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KESAN SERBUK SEKAM PADI KE ATAS SIFAT BUSA LATEKS GETAH 

ASLI 

ABSTRAK 

Serbuk sekam padi (RHP), sisa pertanian telah digabungkan dengan lateks 

getah asli (NRL) untuk menghasilkan  busa lateks getah asli (NRLF) melalui kaedah 

Dunlop. Sifat-sifat tensil, mekanikal, rintangan haba, pencirian struktur mikro dan 

kajian degradasi NRLF terisi RHP telah dikaji dan dibandingkan dengan NRLF 

(tanpa kandungan RHP). Dalam siri pertama, kesan peningkatan kandungan RHP 

dalam julat 0 hingga 10 phr kepada sifat-sifat NRLFs telah dikaji. Dalam siri kedua, 

pengaruh pengurangan saiz RHP telah dikaji. Kesan penggantian separa atau lengkap 

RHP dengan sagu telah dikaji dalam siri ketiga. Nisbah RHP / Sagu telah ditetapkan 

hingga 10 phr. Dalam siri keempat, RHP terubahsuai digunakan. Kesan kajian ‘soil 

burial’ dan ‘natural weathering’ busa NRLF selama tiga bulan telah diterokai, 

masing-masing mengikut ASTM D 5247 and ISO 877.2. Hasil kajian menunjukkan 

kekuatan tensil, tensil modulus, kekerasan, dan kestabilan terma menaik dengan 

peningkatan pembebanan pengisi, manakala pemanjangan pada takat putus dan 

peratusan pemulihan busa berkurangan. Dalam siri kedua, pengurangan saiz pengisi 

menunjukkan peningkatan dalam ciri-ciri NRLF disebabkan peningkatan interaksi 

RHP-matriks dalam NRLFs. Dalam siri ketiga, penggantian sagu menunjukkan 

perosotan sifat-sifat mekanikal dan kestabilan terma NRLFs. Pengubahsuaian RHP 

mengurangkan kandungan lignin dan silika, menyebabkan perosotan sifat-sifat 

NRLFs. Walau bagaimanapun, pengubahsuaian ini mempercepatkan perosotan 

NRLFS terisi RHP. Kemerosotan dalam sifat-sifat busa lateks getah asli telah 

diperhatikan dalam kajian penanaman di dalam tanah dan pencuacaan semulajadi. 
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EFFECT OF RICE HUSK POWDER ON PROPERTIES OF NATURAL 

RUBBER LATEX FOAM 

ABSTRACT 

 Rice husk powder (RHP), an agricultural by-product incorporated into 

natural rubber latex (NRL) compound and foamed to produce natural rubber latex 

foam (NRLF) via the Dunlop method in this work. The tensile, mechanical, thermal 

resistance, micro structural characterization and degradation studies of RHP filled 

NRLF were investigated and compared with the controlled NRLF (zero RHP 

loading). In the first series, the effect of RHP loading from 0 to 10 phr on the 

properties of NRLFs was studied. In the second series, the influence of RHP size 

reduction was studied. The effect of partial or complete replacement of RHP with 

sago starch was investigated in the third series. The RHP/Sago Starch ratio was fixed 

to 10 phr. In the fourth series, modified RHP was used. The effects of soil burial test 

and exposure to natural weathering on all these samples were explored for three 

months in accordance to ASTM D 5247 and ISO 877.2, respectively. Result showed 

tensile strength, modulus at break, hardness and thermal stability increases with 

increasing filler loading while elongation at break and recovery percentage 

decreased. In second series, reduction of RHP filler size showed an improvement in 

the properties examined due to the enhanced RHP-matrix interaction in the NRLFS. 

In third series, the substitution of sago starch showed poor mechanical properties and 

greater thermal stability of the NRLFs. Modification of RHP reduces the lignin and 

silca content, thus resulting in reduced properties of NRLFs. However, these 

modification accelerated the degradation of RHP filled NRLFS. Deterioration in the 

properties of NRLFs was observed through soil burial and natural weathering test. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Biodegradation takes place through the action of enzymes and/or chemical 

deterioration associated with living organisms. This event occurs in two steps. The first 

one is the fragmentation of the polymers into lower molecular mass species by means of 

either abiotic reactions, i.e. oxidation, photodegradation or hydrolysis (Goswami et al., 

1998), or biotic reactions, i.e. degradations by microorganisms. This is followed by 

bioassimilation of the polymer fragments by microorganisms and their mineralisation. 

