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BERBILANG MATA ALAT PEMOTONG MENGGUNAKAN 

IMEJ IMBASAN 2-D DENGAN PENGESANAN PINGGIR  

SUB-PIKSEL 

 

 

     ABSTRAK 

 

 

  Jejari muncung alat pemotong mempengaruhi kualiti permukaan bahan kerja 

siap, kestabilan pemesinan, input kuasa serta keadaan alat peomotong kerana 

interaksi langsung muncung alat pemotong dengan bahan kerja semasa pemesinan. 

Pendekatan konvensional untuk mengukur jejari muncung dengan menggunakan 

profil projektor dan mikroskop dari pengeluar alat pemotong memerlukan titik-titik 

yang dipilih secara manual daripada profil muncung. Ini menyebabkan pengukuran 

yang tidak tepat kerana pemilihan beberapa titik daripada sektor bulatan yang tidak 

sempurna dari tepi muncung. Pendekatan terbaru untuk mengukur jejari dan 

kehausan muncung bagi berbilang alat pemotong dengan menggunakan imej 2-D 

yang diimbas dengan alat pengimbas kos rendah and resolusi tinggi adalah 

dicadangkan. Penyiasatan tentang kesan keadaan pencahayaan pengimbas, orientasi 

dan lokasi alat pemotong serta resolusi pada ketepatan pengesanan pinggir sub-piksel 

telah dijalankan. Keputusan pengukuran menggunakan pendekatan pengimbas adalah 

dibandingkan dengan projektor profil dan sistem metrologi pembolehubah fokus 3-D 

(Alicona InfiniteFocus). Kaedah transformasi kutub-jejari digunakan untuk mengira 

luas unjuran kehausan, Ap dan kehausan maksimum muncung flank, VBC (max) 
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sebelum dan selepas pemesinan dengan menggunakan imej pengimbas dan 

InfiniteFocus. Pengukuran jejari muncung pelbagai alat pemotong menghasilkan 

ralat purata kurang daripada 1%.  Kaedah projektor profil digital memberi ralat 

pengukuran muncung yang tinggi sebanyak 11%. Untuk pengukuran luas unjuran 

kehausan dan muncung flank, sisihan maksimum antara kedua-dua kaedah 

pengukuran adalah sebanyak 6% dengan nilai yang lebih rendah didapati daripada 

imej imbasan disebabkan perbezaan resolusi di antara kaedah pengimejan. Oleh itu, 

pendekatan kos rendah dengan ketepatan tinggi yang dicadangkan dalam kajian ini 

membolehkan penilaian yang cepat dan tepat daripada pelbagai alat pemotong dan 

menyediakan satu penyelesaian baru untuk pemeriksaan muncung serta pengukuran 

kehausan. 
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MEASUREMENT OF NOSE RADIUS AND WEAR OF 

MULTIPLE CUTTING TOOL INSERTS FROM 2-D SCANNED 

IMAGES WITH SUB-PIXEL EDGE DETECTION 

 

 

ABSTRACT 

 

 

The nose radius of a cutting tool insert is known to affect the surface quality 

of the finished workpiece, machining stability, power input as well as the condition 

of the insert due to the direct interaction of the tool nose with the workpiece during 

machining. Conventional approaches for measuring the nose radius using profile 

projector and toolmaker’s microscope require manually selected points from the nose 

profile which cause inaccurate measurement of nose radius since only a few points 

from the sector of an imperfect circle from the nose edge are selected. A novel 

approach for the measurement of nose radius and wear of multiple cutting inserts 

using 2-D images scanned using a high resolution low-cost flatbed scanner is 

proposed. Investigation on the effect of scanner’s lighting conditions, tool orientation 

and location on the accuracy of sub-pixel edge detection of nose radii were carried 

out. The results of the measurement of nose radii using the scanner approach were 

compared with a profile projector and the variable-focus 3-D metrology system 

(Alicona InfiniteFocus). The polar-radius transformation method was used to 

calculate the projected wear area, Ap and maximum nose flank wear, VBc(max) before 

and after machining using images from scanner and InfiniteFocus. The measurement 

of the nose radii of multiple inserts yielded average error of less than 1%. The digital 
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profile projector method yielded a highest error of about 11% in nose radii 

measurement. For the projected nose wear and nose flank measurement, the 

maximum deviation are about 6% with a slight underestimation of nose wear for 

scanner due to the resolution difference between the two scanning methods. Thus, 

the low-cost and high accuracy approach proposed in this study enables fast and 

accurate assessment of multiple tools and provides a new solution for tool nose 

inspection and wear measurement.        
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CHAPTER 1 

INTRODUCTION 

 

 

