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RIASSUNTO 

 

Le patologie da accumulo lisosomiale sono malattie metaboliche rare a carattere 

ereditario determinate da carenze di specifici enzimi o trasportatori lisosomiali, che 

hanno complessivamente un’incidenza di ~1/7000 nuovi nati nella popolazione 

mondiale. Al giorno d’oggi, almeno 50 disordini genetici sono causati da difetti in 

enzimi lisosomiali, che determinano l’incompleta degradazione e/o il riciclaggio di 

molecole a livello intracellulare con conseguente accumulo all’interno del lisosoma 

dei substrati enzimatici. Nonostante la presenza di proteine lisosomiali in quasi tutti 

i tessuti ed organi del corpo, l’accumulo del materiale non digerito è generalmente 

limitato solo a quelle cellule, tessuti od organi nel quale il ricambio del substrato 

enzimatico è molto elevato. Questa caratteristica determina differenti fenotipi per le 

varie patologie da accumulo lisosomiale, in quanto diversi organi o cellule possono 

essere coinvolti.  

Tra queste patologie, la malattia di Gaucher è la più frequente con un’incidenza di 1 

su 200.000 nati vivi nella popolazione mondiale. La frequenza di questa patologia, 

aumenta drasticamente a 1 su 850 all’interno della popolazione degli ebrei 

Ashkenazi (Europa dell’Est). Questa malattia è causata da mutazioni a carico del 

gene che codifica l’enzima lisosomiale β-glucocerebrosidase (GBA). Tali mutazioni 

determinano l’incorretto ripiegamento della proteina enzimatica che, di 

conseguenza, non è in grado di degradare il suo substrato, la glucosilceramide, che si 

accumula nel lisosoma. Una delle caratteristiche di questa patologia è la presenza 

delle così dette “cellule di Gaucher”, ovvero macrofagi ad elevato contenuto di 

substrato non degradato, in differenti tessuti. Insieme alla presenza di questi 

macrofagi alterati, pazienti affetti dalla malattia di Gaucher presentano 

ingrossamento di fegato e milza (epatosplenomegalia), anemia, trombocitopenia e 

gravi disfunzioni a carico del sistema scheletrico quali osteonecrosi, riduzione della 

densità ossea, dolori cronici e frequenti fratture a carico delle ossa lunghe. Si 

possono distinguere tre sottocategorie di pazienti affetti da GD, generalmente 

classificati sulla base della presenza e gravità dei difetti a carico del sistema nervoso 

centrale (SNC). I pazienti affetti da GD di tipo I sono i più frequenti, hanno 

un’insorgenza della patologia in età tardiva ma non presentano coinvolgimento del 

SNC. I pazienti affetti da GD di tipo II, invece, manifestano i primi sintomi della 

malattia fin nei primi anni di vita e spesso i gravi difetti a carico del sistema nervoso 

possono portare alla morte del paziente. La terza categoria di pazienti, GD tipo III, 

manifestano i sintomi durante l’età infantile e i difetti neurologici sono meno gravi 

rispetto a quelli dei pazienti di tipo II. Al giorno d’oggi, questa classificazione basata 
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sulla presenza di difetti neurologici è poco credibile a causa della presenza di 

fenotipi diversificati all’interno della stessa sottocategoria di pazienti. Il concetto di 

uno spettro continuo di fenotipi che variano dal meno grave (GD tipo I) al più severo 

(GD tipo II e III) è più appropriato per descrivere questa patologia.  

La terapia maggiormente utilizzata per il trattamento della sintomatologia di questa 

malattia è la terapia enzimatica sostitutiva (ERT), che consiste nella 

somministrazione di un enzima ricombinante in grado si sopperire alla mancanza 

della β-glucocerebrosidasi. Nonostante sia ben tollerata dalla maggioranza dei 

pazienti e sia in grado di far regredire l’ingrossamento di fegato e milza, l’anemia e la 

trombocitopenia, tale terapia ha effetti davvero limitati sui difetti scheletrici e 

neurologici.  

Nel corso degli anni, diversi modelli murini sono stati sviluppati per cercare di 

comprendere quali siano i meccanismi patogenetici della malattia che inducono 

questo ampio spettro di fenotipi. Sfortunatamente, la maggior parte di questi 

modelli animali non sono vitali o non manifestano tutti i difetti della malattia.  

 

Lo scopo del mio progetto di dottorato è stato quello di generare un nuovo modello 

animale per comprendere i meccanismi patogenetici a monte dei difetti ossei della 

malattia di Gaucher. A tal fine, mi sono avvalsa dell’uso dello zebrafish per la sua 

facilità di manipolazione e la trasparenza delle uova che permettono di seguire lo 

sviluppo embrionale fin dalle prime fasi.  

Utilizzando la tecnica del morfolino e avvalendomi di un modello genetico mutante 

stabile in zebrafish, ho potuto studiare quale fosse l’effetto della mancanza 

dell’enzima Gba1 fin dalle prime fasi dello sviluppo embrionale. Questi modelli, 

inoltre, manifestano insieme ai principali difetti di questa patologia, come 

l’ingrossamento di milza e fegato e l’anemia, anche i difetti a carico del sistema 

scheletrico, rendendoli dei buoni modelli per studiare i meccanismi molecolari a 

monte del fenotipo osseo.  

Analizzando i principali marcatori molecolari coinvolti nello sviluppo osseo, come 

col10a1, runx2b e osx, ho potuto evidenziare che i difetti ossei osservati in questi 

modelli sono determinati da un difetto nel processo di differenziamento degli 

osteoblasti.  

Inoltre, l’utilizzo di linee transgeniche di zebrafish nelle quali proteine fluorescenti, 

come la GFP, sono espresse sotto il controllo di promotori specifici per le principali 

vie di segnale molecolari, mi ha permesso di individuare alterazioni a carico delle vie 

di segnale Wnt e BMP in conseguenza alla carenza dell’enzima β-glucocerebrosidasi. 

Con questo lavoro di dottorato, la caratterizzazione di un nuovo modello animale 

per lo studio della malattia di Gaucher ha permesso di evidenziare che, disfunzioni a 
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carico di un enzima lisosomiale come la β-glucocerebrosidasi, può determinare 

alterazioni in segnali molecolari molto importanti per lo sviluppo embrionale, quali 

il Wnt ed il BMP. Entrambe queste vie molecolari svolgono ruoli importanti nel 

processo di formazione e mantenimento degli osteoblasti e alterazioni precoci di 

questi segnali durante l’embriogenesi possono determinare difetti nel processo di 

differenziamento cellulare da progenitori mesenchimali staminali. I risultati ottenuti 

durante questo lavoro di dottorato, hanno evidenziato per la prima volta il precoce 

coinvolgimento di due vie di segnale molecolari, il Wnt e il BMP, nella patogenesi 

ossea della malattia di Gaucher. 



  



  

ABSTRACT 

 

Lysosomal storage disorders (LSDs) are rare inherited metabolic disorders due to a 

deficiency of specific lysosomal enzymes or transporters. Almost 50 genetic 

disorders caused by deficiencies of lysosomal and non-lysosomal proteins are 

known nowadays, collectively with an incidence of ~1/7000 newborns in the 

worldwide population. Dysfunctions of such lysosomal enzymes or transporters can 

lead to several consequences that include incomplete degradation and/or recycling 

of intracellular molecules. Despite lysosomal proteins are present in almost all type 

of cells, the accumulation of undegraded substrates in LSDs affected patients is 

generally limited to cells, tissues and organs in which substrate turnover is high, 

leading to a wide spectrum of phenotypes and affected organs for different LSDs. 

Among these LSDs, the most common is the Gaucher disease (GD) with an incidence 

of 1 in 200.000 newborn in the worldwide population, a rate that increases to 1 in 

850 in the population of Ashkenazi Jewish (Eastern Europen). This disorder is due to 

a deficiency of the lysosomal enzyme β-glucocerebrosidase (GBA) that in 

pathological conditions is not able to degrade its substrate, glucosylceramide, into 

glucose and ceramide. A hallmark of the disease is the presence of “Gaucher cells”, 

which are lipid laden-macrophages, in different tissues. Together with this 

characteristic, GD patients manifest hepatosplenomegaly, anemia, 

thrombocytopenia and severe bone disfunction such as osteonecrosis, osteopenia, 

bone crisis and fracture of long bones. GD patients can be classified in three different 

clinical subtype, based upon the presence and severity of neurological defects. Type 

I GD, also referred to as non-neuronophatic form, is the most frequent subtype, the 

symptoms manifest in adulthood and patients do not present neurological 

involvement. Type II GD patients, manifest severe neurological defects since early 

life stages and death occurs in childhood. Type III GD patients manifest less severe 

neurological defects when compared to type II GD and generally symptoms occur 

during childhood. This classification of the disease based on the absence or presence 

and severity of neurological defects is oversimplified. Nowadays, the broad 

spectrum of phenotypes and the recognition of overlap among these GD subtypes 

has led to the concept that this disorder is a continuum of phenotypes, ranging from 

the less severe (GD 1) to the more severe forms (GD2 and GD3). The most effective 

and well tolerated treatment available for this disorders is the enzyme replacement 

therapy (ERT), that consists in the administration of a recombinant enzyme able to 

restore the β-glucocerebrosidase functions. Despite its effectiveness on 
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hepatosplenomegaly, anemia and thrombocytopenia symptoms, this therapy has a 

very limited effect on the recovery of the skeletal and neurological defects. 

Different GD murine model have been developed through the years to understand 

the pathogenetic mechanism behind these broad spectrum of phenotype. Despite the 

availability of all mice models mimicking differents Gaucher disease phenotypes, a 

completely reliable animal model does not exist and the pathogenic alterations 

occuring during early life stages can not be explored and elucidated yet.  

 

The aim of my PhD project was to investigate the bone pathogenetic mechanisms of 

Gaucher disease using a new animal model. To address this purpose, I’ve used a 

zebrafish model due to its easy manipulation and the transparency of the embryos 

that allow to follow all the early developmental stages.  

Using a morpholino-mediated knockdown approach and a stable genetic mutant 

line, I could investigate what was the effect of deficiency of the enzyme Gba1 during 

early stages of embryonic development. Moreover, the defects observed in these 

zebrafish models resemble the most common GD phenotypes, like 

hepatosplenomegaly, anemia and skeletal deformity, making them good models to 

study the molecular mechanisms of the bone phenotype. 

By analyzing the main molecular markers involved in bone development, as col10a1, 

runx2b and osx, I could point out that bone defects observed in these models are 

determined by an alteration in the osteoblasts differentiation process.  

Also, using zebrafish transgenic lines in which fluorescent proteins such as GFP are 

expressed under the control of specific promoters for major molecular signaling 

pathways, allowed me to identify alterations of Wnt and BMP due to deficiency of 

the enzyme β-glucocerebrosidase. 

In this work, characterization of a novel animal model for the study of Gaucher 

disease, highlighted that dysfunction of the lysosomal enzyme β-glucocerebrosidase 

can lead to alteration of major molecular signaling involved in the embryonic 

development, such as Wnt and BMP. Both these pathways have an important role in 

the formation and maintenance of osteoblasts lineage and early defects in these 

signal during embryogenesis could lead to defect in the differentiation program of 

mesenchymal stem cells progenitors.   

The results showed in this doctoral thesis, highlight for the first time the early 

involvement of two pathways, the Wnt and BMP signaling, behind the bone 

pathogenesis of Gaucher disease.  

 

 



  

1. INTRODUCTION 

  

1.1 LYSOSOMAL STORAGE DISORDERS  

Lysosomal storage disorders (LSDs) are inherited metabolic disorders that arise 

from deficiencies of specific lysosomal enzymes or transporters.  Almost 50 genetic 

disorders caused by deficiencies of lysosomal and non-lysosomal proteins are 

known nowadays. The dysfunction of lysosomal enzymes or transporters can lead to 

several consequences that include incomplete degradation and/or recycling of 

intracellular molecules. . While LSDs individually are rare, collectively they have a 

very high prevalence in the population, of ~1/7000 newborns.(Fuller et al. 2006)  

All lysosomal storage disorders are characterized by the presence of undigested 

substrates in different cell types. In most lysosomal disorders more than one 

substrate can accumulate and stored material can be rather heterogeneous. Despite 

lysosomal proteins are present in almost all type of cells, the accumulation of 

undegraded substrates in LSDs affected patients is generally limited to cells, tissues 

and organs in which substrate turnover is high, leading to a wide spectrum of 

phenotypes and affected organs for different LSDs. 

