INFLUENCE OF ENHANCED BIORETENTION MEDIA AND TROPICAL SHRUB ON NUTRIENT REMOVAL FOR URBAN RUNOFF IN MIXED DEVELOPMENT AREA

GOH HUI WENG

UNIVERSITI SAINS MALAYSIA 2016

INFLUENCE OF ENHANCED BIORETENTION MEDIA AND TROPICAL SHRUB ON NUTRIENT REMOVAL FOR URBAN RUNOFF IN MIXED DEVELOPMENT AREA

by

GOH HUI WENG

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

September 2016

ACKNOWLEDGMENT

First and foremost, I wish to express my deepest and most gracious gratitude to my main supervisor, Prof. Nor Azazi Zakaria, for the opportunity given to further my studies at the River Engineering and Urban Drainage Management Centre (REDAC) in USM Engineering Campus under the Academic Staff Training Scheme (ASTS) and funding by the Ministry of Higher Education Malaysia under the grant title of "Urban Water Cycle Processes, Management and Societal Interactions: Crossing from Crisis to Sustainability" with grant number as: 203/PKT/6720004. The invaluable advices, constructive suggestions and supportive resources had provided me an ideal environment for research.

Furthermore, I would like to express my sincere appreciation to Dr. Lau Tze Liang and Dr. Foo Keng Yuen, my co-supervisors for their undying dedication, in providing useful comments, remarks and engagement throughout the learning process and path towards the study. I really cherish the opportunity to work under their supervision. Not to forget Assoc. Prof. Ahmad Shukri Yahya from School of Civil Engineering, who has provided guidance, assistance and constructive feedback on statistical analysis.

In addition, I like to thank the entire office staff of REDAC, special thanks to Mr. Chang Chun Kiat and Mr. Leow Cheng Siang, whose interactions and opinions helped shaped this comprehensive research. Also, I would like to thank the entire technical support staff and research assistants of REDAC, especially Mr. Muhamad Shukry bin Mat Yusof, Mr. Muhammad Asri Abdul Azis and Mr. Khairul Azwan bin Razali whose undivided attention and continuous assistance lead to the success of testing and data collection.

To my parents, Mr. Goh Pong Hing and Madam Cheng Chong Lang, my heartfelt thanks for their unfailing support, understanding and love without which the thesis would not have come to fruition. It has been a long journey throughout the study and I have both my ups and downs but I am indeed touched and grateful for the all the kind support, encouragement and assistance rendered by people around me one way or another. I will be forever grateful for all the love.

TABLE OF CONTENTS

Acknowledgementii
Table of Contentsiv
List of Tablesviii
List of Figuresxi
List of Abbreviationsxvi
List of Symbolsxx
Abstrakxxiii
Abstractxxv
CHAPTER 1 INTRODUCTION
1.1 Background1
1.2 Problem Statement
1.3 Objectives of the Study7
1.4 Scope of the Study7
1.5 Organization of the Thesis
CHAPTER 2 LITERATURE REVIEW
2.1 Introduction
2.2 Urban Runoff
2.3 Bioretention Systems
2.3.1 Introduction of Bioretention Systems
2.3.2 Classification of Bioretention Systems
2.3.3 Bioretention Design Requirements
2.3.3.1 Planting Soil Bed/Bioretention Media
2.3.3.2 Hydraulic Conductivity
2.3.3.3 Nutrient Removal
2.4 Previous Studies in Bioretention

	2.4.1	Total Susj	pended Solids (TSS) Removal	37
	2.4.2	Nitrogen (N) Removal	
	2.4.3	Phosphoru	us (P) Removal	
	2.4.4	Other Eler	ments Removal	45
2.5	Additiv	ves Used for E	nhanced Bioretention Media	47
	2.5.1	Newspape	er	
	2.5.2	Sea shell.		49
	2.5.3	Tire Crum	ıb	50
	2.5.4	Coconut H	ibre	51
	2.5.5	Other Mat	terials	52
2.6	Vegeta	tion Selection	in Bioretention	
2.7	Summa	ary		55
CHA	PTER 3	RESEARC	H METHODOLOGY	57
3.1	Introdu	ction		57
3.2	Materi	als Preparation	1	
	3.2.1	Runoff Ou	utlet	59
	3.2.2	Filter Med	lia Preparation	62
	3.2.3	Additives	Preparation	64
	3.2.4	Vegetation	n Preparation	69
		3.2.4.1	Plant Selection	69
		3.2.4.2	Plant Cultivation	71
		3.2.4.3	Plant Growth Measurement	73
3.3	Experi	mental Setup a	and Experimental Procedure	74
	3.3.1	Mini Colu	ımn Test	74
		3.3.1.1	Mini Column Setup	75
		3.3.1.2	Stage 1 Mini Column Test Procedure	76
		3.3.1.3	Stage 2 Mini Column Test Procedure	76
	3.3.2	Greenhou	se Mesocosm Test	78
		3.3.2.1	Mesocosm Setup	78
		3.3.2.2	Greenhouse Construction	79
		3.3.2.3	Stage 1 Mesocosm Test Procedure	79
		3.3.2.4	Stage 2 Mesocosm Test Procedure	81