1.1      Background of Research 

           

The surface finish quality and dimensional accuracy of a machined part plays 

a significant role in ensuring the quality and characteristics of the part, such as its 

tribological properties, fatigue strength and corrosion resistance (Kohli and Dixit, 

2005). Some of the factors that affect the surface quality and dimensional accuracy 

of the finished part are the material hardness, cutting edge geometry, tool wear 

characteristics and machining conditions (Ozel et al., 2005). Of particular 

significance in affecting the product quality is the tool geometry, especially the nose 

radius. Large nose radius results in deeper subsurface structural changes due to high 

plowing forces (Thiele and Melkote, 1999). In addition, the wear that occurs on the 

tool nose area, which is a combination of flank wear and notch wear (Jurkovic et al., 

2005; Stephenson and Agapiou, 1997), is also one of the major factors that affect the 

surface quality of work piece in turning operation (Kwon and Fischer, 2003).      

 

Cutting tool inserts used for metal removal in machine tools are designed 

with various geometries. The tool nose radius of a cutting insert at the rounded tip of 

a single-point tool is known to affect the surface quality of the finished work piece, 

machining stability, heat generation, residual stress as well as the condition of the 

insert due to the direct interaction of the tool nose with the work piece during 

machining (Chou and Song, 2004; Liu et al., 2004; Campocasso et al., 2014; Adibi-
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Sedeh et al., 2002). In theory, the idealized model of the average surface roughness 

of the work piece machined using a tool with a rounded nose is given by (Boothroyd 

1988):  

 

                                                                                                                              (1.1) 

 

where  r is the nose radius and f is the feed rate. Thus, the tool nose radius and the 

feed rate have the greatest impact in determining the surface roughness. In practice, 

other factors such as the machining speed, depth-of-cut, material of tools and work 

piece also influence the surface integrity. According to Chou and Song (2004), the 

change of distance from the cutting edge to the nominal machined surface is a strong 

function of nose radius. A larger nose radius improves the surface finish. Shallow 

thread surface occurs whenever a tool having a small radius is used in conjunction 

with a large feed (Datsko, 1997). Conventionally, the recommended guidelines for 

nose radius are provided by the tool manufacturers based on the theoretical surface 

finish derived from Equation (1.1).   

 

The nose radius is essentially the most vital tool geometry in Computer 

Numerical Control (CNC) machining. Acquiring the value of tool nose radius 

accurately is necessary because tool nose radius will cause deviations in the work 

piece dimensions due to overcutting or undercutting especially when tapers or free-

form surfaces are to be machined (Zhou et al., 2009) as shown in Figure 1.1. The 

dimensional deviation affects the flatness, straightness, circularity, cylindricity, 

parallelism, perpendicularity, angularity and concentricity of machine products 

(Dotson et al., 2003). The nose radius is also an important parameter for 

programming the tool path in CNC machine tools using nose radius compensation to 

r

f
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assure the dimensional accuracy of the finished part (Chai et al., 1996). Using the 

nose radius compensation based on the measured nose radius, the CNC system is 

expected to determine the offset direction in the programmable path.  Thus, the 

accurate measurement of radius becomes prominent in industry especially when 

involving micro-machining of CNC (Zhou et al., 2009) and it is a must to measure 

the nose radius to micron scale to turn the micro parts with the right compensation 

model (Hanson, 2012).         

  

 

 

Figure 1.1. Deviations caused by the tool nose radius (Zhou et al. 2009). 

 

The determination of nose radius is normally carried out using conventional 

measurement methods such as tool maker’s microscope and profile projector (Chian 

and Ratnam, 2011). However, due to the large tolerance in the nose radius (±10% of 

nominal radius) allowed by the ISO 3685 standard (ISO 3685 International Standard, 

1993), accurate measurement of the actual nose radius is a challenge. In the past, the 

nominal values of the nose radius were used in studying of the effect of nose radius 

and other machining parameters on surface roughness (Palanisamy et al., 2008; 

Tool 

Tool Tool 

Tool Programmed surface 

Work piece 

Imperfection caused by 

tool nose radius 



 4 

Kassim et al., 2004.; Choudry and Bartaryam, 2003). In the conventional 

measurement method, only a few discrete points on the nose edge were chosen for 

radius measurement and this contributed significant errors in the measurement. 

According to Hopp (1994), high uncertainties of center coordinates measurement 

were found in the circle fitting process using three points on the edge of an arc. In 

addition, with the points extracted for fitting from a sector subtending less than about 

60°, the radius has a very large uncertainty. Moreover, the effect of non-circularity in 

the nose sector due to the large radius tolerance on the measurement accuracy has 

been neglected in the past.  

