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Introduction

Motion planning is the field of computer science that aims at developing algorithmic
techniques allowing the automatic computation of trajectories for a mechanical
system. The nature of such a system will vary according to the fields of application.
In computer animation for instance this system could be a humanoid avatar. In
molecular biology it could be a protein. The field of application of this work being
robotics, the system is here a robot. We define a robot as a mechanical agent
controlled by a computer program. The modern meaning of the word seems to
come from the English translation of the 1920 play R.U.R. (Rossum’s Universal
Robots), by Karel Capek, from Czech, robotnik (slave) derived from robota (forced
labor). As for the term robotics (the science of robots), it was first used by Isaac
Asimov in the 1941 short story Liar! The main feature of a robot is its ability
to interact with its environment through motion. Being able to efficiently plan its
movements is therefore a fundamental component of any robotic system.

More specifically we will focus here on aerial robotics, i.e. flying robots. Histor-
ically the first term used to refer to a remotely operated aircraft was drone (male
bee). According to the military historian Steven Zaloga it was the American Com-
mander Delmer Fahrney that first used it in homage to the British remote-control
bi-plan DH 82B Queen Bee. However, since a flying robot is not necessarily remotely
controlled, we will use in this work the term UAV (Unmanned Aerial Vehicles). Also
note that not all UAVs are robots since a UAV could very well be remotely con-
trolled by a human operator instead of a computer program. Aerial robotics has
a wild range of applications. Apart from the sadly famous military ones, we can
cite photography and video, inspection, surveillance, search and rescue, and even
aerial manipulation as we will see later. For these civilian applications a class of
devices is more and more used because of its scalability, agility, and robustness:
the multi-rotor helicopters. In this work we will focus on the four-rotor kind called
quadrotor or sometimes quadcopter.

The classic motion planning problem consists in computing a series of motions
that brings the system from a given initial configuration to a desired final configu-
ration without generating collisions with its environment, most of the time known
in advance. Usual methods typically explore the system’s configuration space re-
gardless of its dynamics. By construction the thrust force that allows a quadrotor
to fly is tangential to its attitude which implies that not every motion can be per-
formed. This could, for example, be compared to the fact that a car can not move
sideways. Furthermore, the magnitude of this thrust force is limited by the physical
capabilities of the engines operating the propellers. Therefore the same applies to
the linear acceleration of the robot. For all these reasons, not only position and
orientation must be planned, higher derivatives must be planned also if the motion
is to be executed. When this is the case we talk of kinodynamic motion planning.
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In motion planning a distinction is usually made between the local planner
and the global planner. The former is in charge of producing a valid trajectory
between two configurations (or states) of the system without necessarily taking
collisions into account. The later is the overall algorithmic process that is in charge
of solving the motion planning problem by exploring the configuration space (or
the state space) of the system. It relies on multiple calls to the local planner. The
first contribution of this thesis is to propose a local planner that interpolates two
states consisting of an arbitrary number of degrees of freedom (dof) and their first
and second derivatives. Given a set of bounds on the dof derivatives up to the
fourth order (snap), it quickly produces a near-optimal minimum time trajectory
that respects those bounds. Although in the context of this thesis this local planner
is applied to the quadrotor system which state is considered to be its flat outputs
(the 3D position of the center of mass and the yaw angle) together with their first
and second derivatives, it can more generally be applied to any system with either
uncoupled dynamics or that is differentially flat.

In most of modern global motion planning algorithms, the exploration is guided
by a distance function (or metric) and some of these algorithms are very sensible
to it. The best choice is often to use the cost-to-go, i.e. the cost associated to the
local method. For instance if the configuration space is an Euclidean space and
the local method is the linear interpolation then the best metric is the Euclidean
distance since it is also the cost-to-go. But in the context of kinodynamic motion
planning, the cost-to-go is often the duration of the minimal-time trajectory. The
problem in this case is that computing the cost-to-go is as hard (and thus as costly)
as computing the optimal trajectory itself. The second contribution of this thesis is
to propose the use of a specific metric that is a good approximation of the cost-to-go
but which computation is far less time consuming.

The dominant paradigm in motion planning nowadays is sampling-based motion
planning. This class of algorithms relies on random sampling of the configuration
space (or state space) in order to quickly explore it. Several different strategies
can be considered. A common sampling strategy is for instance uniform sampling.
However, for some types of constrained problems this choice may not be the most
efficient. It appears that in our context uniform sampling is in fact a rather poor
strategy. We will indeed see that a great majority of uniformly sampled states can
not be interpolated. The third contribution of this thesis is an incremental sampling
strategy that significantly decreases the probability of this happening.

Please note that this work has been realized in the context of the European
funded project ARCAS (Aerial Robotics Cooperative Assembly System) that has
been conducted between the years 2012 and 2016 and that proposed the develop-
ment and experimental validation of the first cooperative free-flying robot system
for assembly and structure construction. It paved the way for a large number of
applications including the building of platforms for evacuation of people or land-
ing aircrafts, the inspection and maintenance of facilities and the construction of
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structures in inaccessible sites and in space. The fourth contribution of this the-
sis is, through this project, the demonstration that an interface between symbolic
and geometric planning, previously developed at LAAS-CNRS, can successfully be
applied to aerial manipulation.

This document is organized as follows:

In Chapter 1 we introduce the general concepts used in motion planning along
with a state of the art of there applications to robotics. We then do the same with
kinodynamic motion planning. We finally provide an overview of the state of the
art of motion planning in the context of aerial robotics.

The focus of Chapter 2 is the quadrotor system itself. We first give a model
of its dynamics which in a second time allows us, after a brief introduction to the
general principles of control theory, to define its control space and its state space.
Its physical constraints in the control space are then discussed. We finally see that
the system is differentially flat, which is having an impact on planning.

In Chapter 3 we focus on our proposition of steering method for a quadrotor.
We first present the corresponding two-point boundary value problem. A method
to solve it, that can be used as a local planner, is then proposed. It is a near
time-optimal spline-based approach for which we will discuss the optimality of the
computed solutions. We finally see how this method can be applied to more general
systems.

In Chapter 4 we present the global approaches on which we have focused to solve
the kinodynamic motion planning problem for a quadrotor. We show in particular
how our local planner can be integrated into those global methods. We first present a
decoupled approach together with a local optimization method of the global solution
trajectory. We then focus on direct approaches. In that perspective we begin by
addressing the problem of the metric in the state space. Follows the description of
an incremental sampling strategy in the state space. We finally present two global
direct approaches to kinodynamic motion planning and discuss the influence of both
the metric and the sampling strategy on both of them.

The goal of Chapter 5 is to show that the trajectories that we plan using the
methods described in Chapters 3 and 4 can actually be executed on a real physical
system. We first present the controller we have chosen to track our trajectories.
We then give an overview of our testbed: its different components, both in terms
of hardware and software, and how they interconnect. We finally present the con-
ducted experiments together with some of their results.

In Chapter 6 we detail the integration of our works into the ARCAS project in
the context of which they were conducted. We first present the project itself, its
objectives, its different partners, its subsystems and the general framework in which
they are integrated. We then focus on the motion planning system and finally detail
the link between symbolic and geometric planning.
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In this chapter we introduce the general concepts used in motion planning along
with a state of the art of there applications to robotics and then more specifically
to aerial robotics.

1.1 General notions

1.1.1 Modeling the system

As an introduction we stated that motion planning is the field of computer science
that aims at developing algorithmic techniques allowing the automatic computation
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of trajectories for a mechanical system. The classical way of modeling such a system
is to use a kinematic chain. It consists of a set of rigid bodies called links. A rigid
body is a closed subset B of the workspace W, i.e. the space where motion takes
place. Usually the workspace is the three dimensional Euclidean space R3. Links can
be connected to each others. These connections are called joints. They are modeled
as ideal movements between links such as relative rotations and translations. Note
that any joint can be modeled as a set of rotations and translations. For example
the so called free-flying joint which represents the unconstrained motion of a rigid
body in the three dimensional Euclidean space R3 with respect to a given inertial
frame is modeled by three translations and three rotations. Note that this is the
case for a quadrotor when not considering differential constraints on the motion.
This formalism provides a natural parametrization of a kinematic chain. Indeed,
if every numerical value of the angles of rotation and displacements in translation
are known then the geometrical state of the system in the workspace is entirely
defined. A given set of such values, represented by a tuple of real numbers, is called
a configuration, often noted q. One element of the tuple is called a degree of freedom
(dof) and therefore the number of parameters (the length of the tuple) is referred to
as the number of dof of the kinematic chain. The next section gives the formulation
of the motion planning problem in this context.

1.1.2 Problem formulation and configuration space

The classic formulation of the motion planning problem is known as the piano
movers’ problem [Schwartz 1983]. It can be stated as follows: “Given a kinematic
chain and a set of rigid bodies considered as obstacles which positions and orien-
tations are known, is there a continuous collision-free motion that will take the
kinematic chain from a given initial collision-free configuration to a desired final
collision-free configuration?”. Note that the original formulation was actually given
for a system composed of only a single free-flying body. This more complete for-
mulation is known as the generalized mover’s problem [Reif 1979].

In 1983, Tomas Lozano-Péres introduced the use in robotics of the previously
known notion of configuration space [Lozano-Pérez 1983], often noted C. It is defined
as the set of all possible configurations of a kinematic chain. Its topological nature
and dimension depends on the system. For example the configuration space of a
free-flying rigid body is the special Euclidean group of dimension three, SE(3). An
other classic example is the double pendulum which configuration space is the 2-
torus, C = S1×S1 = T2 (see Figure 1.1). In any case, C is a n-dimensional manifold,
with n the number of dof of the chain. Given a kinematic chain and a set of obstacles
inW, we can define the subset Cobst ⊆ C as the set of configurations in collision. We
then define the free space and note Cfree = C \ Cobst its complementary subset in C,
i.e. the set of collision-free configurations. This representation has the advantage
of reducing the motion planning problem to the search of a continuous path for
a point in Cfree. Formally the problem becomes the one of finding a continuous
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application τ : [0 1] → Cfree such that τ(0) = qinit and τ(1) = qfinal, where
qinit and qfinal are the initial and final configurations of the system respectively.
Solving the problem with this formulation consists in studying the connectivity of
the free space. Indeed, a solution exists if and only if qinit and qfinal are in the same
connected component of Cfree. In the next section we present the main approaches
that have been developed to tackle this problem.

Figure 1.1: The double pendulum and its configuration space the 2-torus.

1.1.3 The planning methods

Even if the earliest works on motion planning date back from the late 60’s
[Nilsson 1969], most of the algorithmic works started in the early 80’s. Numer-
ous approaches have been developed over this last three decades. One can classify
them into two main subsets: the complete methods and the other ones. A method
is said to be complete when it is able not only to find a solution if one exists but
also to determine the (non-)existence of solutions. These methods often rely on
an explicit representation of Cfree which is a problem that has been shown to be
polynomial in the number of obstacles but exponential in the number of degrees
of freedom (i.e. the dimension of the problem) [Reif 1979]. And this is indeed the
complexity of the most efficient of them [Canny 1988a]. This practical inability to
scale to real-life applications is the reason why these methods are bound to only
have a theoretical interest.

Exploring the connectivity of Cfree without having to explicitly represent it has
been a motivation for the development of other methods. Some of them rely on a
comprehensive discretization of Cfree [Faverjon 1984, Lozano-Perez 1987] using cells
or grids. They are said to be resolution complete. This means that if a solution
exists, then there is a discretization resolution for which these methods are able
to find it. Because the higher the problem’s dimension goes the finer the required
resolution becomes, the number of cells or grids tends to rapidly become quite big.
These methods are therefore also unable to perform in reasonable time in high
dimension.



8 Chapter 1. Motion planning: main concepts and state of the art

Other classes of methods are using the potential field approach [Khatib 1986,
Koren 1991]. The idea is to define a potential field other the configuration space
which is the sum of an attractive field generated by the goal configuration and
repulsing fields generated by the obstacles (i.e. the elements of Cobst). An opti-
mization process based on gradient descent techniques is then performed other this
field. These techniques have good performances even in high dimension and are par-
ticularly well suited to tackle reactive obstacle avoidance problems. They however
have a week spot which is their tendency to quickly get trapped into local minima of
the potential field. The use of random walks [Barraquand 1990, Barraquand 1991]
has been introduced to overcome this limitation, thus opening the way to sampling-
based motion planning, which is the focus of our next section. Note that a more ex-
tensive overview of all these motion planning techniques can be found in Latombe’s
book [Latombe 2012].

1.2 Sampling-based motion planning

1.2.1 Overview

In the potential field method, the introduction of random walks as a tool to escape
local minima opened the way to the use of sampling-based approaches in motion
planning. But randomness here only plays its part when the main process gets
stuck. What if exploration of the connectivity of Cfree could be achieved mainly
through the use of randomness? This idea, inherited from the Monte Carlo method
[Metropolis 1949], is behind sampling-based motion planning. The general principle
consists in randomly sampling configurations in C and dismiss the ones in Cobst with
collision checking algorithms. This way, we get a discretization of Cfree without
having to explicitly represent it. If the sampling is uniform then as the number of
samples increases the discretization itself becomes more and more uniform. This
technique provides an efficient way to explore Cfree but not its connectivity. To do
that, the sampled configuration have to be linked inside a network of valid tran-
sitions between them. And this is the heart of sampling-based motion planning:
what strategies should be used to try and link the sampled collision-free configura-
tions? Many different approaches have been developed over the years, which can be
divided into two main families: the probabilistic networks and the diffusion-based
methods. See Figure1.2 for an illustration of typical behaviors of these methods.
All these techniques have in common the fact that they are probabilistically com-
plete, meaning that if a solution exists then it can be found given enough computing
time. This section provides a presentation of the main components of these methods
along with a description of some of the existing variants for each two main families.
We will also introduce the concept of sampling-based kinodynamic planning needed
to tackle the differential constraints imposed by some systems such as the quadro-
tor. Note that a more comprehensive overview of sampling-based motion planning
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techniques can be found in LaValle’s book [LaValle 2006].

Figure 1.2: An illustration of typical behaviors of a probabilistic roadmap method
(a) compared to a diffusion-based approach (b)

1.2.2 Main components

Sampling-based motion planning explores the connectivity of Cfree by sampling ran-
dom configurations and trying to connect them within a feasible transition network.
Thus to represent this underlying network a data structure is needed. A natural
candidate is the graph structure often called a roadmap. A node represents a con-
figuration and an edge represents a valid transition between two configurations.
Several things have to be noted here.

We assumed up to now that the configuration sampling was uniform. This is
not necessarily the case. Uniform sampling is actually only one sampling strategy
among many other possibilities. As we will see in sections 1.2.3 and 4.2.2, the
sampling strategy can have a significant influence on the overall performances of a
motion planning algorithm.

We say that an edge represents a valid transition between configurations. What
is the nature of this transition, how is it computed and what does valid means in
this context? When we talk of a transition between two configurations qi and qj , we
actually refer to a continuous path in C which end points are these configurations.
It is called a local path, as opposition to the global solution of the motion planning
problem. It is computed by the steering method (also called the local planner).
Formally, this method can be thought as a deterministic application

SM :
(

C2 → C0 ([0 1], C)
(qi, qj) 7→ SMij

)
s.t.

{
SMij(0) = qi
SMij(1) = qj

(1.1)

where C0 ([0 1], C) is the set of continuous applications from [0 1] to C. The simplest
(and therefore most commonly used) steering method is linear interpolation:

∀(qi, qj) ∈ C2, ∀u ∈ [0 1], SMij(u) = (1− u).qi + u.qj
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Note that in this case SM is symmetric, meaning that:

∀(qi, qj) ∈ C2, ∀u ∈ [0 1], SMij(u) = SMji(1− u) (1.2)

When this is the case the underlying graph is undirected. But a steering method is
not necessarily symmetric as we will see in chapter 3, in which case the graph has
to be directed.

As for what valid means, in the classic formulation of the piano movers’ problem
for instance it stands for collision-free. Note that the local path does not indeed
necessarily lie in Cfree. This has to be a posteriori verified by the collision checking
module. But collisions are not always the only constraints. For some robots, not
every path in the free space can be executed. For example a car-like robot is not
able to move sideways. Thus the local paths produced by the steering method also
have to be feasible to be valid. In the example of the car-like robot, the system is
said to be non holonomic. It means that the equations of motion are non integrable
differential equations involving the time derivatives of the configuration variables.
This is often the case when the system has less controls than configuration vari-
ables. For instance a car-like robot has two controls (linear and angular velocity)
while its configuration space is of dimension three (position and orientation in the
plane). Planning for non holonomic systems can sometimes be treated by carefully
choosing a specifically designed steering method ([Dubins 1957]). A more compre-
hensive discussion on the subject can be found in [Laumond 1998]. Non holonomy
thus implies kinematic constraints arising from the underlying dynamics of the sys-
tem. But an other type of constraints can arise from dynamics. A system can be
submitted for example to maximum velocity or acceleration because of its physical
limitations. More generally a differential constraint is a bound on the modulus of
the time derivatives of the degrees of freedom of the system. Planning collision-free
trajectories for such systems implies to take into account both the kinematic con-
straints (collisions and possibly non holonomy) and the dynamics constraints. This
is called the kinodynamic motion planning problem [Canny 1988b, Donald 1993].
Kinodynamic motion planning will be detailed in section 1.3.

We still have to mention a crucial component. When a new collision-free con-
figuration is sampled the way it is tried to be linked to the current graph is called
the connection strategy. It is the algorithmic core specific to each method and re-
sponsible for managing calls to the steering method. Designing such a strategy
mainly consists in choosing what connections are to be tested and in which order.
The following sections present two main families of connection strategies and their
variants.

At that stage, either to increase efficiency in probabilistic roadmaps, or to guide
the exploration towards empty regions in diffusion-based methods, a nearest neigh-
bours search is often performed in order to select candidate nodes in the current
graph and the order in which they should be considered. In this case, the definition
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of a metric (or distance function) on the configuration space is needed. It is an
application M : C2 → R+ such that:

∀(qi, qj , qk) ∈ C3,


M(qi, qj) = 0 =⇒ qi = qj : coincidence
M(qi, qj) = M(qj , qi) : symmetry
M(qi, qk) ≤M(qi, qj) +M(qj , qk) : triangle inequality

The most commonly used metric is the Euclidean metric ME(qi, qj) = ‖qi − qj‖2.
But this is not always the case. For car-like robots for intense the metric has
to be related to the steering method, or even induced by it (see for instance
[Laumond 1993, Giordano 2006]). Note that as discussed by [LaValle 2001] the
ideal metric is the cost-to-go, i.e. for a given cost function the cost of bringing the
system from qi to qj . The problem is that finding the cost-to-go is often as hard
as solving the planning problem. It is therefore often important to find a good
and computationally efficient approximation. Also note that if the cost-to-go is not
symmetric neither is the ideal distance function. The ideal metric would then be
a quasi-metric, which has the same properties of a metric, symmetry excepted. A
more comprehensive discussion on this issue will be conducted in section 4.2.1. The
next section presents a family of connection strategies known as the probabilistic
roadmaps.

1.2.3 Probabilistic roadmaps

The first version of this connection strategy was first introduced by [Kavraki 1996]
under the name Probabilistic Roadmap Method (PRM). It since gave birth to many
variants. This strategy consists in two phases: a learning phase and a query phase.
During the learning phase the connectivity of the free space is explored and stored
in a graph as explained in the previous section. Note that this method was the
first to use the idea of capturing the connectivity of the free space in a graph. The
query phase consists in connecting the initial and final configurations to the graph
and then perform a shortest path search.

During the learning phase described in Algorithm 1, the undirected graph G

is stored in a set N of nodes and a set E of edges both initially empty. At each
iteration a random configuration q is sampled. If q is not in collision then it is added
to N and a set Nq of nearest neighbors of q in N is selected according to a given
metric M and a threshold (possibly infinite, i.e. Nq = N). For each node n in Nq,
and if n and q are not already connected in G (i.e. if n and q are not in the same
connected component of G), the local path SM(q, n) is computed and tested for
collisions. If it is collision free then the edge (q, n) is added to E and the connected
components of G are updated. The algorithm runs until a chosen learning time has
passed.

For an initial configuration qi and a final configuration qf , the query phase
consists in finding two nodes ni and nf in N such that ni and nf are in the same
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Algorithm 1: PRM learning phase
N ← ∅;
E ← ∅;
G← {N,E};
while time < learning time do

q ← random configuration;
if q ∈ Cfree then

N ← N ∪ {q};
Nq ← NearestNeighbors(q,N);
foreach n ∈Nq in increasing order of M(q, n) do

if n and q not in same connected component then
if SM(q, n) is valid then

E ← E ∪ {(q, n)};
UpdateConnectedComponents(G) ;

end
end

end
end

end
Return G;

connected component of G and both SM(qi, ni) and SM(qf , nf ) are collision free.
This is done the same way a new random configuration is added at each step of the
learning phase. The query fails if no such nodes can be found. In this case an other
learning phase if performed. Otherwise a shortest path search is conducted in G

between qi and qf using for examples either a A∗ or Dijkstra algorithm.

Learning the connectivity of the free space before making a planning query
and then keeping this information between each next query is the reason why this
method is particularly well suited for multiple planning queries for the same system
in the same static environment. The class of methods inspired by PRM are thus
often called multiple queries methods. Note however that this approach can be used
in a single query mode. It is for example possible to initialize the node set with
N = {qi} (instead of N = ∅) and choose qf as the first configuration to add (instead
of a random one). In this case the algorithm stops when qi and qf are in the same
connected component of G (or when a given amount of time has passed).

Many variants of this method have been proposed since in order to try and in-
crease the overall efficiency of the planning process. Some of them are targeting one
well established drawback that is the difficulty of finding connections going through
the thiner regions of the free space. This is known as the narrow passage problem.
It is a consequence of the uniform sampling strategy of the configuration space. In
regions where Cobst is dense, a poor coverage of the free space is indeed obtained
when using uniform sampling. Therefore some approaches are using different sam-
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pling strategies. A class of methods is increasing the probability of finding samples
in Cfree by targeting the border of Cobst. One possibility is to allow some of the
samples to lie in Cobst and then try to “push” them towards Cfree [Hsu 1998]. In the
Obstacle-Based PRM approach [Amato 1998], the opposite strategy is implemented:
samples lying in Cfree are “pushed” towards Cobst. In the Gaussian sampling strategy
[Boor 1999] couples of close configurations are sampled and disregarded if one of
them does not lie in Cobst while the other lies in Cfree. A different class of methods
are adopting the opposite approach, namely trying to generate samples as far away
from Cobst as possible by sampling the generalized Voronoi diagram of Cfree (also
called the medial-axis) [Wilmarth 1999, Lien 2003].

Note that as announced in section 1.2.2 we can see that different sampling strate-
gies can be used and that they have a significant impact on the overall performances
of a motion planning algorithm. In section 4.2.2 we propose a sampling strategy of
our own designed to increase the efficiency of motion planning for a quadrotor.

