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ABSTRACT

A large amount of social feedback expressed by social signals (e.g.

like, +1, rating) are assigned to web resources. These signals are

often exploited as additional sources of evidence in search engines.

Our objective in this paper is to study the impact of the new social

signals, called Facebook reactions (love, haha, angry, wow, sad) in

the retrieval. These reactions allow users to express more nuanced

emotions compared to classic signals (e.g. like, share). First, we

analyze these reactions and show how users use these signals to

interact with posts. Second, we evaluate the impact of each such

reaction in the retrieval, by comparing them to both the textual

model without social features and the !rst classical signal (like-

based model). These social features are modeled as document prior

and are integrated into a language model. We conducted a series

of experiments on IMDb dataset. Our !ndings reveal that incorpo-

rating social features is a promising approach for improving the

retrieval ranking performance.
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1 INTRODUCTION

Majority of information retrieval (IR) systems exploit two classes

of features to rank documents in response to the user query. The

!rst class, the most exploited, dependents on the query, it concerns

term statistics such as term frequency, distribution of term in doc-

uments. The second class concerns query-independent features,

which measures a kind of quality or importance of the document.

Among these factors, the number of incoming links to a document

[10], PageRank [5], topical locality [7], the presence of URL [13],

document authors [11] and social signals [1–3].

Most of existing approaches [2, 3, 6] exploit non-emotional sig-

nals such as (+1, share, tweet) to estimate the document prior by

considering the quantity of signals related to a resource. In this

paper we are interested in a novel type of signals, named Facebook
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reactions. We assume that, these emotional reactions (love, haha,

wow, angry, sad) associated to a web resource (document) can be

seen as clues that indicate a resource interest beyond a social net-

work or a community. The research questions are the following:

(1) How users use these reactions to interact with resources?

(2) What is the impact of Facebook reactions on IR?

The remainder of this paper is organized as follows: Section 2

reviews some background and related work. Section 3 presents a

statistical analysis on Facebook reactions. Section 4 describes our

social approach. Section 5 reports on the results of our experimen-

tal evaluation. Finally, Section 5 concludes this paper with some

perspectives.

2 BACKGROUND AND RELATEDWORK

This section reports: (1) some background information about social

signals and; (2) related work that has leveraged social signals to

measure a priori relevance of a resource.

2.1 Social Signals

Social signals represent one of the most popular UGC (User Gener-

ated Content) on the Web. Indeed, the Web pages include buttons

of di"erent social networks where users can express whether they

support, recommend or dislike content (text, image, video, etc).

These buttons which describe social activities’ actions (e.g., like,

share, +1, etc) are related to speci!c social networks (e.g., Facebook,

Google+, etc) with counters indicating the rate of interaction with

the Web resource. In February 2016, Facebook introduces additional

emotional signals (reactions), allowing users to interact with posts

(resources) across love, haha, wow, angry, and sad (see Figure 1).

These reactions are an extension of the like button, to give users

more ways to express their feelings towards a post in a quick and

easy way. The goal of these new signals is to encourage users to

react even if the contents are di#cult to like as in the case of disas-

ters, gloomy news, death, emotion on movie. Table 1 summarizes

the most popular signals on social networks.

Figure 1: Additional Facebook signals (reactions)

2.2 Exploiting Social Signals in a Search

Social signal assigned to a given resource can be interpreted as an

approval or disapproval of a resource, which can be used to measure

a rank of importance of a resource.



Table 1: List of di!erent social signals types

Type Example Social network

Vote
Like Facebook, LinkedIn,
+1 Google+, StumbleUpon

Message
Tweet Facebook, Google+,
Post LinkedIn, Twitter

Share
Share Google+, Twitter, Bu"er,

Re-tweet Facebook, LinkedIn

Tag
Bookmark Delicious, Diigo, Digg

Pin Pinterest

Comment
Comment Facebook, Google+,
Reply LinkedIn, Twitter

Emotion
Love, Haha, Wow

Facebook
Sad, Angry

Relation
Followers

Facebook, Twitter
Friends

While several works have been exploiting users feedback there

is still lack of studies that would analyze users’ signals coming from

speci!c social networks. Major existing works [2, 3, 6, 9, 12, 14]

focus on how to improve IR by exploiting users’ actions and their

underlying social network. The most related work to ours is [12],

which leveraged user feedback about YouTube videos for the task

of a"ective video ranking. The videos are represented with sentic-

features (based on the primary emotions) as well as other social

features, and the queries are again assumed to include an explicit

emotion statement.Learning to rank approach is used, which allows

to compare the performance of di"erent sets of features.