 

The polar radius transformation method for the measurement of radii as 

proposed by Chian and Ratnam (2011) used all the pixels in the nose region in 

determining the nose radius. The polar radius plot of the nose radius from a newly 

unworn insert showed that the nose profile appears to deviate from a circular profile. 

In their work, however, the nose edge extraction was based at pixel level and thus the 

accuracy of the measurement is limited by the resolution of the Charge Coupled 

Device (CCD) camera. Furthermore, using a CCD camera to capture image of the 

tool nose mounted on the tool holder and to measure the nose radius will introduce 

error because the tool holder itself has a relief angle that makes the tool tilted. This 

can be observed from the overestimation of nose radii with 11% mean deviation for 

majority of the cutting inserts measured.          

   

Apart from the nose radius, another factor that significantly influences the 

surface finish of the machined part is the tool wear. Tool wear is usually the most 

relevant parameter inspected in machining because is has direct influence on the final 
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product quality, the machine tool performance and the tool lifetime (Schmitt et al., 

2012). The tool wear, specifically the nose wear, is one of the critical wear regions in 

determining the surface quality because it shortens the cutting tools and increases 

gradually the dimension of machined surface, thus introducing significant 

dimensional errors which could reach 0.03 mm - 0.05 mm (Marinov, 2005). In 

machining, there are basically three wear zones of a cutting insert according to its 

principal location on a cutting tool which are crater wear, flank wear and nose wear 

as illustrated in Figure 1.2. The nose wear, which generally consist of many 

combinations of wear along the nose edge, is the most noticeable type of wear that 

occurs because of the direct interaction of the tool nose with the machined parts as 

well as the chips formed during machining.  

 

Figure 1.2. Typical cutting tool wear. 

 

To monitor tool wear, intelligent tool condition monitoring systems (TCMS) 

have evolved rapidly using various sensor technology and instruments for monitoring, 

which include acoustic emission, tool temperature monitoring, force meter, 

accelerometer and other methods such as ultrasonic, optical measurements, work 

piece surface finish quality and dimensions measurement, stress/strain analysis and 
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spindle motor current (Snr and Dimla, 2000). However, many researchers have 

shown great interest in using machine vision as a direct non-contact way for 

assessing tool condition because machine vision has the advantage of (i) direct 

assessment of tool condition, (ii) micrometer scale measurement with high resolution 

image capture, (iii) examination and monitoring of wear patterns at different 

machining stages and (iv) archiving the images for future reference.  

 

Machine vision using CCD camera was attempted in the past as an alternative 

to the conventional methods to measure nose radius and nose wear, where the cutting 

inserts were inspected using the digitized images (Shahabi and Ratnam 2008; 

Shahabi and Ratnam, 2009a; Shahabi and Ratnam, 2009b; Shahabi and Ratnam, 

2010). Although CCD camera allows tool nose wear to be determined without 

removing the insert from the tool holder, the system is only capable of measuring 

single nose tip at a time with the aid of external lighting. However, machine vision 

system using CCD camera requires additional external lighting in obtaining the 

image. This requires the optimum adjustment of illumination angle, lighting intensity 

as well as to take into account the effect of ambient lighting. Thus, the images 

captured from a CCD camera will suffer from non-uniform illumination if any of 

these aspects were not properly considered. Besides that, CCD camera has limited 

field-of-view due to high magnification that allows only a single tool to be inspected 

at a time as well as optical distortions that requires periodic calibration whenever the 

experimental setup has been altered. Due to these problems, the use of a high 

resolution flatbed scanner is proposed in this work to acquire the images of the nose 

area for the measurement of nose radius, projected nose wear and nose flank wear, 

VBc. Flatbed scanner has numerous advantages, such as (i) large field-of-view 
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compared to other system and hence allows the inspection of multiple tools, (ii) 

uniform illumination with built-in lighting, (iii) scanning of multiple regions of 

interest (ROIs) in one scan and (iv) high resolution with selectable resolution, and (v) 

low cost with convenient placement of multiple inserts. Using the scanner, the 

assessment of tool nose can be carried out in batches, thus allowing many tool inserts 

to be inspected in one scanning to decrease inspection time.  

 

Current development of nose wear measurement using CCD camera is only 

up to one pixel level. For instance, Shahabi and Ratnam (2008) determined the nose 

wear by counting the number of pixels from the resultant image subtraction of the 

original and the machined tool nose. In another similar work (Shahabi and Ratnam, 

2009b), the authors studied the nose radius wear from work piece roughness profile 

and compared the measurement using toolmaker’s microscope.  