Another drawback of random sampling is that it is not trivial to esti-
mate the coverage quality of the free space. In the Visibility-PRM algorithm
[Nissoux 1999, Siméon 2000], a simple on-line estimation of the proportion of the
hyper-volume of the free space covered by the roadmap is proposed. With this
information one can design a better stop condition for the learning phase than a
maximum number of iteration or computing time. In this approach a sample is
added to the roadmap only if it can be used to merge together two connected com-
ponents or is not “visible” by any other node. The coverage estimation is then
a function of the number of consecutive unsuitable sampled configurations. This
approach has also the advantage of generating a roadmap containing fewer nodes,
thus decreasing the number of local paths to be computed and therefore speeding
up each iteration. Note that it also tackles very well the narrow passage problem.

Some methods are trying to increase efficiency by decreasing the number of
calls to the collision checking module. Collision detection is indeed by far the most
time consuming process of a classic PRM algorithm (about 90% of computing time
[van Geem 2001]). In the Lazy-PRM algorithm [Bohlin 2000] the learning phase is
performed without taking into account any of the obstacles. All calls to the collision
checking module are done during the query phase, eliminating invalid local paths
during the shortest path search. In the Fuzzy-PRM variant [Nielsen 2000], collision
detection is performed with an incremental resolution which is leading to an overall
decrease of the number of calls to the collision checking module.

Finally, some methods focus on optimality. Up to now we did not mention
optimality because it was not relevant when considering the generalized mover’s
problem. Efficiently finding a solution if one exists was the only concern. However,
aforementioned methods often produce low quality solutions. It has indeed been
proven by [Karaman 2011] that a standard PRM does not converge towards the
optimal solution. Optimality is relative to a given cost function. For example,
length of the global solution path is often considered but some other criteria such
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as clearance to the obstacles can be used. Whatever the considered cost function,
a low quality solution can be problematic when trying to execute it on the physical
system. A classic way to deal with this issue is to post-process the low quality
solutions by means of an optimization method, also called a smoothing method.
Examples are numerous but since it is not our point we won’t give any of them here.
Note that we will however give an example of smoothing method in section 4.1.2.
An other way of dealing with optimality is to consider it while planning. This is is
the case of a simplified version of PRM called sPRM, proposed in [Kavraki 1998],
which converges towards the optimal. A more efficient proposition called PRM∗ was
since made by [Karaman 2011]. The next section presents a family of connection
strategies known as the diffusion-based methods.

1.2.4 Diffusion-based methods

In this class of methods the underlying structure that is used to explore the free
space is a special kind of graph: a tree, i.e. a graph with no cycles in it. More
generally the structure is actually a forest, a set of trees. The idea here is to in-
crementally build this structure starting from either the initial configuration qinit,
the final configuration qend or both. The two main differences with the PRM-based
methods is that no learning phase is required and not all Cfree is explored. The
search is indeed usually biased to solve one specific motion planning problem. This
class of methods is thus often called single queries methods. A distinction is usually
made between unidirectional and multi-directional methods. In the former a single
tree is constructed with either qinit or qend as its root until the other configuration
is reached. In the latter several trees are constructed. In a bidirectional method
in particular, two trees with roots qinit and qend respectively are iteratively con-
structed until the two trees meet. These methods are particularly well suited to
problems where either or both the initial and final configurations are in a highly
constrained region of the free space as it is for example the case in the context of
assembly maintainability [Chang 1995]. Choosing between an unidirectional and a
bidirectional method usually depends on whether only one of the end configuration
is constrained or both.

We have briefly mentioned the Randomized Path Planner (RPP)
[Barraquand 1991] already as being the first randomized motion planning al-
gorithm. By its use of the concept of random walks, it is also the first approach to
diffusion-based methods.

Another approach called the Ariadne’s Clew Algorithm (ACA) was proposed by
[Bessiere 1993]. A genetic algorithm is used to generate a tree rooted at qinit while
trying to optimize the distribution of its nodes other Cfree. In a second phase the
goal configuration is tried to be linked to the tree.

In the bidirectional approach called Expansive-Space Tree (EST) and proposed
by [Hsu 1997, Hsu 2000], the algorithm iteratively executes two steps labeled as
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expansion and connection respectively. During the expansion step a node is selected
in one of the two trees with a probability inversely proportional to the number of
nodes lying in its neighborhood (according to a given metric and threshold). A
given number of configurations are then sampled in this given neighborhood of the
selected node and tried to be linked to it. The connection step consists in trying to
link the newly added nodes to nearby nodes of the other tree.

Nowadays, the most popular diffusion-based method is without a doubt the
Rapidly-exploring Random Tree (RRT) algorithm introduced by [Lavalle 1998]. Al-
though initially thought as a tool to solve non-holonomic and kinodynamic mo-
tion planning problems (see next section) this approach has since been successfully
adapted to problems without differential constraints [Kuffner 2000, LaValle 2000].
This method can be used either as unidirectional or bidirectional (or even multi-
directional as we will see later). As in EST a construction phase and a connection
phase are alternated but both the way the node to be expanded is selected in the
tree and the way this expansion is made differ. At each iteration a random config-
uration, qrand, is sampled in C. Its nearest configuration in the tree, qnear, is then
selected (according to a chosen metric). Given a steering method SM , as defined
in (1.1), the local path LP = SM(qnear, qrand) is generated. A node expansion
process is then applied to generate a new configuration, qnew, in two possible ways
according to the chosen version of the algorithm. For that, a fixed value ε ∈ ]0 1]
has been previously set as a parameter of the algorithm. In the classic variant
(usually referred to as RRT-Extend) the new configuration is qnew = LP (ε). In the
variant called RRT-Connect [Kuffner 2000] the expansion process is iterated as long
as qnew is collision free. The expansion process (that we call Expand) is described
in Algorithm 2 and illustrated in Figure 1.3 for the Extend version.

Algorithm 2: Node expansion of the RRT algorithm (Expand)
LP ← SM(qnear, qrand);
qnew ← LP (ε);
if RRT-Connect then

k ← 2;
while kε ≤ 1 and LP (kε) ∈ Cfree do

qnew ← LP (kε);
k ← k + 1;

end
end
Return qnew;

If qnew is collision free, the local path SM(qnear, qnew) is tested for validity. If
it is valid, both the node and the edge are added to the tree. The connection
phase is then applied. In the unidirectional version the local path SM(qnew, qend)
is tested for validity (alternatively SM(qnew, qinit) if the tree is rooted at qend). If
it is valid the algorithm stops. In the bidirectional version (that we refer to as
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Figure 1.3: One expansion step of the RRT algorithm for the Extend version.

Bi-RRT) qnew is tried to be linked to nearby nodes in the other tree (as in EST).
If one of the attempted connections is successful the algorithms stops. Note that
in this bidirectional version each tree is alternatively expanded (as in EST). In a
variant referred to as balanced the trees are kept with the same number of nodes.
These steps are iterated until a maximum number of iteration has been reached.
The unidirectional version of the algorithm is described in Algorithm 3 for a tree
rooted at qinit.

Algorithm 3: Unidirectional RRT
N ← {qinit};
E ← ∅;
T ← {N,E};
k ← 0;
while k < K do

qrand ← random configuration;
qnear ← NearestNeighbor(qrand, N);
qnew ← Expand(qnear, qrand);
if qnew ∈ Cfree and SM(qnear, qnew) is valid then

N ← N ∪ {qnew};
E ← E ∪ {(qnear, qnew)};
if SM(qnew, qend) is valid then

N ← N ∪ {qend};
E ← E ∪ {(qnear, qend)};
Return T ;

end
end
k ← k + 1;

end
Return T ;

A fundamental property of RRT is the Voronoi biasing. The probability that a
node is selected for expansion is proportional of the volume of its Voronoi region.
This implies that the algorithm rapidly explore the free space because it favors
diffusion towards unexplored regions. Figure 1.4 shows the evolution of a tree
constructed by the RRT algorithm and covering the free space.
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Figure 1.4: Evolution of a tree constructed by the RRT algorithm and covering the
free space.

This method has since gave birth to many variants. For instance a lazy bidi-
rectional version is proposed by [Sánchez 2003]. Similarly to PRM-based methods,
some variants are targeting the sampling strategy. A obstacle-based variant tack-
ling the narrow passage problem is proposed by [Rodriguez 2006] while a different
approach avoiding the dense regions in proposed by [Khanmohammadi 2008]. In
the Dynamic-Domain RRT [Yershova 2005] and its adaptive version [Jaillet 2005],
the notion of visibility is used to better refined the sampling domain. Another ap-
proach based on dimension reduction uses principal component analysis techniques
to better guide the exploration inside narrow passages [Dalibard 2009].

The Exploring/Exploiting Tree algorithm (EET) proposed by [Rickert 2008]
is a combination between a potential field approach and a RRT-based approach.
Information about the connectivity of the workspace gathered during exploration
is exploited to compute a navigation function that defines a potential field. The
planner gradually switches to a diffusion-based exploration when the exploitation
method fails.

Quality of the solutions is also a concern for the diffusion-based meth-
ods. Optimality is asymptotically achieved by the algorithm RRT ∗ proposed by
[Karaman 2011]. In this version the tree is locally reorganized each time a new
node is added. More generally, generating high-quality paths with respect to a cost
functional have been investigated by several authors. As previously mentioned, a
cost function can assess the quality of a path but it is also possible to define the
cost of a configuration. When such a functional is defined other the configuration
space, authors often talk about the cost space of the system. Motion planning in a
cost space is therefore referred to as cost-space path planning. In this context, the
Threshold-based RRT (RRTobst) was proposed by [Ettlin 2006b] for rough terrain
navigation. The idea is to decide whether to accept or reject a new configuration
generated by the RRT expansion step according to its cost. A multi-directional ver-
sion (where more than two trees are constructed) can be found in [Ettlin 2006a]. In
the Transition-based RRT (T-RRT) algorithm proposed by [Jaillet 2010], the idea
is generalized to any cost function defined on C. The transition test is based on the
Metropolis test. A bidirectional version is proposed by [Devaurs 2013] and a multi-
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tree variant can be found in [Devaurs 2014]. Finally, optimally is asymptotically
achieved in two variants called T-RRT∗ and Anytime T-RRT [Devaurs 2015].

In the next section we address the kinodynamic motion planning problem.

1.3 Kinodynamic motion planning

In section 1.2.2, a brief definition of the kinodynamic motion planning problem has
been given. In this section we give a more precise formulation of the problem and
a state of the art of the literature on the subject.

1.3.1 Problem formulation

We define the state of a system as

x =


q

q̇
...
q(p)

 ∈ X

with q ∈ C the configuration, p ≥ 1 and X the state space of the system
(also sometimes the phase space). Note that in the classic formulation p = 1
[Canny 1988b, Donald 1993], meaning that only position and velocity of the sys-
tem are considered. For a configuration space of dimension n, the state space is
therefore of dimension n(p+ 1).

A mechanical system is typically controlled by a set of actuators. In the case
of a robotic arm for example, these are the motors acting on the joints. This set
of controls is modeled as a time-dependent vector of real values called the control
variables. In the case of an arm it could be for example the tensions applied to
each motor at a given time. This vector u(t) ∈ U ⊂ Rm is called the control (or the
command) and U is the control space. The future state of the system thus depends on
its current state and the applied control. The set of differential equations modeling
this dependency is referred to as the equations of motion of the system:

ẋ(t) = f(t,x(t),u(t))

where the function f is specific to the dynamics of the system. Given a specified
control u(.) and initial conditions x(t0) = x0, a solution x[t0,x0,u](.) to the equations
of motion is called a response to the control u(.) for the initial conditions x0 at t0.

The control is typically restricted to a certain control region, meaning that
U ( Rm. Furthermore a piecewise continuous control u(.) defined on some time
interval t0 < t < tF with range on the control region U is called an admissible
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control on [t0 tF ]. Note that an admissible control is necessarily bounded.

A system can also be submitted to physical constraints arising from its dynamics.
These are functional equalities and/or inequalities restricting the range of values
that can be assumed by control and/or state variables. Finally an admissible control
on [t0 tF ] is said to be feasible if and only if a response x[t0,x0,u](.) exists and is
defined for each t ∈ [t0 tF ], and both u(.) and x[t0,x0,u](.) satisfy all the physical
constraints. We will note U[x0,t0,tF ] the set of feasible controls on [t0 tF ] for the initial
state x0. A similar definition of Cfree can be given for the state space. We note
Xunvalid the set of states that are either in collision or not satisfying the physical
constraints, and we note Xvalid = X \ Xunvalid.

Given an initial state x0 at t0 and a final state xF both in Xvalid, the kino-
dynamic motion planning problem is then the one of finding both tF > t0 and
u ∈ U[x0,t0,tF ] such that:

∀t ∈ [t0 tF ], x[t0,x0,u](t) ∈ Xvalid
x[t0,x0,u](t0) = x0
x[t0,x0,u](tF ) = xF

We mentioned earlier in section 1.2.3 that some variants of the methods pro-
posed to solve the generalized mover’s problem were focusing on the quality of the
solutions. This is even more the case for the kinodynamic motion planning problem
since the earliest formulations were looking for the minimum-time solution. This
is often still considered to be a relevant quality criterion for the kinodynamic mo-
tion planning problem (like path length is for the holonomic case) although other
cost-functions can be considered.

In the next subsections we present the methods that have been proposed to
solve the kinodynamic motion planning problem.

1.3.2 Decoupled approach

A classical way to approach the kinodynamic motion planning problem is to decom-
pose it into two simpler subproblems: (1) planning a geometric path that respects
kinematic constraints (collisions and possibly non-holonomy) and (2) planning the
derivatives of the configuration variables along the path with respect to physical
constraints. The first subproblem (often called the path planning problem) is ex-
actly the one we described in section 1.1.2 and can thus be treated with one of the
previously presented approaches. In the context of kinodynamic planning, a solu-
tion to the path planning problem is called a quasi-static solution because it can
be seen as a trajectory in which each state has a zero velocity and therefore can be
executed at very low velocity. The second subproblem is sometimes referred to as
the velocity planning problem and the whole two steps approach as the path-velocity
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decomposition [Kant 1986]. Velocity however is not always the only derivative that
has to be considered and this is why we rather use the more general term: decoupled
approach.

Solving the velocity planning problem implies finding a suitable time
parametrization of the precomputed path. Usually, methods used to achieve
this depend on the system. For manipulators for instance, the minimum-
time solution is found by solving an optimal control problem in one dimension
[Bobrow 1985, Shin 1985]. It has indeed been shown that torques of the actuators
and there bounds can be written in function of position, velocity and acceleration
of the end effector along the specified path. See [Shiller 1991] for an example of
usage in a global motion planner. For other systems such as car-like robots, a fea-
sible path can be "smoothed" (with a smoothing method that can be derived from
a steering method) into a feasible trajectory ([Fleury 1995, Lamiraux 2001] and
[Lamiraux 1998] for a car-like robot towing a trailer). For other mobile robots spe-
cific optimization procedures can be used, such as the one based on quintic Bézier
splines proposed by [Lau 2009]. We finally can fine decoupled approaches used in
the context of motion planning for aerial robots, see for instance [Richter 2016]
(more examples in section 1.4). This approach is also very useful for planning in
a dynamic environment, i.e. moving obstacles [Fraichard 1998] and/or multiple
robots [Peng 2005].

Decoupled approaches can be very efficient tools but they have two major draw-
backs. First, obtaining good quality paths is challenging since the considered cost-
function may not even be defined in the configuration space. Minimum time is a
good example. Since time is not considered during path planning it is hard to judge
the quality of a solution path. One could argue that the shortest path could be a
good bet but it is often the case that the fastest path is actually not the shortest
one. Second, although a kinodynamic motion planning problem can have solutions,
a decoupled approach could fail to find them. Indeed, if the problem has no quasi-
static solution then the path planning step will fail. This is for example the case
for a quadrotor that has to be tilted in order to go through a narrow slot-shaped
passage (see section 4.2.4). In this instance, the planning process has to take place
directly in the control space or the state space. This is often referred to as direct
planning.

1.3.3 Direct planning

A direct planning method searches solutions directly in the control space or the state
space rather than in the configuration space. Several options have been investigated.
We will subdivide those into two main families: the deterministic approaches and
the sampling-based methods.
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1.3.3.1 Deterministic approaches

This family of methods of direct planning does not use randomness.

Optimal control:

If the system is simple enough, optimal control can be applied [Brockett 1982,
Lewis 1995]. The problem is that it does not scale well and closed form solutions are
only available for point mass systems in one [Ó’Dúnlaing 1987] or two dimensions
[Canny 1990]. Plus, taking into account the kinematic constraints arising from the
obstacles is not easy.

Numerical optimization:

An other possibility is to use numerical optimization techniques
[Fernandes 1993, Betts 1998, Ostrowski 2000]. Problems are that these can
be computationally expensive when applied to global trajectory planning and that
they often get trapped in local minima. Although this particular drawback have
been recently addressed [Zucker 2013, Schulman 2014], highly dynamical problems
are still a challenge to these methods.

Grid search:

One of the earliest algorithm for kinodynamic motion planning [Sahar 1986]
proposed to tessellate the joint space in order to find minimum-time trajectories
for a robot arm. A best first graph search is performed other the tessellated joint
space by using a dynamic scaling algorithm to determine velocity at each node in
function of previous position and velocity.

In [Canny 1988b, Donald 1993] a breath-first search is performed on a dis-
cretized state space. To expand one state in the grid all possible combinations
of saturated and null controls are applied during a fixed time step. This tech-
nique is applied to a point mass under Newtonian mechanics with velocity and
acceleration bounds in 2D or 3D. This is the first provably good approximation
of a solution to the minimum-time trajectory problem that is running in polyno-
mial time. The approach has then been extended to more complicated systems
[Donald 1995a, Donald 1995b, Heinzinger 1990, Reif 1997]. This method has also
been used by [Fraichard 1993] to solve the highway problem in near-optimal time.

The problem here is the same as in the holonomic case. Although resolution
complete, these methods suffer from the curse of dimensionality. Complexity is
indeed exponential in the resolution and since the higher dimension goes the finer
resolution has to get, these approaches do not scale well.
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1.3.3.2 Sampling-based methods

The same idea of sampling-based planning used in the holonomic case can be ap-
plied to kinodynamic motion planning. One difference though is that Xvalid takes
the role of Cfree, meaning that valid states are sampled instead of collision free
configurations. Another big difference is the steering method.

Steering-methods:

In order to adapt sampling-based planning methods to the kinodynamic case
one has to rethink the steering method. Connecting two states by a valid trajectory
in the absence of obstacles is a well known problem called a two-point boundary
value problem (BVP). It involves solving the equations of motions with both initial
an final conditions and possibly under constraints on the state. This is not easy in
general and can be computationally quite heavy. But for specific systems a closed
form solution to the BVP exists and in this case it can be used as a steering method
in the state space.

In the context of optimal kinodynamic motion planning for instance, the RRT∗
algorithm has been adapted to the kinodynamic case by [Karaman 2010]. Sufficient
conditions on the controllability of the system are provided for optimality. The
method uses a steering method specific to the system. In this example the Dublins’
vehicle, the double integrator and a combination of both, used as a simple 3D
airplane model, are considered.

Linearizing the dynamics

When the system dynamics are linear, it may be possible to solve the BVP
efficiently in closed form. Furthermore, it is possible to apply this approach to non-
linear systems by linearizing the dynamics about an operating point. This approach
has for instance been investigated by [Perez 2012] by proposing the LQR-RRT∗
algorithm. Linear quadratic regulation (LQR) is used within a RRT∗ algorithm
both as a metric and a steering method. This approach has since been extended by
[Goretkin 2013] to samples in the state-time space and to deal with quadratic cost
functions.

Motion primitives:

A possible way of avoiding the difficulties of solving the BVP is to use mo-
tion primitives, i.e. precomputed solutions to the BVP. For instance a Maneuver
Automaton is used by [Frazzoli 2000] as a steering method within a RRT-based
algorithm. The states of the automaton are steady stable trajectories called trim
trajectories and the transitions are maneuvers. In this work the authors are using
a non linear controller in order to generate the primitives. The approach is demon-
strated on a small autonomous helicopter. State lattice motion primitives are used
by [Pivtoraiko 2011] in both deterministic (A∗ and D∗) and probabilistic global
planners (PRM and RRT). Motion primitives are generated with a BVP solver by
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sampling the state space. In the probabilistic case, the same state sampling strat-
egy used off-line to generate the lattice is used on-line during the exploration. This
approach is therefore resolution complete. Similarly an off-line learning phase is
performed by [Allen 2015]. During this phase a set of states are sampled in the
free state space and the BVP problem is numerically solved between either some
randomly chosen couples or all of them. A lookup table of the costs of the gen-
erated primitives is generated to be used as a steering method during the on-line
phase. Machine learning techniques are also used to learn the reachability set of
the samples. This information plays the part of the metric. The on-line step con-
sists in a adaptation of the Fast Marching Trees (FMT) algorithm proposed by
[Janson 2015] called kino-FMT. The approach is applied to both a fixed-wing UAV
and a gravity-free spacecraft.

Forward propagation:

Finally, the most investigated approach that is also avoiding the BVP is for-
ward propagation of the dynamics. In these methods new states are not generated
through sampling but by applying a feasible control to an already generated state
during a given period of time. This is done by integrating the equations of mo-
tion using your favorite ODE solver (e.g. fourth-order Runge-Kutta integrator).
Computationally speaking this is way cheaper than trying to numerically solve the
BVP. There is thus no need here for a steering method. In fact, because there is no
steering method, this approach cannot be used within a probabilistic roadmap and
is therefore only suitable for diffusion-based methods.

For instance it was first used within a RRT by [LaValle 2001]. At each iteration a
new state xrand is sampled in Xvalid. According to some metric (weighted Euclidean
here) the nearest state in the tree xnear is selected. Given a time T (either randomly
chosen or arbitrarily fixed), a random constant control urand is sampled in U and
applied to xnear in order to generate a new state xnew = x[0,xnear,urand](T ). An
alternative is to chose among several randomly generated controls the one that
brings the system the closer to xrand (according to the metric). If the resulting
trajectory x[0,xnear,urand](.) (the response) is valid it is added to the tree together
with xnew. In the unidirectional version, the algorithm stops if xnew is close enough
to the goal, and if it is close enough to the closest state in the other tree in a
bidirectional version.

This same idea of forward propagation of the dynamics can also be used as
is into the EST algorithm. This has been done by [Kindel 2000, Hsu 2002] with
however a difference introduced by the fact that moving obstacles are considered.
Sampling takes place in the state-time space witch is the state space augmented of
the time dimension (notion introduced by [Fraichard 1998]).

These methods are using a metric in the state space in order to select the state
to be propagated and thus to guide the search toward unexplored regions. The
problem is that finding a good metric in the state space is not easy. In fact the



24 Chapter 1. Motion planning: main concepts and state of the art

best metric would be the optimal cost-to-go but finding it is usually as hard as
solving the BVP (see [LaValle 2001]). Plus, by applying a random control there is
no reason that the system would be propagated in the direction of the sampled state
and even if the best control is chosen among several tries this choice is based on the
metric. In order to reduce the impact of the metric on the overall performances of
the planner several approaches have been proposed.

For instance, an affine quadratic regulator (AQR) design has been used by
[Glassman 2010] to approximate the exact minimum-time distance pseudo-metric
at a reasonable computational cost.

The notions of constraint violation frequency and exploration information (suc-
cess or failure of a control applied to a state) have been used by [Cheng 2001] for
node selection in order to reduce the metric influence. The problem is that, as is,
the algorithm is only complete for a certain class of problem. With the addition of
a discretization of the state space, in order to exclude repeating states, resolution
completeness has been obtained by [Cheng 2002].