3.4	Sample	Testing		83
	3.4.1	Total Susp	pended Solids (TSS)	84
	3.4.2	Nitrogen ((N)	85
	3.4.3	Phosphoru	us (P)	86
	3.4.4	Dissolved	Oxygen (DO), Biochemical Oxygen Demand	1
		(BOD) an	d Chemical Oxygen Demand (COD)	
	3.4.5	Saturated	Hydraulic Conductivity Test	87
	3.4.6	Organic M	fatter Test	88
	3.4.7	Soil and P	lant C:N Ratio Test	
		3.4.7.1	Soil Preparation for C:N Ratio Test	89
		3.4.7.2	Plant Preparation for C:N Ratio Test	90
		3.4.7.3	C:N Ratio Test Procedure	91
3.5	WQI Ca	alculation		92
3.6	Statistic	cal Analysis		94
	3.6.1	Correlatio	n Coefficient Analysis	94
	3.6.2	Analysis o	of Variance (ANOVA)	94
	3.6.3	Principle	Component Analysis (PCA)	96
	3.6.4	Multiple I	Linear Regression (MLR)	97
	3.6.5	Performar	nce Measures	99
СНАІ	PTER 4	RESULTS A	AND DISCUSSIONS	
4.1				
4.2			n Test: Material Screening	
	4.2.1		al in Preliminary Material Screening	
	4.2.2		l in Preliminary Material Screening	
4.3	Stage 1		est: Material Comparison	
	4.3.1		Additives on Hydraulic Conductivity	
	4.3.2		Additives on Plant Growth and Water Baland	
	4.3.3	Effects of	Additives on Nitrogen Removal	116
	_	4.3.3.1	Total Nitrogen (TN)	
		4.3.3.2	Interaction between N Elements	
		4.3.3.3	C:N ratio in Soil and Plant	
	4.3.4	Effects of	Additives on TSS Removal	

	4.3.5	Effects of Additives on Phosphorus Removal134
	4.3.6	Long Term Performance of Bioretention Media using
		Different Additives136
	4.3.7	Summary of Stage 1 Study141
4.4	Stage	2 Mini Column Test: Effects of Organic Matter Content on
	Nutrie	ent Removal142
4.5	Stage	2 Mesocosm Test: Enhanced Media Optimization146
	4.5.1	Effects of Composite Media on Hydraulic Conductivity147
	4.5.2	Effects of Composite Media on Plant Growth and Water
		Balance148
	4.5.3	Effects of Composite Media on Nitrogen Removal152
	4.5.4	Effects of Composite Media on TSS Removal163
	4.5.5	Effects of Composite Media on Phosphorus Removal165
	4.5.6	Effects of Composite Media BOD and COD Removal166
	4.5.7	Water Quality Index Performance by Composite Media174
4.6	Statist	ical Analysis175
	4.6.1	Correlation Analysis175
	4.6.2	Principle Component Analysis (PCA)175
	4.6.3	Mathematical Equation Development182
CHA	PTER 5	CONCLUSIONS AND RECOMMENDATIONS
5.1	Concl	usions