 

Since the measurement of nose radii and the nose wear is an important 

precursor in precision machining and product quality control, the solution for fast 

and accurate assessment of these quantities are yet to be proposed. Although 

researchers in the past show great effort in assessing the nose conditions of the tool, 

there are aspects that have been overlooked which are (i) the use of nominal radius as 

the actual radius value in the published literature although it is known that the 

nominal radius has large tolerance, (ii) the use of conventional methods such as 

profile projector or microscope in measurement where the measurement obtained 

was considered the actual value in comparison to their method proposed and (iii) 

measurement was generally carried out one-at-a-time due to the small field of view 

of image acquisition device when digitizing the tool.  
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Due to the limitation of the existing methods in nose radius and nose wear 

measurement, the potential of the flatbed scanner as an image acquisition device for 

the measurement of nose radii and nose wear of multiple inserts was studied in this 

research work. The primary advantage of this method is that the whole image of 

cutting tool inserts can be captured and multiple edges can be processed and 

characterized in a single scanning process. Furthermore, many cutting tool inserts 

can be inspected in one batch of single image scanning that will indirectly save the 

inspection lead time. In the following sections, the main problems of the existing 

methods in nose radii and nose wear measurement are addressed in detail. Then, the 

research objectives and scopes are defined followed by a brief discussion of the 

current research approaches. The thesis outline is presented at the end of the chapter. 

 

1.2     Problem Statement 

 

Despite the important role of tool nose radius in machining, very few 

researchers have proposed a solution for the accurate measurement of the nose radius. 

To date, the best methods of measuring the nose radius of a cutting tool are either by 

using a tool maker’s microscope that has automatic functions to determine radius 

from a selected number of points on the surface or by using a high-magnification 

profile projector. These methods require manually selected points from the nose 

profile which causes inaccurate measurement of nose radius since only a few points 

from the sector of a circle from the nose edge are selected. The main limitation of 

such methods is that the user has to manually select a number of points on the nose 

profile to determine the radius. Ideally, the nose radius measurement should be based 

on a large number of automatically selected points on the nose profile. But, this is not 
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possible if the measurement is performed manually. Since the manual points are 

selected visually, this also raises the question of whether accurate points are chosen 

for the nose radius estimation. 

 

In addition, the tolerance of the nose radius specified by the manufacturer in 

accordance to ISO 3685 standard is ±10% of the nominal radius (ISO 3685, 1993). 

Since the profile of the tool nose may not be perfectly circular due to the ±10% 

tolerance allowed for nose radius in the standard, manual selection of a limited 

number of points on the nose profile for radius measurement will, at most, produce 

only an approximate value of the radius. Despite the large tolerance given by the 

manufacturer, the nominal radius is normally used by researchers in the study on the 

effect of nose radius on machining. With the shape of an unworn tool nose which is 

not a perfectly circular arc in nature, the accuracy of the relationships established 

between the studied parameters and the nose radius in most of the published 

literature are, therefore, ambiguous. 

 

Machine vision system with a CCD camera has been proposed by researchers 

for measuring of nose radius as well as nose wear. However, image acquisition using 

a CCD camera has the disadvantages of providing a small field-of-view at high 

optical magnification and non-uniform illumination depending on the lighting. In the 

literature the measurement of nose radius and nose wear is generally carried out one 

insert at a time due to the small field-of-view of the image acquisition device, which 

is typically a CCD camera, used for digitizing the tool image. Past researchers have 

proposed nose radius and nose wear measurement by transforming the curved nose 

profile into a linear profile using polar-radius transformation. Although this is an 
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effective method for nose radius measurement, it is limited to individual insert 

measurement due to the limited field-of-view of the CCD camera.  In all the other 

works reported in the literature the measurement of nose radius has been carried only 

on individual insert. Although multiple tool nose inspection provides convenience in 

terms of measurement time, it is not possible with the use of CCD camera or any 

other devices in image acquisition developed so far.   

 

Recent developments of nose wear measurement using machine vision is only 

limited to pixel level accuracy. Despite the exhaustive efforts in measuring the nose 

wear using CCD camera, the proposed algorithms so far is only capable of giving the 

wear area to pixel level accuracy. The pixel-by-pixel subtraction of two images is at 

pixel-level accuracy and the edge pixels previously used in polar radius 

transformation were also at pixel level accuracy. However, for precise measurement 

of nose radius and nose wear, sub-pixel edges must be determined before the 

application of polar radius transformation. Hence, current methods of measuring 

nose radius and nose wear are still limited by the resolution of the imaging devices.     