Our work has a similar motivation as those previous e"orts, i.e.,

harnessing social features around a Web document to improve rele-

vance ranking of conventional text search. However, our approach

attempts to exploit and evaluate the impact of emotional signals in

the retrieval ranking.

3 FACEBOOK REACTIONS ANALYSIS

In this section, we conducted a preliminary study on how users use

these reactions to interact with posts.We studied the reactions on 10

IMDb Top Box O#ce movies released in 2016 as well as 4650 articles

published on some famous International Media between March 2nd

and June 2nd , 2016: “The Guardian (UK)", “The Wall Street Journal

(USA)", “The New York Times (USA)", “TheWashington Post (USA)",

“China Daily (China)", “The Times of India (India)", “The Sydney

Morning Herald (Australia)", “Fox News (USA)", “Dawn (Pakistan)",

“CNN (USA)". The number of each reaction for each post related

to media or movies is collected using Facebook API and parsing

Facebook pages.

Table 2: Reactions audiences in International Media

Media Love Haha Wow Angry Sad
Washington Post 63% 12% 11% 8% 6%
New York Time 61% 13% 12% 8% 6%

Fox News 60% 14% 10% 8% 8%
Guardian 52% 9% 3% 25% 11%
CNN 50% 10% 28% 10% 2%

China Daily 48% 2% 10% 2% 38%
Wall Street Journal 24% 14% 25% 15% 22%

Sydney Morning Herald 21% 3% 18% 49% 9%
Times of India 11% 6% 3% 40% 40%
The Dawn 10% 18% 18% 40% 14%

Total 40% 10% 14% 20% 16%

We looked at which posts users used the love, haha, angry, wow,

and sad reactions the most, as a percentage of all reactions. Tables

2 and 3 shows the percentage distribution of each reaction on both

datasets: international media posts and IMDb Top Box O#ce posts.

Table 3: Reactions audiences in IMDb Box O"ce

Media Love Haha Wow Angry Sad
Captain America 91% 9% 0% 0% 0%
The Jungle Book 88% 8% 2% 0% 2%
Conjuring 2 87% 1% 7% 2% 3%
Warcraft 81% 3% 14% 2% 0%

Me Before You 80% 7% 3% 0% 10%
X-Men: Apocalypse 78% 13% 9% 0% 0%
Now You See Me 2 65% 20% 13% 1% 1%

Alice in Wonderland 2 56% 30% 11% 2% 1%
Ninja Turtles 2 55% 33% 10% 1% 1%
Angry Birds 52% 40% 3% 3% 2%

Total 73% 16% 7% 1% 2%

Overall in tables 2 and 3, we found that users in the world use

love reaction (40% for international media and 73% for IMDb Top

Box O#ce) of all reactions. Users were less likely to use the two

negative reactions (angry and sad) in movies, and funny reactions

(haha and wow) in media.

We also analyzed Facebook users reactions to the !rst break-

ing news report about the March 22 Brussels attack. In the early

morning of March 22, there were explosions in Brussels near the

Zaventem airport and a subway car. The !rst posts about the at-

tack were very similar across several media. We have listed 4 news

published on o#cial facebook pages of 4 media as well as the head-

line of the article that they linked to in their posts (see Table 4).

Although the posts were made early morning, they received an

average of 4200 total reactions. We found that with this highly

emotional tragedy, users were more likely to use reactions other

than like signal. In fact, the “CNN" and the “Fox News" followers

used nonlike reactions more than they liked.

Table 4: List of articles (Brussels attack) published on o"cial

Facebook pages of 4 international media

Media News Title

CNN

Breaking: Belgium police at the airport at Zaven-
tem told CNN that ’there has been an explosion’ and
’something has happened’.

Fox News
Breaking News: At least 13 Killed in explosions at
Brussels airport, metro station, Belgian media report.

Sydney Morning Herald Multiple explosions reported in Brussels, Belgium.

Times of India
Brussels airport explosion: Several feared dead,
shouts in Arabic.

According to Figure 2 that investigates reactions individually,

“CNN" and “Sydney Morning Herald" have the angriest following

with 71% and 73%, respectively. The “Times of India" had the saddest

following in response to the article post about the attack with 68%,

and “Fox News" followers were between the sadness (49%) and

the anger. Although there were some wow reactions, and a few

scattered love and haha reactions, (thankfully) they accounted for

fewer than one ten-thousandth of a percent of global reactions.