Biodegradability depends not only on the origin of the polymer but also on its chemical 

structure and the environmental degrading conditions. Mechanisms and estimation 

techniques of polymer biodegradation have been reviewed. The mechanical behaviour 

of biodegradable materials depends on their chemical composition, the production, the 

storage and processing characteristics, the ageing and the application conditions 

(Vroman and Tighzert, 2009). 

Living in an environment with increasing landfill pollution increases the interest 

of researches to develop biodegradable products. The principal of sustainability and 

environmental impacts are becoming the factors to be considered in the process of 

creating future materials and products, alongside with the cost and technical 

performance (Kim et al., 2006); (Nikolic et al., 2003). With developing environmental 

ecological awareness, biodegradable polymers are proposed as one of many strategies to 

alleviate the environmental impact of polymers and are gaining public interest (Koning 
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and Witholt, 1996); (Nakayama et al., 2012). Most of the conventional polymers are 

non-degradable and no naturally occurring microorganisms can break them down (Phua 

et al., 2012). The massive increase in the usage of polymer products such as plastics 

leads to significant environmental impact (Kim et al., 2000).  

Latex also contributes in water and landfill pollution in the form of paint, 

mattresses, cushioning seats for vehicles and furniture, gloves, condoms and etc. 

Therefore, the substitution of these conventional non degradable latex products with 

biodegradable ones is of great interest to the society. Natural rubber latex (NRL), a 

renewable polymeric material displaying excellent physical properties, is widely used in 

the manufacture of thin film and foam products (Sanguansap et al., 2005).  NRL is the 

form in which rubber is exuded from the Hevea brasiliensis tree as an aqueous 

dispersion with high molecular weight (Okieimen and Akinlabi, 2002), and an 

appreciable widely varying gel content. The excellent physical properties of NR include 

resilience, strength and fatigue resistance, and these, together with the fact that it is a 

renewable resource, means that it is a very important elastomeric material. In efforts to 

extend its use, there have been various methods developed in order to modify its 

properties. These modifications have not only been directed towards the enhancement of 

certain properties characteristic of NR, but also to introduce totally new properties not 

usually associated with NR. Reactions that have been utilized in this way include 

substitution, simple addition (Samir et al., 2013), cyclo addition and electro cyclic 

reactions (Lehrle et al., 1997).  

Biodegradable polymers must be cost-effective and have to show similar 

performance to non degradable polymers. In order to achieve the above-mentioned 
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characteristics, in recent years biodegradable polymers have been combined with natural 

fibers to produce environmentally sound biopolymers. The use of biodegradable 

materials based on renewable resources can help reduce the percentage of polymers in 

industrial and household wastes. These fillers can be categorized into many aspects 

according to their applications, such as inorganic and organic. Recently, investigations 

into the use of fillers derived from agricultural-based materials such as hemp, jute, 

bamboo, and rice husk (RH) as alternatives to inorganic fillers in thermoplastics had 

been widely reported (Lifang et al., 2009).  

Rice husk (RH), a by-product of rice milling industry, among several cellulose 

products, is biodegradable, inexpensive, low density, abundant, lightweight, and exhibit 

competitive specific mechanical properties (Ciannamea et al., 2010); (Nurain et al., 

2012). Rice husk (RH), lignocellulosic material which has received a great attention as a 

new type of filler in polymer composites due to its advantages compared to traditional 

fillers (i.e., carbon black and silica) such as lower density, greater deformability, less 

abrasiveness to equipments, lower cost of the production and renewable resource (Mohd 

et al., 2006). However, rice husk disposal is an alarming issue to the environment 

through open burning and illegal dumping. Abundantly disposed rice husk causes 

landfill limitation. Thus, since last two decades, the study on utilization of the rice husk 

powder (RHP) as reinforcing filler has been widely investigated (Yang et al., 2004). The 

RHP has been incorporated into various kinds of polymer matrix such as high-density 

polyethylene, low-density polyethylene, polypropylene, styrene butadiene rubber linear 

low-density polyethylene blends and polyurethane (Attharangsan et al., 2012). Be that as 
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it may, no attempt had been taken to incorporate natural fibers in natural rubber latex 

foam. 

The natural rubber latex foam industry saw the beginning of its true development in the 

late 1920’s was no accident but in many ways a fulfillment. Development of the Dunlop 

process have formed the basis of what became one time the most important process for 

the manufacture of latex rubber (Blackley, 1966). The Dunlop process is particularly 

well adapted to the manufacture of molded latex foam products of thick section such as 

pillows, cushions, mattresses and upholstery foam ( Roslim et al., 2012).  Morosely, very 

few research works have been done on natural rubber latex foam.  