 

1.3     Research Objectives 

 

The objectives of the research are as follows:   

 To develop image processing algorithms for nose radius and nose wear 

measurement from the scanned images with sub-pixel accuracy using a high-

resolution and a low-cost commercial flatbed scanner as an image acquisition 

device. 
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 To study the effect of scanner’s lighting conditions, scanning resolutions, 

positions and orientation of tool placement on the accuracy of nose radii 

measurement of cutting tools from the scanned images.   

 To develop image processing algorithms for multiple cutting tools scanning 

and measurement of nose radius and nose wear. 

 To compare the accuracy of nose radius and nose wear measurement using 

the scanner method, optical profile projector and by processing images 

obtained from a commercial 3-D metrology system.  

 

1.4     Research Scopes 

 

This research is focused on the development of automatic tool nose radii and 

nose radius wear measurement using the scanned images from a common flatbed 

scanners. The research comprises calibration of scanner, selection of ideal lighting 

conditions, development of sub-pixel edge detection based on individual tool tips, 

accuracy study of nose radii measurement based on orientations and locations, batch 

measurement of nose radii and nose wear measurement. A localized sub-pixel edge 

detection algorithm is proposed in this research to locate the exact edge before the 

nose radius or nose radius wear can be measured. All measurement results obtained 

from the scanned images were compared with the measurement from the scanned 

images of InfiniteFocus. Uncertainty analysis was carried out to determine the 

accuracy of the measurement. For batch measurement of multiple inserts, only front 

lighting was used in scanning since the field of view of backlight condition is very 

small and cannot accommodate the scanning of batches of inserts whereas for 

InfiniteFocus, it only provides front light mode in scanning. 
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 In this research, three geometrical types of cutting inserts (coated and 

uncoated) were used in the scanning namely triangular, rhombic and square. Each 

batch of scanning consists of several inserts with multiple tool tips from a particular 

type. Multiple tool inserts placed randomly on the glass platen of the scanner were 

detected and measured automatically.  

 

1.5     Research Approach 

 

         A novel approach for the measurement of nose radius and wear of multiple 

cutting inserts using scanned 2-D images from a high resolution low-cost flatbed 

scanner is proposed. To obtain the high contrast and uniformly illuminated images 

from the scanner, an investigation of the effect of scanner’s lighting conditions on 

the edge detection was carried out. 

 

The measurement of tool nose is divided into nose radius measurement and 

nose radius wear measurement. For nose radius measurement, individual insert were 

first studied. The scanned images of individual inserts, which consists of the nose 

region and cutting edge, were subjected to image pre-processing and thresholding. 

The binary image was then morphologically eroded and dilated separately, and the 

inner and the outer boundary pixels that form the region of interest, were extracted 

from the eroded and dilated images. The maximum values of the first derivative of 

all the gray level profiles within the inner and the outer boundary pixels were 

determined to obtain the sub-pixel edge location. The nose profile was then 

determined geometrically and all the sub-pixel edge coordinates within the nose 

profile were subjected to radius estimation using circle fitting. The effect of tool 
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orientation on the accuracy of nose radii measurement was investigated by scanning 

the single tool placed at multiple orientations on the scanner’s platen. In addition, the 

positional effects of a single tool on the accuracy of the nose radii measurement were 

also analyzed.  

 

For batch measurement of nose radii from many inserts with multiple tool 

noses, the inserts were placed randomly and scanned. Algorithms to identify tool 

noses were developed and sub-pixel edge detection was applied to the cropped 

images of tool nose. In addition to this, the effect of resolution on radii measurement 

was also studied. The results of the measurement of nose radii using the scanner 

approach were compared with a digital profile projector and the commercial 3-D 

metrology system (Alicona InfiniteFocus) using statistical approach. 

 

For the wear measurement the unworn insert before machining and the worn 

insert after machining were scanned separately. The sub-pixel edge detection 

developed was applied to both images and the images were realigned automatically 

to the same orientation. Then, the polar-radius transformation method was used to 

calculate the projected wear area. The nose flank wear (VBc) was obtained from the 

tool geometry using the clearance angle of the cutting insert and the difference of 

nose radii of worn and unworn tool nose. Hence, the maximum of the nose flank 

wear (VBc(max)) was determined. A similar measurement methodology was applied to 

images obtained from InfiniteFocus and was compared with the measurement of nose 

wear from scanning method.  
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For batch measurement of nose radius wear, the multiple inserts, each with 

multiple tool tips, was placed on the platen for scanning before and after machining. 

The scanned images was subjected to image pre-processing, thresholding, individual 

insert cropping, tool nose identification, auto-cropping of tool nose of the individual 

insert, sub-pixel edge detection and auto-realignment. Similarly, the polar-radius 

transformation method was used to calculate the projected wear area. Using the same 

approaches, measurement of nose wear of all inserts was conducted on the scanned 

images of cutting inserts before and after machining using InfiniteFocus and the 

comparison of measurement results were analyzed statistically.  