Finally, the use of reactions by Facebook users, we could have

the ability to measure sentiment in an even more dynamic way. The

like button already allows to know the contents that interested the

user. Now, with additional !ve emoji, we can record more nuanced

reactions. Through these reactions, the user provides information

about what he loves or what he gets angry. By considering all this

data, we can draw up a detailed pro!le of tastes and personality

of the user. Our study of these social reactions is only to under-

stand how people use them. However, these new signals can be

exploited in sentiment analysis or considered as a priori knowledge

to estimate the relevance of the document in response to a user

information needs (see next section).



Figure 2: Media followers reactions to March 22 Brussels A!ack

4 IMPACT OF REACTIONS ON IR

Our approach consists of exploiting Facebook reactions as prior

knowledge to take into account in the search ranking. Textual

relevance of a document is combined with its social importance

estimated through these users reactions.

Social information exploited within the framework of our model

is represented by< U ,C,R >whereU={u1,u2,...uh },C={D1,D2,...Dn }

and R={r1, r2,...rm } are !nite sets of instances: Users, Documents and

Reactions, respectively.

4.1 Textual Relevance and Document Priors
Textual model is used to estimate the relevance of a document to a

query. Our approach combines the social document prior P (D) and

the relevance status value RSVtextual (Q,D) between query Q and

document D as follows:

RSV (D,Q )
rank
= P (D) · RSVtextual (Q,D) (1)

rank
= P (D) ·

∏

wi ∈Q

RSVtextual (wi ,D), (2)

where wi represents term in the query Q and RSVtextual can be

estimated with di"erent models such as BM25 and language model.

The document prior P (D) is useful for representing and incorpo-

rating other sources of evidence to the retrieval process. Our main

contribution is a method to estimate P (D) by exploiting Facebook

Reactions.

4.2 Estimating Priors
The priors are estimated by simply counting the number of reactions

performed on the documents. Assuming that these features are

independent, the general formula for P (D) is:

P (D) =
∏

ri ∈R

P (ri ), (3)

where P (ri ) is estimated using maximum-likelihood:

P (ri ) =
|ri (D) |

|r• (D) |
, (4)

where |ri (D) | is the number of reactions of type ri on document

D and |r• (D) | is the total number of reactions on document D.

Further, we use Dirichlet to smooth P (ri ) by collection C to avoid

zero probabilities. This leads to:

P (D) =
∏

ri ∈R

|ri (D) | + µ · P (ri |C )

|r• (D) | + µ

)

, (5)

where P (ri |C ), by analogously to P (ri ), is estimated usingmaximum-

likelihood:

P (ri |C ) =

∑

D∈C |ri (D) |
∑

D∈C |r• (D) |
(6)

Our approach can be useful for the queries that explicitly state

a certain emotion (like “romance movies by...”, “happy videos of

cats”). Indeed, using !ne-grain emotional signals rather than a

simple count of like, can improve IR where the user’s information

need is related to her a"ective needs.

5 EXPERIMENTAL EVALUATION
To validate our approach, i.e. evaluate the impact of Facebook reac-

tions on IR, we conducted a series of experiments on INEX IMDb1

dataset (167,438 documents, 30 topics and qrels). Each document

describes a movie, and is represented by a set of metadata, and has

been indexed using keywords extracted from textual !elds such

as (title, plot, actors, etc).For each movie, Facebook reactions are

collected via its API using movies URLs (see table 5).The nature of

these signals is a counting of each reactions on movies.In our study,

we focused on the top 1000 results for each topic.

Table 5: Instance of document with social reactions

Facebook

Film Title Like Love Haha Wow Sad Angry

Sinister 14763 8520 12 10256 647 146

We compared our approach which combines social document

priorwithHiemstra languagemodel [8], to the baselines LM.Hiemstra

without using any document priors, as well as like-based model (like

as document prior). We note that the best value of the smoothing

parameter µ ∈ [90, 100].

5.1 Results and Discussion
Table 6 compares the di"erent con!gurations of our approach in

terms of precision@k (k ∈ {10, 20}), nDCG@1000 and MAP. Di"er-

ent con!gurations are evaluated, by taking into account Facebook

reactions individually and grouped according to their meaning:

positive or negative emotions (labeled + or − in table 6, respec-

tively). Label (*) indicates a statistically signi!cant improvement

overs LM.Hiemstra with the signi!cance level of 0.05.

a) Impact of Reactions Individually. The best results are ob-

tained by the reactions Love and Wow with 0.4122 and 0.4031 in

terms of P@10, respectively. Some topics such as “romance movies

by Leonardo DiCaprio or Tom Cruise” and “romance movies by

Richard Gere or George Clooney” are registered the highest preci-

sion when the reaction Love is taken into account in the ranking

process (with 0.8801 and 0.9112 in terms of P@10, respectively).