However to best of our knowledge, there are no published reports on attempts to 

incorporate rice husk powder into natural rubber latex foam. Therefore this study is 

focused on the development of environmental friendly rice husk filled natural rubber 

latex foam.  

 

1.2 Problem Statement 

Contribution of latex to the landfill polluted environment leads to an eye opening 

research interest in biodegradable latex products. Latex products such as gloves, 

condoms, cushioning for vehicles and mattresses with a short useful life becomes an 

issue when they are consumed and discarded into the environment as their utilization 

ceases. Hence, contributes significantly to the shortage of landfill availability. Latex 

products degrades slowly in the environment (Blackley, 1966). This growing problem 

related to finding available landfill areas for the final disposal of non-recyclable 

polymers gives rise to the development of biodegradable polymers which able to fulfill 
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the new environmental requirements regarding the effective management of post-

consumer waste. 

For this research study, the use of rice husk powder obtained from rice husk as 

filler in natural rubber latex foam has been explored to promote biodegradation of latex 

foam. Concomitant with the rigorous development of the rice milling industries, rice 

husks, the fibrous, hard, outermost covering of a grain of rice, is generated at 158 

million tonnes per year, accounting for about 30% of the annual gross rice production 

throughout the world. Hitherto, rice husk becomes a burden to the environment through 

open burning and illegal dumping (http://www.statista.com/statistics/271969/world-rice-

husk-2013/). With properties such as annual renewability, large quantity, low cost, 

lightweight, competitive specific mechanical properties, and environmental friendliness, 

rice husk has spurred an interest for use as filler in natural rubber latex foam. It is 

believed that the incorporation of bio fillers such as rice husk powder could enhance the 

biodegradability of natural rubber latex foam. And, this is an alternative way to solve the 

waste disposal problem by converting rice milling waste products into raw material of 

another product. This not only help to create a more environmentally friendly 

surrounding but also reduces disposal cost and increases income of the milling industry.  

 

 

 

 

 

 

http://www.statista.com/statistics/271969/world-rice-husk-2013/
http://www.statista.com/statistics/271969/world-rice-husk-2013/
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1.3 Research Objectives  

The aim of this research is concerned with biodegradability of rice husk powder 

filled natural rubber latex foam.The primarily objectives for this research work are:  

 

i. To study the effect of reduction of rice husk powder and its loading on the tensile 

properties, compression properties, hardness, thermal properties, foam density, and 

biodegradability of rice husk filled natural rubber latex foam under different 

environmental conditions. 

ii. To study the effect of partial or complete replacement of rice husk powder by sago 

starch in natural rubber latex foam, on its tensile properties, compression properties, 

hardness, thermal properties, foam density, and biodegradability under different 

environmental conditions. 

iii. To study the effect of rice husk modification on its tensile properties, compression 

properties, hardness, thermal properties, foam density, and biodegradability under 

different environmental conditions. 

1.4 Organization of Thesis  

There are five chapters in this thesis and each chapter gives information related to the 

research interest as follows:  

• Chapter 1 describes the introduction of the project. It covers brief introduction about 

research background, problem statement, and research objectives.  
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• Chapter 2 shows current problem and generation of latex waste, introduction of 

environmental degradable polymer and benefit of such polymers. It also covers the brief 

explanation regarding to the natural rubber latex foam, rice husk powder, and other 

materials used in this project.  

 

• Chapter 3 contains the information about the materials and equipments specification, 

and experimental procedure used in this study.  

 

• Chapter 4 presents the results and discussion of this research. The effect of various 

loading, sizes and modification of rice husk powder on the natural rubber latex foam 

will be discussed. Rice husk powder with commercial filler hybrids will also be 

discussed in term of its tensile properties, compression properties, hardness, thermal 

properties, foam density, Fourier transform infra-red, and biodegradability under 

different environmental conditions.  

 

• Chapter 5 concludes the findings of the research based on results and discussion in 

Chapter 4 with suggestions for future works. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Natural Fiber 

2.1.1 Classification of Natural Fiber 

The vast agricultural industry produces many waste streams that are rich in 

ligno-cellulosic fibers (Sreekala et al., 2011). Natural fibers are known to be renewable 

and sustainable, but they are in fact, neither. Natural fibers are taken from living plants 

which are renewable and sustainable, not the fiber themselves. Natural fibers are also 

subdivided based on their origins, coming from plants, animals or minerals. Generally, 

plant or vegetable fibers are used to reinforce plastics due to its light weight and low 

density (Bledzki and Gassan, 1999). Living plants can be classified as primary and 

secondary depending on their utilization and contribution of natural fibers. Living plants 

that are grown mainly for their fiber content are considered as primary plants. Whereas, 

living plants with fibers as a by product are known to be secondary plants or fiber. Sisal, 

kenaf, hemp and jute are some of the primary plants. Examples of secondary plants are 

pineapple, rice, oil palm and coir (Omar et al., 2012). Natural fibers can also be grouped 

in six types. There are leaf fibers (abaca, sisal and pineapple), core fibers (kenaf, hemp 

and jute), bast fibers (flax, and ramie), reed fibers (wheat, corn and rice), seed fibers 

(coir, cotton and kapok), and other types (wood and roots) (Omar et al., 2012). Table 2.1 

shows the important sources of natural fibers used commercially from all over the 

world. 
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Table 2.1: Commercially available fiber sources (Omar et al., 2012). 

