. Different research groups including ours have

reported an increased TG myocardial accumulation in several car-

diomyopathies, including dilated,19 ischemic 20-22 and diabetic car-

diomyopathy.40-42 In this particular pacing-induced DCM model, the

TG increase occurs in the LV, while the opposite occurs in the RV.

This finding suggests important differences in the progression of the

RV and LV from a healthy to a pathological state, at least in terms

of lipid accumulation. In line with our results, previous studies have

shown that tachycardia decreases the TG content of the RV in a rat

model of dilated cardiomyopathy.43 The authors propose that pacing

places a greater burden on the RV and that this justifies higher TG

mobilization. Additionally, in accordance with our results, a previous

study using a Syrian hamster model reported that cardiomyopathy

progresses with an increase in ECM and a decrease in cellular

lipids.24

In addition to the global myocardial metabolism abnormalities

(typical of myocardial hibernation) and to the alterations in TG and

CE content in the hearts of DCM pigs, we also observed a reduction

in creatine levels (quantified by the specific band at 1304/cm,44

Table S1). Taken together, these results suggest that structural

remodelling in this pig model is closely associated with metabolic

derangements. These results support the translational nature of our

pig model because, in humans, dilated cardiomyopathy occurs with a

progressive reduction in creatin.45,46 Moreover, a tight relation

between alterations in creatin levels and the severity of heart failure

estimated by ejection fraction has been previously reported in

humans.46,47

In conclusion, our work identifies the FTIR 1st and 2nd indicators

(myofiber/collagen ratio), the FTIR 3rd indicator (carbohydrate/lipid

ratio) and the DSC onset melting Ta of freezable H2O as biophysical

markers of cardiac remodelling in dilated cardiomyopathy. The com-

bination of vibrational and calorimetric data support that both accu-

mulation of interstitial collagen and thermal instability of myofibers

and ECM proteins contribute to the imbalance in the myofiber/colla-

gen ratio and to the accumulation of unorganized and agglomerated

collagen in dilated ventricles. Moreover, greater alterations in the

FTIR 2nd and 3rd indicators are associated with higher fibrosis in

the right dilated ventricles.

5 | CLINICAL IMPACT

Our results, obtained in a high translational model using novel research

techniques, provide new key biophysical markers of pathological ven-

tricular remodelling that are useful for the characterization of dilated

cardiomyopathy. Interestingly, these biophysical markers showed signif-

icant differences between the right and the left ventricles, indicating

ventricle-specific remodelling alterations. In addition, the study supports

the concept that ultrastructural alterations persist in tachycardiomyopa-

thy-induced cardiomyopathy, as some clinical studies have suggested.
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