A different approach called the Path Directed Subdivision Tree (PDST) has been
proposed by [Ladd 2004]. The tree structure here is not the same: the nodes rep-
resent valid trajectories and edges are branch states (the first sate of a trajectory).
The selection schedule is deterministic, greedy and the metric plays no part in it. It
is based on a weighted priority of the nodes that doubles each time a trajectory is
selected (lowest priority nodes are selected first). Information about coverage and
exploration efficiency is maintained thanks to an adaptive subdivision scheme of the
state space. The overall algorithm remains probabilistic though since that in order
to expand a node, a random state is selected in the trajectory and a random control
is applied to it thus generating a new trajectory (i.e. a new node). This approach
has then been adapted by [Bekris 2007] in the context of re-planning using sensor
information in the Greedy Incremental Path-directed planner (GRIP).

The Discrete Search Leading continuous eXploration (DSLX) planner proposed
by [Plaku 2007] does not require a metric in the state space at all. It is still a
sampling-based diffusion method forward propagating a tree in the state space
but it uses a coarse-grained decomposition of the work space into regions and the
projections of the states in the tree onto those regions in order to guide the search.
The partition of the work space is associated with its adjacency graph in which an
edge eij represents the fact that the two regions Ri and Rj are adjacent. These
edges are weighted according to the frequency of exploration of regions at both ends
and the average increase of coverage obtained by the previous exploration of those
regions. At each iteration, a sequence of adjacent regions (called a lead) going from
the start to the goal region is selected in the graph with a probability partly based
on the edges weights. Non empty regions (i.e. containing at least one projected
of state from the tree) are then selected in this lead with a probability based on
their closeness to the goal (in terms of graph distance, no metric required) and
their frequency of exploration. A selected region is then explored by selecting in it
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the less selected state so far and applying a random control to it for several fixed
durations until a collision occurs. Actually, the applied control, selected among
several random tries, is the one that brings the system the closest to the next
region in the lead. No need here for a metric in the state space, the Euclidean
metric in the work space is used on the projections of the generate states. Weights
are then updated and the algorithm loops until a solution is found (or maximum
time as passed).

The Informed Subdivision Tree (IST) algorithm proposed by [Bekris 2008] first
computes a roadmap that captures the connectivity of the configuration space using
an approach such as PRM. IST then uses information from the roadmap to bias the
tree expansion towards the goal in the state space. To avoid getting stuck in local
minima induced by state space constraints, which is the risk of a greedy approach
based on configuration space biases, IST employs the adaptive subdivision scheme
from PDST and an edge penalization scheme.

The Reachability-Guided RRT (RG-RRT) algorithm proposed by
[Shkolnik 2009] builds and maintains a standard RRT. The primary differ-
ences lie in the use of a node’s reachable set to focus sampling on regions of
the state space that are most likely to promote expansion under the differential
constraints. By use of this adaptive sampling strategy the algorithm alleviates the
sensitivity of randomized sampling for systems with differential constraints to the
metric that is employed to expand the tree. It indeed utilizes the metric only for
regions of the state space for which it is valid.

In the Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE)
proposed by [Şucan 2009, Şucan 2012] ideas from PDST and DSLX are combined. A
chosen projection space E(X ) of the state space X (e.g. the configuration space, the
work space, etc.) is decomposed into a multi-level cell discretization such that each
level is a partition of the previous one, the first level being the one with the finest
resolution. Like in PDST, nodes in the exploration tree are motions represented
by an initial state, a control and a duration. Formally it is a triple (x0,u, T ). A
node is considered to be inside a cell if at least one of its state (i.e. x[0,x0,u](t) with
t ≤ T ) is in the cell once projected onto E(X ). When a motion is added to the tree
it is subdivided so that each node added to the tree belongs inside exactly on cell at
each level. This allows to identify each node to a unique sequence of cells from each
level, one cell in the sequence being contained in the next one. This is called a cell
chain. At each iteration of the algorithm, a cell chain is deterministically chosen by
incrementally choosing at each level (starting from the last, i.e. the coarser) a cell
according to its coverage (number of non empty cells of the previous level contained
in it), frequency of selection and whether it is an interior or an exterior cell (based
on the number of non-empty neighboring cells). A node (x0,u, T ) is then chosen in
the last cell of the chain according to a half-normal distribution. A time parameter
t is uniformly sampled in [0 T ] and a new motion is generated by applying a random
control during a random period of time to the state x[0,x0,u](t). Note that in this
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algorithm no metric at all is required in any of the considered spaces.

Principal Component Analysis (PCA) has been used by [Li 2010] in order to
counter undesirable biases introduced by the dynamics. During an offline training
phase, PCA is executed on the coordinates of the nodes of a tree grown in the state
space using RRT-Connect in order to learn the biases introduced by the dynam-
ics. During the online planning phase the exploration procedure is modified so as
to promote the propagation of the search tree towards the direction of the least
significant components.

The Stable Sparse RRT (SST) algorithm proposed by [Li 2016] is using a classic
selection/propagation scheme but with some modifications. The selection procedure
called Best First Selection selects in a neighborhood (based on Euclidean metric)
of a uniformly sampled node xrand the node xBestNear with the best path cost
to the root. The propagation procedure called MonteCarlo-Prop selects a random
constant control urand and applies it to xBestNear for a random period of time Trand
chosen in a predetermined interval. Follows a pruning step that allows sparsity of
the data structure. A set of witness states is maintained during the exploration.
Given a predefined distance δ, a node newly added to the tree is tagged as witness
if and only if it is at a distance (Euclidean metric) greater than δ from all the
other witnesses. This way each node in the tree can be associated to exactly one
witness from which it is at distance lesser than δ. This defines a neighborhood
for each node: the set of nodes sharing the same witness. After the propagation
step, if the response path x[0,xBestNear,urand](.) is collision free and if its end state
xnew = x[0,xBestNear,urand](Trand) has the best path cost in its neighborhood, all
child-less nodes in the neighborhood with higher path cost are removed from the
tree. In addition all remaining nodes in the neighborhood are tagged as inactive
while xnew is tagged as active. This is useful for the selection step because this way
only active nodes have to be considered. While SST is asymptotically near-optimal
the authors proposed in the same work an anytime variant called SST∗ that is
asymptotically optimal.

1.4 Motion planning for aerial robots

In this section we give an overview of the literature on motion planning for aerial
robots. Some of the references bellow can be found in a more comprehensive review
done by [Goerzen 2010].

1.4.1 Trajectory generation

In motion planning, a distinction is usually made between global and local plan-
ning. Classically the global planning problem is divided into several local planning
problems. Up to now we referred to the local planner as the steering method. In the
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context of aerial robotics, it consists in producing flyable trajectories between con-
figurations or states of the UAV without taking obstacles into account. It is often
referred as to the trajectory generation problem (also sometimes trajectory plan-
ning in the context of control theory). It is usually the case that authors propose
trajectory planners specifically designed for a particular system.

We give here some examples of trajectory generation for quadrotors. Model pre-
dictive control has been used by [Singh 2001] to generate trajectories interpolating a
given set of way-points. It has been proposed by [Cowling 2006] to minimize a cost
function for one polynomial for each flat output (see section 2.4). This polynomi-
als could be classically parametrized or either Laguerre or Chebyshev polynomials
could be used. Real-time generation of minimum snap trajectories (actually min-
imum integral of squared snap) passing through a sequence of 3-D positions and
yaw angles (key-frames), while ensuring safe passage through specified corridors and
satisfying constraints on velocities, accelerations and inputs have been proposed by
[Mellinger 2011]. Trajectory generation under constraints for a quadrotor from any
state to hovering state has been proposed by [Hehn 2011]. The three degrees of
freedom are decoupled, and time-optimal jerk trajectories are planned for each of
them separately. The feasibility of the planned trajectories is then checked. If
it is found to be infeasible, it is re-planned with reduced jerk constraints, which
eventually guarantees feasibility. Similarly, optimal control theory principles have
been used by [Mueller 2013] to generate in real-time smooth trajectories between
non-hovering states. Each axis x, y and z is treated as a triple integrator with
jerk as control input. The BVP is then independently solved for each axis, without
constraints on the state and for a given time. The method is very fast but does not
guaranty feasibility, i.e. respect of the physical bounds of the system. A very fast
feasibility test is provided that allows to filter invalid trajectories. Finally, we can
mention [Spica 2012b] that uses circular arc primitives in order to plan a trajectory
that connects two arbitrary states while allowing the UAV to grasp a moving target
at some intermediate time.

For other systems such as fixed-wing UAVs, the feasibility constraints are not
the same. Here, maximum curvature of the path is the limiting factor. A solution
to simultaneous arrival of multiple UAVs has been proposed by [Shanmugavel 2006]
using Pythagorean hodograph curves. Later, Dubins path with clothoid arcs have
been used by [Shanmugavel 2010].

1.4.2 Planning in the workspace

A simplified version of the motion planning problem for aerial robots is to plan
a trajectory for the center of mass of the UAV and assume that the control al-
gorithms will be able to follow it. Workspace and configuration space are in this
particular case the same. Therefore some authors have proposed to plan directly
in the workspace or at least a discretized version of it. For instance LADAR data
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is used by [Vandapel 2005] to create a roadmap of free-space balls in the 3D Eu-
clidean workspace of a UAV. Planning is done using graph search techniques in
this roadmap. The differential flatness of a quadrotor implies planning smooth and
correctly bounded trajectories for linear position and yaw angle (see section 2.4). In
this spirit, mixed-integer programming techniques have been used by [Deits 2015] to
generate such trajectories. The idea is to use a discretization of the free workspace
into convex free regions. Each region is associated with a parametrized polynomial
which takes values entirely in the region. A mixed-integer optimization problem
that consists in selecting the sequence of regions and parameters of the polynomials
such that their concatenation is a smooth, collision free and flyable trajectory from
start to goal while minimizing either acceleration, jerk (first derivative of accelera-
tion) or snap (second derivative of acceleration) is then solved.

1.4.3 Decoupled approach

The decoupled approach presented in section 1.3.2 being a simple an intuitive way
of solving the kinodynamic motion planning problem, it has naturally often been
applied to aerial robots. A Voronoi-based planner followed by spline smoothing for
trajectory formation has been proposed by [Judd 2001]. The A∗ algorithm followed
by direct optimization of the trajectory using an RTABU search has been used by
[Suzuki 2005]. A multi level architecture has been used by [Scherer 2007]: an evi-
dence grid with a Laplacian-based potential method as the outer loop, a reactive
planner (dodger) to enforce soundness, a speed controller to convert the path into
a trajectory, and an inner loop flight controller. The design and characterization of
the inner-loop control law used in such a multi-level decoupled controller for an un-
manned rotorcraft based on two types of path planners (quasi-3d implementations
of an A* and a Voronoi-based planner) is covered by [Takahashi 2008]. The imple-
mentation of a two path planner modules is described by [Howlett 2007]. Model
predictive control is used by [Singh 2001] to both generate and follow trajectories
interpolating a given set of way-points. Cubic curves are used by [Wzorek 2006] to
smooth paths generated by either a PRM or a RRT algorithm using linear interpo-
lation as a steering method. The RRT∗ algorithm was used by [Richter 2016] to find
a collision-free piece-wise linear path through the environment for the flat outputs
(x, y, z, yaw) of a quadrotor (see section 2.4 for more details), initially considering
only the kinematics of the vehicle and ignoring the dynamics. That path is then
pruned to a minimal set of way-points, and a sequence of polynomial segments is
jointly optimized to join those way-points into a smooth minimum-snap trajectory
from start to goal. Utilizing a differentially flat model of the quadrotor and the
associated control techniques, these paths can precisely be followed.
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1.4.4 Finite-State Motion Model: The Maneuver Automaton

Motion primitives have also been used in the context of aerial robots. A set of
solutions to the two-endpoint boundary value problem as a motion primitive set is
stored by [Yakimenko 2000], but the approach does not deal with obstacles. We
already cited the maneuver automaton used by [Frazzoli 2000] as a steering method
within a RRT-based algorithm. The concept of a maneuver automaton for human
piloted acrobatic flight has been investigated by [Piedmonte 2000, Gavrilets 2001].
The concept of the maneuver automaton within a receding horizon optimization
framework has been used by [Schouwenaars 2004]. An A∗-based planner (graph
search) using motion primitives to connect (x, y, z, yaw) states has been used by
[MacAllister 2013].
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Modeling and motion control of
a quadrotor
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The focus of this chapter is the quadrotor system. We will first give a model of its
dynamics. This will allow us, after a brief introduction to the general principles of
control theory, to define its control space and its state space. Its physical constraints
in the control space will then be discussed. Finally, we will see that the system is
differentially flat, which is having an impact on planning. Thanks to differential
flatness we will indeed show that planning can be done in the space of the flat
outputs rather than in the state space.

2.1 Quadrotor dynamics model

We present in this section our chosen model of a quadrotor system, represented
in Figure 2.1. It consists of four propellers located at points Pi such that
{P1, P2, P3, P4} is a square centered in G, the center of mass of the system. We
choose an orthonormal inertial reference frame I = {O, i1, i2, i3} and we note:

d = ‖−−→GPi‖i=1..4, b1 =
−−→
GP1
d
, b2 =

−−→
GP4
d
, b3 = b1 × b2,

We thus defined an orthonormal body-fixed frame B = {G,b1,b2,b3}. We finally
note r = −−→OG = [x y z]T the position of the center of mass in I and R ∈ SO(3) the
rotational matrix from B to I.
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Figure 2.1: Quadrotor model

Each rotor i is rotating about the b3 axis at angular speed ωi ∈ R thus gen-
erating a thrust force fi = −fib3 ∈ R3 applied at Pi. Note that this thrust is
proportional to the square of the angular speed of the propeller: fi = cfωω

2
i ∈ R.

This rotation is also generating a torque τi = ±cτffi ∈ R about the b3 axis. The
sign of τi depends on the orientation of the rotation (clockwise or counterclockwise).
According to the orientations represented in Figure 2.1 we have τ1,2 = +cτff1,2 and
τ3,4 = −cτff3,4. The constants cfω and cτf depends on the geometrical properties
of the propellers.

Thrust forces are resulting in a total thrust force f = −fb3 applied at G,
with f =

∑
i
fi. Forces f3 and f4 are generating a moment about the b1 axis

M1 = d(f3− f4). Similarly, forces f1 and f2 are generating a moment about the b2
axis M2 = d(f1 − f2). Finally torques τi are resulting in a moment about the b3
axis M3 =

∑
i
τi. We note M = [M1 M2 M3]T the total moment in the body-fixed

frame and we have:

[
f

M

]
= Γ


f1
f2
f3
f4

 , with Γ =


1 1 1 1
0 0 d −d
d −d 0 0
cτf cτf −cτf −cτf
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We finally note:

Ω = [Ωx Ωy Ωz]T ∈ R3 the angular velocity in B
m ∈ R the total mass
J ∈ R3×3 the inertia matrix with respect to B
g ∈ R the Earth gravitational acceleration
e3 = [0 0 1]T

Newton’s second law of motion states that mr̈ = W + f with W = mge3 the
weight force. Note that by definition R = [b1 b2 b3] hence f = −fb3 = −fRe3.
The first equation of motion which describes the linear dynamics of the system can
thus be written as follows:

mr̈ = mge3 − fRe3 (2.1)

Direct writing of the Euler’s rotation equations gives the second equation of
motion which describes the angular dynamics of the system:

JΩ̇ + Ω× JΩ = M (2.2)

2.2 Motion control of a quadrotor

In this section we give some insights about the motion control of a quadrotor i.e.
how a given planned trajectory can actually be executed by the physical system.
In 1.3.1 we introduced the fact that the future state of the system at a given time
t depends on its current state x(t) and the applied control u(t). We recall that the
set of differential equations modeling this dependency is referred to as the equations
of motion of the system: ẋ(t) = f(t,x(t),u(t)), where the function f is specific to
its dynamics. We gave those equations for our model in the previous section. The
field of study which is concerned with the way of influencing the behavior of such
systems is called control theory. It is not the focus of this thesis but in order to
plan a flyable trajectory for a quadrotor it is important to understand some of its
general principles.

2.2.1 A brief introduction to control theory

The objects being considered here are dynamical systems. Formally a dynamical
system is a time-invariant “rule” that describes the evolution over time of a point
in its ambient space. More specifically, such a system outputs (its state) are a
deterministic function of its inputs (the control). Control theory studies how to
influence its behavior. Roughly put, we seek to gain control of the outputs by
carefully choosing the inputs.

Several different strategies have been devised to try and do this. For instance



34 Chapter 2. Modeling and motion control of a quadrotor

when the outputs of the system are not taken into account to compute its inputs
we talk of an open-loop control strategy. This would be the only strategy available
for a “blind” system (i.e. deprived of any sort of sensors) since information about
the state would not be available. One can see how this is not really an interesting
control strategy (if it is actually one to begin with) since not knowing (or ignoring)
the outputs seems to be rather problematic when it comes to try and control them.

We talk of closed-loop control or feedback control when the inputs of the system
are computed by using its outputs. In such a control strategy the system is typically
given a reference, which is the desired state to be attained. A measure of the current
state is obtained via a set of sensors. An error is then computed by taking into
account both the reference and the measure. It can be seen as a metric on the
ambient space. This error is given to the controller that is in charge of computing
the best set of inputs in order to keep the error both stable and close to zero. This
so called feedback loop is illustrated by a diagram in Figure 2.2.

Figure 2.2: Diagram of a feedback loop in a closed-loop control strategy along with
our notations in the case of a quadrotor.

If we want the quadrotor to hover at a fixed point then the reference remains
constant. But for a quadrotor to follow a given trajectory the reference necessarily
has to change over time. At each time step, a desired state x(t) is retrieved from
the desired trajectory and considered as reference. The current state x(t) of the
system is measured by the sensors which provide a measure x̃(t). From x(t) and
x̃(t) the error e(t) is computed and fed to the controller which in turn computes
the control u(t) that is given to the system.

Some components in particular must be carefully chosen or designed in any
control strategy. First, it must be decided what should be considered both as
inputs and outputs. We will see that for the quadrotor for instance several different
sets of inputs can be considered. This will obviously influence the way the error
is computed, which is also a choice that has to be well thought. But the heart
of control theory is indubitably the design of the controller itself. We will present
what controller we have chosen to test the validity of our trajectories in Chapter 5.

2.2.2 Control space and state space of a quadrotor

The actuators of a quadrotor are its propellers. For each one, we control the elec-
trical tension given to the motor, therefore its angular velocity and therefore (as
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Figure 2.3: Nautical angles roll (φ), pitch (θ) and yaw (ψ)

explained in section 2.1) the generated thrust force. The inputs of the system could
thus either be the four electrical tensions, angular velocities or thrust forces. But
when considering the equations of motion, it seems more natural to use the net
thrust and the total moment since they directly appear in those equations. We
then have u = [f M1 M2 M3]T = [ui]i=1..4. Note that this choice of inputs is not
directly related to planning since we propose to plan for the flat outputs rather
than for the controls. It is instead related to the choice of controller we made and
that will be presented in Chapter 5. Those inputs are indeed the set of values that
are the outputs of this controller and the inputs given to the system.

As for the state, we can directly consider the couple (position of the center of
mass, rotation matrix) and write x = [r R ṙ Ṙ]. We can also locally parametrize
the rotational matrix R using Euler angles roll, pitch and yaw noted φ, θ and ψ

respectively (alternatively and more accurately also known as the Tait-Bryan angles,
the Cardan angles or the nautical angles) as illustrated in Figure 2.3:

R =

 cψcθ −cθsψ sθ
cφsψ + cψsφsθ cφcψ − sφsψsθ −cθsφ
sφsψ − cφcψsθ cψsφ + cφsψsθ cφcθ

 with
{
cx = cos(x)
sx = sin(x)

In this case we have x = [x y z φ θ ψ ẋ ẏ ż Ωx Ωy Ωz]T = [xi]i=1..12. Note however
that such a parametrization yields to singularities and thus using the rotation matrix
is generally a better choice in practice. It is only introduced here because it will be
used in the demonstration of the differential flatness of the system in section 2.4.
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2.3 Physical constraints

In section 1.3 we stated that a system can be submitted to physical constraints
arising from its dynamics. In this section we present what are those constraints for
a quadrotor system.

2.3.1 In the space of the thrust forces amplitudes

In section 2.1 we defined the amplitudes fi of the thrust forces fi applied at points
Pi. These positive quantities are linearly proportional to the square of the angular
velocities ωi of the propellers. Since that for each propeller, angular velocity is
limited to a maximum value ωmax (that depends on the system), the thrust am-
plitudes are submitted to the following inequality constraints: ∀i, 0 ≤ fi ≤ fmax
where fmax = cfωω

2
max is the maximum amount of thrust available per propeller.

In other words the region of admissible thrusts is the hypercube [0 fmax]4.

2.3.2 In the control space

For simplification we note from now on c = cτf . As a first approximation we could
simply use the expressions of the input variables ui written as functions of the
amplitudes fi of the thrust forces and the fact that ∀i, 0 ≤ fi ≤ fmax to establish
that: 

0 ≤ u1 ≤ 4fmax
−dfmax ≤ u2 ≤ dfmax
−dfmax ≤ u3 ≤ dfmax
−2cfmax ≤ u4 ≤ 2cfmax

This gives us an upper bound of the admissible control region but since the
input variables are correlated we will see that it is actually not precise enough. Let
us express the forces amplitudes as a function of the command.

f1
f2
f3
f4

 = Γ−1u ⇐⇒ 4cd


f1
f2
f3
f4

 =


cdu1 + 2cu3 + du4
cdu1 − 2cu3 + du4
cdu1 + 2cu2 − du4
cdu1 − 2cu2 − du4


Since ∀i, 0 ≤ fi ≤ fmax, these four equalities become eight inequalities. We

divide those into two groups of four noted A for the inequalities of the type 0 ≤ fi
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and B for the inequalities of the type fi ≤ fmax:

A :


0 ≤ cdu1 + 2cu3 + du4
0 ≤ cdu1 − 2cu3 + du4
0 ≤ cdu1 + 2cu2 − du4
0 ≤ cdu1 − 2cu2 − du4

and B :


0 ≤ 4cdfmax − cdu1 − 2cu3 − du4
0 ≤ 4cdfmax − cdu1 + 2cu3 − du4
0 ≤ 4cdfmax − cdu1 − 2cu2 + du4
0 ≤ 4cdfmax − cdu1 + 2cu2 + du4

Each inequality defines an hyper-plan in the control space that divides it in half.
The region of admissible controls is the intersection of those eight half spaces.