Fiber source World production (10
3 
ton) 

Bamboo 30,000 

Jute 2300 

Kenaf 970 

Flax 830 

Sisal 378 

Hemp 214 

Coir 100 

Ramie 100 

Abaca 70 

Sugar cane bagasse 75,000 

Grass 700 

 

Uniformity of natural fiber to be used as filler is a common problem. Age, 

digestion process and climatic conditions influence not only the structure of natural 

fibers but also the chemical composition. Compositions of a few natural fibers are 

shown in Table 2.2. 

Table 2.2: Composition of a few natural fibers (Omar et al., 2012). 

Fiber  Cellulose (wt%)  Hemicellulose (wt%)  Lignin (wt%)  Waxes (wt%) 

Bagasse  55.2 16.8 25.3  – 

Bamboo  26–43 30 21–31  – 

Flax  71 18.6–20.6  2.2 1.5 

Kenaf  72 20.3 9 – 

Jute  61–71  14–20  12–13 0.5 

Hemp  68 15 10 0.8 

Ramie  68.6–76.2  13–16  0.6–0.7  0.3 

Abaca  56–63  20–25  7–9  3 

Sisal  65 12 9.9 2 

Coir  32–43  0.15–0.25  40–45  – 

Oil palm 65 –  29  – 

Pineapple 81 –  12.7  – 

Curaua  73.6 9.9 7.5 – 

Wheat straw  38–45  15–31  12–20  – 

Rice husk  35–45  19–25 20 14–17 

Rice straw  41–57  33 8–19  8–38 
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 With the exception of cotton, the components of natural fibers are cellulose, 

hemi-cellulose, lignin, pectin, waxes and water soluble substances, with cellulose, hemi-

cellulose and lignin as the basic components with regard to the physical properties of the 

fibers. Cellulose is the essential component of all plant natural fibers (Omar et al., 

2012). 

 

2.1.2 Natural Fiber as Reinforcing Filler 

 

Environmental awareness has an eye on natural fibers as potential alternatives 

reinforcement to the synthetic fillers due to its unique advantages such as non-toxic, 

non- irritation of the skin, eyes, or respiratory system, non-corrosive properties 

(Shalwan and Yousif, 2012). Beyond the environmental benefits, technical aspects also 

provoke the interest for the natural fibers as a replacement or supplement for common 

fillers (e.g., glass fibers) in polymer composites (Fei et al., 2008). Additionally for 

several more technical orientated applications, the fibers have to be specially prepared 

or modified regarding (Bledzki and Gassan, 1999): 

 homogenization of the fiber’s properties; 

 degrees of elementarization and degumming; 

 degrees of polymerization and crystallization; 

 good adhesion between fibre and matrix; 

 moisture repellence; and 

 flame retardant properties. 
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 Natural fibers attract parties from numerous applications such as automobiles as 

natural fiber shows superior advantages over synthetic fibers in term of relatively low 

cost, low weight, less damage to processing equipment, improved surface finish of 

molded parts composite, good relative mechanical properties, abundant, ease of 

chemical and mechanical modification, relative high strength, stiffness, low density and 

renewable resources. Table 2.3 shows mechanical properties of commercially major 

natural fibers (Ismail et al., 2002; P. Methacanon et al., 2010).  

Table 2.3: Mechanical properties of a few common natural fibers. 