The first LSDs case was reported in the 19th century by Warren Tay, a British 

ophthalmologist who described the case of a 12-month-old male infant in whom a 

cherry macular spot was associated with delayed development. Few years later, 

Bernard Sachs an American neurologist provided a more comprehensive description 

of this pathology. Today, this first described case of LSDs is known as the Tay-Sachs 

disease. (Americo et al. 2015)  

At that time, lysosomes were still unknown, and it was not clear that various 

diseases share the common feature of lysosomal storage. The first description of the 

lysosome as organelle with an acidic compartment containing several hydrolases 

was made by Christian de Duve in 1955, a discovery whereby he was awarded by 

the Nobel Prize in Medicine in 1974 (De Duve et al. 1955). 

Only ten years later, Hers suggested that accumulation of glycogen observed in a 

patients affected by idiopathic hypertrophy of the heart (Pompe disease) was 

localized in lysosomes. This discovery permitted to classify the already clinically 

recognized disorders as lysosomal storage disorders. 

The biochemical characterization of lysosomal enzymes during 1970s led to 

determination of their 3D structure by crystallization and to a mechanistic 

understanding of the mode of action of these enzymes. Moreover, further studies on 

Anderson-Fabry disease conducted by Hashimoto and co-workers enabled them to 
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conclude that there was a disturbance of the lysosomal structure as a consequence 

of a genetic disease (Klein 2013). Between the 1990s and 2005 most of lysosomal 

genes involved in LSDs have been sequenced and characterization of mutations has 

allowed to better understand the etiology of these disorders. Despite increasing 

knowledge of LSDs pathomechanisms occuring from the disease-causing mutations 

to the symptoms of the disease are still poorly understood. The big unsolved 

question is still how the storage material accumulating in the lysosome affect 

multiple cell populations and organ functions.  

 
Figure 1: Time line of discoveries of classic LSDs from the first description of in 1881 to the recent molecular 
signaling approach. (modified from Klein 2013). 
 

A common characteristic of lysosomal storage disorders is the accumulation of 

undegraded material begins in infancy and progressively worsen, often affecting 

various organs including internal organs and the central nervous system. After the 

discovery that intracellular and secreted lysosomal glycoproteins are targeted to 

lysosomes by the mannose- 6-phosphate (M6P)-receptor-mediated pathway 

(Kaplan et al. 1977), a  key therapeutic approach has been developed. This treatment 

is called enzyme replacement therapy (ERT) and consists in the administration of a 

recombinant enzyme to patients to restore the function of the missing protein. 

(Shemesh et al. 2013) The effectiveness of this therapy, unfortunately, is very 

limited for LSDs-associated neurological and bone complications. Few other 

treatments are available for affected patients: substrate reduction therapies (SRT), 

aimed at reducing the amount of storage material (Platt & Jeyakumar 2008); small 

molecules or chaperones, to rescue misfolded or unstable enzymes (Balch et al. 
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2008); stimulating survival pathways or inhibiting pathways that cause cell death 

(Lloyd-Evans et al. 2008). Most of these therapies are still under clinical trial 

investigation and do not rescue all LSDs symptoms.  

 

1.2 THE GAUCHER DISEASE  

 

The most common lysosomal storage disorder is the Gaucher disease (GD) with an 

incidence of 1 in 200.000 live births in the worldwide population. The rate of 

incidence of this disorder increases to 1 in 850 in the population of Ashkenazi 

Jewish (Eastern Europen). This disorder is due to a deficiency of the lysosomal 

enzyme β-glucocerebrosidase (GBA) that in pathological conditions is not able to 

degrade its substrate, glucosylceramide, into glucose and ceramide (Sidransky 

2004). 

This disorder was first defined by Philippe Charles Ernest Gaucher in 1882. He 

described a 32-year old woman with hepatosplenomegaly. A postmortem 

examination revealed that cells in the spleen were enlarged. Such cells are now 

known as “Gaucher cells”, which are lipid laden-macrophages, a hallmark of the 

disease (fig. 2). Gaucher concluded in his doctoral thesis that the enlarged spleen of 

his patient was a neoplasm of the spleen. From 1882, different cases of Gaucher 

disease were reported. In 1927, Oberling and Woringer  described an early, infantile 

acute form of the disease with rapidly progressive neurodegeneration (Gaucher 

disease type 2). Thirty years later, another type of  Gaucher disease was 

characterized, in an isolated population in Northern Sweden where patients 

displayed a subacute neuronopathic form (Gaucher disease type 3)  (Hruska et al. 

2008) 

 

 
Figure 2: The presence of Gaucher cells in different tissue is a hallmark for the diagnosis of GD. (A) A cartoon 

representation of Gaucher cells. In pathological conditions, the glucocerebroside can’t be degraded by β-

glucocerebrosidase enzyme and accumulate in lysosomes. This accumulation results in the enlargement of 

macrophage. (B)An electron microscopy image of a Gaucher cell. (Wennekes et al. 2009) 
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Through the years, different cases have been reported, and Gaucher disease is now 

classified into three broad phenotypic categories based on the age of onset, clinical 

signs, and presence or absence and rate of progression of neurological symptoms. 

These three clinical subtype are: infantile Gaucher disease characterized by 

hepatosplenomegaly and central nervous system involvement within the first year 

of life (type 2 GD); juvenile Gaucher disease with nervous system involvement in 

childhood (type 3 GD); and adult or chronic Gaucher disease characterized by 

splenomegaly, cytopenia, orthopedic complications and lack of neurological 

symptoms (type 1 GD). This classification of the disease based on the absence or 

presence and severity of neurological defects is oversimplified. Nowadays, the broad 

spectrum of phenotypes and the recognition of overlap among these GD subtypes 

has led to the concept that this disorder is a continuum of phenotypes, ranging from 

the less severe (GD 1) to the more severe forms (GD2 and GD3)(see fig. 3) 

(Sidransky 2012).  

 
Figure 3: Schematic representation of the phenotypic continuum spectrum of Gaucher patients. Patients with 

Gaucher disease can have a spectrum of symptoms, ranging from mild to severe neurological defect (modified 

from Sidransky 2004). 

 

Despite all the knowledge about GBA biochemical structure, enzymatic role, gene 

structure and mutations, little is known about the pathogenetic mechanisms behind 

the phenotype observed in Gaucher patients. Accumulation of undegraded material 

in lysosomes of macrophages has been proposed to activate the interleukin and 

cytokine cascades thus inducing internal organ defect and neurodegeneration. 
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However this hypothesis cannot  completely explain all the spectrum of phenotypes 

of GD.  

Occasionally, patients with type 1 Gaucher disease manifest later in life 

characteristics of Parkinsonian syndrome such as bradykinesia, rigidity, myoclonus 

seizures and resting tremor. Those symptoms are believed to arise from synuclein 

aggregation within dopaminergic neurons induced by mutations of GBA1. (Choi et al. 

2011) 

Moreover, patients with Parkinson’s disease and associated Lewy body disorders 

have an increased frequency of GBA1 mutations as compared with control 

individuals (Sidransky & Lopez 2012). Despite recent findings, showing the link 

between Gaucher disease mutations and the onset of Parkinson’s disease,  the 

mechanisms underlying this association remain elusive.  

Gaucher disease is the first lysosomal storage disorder for which enzyme 

replacement therapy (ERT) was successfully applied in the 1990’s (Ceredase®; 

Genzyme Inc, Cambridge, MA, USA). Since the first ERT clinical trials, alternative 

therapeutic approaches consist only of palliative treatment such as splenectomy and 

hip replacement. Nowadays, ERT is the most effective treatment available for this 

disorders and it is well tolerated with only rare side effects. Currently, more than 

5000 patients have been treated with ERTs. Clinical studied revealed that the earlier 

in life GD patients undergo ERT treatment, the higher is the effectiveness of the 

therapy. (Mistry et al. 2011) 

Even if ERT is the most effective therapy available for Gaucher disease, the clinical 

symptoms are partly ameliorated. In fact, even though ERT is effective for the 

treatment of GD-associated cytopenia and hepatosplenomegaly, osteopenia and CNS 

defects are poorly recovered even after long-term therapy. 

 

1.2.1 Gaucher disease genotype is not always associated with a specific phenotype   

 

The lysosomal β-glucocerebrosidase enzyme is encoded by the GBA gene. In 

humans, this gene is located on chromosome 1q21. It is composed of 11 exons and 

10 introns and the length of its genomic sequence is 7.6 kb (fig. 4). In 1989, a highly 

homologous pseudogene, called GBAP, located 16kb downstream to the GBA gene 

sequence was discovered. The importance of this pseudogene in the same GBA locus 

is that recombination events between GBAP and GBA results in several different 

Gaucher mutations occuring from gene conversion, fusion, or duplication (Hruska et 

al. 2008). More than 300 mutations have been reported in the glucocerebrosidase 

gene, with a distribution spanning the whole gene. Among them, missense mutations 

are the most frequent but also nonsense mutation, small insertion or deletions that 
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lead to either frameshifts or in-frame alterations and splice junction mutations have 

been detected. In the general populations, two GBA mutations are the prevalent 

mutant alleles: the L444P and the N370S. These two mutations are the first 

described for the GBA gene in the late 1980s and they are associated with the type 3 

and type 1 Gaucher disease, respectively.  

 

 
Figure 4: GBA structure and mutation distribution. (A): The 62-kb region surrounding the GBA along 

chromosome 1q showing the known genes and pseudogenes and their transcription direction. C1orf2, 

chromosome1open reading frame 2 (cote1); GBA, glucocerebrosidase; MTXP,metaxin1pseudogene; GBAP, 

glucocerebrosidase pseudogene; MTX1,metaxin1; THBS3, thrombospondin 3.(B) : The exonic structure of GBA, 

with positions of 15 common mutations. (C): Number of reported substitution, deletion, insertion, and splice-site 

mutations per exon. (Image from Hruska et al. 2008) 

 

In the last decades, a classification of the patients according to the three GD 

categories has become very difficult. In fact, patients displaying GD symptoms in 

infancy or childhood without a neurological involvement, in some cases have been 

reported as type 1 in the original description of the causative alleles. However, later 

in life these patients were shown to manifest neurological symptoms leading to their 

reclassification into type 3 GD patients (Beutler E, Gelbart T 1993). 
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Figure 5: Different patients with Gaucher disease with genotype L444P/L444P. The spectrum of symptoms and 

disease progression among homozygotes for the same mutations can range from mildly symptomatic young 

adults to young children with neurological involvement. The following patients description is took from the 

archive of  J Med Genet 2005;42:e37 doi:10.1136/jmg.2004.028019 (A) Patients 16 at age 18. She was diagnosed at 

age 15 months with organomegaly and horizontal supranuclear palsy. She had skeletal complications before ERT 

was started at age 7. She is currently a college student and a ballet dancer. (B) Patient 9 at age 8. She presented 

with organomegaly and failure to thrive at age 9 months, and ERT was begun at age 1 year. Her current findings 

include interstitial pulmonary infiltrates and mild learning difficulties, but no skeletal involvement. (C) Patient 3 

presented at age 1 year with liver fibrosis, severe bone disease, and portal hypertension. At age 10, he 

underwent a bone marrow transplant and died of sepsis shortly afterward. (D)Patient 29 was diagnosed at age 

15 months with organomegaly, ocular apraxia, horizontal supranuclear palsy, and developmental delay. 

Although ERT was started immediately, at age 26 months she had brain stem involvement with swallowing 

dysfunction and recurrent stridor. Consents to publish these photographs were provided by the patients and/or 

parents. 

 

It became evident that the correlation between the genotype and the phenotype of  

GD patients is not so unequivocal. Frequently, the combination of mutations on both 

alleles is important to define the phenotype (fig.5). Usually, clinicians  define this 

allele combination with the term “compound heterozygosity”. Indeed, recent studies 

revealed that individuals with the same genotype can exhibit different disease 

manifestations, clinical courses and response to therapy (Sidransky 2004), 

differences that are observed even in sibling and twin GD patients (Amato et al. 

2004; Lachmann et al. 2004). Moreover, patients with similar phenotypes may have 

many different genotypes, even in unique subgroups of patients (Sidransky et al. 

1992). 

 

1.2.2 Bone defects in the Gaucher disease 

 

One of the clinical symptoms shared by GD subtypes is the presence of bone 

manifestations.  Skeletal complications occur in 70-100% of patients with type 1 or 

type 3 GD. Despite bone defects do not correlate with the severity of systemic 
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manifestations, they increase the morbidity and disability associated with Gaucher 

disease.  

The skeletal involvement is multifaceted and can include chronic bone pain, 

Erlenmeyer flask deformity of the distal femur, severe acute bone crises, bone 

marrow infiltration, osteopenia, avascular osteonecrosis, pathological fractures of 

long bones and vertebrae, subchondral joint collapse and growth retardation in 

children (fig.6) (Guggenbuhl et al. 2008).  