The intersection of half spaces defined by hyper-plans in four dimensions is
hardly an easy thing to visualize. Let us drop one dimension by studying what
happens for a fixed value of u1. In other words we want to determine the region of
admissible momentsM for a given value of the net thrust f and we note this region
M(f). We have already established that:

M(f) ⊂ [−dfmax dfmax]2 × [−2cfmax 2cfmax] = B ⊂ R3

Let us go a little further. The group of inequalities noted A defines four half spaces
which intersection is a tetrahedron that we note TA(f) and which vertices are:

TA(f) =


VA1(f)
VA2(f)
VA3(f)
VA4(f)

 =


−df 0 −cf
df 0 −cf
0 −df cf

0 df cf


Similarly the group of inequalities noted B defines four half spaces which intersection
is a tetrahedron that we note TB(f) and which vertices are:

TB(f) =


VB1(f)
VB2(f)
VB3(f)
VB4(f)

 =


−d(f − 4fmax) 0 −c(f − 4fmax)
d(f − 4fmax) 0 −c(f − 4fmax)

0 −d(f − 4fmax) c(f − 4fmax)
0 d(f − 4fmax) c(f − 4fmax)


In section 5.2.1 we present a quadrotor system for which some of the key values

are:
fmax = 4.70 N
d = 2.50× 10−1 m
c = 1.54× 10−2 m

Using those values we represent in Figure 2.4 both the tetrahedrons TA(f) and
TB(f) for f ∈

{
fmax

2 ,
3fmax

2 , 2fmax,
5fmax

2 ,
7fmax

2

}
, alongside with the rectangular

cuboid B.

We thus have ∀f ∈ [0 4fmax], M(f) = TA(f) ∩ TB(f).
Note that for f = 0 and f = 4fmax,M(f) = {[0 0 0]}.
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Figure 2.4: In red the tetrahedron TA(f). In blue the tetrahedron TB(f). In black
the rectangular cuboid B. The different values of the net thrust f are expressed as
a percentage of the maximum net thrust 4fmax. The M3 axis has been scaled ten
times.

Also note that for f ≤ fmax, TA(f) ⊂ TB(f) which impliesM(f) = TA(f).
Similarly for 3fmax ≤ f , TB(f) ⊂ TA(f) which impliesM(f) = TB(f).
For fmax < f < 3fmax,M(f) is a truncated tetrahedron.
One exception though: M(2fmax) is an octahedron.
All those cases are illustrated in Figure 2.5.

2.4 Differential flatness

Differential flatness was originally introduced by [Fliess 1992]. One possible defini-
tion of a flat system is that a set of outputs of the same size as the set of inputs can
be found such that both the state and the inputs can be expressed as a function
of these outputs and a finite number of their derivatives. More precisely let us
consider the system S described by:

ẋ = f(x,u) x ∈ Rn,u ∈ Rm

where x is the state and u the inputs. Then S is differentially flat if we can find
z ∈ Rm of the form

z = z(x,u, u̇, . . . ,u(k))

such that {
x = x(z, ż, . . . , z(k))
u = u(z, ż, . . . , z(k))
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Figure 2.5: In blue the region of admissible momentsM(f) for several representative
values of the net thrust f expressed as a percentage of the maximum net thrust
4fmax. The M3 axis has been scaled ten times.

We call z the flat outputs of the system.

We would like here to recall the definition of the hat operator .̂ : R3 → SO(3)
such that x̂y = x×y for all x, y ∈ R3. Its inverse operator is called the vee operator
.∨ : SO(3) → R3. In motion kinematics, it is well-known that Ṙ = RΩ̂ (see for
example [Hamano 2013]). This means that angular velocity is directly related to
Euler angles and their derivatives. Note that this shows that the equations of
motion of the quadrotor given in section 2.1 are indeed written as ẋ = f(x,u).

We will show here that the quadrotor system is differentially flat for the outputs
z = [x y z ψ]T = [zi]i=1..4. A slightly different version of the following proof can
be found in [Mellinger 2011]. Let us first show that the state is a function of z and
its derivatives. Obviously, position and linear velocity of the center of mass are
functions of the outputs and their derivatives. Let us show that it is also the case
for the rotational matrix R. We can first see that by definition b3 = Re3. Hence,
from the first equation of motion (2.1), we have:

b3 = m

f
t, with t =

 −ẍ
−ÿ
g − z̈

 =

 −z̈1
−z̈2
g − z̈3





40 Chapter 2. Modeling and motion control of a quadrotor

Then ‖b3‖ = m

f
‖t‖ = 1 which implies that f = u1 = m‖t‖. We have here expressed

the first input variable as a function of the second derivatives of the first three flat
outputs. As a consequence we also see that:

b3 = t
‖t‖

Let us then consider an intermediate orthonormal frame J = {j1, j2, j3 = i3} ro-
tated from I of an angle ψ = z4 about the i3 axis (see Figure 2.3). We have
j2 = [− sin z4, cos z4, 0]T . Then b1 and b2 can be expressed as follows:

b1 = j2 × b3
‖j2 × b3‖

and b2 = b3 × b1

The rotational matrix R = [b1 b2 b3] can thus be expressed almost everywhere
(singularities when j2 and b3 are collinear) as a function of z and its derivatives.
We recall that Ṙ = RΩ̂ thus Ω = (RT Ṙ)∨ and so angular velocity is also a function
of z and its derivatives. Therefore, from the second equation of motion (2.2), we
see that this is also the case for momentum. Hence the three last input variables
are also a function of the flat outputs and their derivatives. �

As we have just seen, the inputs can be expressed as a function of the flat
outputs and their derivatives. These expressions are called the flat transformations.
Note that although we took a shortcut in the demonstration above by not explicitly
expressing momentum as a function of a flat outputs, it is of course entirely possible.
See [Mellinger 2011] for instance for an expression of angular velocity. Differential
flatness might only seems to be a theoretical property of a dynamical system but in
practice it allows to move the trajectory generation problem from the state space
to the space of the flat outputs. A smooth enough trajectory in the space of the
flat outputs can indeed be translated as a trajectory in the control space using the
flat transformations. To see why this is interesting in our case let us consider the
second equation of motion (2.2). From it we can see that if we wanted to plan a
trajectory in the state space we could not plan for each angular velocity component
independently because of the coupled dynamics introduced by the vectorial product.
As we will see in the next chapter this is not the case in the space of the flat outputs:
we can plan each independently. Planning is therefore made easier.

In section 2.3.2 we expressed the set of admissible inputs. We want to plan a
trajectory in the space of the flat outputs that, when translated into the control
space, remains inside this admissible set. Or in other worlds, we want to plan
an admissible trajectory. This proved to always be possible provided that the
derivatives of the flat outputs are small enough. This comes from the fact that the
flat transformations are smooth and that the input vector u tends to [mg 0 0 0]T
(which is an admissible control) as the derivatives of the flat outputs tends to
zero in norm. See [Spica 2012a] for instance for a more detailed explanation. As
for actually expressing the limits on the derivatives in function of, for example,
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the maximum thrust fmax, it remains to our knowledge an open problem. In the
remaining of this thesis we will however use those limits and give them numerical
values in various experiments. Please keep in mind that since the link between the
physical limits of the system and the bounds on the derivatives of its flat outputs
is not known to us, those values are bound to be empirical.

To summarize, we have to plan a smooth enough trajectory in the space of the
flat outputs with bounds on the derivatives. The next chapter will be addressing
this problem exactly.
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We saw in section 2.4 that thanks to the differentially flatness of the system
we can plan for a trajectory in the space of the flat outputs and their derivatives
rather than in the state space. We saw that the flat outputs are z = [rT , ψ]T and
that the steering method should plan for x = [z, ż, z̈]T , that we abusively call the
state of the quadrotor. In this chapter we focus on the steering method (or local
planner), i.e. the way a local path is produced between two states. We first present
the corresponding two-point boundary value problem. A method to solve it, that
can be used as a steering method for a quadrotor, is then proposed. It is a near
time-optimal spline-based approach for which we will discuss the optimality of the
computed solutions. We will finally see how this method can be applied to more
general systems.
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3.1 A two-point boundary value problem

In this section we first define the general two-point boundary value problem in four
dimensions and then see how it can be redefined as a collection of problems in one
dimension.

3.1.1 Definition of the full problem

We recall that the flat outputs of a quadrotor are

z =


x

y

z

ψ

 = [zi]i=1..4 ∈ P ⊂ R4

with P the space of the flat outputs. We can consider its state to be

x =

 z
ż
z̈

 = [xi]i=1..12 ∈ X ⊂ R12

From now on we will abusively call X the state space.

The steering method has to produce a trajectory S in P. Let us note T ∈ R+ its
(unknown) total duration. Because the trajectory has to be continuous in P, and
in order to guaranty continuity of the angular velocity, S has to be of class C3 at
least: S ∈ C3([0 T ],P). This is due to the relationship between attitude and linear
acceleration imposed by the equations of motion. In addition, since these (local)
trajectories will be the elements of the solution provided by the (global) motion
planner, we want to ensure continuity of the jerk (first derivative of acceleration)
between two consecutive trajectories. The jerk is not part of the state as we choose
to define it and is therefore not sampled. We thus have to impose an arbitrary
value for it at the end-points. Zero seems to be the easiest and most natural choice.
Thus, another constraint has to be imposed:

...
S (0) =

...
S (T ) = 0

The physical limitations of the system are imposing bounds on acceleration and
jerk. For security reasons we will also consider bounds on velocity. Furthermore,
since we want a continuous and bounded jerk, snap (second derivative of acceler-
ation) has to be bounded too. We are also concerned by optimality: we want the
minimal time solutions. This is important if we want to be able to use this method
as local planner in algorithms such as RRT∗ or PRM∗. Thus for a given couple of
states (x0,xF ) the steering method has to provide a solution to the problem:
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minT ∈ R+ s.t.
S ∈ C3([0 T ],P)

[
S(0) Ṡ(0) S̈(0)

]
= x0 ∈ X

[
S(T ) Ṡ(T ) S̈(T )

]
= xF ∈ X

...
S (0) =

...
S (T ) = 0

∀t ∈ [0, T ]


Ṡ(t) ∈ V
S̈(t) ∈ A...
S (t) ∈ J....
S (t) ∈ S

(3.1)

where V, A, J and S are zero centred intervals of R4. Note that X = P × V ×A.

3.1.2 Independence of the outputs

In the full problem we can see that the outputs are two-by-two independent. This
means that, with the exception of the total duration T of the trajectory, they have
no parameters in common. We therefore can solve the problem independently for
each output. Any given state xk ∈ X can be written as:

xk =

 zk
żk
z̈k

 =



[
zki

]
i=1..4[

żki

]
i=1..4[

z̈ki

]
i=1..4


We can also write: 

V =
4∏
i=1

[−vi, vi]

A =
4∏
i=1

[−ai, ai]

J =
4∏
i=1

[−ji, ji]

S =
4∏
i=1

[−si, si]
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with (vi ai ji si) ∈ R4
+. Given a couple of states (x0,xF ), solving the problem

independently for each output is then finding solutions Si to the problem

minT ∈ R+ s.t.

∀i = 1..4,



Si ∈ C3([0 T ],R)

[
Si(0) Ṡi(0) S̈i(0)

...
S i(0)

]
=
[
z0
i ż

0
i z̈

0
i 0
]

[
Si(T ) Ṡi(T ) S̈i(T )

...
S i(T )

]
=
[
zTi żTi z̈Ti 0

]

∀t ∈ [0, T ]


|Ṡi(t)| ≤ vi
|S̈i(t)| ≤ ai
|
...
S i(t)| ≤ ji
|
....
S i(t)| ≤ si

Note that in this formulation the total time of motion T is the same for each sub-
problem. We propose to relax this constraint by allowing us to find a different Ti for
each problem. This will simplify their resolution and therefore speed-up the overall
process as we will illustrate in section 3.3.3. One issue though is that the solutions
will not to be synchronized together. We will see later how to solve this. In order
to simplify the notations we will now write for a given output of index i:

(vi ai ji si) = (vmax amax jmax smax)

[
z0
i ż

0
i z̈

0
i

]
= [x0 v0 a0]

[
zTi żTi z̈Ti

]
= [xF vF aF ]

Thus the problem in one dimension that has to be solved independently for each
output can finally be written as:

minTi ∈ R+ s.t.

Si ∈ C3([0 Ti],R)

[
Si(0) Ṡi(0) S̈i(0)

...
S i(0)

]
= [x0 v0 a0 0]

[
Si(Ti) Ṡi(Ti) S̈i(Ti)

...
S i(Ti)

]
= [xF vF aF 0]

∀t ∈ [0, Ti]


|Ṡi(t)| ≤ vmax
|S̈i(t)| ≤ amax
|
...
S i(t)| ≤ jmax
|
....
S i(t)| ≤ smax

(3.2)
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3.2 A near time-optimal spline-based approach

In this section we present a near time-optimal spline-based approach to solving
the BVP. We will first present the proposed closed-form solution. Then in the
following sub-sections we will further detail the resolution. We will finally discuss
the optimality of the computed solutions.

3.2.1 Closed-form solution

The BVP described by equation (3.2) can be seen as a classical optimal control
problem. It is indeed a fourth order integrator. In this formulation, the state of the
system is X(t) =

[
S(t) Ṡ(t) S̈(t)

...
S (t)

]T
and the control input is u(t) =

....
S (t) ∈

[−smax smax]. We can then write:

Ẋ(t) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

X(t) +


0
0
0
1

u(t)

Pontryagin maximum principle (see for example [Bertsekas 1995]) states that, with-
out constraints on the state, the optimal control u∗ for the minimum time problem
is necessarily saturated meaning that ∀t ∈ [0 Ti], u∗(t) ∈ {−smax, smax} with at
most three control commutations. Thus finding the optimal control in this case
is finding these control commutations. Depending on the order of the integrator
this can be done analytically and therefore within reasonable computing time. This
type of command is called a bang-bang solution.

In our case, the state is also constrained. In this case the optimal command is
a so-called bang-singular-bang solution where ∀t ∈ [0 Ti], u∗(t) ∈ {−smax, 0, smax}.
Finding it is not trivial and usually requires computationally expensive numerical
approaches. This is not well suited for integration in sampling-based motion plan-
ners since they make extensive use of the steering method (usually thousands of
calls to solve constrained planning problems). Furthermore, solving independently
the BVP in one dimension for each output will provide four different durations Ti.
In order to produce a coherent trajectory these solutions have to be “synchronized”
meaning that their durations have to matched to a single common duration. It is
not trivial to see how to do that. We therefore propose a method to compute a
trajectory with an imposed shape inspired by the bang-singular-bang solution that
approaches the optimal. This will allow us to both quickly compute good solutions
to the BVPs in one dimension and facilitate their synchronization.

The mathematical justification of the shape of the optimal bang-singular-bang
solution is quite complicated. We propose here a more intuitive explanation. The
motion is divided into several main phases illustrated with an example in Figure
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3.1.

Figure 3.1: Example of trajectory provided by the steering method for one flat
output. The bounds of each derivative are represented by pink dashed lines. Red
and green dashed lines represent initial and final values, respectively. Note that, in
order to show all the phases, |vD| = vmax and |aB| = |aD| = amax in this example.
In a general case, some phases can have zero duration.

In order to minimize Ti, maximum velocity has to be reached as soon as possible
and maintained as long as possible. Let the letter D refer to this phase of constant
velocity and let vD ∈ [−vmax vmax] be the value of velocity during this phase. Time
spent to reach this maximum velocity is also to be minimized meaning that the
durations of the phases of velocity transitions from v0 to vD and from vD to vF
have to be as short as possible. Hence time spent at maximum acceleration during
those two phases has to be maximized. This implies to minimize the durations
of acceleration variation phases. Let B refer to the phase of constant acceleration
during the first phase of velocity variation and aB ∈ [−amax amax] be the value
of this constant acceleration. Let G be the phase of constant acceleration during
the second phase of velocity variation and aG ∈ [−amax amax] be the value of this
constant acceleration. The phase in which acceleration varies from a0 to aB is noted
A, and C is used to refer to the phase in which acceleration varies from aB to zero.
The phases where acceleration varies from zero to aG and from aG to aF are noted
E and H respectively.

This principle holds for higher derivatives. Time spent at maximum jerk during
acceleration variations has to be maximized and durations of jerk variation phases
have to be minimized. This implies to maximize time spent at maximum snap
during a jerk variation phase and to minimize the durations of snap variation phases.
This very last part is easy since, following our approach, snap can be discontinuous:
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a snap variation phase is actually a snap commutation of duration zero (∀t ∈ [0, Ti],....
S i(t) ∈ {−smax, 0, smax}). In other words,

....
S i is a piecewise constant function,

which implies that Si is a piecewise polynomial function (a spline) of the fourth
order.

In the discussion above, we have mentioned seven main phases in the (local)
trajectory. For three of them (B,D,G), acceleration is zero and hence snap is also
zero. The four others (A,C,E,H) are divided into three sub-phases (1, 2, 3). Phases
1 and 3 correspond to jerk variations and hence for which |

....
S i(t)| = smax. In phase

2, jerk is constant hence snap is zero. The sign of the snap is opposed during phases
1 and 3, which have the same duration. Table 3.1 presents the notation used for
the durations of the phases and the expressions of the snap as functions of aB and
aG.

Table 3.1: Value of the snap and duration of each phase of the spline

Phase Value of the Snap Duration
A1 sign(aB − a0).smax tA,1
A2 0 tA,2
A3 sign(a0 − aB).smax tA,1
B 0 tB
C1 -sign(aB).smax tC,1
C2 0 tC,2
C3 sign(aB).smax tC,1
D 0 tD
E1 sign(aG).smax tE,1
E2 0 tE,2
E3 -sign(aG).smax tE,1
G 0 tG
H1 sign(aF − aG).smax tH,1
H2 0 tH,2
H3 sign(aG − aF ).smax tH,1

The expression of the snap during phase A1 is explained as follows: if aB > a0,
S̈i has to be increasing, which implies that

...
S i has to be positive. Since

...
S i(0) = 0,...

S i has to be increasing during phase A1, and thus
....
S i(t) = +smax. Following

the same reasoning,
....
S i(t) = −smax if aB < a0. If aB = a0, then phase A is not

needed, and thus
....
S i(t) = 0. A similar reasoning can be applied to understand the

expressions for phases C, E and H.

Note the simplifying choices we have made. We impose both jerk and accel-
eration to go through zero during phase B, which implies that velocity reaches its
maximum value vD very smoothly. This is indeed the case for the optimal trajectory
if velocity is saturating. In fact each time a component of the state is saturating,
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the optimal trajectory goes through a singular arc, meaning that the command is
zero (here the snap). But for trajectories for which there is no velocity saturation,
going from aB to aG can be done more efficiently. We will see that this choice allows
a simpler computation of the trajectory and is also useful during the synchroniza-
tion process. However this necessarily leads to the computation of a sub-optimal
solution. We will quantify this sub-optimality in section 3.3. From now on, both
optimal time and optimal velocity are to be read as: with respect to our closed-form
solution.

3.2.2 Duration of the phases

At this point, the local trajectory for one output (i.e its corresponding spline) is
parametrized by aB, aG and the durations of all phases. This subsection explains
how it can be parametrized using a single parameter: vD. First, tA,1, tA,2, tC,1
and tC,2 can be expressed as functions of aB, a0, jmax and smax. The same goes
for tH,1, tH,2, tE,1 and tE,2 as functions of aG, aF , jmax and smax. We provide
next explanations only for tA,1 and tA,2 but the same principles are applied to all
durations mentioned above. More details are provided in Appendix A. Let us define
δB0 =sign(aB − a0). From Table 3.1 and equation (3.2), we can write:

aB = δB0.smax.t
2
A,1 + δB0.smax.tA,1.tA,2 + a0 (3.3)

and
...
S i(tA,1) = δB0.smax.tA,1, which implies |

...
S i(tA,1)| = smax.tA,1 ≤ jmax, and

thus:
smax.t

2
A,1 ≤

j2
max

smax
= alim (3.4)

Phase A2 is only needed when phases A1 and A3 are not enough to reach aB. If
there is no phase A2, then tA,2 = 0. In this case, using equations (3.3) and (3.4),
we can write:

|aB − a0| = smax.t
2
A,1 ≤ alim

If |aB − a0| > alim, then tA,2 6= 0 (i.e. phase A2 is needed) and tA,1 = jmax
smax

, its
maximum value. In that case,

tA,2 = |aB − a0|
jmax

− jmax
smax

If tA,2 = 0, then

tA,1 =
√
|aB − a0|
smax

The principle is the same for phases C, E and H. For phase C, |aB−a0| is replaced
by |aB|, by |aG| in phase E and by |aG−aF | in phase H. Complete expressions are
provided in Appendix A. The spline is now parametrized by (aB, aG, tB, tD, tG).
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Both couples (aB, tB) and (aG, tG) can actually be expressed as a function of
vD. Using Table 3.1 and equation (3.2), vD can be expressed as a function of
(aB, tA,1, tA,2, tB, tC,1, tC,2) and hence as a function of (aB, tB). Let us note VB :
(aB, tB) 7→ vD this function. Let us also define vminB = VB(−amax, 0) and vmaxB =
VB(amax, 0). For all vD in [vminB , vmaxB ], there is a unique aB ∈ ([−amax,min(0, a0)]∪
[max(0, a0), amax]) such that VB(aB, 0) = vD (see Appendix A for more details).
If vD < vminB , then aB = −amax and phase B is needed. Its duration is simply
tB = |vD − vminB |/amax. If vD > vminB , then aB = amax and tB = |vD − vmaxB |/amax.
Hence, as previously announced (aB, tB) can be expressed as a function of vD. The
same goes for (aG, tG).

At this point the spline is parametrized by (vD, tD). Let tC be the value of the
time parameter at the end of phase C, and tE its value at the beginning of phase E.
As explained previously, these two values can be expressed as a function of vD. This
is also the case for Si(tC) and Si(tE). Let ∆S be the function vD 7→ Si(tE)−Si(tC).
If vD 6= 0, then tD = ∆S(vD)/vD. Therefore, the spline is completely parametrized
by the sole value of vD. Note that, necessarily:

vD.∆S(vD) ≤ 0 (3.5)

3.2.3 Optimal velocity

The spline is now parametrized by vD only. This section explains how to com-
pute the optimal value vopt that minimizes Ti(vD). Let Vvalid be the set of
values of vD that meet the constraint given by equation (3.5) and let us note
V0 = [min(0, vopt),max(0, vopt)]. For synchronization purposes, it is necessary that
V0 ⊂ Vvalid, which implies:

∀v ∈ V0, v.∆S(0) ≤ 0 (3.6)

Let us note δ0 =sign(∆S(0)). Since minimizing Ti requires maximizing |vD|, equa-
tion (3.6) implies that, if ∆S has zeros between v = 0 and v = δ0.vmax, then vopt is
the one of lowest absolute value. If not, vopt = δ0.vmax.

3.2.4 Synchronization

The trajectory generation problem is now solved for each output independently.
Hence, we have four different values Ti for i = 1..4. This subsection explains how
to synchronize together these one-dimensional trajectories. Solving each problem
provides a couple (Ti, vopt,i) and the associated interval V0,i. The purpose of the
definition of vopt provided in the previous subsection is to guaranty that the ap-
plication vD 7→ Ti(vD) is continuously strictly monotonic on V0,i. Furthermore,
lim
vD→0

Ti(vD) = +∞. This implies that, for any t in [Ti,+∞[, there is a unique
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v ∈ V0,i such that Ti(v) = t. This property is used to synchronize the components.
The slowest component of index j is identified and and we note T = Tj . For each
i 6= j a simple dichotomous search is used to find the unique vD ∈ V0,i such that
Ti(vD) = T for the three other components. As a result, all the components have
the same final time T . All outputs are synchronized.

3.2.5 Generalization to other robotic systems

In the context of this work we apply this method to the quadrotor system. This
means solving the BVP in three dimensions if yaw is kept constant or in four
dimensions otherwise. But really, any differentially flat system or for that matter
any robotic system with uncoupled dynamics can be treated using this method,
whatever the dimension. We therefore implemented it for any such system as a
standalone C++ library named KDTP (for KinoDynamic Trajectory Planner).