 

Fibre 

Density 

(g/cm3) 

Elongation 

(%) 

Tensile strength 

(MPa) 

Young’s modulus 

(GPa) 

Cotton 1.5–1.6 7.0–8.0 287–597 5.5–12.6 

Jute 1.3 1.5–1.8 393–773 26.5 

Flax 1.5 2.7–3.2 345–1035 27.6 

Hemp - 1.6 690 

 Ramie - 3.6–3.8 400–938 61.4–128 

Sisal 1.5 2.0–2.5 511–635 9.4–22.0 

Coir 1.2 30 175 4.0–6.0 

Viscose 

(cord) - 11.4 593 11 

Soft wood 

kraft 1.5 - 1000 40 

 

Natural fibers are much lighter, cheaper and provide much higher strength than most 

inorganic fillers (Fei et al., 2008; Bledzki and Gassan, 1999). It’s a global interest to 

investigate and study the potential of using natural fibers in various applications under 

varying loading conditions (Shalwan and Yousif, 2012). Natural fibers especially 

lignocellulose-based natural fibres have great properties as compared to glass fiber 

which sparked the interest of researchers from all over the world. Intrinsically, these 
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fibres have a number of interesting mechanical and physical properties as shown in 

Table 2.4 (Paul et al., 2003). 

 

Table 2.4: Comparison between natural and glass fibres. 

 
Natural fibers  Glass fibers 

Density Low Twice that of natural fibers 

Cost Low Low but higher than natural fibers 

Renewability Yes No 

Recyclability Yes No 

Energy consumption Low High 

Distribution Wide Wide 

CO2 neutral Yes No 

Abrasion to machines No Yes 

Health risk when inhaled No Yes 

Disposal Biodegradable Not biodegradable 

 

 

2.1.3 Rice Husk 

Rice is the largest crop grown in the world that is crucially important as a principal 

staple food and nourishment provider for the world’s population. Rice is grown and 

cultivated on every continent and is very much related to cultures and multiple rituals. 

Rice covers about 60 to 70% of the total calorie uptake on average for more than 2000 

million people in Asia. Consumption and production of rice in increasing in Latin 

America and Africa, as the second most consumed food grain in low income and food 

deficit countries. Rice now covers about 1% of earth surface. The global rice 

consumption for 2006 was 417 million tonnes which increased to 526 million tonnes on 

2013 due to the obvious demand from population growth, social civilization, industrial 

and technology development. It is expected that by the year 2040, global rice 

consumption will hike up to 556 million tones (Foo and Hameed, 2009; 
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http://www.statista.com/statistics/271969/world-rice-husk-2013/). Table 2.5 shows the 

major world rice production for year 1990, 2000 and 2010. 

Table 2.5:  Major world rice production (http://www.geohive.com/charts/ag_rice.aspx) 

 

Rice Producing Countries 

 

1990 

(Million Tonnes) 

2000 

(Million Tonnes) 

2010 

(Million Tonnes) 

China 192 189 197 

India 112 127 121 

Indonesia 45 52 66 

Thailand 17 26 32 

Myanmar 14 21 33 

Philippines 10 12 16 

Japan 13 12 11 

Sri Lanka 2.6 2.8 4.3 

Laos 1.5 2.2 3 

Malaysia 1.9 2.1 2.6 

Australia 0.92 1.1 2 

 

Concomitant with the accelerating global rice production, world production for 

rice husk (RH) is about 158 million tonnes, which is about 30% of the annual gross rice 

production in the world (http://www.statista.com/statistics/271969/world-rice-husk-

2013/). Rice husk is an important agricultural waste that can be easily found in some 

states of Malaysia. Huge amount of rice husks are generated in rice milling industry 

during the paddy milling process from the fields (Nurain et al., 2012). Removed during 

the refining of rice, though utilized in multiple ways, were still raising issues due to 

abundant availability that leads to cost of disposal (Yalcin, N. and Sevinc, 2001). To add 

on, the amount of rice husk available is far in excess of any local uses and thus has 

posed disposal problems. 

http://www.statista.com/statistics/271969/world-rice-husk-2013/
http://www.geohive.com/charts/ag_rice.aspx
http://www.statista.com/statistics/271969/world-rice-husk-2013/
http://www.statista.com/statistics/271969/world-rice-husk-2013/
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 RH, the hard, fibrous, woody, protective shell of the grain, accounts for 20–25% 

of a rice grain’s weight. Figure 2.3 shows the real image of raw rice grains still covered 

with rice husks while Figure 2.4 is the typical cross section diagrammatic representation 

of rice grain and rice husk.  

 
Figure 2.1: Real image of raw rice grains still covered with rice husks 

(http://www.chinapictures.org/photo/china/chinese-food/50516165941296/) 

 

http://www.chinapictures.org/photo/china/chinese-food/50516165941296/
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Figure 2.2: Cross section diagrammatic representation of rice grain and rice husk. 