 

1.6     Thesis Outline  

 

This thesis is arranged in accordance to the scopes and objectives as 

mentioned above. Chapter 2 reviews the related work in nose radius and nose radius 

wear measurement and provides an overview of measurement methods from the 

published literature. A thorough discussion will be made to identify the advantages 

and limitations of existing approaches in assessing the nose radius and nose radius 

wear. Chapter 3 presents the methodology of the research in accordance to the scopes 

and objectives. Calibration of scanner, experimental setup, step-by-step development 

of computer algorithms for nose radius and nose radius wear measurement as well as 

the theory of accuracy for comparison of measurement approaches are detailed in 

this chapter. This is followed by the results and discussions in Chapter 4 which 

corresponds to each stage of experiments conducted. Subsequently, conclusions of 

this research are drawn in Chapter 5. Recommendations and suggestions are given 

for future work.     
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

  

In this chapter, a review of current methods of measurement of tool nose 

radius and nose radius wear of cutting inserts will be made based on published 

literature. Three important components, namely, methods of nose radius and nose 

radius wear measurement, machine vision approaches in tool conditional monitoring 

and the background of flatbed scanner as an image acquisition tool in engineering 

measurement and its practical application in industry are reviewed in detail. Special 

attention will be given to the recent research interest in the precision measurement of 

nose radius and its wear conditions in accordance to ISO 3685 as well as to 

investigate the extent to which a commercially available high resolution scanner can 

be used as an effective image acquisition method in fine measurement.   

 

2.2       Tool Nose Radius Measurement  

 

 The significant role of tool nose radius in machining and the current and 

conventional methods of measuring nose radius were reviewed in this section. 

 

2.2.1    The Significant Role of Tool Nose Radius in Machining 

 

Nose radius is a major factor that affects surface roughness of machined parts. 

A larger nose radius produces a smoother surface at lower feed rates and a higher 
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cutting speed. However, a larger nose radius reduces damping at higher cutting 

speeds, thereby contributing to a rougher surface (Dogra et al., 2011).  Large nose 

radius tools have, along the whole cutting period, slightly better surface finish than 

small nose radius tools (Beauchamp et al., 1996; Kishawy and Elbestawi, 1997). 

Thus, a small radius is normally chosen for finishing or machining on thin and long 

workpiece whereas large radius is normally used in rough cutting in bigger diameter 

workpiece, where a strong cutting edge is needed. According to Chou and Song 

(2004), a large tool nose radius gives finer surface finish, decreased maximum uncut 

chip thickness and shallower white layers in new tool cutting, but the tool wear and 

specific cutting energy is slightly higher. The results are in agreement with the work 

published by Diniz and Micaroni (2002) where the authors concluded that to improve 

surface finish in dry condition, it is necessary to increase the tool nose radius and 

feed while decreasing the cutting speed. Similar results were obtained by Nath et al. 

(2009). The effect of tool nose radius on workpiece run-out (inaccuracy of rotating 

mechanical systems) and surface finish was further investigated by Shather (2009). A 

new relationship was found between nose radii and the run-out due to tool chatter 

that occurs during the machining of workpiece surface. Thus, nose radius is one of 

the most important geometrical factors governing the surface roughness criteria in 

machining.   

 

Many researchers have attempted to investigate the relationship between tool 

nose radius and tool wear in the cutting performance. Generally, increasing the nose 

radius will increase the level of tool flank wear and cutting with a large nose radius 

results in a higher value of cutting forces due to the thrust force component (Thamma, 

2008). Also, cutting with a small nose radius prolongs tool life, which was explained 
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by the reduction in the ploughing force. A study conducted by Endres and Kountanya 

(2002) shows the relationship between nose radius and flank wear on up-sharp and 

honed tools. The author observed that tool flank wear can be minimized for up-sharp 

tools by using a moderate nose radius whereas for tools with an edge radius, a wear-

minimizing nose radius still exists but is higher than for up-sharp tools.  

 

Despite the aforementioned conclusion, however, the proposed method used 

in the radius measurement has the disadvantage of getting the accurate estimation of 

radius because noisy images were obtained due to the effects of excessive grind 

marks. In addition to this problematic measurement, nose radius measurement was 

not part of the study interest where only the nominal radius sizes were employed. 

According to Liu et al. (2004), tool nose radius plays a significant role in deciding 

the shape of cutting cross-section in combination with depth of cut and feed rate 

whereby the chip morphology was related very strongly with nose radius. They 

concluded that the increase of tool nose radius leads to a remarkable increase of 

thrust force, residual tensile and compressive stress beneath the machined surface. 