A git repository is available at: git://git.openrobots.org/robots/libkdtp.git

3.3 Discussion on optimality

In section 3.2.1 we explained the simplifying choices we have made in order to
establish a closed-form solution to the BVP in one dimension that allows both an
easier computation and synchronization of the outputs. We stated that our solutions
are necessarily sub-optimal. In this section we will first explain why this is the case
in further details and then quantify this sub-optimality. For that we will focus first
on the solutions to the BVP in one dimension an then study the solutions to the
problem in three dimensions.

3.3.1 Optimality and velocity saturation

In our proposed closed-form solution to the BVP in one dimension, acceleration
necessarily goes smoothly to zero at one time in the trajectory, meaning that we
chose to set a zero snap (and jerk) at some point during this phase. For the optimal
solution, this is only the case if velocity is saturating. During a saturation phase
velocity is indeed constant and therefore higher derivatives are nil. If this is the
case then our method computes the optimal solution. But if there is no velocity
saturation then our method will compute a sub-optimal solution because in the
optimal trajectory there is no need for the acceleration to smoothly go to zero.
This is illustrated on two examples in Figure 3.2.
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Figure 3.2: Left: velocity is saturating, our method therefore computes the optimal
solution. Right: no velocity saturation. In blue, our sub-optimal solution. In red,
the optimal solution. The length of the black dashed segment is the absolute error
between the two solutions.

3.3.2 In one dimension

The goal of this section is to give an idea of the quality of our proposed closed-form
solution to the BVP described by Equation (3.2). By that we mean comparing
the time Ti computed by our method (that we here simply note T ) to the actual
optimal time T ∗. We propose to do so by uniformly sampling a total of 104 couples
of “states” ([x0 v0 a0], [xF vF aF ]) in [−5 5]×[−vmax vmax]×[−amax amax], solve the
problem with our method and compare the duration T of the result to the duration
T ∗ of the optimal solution. In this experiment we use the following values:

vmax = 5 m.s−1

amax = 10 m.s−2

jmax = 20 m.s−3

smax = 50 m.s−4

In order to compute the optimal time T ∗ we use ACADO Toolkit. It is a software
environment and algorithm collection for automatic control and dynamic optimiza-
tion implemented as self-contained C++ code (see http://acado.github.io). In our
implementation, it treats the optimal control problem by formulating it as a multi-
ple shooting problem that is solved using an SQP algorithm (Sequential Quadratic
Programming). We use 20 nodes along the trajectory and the initial guess is a linear
interpolation for each state and command variables. The KKT tolerance parameter
is set to 10−12.

To compare T and T ∗ we compute the relative error between them as follows:

Erel = T − T ∗

Max(T, T ∗)

http://acado.github.io
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In total we actually sampled 17, 251 couples of states but disregarded 7, 251 of
them (42.03%). One possible reason for it is that the BVP does not always have a
solution. It is for example possible that velocity at one end is too high so that it is
not possible, given the constraints on higher derivatives, to reduce it in time to avoid
violating the velocity constraint. This will be explained in more details in section
4.2.2. In this case the ACADO algorithm will not converge. In our experiment this
happened for 6, 409 couples of “states” (37.15%). The other reason for disregarding
a sample is that we obtain Erel < −0.01. In those cases we consider that the
ACADO algorithm has converged poorly and therefore that the test is inconclusive.
This happened for 842 samples (4.88%).

Among the 104 successful tries:

• For 22.60% of them we have |Erel| < 0.01. This means that our method gives
the same result as the ACADO algorithm within a 1% margin. We therefore
consider that our method provides a trajectory with optimal duration.

• For the remaining 77.40%, we have 0.01 ≤ Erel, meaning that our method
provides a sub-optimal result. We propose to study the distribution of the
relative error for those cases. An histogram and a box plot are represented in
Figure 3.3. We also provide key statistical values in Table 3.2.

Figure 3.3: For the BVP in one dimension: the histogram of the distribution of the
relative error for the 7, 740 sub-optimal cases alongside with its box plot. In the
later, the ends of the whiskers are the extremal values, the red squares are the 10th
and 90th percentiles, the edges of the blue box are the first and third quartiles and
the red segment inside the box is the median.

In summary, among the 104 conclusive tests, 22.60% are optimal and among
the remaining 77.40% the mean relative error is 8.84% with 90% of them having a
relative error below 21.65%. In total, the mean relative error is therefore 6.85%.

At this point one can wonder why using a sub-optimal method when we do
have the numerical tools to compute the optimal solution. The answer lies in the
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Table 3.2: For the BVP in one dimension: key statistical values for the distribution
of the relative error for the 7, 740 sub-optimal cases.

Minimum 0.01002
10th percentile 0.02889
First quartile 0.04721

Median 0.06351
Third quartile 0.08748
90th percentile 0.21653

Maximum 0.73342
Mean 0.08844

Standard deviation 0.07743

computing time needed to run those numerical methods. Lets compare the CPU
times for the 104 conclusive tests. Those times are for a C++ implementation run
on a single core of an Intel Xeon W3520 processor at 2.67GHz. For the ACADO
algorithm the mean running time is 132.36 milliseconds (with a standard devia-
tion of 32.42 milliseconds) whereas the mean running time for our method is 0.21
milliseconds (with a standard deviation of 0.50 milliseconds). Histograms of the
distribution of the CPU times for both methods are represented in Figure 3.4.

Figure 3.4: For the BVP in one dimension: the histograms of the distribution of the
CPU times in milliseconds for both methods. On the left: the ACADO algorithm.
On the right: the proposed method.

For being 6.85% sub-optimal in average we gain three orders of magnitude in
mean running time.

3.3.3 In three dimensions

We focus here on a simplified version of the problem described by Equation (3.1).
Without loss a generality we chose to keep the yaw angle constant. We therefore
study the solutions of the BVP in three dimensions. The experimental setup is
very similar to the one on the previous section. We sample 104 couples of states in
[−5 5]3 × [−vmax vmax]3 × [−amax amax]3, solve the problem with our method and
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compare the duration T of the result to the duration T ∗ of the optimal solution. We
use the same values as before for the bounds on the derivatives vmax, amax, jmax
and smax. Here again we use ACADO Toolkit to compute the optimal solution.

We sampled a total of 45, 474 couples of states and disregarded 35, 474 of them
(78.01%). For 3, 010 samples (6.62%) the ACADO algorithm did not converge
properly. For the remaining 32, 464 samples (71.39%), it did not converge at all.
The increased number of failures is explained by the dimension of the problem. It
is enough that at least one component out of three of one of the two states is ill
sampled (meaning that the interpolation under constraints for this component has
no solution) for the all problem to have no solution.

Among the 104 successful tries, 41.41% have optimal duration. The mean rela-
tive error of the remaining 58.59% sub-optimal cases is 6.08% and 90% of them have
a relative error below 8.84%. In total, the mean relative error is therefore 3.56%.
We provide an histogram and a box plot of the distribution of the relative error for
the 5, 859 sub-optimal cases in Figure 3.5 and key statistical values in Table 3.3.

Figure 3.5: For the BVP in three dimensions: the histogram of the distribution of
the relative error for the 5, 859 sub-optimal cases alongside with its box plot. In
the later, the ends of the whiskers are the extremal values, the red squares are the
10th and 90th percentiles, the edges of the blue box are the first and third quartiles
and the red segment inside the box is the median.

The increased accuracy of the method is also explained by the dimension of
the problem. The probability of velocity saturation is increased by the fact that
each sample in three dimensions is equivalent to three samples in one dimension.
Hence the increased percentage of optimal solutions computed by our method. As
expected the distribution of relative error for the sub-optimal cases is similar to the
problem in one dimension.

Let us compare the CPU times. For the ACADO algorithm the mean run-
ning time is 601.30 milliseconds (with a standard deviation of 481.082 milliseconds)
whereas the mean running time for our method is 0.61 milliseconds (with a standard
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Table 3.3: For the BVP in three dimensions: key statistical values for the distribu-
tion of the relative error for the 5, 859 sub-optimal cases.

Minimum 0.01000
10th percentile 0.02365
First quartile 0.04030

Median 0.05394
Third quartile 0.06636
90th percentile 0.08838

Maximum 0.46108
Mean 0.06083

Standard deviation 0.04298

deviation of 0.80 milliseconds).
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Kinodynamic motion planning
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In this chapter we present the global approaches on which we have focused to
solve the kinodynamic motion planning problem for a quadrotor. In particular we
will show how the spline-based steering method that we described in the previous
chapter can be integrated into those global methods. We first present a decoupled
approach together with a local optimization method of the global solution trajectory.
We then focus on direct approaches. In that perspective we begin by addressing the
problem of the metric in the state space. Follows the description of an incremental
sampling strategy in the state space. We finally present two global direct approaches
to kinodynamic motion planning and discuss the influence of both the metric and
the sampling strategy on both of them.

4.1 A decoupled approach

This section explains how the spline-based steering method presented in Chapter
3 can be used in a decoupled approach to kinodynamic motion planning. Our
implementation of the decoupled approach consists of two stages: 1) planning a
geometrically valid path in R3 for the center of mass of the quadrotor using its
minimum bounding sphere for collision detection; 2) transforming this path into a
trajectory in X . Since we use the minimum bounding sphere for collision detection,
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planning the yaw angle profile seems a bit artificial and has little interest. We
therefore chose here to keep it constant. It is always possible if need be to chose a
different yaw profile afterwards. We note r = [x y z] ∈ R3 the position of the center
of mass. In our current implementation, a classic sampling-based motion planning
technique such as those described in section 1.2 is applied to explore R3 (typically
either a bi-RRT or a classic PRM). Linear interpolation is used to connect sampled
positions. The resulting path is thus a concatenation of n collision-free straight line
segments in R3: {(ri, ri+1)}i=1..n. The next subsection explains how this geometrical
path in R3 is transformed into a trajectory in X .

4.1.1 From path to trajectory

A straightforward way of turning the geometrical path into a well defined trajec-
tory is to apply our spline-based steering method to each pair of hovering states
([ri 0 0], [ri+1 0 0]) along the path. By construction the local trajectories thus ob-
tained are smoothly connected one to the next so that their concatenation is indeed
a well defined and admissible trajectory (in terms on the bounds on the derivatives).
Their is however a major problem with this approach. The result trajectory might
not be collision-free anymore. The reason why is that our steering method, called
between two hovering states, does not compute a straight line segment in R3. This
is due to the fact that although the straight line segment is the optimal solution in
terms of distance it is not the time-optimal solution.

In order to assure that the trajectory is collision-free we thus have to keep the
previously computed straight line segments in R3 for the center of mass of the
quadrotor. For a line segment of index i in the path, let us note:

li = ‖ri+1 − ri‖ its length and ui = ri+1 − ri
li

its unit direction vector

We apply our steering method in one dimension to the couple ([0 0 0], [li 0 0]) which
gives us:

a duration Ti ∈ R
a distance profile (Di : [0 Ti]→ R)
a velocity profile (Vi : [0 Ti]→ R) = Ḋi

an acceleration profile (Ai : [0 Ti]→ R) = V̇i

We can now define the local trajectory of index i by:

∀t ∈ [0 Ti],


r(t) = ri +Di(t).ui
ṙ(t) = Vi(t).ui
r̈(t) = Ai(t).ui

The local trajectories are now well defined, collision-free and admissible, therefore
so is the global trajectory. However the latter is far from being time-optimal because
of the imposed stops at the ends of each local trajectories. We will see in the next
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sub-section how to address this.

4.1.2 Optimization

A trajectory optimization method can be applied to improve the time-optimality
of the previously obtained solution. We have implemented a simple but efficient
method based on the random shortcut algorithm [Geraerts 2007]. This iterative,
anytime algorithm works as follows: at each iteration, two states, x1 and x2, are
randomly selected from the overall trajectory. Let us call xA the initial state of
the local trajectory in which x1 lies, and xB the final state of the local trajectory
in which x2 lies. The steering method is then applied to generate three new local
trajectories between (xA,x1), (x1,x2) and (x2,xB)1. If they are collision-free, the
cost of the trajectory xA → x1 → x2 → xB is computed, the cost here being the
overall flying time. If this cost is lower than the one of xA → ...→ xB, this portion
of the overall trajectory is replaced by the new one. This step is repeated until a
given execution time, a given number of iterations or a given gain of the cost is
reached. A example of result is illustrated in Figure 4.1.

Figure 4.1: In a maze-like environment as seen from the top: the effect of the
optimization method on a trajectory composed of six straight line segments in R3.
Left: before optimization. Right: after optimization

This decoupled approach is computationally very efficient. It quickly returns
high-velocity, agile trajectories in cluttered environments. It is however incomplete,
in the sense that it will succeed only if a quasi-static solution exists for the bounding
sphere. It will for example fail to solve some problems involving aggressive maneu-

1Note that the portion of the initial trajectory between xA and x1 (idem for x2 and xB) is
different to the local trajectory generated by a new call to the steering method, because zero jerk
is imposed on x1 (and on x2) when splitting the trajectory.
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vers, such as the one illustrated in the right hand side of Figure 4.6. The approach is
also unsuitable to solve problems involving the transportation of a rigidly-attached
large object and for which the bounding sphere is a too large approximation of the
geometry of the system. To address these kinds of problems we need to use direct
approaches.

4.2 Direct kinodynamic planning

In this section we focus on direct approaches on kinodynamic motion planning for
a quadrotor. We first address the problem of the metric in the state space. Follows
the description of an incremental sampling strategy in the state space. We finally
present two global direct approaches to kinodynamic motion planning and discuss
the influence of both the metric and the sampling strategy on both of them.

4.2.1 Quasi-metric in the state space

The efficiency of the state-space exploration using randomized kinodynamic motion
planning algorithms relies on a good distance metric. However, as discussed in
[LaValle 2001], computing the actual distance between two states is as hard (and
thus as costly) as solving the corresponding optimal control problem. Our steering
method provides a deterministic sub-optimal solution to such a control problem.
Therefore, it defines a quasi-metric2 M∗SM : (x0,xT ) 7→ T on the state space.
Because of the dynamics of the system, a trajectory in the state space from x0 to
xT is indeed necessarily different from a trajectory from xT to x0, and thus M∗SM
is not symmetric. Although this steering method is computationally fast, it is still
too costly to be used for nearest neighbor search inside a sampling-based planner.
This section presents a method to approximate the quasi-metricM∗SM at a very low
computational cost, and presents results that show its relevance.

4.2.1.1 Approximate quasi-metric

The complexity of the problem 3.1 defined in Chapter 3 is mainly due to its order
(four) and to the inequality constraints on the derivatives. We propose to solve a
simpler time optimal control problem for the third order (i.e. by considering the
jerk as the control input), in one dimension and without constraints other than the
bounds on the control input. The problem is then to find for each output of index

2A quasi-metric has all the properties of a metric, symmetry excepted.
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i the couple (Si, Ti) such that:

minTi ∈ R+ s.t.

[Si(0) Ṡi(0) S̈i(0)] = [x0 v0 a0] ∈ R3

[Si(Ti) Ṡi(Ti) S̈i(Ti)] = [xTi vTi aTi ] ∈ R3

∀t ∈ [0, Ti], |
...
S i(t)| ≤ jmax ∈ R+

(4.1)

For this simple integrator of the third order without constraints on the state, Pon-
tryagin maximum principle (see for example [Bertsekas 1995]) says that the optimal
control is necessarily saturated, i.e.:

∀t ∈ [0, Ti],
...
S i(t) ∈ {−jmax, jmax}

with at most two control commutations. Solving (4.1) implies to find Ti and these
(at most) two commutation times, which requires to solve polynomial equations of
maximum degree four.

For a coordinate of index i ∈ {1, 2, 3}, let u(t) =
...
S i(t) be the control function

and u its initial value: u = u(0) = ±jmax. Let t1 be the duration of the first
phase (during which u(t) = u), t2 the duration of the second phase (during which
u(t) = −u) and finally t3 the duration of the third phase (during which u(t) = u).
Note that Ti = t1 + t2 + t3. In case of no control commutation, t2 = t3 = 0
and in case of one control commutation, t3 = 0. Let us also note ak(t), vk(t) and
xk(t) respectively the acceleration, velocity and position during the phase of index
k ∈ {1, 2, 3}. For example during phase k = 1, i.e. t ∈ [0, t1]:

a1(t) = ut+ a0

v1(t) = u

2 t
2 + a0t+ v0

v1(t) = u

6 t
3 + a0

2 t
2 + v0t+ x0

The expressions for phases k = 2 and k = 3 are similar. Note however that
a2(t) = a2(t, t1) and a3(t) = a3(t, t1, t2) (the same goes for v and x).

In case of no control commutation, Ti is solution of (4.1) if and only if:
Ti ≥ 0
a1(Ti) = aF ⇐⇒ Ti = aF − a0

u
v1(Ti) = vF
x1(Ti) = xF
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The candidate Ti is tested for u = sign(aF − a0)jmax.

In case of one control commutation, (Ti, t1) is solution of (4.1) if and only if:
Ti > t1 > 0
a2(Ti, t1) = aF ⇐⇒ Ti = 2t1 + a0 − aF

u
(eq1)

v2(Ti, t1) = vF (eq2)
x2(Ti, t1) = xF (eq3)

Once Ti expressed as a function of t1 by (eq1), solving (eq2) is solving a second
order polynomial equation in t1. Positive solutions for u = ±jmax are reported in
(eq3) to be tested as candidates.

In case of two control commutations, (Ti, t1, t2) is solution of (4.1) if and only
if: 

t1 > 0, t2 > 0, Ti > t1 + t2

a3(Ti, t1, t2) = aF ⇐⇒ Ti = 2t2 + aF − a0
u

(eq4)
v3(Ti, t1, t2) = vF (eq5)
x3(Ti, t1, t2) = xF (eq6)

Once Ti expressed as a function of t2 by (eq4), (eq5) provides an expression of the
form:

t1 = At2 + B

t2
+ C

Then solving (eq6) is solving t2[x3(Ti, t1, t2) − xF ] = 0 which is a fourth order
polynomial equation in t2. The unique solution of (4.1) is the minimum of all valid
computed candidates.

The proposed quasi-metric is then defined as:

MSM : (x0,xT ) 7→ max
i=1..4

Ti

4.2.1.2 Results

Here we present results of an experimental test to validate the proposed approximate
quasi-metric. 104 pairs of kinodynamic states were randomly sampled in X =
[−5, 5]3× [−5, 5]3× [−10, 10]3, considering J = [−20, 20]3 and S = [−50, 50]3. Note
that, without loss of generality and for simplification purposes, we consider here a
constant yaw. For each pair (x1,x2), we computed the value M∗SM (x1,x2) of the
quasi-metric induced by our steering method, the value MSM (x1,x2) given by the
proposed approximation, and the value ED(x1,x2) of the euclidean distance in R3

considering only the position of the center of mass. We study the distribution of
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the relative error between M∗SM and MSM , i.e. the quantity:

REMSM
(x1,x2) = 1− MSM (x1,x2)

M∗SM (x1,x2)

For comparison, we also provide the relative error REED between M∗SM and
ED. Figure 4.2 shows histograms of the distributions of these errors, Table 4.1
shows key statistical values of these distributions and Table 4.2 gives mean CPU
times in milliseconds for a single core of an Intel Xeon W3520 processor at 2.67GHz.

Figure 4.2: Histograms of the distributions of the relative errors. Left: our steering
method. Right: the Euclidean distance.

The low standard deviation of the distribution of the relative error for the pro-
posed quasi-metric is a measure of the quality of the approximation. These results
also provide empirical evidence that MSM and M∗SM are equivalent since for all
pairs (x1,x2),

0.16396 ≤ REMSM
(x1,x2) ≤ 0.85540

which implies

1
10 .M

∗
SM (x1,x2) < MSM (x1,x2) < 10.M∗SM (x1,x2)

This means that MSM and M∗SM are inducing the same topology on X which
means that the cost-to-go defined by our steering method is correctly evaluated by
MSM . This is clearly not the case for ED.

4.2.2 Sampling strategy

In many motion planning problems the workspace is bounded. In most of them it
is a simple box in R3. Trajectories generated by the steering method presented in
Chapter 3 do not guarantee respect to any bounds on the position of the center
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Table 4.1: Distributions of the relative errors
Metric MSM ED

Minimum 0.16396 −4.67050
Maximum 0.85540 0.94781
Mean 0.35918 −0.59440
Median 0.32806 −0.52272

Standard deviation 0.10308 0.69674

Table 4.2: Mean CPU times in milliseconds
M∗SM MSM ED

1.23× 10−1 5.81× 10−3 1.10× 10−4

of mass of the robot. Such constraints are then typically violated when samples
are close to the boundary of the workspace and the velocity is high, so that it is
not possible to decelerate to avoid crossing this positional limit. In a similar way,
bounds on velocity can also be violated. If acceleration is too high and velocity
is close to the limit, produced trajectories will be invalid because velocity can not
be reduced in time to meet the constraints. Note however that the imposed shape
for the trajectories produced by our steering method guarantees that bounds on
acceleration are respected.

This section presents an incremental state-space sampling technique that in-
creases the probability of generating connectible states. The definition of such
states is first presented. Then the different steps of the method are explained.
Finally some results are provided.

4.2.2.1 State connectibility

In this section we will use the notations and concepts defined in section 1.3.1. We
also introduce the set Xphys ⊇ Xvalid that contains all the states that satisfy the
physical constraints. We recall that given a state x0 ∈ Xphys, a control u admissible
on [t0 tF ], is said to be feasible if and only if the associated response is such that
∀t ∈ [t0 tF ], x[t0,x0,u](t) ∈ Xphys. The set of such controls is noted U[x0],t0,tF

Provided a time t0, we say that a state x0 ∈ Xphys is forward-connectible if and
only if

U[x0,t0,+∞] 6= ∅

This means that for a state that is not forward-connectible every admissible
control is unfeasible, or in other terms that whatever admissible control is applied
to the system, the physical constraints will be violated at some time in the future.
This definition is similar to that of the inevitable collision states proposed by
[Fraichard 2004]. Similarly, we say that a state x0 ∈ Xphys is backward-connectible
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if and only if U[x0,−∞,t0] 6= ∅. A state that is both forward-connectible and
backward-connectible is said to be connectible. A state that is either not forward-
connectible or not backward-connectible is said to be non-connectible. The idea is
coarsely illustrated on Figure 4.3.

Figure 4.3: Examples of non-connectible states in two dimensions. Red squares
are positions and red arrows are velocity vectors. Blue curves are examples of
trajectories. Bounds on position are represented in black. The state on the left is
not backward-connectible. The state on the right is not forward-connectible.

No solution to a kinodynamic motion planning problem can pass through a non-
connectible state since that if it were the case the solution would not be feasible.
Such states are therefore always useless and should not be sampled. In case of
uniform sampling though, non-connectible states can be generated. The local paths
computed to connect those states have then to be discarded a posteriori by the
planner. This is rather inefficient since generating and testing a local path for
validity is a costly operation. The goal of the sampling technique proposed below
is to notably reduce the probability of generating non-connectible states, and hence
to improve the performance of planning algorithms.