(http://freespace.virgin.net/robmar.tin/rice/rice.htm) 

 

RH exhibits potential advantages, renewable source, low price, biodegradability, 

abundant, and causes no damage due to abrasion to the processing machinery (Qiang et 

al., 2009; Mohd et al., 2006; Khalf and Ward, 2010). Differing from other 

lignocellulosic materials, RH has a more complex composition. The constituents of rice 

husk vary with the climate and geographic location of growth. In addition to the main 

constituents, including cellulose, hemicellulose and lignin, RH also contains a 

significant content of an inorganic component which is silica (Qiang et al., 2009; 

Yalcin, N. and Sevinc, 2001). RH has the same basic components as wood but in 

different proportions as shown in Table 2.6 Khalf and Ward, 2010). 

 

 

 

http://freespace.virgin.net/robmar.tin/rice/rice.htm
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Table 2.6: Basic components of rice husk (Khalf and Ward , 2010). 

 

Components of Rice Husk (%) by Weight 

Cellulose 35 

Hemicelluloses 25 

Lignin 20 

Amorphous silica  15.98 

Other soluble substances  1.02 

 

The exterior of rice husk are made of dentate rectangular elements which are 

mostly silica coated with a thick cuticle and surface hairs, while the mid region and 

inner epidermis are usually containing smaller amount of silica. The outer surface of RH 

which contains high amounts of silica is relatively rougher than the inner surface that 

houses the rice grain. Silica exists on the outer surface of RHs in the form of silicon 

cellulose membrane that forms a natural protective layer against termites and other 

micro-organisms attack on the paddy. This component has been alleged to be 

responsible for insufficient adhesion between accessible functional groups on RH 

surfaces and various matrix binders. Removal of silica and other surface impurities can 

be expected to improve the adhesion properties of rice husks to binders and ultimately 

improve the properties of the composite drastically. The inner surface of rice husk is 

smooth and may contain wax and natural fats that provide good shelter for the grain 

(Ndazi et al., 2007). 

2.1.4 Utilization of Rice Husk in Polymer Materials. 

Despite the increasing trend of the rice husk surplus, proper methods of disposal 

or utilization of rice husks have yet to be developed. Up to now, alternative applications 

of RH are limited, and most of the surplus rice husk is disposed of by direct burning in 
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open heaps or thrown in landfill causing land pollution. Lately, rice husk was used to 

generate electric power through thermal degradation but this method released a large 

number of green house gases, and the emission of rice husk ash into the ecosystem has 

attracted huge criticisms and complaints. Due to RH’s persistent, carcinogenic and bio-

accumulative effects, multiple health issues such as silicosis syndrome, fatigue, 

shortness of breath, loss of appetite and respiratory failure problem aroused (Ying, 

2011); ( Qiang, 2009). Open burning of RH is also often the disposal method of rice 

millers.This leads to environmental concerns and becomes a great environmental threat 

causing damage to the land and the surrounding area in which it was dumped. Different 

methods for husk disposal, including finding a commercial use for the waste have been 

suggested (Nurain, 2012). If we are not able to exploit RH accordingly, a massive 

harzardous environment pollution will be faced (Ying, 2011). However, in the last 

decade, many countries imposed new regulations to restrict field burning of rice husk 

primarily for environmental reasons (Mansaray and  Ghaly, 1998) 

Utilization of rice husks has been significantly widened for the past few years, 

serving as an ideal source of pet food fiber, building and insulating materials for 

reinforcing the tensile strength as fertilizers through vermin-composting techniques, as 

microbial nutrients for single-cell protein production ,for reducing sugar production and 

as raw products in the manufacturing of ethanol (Foo, 2009). 

Due to RH’s fibrous nature, it has been used as filler for making lightweight 

polymer composites which provides an effective means for proper and optimum 

utilization of a large quantity of rice husk produced every year (Khalf and Ward, 2010). 

Research efforts are in progress to incorporate rice husk in polymers so that they can 
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enhance the physical, mechanical and tribological properties of the latter (Navin et al., 

2010). Multiple research efforts were taken by incorporating RH into various kinds of 

polymer matrix such as high-density polyethylene, low-density polyethylene, 

polypropylene, styrene butadiene rubber and polyurethane. It was known through these 

studies that RH not only improves the tensile modulus and flexural modulus but also 

flame retardancy. ( Ismail et al., 2012) 

RH has been used as a resource for chemical feedstocks or as reinforcement 

(Samir et al., 2011).  Rice husk, a cellulose-based fiber, has also been utilized in the 

manufacture of composite panels (Ndazi et al., 2007). One of the current applications of 

RH is its incorporation into polymer matrices such as for the fabrication of RH-filled 

ecocomposites. The addition of RH can promote the biodegradation process of the 

polymer matrix, and also make the final materials to be economically more competitive 

(Qiang et al., 2009; Ismail et al., 2012). 