 

 
Figure 6: Representative bone radiography of patients with Gaucher disease (A) Erlenmeyer flask deformity of 

the distal parts of both femurs (B) Avascular necrosis of the humeral head (C) Vertebral fracture (from Chalès et 

al. 2004). 

 

Although the pathophysiology of the skeletal involvement is poorly understood, the 

broad spectrum of bone complications has been explained by the infiltration of 

Gaucher cells in the bone marrow compartment. The spread of Gaucher cells in the 

bone marrow probably can lead directly or indirectly to localized bone defects, 

including osteonecrosis and lytic lesions, but it can explain only part of the 

symptoms. (Guggenbuhl et al. 2008; Mikosch 2011) 

Moreover, the disabling skeletal complications, have been associated with increased 

bone resorption but the evidence for the involvement of osteoclasts in GD has been 

recently argued (Mistry et al. 2010). 

Alternative mechanisms involved in the pathophysiology of skeletal defects may 

include a decrease in the number and activity of bone progenitor cells, osteopenia 

with an increased risk of fractures, deficient fracture healing throughout life, blood 

vessel alterations with avascular necrosis and acute attacks of pain,  and an 

increased risk of osteoarticular infection. (Guggenbuhl et al. 2008) 

As previously mentioned, the capability of ERT to ameliorate the bone defects is very 

limited and the pathophysiology is still poorly understood. To this purpose, animal 
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models for the disease represent an important tool to unravel the pathogenic 

mechanism behind the clinical symptoms. 

 

1.2.3 Animal models in Gaucher disease research 

 

Throughout the past decades, several group have attempted to develop a suitable 

animal model that mimics the complete spectrum of GD phenotypes.  

The first mouse model for GD was obtained, in the 1975 by Kanfeer and colleagues, 

employing a chemical compound  inhibitor of the β-glucocerebrosydase enzyme, the 

conduritol β-epoxide (CBE) (Kanferl et al. 1975). Daily intraperitoneal injections of 

CBE for 3 weeks resulted in >90% inhibition of enzymatic activity and accumulation 

of the substrate in the spleen, liver and brain that could be reversed upon cessation 

of CBE treatment. Although this chemical GD mouse model recapitulated the visceral 

and the neurological defects of the pathology, it is not able to resemble the bone 

defects. Notably, this was not a genetic animal model. 

With the advent of genetic engineering in 1990’s, a new approach for the generation 

of GD animal models was available.  

In 1992, Tybulewicz and colegues produced the first genetic GD mouse model by 

insertion of a Neo cassette in exons 9 and 10 of the Gba gene (Kyriakis J. M. 1992). 

This mouse was carrying a null mutation which was associated with a strong 

enzymatic activity decrease compared with wild-type mice. Phenotypic 

manifestations by this model were very similar to those observed in severe type 2 

patients.  Accumulation of glucosylceramide was observed in liver, brain, lungs and 

in the lysosomes of spleen and liver macrophages. Unfortunately, the full knockout 

mice Gba-/- die within 24 hours of birth in consequence of permeability barrier 

defects in the skin (Sidransky et al. 1992; Holleran et al. 1994) 

After the generation of this first genetic Gba -/- mouse model, a number of attempts 

were made to create alternative mouse model of GD. In the last twenty years, 

different mouse strains, carrying the most common human GBA mutations (like 

N370S and L444P), have been generated with the knock-in technology approach 

(fig.7). 
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Figure 7: Timeline of the generation of mouse model of Gaucher disease (modified from Farfel-Becker et al. 

2011) 

 

All mouse models do not resemble the complete spectrum of phenotype of Gaucher 

disease. Some of these models are good to study the neurological involvement but 

do not mimic the visceral defect or the accumulation aspects. On the other hand, 

models mimicking the visceral defects do not resemble the skeletal and neurological 

defects. (fig.7)(Farfel-Becker et al. 2011) 

In 2010, Mistry and colleagues obtained a nonneuronophatic GD1 conditional mouse 

model. In this mice the GBA1 gene was conditionally deleted in cells of the 
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hematopoietic and mesenchymal lineages through an Mx1 promoter. This GBA1 

mouse model, display hepatosplenomegaly, hematological defects and skeletal 

complications, such as osteonecrosis and osteopenia, similar to human GD1 patients. 

Interestingly in this paper, Mistry demonstrated that the osteopenia found in his 

mouse model was due to a defect in osteoblastogenesis and it was not accompanied 

by increased bone resorption due to the activation of the osteoclast population. 

(Mistry et al. 2010). Despite the availability of all mice models mimicking differents 

Gaucher disease phenotypes, a completely reliable animal model does not exist and 

the pathogenic alterations occuring during early life stages can not be explored and 

elucidated yet.  

 

1.3 ZEBRAFISH A NEW POWERFUL ANIMAL MODEL 

 

Zebrafish (Danio rerio) is a small tropical teleost fish, native of the river Ganges, in 

the north-east region of India. Since its establishment as a model organism in the 

1970s by George Streisinger, this fish became a powerful  model organism to study 

biological processes and vertebrate developmental biology. 

Zebrafish is easy to breed and can be kept in laboratory conditions thanks to its 

small size (about 3-5 cm in length see figure 8). The female can lay more than 200 

eggs per each mating event and the fertilization is external allowing an immediate 

analysis of the progeny at different developmental stages, without the need to 

dissect and sacrifice pregnant females as required for mammalian models. 

Developing embryos are transparent for the first 24 hours post fertilization (hpf) 

and pigmentation can be chemically inhibited so that they can be maintained 

transparent for many days. Moreover, zebrafish embryos display rapid external 

development with all the main organs developing within 36 hpf, allowing in vivo 

observation of embryogenesis and organogenesis since early life stages after 

fertilization. 

 
Figure 8: Representative images of zebrafish embryo at 24 hpf stage (left) and adult male and female (right). 
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Another advantage of this model, is that adult zebrafish reach sexual maturity within 

approximately 3-4 months, making this fish a versatile tool for large-scale genetic 

analysis and mutagenesis screenings (Christiane Nusslein-Volhard 2002; Streisinger 

et al. 1981).  

The rapidity of organogenesis of zebrafish embryo and the features that main organs 

functions are equivalent to those of other vertebrate, made the zebrafish a usefull 

animal model in different field of biomedical research in the last decade. Despite it 

has not been extensively used for analysis of bone development and disease, several 

studies have highlighted its potential. In zebrafish, the skull bone formation occurs 

by direct ossification (called dermal bones) as well as using a cartilage template 

(called cartilage bones) with a mechanism very similar to the tetrapods vertebrate 

(that will be discussed later in this thesis). Moreover, Li and colleagues in 2009 

discovered that the transcriptional hierarchy found in the osteoblast formation in 

mammals is conserved even in zebrafish and it can be divided into three overlapping 

stages based on differential gene expression profile: early, intermediate and mature 

differentiation (Li et al. 2009). During early differentiation, expression of the runx2a 

and runx2b transcription factor is detected in both cartilage and bone primordial of 

cranial region since 36 hpf  in zebrafish embryos and diminished by 120 hpf. The 

intermediate differentiation stage is characterized by expression of osterix (osx) in 

whole bone and partially overlap in time with the runx2 expression pattern. In the 

mature stage of differentiation, marked expression of bone matrix genes like 

collagen type 1 alpha 2 (colIa2) and osteonectin (osn) is detected  in regions that 

undergo ossification. Usually, their expression is coincident with osx or follows 

shortly later, and perdures around skeletal element even after osx, runx2a and 

runx2b are not detectable. Together with these bone-related genes, other 

transcription factors may have a role in osteoblastogenesis in zebrafish. Expression 

of collagen type X alpha 1 (col10a1), is generally associated with hypertrophic 

chondrocyte in tetrapods but recent findings suggest a role during both 

intermediate and mature stage of osteoblast differentiation in zebrafish. Indeed, 

col10a1 expression was found during formation of cartilage and dermal bone and it 

is maintained after bone has formed, presumably in mature osteoblasts. The bone 

maturation processes and the bone homeostasis in mammals are maintained 

through the action of several signaling pathways. Among them, WNT signaling and 

BMP pathway play key roles in these mechanisms. Evidence that the same signaling 

pathways are involved in zebrafish osteoblastogenesis comes from study of tcf7 and 

cvl2 expression pattern, a known mediator of the Wnt signaling and BMP pathway, 

respectively (Rentzsch et al. 2006). These two pathways mediator are expressed 

both in intermediate and mature stages of osteoblasts differentiations in zebrafish 
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around developing dermal bones and bone primordium with a pattern similar to the 

osteogenic genes like osx, runx2 and col10a1. (Li et al. 2009) Altogether, these 

finding reveals a shared conserved mechanism of bone development and 

differentiation between zebrafish and other vertebrates.  

A helpful support to elucidate the mechanisms of vertebrate bone formation comes 

from different powerful tools developed to allow manipulation of zebrafish embryos, 

like microinjection and cell transplantations. Particularly, DNA, mRNAs and 

antisense oligo morpholinos are commonly injected in freshly fertilized eggs to 

overexpress target mRNAs or perform gene silencing by means of morpholino (MO) 

oligos.  

 

1.3.1 Morpholino gene knockdown 

 

The use of morpholino oligos (MOs) is the most commonly and validated antisense 

technology that permits the investigation of functional gene loss. MOs enable to 

identify the role of signaling pathways and specific proteins in development or in 

drug response studies. By the injection of MOs, a graded severity of phenotypes is 

typically generated, but the complete loss-of-function cannot be obtained. Despite 

this limitation, the concentration of injected MOs can be modulated to obtain a non-

lethal knockdown of the targeted protein leading to the observation of the effects on 

embryonic development. This aspect of microinjection may be seen as a distinct 

advantage when compared to the generation of full knockout mice which can be 

potentially embryonic lethal, like the GBA knockout mice generated by Tybulewicz 

in 1992 (Fecht 1992). 

Morpholinos are synthetic molecules, typically 25 bases in length, that bind to the 

target complementary sequence of RNA by nucleic acid base-pairing. This binding, 

creates a steric block and inhibits the translation or splicing of the target gene 

(Corey & Abrams 2001). Their name derives from the MO structure of the 

constituent units, each containing one of the four nitrogenous bases (A, C, G or T) 

linked to a six atoms morpholine ring instead of a ribose or deoxyribose molecule. 

The morpholino rings are linked through phosphorodiamidate instead of 

phosphates groups. Different type of MOs can be designed, according to the target 

protein. A MO complementary to a region between 5’-CAP and the first 25 

nucleotides after the translation initiation codon (AUG), generates a sterical block 

preventing the recognition of the ribosome and the translation of the protein (AUG-

MOs). Alternatively, a MO that interfere with the maturation processes of the pre-

mRNA in the nucleus (splice-blocking MO) can be obtained. The sequence of these 

MOs are complementary to splice acceptor (intron-exon boundary) or donor (exon-
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intron boundary) sites in the unspliced RNA and compete with the splicing 

apparatus for the binding sites. The results of MOs binding to target premature 

mRNA lead to loss of an exon or to intron retention (Sazani et al. 2001). 

Although MOs are very sequence-specific, nonspecific binding to a similar pre-mRNA 

sequence of other genes can occur. To understand whether the MOs-induced 

phenotype observed in the morphant (embryo injected with the MOs) is specific, 

rigorous controls are performed. For example, the injection of a mismatch MO (a 

modified oligonucleotide which differs for 4-5 bases from the specific MO) that is 

unable to bind to the target sequence is commonly carried out. Moreover, rescue 

experiments performed with the co-injection of the MOs and an mRNA encoding for 

the target protein derived from another organism should, at least partially, recover 

the normal phenotype of morphants. 

The morpholino technology is currently considered the best readily and accessible 

gene knockdown approach in zebrafish. 

 

1.3.2 Transgenic zebrafish reporter lines 

 

Microinjection is also used to insert transgenic constructs that express reporter 

genes, as the green fluorescent protein (GFP), under the control of tissue‐specific 

promoters. The creation of stable transgenic lines allows to follow the 

differentiation of specific organs or tissues and elucidate the genetic pathways 

responsible for their development (Christiane Nusslein-Volhard 2002). The 

knowledge of molecular and biochemical processes regulating cell differentiation, 

proliferation and fate determination is important to understand tissue homeostasis 

and embryonic development in normal and pathological conditions.  

The discovery of the important role that different signaling pathways play during 

embryonic and postnatal development comes from the study of the bone 

morphogenetic proteins (BMPs), wingless-related integration site (Wnt), fibroblast 

growth factor (FGF) and sonic Hedgehog (Shh). 