Cassier et al. (2004) studied the built-up edge (BUE) phenomenon on the tool wear 

rate when turning at low cutting speed. The results obtained showed that when larger 

radius values are used, the largest values of flank wear were obtained which 

contradicts with the conventional results when high cutting speed is employed. 

Different types of steels (AISI 1020, AISI 1045, AISI 4140) and various machining 

parameters were studied, and the BUE effect was investigated. On the other hand, 

Thamizhmanii et al. (2007) showed that the formation of BUE formed as another 

cutting edge and thus increase the nose radius of the tool and produced a better 

surface at higher cutting speed. They also concluded that the worn out tool produced 
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better surface roughness than new tool initially because the cutting edge of the worn 

tool becomes un-uniformly larger nose radius which produced better surface finish. 

In contrary, if the amount of flank wear increases, a reduction in nose radius of the 

cutting tool occurs, this in turn reduces the surface finish of the product (Palanisamy 

et al., 2008; Kassim et al., 2004; Choudhury and Bartarya, 2003).   

 

Despite the vital role of nose radius in machining, the nominal radius was 

presumed the true value in most of the published work although it is stated in ISO 

3685 that a large tolerance of ±10% is allowed in the nose radius. Hence, the 

information of precise nose radius value was not obtained and the study of the 

correlation between the nose radius and the machining outputs on most of the 

published results (surface roughness, tool wear, residual stress and etc.) could lead to 

doubtful conclusion.  

 

2.2.2    Measurement of Nose Radii  

 

In precision engineering, tool nose radius compensation using geometric 

consideration of tool nose and the engagement conditions between the tool and work 

piece is normally introduced in CNC finish turning operation. This is because the 

tool nose is not an ideal circle and to some extent wear is expected after certain 

period of machining (Zhou et al., 2009). Conventionally, the nose radius value was 

acquired using sample plates, caliper circular groove, tool microscope or a profile 

projector. These traditional methods of measurement allows fast and convenient 

results but at the same time incur errors due to two major problems: (i) tool nose is 

not perfectly circular (Chian and Ratnam, 2011), (ii) estimating of best circle using a 

few points from a sector of circle, which according to Hopp (1994), is highly 
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sensitive to errors in measurement when points extracted from a sector subtending 

less that 40° at the center are used for radius estimation. Due to the difficulty in 

obtaining the accurate nose radius, indirect measurement of tool nose in CNC turning 

was suggested by Zhou et al.(2009) using the tool parameters and the cutting 

geometry by radial error compensation. However, before the radial compensation 

takes place, the nose radius value of cutting insert was input to the numerical control 

lathe using microscope. In most of the traditional machining however, acquiring of 

nose radius is still relied on the conventional methods.  

          

Blahusch et al. (1999) presented a method of measurements of tools using 

Halcon image processing tools with CCD camera. The outer boundary was extracted 

using sub-pixel edge detection and the radius was then approximated by lines and 

circular arcs. The use of back light condition in image capturing reduces the 

overexposure on the acquired image but at the same time causes light diffusion. This 

aspect was not taken into consideration in the image analysis when determining the 

nose radius. Chian and Ratnam (2011) proposed the measurement of tool nose radii 

of cutting inserts using machine vision. The curved nose profile was transformed into 

polar-radius plot and the determination of nose radius was based on the minimum 

average deviation of pixels from the straight line from the polar-radius plot. From 

their experiments, the nose radius was found to deviate from the nominal values. The 

best radius was defined based on the minimum deviation value from radius error plot. 

The method is very sensitive to alignment of the insert as the plane of the nose 

profile is required to be perpendicular to the optical axis of the CCD camera. Also, 

the measurement of radius was only up to one-pixel accuracy with only one single 

tool was measured at a time.   
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2.3 Tool Wear Measurement 

 

  The characteristics of tool wear according to ISO standard, methods of tool 

wear measurement as well as the machine vision approach to the tool wear 

assessment were reviewed in this section. 

 

2.3.1 Characterization of Wear in Accordance to ISO 3685 

  

 Tool wear and tool failure are among the major problems in machining and 

have been studied extensively in the past in order to prevent inferior surface finish 

quality which may lead to scrap or re-work and in some cases causing damage to the 

machine tool itself (Kurada and Bradley, 1997a). The sensors for monitoring of tool 

wear include two major groups, which are direct sensors and indirect sensors 

(Kurada and Bradley, 1997b). The direct sensor measurement includes proximity 

sensors, radioactive sensors, and machine vision sensors, and the indirect sensing 

techniques include the cutting force signal monitoring, vibration signature analysis, 

cutting force analysis and acoustic monitoring system. In reality, the indirect 

methods require expensive and complex instrumentation setup which restricted its 

usage in a typical workshop and the signals could be influenced by other factors such 

as normal tool wear, machine vibration, and stress released during cutting (Shahabi 

and Ratnam, 2010) whilst the direct methods, such as machine vision system, 

requires less costly setup and are thus, conveniently implemented.  