2.2 Natural Rubber 

2.2.1 Background and Properties of Natural Rubber 

Natural rubber (NR) can be defined as polyisoprene extracted form Hevea 

Braziliensis (Lee et al., 2011). Originally, South America, but in present day, countries 

such as Malaysia, Indonesia, Sri Lanka, and Nigeria are also major contributors of 

natural rubber. A slit is made into the bark of Hevea Braziliensis (also known as rubber 

tree) to allow the flow of a milky sap called latex. This is described in Figure 2.3. 
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Figure 2.3: Tapping latex from a rubber tree. 

(http://www.fao.org/docrep/006/ad221e/ad221e06.htm) 

 

Latex is a mixture of polyisoprene, water and small amount of other ingredients 

such as proteins, carbohydrates and impurities. Collected latex undergoes multiple 

processing stages involving preservation, concentration, coagulation, dewatering, 

drying, cleaning, and blending before becoming ‘dry rubber’ (Ciesielski, 1999); (Ciullo 

and Hewitt, 1999). NR has a very unique ability, to crystallize upon stretching, a 

phenomenon known as ‘‘strain induced crystallization”. This characteristic is due to 

NR’s uniform microstructure (Ismail et al., 2011). Processing of NR requires high 

power input and heavy equipments. Thus, arising the need of rubber to be available in 

physical form that is friendly to be handled in liquids, fluids, and solids (Okieimen and 

Akinlabi, 2002). Still, NR is one of the most important elastomers widely used in 

industrial, technological and engineering fields due to its superior and unique 

mechanical properties that make it an important and irreplaceable material in certain 

http://www.fao.org/docrep/006/ad221e/ad221e06.htm
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applications, such as in tires, mountings, gaskets and seals (Okieimen and Akinlabi, 

2002). 

Composition of latex and dry rubber is similar but varies in its amount. The 

typical composition of latex and dry rubber is shown in Table 2.7 (Ciesielski, 1999); 

(Ciullo and Hewitt, 1999); (Morton, 1987).  

Table 2.7: Composition of Fresh Latex and Dry Rubber (Morton, 1987) 

Constituents Dry Rubber (%) Fresh Latex (%) 

Rubber hydrocarbon 93.7 36 

Protein 2.2 1.4 

Neutral lipids 2.4 1 

Carbohydrate 0.4 1.6 

Inorganic constituents 0.2 0.5 

Water - 58.5 

Glycolipids + Phospholipids 1 0.6 

Others 0.1 0.4 

 
NR is composed of both Gel phase, which is the insoluble part in toluene and Sol 

phase that is the soluble part in toluene. The term ‘‘Gel’’ means a three-dimensional 

network that is insoluble in solvents. Hence, the Gel phase in NR is not a true Gel since 

it is soluble to certain solvents and also soluble at high temperatures. Amount of Gel 

varies with the clones of Hevea tree, ages of tree, and periods of storage, storage 

conditions and processing conditions. 

NR is recently been proposed to be composed of linear poly-isoprene with two 

terminal groups. These terminal groups are active and can react with natural impurities 

such as proteins and phospholipids. These reactions can lead to extensions of two linear 

poly-isoprene segments, connections of three or more linear segments (so-called 

branches or star), forming a network of different chain connections. As a result, NR has 



21 

 

been considered as a mixture of connected linear poly-isoprene segments with different 

connectivity. This connected mixture is named as the ‘‘naturally occurring network’’. 

Therefore, the gel phase in NR is composed of the naturally occurring connected 

network, and the sol phase is composed of extensions and branches of linear chains. The 

naturally occurring network is thought to be responsible for the elastomeric behavior of 

NR (Shigeyuki Toki et al., 2009). NR also has high molecular weight compound and 

weak thermal properties low heat diffusivity and conductivity (Okieimen and Akinlabi, 

2002). 

2.2.2 Application and Research Development of Natural Rubber 

Current trend is to add fillers into NR to gain appropriate properties for specific 

applications. A wide variety of fillers are used in the rubber industry for various 

purposes, of which the most important are reinforcement, reduction in material costs, 

and improvements in processing (Ismail et al., 2011; Larissa et al., 2011; Okieimen and 

Akinlabi, 2002; Nittaya and Sarawut, 2012). For example in automotive engine 

industry, it is required to improve the thermo-mechanical performance of the current 

NR, which is commonly used as an anti-vibration system inside the engine 

compartment. NR composite materials are very much in demand to reduce the cost and 

increase the life-time durability while maintaining excellent performance under harsh 

operating conditions (Lee et al., 2011). 