2.11	Constanting	,0
5.2	Recommendations18	39

Appendices

List of Publications

LIST OF TABLES

		Page
Table 2.1	Typical urban runoff pollutant sources (PUB, 2011)	12
Table 2.2	Reported nutrient compositions of urban runoff in various countries	14
Table 2.3	Types and nutrient compositions of runoff used in the bioretention studies	16
Table 2.4	Classifications of bioretention system according to the selected BMP Manuals	20
Table 2.5	Bioretention media requirements according to selected BMP Manuals	22
Table 2.6	Soil particle classification	23
Table 2.7	Nutrient removal requirements in selected BMP Manuals	26
Table 2.8	Classification of water and water uses according to National Water Quality Standards in Malaysia (DOE, 2012)	27
Table 2.9	Water Quality Index (WQI) classification (DOE, 2012)	28
Table 2.10	Review on types of statistical analysis used in bioretention studies	31
Table 2.11	Reported pollutant removal performance of bioretention site studies	33
Table 2.12	Reported pollutant removal performance of bioretention laboratory studies	34
Table 2.13	Some important reactions in the nitrogen cycle and its effect on alkalinity (Schnoor, 1996, van Haandel and van der Lubbe, 2007, Stumm and Morgan, 2012, Walworth, 2013)	41
Table 2.14	Reported other pollutant removal performance of bioretention systems	45
Table 2.15	Reported types and classification of plants used in bioretention laboratory studies	53
Table 3.1	Summary water quality results for three proposed locations to be selected as runoff outlet	60

Table 3.2	Summary of hydrometer test result for top soil	63
Table 3.3	Summary of TN and TP test result for additives pre-screening test	66
Table 3.4	Conversion of filter media composition from volume to weight	68
Table 3.5	Summary of enhanced bioretention media composition	69
Table 3.6	Formulae defining instantaneous and mean values of each type of derivate in individual plant growth measurement (Hunt et al., 2003)	73
Table 3.7	Frequency and types of water quality test conducted for mesocosm study	84
Table 3.8	Calculations of sub index for six parameters in WQI (DOE, 2012)	94
Table 3.9	Example of general ANOVA table	95
Table 3.10	Example of post hoc grouping result using Tukey method	96
Table 3.11	Description of accuracy measures and their formulae	101
Table 4.1	TP influent versus effluent concentration from mini column with different additives over time	108
Table 4.2	TP removal efficiencies for mini column with different additives over time	108
Table 4.3	Summary of TSS, TN and TP concentration, volume reduction, temperature and pH of influent and effluent for STD and five types of enhanced bioretention media in stage 1 experiment	109
Table 4.4	Grouping information of stage 1 result using One-way ANOVA: Tukey Method	120
Table 4.5	Comparison of physical properties and nutrient removal efficiencies for selected bioretention media	143
Table 4.6	Summary of TN, TDN, TSS, TDS, TP and TDP concentration and volume reduction, pH and temperature for influent and effluent between STD and four types of composite media in stage 2 experiment	153
Table 4.7	Grouping information of stage 2 result using One-way ANOVA: Tukey Method	156

Table 4.8	Comparison of dissolved oxygen (DO) level and DO saturation percentage (DO_{sat}) over time between influent and effluent of STD and composite media	168
Table 4.9	Comparison of Water Quality Index for vegetated and non- vegetated mesocosm between STD and composite media	174
Table 4.10	Correlation matrices for nutrient pollutant contents in influent and effluent of various mesocosm	176
Table 4.11	Total variance explained	179
Table 4.12	Results of accuracy for regressed equation	187

LIST OF FIGURES

		Page
Figure 2.1	Example of eutrophication in municipal drain	11
Figure 2.2	Examples of bioretention systems for different landscapes	17
Figure 2.3	Components of a typical bioretention system (Water by Design, 2012)	18
Figure 2.4	USDA Texture Triangle (DID, 2011, USDA, 1972)	24
Figure 2.5	Photographs of experimental bioretention boxes (Davis et al., 2001)	29
Figure 2.6	Mesocosm studies conducted by Bratieres et al. (2008)	30
Figure 2.7	Field studies on bioretention facilities (Davis et al., 2003)	30
Figure 2.8	Nitrogen cycle in natural ecosystem (Schnoor, 1996)	39
Figure 2.9	Nitrogen composition in storm water	40
Figure 3.1	Methodology flowchart for the present study	58
Figure 3.2	Targeted runoff collection point nearby Bank Islam, Parit Buntar	61
Figure 3.3	Geographical location of targeted runoff collection point	61
Figure 3.4	Location of sample top soil in USDA Texture (DID, 2012)	64
Figure 3.5	Types of material selected for additives pre-screening	65
Figure 3.6	Samples collected for additives pre-screening test	67
Figure 3.7	Types of plants selected for preliminary screening	70
Figure 3.8	Plant cultivation procedure	72
Figure 3.9	Mini column test setup	75
Figure 3.10	Schematic diagram of mesocosm design	78
Figure 3.11	Mesocosm test dosing procedure	80
Figure 3.12	Stage 2 mesocosm design	82