4.2.2.2 Proposed approach

The sampling technique proceeds in a decoupled and incremental way. First, accel-
eration is uniformly sampled. The idea is then to compute a set of velocity values
for which the state is known to be non-connectible. Velocity is then uniformly
sampled outside this set. Finally, given this couple (velocity, acceleration) a set of
position values for which the state is known to be non-connectible is computed, and
the position is then uniformly sampled outside this set.

4.2.2.3 Sampling velocity

This subsection explains how to compute the set of velocity values for which the
state is known to be non-connectible, given a uniformly sampled acceleration value
as. Explanations are given for one output. Figure 4.4 illustrates this explanation.
Let us denote vmax and amax as the bounds on the absolute value of velocity and
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acceleration respectively. We study acceleration a(t) and velocity v0(t) on a neigh-
borhood around t = 0 for a(0) = as and v0(0) = 0. The idea is to apply a saturated
acceleration variation and determine the extrema of v0(t) in this neighborhood. Us-
ing them, we can compute the limits on velocity vs such that v(t) = v0(t) + vs lies
in [−vmax, vmax]. We use notations defined in section 3.2.1. For t > 0, phase A of
our steering method is applied. Phase H is applied for t < 0. The sampled value
as locally imposes a direction of variation of v0(t) on phases A and H. We want to
reverse this direction of variation in minimum time. This is equivalent to driving
a(t) to zero in minimum time. For that, we set aB = aG = −sign(as).amax. This
corresponds to the highest acceleration variation achievable by our steering method.
Note that, by construction, acceleration is symmetric during phases A and H (i.e
a(−t) = a(t)) and v0(t) is anti-symmetric (i.e v0(−t) = −v0(t)). Since a(t) is a
second order spline strictly monotonic on phase A, it is straightforward to compute
the unique t0 > 0 such that a(t0) = 0. The value vbound = vmax − |v0(t0)| is then
the upper bound on the absolute value of vs. This means that if |vs| > vbound then
v(t) = v0(t) + vs will violate the constraints on velocity. A velocity value vs is then
uniformly sampled in [−vbound, vbound].

Figure 4.4: Acceleration and velocity (blue curves) around t = 0. Saturated accel-
eration variation is applied in order to determine the limits on initial velocity (red
triangles). Red curves are velocities for these limits.
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4.2.2.4 Sampling position

Given a couple (vs, as) for one output, this subsection explains how to compute the
set of position values for which the state is known to be non-connectible. Figure
4.5 illustrates this explanation. The principle is similar to the one in the previous
subsection. Velocity v(t) and position x0(t) are studied around t = 0 for a(0) = as,
v(0) = vs and x0(t) = 0. We apply a saturated velocity variation and determine the
extrema of x0(t) in this neighborhood. Using them, we can compute the limits on
position xs such that x(t) = x0(t) + xs lies in [−xmax, xmax] (bounds on position).
For t > 0, phases A to C of our steering method are applied. Phases E to H are
applied for t < 0. We want to reverse the direction of variation of the position
imposed by vs as fast as possible. This is equivalent to driving v(t) to zero in
minimum time. For that, we set vD = −sign(vs).vmax for both phases A to C

and E to H. This corresponds to the highest velocity variation achievable by
our steering method. The only difference here is that neither v(t) nor x0(t) have
symmetry proprieties. We compute t+ > 0 such that v(t+) = 0 and t− < 0 such
that v(t−) = 0. If vs ≥ 0 then x+ = xmax − x0(t+) and x− = −xmax − x0(t−)
else x+ = xmax − x0(t−) and x− = −xmax − x0(t+). A position value xs is then
uniformly sampled in [x−, x+].

4.2.2.5 Results

We provide here some results concerning the sampling strategy. The conducted ex-
periment consisted in testing the validity of local paths computed between uniformly
sampled pairs of states in X = [−5, 5]3 × [−5, 5]3 × [−10, 10]3, with J = [−20, 20]3
and S = [−50, 50]3. Yaw was kept constant. We measured the percentage of valid
paths (i.e. which lies entirely in X ) over 104 calls. We then repeated this operation
using our sampling technique. With uniform sampling only 11.53% of the produced
paths were valid. With our sampling technique 95.58% of the paths were valid.
Moreover, we can test for a given state if each output is respecting the constraints
defined by our sampling technique, i.e. if velocity lies in [−vbound, vbound] and if
position lies in [x−, x+]. When this is not the case we consider that the state is
not connectible. Our sampling technique is obviously generating connectible states
every time whereas with uniform sampling about 90% of the generated states are
not connectible (with respect to this criteria).

4.2.3 Global methods for kinodynamic planning

This section describes variants of RRT and PRM algorithms, to deal with a non-
symmetric steering method, and provides some results on the influence of both the
proposed quasi-metric and the sampling strategy on them. These algorithms are
well known, but had to be adapted to the non-symmetry of the steering method and
the associated quasi-metric. Because of this non-symmetry, the underlying graph is
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Figure 4.5: Velocity and position (blue curves) around t = 0. Saturated veloc-
ity variation is applied in order to determine the limits on initial positions (red
triangles). Red curves are positions for these limits.

directed. We first present a directed bi-RRT then a directed PRM using the forest
method and we finally show and discuss some results.

4.2.3.1 Directed Bi-RRT

In the well known undirected version of the Bi-RRT algorithm (see section 1.2.4),
two trees TS and TG are constructed in parallel. TS grows from the start config-
uration and TG from the goal configuration. Each iteration for one of the trees
consists of sampling a configuration qrand, finding its nearest neighbor qnear in the
tree (according to a defined metric), and extending it toward qrand (using a steering
method) to create a new configuration qnew. Each time an expansion is successful
for one of the trees, a direct connection is attempted between qnew and its nearest
neighbor in the other tree. The algorithm ends if this local path is valid (i.e. when
the trees are connected).

In our directed version, both the steering method and the quasi-metricMSM are
non-symmetric, and thus have to be called taking care of the order of the two states.
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The nearest neighbors NS(x̄) and NG(x̄) of a state x̄ in TS and TG respectively are
defined as such: 

NS(x̄) = arg min
x∈TS

MSM (x, x̄)

NG(x̄) = arg min
x∈TG

MSM (x̄,x)

For an expansion of TS , we test the local path
(
NS(xrand),xnew

)
for validity. In

case of success, the algorithm ends if the local path
(
xnew, NG(xnew)

)
is valid. For

an expansion of TG, the local path
(
xnew, NG(xrand)

)
is tested for validity, and the

algorithm ends in case of validity of the local path
(
NS(xnew),xnew

)
.

4.2.3.2 Directed PRM

At each iteration of the undirected version of the PRM algorithm (see section 1.2.3),
a collision free configuration q is sampled and added to the graph G. For every
connected component Gi of G, connections are attempted between q and each node
of Gi in increasing order of distance from q until one is successful. A threshold on
this distance can be considered with the aim to reduce computational cost. In our
directed version, we consider the strongly connected components Gi of G. Moreover,
we maintain during the execution the adjacency matrix AG of the transitive closure
of the graph of the strongly connected components of G. This square matrix,
whose dimension is the number of strongly connected components, is defined by
AG [i][j] = 1 if a path in G exists from every node of Gi to every node of Gj and
AG [i][j] = 0 otherwise. If AG [i][j] = 1 we say that Gi is connected to Gj . Note that
AG [i][j] = AG [j][i] = 1 if and only if i = j.

At each iteration, a valid state x is sampled and added to G (which has n
strongly connected components). Its strongly connected component Gn+1 = {x} is
added to the matrix AG . For every connected component Gi of G (i = 1..n), if Gi is
not connected to Gn+1, connections from every node xj of Gi to x are attempted in
increasing order of MSM (xj ,x) until one is valid. As for the undirected version, a
threshold on the value ofMSM can be considered here. AG is updated if neecessary.
Then, if Gn+1 is not connected to Gi, connections from x to every node xj of Gi
are attempted in increasing order of MSM (x,xj) until one is valid.

If used in single query mode, the algorithm ends when the strongly connected
component of the initial state is connected to the strongly connected component of
the goal state.

4.2.4 Experimental results

Results presented below show the influence of the quasi-metric and the sampling
technique on the two previously presented motion planners. Experiments have
been conducted on two different environments shown in Figure 4.6 and for the
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Table 4.3: B: boxes, S: slots, P: PRM, R: RRT, M: proposed metric, E: euclidean
metric, I: incremental sampling, U: uniform sampling

Experiment BPMI BPEI BPMU BPEU
CPU time (s) 0.05648 0.07884 3.284 4.409
Flying time (s) 8.180 8.772 8.000 8.126
Number of nodes 12.11 13.77 78.64 88.33

% of not connectible nodes 0 0 82.53 84.38
Experiment BRMI BREI BRMU BREU
CPU time (s) 0.02780 0.04088 0.04144 0.05612
Flying time (s) 9.674 10.84 9.365 10.09
Number of nodes 8.79 8.84 9.18 10.77

Number of iterations 26.45 45.04 45.58 65.02
% of not connectible nodes 50.34 54.94 51.51 59.85

Experiment SPMI SPEI SPMU SPEU
CPU time (s) 1.505 1.220 578.5 444.2
Flying time (s) 9.074 8.979 8.615 8.387
Number of nodes 71.93 61.59 767.9 725.8

% of not connectible nodes 0 0 82.53 84.38
Experiment SRMI SREI SRMU SREU
CPU time (s) 2.165 2.466 558.8 512.9
Flying time (s) 25.42 34.72 33.96 55.98
Number of nodes 334.5 565.6 4429.4 8813.0

Number of iterations 982.9 2502.9 30253.7 196233.3
% of not connectible nodes 25.60 34.86 79.41 82.48

same quadrotor whose diameter is equal to 0.54 meters. We consider V = [−5, 5]3,
A = [−10, 10]3, J = [−20, 20]3, S = [−50, 50]3 (using SI base units). Yaw is kept

Figure 4.6: Testing environments (a) boxes (b) slots
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constant. The first environment, referred to as boxes, is a cube with side length of 10
meters filled with box shaped-obstacles of different sizes. The second environment,
referred to as slots, is also a cube with side length of 10 meters but divided in two
halves by a series of aligned obstacles separated by 0.40 meters (hence smaller than
the robot diameter). This problem is particularly challenging since going across
these obstacles requires to find a path in a very narrow passage in the state-space.
Every combination of environment, algorithm, metric and sampling strategy has
been tested. Results are provided in Tab. 4.3 for CPU and flying times in seconds,
number of nodes (and iterations for the RRT) and percentage of not connectible
nodes (with respect to the criteria defined in section 4.2.2.5). Each experiment
is designated by an acronym whose meaning is explained in the caption. Results
are averaged over 100 runs and are for an implementation in C, integrated in our
motion planning software Move3D [Siméon 2001], and run on a single core of an
Intel Xeon W3520 processor at 2.67GHz.

Results show a significant improvement of the performance of both algorithms
thanks to the integrations of the proposed techniques. However, one can clearly see
that the metric and the sampling technique have a more notable effect on one or the
other planner. Results for the PRM algorithm shows that the sampling method has
a great influence on its performance. Its integration indeed improves CPU time by
two orders of magnitude for both environments. On the other hand, one can see that
for the slots environment CPU times are slighlty worse with the use of the metric.
This can be explained by the difference of computing time between our quasi-metric
and the euclidean distance. This is also observed in one case for the RRT algorithm
(SRMU vs. SREU). For the RRT algorithm, results show that the influence of the
metric is more important. This was to be expected since RRT-based algorithms are
known to be very sensitive to the metric. One can see that the number of iterations
is significantly reduced, meaning that the search is better guided. The improvement
produced by the sampling technique is also very significant for the slots environment
but less noticeable for the boxes environment. This can be explained by the fact
that, in RRT-based algorithms, the sampled states are not tested for connections
but used to define a direction for extension. A new state is then generated according
to that direction. One can see that, for the boxes environment, about half of these
states are not connectible regardless of the sampling method. Finally note that
flying times are given for the raw, non-smoothed trajectories, which explains the
rather large difference of path quality between PRM and RRT results.
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The goal of this chapter is to show that the trajectories that we plan using
the methods described in the two previous chapters can actually be executed on a
real physical system. We first present the controller we have chosen to track our
trajectories. We then give an overview of our testbed: its different components,
both in terms of hardware and software, and how they interconnect. We finally
present the conducted experimentation together with some of its results.

5.1 Geometric tracking controller on SE(3)

In section 2.2.1 we have briefly introduced some general notions about control theory
and have explained in section 2.2.2 what are the control space and the state space
of a quadrotor. We also recall that in section 2.4 we have defined its flat outputs
for which we plan our trajectories rather than doing it for the actual state. In this
section we present the controller that we have chosen in order to follow our planned
trajectories. It is a geometric tracking controller on SE(3) proposed by [Lee 2010].
A comprehensive presentation of it can obviously be found in the referenced article,
but we would like to summarize here its main characteristics.
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5.1.1 Overview

In addition to the notations defined in Chapter 2 we will need some new ones. We
consider a nominal trajectory z. The over line notation .̄ indicates that we are
dealing with a nominal quantity (or reference) as defined in section 2.2.1, whereas
the over tilde notation .̃ indicates a measurement (or estimation).

z :
(

[0 T ]→ P
t 7→ [x(t) y(t) z(t) ψ(t)]T

)
, with

{
T ∈ R+∗

P the space of the flat outputs

Note that this trajectory in the space of the flat outputs is the result of the
planning methods presented in the two previous chapters and therefore we also
have access to both ż and z̈. For the sake of convenience we will omit to write from
now on the time parameter and simply write r = [x y z]T the desired position of
the center of mass at any given time. Therefore we simply have z = [r ψ]T .

In section 2.4 we saw that from r̈ and ψ we can define the first nominal body
axis b1. The inputs of this controller are r, ṙ, r̈, b1, the nominal angular velocity
Ω expressed in the body-fixed frame and the nominal angular acceleration Ω̇. Its
outputs are f the desired net thrust and M the desired total moment expressed
in the body-fixed frame. In order to close the loop it also relies on the estimated
values of the rotational matrix R̃, the position of the center of mass r̃, its velocity˜̇r and the angular velocity Ω̃

The overall structure is as follows. As a first step both the desired net thrust and
f and a desired third body axis b3d different from the nominal b3 are computed.
As a second step a desired rotational matrix Rd different from the nominal R is
defined and used to compute the desired total moment M. The first step is referred
to as trajectory tracking whereas the second step is referred to as attitude tracking.

5.1.2 Trajectory tracking

First, the tracking errors are defined as follows:

er = r̃− r the error in position
ev = ˜̇r− ṙ the error in velocity

Then for some positive quantities kr and kv, the vector t that is in the direction
of the desired thrust is defined as follows:

t = −krer − kvev −mge3 +mr̈,

where m is the total mass, g the Earth gravitational acceleration and e3 = [0 0 1]T .

From it, both the third desired body axis and the desired net thrust are defined
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as follows:
b3d = − t

‖t‖ and f = −t • R̃e3,

where the operator • is the dot product.

5.1.3 Attitude tracking

At that step, a desired rotational matrix Rd different from the nominal R is com-
puted. Its third axis b3d has already been defined in the previous step. Its second
axis is defined as follows:

b2d = b3d × b1

‖b3d × b1‖

In order for Rd to be orthonormal, the first axis cannot be the nominal b1.
Instead, b1 is projected onto the plane normal to b3d , which simply put corresponds
to compute b1d = b2d × b3d . The tracking errors can now be defined from
Rd = [b1d b2d b3d ] as follows:

eR = 1
2
(
RTd R̃− R̃TRd

)∨
the rotational error

eΩ = Ω̃− R̃TRdΩ the angular velocity error

where .∨ is the vee operator defined in section 2.4.

For some positive quantities kR and kΩ, the desired moment is then computed
as follows:

M = −kReR − kΩeΩ + Ω̃× JΩ̃− J
(

ˆ̃ΩR̃TRdΩ− R̃TRdΩ̇
)
,

where J is the inertia matrix and .̂ is the hat operator defined in section 2.4.

In our current implementation though we simplify this expression and only keep:

M = −kReR − kΩeΩ

The reason is that we do not have the inertia matrix and using an approximation
of it would do more harm than good.

5.2 ART: the Aerial Robotics Testbed

In this section we provide an overview of our set-up.
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5.2.1 Hardware

The Aerial Robotics Testbed (ART) serves as an experimental benchmarking tool to
test and validate the planning, control, and estimation algorithms on aerial robotics
developed by the researchers at LAAS. It consists of a safety net surrounding an
indoor flight volume with a ground area of 6 meters by 3 meters covered with
protective mattresses for a height of 4 meters. It is monitored by several cameras
from OptiTrack (see http://optitrack.com) that are able to provide a 6DoF tracking
of any object equipped with reflective markers at a frequency from 30 Hz up to 200
Hz.

We use a quadrotor from MikroKopter (see http://www.mikrokopter.de) that
we assembled ourself. It is equipped with an accelerometer and a gyroscope. On
board is running a brush-less controller developed at LAAS-CNRS that takes the
four nominal angular velocities of the propeller as control inputs. See Figure 5.1.

Figure 5.1: A MikroKopter quadrotor

5.2.2 Software

On this section we present the different pieces of software used in the ART and
explain how they interconnect. A work flow diagram is represented in Figure 5.2.

Kinodynamic motion planning

In Chapter 3 we presented a spline-based steering method that has been imple-
mented as a standalone C++ library named KDTP (for KinoDynamic Trajectory

http://optitrack.com/
http://www.mikrokopter.de
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Figure 5.2: Work flow diagram of the ART software architecture

Planner). At the planning level it is used as a local planner by our software Move3D
[Siméon 2001] in which the global planning methods presented in Chapter 4 are
implemented. Both the environment and the system are described in a file that
is loaded at initialization. A trajectory is represented by a concatenation of local
trajectories produced by libkdtp. Once a trajectory has been planned, it is exported
into a file as a list of waypoints that are the end states of the local trajectories, one
per line. Since we impose both zero angular velocity and zero angular acceleration
for those states, the exported format is: x y z ψ ẋ ẏ ż ẍ ÿ z̈

Sources:
KDTP: https://git.openrobots.org/projects/libkdtp (author: Alexandre Boeuf)
Move3D: https://redmine.laas.fr/projects/move3d (author: RIS team)

Middleware

The Generator of Modules GenoM is a tool to design real-time software architec-
tures. It encapsulates software functions inside independent components. GenoM
is more specifically dedicated to complex on-board systems, such as autonomous
mobile robots or satellites, that require:

• The integration of heterogeneous functions with different real-time constraints

https://git.openrobots.org/projects/libkdtp
https://redmine.laas.fr/projects/move3d
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and algorithm complexities (control of sensors and actuators, data processing,
task planning, etc.).

• An homogeneous integration of these functions in a control architecture which
requires coherent and predictable behaviors (starting, ending, error handling),
and standard interfaces (configuration, control flow, data flow).

• The management of parallelization, physical distribution and portability of
the functions.

• Simple procedures to add, modify or (re)use the functions by non-specialists.

GenoM generates the source code of components by using:

• A generic template, common for all components. This guarantees that all
components share the same consistent behavior. The template itself is not
part of GenoM, so that different template kind can be developed easily.

• A formal description of the components interface. This description is based
on a simple language using OMG IDL for data types definitions and a custom
syntax for the description of a more detailed component model.

The project is released under an open-source, BSD-like license. See the project page
https://git.openrobots.org/projects/genom3

In addition, we use the genomix HTTP server that is a generic interface be-
tween clients and genom components (using the generic genom C client template).
Control is done by the mean of specific HTTP GET requests. See the project page
https://git.openrobots.org/projects/genomix

Supervision

The tcl-genomix component provides a TCL package that interacts with the
genomix HTTP server and can control GenoM3 components. It can prompt
interactively for arguments of services. Services can be invoked synchronously
or asynchronously and callbacks can be triggered whenever services complete. It
is used in combination with eltclsh (editline tcl shell) that is an interactive shell
for the TCL programming language. It provides command line editing, history
browsing as well as variables and command completion thanks to editline features.
The completion engine is programmable in a way similar to tcsh, and comes
with an intelligent completion for the full tcl language by default. In our current
implementation, routines handling the retrieval of waypoints in a file and the
writing of the position of the obstacles in the description file are written in a tcl
script and can be called from eltclsh. At initialization, this script is also in charge
of setting up several parameters like the gyroscope and accelerometer calibration

https://git.openrobots.org/projects/genom3
https://git.openrobots.org/projects/genomix
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of the UAV and the maximum values of the flat output derivatives for KDTP and
of connecting all GenoM3 components together.

Sources:
tcl-genomix: https://git.openrobots.org/projects/tcl-genomix (author: Anthony
Mallet)
eltclsh: https://git.openrobots.org/projects/tcl-genomix (author: Anthony Mallet)

Trajectory generation

This component called maneuver-genom3 is in charge of both handling simple
maneuvers like vertical take-off/landing or goto and waypoint-based trajectories.
It relies on libkdtp for local trajectory planing between waypoints and is controlled
via commands entered on the eltclsh shell. For instance a specific command will
add all the waypoints from a given file so that they can be interpolated on the
run by libkdtp. Its outputs are the nominal position of the center of mass r, the
nominal velocity of the center of mass ṙ, the nominal acceleration of the center of
mass r̈ and the nominal matrix of rotation R.

Sources:
https://git.openrobots.org/projects/maneuver-genom3 (author: Anthony Mallet)

Controller

In section 5.1 we presented the geometric tracking controller that we are using.
It has been implemented and encapsulated in a component called nhfc-gemom3.
NHFC stands for Near-Hovering Flight Controller. This name refers to a previous
version of the controller and is now outdated. Because Lee’s controller does not
guarantee that the computed command is admissible, a saturation step has been
implemented. It first checks if f ≤ 4fmax. If not f is set to 4fmax and M to
[0 0 0]T . Otherwise the desired moment is checked. The four desired thrust forces
are computed (see section 2.1):

f1
f2
f3
f4

 = Γ−1
[
f

M

]

If one of them is outside the interval [0, fmax] the maximum λ such that

Γ−1
[

f

λM

]
∈ [0, fmax]4

https://git.openrobots.org/projects/tcl-genomix
https://git.openrobots.org/projects/tcl-genomix
https://git.openrobots.org/projects/maneuver-genom3
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is searched by dichotomy on the interval [0, 1[. The new saturated desired moment
is set to λM. This corresponds to projecting the desired moment onto the frontier
of the admissible momentsM(f) illustrated in section 2.3.2 in the direction of the
origin.

Sources:
https://git.openrobots.org/projects/nhfc-genom3 (author: Marco Tognon)
Note that the description on the web page is outdated.

Hardware driver

This component called mikrokopter-genom3 is a low level hardware controller
for MikroKopter quadrotors. It takes the nominal net thrust f and the nominal
moment vector in body frame M as control inputs and computes the propellers
velocities (ωi)i=1..4 accordingly. Those are then sent to the UAV.

Sources:
https://git.openrobots.org/projects/mikrokopter-genom3 (author: Anthony
Mallet)

Motion capture

This component called optitrack-genom3 is in charge of exporting motion capture
data from an OptiTrack system.

Sources:
https://git.openrobots.org/projects/optitrack-genom3 (author: Anthony Mallet)

Position fusion

This component called pom-genom3 collects measurements from other components,
and generate a fused state estimation from these sources.