The reactionWow is more e"ective with topics that represents a real

fact or a freaky and exciting information such as “true story event

movies” that registered a precision at ten of 0.7754. The reactions

1https://inex.mmci.uni-saarland.de/tracks/dc/2011/



IR Models P@10 P@20 nDCG MAP

Baseline: Textual Model

LM.Hiemstra 0.3700 0.3403 0.4325 0.2402

Baseline: Facebook Like

Like 0.3938 0.3620 0.5130 0.2832

Facebook Reactions Individually

Love 0.4122∗ 0.3702∗ 0.5300∗ 0.2978∗

Haha 0.3900 0.3624 0.5100 0.2766

Wow 0.4031∗ 0.3755∗ 0.5203∗ 0.2889∗

Sad 0.3800 0.3505 0.4811 0.2700

Angry 0.3111 0.2814 0.3421 0.1601

Facebook Reactions Combinations

(Love, Haha)+ 0.4187∗ 0.3801∗ 0.5555∗ 0.2991∗

(Sad, Angry)− 0.3021 0.2614 0.3167 0.1574

(Love, Haha, Wow)+ 0.4275∗ 0.4112∗ 0.5773∗ 0.3168∗

b) Impact of Grouped Reactions. The prior based on grouped

reactions improve signi!cantly the results in terms of nDCG com-

pared to the LM.Hiemstra, especially when using positive reactions

(Love, Haha)+: +29% and (Love, Haha, Wow)+: +34%, as well as com-

pared to the consideration of reactions individually. We can also

notice that when negative reactions are grouped, the relevance of

the returned documents becomes very low. This amounts to a lack

of topics that expresses appropriate emotions to Sad and Angry. In

our case, we have only this two IMDb topics “Worst actor century”

and “Chernobyl” that have registered a signi!cant P@10 (0.7126

and 0.7610, respectively). This type of features can be helpful to

capture non-relevant documents when the topics are positives. In

addition, the reaction Wow is even more e"ective when consid-

ered with positive reactions group (Love, Haha, Wow)+: +34%, +10%

against textual model and like-based model, respectively.

c) Correlation Between Reactions and Relevance. In order to

analyze Facebook reactions and determine if there is a link (depen-

dence/independence) between them and the document relevance,

we conducted a correlation study using Spearman’s Rho correlation

coe#cient [4].

Figure 3: Rho Correlations of Facebook reactions

Figure 3 shows the values of correlations between ranges reac-

tions with respect to documents relevance. This study shows that

Love (0.33) has the highest correlation, followed by number ofWow

(0.27) and Haha (0.26). The reactions Sad and Angry are the less

correlated with relevance. This results justi!es the results obtained

above (see table 6) and con!rms that these novel emotional signals

contribute to the improvement of the retrieval performance. Indeed,

the well positioned resources have a high number of reactions and

the frequently loved or funniest content is increasingly correlated

with good ranking of relevance.

Finally, these results show that Facebook reactions are fruitful

for IR systems, and can be more e"ective for speci!c search that

take into account emotional aspect in the retrieval. Consequently,

grouping these signals according to their meaning, where some

signals are positive and related to the document reputation, is more

e"ective compared to the individual consideration of signals to

improve IR. We also note that the impact of these reactions is

related to the nature and the emotion expressed in the topics.

6 CONCLUSION

This paper studied the impact of novel signals related to Facebook

users’ reactions (love, haha, angry, wow, and sad) on IR. By analyzing

these reactions, we notice that they present a positive growing.

They allow to better understand if the user enjoyed the content

or not. We proposed to estimate document priors by considering

these reactions as an additional source of evidence to measure

document relevance. Experimental evaluation conducted on IMDb

dataset shows that taking into account these social features in a

textual model improves the quality of returned search results. The

correlation analysis shows that positive reactions are positively

correlated with relevance.

For future work, we plan to estimate the impact of these reac-

tions in sentiment detection with respect of their creation dates.

Further experiments on another dataset are also needed. Unfortu-

nately, until now, these social features are not yet available on other

documents of standard dataset such as INEX Social Book Search.
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Haha and Sad provide the lowest results compared to like-based 
model, but they bring signi!cant improvements compared to textual 
model LM.Hiemstra. The Angry is the weakest feature, it is close 
to a negative signal that is associated much more with irrelevant 
documents.

Table 6: Results of P@{10, 20}, nDCG and MAP