In the last decades, different cell-signaling specific reporter zebrafish lines have 

been generated (Moro et al. 2013). In these lines, the expression of fluorescent 

protein like GFP and mCherry, is under the control of specific responsive elements 

for the most important cell signaling pathways.  

The big advantage of the use of zebrafish comes from the combinations of MOs 

microinjection of targeted specific mRNAs into different transgenic reporter lines. 

This approach allows to elucidate if a target gene knockdown may positively or 

negatively affect specific signaling pathways. 
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The limitations of the MOs-based knockdown approach, have been overcome by the 

generation of different specific mutant lines.  

 

1.3.3 Generation of stable zebrafish mutant lines 

 

The zebrafish genome is closely related to the human one and approximately 70% of 

human genes have orthologues in zebrafish (Howe et al. 2013). Among these genes, 

many are present as paralogs because Teleosts underwent genome duplication 

(Volff 2005). Different approaches have been developed by the generation of 

zebrafish mutant lines. Forward genetic studies, have been conducted using 

irradiation, murine leukemia virus (MLV) and chemical mutagens such as the DNA 

alkylating agent N-ethyl-N-nitrosurea (ENU)(Solnica-Krezel et al. 1994; Driever et al. 

1996; Haffter et al. 1996). By these methods, a large number of mutants have been 

isolated and mutated genes have then been identified by positional cloning.  

However, forward genetic screenings are intrinsically limited in their effectiveness 

to isolate mutations of every single gene due to functional redundancy between 

different genes and the need to have measurable phenotypes. Moreover, the genome 

duplication event that occurred during zebrafish evolution make the generation of 

fish mutants more complicated.  

Due to this limitation, a new “reverse genetic” approach has been introduced in 

zebrafish gene manipulation. According to this approach, once a gene of interest has 

been identified, loss of function analysis and phenotypic characterization are 

performed. Several alternative reverse genetic approach have been developed to 

produce site-specific genome modifications, like mutagenesis screening based on 

retrovirus or transposons, TILLING (Targeting Induced Local Lesions IN Genome) 

strategies and, more recently, zinc finger nuclease (ZFN), transcription activator-like 

effector nuclease (TALEN) and the CRISPR-Cas9 approach (Doyon et al. 2008; 

Hwang et al. 2013; Huang et al. 2012). 

These mutant lines generated throughout the years, have been demonstrated to 

serve as models for human diseases as well as to investigate the main mechanisms 

of development. All these mutant lines can be found at the website of the Sanger 

Institute: http://www.sanger.ac.uk/resources/zebrafish/genomeproject.html  

 

1.4 MOLECULAR DEVELOPMENT OF VERTEBRATE SKELETON 

 

In all vertebrates, the mature skeleton is maintained by the balanced activity of the 

bone-forming osteoblasts and the bone-resorbing osteoclasts. The osteoblasts are 

part of a group of cells, tipically reffered to as “osteoblast lineage” cells, build the 

http://www.sanger.ac.uk/resources/zebrafish/genomeproject.html
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skeleton, by providing mechanical support, muscle attachment and reservoir of 

calcium and phosphorus. Beyond these traditional roles, recent findings highlitghted 

new different functions of these cells. In fact, some of these osteoblast lineage cells 

contribute to the bone marrow microenvironment, which is essential for 

haematopoietic stem cells homeostasis (Calvi et al. 2003), and furthermore, studies 

conducted on mice revealed a role of these cells in the regulation of glucose 

metabolism (Ferron et al. 2010; Fulzele et al. 2010).  

Defects in the equilibrium between bone-forming osteoblasts cells and bone-

resorption cells are frequently associated with human bone disorders, such as 

osteoporosis or osteopetrosis (Helfrich et al. 2007).  

Several type of cells are included in the osteoblast lineage cells like mesenchymal 

progenitors, preosteoblasts, osteoblasts (also called mature osteoblasts), bone-lining 

cells and osteocytes. Cytologically, osteoblasts are characterized by abundant 

mitochondria, basophilic cytoplasm and a large Golgi apparatus, functionally related 

to the production of a large amount of extracellular matrix proteins, including 

osteocalcin, alkaline phosphatase and type I collagen (Long 2011). 

The osteoblasts maturation process is generally divided into three stages 

mesenchymal progenitors, preosteoblasts and osteoblasts. The transition from one 

stage to the other is finely regulated by specific transcription factors expressed by 

osteoblasts lineage cells (fig.9). 

The molecular markers for the mesenchymal progenitor are matter of debate, but 

generally the expression of SOX9, the transcription factor of the sex-determining 

region Y, is associated with mesenchymal progenitors that give rise to osteoblasts. In 

fact, SOX9 is not expressed by mature osteoblasts (Akiyama et al. 2002). 

Preosteoblasts comprise an heterogeneous pool of cells ranging from progenitors to 

mature osteoblasts and are usually considered expressing the transcription factor 

RUNX2 or, later in differentiation, both RUNX2 and osterix (OSX, also known sp7) 

(Nakashima et al. 2002). However, the precise cellular identity of each different-

cellular stage during osteoblasts maturation process is not well understood. 

Only osteoblasts covered by bone matrix become osteocytes and usually these cells 

represent the 95% of the mature bone tissue. Osteocytes create a complex network 

with osteoblasts, and the lining cells of the bone surface. Moreover, recent studies 

revealed their important role in regulation of bone remodeling in response to 

mechanical and hormonal signals. This tight regulation seems to be propagated, at 

least in part, by sclerostin, which is encoded by the SOST gene and produced 

predominantly by osteocytes (van Bezooijen et al. 2004).  



Introduction 

27 
 

 
Figure 9: (A) Osteoblast and osteoclast lineage cells. Osteoblasts derive from a mesenchymal cell precursor (MP) 

while oscteoclast derive from hematopoietic stem cell differentiation(HSC). The balance between osteoblast 

activity (bone formation) and osteoclast activity (bone resorption) maintain the homeostasis of bone tissue. (B) 

Schematic representation of the transcription factors expressed by different osteoblast lineage cells during 

ossification processes. (from Long 2011).  

 

1.4.1 Osteoblast commitment during embryonic and postnatal development 

 

The vertebrate skeleton is composed of different kind of bones: long bones like 

thighbone and humerus, flat bones like craniofacial bones and short bones like ribs. 

Osteoblasts composing these different bones derive from distinct embryonic germ 

layers. Craniofacial bones are generally derived from neuroectoderm, particularly by 

the commitment of neural crest cells, a mesenchymal cell type typical of the 

vertebrates. Instead, osteoblasts of axial and appendicular skeleton are derived from 

paraxial mesoderm (somites) and the lateral plate mesoderm, respectively (Olsen et 

al. 2000). Bones of the vertebrate skeleton are generated through two distinct 

processes involved in the differentiation of osteoblasts from an embryonic 

mesenchymal cell progenitor: intramembranous or endochondral ossification 

(fig.10). Osteoblasts originated by both these differentiation processes are 

characterized by the expression of RUNX2, a Runt domain-containing transcription 

factor, that is usually expressed in early differentiated osteoblasts (fig. 9). 

During intramembranous ossification, mesenchymal progenitors condense and 

directly differentiate into osteoblasts. This process is usually limited to certain part 

of the skull, as well as to part of the clavicle in mammals (Long 2011).  
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In the endochondral ossification process, mesenchymal cell progenitors condense to 

form chondrocytes (cartilage cells) and perichondrial cells, that compose the 

cartilage primordium. Chondrocytes in the primordium undergo to a fast 

proliferation process and later, exit the cell cycle and increase their cell size 

(hypertrophic chondrocytes). The increase of chondrocyte size is an important step 

because triggers the initial osteoblasts differentiation from perichondrial cells.   

Immediately after this initial step in osteoblastogenesis, blood vessels invade the 

hypertrophic cartilage to form a primitive marrow cavity and induce osteoblast 

differentiation within the cavity. Blood vessels invasion of the hypertrophic cartilage 

probably allows to recruit osteoclast-like resorptive cells (which belong to the blood 

cell lineage and are generally called chondroclasts) that degrade the cartilage matrix 

to produce the bone marrow cavity (fig.10). Moreover, blood vessels permit the 

preosteoblasts to enter the nascent bone marrow, where they differentiate into 

mature osteoblasts. At the end of both intramembranous and endochondral 

ossification, terminally differentiated osteoblasts are identifiable by the expression 

of osterix (OSX), a transcription factor containing three C2H2-type zinc-fingers that 

function downstream of RUNX2 during osteoblast differentiation (fig.9). New 

osteoblasts continue to form after birth but the origin of osteoblast progenitors in 

post-natal life is not well understood.  

Different transcription factors expressed by osteoblast lineage cells during 

ossification processes are regulated by a range of developmental signals that have 

important roles in the cell fate determination. 

In the next subchapter, I’ll introduce the major signaling pathways known to be 

involved in the osteoblastogenesis process. Furthermore, for  the comprehension of 

the results of this thesis, I will focus my description on two different pathways, the 

Wnt and BMP signaling pathways.  
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Figure 10: Representation of intramembranous and endochondral ossification processes (upper panel) 

highlighting the differences among these two mechanism (Long 2011). In the lower panel, a schematization of 

the different steps that occur on endochondral ossification from mesenchymal cells condensation to 

vascularization of neo- formed bone. c: chondrocyte; hc: hypertrophic chondrocyte; bc: bone collar; ob: 

osteoblast. (modified from Kronenberg 2003). 

 

1.4.2 The molecular signaling pathways involved in the osteoblasts development 

 

As discussed above, the osteoblasts maturation processes is characterized by several 

steps that give rise to different cell types, like hypertrophic chondrocytes, 

preosteoblasts and mature osteoblasts. All these cell types derive from the 

differentiation of a mesenchymal stem cell precursor.  

The differentiation program is tightly regulated by different cell signaling pathways 

since early life stages during embryonic development and the crosstalk and balance 

between them is important in bone homeostasis and maintenance. 

Among the signaling pathways, Hedgehog signaling (Hh) is involved during early 

steps of osteoblasts differentiation. Indian Hedgehog (Ihh) is specifically expressed 

by the pre-hypertrophic and early hypertrophic chondrocyte within the 

endochondral cartilage primordium during endochondral ossification. Several 

studies revealed that in the absence of IHH signaling, the perichondrial progenitors 

failed to express RUNX2 which is indispensable for osteoblast differentiation (Long 

et al. 2004; Tu et al. 2012). Despite its pivotal role in endochondral ossification, Hh 
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signaling does not seem to be involved in intramembranous osteoblasts 

differentiation and the differential requirement of this pathway in this two 

processes is not well understood.   

Another pathway involved in osteoblasts differentiation is the Notch signaling. 

Notch signaling generally mediates the communication between neighbouring cells 

by direct cell-cell contact. In osteoblasts differentiation, Notch signaling  normally 

inhibits osteoblast formation from mesenchymal progenitor cells acting upstream of 

OSX activation. Different human genetic disorders have been associated with defects  

in Notch signaling. Due to its negative role in osteoblast differentiation, 

downregulation of this pathway is frequently associated with ectopic ossification in 

humans whereas gain-of-function mutations are responsible for Hadju–Cheney 

syndrome, a disorder of severe and progressive bone loss (Simpson et al. 2011). 

A pathway that is responsible for a broad range of congenital skeletal disorders in 

humans is the FGF signaling. FGF signaling comprise a large family of proteins that 

account 22 members in humans and mice. It plays several biological functions in 

vertebrates (Itoh & Ornitz 2008) and, specifically during the osteoblasts 

differentiation process, FGF can act at both embryonic and postnatal stages. This 

pathway seems to be involved in regulating preosteoblast proliferation, osteoblast 

differentiation and activity of mature osteoblasts through the action of different 

receptors (Montero et al. 2000; Liu et al. 2007; Jacob et al. 2006). 

Despite its multifaceted roles in osteoblast differentiation, the precise stages at 

which FGFs regulate each differentiation process and the intracellular cascades 

responsible for each function, remain unclear.   

Bone morphogenetic proteins (BMPs) were discovered in 1965 as potent inducers of 

ectopic bone formation when implanted subcutaneously. BMPs are members of the 

transforming growth factor-β (TGF-β) gene superfamily and the signal is transduced 

through transmembrane receptor complexes composed of heterotetramers of BMP 

type I and type II  serine/threonine kinase receptors (Feng & Derynck 2005) . Upon 

ligand binding to the receptor, a phosphorylation cascade is propagated through 

activation of SMADs (SMAD1, SMAD 5 or SMAD8) in the cytoplasm. Phosphorylated 

SMADs form a complex with their common partner, SMAD4 that translocate into the 

nucleus and regulate gene expression. There are three type I receptors and three 

type II receptors and approximatively 30 ligands are identified in the BMPs 

pathways.  