Sources:
https://git.openrobots.org/projects/pom-genom3 (author: Anthony Mallet)

5.3 Experimentation

In this section we present an simple experiment that we conducted in order to show
that a planned trajectory can be followed.

https://git.openrobots.org/projects/nhfc-genom3
https://git.openrobots.org/projects/mikrokopter-genom3
https://git.openrobots.org/projects/optitrack-genom3
https://git.openrobots.org/projects/pom-genom3
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5.3.1 Set-up

The experimental set-up is as follows. Three cylindrical obstacles of length 1.35 m
and diameter 9.56 cm are hanging from the ceiling at mid-hight 1.20 m from the
ground. They are placed at (x; y) positions relative to the origin of our testbed
(−0.94 m; 0.36 m), (0.06 m;−0.32 m) and (1.02 m;−0.32 m) respectively. The 3D
model we use for collision detection is a sphere of diameter 50 cm centred at the
origin of the quadrotor’s body frame. At the planning level both the altitude and
the yaw angle are kept constant at 1.2 m and 0◦ respectively. We plan a trajectory
going from the initial hovering position (−2.0 m, 0.0 m, 1.2 m) to the final hovering
position (2.0 m, 0.0 m, 1.2 m). The planning method is the decoupled approach with
a bi-directional RRT algorithm. In the next section we give the results for two runs
with different maximum velocities. In the first one we set vmax = 1 m.s−1 and in the
second vmax = 2 m.s−1. The other bounds are amax = 5 m.s−2, jmax = 20 m.s−3

and smax = 50 m.s−4. See Figure 5.3 for a photography of our experimental set-up
and Figure 5.4 for a 3D representation with an example of planned trajectory.

Figure 5.3: Our experimental set-up: the three cylindrical obstacles equipped with
reflective markers and the MikroKopter quadrotor.

5.3.2 Results

In this section we show the results of the experiments for vmax = 1 m.s−1 in Figure
5.5 and vmax = 2 m.s−1 in Figure 5.6. The X axis is the time in seconds. In the
upper part of each figure, the Y axis is the positions in meters. The red color is
for the x component an the green color for the y component. Since both z and the
yaw angle were kept constant, we did not represent them. The dashed curves are
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Figure 5.4: 3D representation of our experimental set-up in Move3D with an exam-
ple of planned trajectory

the nominal quantities x and y while the plain curves are the measured quantities
x̃ and ỹ. In the lower part of each figure, the Y axis is the errors in meters. They
are computed as follows: ex = x̃− x and ey = ỹ − y. The red curves are for ex and
the green curves for ey.

For the case vmax = 1 m.s−1 the tracking error in kept under 5 centimeters, and
under 10 centimeters for for the case vmax = 2 m.s−1.
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Figure 5.5: Results for vmax = 1 m.s−1

Figure 5.6: Results for vmax = 2 m.s−1
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In this chapter we detail the integration of our works into the ARCAS project
in the context of which they were conducted. We first present the project itself, its
objectives, its different partners, its subsystems and the general framework in which
they are integrated. We then focus on the motion planning system and finally detail
the link between symbolic and geometric planning.

6.1 The ARCAS project

For a more detailed presentation of the project consult its website:
www.arcas-project.eu

6.1.1 Overview

ARCAS (Aerial Robotics Cooperative Assembly System) was a European funded
project conducted between the years 2012 and 2016 that proposed the develop-

www.arcas-project.eu
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Figure 6.1: The three platforms used in the ARCAS project. Both ARMs from (a)
and (b) are quadrotors with eight propellers while the one from (c) is a Flettner
helicopter (bi-rotor helicopter).

ment and experimental validation of the first cooperative free-flying robot system
for assembly and structure construction. It paved the way for a large number of
applications including the building of platforms for evacuation of people or land-
ing aircrafts, the inspection and maintenance of facilities and the construction of
structures in inaccessible sites and in space.

The ARCAS project had three main axis: structure assembly by a team of
ARMs (Aerial Robot with Manipulator), industrial inspection and space manipu-
lation. The latter was a side-part of the project and primarily involved the control
community. The industrial inspection consisted in using UAVs either to visually
inspect industrial plants or carry a smaller wheeled robot that sticks to pipes for
finer inspections. Finally the structure assembly was the part combining work on
assembly sequence planning, task planning, motion planning and execution archi-
tecture (control, collision avoidance, and so on). The system developed can work
with different ARMs, the three platform used are presented in Figure 6.1.

To have simple yet interesting structures to assemble the project focused on
structures made of bars. Some examples can be seen in Figure 6.2. The simplicity
comes from the clipping mechanism: when two pieces are brought together they
clip ensuring a strong link. On the other hand the complexity comes from the need
for cooperative transport of certain long bars requiring two (or more) ARMs to
strongly cooperate. Moreover the robots are using manipulators which must be
compliant to avoid any problems. To carry out the assembly of the structures, the
complete system must exhibit a set of properties: multi-robot plans, cooperative
transport, perception and localization and visual servoing.

6.1.2 Consortium

This European funded project involved a consortium of eight partners and two
third parties:
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Figure 6.2: Examples of structures from the ARCAS project. In (a) there are 12
parts composing a cube, but there also exist a variant with four additional diagonal
bars for a total of 16 parts. In (b) the last part to assemble is the long bar linking
the two supports together.

Partners:

• FADA-CATEC (Center for Advanced Aerospace Technologies), Spain, project
coordinator.

• DLR (German Aerospace Center), Germany.

• UNINA (Università degli Studi di Napoli Federico II), Italy.

• LAAS-CNRS (Laboratory for Analysis and Architecture of Systems), France.

• USE (Universidad de Sevilla), Spain.

• UPC (Universitat Politècnica de Catalunya), Spain.

• STI (Spacetech GmbH), Germany.

• AIR (ALSTOM Inspection Robotics, GE Inspection Robotics since 2015),
Switzerland.

Third parties:

• UNIBAS (Università degli Studi della Basilicat), Italy.

• UNICAS (Università degli Studi di Cassino), Italy.

6.1.3 Objectives

The detailed scientific and technological objectives were:

http://www.catec.aero/en
http://www.catec.aero/en
http://www.dlr.de/dlr/en
http://www.prisma.unina.it
https://www.laas.fr/public/en
http://www.us.es/eng
http://www.upc.edu/?set_language=en
http://www.spacetech-i.com/
http://www.inspection-robotics.com
http://www.inspection-robotics.com
http://www.unibas.it
http://www.eng.unicas.it/
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• New methods for motion control of a free-flying robot with mounted manipu-
lator (or ARM for Aerial Robot with Manipulator) in contact with a grasped
object as well as for coordinated control of multiple cooperating ARMs in con-
tact with the same object (e.g. for precise placement or joint manipulation).

• New flying robot perception methods to model, identify and recognize the
scenario and to be used for the guidance in the assembly operation, including
fast generation of 3D models, aerial 3D SLAM (Simultaneous Location And
Mapping), 3D tracking and cooperative perception.

• New methods for the cooperative assembly planning and structure construc-
tion by means of multiple flying robots with application to inspection and
maintenance activities.

• Strategies for operator assistance, including visual and force feedback, in ma-
nipulation tasks involving multiple cooperating flying robots.

6.1.4 The ARCAS system

The project was subdivided into three main subsystems. These are illustrated in a
schematic of the hight level architecture of the ARCAS system in Figure 6.3.

The perception system was in charge of all computer vision related tasks in the
system. These include SLAM, inspection and task monitoring functions like for
instance providing feedback to the ARMs in order to achieve an assembly task by
visual servoing.

The modeling and control system was in charge of developing all the needed
control methods. These include, for a single ARM, not only trajectory tracking
during navigation tasks (including while carrying an object) but also autonomous
grasping and insertion of an object into a structure. Not to forget the coordinated
control of several ARMs performing those same tasks in cooperation.

Finally the system in which this work has been integrated is the cooperative
assembly planning system. Its inputs are:

• The geometry of the (supposed static) environment (a 3D model of it).

• The available resources both in terms of flying robots and assembly parts.

• The “blueprint” and location of the desired structure (i.e. the precise location
of each part of the final assembly).

Its goal is then to produce a complete plan to assemble the structure.

This subsystem is itself modular since it involves three main modules. The first
one, called the assembly planner, consists in finding a suitable assembly plan, which
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Figure 6.3: Hight level ARCAS architecture

means finding a coherent order in which the parts will be inserted. This has to take
into account the structural integrity of the structure during its assembly.

This assembly plan is then given to the symbolic planner that is in charge of find-
ing an efficient ordered set of assignments for the ARMs: which ones will perform
which tasks an when. This step is often also called task planning. The symbolic
planner used within the ARCAS system is called MATP (Multi Aerial-robots Task
Planner). It is an HTN based planner (see [Ghallab 2004] for more details) devel-
oped at LAAS-CNRS.

Each symbolic task computed by it has to be turned into an actual motion plan
which usually involves several requests to the motion planner. This is performed
by a piece of software developed at LAAS-CNRS and called GTP (Geometric Task
Planner). It will be further detailed in section 6.3. GTP is an interface between
MATP and the lower level that is the motion planning system described in the next
section. The output of the complete planning level is then used by an execution
architecture that supervises the execution of the tasks and ensure that there won’t
be collisions or any other problems.

At the beginning of the project we linked the three planners in a linear workflow:
the output of a planner was the input of the next. Later, when the integration
between HATP and GTP was ready we used a combined planner as illustrated in
Figure 6.4. It allows to test the feasibility of a symbolic task during the symbolic
planning rather than after a complete plan is produced. This allows to earlier detect
when a symbolic valid solution is in fact not feasible because of geometry.
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Figure 6.4: The assembly planning system in ARCAS. The assembly plan in given
as a dependency tree listing the operation to assemble the structure. From it,
HATP produces a symbolic plan and allocate the actions to the agents. During
this process GTP is called to assess the feasibility of the actions which it does by
calling the motion planner. The computed valid trajectories are kept along with
the actions of the symbolic plan.

6.2 The motion planning system

In this section we present the motion planning system which turns the symbolic
requests of GTP into a set of motion plans. We focus here on the three basic tasks
which are navigation, transportation and coordinated transportation and manipu-
lation. More complicated tasks such as grasping and insertion of an object along
with the combination of the twos (pick and place) will be treated in the next section.

6.2.1 Navigation

This tasks consists, for a single ARM without payload, in navigating among a set of
static obstacles which positions and orientations are known. Both initial and final
states are here chosen to be at hovering. For simplification purposes we do not plan
for the motion of the manipulator and set its configuration to be fixed along the
trajectory. Because in this case the smallest bounding sphere is judged to be a good
enough approximation of the geometrical shape of the system, this motion panning
problem can be solved very efficiently using the decoupled approach presented in
section 4.1. Figure 6.5 illustrates a result of this approach on a simple navigation
problem for one quadrotor with no payload.
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Figure 6.5: A result of the decoupled approach for one quadrotor with no payload.
Left: geometric path obtained in the first stage. Right: smoothed trajectory.

6.2.2 Transportation for a single ARM

The task is here nearly the same. The ARM still has to navigate among known
obstacles, both initial and final states are at hovering and the configuration of
the manipulator remains fixed during the motion. But the ARM is now grasping
an object, meaning that the geometry of the system has changed. The smallest
bounding sphere might not be a good enough approximation of the shape of the
system anymore and thus a decoupled approach might fail to find a geometric path
to begin with. A direct approach to kinodynamic motion planning such as one of
the twos presented in section 4.2.3 is therefore used here.

6.2.3 Coordinated transportation and manipulation

Once again the setup is almost identical. The only difference here is that not only
one ARM is grasping an object but two or more are grasping the same object.
We chose to treat this case with a centralized quasi-static approach. Quasi-static
means that we do not compute trajectories but geometric paths that do not contain
any information about dynamics. As for centralized, it means that we do not plan
independently for each ARM but do consider the set of ARMs plus the object as a
unique system, i.e. a single kinematic chain. Since dynamics are not involved here
we can also plan for the motion of the manipulators for manipulation tasks.

Manipulating an object with several robots imposes important constraints that
have to be treated at the motion planning level. More precisely, several robots
that simultaneously grasp an object form a closed kinematic chain, whose motion is
restricted to a sub-manifold of the configuration-space of the unconstrained multi-
robot system. This sub-manifold cannot be represented and parameterized in the
same way as the configuration-space of a serial (open-chain) robots. Therefore,
motion planning for closed-chain mechanisms is a difficult problem that requires
specific methods.

The method applied here builds on previous work carried out at LAAS-CNRS
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by [Cortés 2004] on the extension of sampling-based motion planning algorithms for
closed-chain mechanisms. The basic principle is to separate configuration variables
into two sets: independent variables and dependent variables. The planner directly
acts on the independent variables, while the values of dependent variables are ob-
tained by solving loop-closure equations. A suitable decomposition of the mobile
system into a set of kinematic chains involving independent or dependent variables
is essential for a good performance of the planner. From now on, kinematic chains
involving independent parameters will be called active subchains and those involv-
ing dependent parameters will be called passive subchains, since they follow the
motions computed for the active ones. Each passive subchain should correspond
with a non-redundant mechanism whose end-frame can span full-rank subsets of
the workspace. In general, this requires three joint variables for a planar mecha-
nism and six for a spatial mechanism. Closed-form inverse kinematics methods are
usually available for such mechanisms.

Once the system decomposition is defined, configurations of complex closed-
chain mechanisms can be sampled using an algorithm called RLG [Cortes 2002].
RLG performs a geometrically-guided random sampling for the active subchains
that notably increases the probability of obtaining real solutions for passive sub-
chains when solving the loop-closure equations. Local paths connecting samples
are computed by interpolating the configuration of active subchains and solving
inverse kinematics for the passive subchains at each intermediate point along the
path. Following this approach, sampling-based planners, such as PRM or RRT, see
section 1.2, can be extended to deal with closed-chain mechanisms.

An example of decomposition into active/passive subchains is illustrated in Fig-
ure 6.6 for a system composed of two quadrotors equipped with planar 3R ma-
nipulators cooperatively transporting a bar. The bar is considered as a free-flying
object, with 6 degrees of freedom. The relative location of each quadrotor with
respect to the bar is defined by two variables {x, z} that define the position of the
center of mass on a plane perpendicular to the bar, and one rotation Ry around an
axis parallel to the bar. Note that only these 3 relative degrees of freedom are pos-
sible because of the motion constraints imposed by the planar manipulator. Then,
the spatial configuration of each arm is defined from a reference frame attached
to each quadrotor and the values of the joint variables. Since the bar is grasped
by the arms, kinematic loop-closure constraint have to be imposed to the system.
For motion planning using the aforementioned approach, the independent variables
are those defining the absolute location of the bar and the relative location of the
quadrotors with respect to the bar, whereas the dependent variables are the degrees
of freedom of the arms.

A similar decomposition approach can be applied to other types of flying robots
equipped with other types of arms. Figure 6.7 shows an example involving two
helicopters with 7-DoF Kuka LWR arms. Extracting the object from the hole
is a geometrically-constrained problem that requires simultaneous translation and
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Figure 6.6: Illustration of the decomposition into active/passive subchains for a
system composed of two quadrotors with planar 3R manipulators transporting a
bar. Top: Image of the system. Bottom: The corresponding kinematic diagram,
with active and passive subchains colored in red and blue, respectively.

rotation. Solving this problem with an RRT-like algorithm extended to closed
kinematic chains requires about 3 seconds of CPU time on a single processor in are
current implementation.

6.3 Symbolic-Geometric planning to ensure plan feasi-
bility

This section describes the interface between symbolic and geometric planning. The
piece of software implementing this interface is called GTP (Geometric Task Plan-
ner) and was developed at LAAS-CNRS. We first present an overview together with
our motivations. We then describe more specifically its implementation.
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Figure 6.7: Coordinated manipulation using two helicopters with 7-DoF Kuka LWR
arms.

6.3.1 Geometric Task Planner

As previously mentioned, MATP produces plans that consist of sequences of sym-
bolic tasks. The problem is that there is no guarantee that these tasks can actually
be carried out at the geometric level. For instance a task involving a motion can be
geometrically unfeasible because there is no collision free trajectory of the system
what implements it. In order to ensure feasibility of produced plans, each task has
to be tested for geometric feasibility. This is the main role of GTP.

A motion planning problem consists in finding in a given environment a collision
free path between two given configurations of a robotic system. Hence for a mo-
tion planner the symbolic representation bears no meaning. For instance the task
described by the sentence, go pick this object and bring it over there, does not fit
the description of a motion planning problem. This is actually a sequence of three
motion planning problems: go, pick and bring for configurations to be determined.
When given such a task GTP is in charge of doing this decomposition by first find-
ing which are these configurations and then calling the motion planner in order to
solve the different motion planning problems which solutions are trajectories of the
system.

Geometry of the environment is obviously time dependent since carrying out a
task modifies it. GTP is also in charge of maintaining this geometric knowledge over
time. We call world context a set of robots configurations, grasping informations
and positions of objects and obstacles. MATP is actually providing a task to be
carried out together with its parent task (i.e. the task that directly precedes it).
This way GTP is able to associate to each task its initial and final world contexts,
the initial world context of a task being the final world context of its parent task.
This means that GTP is maintaining the geometric equivalent of the symbolic data
structure that MATP builds.
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6.3.2 Tasks: decomposition and implementation

Given a world context, GTP has to decompose a task into a sequence of motion
planning problems. This decomposition depends on the nature of the task and
hence have to be provided by the user the same way the symbolic domain (i.e.
the set of possible symbolic tasks) is. In this subsection we provide an example of
decomposition for a symbolic task called pick, which consists for a given robot in
picking up a given object. Two other tasks called place and pickAndPlace are then
described. The advantage of using the task pickAndPlace instead of the tasks pick
then place is then discussed.

We decompose the symbolic task pick into four motion planning problems, as
illustrated in Figure 6.8. From its current hovering configuration Q1 the system
(without payload) has first to reach a safe hovering configuration Q2 in the proxim-
ity of the object to pick. The manipulator configurations are the same for both Q1
and Q2. This is exactly the navigation problem described in section 6.2.1. A de-
coupled approach is therefore used. From Q2 the system has to reach an approach
configuration Q3 that prepares it for the grasping motion. It involves modifying
both the configuration of the manipulator and the pose of the UAV. We use here
a classical geometric approach corresponding to a quasi-static motion. From Q3
the system has to reach the grasping configuration Q4 and then extract the object
in order to reach an extraction configuration Q5. These two motions are actually
controlled by visual servoing during execution, but the planner has to verify feasi-
bility by ensuring that collision free trajectories can be found. This is why here we
simply use linear interpolations.

Figure 6.8: The symbolic task pick decomposed into four motion planning problems:
a navigation problem Q1 → Q2, a quasi-static approach Q2 → Q3, a grasping
motion Q3 → Q4 and an extraction motion Q4 → Q5.

Initial configuration excepted, all intermediate configurations are computed ac-
cording to the grasping configuration Q4. Hence this configuration is the first
computed by GTP by way of random sampling. If the sampled grasping configura-
tion Q4 is collision free then both Q3 and Q5 and the corresponding motions are
computed and tested for collisions. In case of success, Q2 is computed and tested,
along with the motion Q2 → Q3. Finally the motion Q1 → Q2 is generated. In
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case of failure of any of these steps, a new grasping configuration Q4 is generated.
The planner considers the task as not being feasible after a predefined number of
unsuccessful attempts (provided by the user) has been reached.

The decomposition of the task place, which consists, for an ARM carrying an
object, in inserting it in a given slot, is very similar to the decomposition of the task
pick. The main configuration (corresponding to Q4 in the previous description) to
be sampled here is the insertion configuration. Other configurations corresponding
to Q2, Q3 and Q5 are generated according to it. The main difference is that the
navigation problem can not be solved for a bounding sphere because of the payload.
We use here a direct kinodynamic approach, as discussed in section 6.2.2.

The task pickAndPlace is a combination of the tasks pick and place. A first
approach for MATP was first to call pick then place. Problem is that the grasping
configuration generated for the picking task may lead to the non feasibility of the
placing task and thus to a loss of efficiency. We proposed to treat this problem by
using a different approach. We have implemented a specific decomposition of the
task pickAndPlace. The idea is to generate the insertion configuration in function
of a sampled grasping configuration. Motion problems are then solved in the same
order as for the pick and place tasks, the two navigation problems being solved
last. Experimental results for several runs on various scenarios have shown that
this approach leads to an improvement of about 30% of the average CPU time
needed to solve the problem.



Conclusion

We presented the quadrotor system: its dynamics model, its inputs and its outputs.
We defined its physical constraints and saw how they translate into the input space.
We showed that the system is differentially flat and therefore that any smooth
enough trajectory in the space of the flat outputs can be executed provided that
the derivatives are correctly bounded. We however did not explicitly defined those
bounds.

We formulated the kinodynamic motion planning problem and saw that in order
to solve it, the state space has to be explored in place of the configuration space.
We saw that this can be done by sampling inputs and forwarding the dynamics
rather than sampling states directly. This is however not the kind of techniques
we chose to study here. Instead, we tried to see how the classic methods used in
sampling-based motion planning have to be adapted when sampling the state space.

First, we proposed a local planning method able to interpolate any two states
defined by position, velocity and acceleration. It generates a fourth-order spline
that respects a given set of bounds on its derivatives up to snap. We discussed
the quality of such solutions and saw that in our test run the mean sub-optimality
is of 6.85% but that it also comes with a decreased running time of three orders
of magnitude when compared to a SQP algorithm. Because it quickly produces
smooth enough trajectories which derivatives can be bounded at will, when applied
to the flat outputs of a quadrotor this method can be used as a steering method for
this system.

We shown that this local planner can be used in a decoupled approach to solv-
ing the kinodynamic motion planning for a quadrotor. A geometric path is first
generated for the quadrotor’s bounding sphere. The path is then transformed into
a trajectory by using the local planner. The trajectory is finally locally optimized
with a random short cut algorithm that also uses the local planner. This method
is very efficient but will not solve more constrained problems for which there is no
quasi-static solution, which is the reason why we next studied the direct approaches.

In that perspective, we first discussed the problem of the metric in the state
space. We stated that the ideal metric is the cost-to-go, i.e. the duration of the
minimum time trajectory. Because computing it is as hard and thus as costly as
computing the minimum time trajectory itself, many approaches to kinodynamic
motion planning tend to avoid this problem by adapting the algorithms so that they
do not rely on the metric to guide the search. We proposed instead to use a metric
that correctly estimates the cost-to-go but that do not require as much computing
time. We provided empirical evidence that the two metrics are equivalent.
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We then addressed the issue of the sampling strategy. We noticed that, in
a PRM like algorithm for instance, more than 90% of the attempted connections
were failing. When investigating into the reasons why, we discovered that the culprit
was the sampling strategy. It is indeed the case that uniform sampling tends to
generate states that can be neither the starting point nor the end point of any
valid trajectory. We qualified those states as non-connectible. We then proposed an
incremental sampling strategy which goal is to decrease the probability of generating
a non-connectible state.

Finally, two well known methods that are the Bi-RRT algorithm and the classic
PRM were adapted for a directed graph. Using them, we studied the influence
of the proposed metric and proposed sampling strategy on two different motion
planning problems. Results show a significant improvement of the performance of
both algorithms thanks to the integrations of the proposed techniques.

In order to show that the planned trajectories can actually be executed, we set up
some experimentation. We first described our test-bed, both in terms of hardware
and software. We then presented the experimental set-up and some results.