Figure 3.13	Single ring infiltration test procedure	88
Figure 3.14	Organic matter test – sample preparation and burning of soil samples in the furnace	89
Figure 3.15	Soil preparation for C:N ratio test	90
Figure 3.16	Plant preparation for C:N ratio test	91
Figure 4.1	Comparison of influent versus effluent concentration and accumulated mass removed from mini column with different additives over time for: total nitrogen (TN), ammonical nitrogen (NH ₃ -N), nitrite-nitrogen (NO ₂ -N) and nitrate-nitrogen (NO ₃ -N)	104
Figure 4.2	Comparison of saturated hydraulic conductivity (k_s) over 16 weeks of study for non-vegetated (NV) and vegetated mesocosm (V) using six types of bioretention media	111
Figure 4.3	Plant growth performance comparison for six types of bioretention media using: (a) Plant height and canopy growth rate versus number of flowers produced (b) Plant growth performance ratio (R_H : height ratio, R_C : canopy ratio, R_F : flower ratio and R_M : maturity ratio)	115
Figure 4.4	Comparison of water balance for vegetated and non- vegetated mesocosm between six types of bioretention media	116
Figure 4.5	Comparison of six types of vegetated (V) and non- vegetated (NV) mesocosm over 16 weeks of dosing experiment on: (a) TN mean concentration removal efficiency (b) TN influent and effluent concentration	118
Figure 4.6	Comparison of six types of vegetated (V) and non- vegetated (NV) mesocosm on N elements influent and effluent concentrations	122
Figure 4.7	Comparison between STD and five types of enhanced media for N content, C content and C:N ratio in top, medium and bottom layer of soil for: (a) non-vegetated (NV) and (b) vegetated (V) mesocosm after 16 weeks of study	129
Figure 4.8	Comparison between STD and five types of enhanced media for N content, C content and C:N ratio in leave, branch and root of plant after 16 weeks of study	130

Figure 4.9	Comparison of six types of vegetated (V) and non- vegetated (NV) mesocosm over 16 weeks of dosing experiment on: (a) TSS removal efficiency (b) TSS influent and effluent concentration	132
Figure 4.10	Comparison of six types of vegetated (V) and non- vegetated (NV) mesocosm over 16 weeks of dosing experiment on: (a) TP removal efficiency (b) TP influent and effluent concentration	135
Figure 4.11	Saturated hydraulic conductivity of STD, CS and NP vegetated mesocosm after 49 weeks of study	137
Figure 4.12	Long term nutrient removal performance of STD, CS, NP vegetated mesocosm in comparison of influent and effluent for: (a)TN, (b) TSS, and (c) TP	139
Figure 4.13	Comparison of vegetated mesocosm after 16 weeks (STD, CS, NP) and 49 weeks (STD_L, CS_L, NP_L) of study in terms of N content, C content and C:N ratio for (a) top, medium and bottom layer of bioretention media, and (b) leave, branch and root of plant	140
Figure 4.14	Comparison of early stage hydraulic conductivity for column with different organic matter content	143
Figure 4.15	Influent and effluent comparison between bioretention media with different organic matter content for: (a) Nitrogen and (b) Phosphorus elements	145
Figure 4.16	Comparison of saturated hydraulic conductivity (k_s) between STD and composite media over 16 weeks of studies for non-vegetated and vegetated mesocosm	148
Figure 4.17	Plant growth performance comparison for six types of bioretention media using: (a) Plant height and canopy growth rate versus number of flowers produced (b) Plant growth performance ratio (R _H : height ratio, R _C : canopy ratio, R _F : flower ratio and R _M : maturity ratio)	150
Figure 4.18	Comparison of water balance for vegetated and non- vegetated mesocosm between STD and composite media	152
Figure 4.19	Comparison of vegetated (V) and non-vegetated (NV) mesocosm between STD and composite media on: (a) TN (b) TDN and (c) Particulate N influent and effluent concentration	154