BMPs signaling is involved in both bone formation and bone resorption by affecting 

multiple cell types such as mesenchymal cells, chondrocytes, osteoblasts, osteoclasts 

and endothelial cells. Genetic studies have highlighted the role of BMP2 and BMP4 in 

promoting osteoblast differentiation from mesenchymal cell precursors. Loss-of-
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function experiments showed that differentiation into mature osteoblasts requires a 

critical threshold level of BMP2 and BMP4 signaling, while overexpression of BMP4 

in osteoblasts results in increased osteoclastogenesis and reduced bone mass 

(Bandyopadhyay et al. 2006). Moreover, deletion of BMP receptor 1A (BMPR1A) in 

preosteoblasts and osteoblasts, resulted in increased bone mass. These findings 

indicated that despite BMPR1A knockdown usually reduces bone formation, it also 

inhibits bone resorption resulting in increased bone mass (Mishina et al. 2004). Both 

BMP2 and BMPR1A are expressed in osteoclasts, suggesting a possible direct effect 

of BMPs signaling on bone resorption. Several studies depicted an important role of 

endocytosis during TGF-β signal activation. Phosphorylation at serine residues of 

the membrane receptors after ligand-binding lead to internalization of this complex 

into endosomes. Once into endosomes, binding of the receptors complex to SMAD 

anchor for receptor activation (SARA) can take place. These protein complex 

recognizes the activated receptor and recruits SMAD1 or SMAD2 transcription 

factors to signaling endosomes to promote its phosphorilation. Then phosphorylated 

SMADs are released into cytoplasm, bind the cofactor SMAD4, enter the nucleus and 

promote gene transcription (fig.11) (Hayes et al. 2002). Involvement of endocytosis 

has emerged to be crucial for activation and propagation of BMPs signaling. Recent 

findings show that inhibition of dynamin-dependent endocytosis reduces the levels 

of phosphorilated SMAD1/5/8 formation, affecting their translocation into the 

nucleus. Moreover, inhibition of endocytosis during initial phase of BMP-2 activation 

in mesenchymal cell precursors resulted in down regulation of mature osteoblast 

markers altough expression levels of early osteoblast markers such as Runx2 and 

Osx were increased  (Hartung et al. 2006; Heining et al. 2011). 

 

 

 

 

 

 

 

 

 

Figure 11: Schematic 

representation of the BMP signaling 

pathway (from Shore & Kaplan 

2010). 
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Another cell signaling pathway that has several different roles in osteblastogenesis 

is the WNT signaling, that is emerged being a pathway important not only in 

developmental processes but also in postnatal health and disease conditions (Baron 

& Kneissel 2013).The transduction of this pathway can be propagated through the 

activation of numerous intracellular signaling cascades that are either dependent 

(canonical) or independent (non-canonical) on β-catenin (Huelsken & Birchmeier 

2001; Veeman et al. 2003). Both these mechanisms of action of Wnt signaling can 

affect the osteoblastogenesis and the bone homeostasis, but the canonical pathway 

has emerged as the predominant component of WNT signaling affecting bone cells.  

The canonical WNT signaling is established by the binding of WNT ligands to the 

dual receptor complex comprising of frizzled (FZD) and either the low density 

lipoprotein receptor-related protein 5 (LRP5) or LRP6. The binding to the receptor 

inhibits  the degradation of the β-catenin by proteasome, promoting the inactivation 

of the multiprotein “destruction complex”, composed by glycogen synthase kinase 3 

(GSK 3), AXIN, adenomatous polyposis (APC) and casein kinase 1 (CK1). Stabilized β-

catenin can accumulate in the cytoplasm and translocate into the nucleus, where it 

associates with lymphoid enhancer-binding factor 1 (LEF1), T cell factor 1 (TCF1), 

TCF3 and TCF4 to control target gene transcription (fig.12). 

 

 
Figure 12: Illustration of the Wnt signaling cascades. In the absence of Wnt ligands, the β-catenin is sequestered 

by the “destruction complex” composed by Axin, adenomatous polyposis (APC), glycogene synthase kinase 3 

(GSK-3β) and casein kinase 1 (CK1) and is degradeted. When Wnt signaling is activated, the “destruction 

complex” is inhibited and the β-catenin can translocate into the nucleus and activate the transcription of target 

genes. (image from Baron & Kneissel 2013). 
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The signal cascade generated upon binding of WNT ligands to the membrane 

receptor, is finely regulated. Recently, it has been demonstrated that GSK 3 and 

other components of the WNT pathway implicated in the signal transduction, such 

as LRP6, Frizzled, AXIN, DVL and β-catenin,  are internalized into intraluminal 

vesicles (ILVs) and are targeted to endosomes and multivesicular bodies (MVBs) 

(fig.13). Once in MVBs, this WNT receptor complexes may progress into lysosomes 

for degradation or fuse back to endosomal membranes, recycling GSK3 to the 

cytoplasm when the WNT signal is terminated. (Dobrowolski & De Robertis 2011) 

This mechanism highlights a possible active role of the MVBs lysosomal precursor  

in the regulation of the WNT signal transduction and maintenance.  

 

 

 

 

 

 

 

 

 

 

Figure 13: Schematic representation of 

regulatory mechanism of the Wnt signaling 

cascades mediated by MVBs. In presence of 

Wnt ligands, the destruction complex, that 

includes GSK 3, is sequestered into early 

endosomes. This lead to the accumulation of 

β-catenin in the cytoplasm and subsequent 

translocation into the nucleus and activation 

of the target genes. (image from 

Dobrowolski & De Robertis 2011)    

 

The canonical WNT signaling can affect the entire osteoblastic lineage by regulating 

the equilibrium between osteoblasts and osteoclasts (fig.14) and genetic mutation 

affecting several members of this pathway results in severe skeletal malformations 

in human and mice. Loss-of-function mutations in the gene encoding the LRP5 co-

receptor are associated with low bone mass in osteoporosis-pesudoglioma 

syndrome (Gong et al. 2001) while gain-of-function mutations in LRP5 make the co-

receptor insensitive to extracellular WNT inhibitors, like Dikkopf-related 1 (DKK1), 

and are associated with high bone mass in otherwise healthy patients (Little et al. 

2002). Moreover, Van Buchem disease and high bone mass in sclerostosis are 
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frequently associated with mutations in the SOST gene that encodes for the secreted 

antagonist of the Wnt signaling, sclerostin (Loots et al. 2005). This protein can bind 

to LRP5 and the related LRP4 and LRP6 receptors and is secreted primarily from 

osteocytes (Poole et al. 2005). The mechanism of action of sclerostin seems to be 

related to inhibition of the WNT signaling, but also its role in inhibition of the bone 

morphogenetic pathway (BMP) has been suggested (Krause et al. 2010). 

 

 
Figure 14: The Wnt signaling can influence the osteoblast differentiation process at different level. Its stimulate 

the differentiation to osteoblast from mesenchymal stem cells and the maturation of osteocyte. Moreover, Wnt 

signaling is able to inhibit the osteoclast formation from monocyte precursor. (image from Baron & Kneissel 

2013) 

Together with the effects on osteoblast, this pathway is important even in 

modulation of bone resorption (fig.14). Recent findings revealed that WNT β-catenin 

signaling indirectly represses osteoclast differentiation and bone resorption by 

increasing secretion of osteoprotegerin (OPG) (Glass et al. 2005; Kramer et al. 2010). 

Furthermore, osteoblast overexpression of the WNT antagonist Dkk1 reduces WNT 

signaling in hematopoietic stem cells (HSCs), altering the HSC self-renewal potential 

and quiescence (Fleming et al. 2008; Schaniel et al. 2011). 

Altogether, these finding suggest a role of the WNT signaling not only in osteoblast 

formation but even in the differentiation of the HSCs and potentially in 

hematopoiesis. 
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The precise signaling mechanisms that orchestrate the osteoblastogenesis are still 

poorly understood. All the molecular pathways described above and the crosstalk 

between them are essential for the correct bone formation and homeostasis.  

Moreover, recent studies have been highlighting important roles of the endocytic 

pathway for the correct signal transduction and activation of several important 

signaling cascades, such as Wnt and BMP (Dobrowolski & De Robertis 2011). 

 

In this thesis, a possible pathogenic mechanism behind skeletal defects in a new 

zebrafish model of Gaucher disease were investigated.  Characterization of a GBA1 

morpholino-induced knockdown and a stable genetic mutant lines gba1sa1621/sa1621, 

showed defects resembling the human pathology, such as hepatosplenomegaly and 

skeletal alterations. Further investigation using transgenic zebrafish line reporter 

for the well known signaling pathway involved in bone formation, highlighted a 

clear alteration of Wnt and BMP signaling in the absence of β-glucocerebrosidase 

lysosomal enzyme. This approach allowed to investigate the effect of GBA deficiency 

since early stages of  embryonic development suggesting that depletion of this 

lysosomal enzyme induces alterations in the correct osteoblasts specification 

program, probably as a consequence of Wnt and BMP signaling dysfunction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  



  

2. METHODS 

 

All procedures involving fish husbandry and manipulation were evaluated and 

accepted by the Local Ethical Committee at the University of Padova. Fibroblasts 

from type 1 Gaucher patients, supplied by the Biobank (G. Gaslini) have been 

obtained for analysis and storage with the patients’ (and/or a family member’s) 

written informed consent. The consent was sought using a form approved by the 

local Ethics Committee. The mutant sa1621 fish line was obtained by the Zebrafish 

International Resource Center at Eugene (OR, USA). The following fish lines where 

used for the analysis of gba1 knockdown: Tg(dusp6:d2GFP)pt6 (Molina et al. 2007), 

Tg(7xTCFXla.siam;EGFP)ia4 (Moro et al. 2012); Tg(fli1a:EGFP)y1(Lawson & Weinstein 

2002), Tg(sox10:mRFP)vu234 (Kirby et al. 2006), Tg(kdrl:EGFP)s843 (Beis et al. 2005), 

Tg(Col2a1aBAC:mCherry)hu5900 (Hammond & Schulte-Merker 2009); Tg(Ola.Sp7:NLS-

GFP)zf132 (Spoorendonk et al. 2008), TgBAC(col10a1:Citrine)hu7050 (Mitchell et al. 

2013); Tg(12xGli-HSV.Ul23:GFP)ia11; Tg(EPV.TP1-Mmu.Hbb:EGFP)ia12; 

Tg(12xSBE:EGFP)ia16; Tg(BMPRE:EGFP)ia18 (Moro et al. 2013), Lipan (Korzh et al. 

2008); Tg(gata1:dsRed)sd2 (Traver et al. 2003), Tg(-6.0itga2b:EGFP)la2 (Lin et al. 

2005).  

 

2.1 RECIPES 

 

FISH WATER 1X:  

100 ml SALINE STOCK SOLUTION 50X  

50 μl Methylen Blue 1000X  

dH2O up to 5 lt. 

 

SALINE STOCK SOLUTION 50X:  

25 mM NaH2PO4 (3.43 g)  

25 mM Na2HPO4 (4.45 g)  

75 g ISTANT OCEAN 

ddH2O up to 5 lt. 

 

RINGER’S SOLUTION NORMAL:  

116 mM NaCl  

2.9 mM KCl  

1.8 mM CaCl2 

5 mM HEPES, pH 7.2. 
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PTU:  

0.003% PTU (1‐phenyl‐2‐thiourea) in Iish water. 

 

TRICAINE: 

(3‐amino benzoic acid ethyl ester also called ethyl 3‐aminobenzoate) comes in a 

powdered form from Sigma. Make tricaine solution for anesthetizing fish by 

combining the following in a glass bottle with a screw cap.  

 

Stock solution 25X: 

400 mg tricaine powder  

97.9 ml DD water  

~2.1 ml 1 M Tris (pH 9). 

 

Adjust pH to ~7. Store this solution in the fridge. To use tricaine as an anesthetic 

combine the following in a 50 ml beaker:    2 ml tricaine solution  

~48 ml clean Iish water 

 

2.1.1 Whole-Mount in situ Hybridization Solutions 

 

HYBRIDIZATION MIX (HM):  

60% formamide  

4,6 μM citric acid pH 6  

SSC 5X  

0.1% Tween‐20  

50 μg/ml heparin  

500 μg/ml torula yeast total RNA (tRNA)  

dH2O up to 100 ml 

 

WASHING MIX (HM WASH):  

HM without tRNA and heparin 

 

PBS 1X: 

150 mM NaCl  

10 mM Na2HPO4  

ddH2O up to volume  

 

 

 



Methods 

39 
 

PBT 1X:  

1X PBS  

0.1% Tween‐20 

 

PFA:  

4% paraformaldehyde in PBS 1X 

 

ANTIBODIES ANTI DIGOXIGENIN/FLUORESCEIN:  

Antibodies used for whole mount in situ hybridization are provided by Roche, they 

are diluted 1:1000 in a PBT 1X/2% sheep serum/200 mg:ml BSA solution and 

pre‐adsorbed using 50 Iixed embryos/ml of various developmental stages. After 2 h 

at RT, the antibody solution is diluted to 1:3000 and Iiltered. Then NaN3 is added for 

better storage at 4°C. 