We devoted the last part of this thesis to the presentation of the ARCAS project
in the context of which these works were conducted. We first gave an overview of the
project itself: its objectives, its different partners, its subsystems and the general
framework in which they are integrated. We then focused on the motion planning
system. We explained in particular how each different type of motion planning
problem, such as navigation for a single UAV with payload, without payload or co-
ordinated transportation of a payload by two or more UAVs, is solved by a different
method. We finally detailed the link between symbolic and geometric planning by
for instance giving an example of task decomposition.

Limitations and future works

In this thesis, we have assumed that any smooth-enough trajectory in the space
of the flat outputs can be executed provided that the derivatives are correctly
bounded. A major limitation of this approach is that it is not straightforward to
actually compute these bounds. To our knowledge, this is still an open problem.
A possible strategy inspired by [Mueller 2013] could be to solve the BVP without
constraints but with an imposed flight duration. A feasibility test can then be
performed to check if the trajectory corresponds to admissible inputs. The idea
would be to numerically find the minimum flight duration such that the trajectory
is admissible (possibly with a simple search by dichotomy). An other possibility
is to try and compute the bounds on the derivatives of the flat outputs either in
closed form or numerically.
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In this thesis, we only studied the influence of both the proposed metric and
sampling strategy on a directed Bi-RRT and a directed PRM. It would be interesting
to see how it would influences the performances of other algorithms. It could also be
interesting to see how the sub-optimality of the proposed steering method affects
the solutions to the RRT∗ and PRM∗ algorithm. Secondly, since our focus here
was the quadrotor system, we did not apply our approach to problems in higher
dimension. A study on how it would perform in this case should definitively be
conducted. Moreover it would be interesting to check if as expected the computing
time of the steering method linearly increases with dimension. Finally we did not
compare our approach to the methods with forward propagation of the dynamics. A
bench-marking of the state of art including our proposal remains to be performed.

Concerning our proposed approach to solving the BVP, it was recently
brought to our attention that similar works were conducted in the con-
text of online trajectory generation both for reactive behaviours to unforeseen
events ([Kröger 2010, Kröger 2011]) and from a control perspective ([Bianco 2014,
Bianco 2011, Bianco 2003]). For lack of time we unfortunately could not provide
a review of these works and therefore position our own propositions against those.
This will have to done in future works.

Our sampling strategy takes into account the bounding box of the workspace
and the velocity constraints. It could be interesting to keep the same incremen-
tal decoupled scheme and also take the obstacles into account. In other worlds it
could be beneficial to try and develop a sampling strategy that avoids generating
inevitable collision states as defined by [Fraichard 2004]. It is however not straight-
forward to see how the decoupled scheme could adapt to obstacles of generic shape,
i.e. that are not axis-oriented rectangular cuboids.

Finally, our experimental chapter is quite modest and the tracking errors are
still rather large at high velocity. This is mainly due to the fact that our test-bed
is relatively recent and not yet fully mature. We are planning to improve this in
the very near future and hopefully be then able to execute more agile maneuvers.





Appendix A

Calculation details of the
steering method

In this appendix we provide calculation details on certain aspects of the steering
method presented in Chapter 3.

Figure A.1: Example of trajectory provided by the steering method for one degree
of freedom. The bounds of each derivative are represented by pink dashed lines.
Red and green dashed lines represent initial and final values, respectively. Note
that, in order to show all the phases, |vD| = vmax and |aB| = |aD| = amax in this
example. In a general case, some phases can have zero duration.

A.1 Reminders

In this section we would like to recall the goal of our steering-method and update
certain notations. Because we were specifically treating the quadrotor system in
Chapter 3 we considered its flat outputs z = [zi]Ti=1..4. Let us consider here a more
general configuration q = [qi]Ti=1..n and its associated state x = [q q̇ q̈]. We recall
that we solve the BVP independently for each degree of freedom of index i. We can
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therefore omit the index notation for the sake of simplicity. For the bounds on the
derivatives we note:

[vmax amax jmax smax] := [vmaxi amaxi jmaxi smaxi ]

Similarly for the values to be interpolated we note:

[x0 v0 a0] :=
[
q0
i q̇

0
i q̈

0
i

]
and [xF vF aF ] :=

[
qFi q̇Fi q̈Fi

]
We solve for each degree of freedom of index i:

minTi ∈ R+ s.t.
Si ∈ C3([0 Ti],R)
[Si(0) Ṡi(0) S̈i(0)

...
S i(0)] = [x0 v0 a0 0]

[Si(Ti) Ṡi(Ti) S̈i(Ti)
...
S i(Ti)] = [xF vF aF 0]

∀t ∈ [0, Ti]


|Ṡi(t)| ≤ vmax
|S̈i(t)| ≤ amax
|
...
S i(t)| ≤ jmax
|
....
S i(t)| ≤ smax

We also recall the notations of the different phases of the proposed solution as
it is illustrated in Figure A.1.

A is the phase of the first acceleration variation from S̈i(t) = a0 to S̈i(t) = aB.
B is the first phase of constant acceleration S̈i(t) = aB.
C is the phase of the second acceleration variation from S̈i(t) = aB to S̈i(t) = 0.
ABC is the phase of the first velocity variation from Ṡi(t) = v0 to Ṡi(t) = vD.

D : the phase of constant velocity Ṡi(t) = vD.

E is the phase of the third acceleration variation from S̈i(t) = 0 to S̈i(t) = aG.
G is the second phase of constant acceleration S̈i(t) = aG.
H is the phase of the fourth acceleration variation from S̈i(t) = aG to S̈i(t) = aF .
EHG is the phase of the second velocity variation from Ṡi(t) = vD to Ṡi(t) = vF .

Each phase noted X has a duration noted tX
Therefore Ti = tA + tB + tC + tD + tE + tG + tH

Each phase noted X of acceleration variation (X ∈ {A,C,E,H}) is divided
in three sub-phases:
X1 is the phase of the first jerk variation from

...
S i(t) = 0 to

...
S i(t) = jX

X2 is the phase of constant saturated jerk
...
S i(t) = jX

X3 is the phase of the second jerk variation from
...
S i(t) = jX to

...
S i(t) = 0
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The phases X1 and X3 have the same duration tX,1
The phase X2 has a duration of tX,2
Therefore tX = 2.tX,1 + tX,2.

Let sA ∈ {−1, 0, 1} be the sign of the snap during phase A1.
Let sC ∈ {−1, 0, 1} be the sign of the snap during phase C1.
Let sE ∈ {−1, 0, 1} be the sign of the snap during phase E1.
Let sH ∈ {−1, 0, 1} be the sign of the snap during phase H1.

A.2 Expression of the spline

Using all these notations we can now give the expression of the solution spline
Si in the form of Algorithm 4. For a given t ∈ [0, Ti], the return value is[
Si(t), Ṡi(t), S̈i(t),

...
S i(t),

....
S i(t)

]
. Let be (tcur, xcur, vcur, acur, jcur) a set of

variables we will use to store at the end of each phase the values of the previous
one. The tabs TS and TD respectively contains the values of the snaps and durations
of all fifteen phases. They are the result of a previous computation that we detail
later.

A.3 Durations of the phases

In this section we detail the expression of the durations of all phases.

Let us start with tA,1.
We recall that jA is the value of the jerk during phase A2.
Using the expression of the spline we have: jA = sA.smax.tA,1
As |jA| = smax.tA,1 ≤ jmax, we have:

tA,1 ≤
jmax
smax

(
⇐⇒ smax.t

2
A,1 ≤

j2
max

smax

)

We also have:
aB = sA.smax.t

2
A,1 + sA.smax.tA,1.tA,2 + a0

Phase A2 is only needed when phases A1 and A3 are not enough to reach aB. If we
do not have a phase A2, i.e. if tA,2 = 0, then:

aB = sA.smax.t
2
A,1 + a0

⇐⇒ tA,1 =
√
|aB − a0|
smax
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Algorithm 4: Expression of the spline

if t < 0 or t > Ti then
return error code

end

tcur ← 0
xcur ← x0
vcur ← v0
acur ← a0
jcur ← 0
TS ← smax. [sA, 0, −sA, 0, sC , 0, −sC , 0, sE , 0, −sE , 0, sH , 0, −sH ]
TD ←
[tA,1, tA,2, tA,1, tB, tC,1, tC,2, tC,1, tD, tE,1, tE,2, tE,1, tG, tH,1, tH,2, tH,1]

for k ∈ J1, 15K do
if tcur ≤ t ≤ tcur + TD[k] then

trel ← t− tcur

j ← TS [k].trel + jcur

a← TS [k]
2 .t2rel + jcur.trel + acur

v ← TS [k]
6 .t3rel + jcur

2 .t2rel + acur.trel + vcur

x← TS [k]
24 .t4rel + jcur

6 jcur.t
3
rel + acur

2 .t2rel + vcur.trel + xcur

return [x, v, a, j, TS [k]]

end

tcur ← tcur + TD[k]

xcur ←
TS [k]

24 .TD[k]4 + jcur
6 .TD[k]3 + acur

2 .TD[k]2 + vcur.TD[k] + xcur

vcur ←
TS [k]

6 .TD[k]3 + jcur
2 .TD[k]2 + acur.TD[k] + vcur

acur ←
TS [k]

2 .TD[k]2 + jcur.TD[k] + acur

jcur ← TS [k].TD[k] + jcur
end

return error code



A.3. Durations of the phases 107

Then we can see that:
sA = 1 =⇒ sA.smax.t

2
A,1 ≤

j2
max

smax
=⇒ aB − a0 = |aB − a0| ≤

j2
max

smax

sA = −1 =⇒ sA.smax.t
2
A,1 ≥ −

j2
max

smax
=⇒ aB − a0 = −|aB − a0| ≥ −

j2
max

smax

So we have :
|aB − a0| >

j2
max

smax
=⇒ tA,2 6= 0

In this case we have :

tA,1 = jmax
smax

=⇒ aB = sA.j
2
max

smax
+ sA.jmax.tA,2 + a0

=⇒ tA,2 = |aB − a0|
jmax

− jmax
smax

In brief :

if |aB−a0| >
j2
max

smax
then


tA,1 = jmax

smax

tA,2 = |aB − a0|
jmax

− jmax
smax

else


tA,1 =

√
|aB − a0|
smax

tA,2 = 0

Using the same line of reasoning for phases C, E and H we get :

if |aB| >
j2
max

smax
then


tC,1 = jmax

smax

tC,2 = |aB|
jmax

− jmax
smax

else


tC,1 =

√
|aB|
smax

tC,2 = 0

if |aG| >
j2
max

smax
then


tE,1 = jmax

smax

tE,2 = |aG|
jmax

− jmax
smax

else


tE,1 =

√
|aG|
smax

tE,2 = 0

if |aG−aF | >
j2
max

smax
then


tH,1 = jmax

smax

tH,2 = |aG − aF |
jmax

− jmax
smax

else


tH,1 =

√
|aG − a0|
smax

tH,2 = 0
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We now have to compute tB, tD and tG. Let us start by giving the expression
of vD. Using the expression of the spline we have:

vD = sA.smax.t
3
A,1 +

3.sA.smax.t2A,1.tA,2
2 + 2.sA.smax.t2A,1.tC,1

+ sA.smax.t
2
A,1.tC,2 + sA.smax.tB.t

2
A,1 +

sA.smax.tA,1.t
2
A,2

2

+ 2.sA.smax.tA,1.tA,2.tC,1 + sA.smax.tA,1.tA,2.tC,2 + sA.smax.tB.tA,1.tA,2

+ 2.a0.tA,1 + a0.tA,2 + sC .smax.t
3
C,1 +

3.sC .smax.t2C,1.tC,2
2

+
sC .smax.tC,1.t

2
C,2

2 + 2.a0.tC,1 + a0.tC,2 + v0 + a0.tB

Phase B is only necessary if phases A and C are not enough to reach vD.
If tB = 0 then:

vD = sA.smax.t
3
A,1 +

3.sA.smax.t2A,1.tA,2
2 + 2.sA.smax.t2A,1.tC,1

+ sA.smax.t
2
A,1.tC,2 +

sA.smax.tA,1.t
2
A,2

2 + 2.sA.smax.tA,1.tA,2.tC,1

+ sA.smax.tA,1.tA,2.tC,2 + 2.a0.tA,1 + a0.tA,2 + sC .smax.t
3
C,1

+
3.sC .smax.t2C,1.tC,2

2 +
sC .smax.tC,1.t

2
C,2

2 + 2.a0.tC,1 + a0.tC,2 + v0

We can see from this expression that vD depends from sA, sC , tA,1, tA,2, tC,1 and
tC,2 i.e. from aB (see expressions above). We have different cases according to the
value of aB.
Let condA and condC be:

condA =


1 if |aB − a0| >

j2
max

smax

0 otherwise

and condC =


1 if |aB| >

j2
max

smax

0 otherwise

Let caseAC be a variable that will represent all possible cases according to the
value of aB:

caseAC = 1000.(sA + 1) + 100.(sC + 1) + 10.condA + condC
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Even thought there are in theory 3× 3× 2× 2 = 36 possible cases, in reality we
will only use eight of them:

caseAC ∈ {200, 201, 210, 211, 2000, 2001, 2010, 2011}

This comes from the fact that we will not treat the cases where sA = 0 or sC = 0
which eliminates all the cases of the form 1xxx and x1xx (20 cases). Those cases
corresponds to aB = a0 and aB = 0, they can be handled in a much simpler way.
We will not treat the cases of the form 00xx and 22xx either (8 cases). Those cases
corresponds to sA = sC 6= 0, which means |aB| < |a0|. In this case it makes more
sens to set aB = a0 (and then tA,1 = tA,2 = 0).

caseAC = 200 =⇒ vD = v0 − aB.
√
− aB
smax

+ (a0 + aB).
√
a0 − aB
smax

caseAC = 201 =⇒ vD = v0 −
a2
B

2.jmax
+ (a0 + aB).

√
a0 − aB
smax

+ aB.jmax
2.smax

caseAC = 210 =⇒ vD = v0 + jmax.(a0 + aB)− 2.aB.
√
−smax.aB

2.smax
+ a2

0 − a2
B

2.jmax

caseAC = 211 =⇒ vD = v0 + a2
0 − 2.a2

B

2.jmax
+ jmax.(a0 + 2.aB)

2.smax

caseAC = 2000 =⇒ vD = v0 +
2.(a0 + aB).

√
aB − a0 + 2.aB.

√
aB

2.√smax

caseAC = 2001 =⇒ vD = v0 + a2
B

2.jmax
+ (a0 + aB).

√
aB − a0
smax

+ aB.jmax
2.smax

caseAC = 2010 =⇒ vD = v0 +
jmax.(a0 + aB) + 2.aB.

√
smax.aB

2.smax
− a2

0 − a2
B

2.jmax

caseAC = 2011 =⇒ vD = v0 + 2.a2
B − a2

0
2.jmax

+ jmax.(a0 + 2.aB)
2.smax

We now have a function VB : aB 7→ VB(aB) = vD. With the same line of reasoning,
and using an expression of the spline coming from an other algorithm where the
exploration starts from qF , we also have the function VG : aG 7→ VG(aG) = vD.
What we actually want is V −1

B and V −1
G . With those functions the spline is

entirely defined by the choice of vD. Indeed, from vD comes aB = V −1
B (vD)

and then sA, sC , tA,1, tA,2, tC,1 and tC,2. And we will see that the imple-
mentation of V −1

B will even give us tB. In the same way, aG = V −1
G (vD) gives

sE , sH , tE,1, tE,2, tG, tH,1 and tH,2.
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The problem here is that given vD ∈ [−vmax, vmax] we can not directly decide
in which case we are. We have first to map the different cases (which are in facts
different intervals of aB) to the corresponding intervals of vD. This is possible
because VB is bijective on [−amax, 0]∪ [a0, amax] if a0 > 0, (on [−amax, a0]∪ [0, amax]
if a0 < 0). When this is done, each time we need to compute V −1

B (vD) we find in
which interval vD is and we apply the corresponding expression to get aB. It is
possible that we do not find the good interval because vD is not reachable with
tB = 0. In this case we set aB to ±amax according to the situation. We then simply
have:

tB =
∣∣∣∣vD − VB(aB)

aB

∣∣∣∣
We now have everything but tD. Let us note xC the value of S(t) at the end of

phase C and xE its value at the beginning of phase E. These values depends from
vD and can be calculated using the same set of principles described above. Let us
note ∆x the quantity xE − xC . We can now give the expression of tD:

tD = ∆x

vD

Note that tD > 0 =⇒ sign(∆x) = sign(vD). Actually the sign of vD is given by
the sign of ∆x for vD = 0 (let us not that sign s∆0).

The last thing to do now is to find the value of vD that will minimize Ti. As
expected, the highest |vD| is, the lowest is Ti. We search for the zeros of ∆x on
[−vmax, 0] if s∆0 = −1, on [0, vmax] otherwise. This is done numerically with a
simple secant method. If there are no zeros on the interval then vD = ±vmax, else
vD is set to the zero with the lowest absolute value. The actual optimal is the zero
with the highest absolute value but this is done for synchronization purposes. Let
us note vopt the calculated vD. The profiles of Ti(vD) and ∆x(vD) can be seen on a
example on Figure A.2.
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Figure A.2: The profiles of Ti and ∆x as functions of vD on a example. On the X
axis is vD. On the Y axis is ∆x. The blue curve is ∆x(vD). The red curve is Ti(vD)
put to scale. The value of Ti is set to an arbitrary high value when vD.∆x(vD) < 0.
The value of vopt on this example is represented by a the red square on the X axis.
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Résumé : La planification de mouvement est le domaine de l’informatique qui
a trait au développement de techniques algorithmiques permettant la génération
automatique de trajectoires pour un système mécanique. La nature d’un tel
système varie selon les champs d’application. En animation par ordinateur il peut
s’agir d’un avatar humanoïde. En biologie moléculaire cela peut être une protéine.
Le domaine d’application de ces travaux étant la robotique aérienne, le système
est ici un UAV (Unmanned Aerial Vehicle: véhicule aérien sans pilote) à quatre
hélices appelé quadrirotor. Le problème de planification de mouvements consiste
à calculer une série de mouvements qui amène le système d’une configuration
initiale donnée à une configuration finale souhaitée sans générer de collisions
avec son environnement, la plupart du temps connu à l’avance. Les méthodes
habituelles explorent l’espace des configurations du système sans tenir compte de
sa dynamique. Cependant, la force de poussée qui permet à un quadrirotor de voler
est par construction parallèle aux axes de rotation des hélices, ce qui implique que
certains mouvements ne peuvent pas être effectués. De plus, l’intensité de cette
force de poussée, et donc l’accélération linéaire du centre de masse, sont limitées
par les capacités physiques du robot. Pour toutes ces raisons, non seulement
la position et l’orientation doivent être planifiées, mais les dérivées plus élevées
doivent l’être également si l’on veut que le système physique soit en mesure de
réellement exécuter le mouvement. Lorsque c’est le cas, on parle de planification
kinodynamique de mouvements. Une distinction est faite entre le planificateur
local et le planificateur global. Le premier est chargé de produire une trajectoire
valide entre deux états du système sans nécessairement tenir compte des collisions.
Le second est l’algorithme principal qui est chargé de résoudre le problème de
planification de mouvement en explorant l’espace d’état du système. Il fait appel
au planificateur local. Nous présentons un planificateur local qui interpole deux
états comprenant un nombre arbitraire de degrés de liberté ainsi que leurs dérivées
premières et secondes. Compte tenu d’un ensemble de limites sur les dérivées
des degrés de liberté jusqu’au quatrième ordre (snap), il produit rapidement une
trajectoire en temps minimal quasi-optimale qui respecte ces limites. Dans la
plupart des algorithmes modernes de planification de mouvements, l’exploration
est guidée par une fonction de distance (ou métrique). Le meilleur choix pour
celle-ci est le cost-to-go, c.a.d. le coût associé à la méthode locale. Dans le contexte
de la planification kinodynamique de mouvements, il correspond à la durée de la
trajectoire en temps minimal. Le problème dans ce cas est que calculer le cost-to-go
est aussi difficile (et donc aussi coûteux) que de calculer la trajectoire optimale
elle-même. Nous présentons une métrique qui est une bonne approximation du
cost-to-go, mais dont le calcul est beaucoup moins coûteux. Le paradigme dominant
en planification de mouvements aujourd’hui est l’échantillonnage aléatoire. Cette
classe d’algorithmes repose sur un échantillonnage aléatoire de l’espace d’état afin
de l’explorer rapidement. Une stratégie commune est l’échantillonnage uniforme.
Il semble toutefois que, dans notre contexte, ce soit un choix assez médiocre. En
effet, une grande majorité des états uniformément échantillonnés ne peuvent pas
être interpolés. Nous présentons une stratégie d’échantillonnage incrémentale qui
diminue considérablement la probabilité que cela ne se produise.

Mots clefs : Planification kinodynamique de mouvement, robotique aéri-
enne, quadrirotor



Abstract: Motion planning is the field of computer science that aims at
developing algorithmic techniques allowing the automatic computation of trajecto-
ries for a mechanical system. The nature of such a system vary according to the
fields of application. In computer animation it could be a humanoid avatar. In
molecular biology it could be a protein. The field of application of this work being
aerial robotics, the system is here a four-rotor UAV (Unmanned Aerial Vehicle)
called quadrotor. The motion planning problem consists in computing a series
of motions that brings the system from a given initial configuration to a desired
final configuration without generating collisions with its environment, most of the
time known in advance. Usual methods explore the system’s configuration space
regardless of its dynamics. By construction the thrust force that allows a quadrotor
to fly is tangential to its attitude which implies that not every motion can be
performed. Furthermore, the magnitude of this thrust force and hence the linear
acceleration of the center of mass are limited by the physical capabilities of the
robot. For all these reasons, not only position and orientation must be planned,
higher derivatives must be planned also if the motion is to be executed. When this
is the case we talk of kinodynamic motion planning. A distinction is made between
the local planner and the global planner. The former is in charge of producing
a valid trajectory between two states of the system without necessarily taking
collisions into account. The later is the overall algorithmic process that is in charge
of solving the motion planning problem by exploring the state space of the system.
It relies on multiple calls to the local planner. We present a local planner that
interpolates two states consisting of an arbitrary number of degrees of freedom (dof)
and their first and second derivatives. Given a set of bounds on the dof derivatives
up to the fourth order (snap), it quickly produces a near-optimal minimum time
trajectory that respects those bounds. In most of modern global motion planning
algorithms, the exploration is guided by a distance function (or metric). The
best choice is the cost-to-go, i.e. the cost associated to the local method. In the
context of kinodynamic motion planning, it is the duration of the minimal-time
trajectory. The problem in this case is that computing the cost-to-go is as hard
(and thus as costly) as computing the optimal trajectory itself. We present a
metric that is a good approximation of the cost-to-go but which computation is far
less time consuming. The dominant paradigm nowadays is sampling-based motion
planning. This class of algorithms relies on random sampling of the state space in
order to quickly explore it. A common strategy is uniform sampling. It however
appears that, in our context, it is a rather poor choice. Indeed, a great majority
of uniformly sampled states cannot be interpolated. We present an incremental
sampling strategy that significantly decreases the probability of this happening.

Key words: Kynodynamic motion planning, aerial robotics, quadrotor
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