Figure 4.20	Comparison of vegetated (V) and non-vegetated (NV) mesocosm between STD and composite media on: (a) NO_3 -N (b) NO_2 -N and (c) NO_x -N influent and effluent concentration	158
Figure 4.21	Comparison of vegetated (V) and non-vegetated (NV) mesocosm between STD and composite media on: (a) NH ₃ -N (b) DON and (c) TKN influent and effluent concentration	159
Figure 4.22	Comparison between STD and composite media for N content, C content and C:N ratio in top, medium and bottom layer of soil for: (a) non-vegetated (NV) and (b) vegetated (V) mesocosm after 16 weeks of test	161
Figure 4.23	Comparison between STD and composite media for N content, C content and C:N ratio in leave, branch and root of plant after 16 weeks of test	162
Figure 4.24	Comparison of vegetated (V) and non-vegetated (NV) mesocosm between STD and composite media on TSS influent and effluent concentration	164
Figure 4.25	Comparison of vegetated (V) and non-vegetated (NV) mesocosm between STD and composite media on: (a) TP (b) TDP and (c) Particulate P influent and effluent concentration	167
Figure 4.26	Comparison of BOD ₅ concentration (mg/L) over time between influent (C_{in}), STD, ComA, ComB, ComC and ComD for (a) vegetated (V) and (b) non-vegetated (NV) mesocosm	170
Figure 4.27	Comparison of BOD ₅ removal (%) between STD and composite media over time for vegetated (V) and non-vegetated (NV) mesocosm	171
Figure 4.28	Comparison of COD concentration (mg/L) over time between influent (C _{in}), STD and composite media type A, B, C and D for (a) vegetated (V) and (b) non-vegetated (NV) mesocosm	173
Figure 4.29	Biplots of principle component analysis (PCA) of water quality for: (a) Influent, (b) Effluent from non-vegetated mesocosm, (c) Effluent from vegetated mesocosm, (d) Effluent from standard mesocosm (without additives) and (e) Effluent from composite mesocosm (with additives)	180
Figure 4.30	Normal plot of NMR regression standardized residual	184

Figure 4.31	Scatter plot of N_{MR} against the independent variables	185
Figure 4.32	Accuracy measures for nitrogen mass reduction (N_{MR}) without additives	186
Figure 4.33	Accuracy measures for nitrogen mass reduction (N _{MR}) with additives	186

LIST OF ABBREVIATION

Al	aluminium
ANOVA	analysis of variance
ASTM	American Society for Testing and Materials
Aus.	Australia
BAM	bio-sorption activated media
BMPs	Best Management Practices
BOD	biochemical oxygen demand
BOD ₅	five-day biochemical oxygen demand
С	carbon
Ca	calcium
Ca ²⁺	calcium ion
CaCO ₃	calcium carbonate
Ca5(PO4)3(OH)	calcium hydroxyapatite
CEC	cation exchange capacity
СН	coconut husk mesocosm
C:N	carbon: nitrogen
COD	chemical oxygen demand
CS	crushed cockle shell mesocosm
Cu	Copper
DEP	Department of Environmental Protection Pennsylvania
DID	Department of Irrigation and Drainage Malaysia
DIN	dissolved inorganic nitrogen
DO	dissolved oxygen

DOC	dissolved organic carbon
DOE	Department of Environment Malaysia
DON	dissolved organic nitrogen
EMCs	event mean concentrations
EQR	Environment Quality Report Malaysia
Fe	iron
H ₃ PO ₄	Orthophosphate
HRT	hydraulic retention time
LMW	low molecular weight
MLR	multilinear regression analysis
MSMA	Manual Saliran Mesra Alam
Ν	nitrogen
N ₂ O	nitrous oxide
NH ₃ -N	ammonical nitrogen
NJDEP	New Jersey Department of Environmental Protection
NO ₂ -N	nitrite-nitrogen
NO ₃ -N	nitrate-nitrogen
NO _x -N	oxidized nitrogen
NP	shredded newspaper mesocosm
NPDES	National Pollutant Discharge Elimination Systems
NV	non-vegetated mesocosm
NWQS	national water quality standard
O ₂	oxygen gas
Р	phosphorus
Pb	lead

PCA	principle component analysis
PGC	Prince George's County Maryland
PO ₄ ³⁻	phosphate
PON	particulate organic nitrogen
PP	shredded printed paper mesocosm
PSD	particle size distribution
PUB	Singapore Public Utility Board
PVC	polyvinyl chloride
REDAC	River Engineering and Urban Drainage Research Centre
SD	standard deviation
SEM	scanning electron microscope
SS	suspended solids
STD	standard mesocosm
TC	tyre crumb mesocosm
TDN	total dissolved nitrogen
TDP	total dissolved phosphorus
TDS	total dissolved solids
TKN	Total Kjeldahl Nitrogen
TN	total nitrogen
TOC	total organic carbon
ТР	total phosphorus
TSS	total suspended solids
UK	United Kingdom
US	United States
USDA	United States Department of Agriculture