 

NBT/BCIP STAINING BUFFER:  

100 mM Tris‐HCl pH 9.5  

50 mM MgCl2  

100 mM NaCl  

0.1% Tween20  

ddH2O 

 

NBT/BCIP STAINING SOLUTION:  

NBT/BCIP (La Roche) 20 μl/ml in staining buffer.  

Alternatively use separate  

• 7,5 μl/ml NBT (Nitro Blue Tetrazolium provided by Sigma) 50 mg/ml (50 mg 

NBT dissolved in 0.7 ml anhydrous dimethylformamyde and 0.3 ml H2O). Store in 

the dark at –20°C. 

• 3,5 μl/ml BCIP (5‐Bromo 4‐Chloro 3‐Indolyl Phosphate, provided by Sigma) 50 

mg/ml (50 mg dissolved in 1 ml anhydrous dimethylformamyde). Store in the 

dark at –20°C. 

 

BENZYL BENZOATE‐BENZYL ALCOHOL  

Benzyl‐benzoate:benzyl alcohol 2:1 
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2.1.2 Solutions for bacteria transformation and RNA probe synthesis 

 

LB MEDIUM:  

5 g tryptone  

2,5 g yeast extract  

5 g NaCl  

ddH2O up to 500 ml and autoclave to sterilize. 

 

LB AGAR:  

2 g tryptone  

1 g yeast extract  

2 g NaCl  

3 g agar  

ddH2O up to 200 ml and autoclave to sterilize. 

 

DEPC WATER (Nuclease‐free water):  

1 ml DEPC (Diethyl pyrocarbonate) in 1lt ddH2O. Shake for 1h to O/N. DEPC must 

then be completely destroyed by autoclaving. 

 

TAE (50X) ELECTROPHORESIS RUNNING BUFFER  

Tris base   240 g 

Glacial acetic acid  57.1 ml 

0.5M EDTA    100 ml 

ddH2O    to 1 lt 

 

2.2  MORPHOLINO-MEDIATED KNOCKDOWN 

 

For knockdown experiments, we designed one translation-blocking morpholino (5′-

ATAAAAAGAGCCGTTTCTCTCATCC) and a splicing-blocking morpholino (5′-

TAAGAGCACTCACCTGCACC TGTGC). For control experiments, we used both a five-

base mismatch-control morpholino (TAAcAcCACTgACCTcCACCTcTGC) and a five-

base unrelated morpholino (GTtAATACcAGgATAgATTgATTG). All morpholinos were 

purchased from Genetools (Philomath,OR, USA). Morpholino stocks were 

resuspended in DNAase/RNAse freewater. For microinjection experiments, 

morpholinos were resuspended in Danieau buffer (8 mM NaCl,0.7 mM KCl, 0.4 mM 

MgSO4, 0.6mM Ca(NO3), 2, 5 mM HEPES, pH 7.6) and Red Phenol (Sigma, Milan, 

Italy) at the working concentration. Microinjections were performed in collected 
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one-cell stage embryos under a light microscope. Pigmentation was prevente using a 

0.003% 1-phenyl-2-thiourea solution in the first 24 h. 

 

2.3 GENOTYPING OF MUTANT 

 

Tail clip genotyping was performed on tail clips after 10 mg/ml proteinase K 

overnight digestion at 55°C. Genomic DNA was purified by phenol-chloroform 

extraction and ethanol precipitation. Purified DNA was dissolved in DNAse-free 

water. PCR was performed using the set of oligos, GBA forward(for) (5′-

GGACCAGCTGCTCAGGACAGT) and GBAreverse(rev) (5′CTGACCCGAAAGGTAGCAAA) 

at the following conditions: predenaturation 5 min at 94°C, and 35 cycles of 94°C for 

1 min, 56°C for 30″ and 72°C for 1 min. Amplicons were then treated with EXOSAP 

(Roche Diagnostics, Monza, Italy) and sequenced on both strands.  

 

2.4 ALIZARIN AND ALCIAN STAINING 

 

Skeletal staining was performed as previously described (Walker & Kimmel 2007). 

In addition Alizarin staining was performed using a modified procedure. Briefly, 

larvae were fixed 1 h at room temperature in 4% buffered paraformaldehyde, 

washed in 50% ethanol and dehydrated overnight in 95% ethanol. Staining was 

carried out in Alizarin solution (0.25%, w/v, in 2% KOH) for 3 h and larvae were 

then briefly cleared in 2% KOH (w/v) and stored in KOH/glycerol (20 : 80). 

 

2.5 TRANSMISSION ELECTRON MICROSCOPY 

 

Fish were fixed in 3% glutaraldehyde in 0.1 M cacodylate sodium buffer and 

processed as described previously (Parsons et al. 2002). Ultrathin sections were 

viewed on a Zeiss 902 electron microscope. 

 

2.6 TRANSFORMATION OF E. COLI 

 

Bacterial transformation allows to obtain large plasmids copy number. Vectors 

containing part of the cDNA of interest were introduced in bacterial E. coli cells (One 

Shot® TOP10 Chemically Competent E. coli provided by Invitrogen™). Vectors 

confer to the bacterial cells antibiotic resistance as a selectable marker for 

plasmid‐containing cells. Chemically competent E. coli stored at ‐80°C were placed 

on ice, a small amount of plasmid DNA (10‐50 ng) is added to the bacteria cells that 

were left on ice for 15 minutes before performing heat shock. A 30‐second long heat 
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shock at a temperature of 42°C allow the E. coli cells to take up vector DNA. 

Transformed cells are re‐placed on ice for 2 min adding 200 μl of nutrient S.O.C 

medium (Invitrogen™) and then incubated for about 45 min in a shaker at a 

temperature of 37°C. This incubation allows antibiotic resistance to be expressed so 

that cells can be plated on agar containing ampicillin or kanamycin. Plates are 

incubated over night and plasmid‐ containing colonies can grow on solid medium. 

Positive colonies are then selected and singles clones are cultured in Luria‐Bertani 

medium where the suitable antibiotics has been added to improve selection of 

vector‐containing clones. Liquid cultures provide massive bacterial growth in order 

to obtain a large plasmid copy number after extraction and purification 

 

2.7 PURIFICATION OF PLASMID DNA 

 

The extraction and purification of plasmid DNA was performed using commercial 

kits provided by Qiagen (QIAprep®) based on the alkaline lysis of bacterial cells in 

order to release plasmid DNA. These kits are equipped with special silica matrix 

columns that binds plasmid DNA with high affinity in the presence of high salt 

(Vogelstein and Gillespie, 1979). Then two wash with suitable buffers are performed 

to remove excess of salts and improve DNA recovery. High‐quality plasmid DNA is 

then eluted from the column with 50–100 µl of nuclease‐free water pre‐heated at 

65‐70°C in order to increase elution efficiency. 

 

2.8 ANTI-SENSE PROBE SYNTHESIS 

 

An improving possibility to study the expression of genes of interest is to generate 

an epitope‐tagged antisense RNA probe directed against the targeted gene/mRNA. 

To construct digoxigenin antisense RNA probes the partial cDNA of the gene of 

interest is cloned in a plasmid vector such it is under the control of a phage 

promoter. These phage promoters are recognized by the RNA polymerases encoded 

by phages as T3, T7 or SP6 and they allow large amounts of RNA to be produced in 

vitro. After extraction and purification, the plasmid is linearized, using a suitable 

restriction enzyme, at the 5’ end of the inserted gene of interest. This step is 

necessary as polymerases will fall off the end of the linearized plasmid after 

transcription and the enzyme can start a new transcription, in a process called run 

off synthesis. The GBA1 antisense probe was derived from an 821 bp cDNA cloned in 

pCRII-TOPO plasmid (Lifetechnologies, Milan, Italy) using the following set of oligos, 

GBAfor (5’-TGTCTCTGTCTTCCGGAGCT) and GBArev (5′-

ATGTCATGGGCGTAGTCCTC). The plasmid was linearized with HindIII and the probe 
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was transcribed by T7 polymerase using DIG-dUTPs. Sense control probe was 

prepared with the same plasmid, linearized with XbaI and transcribed with Sp6. The 

runx2b probe was generated by amplifying a 523 bp fragment and cloning it in 

pCRII-TOPO. Antisense- and sense-labeled riboprobes were obtained by T7 and SP6 

transcription, respectively. GFP and mCherry antisense riboprobes were generated 

by KpnI digestion of a Tol2 middle entry vector containing the GFP and mCherry 

cassette, respectively, and followed by T7 transcription. Together with this 

riboprobes, also col10a1 and cMyb were synthesized by digestion of pBK-CMV 

plasmid with EcoRI. 

Linearization reaction is performed in a 50 μl total volume with approximately 5 μg 

of plasmid to be digested, and using 1,2 μl of the suitable restriction enzyme coupled 

with its buffer and BSA when requested to enhance endonuclease performance:  

 

• ddH2O    up to  50 μl  

• plasmid DNA   5 μg 

• 10X buffer    2 μl 

• BSA 100x (if needed)  0.5 μl 

• restriction enzyme   1.2 μl 

 

Linearization reaction goes 2 h at 37°C or at a temperature suitable to improve 

enzyme performance. The linearized plasmid is then purified and precipitated over 

night at ‐80°C. The puriIication of the vector after linearization is carried out using 

Phase Lock gel tubes (Eppendorf):  

 

• centrifuge column tubes 1 minute max speed to pack the get at the bottom of the 

tube; 

• add nuclease free water to 100 µl to the sample of linearized DNA, and transfer the 

volume on the top of the gel of Phase Lock column; 

• add 50 µl phenol and 50 µl chloroform;  

• centrifuge 5 min max speed;  

• the Phase Lock gel separates solvents with saline buffers and enzymes of the 

linearization reaction from the aqueous phase containing the DNA; 

• add 100 µl chloroform and centrifuge 5 min max speed;  

• collect the aqueous phase containing purified linearized DNA (approx. 100 µl) that 

is on the top of the gel, and transfer it in a new 1,5 ml tube. 

 

Then add to the purified DNA 0,1 volumes (10 µl) NaCl and 2,5 volumes of Ethanol 

absolute, mix well and precipitate at least 2 h or over night at ‐80°C. After 
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precipitating add 2 µl of glycogen to the linearized DNA mixture and centrifuge 15 

min max speed;  

• remove the supernatant being careful not to touch the pellet;  

• wash the pellet 3 times with 200 µl 70% ethanol centrifuging 2 min max speed 

each time and removing supernatant; 

• dry the pellet from ethanol residuals and the re‐suspend it in 14 µl of nuclease‐free 

water. 

Then run an electrophoresis on 1,5% agarose gel loading 1 µl of purified linearized 

plasmid DNA in order to control the quality of the digestion.  

If the linearization was successfully carried out the antisense RNA probe can be 

transcribed starting from a phage promoter (T7, T3 or SP6) flanking the 3’ end of the 

inserted gene of interest. Nucleotides added by RNA polymerases are UTP 

digoxigenin‐labelled. Synthesis of mRNA probes were performed in a 20 μl reaction 

volumes at a temperature of 37°C from 2 hours to 6 hours depending on probe 

length.: 

  

• linearized plasmid DNA     13 μl 

• 10X transcription buffer (Roche)    2 μl 

• DIG‐ or FLUO‐RNA Labeling Mix (Roche)   2 μl 

• RNAsin® Ribonuclease Inhibitor (Promega)  1 μl 

• (T7, T3 or SP6) RNA Polymerase (Roche)  2 μl 

 

After the transcription, a step is required to digest template plasmid DNA with 2 μl 

of DNAse (RNAse‐Free DNAse, Promega) at 37°C for 20 min. This allow to purify a 

high quality RNA probe. The purification of antisense RNA probes is performed 

using a commercial kit (MEGAclear™ provided by Ambion®). Once purified, the RNA 

probe can be stored at ‐80°C. Then an electrophoresis has been run on 1,5% agarose 

gel loading 1 µl of purified probe in order to control and quantify the transcription. 

Prior to being loaded on gel, the probe has to be denatured at 65°C for at least 5 min. 