Ergo, world wide researchers have attempted to enhance the properties of NR by 

multiple ways in varying fields and industries. Recently, natural rubber nanocomposites 

with carbon black and organoclay was prepared by incorporating nanofillers into solid 

rubber using a conventional two-roll mill (Larissa et al., 2011). Attemps was made to 
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enhance the properties of china clay-filled NR vulcanizates by partially substituting clay 

with reinforcing fillers. Currently, an interesting work claims that the best balance of 

heat build-up and abrasion resistance for a heavy-duty truck tire tread is achieved when 

china clay and silica filled NR compound is used (Nittaya and Sarawut, 2012). NRs are 

now prepared from the combinations of natural rubber with various conventional 

plastics, such as polypropylene (PP), low-density polyethylene (LDPE) , linear low-

density polyethylene (LLDPE) as well as high density polyethylene (HDPE) ( 

Pongdhorn Sae-Oui et al., 2010). 

However, there is also growing environmental awareness regarding the disposal 

of these materials at the end of their useful life (Ismail et al.,2011). Scrap rubbers, 

leftover rubber from manufacturing activities and also old and defective rubber products 

are waste and usually discharged. The discarded scrap rubber does not degrade rapidly 

enough and this causes environmental pollution. (Ismail et al., 2002). 

2.3 Natural Rubber Latex (NRL) 

2.3.1 Background and Properties of Natural Rubber Latex (NRL) 

Though many plants are capable of producing latex, only the latex from Hevea 

brasiliensis trees has been exploited over the 100 years.This tree species which grow in 

the hot humid intertropical regions, is exploited by tapping bark. Natural rubber latex 

(NRL) is found in latex vessels localized in the cortex, especially in the layer 2 to 3 mm 

thick nearest to the cambium. NRL is the fluid, milky in appearance, which flows from 

these plants after the slightest wound. Like all plant materials, latex contains growth- 

related substances such as carbohydrates, proteins, and other organic and inorganic 
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constituents. The rubber hydrocarbon particles (the elastic components sought in all 

natural rubber products) comprises 25% to 45% of the latex system.The variation is due 

to factors such as the clone of the tree, the tapping system, the soil condition and the 

season. The non rubber substances constitute only a small percentage of the latex system 

(Sansatsadeekul et al., 2011) 

Latex is, in general, an aqueous system in which polymer particles are 

homogeneously distributed as a colloidal dispersion. It is a two phase system, made of 

aqueous and solid polymer particles and, therefore, the surface interaction phases are: 

water to polymer particles and, aqueous to air. The interaction between the aqueous 

phase and the particles has a certain effect on the latex stability. Improper interaction 

causes the coagulation of particles to create larger particles. It was found that as the 

particle size increases the interfacial energy decreases. Therefore, latex may be 

considered as thermodynamically unstable (Berrin Yilmaz, 2010). NRL, which is 

usually obtained by the partial depolymerization of  NR, was previously found to have 

most of the natural components that produce the color, appearance, and performance of 

NR. Not only this, NRL has the same monomer as the rubber 1,4-isoprene unit. Natural 

rubber Latex (NRL) is an aqueous dispersion of polyisoprene latex particles and non 

rubber particles in an aqueous serum phase. Apart from the rubber hydrocarbon, a large 

number of non rubber constituents (mainly carbohydrates, lipids, and proteins) are also 

present in relatively small amounts in the aqueous phase. Some are associated with the 

rubber particles themselves (Okieimen and Akinlabi, 2002). When subjected to 

ultracentrifugation at approximately 59,000g, latex can be separated into 3 main 

fractions3 (Figure 2.6): (1) top rubber hydrocarbon particle phase; (2) ambient C serum 
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in which all latex particles are suspended; and (3) denser bottom fraction of nonrubber 

particles, particularly lutoids, which contain yet another serum (B-serum). 

 
 

Figure 2.4: Freshly collected Hevea brasiliensis latex separated into its 3 main fractions 

on ultracentrifugation at 59,000g. (Esah and Paul, 2002) 

 

When it is required to preserve NRL, chemicals such as formalin, sodium 

sulphate and ammonia at desired dosages are added in. Ammonia  has been recognized 

as the most effective and desired preservative. However, this chemical has certain 

drawbacks as well. Higher dosage is required for an effective longer preservation 

period. High amount of ammonia leads to atmospheric pollution. Thus, preservation 

systems comprising low levels of ammonia in combination with other chemicals were 

introduced. However, these systems had issues such as high toxicity, lower mechanical, 

storage and chemical stability. A composite preservation system consisting 

tetramethylthiuram disulphide, zinc oxide and ammonia, popular known as LA-TZ 

system was introduced during 1975 and subsequently commercialized till today (Ho et 