USEPA	United States Environmental Protection Agency
V	vegetated mesocosm
VSSF	vertical subsurface flow constructed wetlands
WQI	water quality index
WSUD	Water Sensitive Urban Design Australia
WTR	water treatment residue
Zn	zink

LIST OF SYMBOLS

Е	Error
β	Relevant parameters
∆Canopy	Canopy growth rate
∆Canopy _{media}	Average canopy growth rate for each media type
ΔH	Height growth rate
ΔH_{media}	Average height growth rate for each media type
$\Sigma \Delta Canopy_{media}$	Total average canopy growth rate
$\Sigma \Delta H_{media}$	Total average height growth rate
ΣF_{media}	Total number of flower
ΣM_{media}	Total plant achieved maturity
$C_{e\!f\!f}$	Effluent concentration
$\overline{C_{eff}}$	Mean effluent concentration
Cinf	Influent concentration
$\overline{C_{inf}}$	Mean influent concentration
C_R	% concentration reduction
C_S	Saturated DO concentration
<i>Canopy</i> _f	Final canopy width
<i>Canopy</i> _i	Initial canopy width
d_{50}	Diameter of particle size that intercept at 50% of the cumulative mass
df	Degree of freedom
DO_x	Measured DO
DO _{sat}	Dissolved oxygen saturation percentage

е	Residuals
F	Factor
F_{media}	Number of flower for each media type
H_{0}	Null hypothesis
H_{f}	Final height
H_i	Initial height
k	Hydraulic conductivity
k_s	Saturated hydraulic conductivity
L	Depth of bioretention media
M_{f}	Final sample mass
M_i	Initial sample mass
M _{media}	Number of plant achieved maturity for each media type
MS	Mean square
M_{total}	Cumulative mass removal
р	Ponding depth
Q	Infiltration flow rate
r	Pearson's correlation coefficient
R^2	Coefficient of determination
R_{Canopy}	Canopy growth ratio
R_F	Flower ratio
R_H	Height growth ratio
R_M	Maturity ratio
S	Cross section of the column
Sig.	Significance
SS	Sum of square

SSres	Sum of squares of residuals
SStot	Total sum of squares of the deviations
Vol.	Volume
Vol. _{eff}	Effluent volume
Vol. inf	Influent volume
X	Independent variables
Y	Dependent variables

PENGARUH MEDIA *BIORETENTION* YANG DITAMBAH BAIK DAN POKOK RENEK TROPIKA TERHADAP PENGURANGAN NUTRIEN DALAM AIR LARIAN BANDAR DI KAWASAN PEMBANGUNAN BERCAMPUR

ABSTRAK

Input nutrien daripada aliran air bandar terutamanya nitrogen (N) dan fosforus (P), merupakan masalah utama dalam perlindungan ekosistem akuatik. Kajian makmal ini bertujuan menyiasat penambahbaikan sistem bioretention untuk mengetahui prestasi dan mengoptimumkan komposisi bahan tambahan dalam media bioretention bagi menyingkirkan nutrien, dan menyiasat potensi fitopemulihan Hibiscus rosa-sinensis (bunga raya) dalam sistem bioretention melalui kajian tanah dan tumbuhan. Kajian ini dijalankan dalam dua peringkat. Pada Peringkat 1, kajian dilakukan dengan mengubahsuai media bioretention dengan 10% (mengikut isi padu) bahan tambahan dari pelbagai bahan-bahan buangan (kulit kerang, akhbar, kertas bercetak, sabut kelapa, dan remah tayar) dan ditanam dengan Hibiscus rosa-sinensis. Hasilnya, media yang diubahsuai dengan hirisan akhbar (NP) menunjukkan jumlah penyingkiran pepejal terampai (TSS) tertinggi (98.4%), berbanding dengan media bioretention standard (STD, 85.4%), dan menunjukkan peningkatan yang ketara dalam penyingkiran jumlah nitrogen (TN, 80.4%), berbanding dengan STD (57.5%) apabila disiram dengan air larian sebenar. Medium yang diubahsuai dengan hancuran kulit kerang (CS) menunjukkan jumlah penyingkiran fosforus (TP) yang paling tinggi (93.3%), berbanding dengan STD (84.8%), dan media ini juga menunjukkan pertumbuhan pokok yang lebih baik, berbanding dengan media lain. Oleh itu, NP dan CS telah dipilih untuk kajian di Peringkat 2, dan tiga jenis komposisi media (komposit