 

2.9 SINGLE-PROBE WHOLE-MOUNT IN SITU HYBRIDIZATION (WISH) 

 

In situ hybridization is a method useful in studying the expression of genes of 

interest. This method is based on the generation of epitope‐tagged RNA probes 

directed against the gene/mRNA of interest. Zebrafish embryos and larvae allow to 

perform whole‐mount in situ hybridization, thus permitting three dimensional 

analysis on tissues and organs. The most common protocol for in situ hybridization 

implies fixing zebrafish embryo in 4% paraformaldehyde (PFA) in PBS 1X for 2 h at 
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room temperature (RT) or overnight at 4°C in 2 ml eppendorf tubes. Embryos are 

selected at different developmental stages and, if necessary, removed from their 

chorion using dissection needles. Before late somitogenesis stage embryos have to 

be dechorionated after fixation, while in later and larval stages it is more suitable to 

carefully dechorionate embryos alive to avoid they remain curved as if they were 

fixed inside the chorion. After fixation PFA is removed, embryos are washed in PBS 

and then transferred in methanol 100% for at least 2 h at ‐20°C before starting the in 

situ hybridization protocol. Embryos can be stored in methanol for months but this 

step is necessary for permeabilization of embryos (Christiane Nusslein-Volhard 

2002). 

  

Day 1  

1. Rehydration of samples stored in Methanol 100% at ‐20°C.  

• 75% MetOH ‐ 25% PBS 1X   5 min   RT 

 50% MetOH ‐ 50% PBS 1X    5 min   RT 

• 25% MetOH ‐ 75% PBS 1X  5 min  RT 

• 100% PBT     4 x 5 min RT 

 

2. After PBT washes, digest with proteinase K (10 µg/ml). This step permeabilizes 

the embryos permitting access of the RNA probe. The digestion time is dependent 

on the developmental stage. No digestion is needed for embryos at blastula, 

gastrula and somitogenesis stages (up to the 18 somite stage). For 24 hpf old 

embryos digest for 5 min and for older embryos (from 36 h to 5 days old 

embryos) digest for 40‐60 min. Proteinase K digestion works at RT and it is 

stopped by incubation in 4% paraformaldehyde in 1 x PBS.  

• Post‐fixation of digested embryos with PFA 4% in PBS for 20 min at RT. Also 

embryos that do not need proteinase K digestion are usually post‐ fixed to 

strengthen the samples.  

• Washes with PBT    5 x 5 min  RT 

 

3. Pre‐hybridization step is performed by incubation in 500‐800 µl of Hybridization 

Mix (HM) for 2 to 5 h in a waterbath set at 60‐70°C, depending on the melting 

temperature of the probe. 

 

4. Hybridization step: remove and discard the pre‐hybridization mix. Replace with 

200 µl of hybridization mix containing about 100‐200 ng of antisense DIG (or 

FLUO) labelled RNA probe. Hybridize overnight in a waterbath at 60‐70°C. 
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Day 2  

Remove the hybridization mix with the RNA probe and recover it: probe‐ 

containing solutions can be used several times. 

1. Wash brieIly with HM for washes (HM without tRNA and heparin) at 65°C  

• 75% HM Wash ‐ 25% SSC 2X  15 min  65°C 

• 50% HM Wash ‐ 50% SSC 2X  15 min  65°C 

• 25% HM Wash ‐ 75% SSC   15 min  65°C 

• 100% SSC 2X    15 min  65°C 

• 100% SSC 0,2X    2 x15 min  65°C 

• 75% SSC 0,2X ‐ 25%   10 min  RT 

• 50% SSC 0,2X ‐ 50% PBT   10 min  RT 

• 25% SSC 0,2X ‐ 75% PBT   10 min  RT 

• 100% PBT     10 min  RT 

 

2. Incubation with blocking buffer of PBT/2% sheep serum/2 mg:ml BSA, at RT 

for 2 to 4 hours. 

 

3. Incubation in 400 μl of antibody solution diluted at 1/3000 in blocking buffer 

overnight at +4°C under slow agitation on a horizontal orbital shaker. 

 

Day 3  

Remove the antibody solution diluted at 1/3000 and recover it, antibody 

solutions diluted can be used up to three times. 

 

1. Wash brieIly with PBT at RT, then wash extensively 6 x 15 min at RT under 

slow agitation on a horizontal orbital shaker. Before starting the staining 

step, embryos are washed 3 x 5 min in NBT/BCIP staining buffer. 

 

2. Staining step: embryos are transferred from eppendorf tubes into wells of a 

24‐well plate, the staining buffer is then removed and NBT/BCIP staining 

solution is added. Embryos are incubated in staining solution at room 

temperature under slow agitation on a horizontal orbital shaker and 

protected from day light by a layer of aluminium foil. Staining reaction is 

regularly monitored under a dissection microscope. 

 

3. The staining reaction is topped by removing the staining solution, washing 3 

x 5 min with PBT and then placing back the embryos in the eppendorf tubes 

in PFA 4%. Stained samples are usually stored in PFA 4% in the dark at 4°C. 
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Labelled embryos are mounted in 100% glycerol. . Embryos at early developmental 

stages are observed in glycerol on depression slides. Whole mount pictures were 

taken with a Nikon SMZ 1500 Microscope provided with a digital camera. Embryos 

starting from 20 somite stage were manually de‐yolked using dissection needles and 

then flat mounted on slides. Slides were provided with small chambers cut into 

several layers of adhesive tape (1 layer until 24 hpf, 2 layers for 48 hpf and so on), 

the embryos is placed, in the desirable position, in glycerol into the chamber and 

then flattened using a coverslip. Flat mount pictures were taken with a Leica DMR 

Microscope. Digitalized pictures are saved as TIFF files, then adjusted for contrast, 

brightness and color balance using a Photoshop CS2 software and stored as such or 

after conversion to the .jpeg format to reduce the files size. 

 

2.10  QUANTITATIVE REAL-TIME PCR 

 

2.10.1 RNA extraction 

 

Zebrafish morphants embryos and mutant sa1621 at 48 hpf were homogenized in 

Trizol reagent (Lifetechnologies) and total RNA was isolated using the standard 

trizol-chloroform-ethanol extraction procedure. RNAs were resuspended in 20 μl of 

water RNAse free. RNA samples were checked for integrity by capillary 

electrophoresis (RNA 6000Nano LabChip, Agilent Technologies, Santa Clara, CA, 

USA). A total of 2 μg of RNA was reverse transcribed into cDNA using a SuperScript 

III Reverse Transcriptase (Lifetechnologies), according to standard procedures. The 

cDNA was subsequently subjected to SYBR Green-based real-time PCR using a 

RotorGene 3000 (Corbett, Concorde, NSW). Primers are listed in Table 1. 

 

2.10.2 RT-PCR data analysis 

 

RT-PCR data were analyzed using a manually set threshold and the baseline was set 

automatically to obtain the threshold cycle (Ct) value for each target. GAPDH was 

used as an endogenous housekeeping control gene for normalization. Relative gene 

expression among samples was determined using the comparative Ct method (2 – 

ΔΔCt). Results are expressed as the mean ± SEM in relative expression 
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Oligo name Sequence 5' -> 3' Genbank Association number 

GFP for ACGTAAACGGCCACAAGTTC AEVGFPB 

GFP rev AAGTCGTGCTGCTTCATGTG AEVGFPB 

zGAPDH for GTGGAGTCTACTGGTGTCTTC ENSDARG00000043457 

zGAPDH rev GTGCAGGAGGCATTGCTTACA ENSDARG00000043457 

zPlod1 for CTGATGGGTTCAGACGGTTT ENSDARG00000059746 

zPlod1 rev TTGGCCTGCTGAAACTTCTT ENSDARG00000059746 

zPON1 for AAAGGCTCGGCACACTTAGA ENSDARG00000032496 

zPON1 rev TTCAAGCCAGTGCTCAGAAA ENSDARG00000032496 

zGpx1b for CTGCGAGACAAGGAGGAAAC ENSDARG00000006207 

zGpx1b rev TGCAGCTCGTTCATCTGAGT ENSDARG00000006207 

zAxin1 for GAGAGACAGCCATGGAGAGG ENSDARG00000026534 

zAxin1 rev TGCTCATAGTGTCCCTGCAC ENSDARG00000026534 

zSmad1 for CTGTGAAGGATCACGTCGAG ENSDART00000033566 

zSmad1 rev GCCCAGTCAACACAGTCTCA ENSDART00000033566 

zSmad5 for CGGCTCCAAACAGAAAGAAG ENSDART00000054175 

zSmad5 rev TGGAGGGTAGGGTGAGTTTG  ENSDART00000054175 

zSmad8 for GGAGAGCAGTCCGTCTGAAG ENSDART00000132823 

zSmad8 rev GGATCTGTGAAACCGTCCAC ENSDART00000132823  

zBMP4 for GTGAGGCGAACTCCTTTGAG ENSDART00000075150 

zBMP4 rev TTTGTCGAGAGGTGATGCAG ENSDART00000075150  

hDkk1 for CAGGCGTGCAAATCTGTCT ENSG00000107984 

hDkk1 rev CCCATCCAAGGTGCTATGAT ENSG00000107984 

hAxin1 for ACAGGATCCGTAAGCAGCAC ENSG00000103126 

hAxin1 rev GCTCCTCCAGCTTCTCCTC ENSG00000103126 

hSmad1 for GCTTACCTGCCTCCTGAAGA ENSG00000170365 

hSmad1 rev ACCATCCACCAACACACTTG ENSG00000170365 

hGPX-1 for CGGGACTACACCCAGATGAA ENSG00000233276 

hGPX-1 rev CCGGACGTACTTGAGGGAAT ENSG00000233276 

hGAPDH for CACAATATCACTTTACCAAGAGTTAAAAGC ENSG00000111640 

hGAPDH rev CGAGCCACATCGCTCAGAC ENSG00000111640 

    

Table 1: listed primer used for real-time PCR. 

 

2.11  IMMUNOFLUORESCENCE ON TYPE 1 GAUCHER FIBROBLASTS 

 

Patient history has been described elsewhere (Filocamo et al. 2000). Fibroblasts 

were maintained in Dulbecco’s modified Eagle’s medium supplemented with 4.5 g/l 

glucose, 10% fetal calf serum, 50mg/ml gentamicin and 4mM glutamine. Thirty 

thousands fibroblasts per well were seeded on polylysine-coated coverslips in a 24-

well plate. After 24 h cells were fixed with 4% buffered paraformaldehyde. Blocking 

was achieved with a 10% (v/v) sheep serum, 1% BSA (w/v), 0.1% Triton X-100 and 
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0.3 M glycine. After few washes in PBS-Tween (0.1%, v/v), cells were incubated 

overnight with primary antibody at 4°C and after three washes in PBS-Tween (0.1%, 

v/v), a 2 h secondary antibody incubation was performed. Coverslips were finally 

mounted with DAPI (Lifetechnologies) on glass slides and observed under C2 

confocal microscope (Nikon, Milan, Italy). The following antibodies were used: 

antiGSK3β (Sigma, 1 : 100) rabbit anti β-catenin (Abcam,Milan, Italy, 1 : 100), goat 

anti Vps28 (Abcam, 1 : 100), rabbit anti GBA (Novus Biologicals, Milan, Italy, 1 : 100). 