 

Generally there are three categories of tool wear in accordance to ISO 3685 

(ISO 3685 International Standard, 1993), which are (i) wear of the major flank, (ii) 
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wear of the rake face and (iii) wear of the minor flank. The major flank wear is 

shown in Figure 2.1(a) and is the best known of tool wear. The growing width of the 

flank wear land leads to a reduction in the quality of the tool. The common criteria 

used for the assessment of flank wear is  VBmax = 0.6 mm if the flank wear is not 

regularly worn, scratched, chipped or badly grooved in zone B; the average width of 

the flank wear land VB = 0.3 mm if the flank wear land is considered to be regularly 

worn in zone B. A combined wear of flank and the face wear forms the notch wear 

(Figure 2.1(a)) at the depth of cut line when the tool rubs against the shoulder of 

workpiece. Crater wear occurs at the rake face as a result of high thermal and shear 

stress due to the chip thickness as shown in Figure 2.1(b). The nose wear occurs 

mainly due to the abrasion wear mechanism of cutting tool’s major edges resulting in 

an increase in negative rake angle where the nose edge deformed plastically at high 

speed machining (Figure 2.1(b)).        

           (a) (b) 
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Figure 2.1. (a) Side view of insert showing flank wear (b) top view of insert 

showing nose profile and crater wear (ISO 3685 International standard, 1993). 
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 According to ISO 3685, nose deformation will in most cases lead to a more 

rapid occurrence of catastrophic failure of high-speed steel tools and this makes the 

consequences of oxidation of carbide tools more severe. Other types of tool wear 

such as chipping, fracture, flaking, fatigue crack and breakage are shown in Figure 

2.2.    

 

Figure 2.2. Some other types of tool wear in cutting tools  

(Sowa Tools and Machines Co. Ltd, 2010). 

 

Amongst all the wear types, the nose wear, which generally consists many 

combinations of wears along the nose edge, is the most noticeable type of wear that 

occurs because of the direct interaction of the tool nose with the machined parts as 

well as the chips formed during machining. The deformation process during the 

machining is normally accompanied by the rubbing action with high friction that 

generates heat in plastic deformation. The nose area, which is located at the tool-chip 

interface and tool-work contact surface, is subjected most severe rubbing as shown in 
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Figure 2.3. Thus, the nose area wears down due lower strength and wear resistance 

when the temperature increases.   

       

 

 

 

 

 

 

 

 

Figure 2.3. Heat producing zones in machining. 

 

  

Although the nose wear is primarily important type of tool wear, and has a 
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criterion was made about the allowable wear condition of nose in worn cutting tools. 
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and Ratnam (2008), Shahabi and Ratnam (2009a), Shahabi and Ratnam (2009b) and 
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microscopes showed comparatively large range of deviation between the two 
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measurements (Shahabi and Ratnam, 2009a). The limitation of the proposed method 

which required the nose profile to be perfectly circular in order to obtain the nose 

wear area (Mook et al., 2009) is practically impossible.  

  

2.3.2 Nose Wear Measurement –Machine Vision Approach 

     

 In the development of automated tool wear measurement, machine vision 

approach has become more popular because they can be applied to assess tool wear 

directly through various stages of wear patterns analysis. Generally, a high resolution 

camera is used as an image acquisition tool to capture the image of the tool wear and 

enables micro-scale measurement with high magnification.  

 

 Various image processing and visualization methods have been published to 

characterize the appearance of tool wear using machine vision. Sortino (2003) 

proved that the conventional edge detection methods are not reliable solutions and 

thus implemented statistical filtering and high pass filtering. Due to the noisy 

detected edges, the measurement error is as high as 10% with a maximum error 

greater than 30%. In addition, using the high pixel width of 10 microns, the accuracy 

decreases drastically if the worn zone is very thin. Wang et al. (2005) presented a 

threshold independent method with sub-pixel accuracy to measure the flank wear 

area. An exhaustive windowing process was conducted using line-by-line pixel 

scanning and the highest accuracy was 8% by testing only on 10 samples with 

different insert types. In fact, the proposed algorithm necessitate the allocation of 

reference line and image realignment before the scanning process starts and thus 

affects the accuracy of subsequent processes. Despite the computationally intensive 

method developed, it was only applied to flank wear measurement.      