 

2.12  APOPTOSIS AND PROLIFERATION ASSAYS 

 

For apoptosis analysis with a Cleaved caspase 3 antibody (Cell signaling, Milan, Italy, 

1 : 100) fish at 2–6 dpf were fixed in 4% PFA in PBS, permeabilized in methanol 

washes and acetone for 20 min and finally incubated in primary antibody in 

PBS/DMSO 1% overnight at 4°C. After three washes for 30 min incubation with an 

alkaline phosphatase-conjugated secondary antibody was performed (Sigma, 1 : 

500). Staining was carried out with an NBT/BCIP solution (Roche Diagnostics), 

according to manufacturer’s instructions. Alternatively, fish at the same 

developmental stages were fixed in 4% PFA overnight, dehydrated in several 

methanol washes and kept in 100% methanol for 30 min. After rehydratation, fish 

were digested with collagenase (Sigma, 1 mg/ml), and incubated in TdT reaction 

(Apotag, Chemicon, DBA, Milan, Italy) for 2 h at 37°C. Fluorescein-conjugated 

antidigoxigenin antibody incubation was performed at 4°C overnight and images 

were taken with C2 Nikon confocal microscopy. For proliferation assay, the Click-it 

Edu proliferation assay kit (Lifetechnologies) was considered. Briefly, fish larvae at 

2–4 dpf were incubate for 30 min in 10 mM EdU on ice. After several washes with 

cold embryo medium, a 30 min to 4 h incubation at 28.5°C for EdU incorporation 

was carried out. After fixation in 4% PFA larvae were treated with 10 μM Proteinase 

K (Sigma) and treated with the reaction cocktail as suggested by the manufacturer’s 

instructions. Images were taken on fixed larvae with a C2 Nikon confocal system 

(Nikon). Alternatively, fish from the Tg(Ola.Sp7:NLS-GFP)zf132 line were outcrossed 

with a Tg(H2b:RFP) line and heat shocked at 37°C for 1 h at 1 dpf. Images from the 

opercle were taken at 3–4 dpf with the C2 confocal system and processed by ImageJ 

analysis. In particular, the number of RFP-labeled opercle cells was assessed by 

adjusting the thresholded acquired image of each sample above the background of 

faintly stained cells. Manders coefficient was used to measure the double RFP/GFP 

co-labeled opercle cells in control and morphant larvae. 
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2.13  WESTERN BLOT 

 

Total proteins were extracted from zebrafish morphants and controls at 48 hpf with 

Tissue extraction lysis buffer II (Invitrogen). Samples of denaturated proteins (10 

μg) were separated on Nu-PAGE® Novex® 4–12% Bis-Tris Gels (Invitrogen) and 

transferred to PVDF membranes. The membranes were subsequently incubated 

with antibodies: GSK3β (1 : 50000) (Sigma), β-catenin (1 : 1000) (Sigma) and β-actin 

(1 : 5000) (Santa Cruz, Dallas, TX, USA) at 4°C overnight after incubation in Western 

blocker solution (Sigma) for 2 h. Meanwhile, 10 μg of type 1 Gaucher fibroblast and 

control fibroblast protein lysates were examined using western blotting according to 

procedures described above. The membranes were incubated with: GBA (1 : 1000; 

Novus Biologicals); β-catenin (1 : 1000; Sigma) and β-actin (1 : 5000; Santa Cruz) 

antibodies. After the incubation with horseradish peroxidase conjugated secondary 

antibody (1 : 2000; Sigma) for 1 h at room temperature, visualization was performed 

with SuperSignal West Pico Chemiluminescent Substrate detection kit (Thermo 

Scientific, Milan, Italy) followed by exposure to X-ray film (Thermo Scientific). β-

Actin served as an endogenous control. 

 

2.14  MICROARRAY 

 

Four pools of GBA1 MO and control MO-injected fish were independently collected 

after 48 h and total RNA was isolated according to standard procedures. RNA quality 

was assessed by Nanochip Agilent Bioanalyzer and microarray analysis was 

performed using the 44 × 4 Agilent platform, according to the manufacture’s 

protocol. Raw data were intra- and interarray normalized. Normalized data were 

then tested with the SAM software (Stanford University, USA) and processed by the 

David platform (http://david.abcc.ncifcrf.gov). t-Test statistical analysis was carried 

out with Welch correction of α = 0.01. 

 

2.15  RESCUE WITH HUMAN GBA1 OVEREXPRESSION AND CEREZYME 

TREATMENT 

 

The human glucocerebrosidase cDNA cloned into the commercial vector pCMV6-XL5 

(Origene, USA) was used as template for T7-mediated RNA transcription. Isolated 

RNA was DNAase treated for 2 h and recovered by MEGAclear Spin column 

purification (Euroclone). Qualitative and quantitative assessment was carried out by 

agarose gel and Nanodrop Instrument, respectively. Up to 2.5 ng of hGBA1 mRNA 

per embryo were microinjected with 17.5 pg gba1 morpholino without any evident 
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toxic side effect. Alternatively, coinjection with the GBA MO was carried out with 1 × 

10−5 U of Cerezyme per embryo in Danieau buffer (58 mM NaCl, 0.7 mM KCl, 0.4 mM 

MgSO4, 0.6mM Ca(NO3)2, 5.0 mM HEPES, pH 7.6.) 

 

2.16  IN VIVO REACTIVE OXYGEN SPECIES DETECTION (DCDFA STAINING) 

 

For ROS analysis, fish were either microinjected or incubated with a 10 mM DCF 

diacetate (DCDFA, Lifetechnologies) at one-cell stage embryo and visualized by a 

fluorescent microscope at 520 nm at 24–48 hpf. 

 

2.17  TARTRATE-RESISTANT ACID PHOSPHATASE ASSAY 

 

Fish at 10–14 dpf were processed using an adapted colorimetric TRAP assay 

(Sigma), according to manufacturer’s instruction. Bleaching for larval clearing was 

achieved by 10% peroxide hydrogen in water for 4 h. 

 

2.18  ZEBRAFISH DISSOCIATION AND FLOW CYTOMETRY ANALYSIS 

 

The protocol for dissociation of zebrafish cells was previously described (Covassin 

et al. 2006); however, several modifications were introduced. Protease solution was 

replaced with 1× PBS, 0.25% trypsin phenol red free (Gibco, Life Technologies, 

Milan, Italy), 1 mM EDTA, pH 8.0, 2.2 mg/ml Collagenase P (Sigma) and 

resuspension medium was replaced with Opti-MEM (Gibco), 1% filtered heat 

inactivated FBS (Gibco), 1× Penicillin–Streptomycin solution (Sigma). Dissociated 

cells were filtered by a 70 μm nylon membrane and subjected to FACS (BD 

FACSCanto II system). FSC, SSC and fluorescence (564–606 nm) have been analyzed. 

Unfluorescent dissociated zebrafish cells at 3 dpf were used as negative control, P1 

gate contained all autofluorescent and unfluorescent cells. 106 events were 

recorded. P2 gate was setup outside the P1 gate, collecting highly fluorescent events 

(564–606 nm). FITC fluorescence (515–545 nm) was also used as internal negative 

control. Samples were collected by 35 dissociated fish larvae. Fluorescent control, 

Gba1 morphants and unfluorescent samples were generated by microinjecting the 

offspring from the same mating process, between a Tg(gata1:dsRed)sd2(+/−) fish and a 

wild-type larva in each replica. 

 

 

 

 



  

 

 

 

 

 



  

3. RESULTS 
 

3.1 DETERMINATION OF THE EXPRESSION PATTERN OF GBA 1 IN THE ZEBRAFISH 
FROM EARLY LIFE STAGES 

 
The aim of this project is approach to a functional study of the lysosomal β-

glucocerebrosidase (Gba1) enzyme using zebrafish as model organism.  

The zebrafish gba1 gene is located on chromosome 16 and is made of 10 exons and 

the protein is composed of 518 residues.  

For understand the level of aminoacidic conservation of the protein analysis of the 

zebrafish gba1 othologue with in silico methods was carried out. Protein alignment 

of the zebrafish Gba1 revealed a 53% of aminoacidic identity and similarity with 

human and mouse orthologues (fig 15) revealing a high level of conservation 

between these species. To investigate the spatio-temporal expression of gba1 mRNA  

in the zebrafish development, WMISH assays were performed on WT embryos and 

larvae from 1.2 hpf to 7dpf using digoxigenin-labeled antisense gba1 mRNA probes. 

Expression of the gba1 is detected since the 1-cell stage of zebrafish embryos. 

Particularly,  despite later in development its expression is maintained widespread 

in the whole organism, a high level of gba1 is found in some specific tissues like the 

central nervous system, gut, liver, bones and heart (fig 15). These data are the first 

results in which the expression pattern of the gba1  is characterized, pointing out the 

importance of this enzyme during the early developmental stages. 

 

Fig.15: In silico analysis and expression profile of the 

zebrafish gba1 orthologue (A) Protein alignment of 

the zebrafish Gba1 with human and mouse 

orthologues. (B-R) In situ hybridization of an 

antisense zebrafish gba1 riboprobe showing 

detection of the gba1 mRNAs at early developmental 

stages. 
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3.2 ZEBRAFISH MODELS USED IN THIS PROJECT 

3.2.1 Knockdown of the zebrafish Gba1 using morpholino oligo 

 

To determine the function of gba1 during zebrafish embryonic development, a 

morpholino oligo targeted to the splicing donor site of the exon2 sequence of Gba1 

(Gba1MO) was designed and microinjection on wild type embryos of different 

concentrations revealed that at a dose of 1,75 mg/ml a 60% of the exon skipping 

was produced (fig.16C). To evaluate possible off-target effect of the morpholino, a 

translation-blocking morpholino targeting the ATG initation codon, was designed. 

Moreover, as control, a five mismatch-control morpholino targeting the same 

sequence and a five-base unrelated mismatch-control morpholino were used. To 

confirm the specificity of the Gba1MO, RT-PCR experiment were performed, 

revealing that aberrant splicing events in 2 dpf morphants occurred. Moreover, 

sequencing of the Gba1 misspliced transcript confirmed the skipping of exon 2 (see 

chromatograms in fig.16). The skipping of the exon induced alteration in the protein 

formation and western blots analysis using a cross-reacting antibody showed almost 

a 5-fold decrease of total Gba1 protein levels in 2 dpf morphants extracts when 

compared tp the control samples (fig.16). Morphants fish, despite a slight curvature 

of the trunk, did not exhibit a global particular phenotypes in respect to the control 

fish probably because only a partial depletion of the Gba1 protein was induced by 

the morpholino.  

 

Figure 16: (A)Representative chromatograms showing the exon 2 skipping produced by morpholino injection. 

The arrowhead indicate the nucleotide level at which the exon-skipping is produced. (B) Comparison between 

representative control larva (mismatch) and a morpholino injected (Gba1 MO), at 3 dpf, showing the lack of 

apparent phenotypic differences. Only a mild curvature of the trunk is detectable. (C) RT-PCR on cDNAs from 

48hpf larvae microinjected with 1.5 mg/ml (1), 1.75 mg/ml (2), 2 mg/ml (5) Gba1 MO and 1.75 mg/ml (3), 2 

mg/ml (4) control morpholino. β-Actin was used as internal control. Arrowhead indicates the shorter fragment 



Results 

55 
 

produced by antisense morpholino-mediated knockdown. (D) Representative western blot, showing the marked 

decrease of Gba1 protein levels after morpholino-mediated knockdown. Protein extracts are from 100 2 dpf 

mismatch-control and morphant microinjected larvae. Protein extract from the human Hek-293 cell line was 

used as control for protein band detection. β-Actin was used as loading control. 

3.2.2 Characterization of a zebrafish stable mutant line for Gba1. 

Since in 2001 the Sanger institute started the Zebrafish Genome Project, different 

mutant lines for a variety of alleles where produced in the context of the Zebrafish 

Mutation Project (ZMP). This project consist in a reverse genetic approach known as 

TILLING to identify mutations in specific genes by sequencing polymerase chain 

reaction (PCR)-amplified exons from thousands of N-ethyl-Nnitrosourea (ENU) 

mutagenized individuals.  

To further investigate the role of the Gba1 enzyme in embryonic development, a 

stable genetic mutant line retrieved from the ZPM forward genetic screening 

(gba1sa1621/sa1621 ENSDARG00000076058) was used. In these fish, a single G>A 

substitution in the splicing donor site of exon4, produces an aberrant Gba1 

transcript introducing a premature stop codon. The translated Gba1 mutant protein 

is made of 190 amino acids, instead of the 518 aminoacids of the wild-type Gba1 

protein (fig.17). The phenotype of these mutant fish is very similar to that of 

morphants, characterized by a significantly shortened body axis beginning from 7 

dpf, and a marked trunk curvature, when compared with age-matched control 

siblings (fig. 17 and Data not shown). 

 

 
 

Figure 17: (A) Representative chromatograms of wild-type siblings and gba1sa1621/sa1621 fish, showing 

the G to A substitution detectable in mutants. The produced truncated protein is shown in grey. (B) 

Representative 3 dpf wild-type sibling and gba1sa1621/sa1621 fish are shown. Note the marked curvature 

of the trunk in the mutant. 
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3.3  GBA1 LOSS OF FUNCTION AFFECT MULTIPLE CELL LINEAGES IN FISH 

 

3.3.1 Hematological defects are observed in Gba1 morphants and mutants 

The Gaucher patients manifest multiple defects in different tissues. A main common 

symptom to all clinical subtypes of GD patients is the presence of hematological 

complication like anemia and thrombocytopenia .  

To address if this zebrafish Gba1 morphants could resemble the GD phenotype, 

thrombocyte and erythrocyte populations were analyzed  to understand if were 

affected by Gba1 knockdown.  

The Gba1 morpholino was injected in Tg(-6.0itga2b:EGFP)ia2 fish, in which 

thrombocyte precursor and mature thrombocytes are labeled. A strong reduction of 

transgene expression in morphant fish at 5dpf was detected, supporting a marked 

thrombocytopenia (fig.18).  

To address if also erythrocyte were affected by Gba1 loss of function, qualitatively 

and quantitatively evaluation by fluorescence microscope, confocal scanning and 

FACS analysis of the number of erythrocytes in Tg(gata1:dsRed)sd2 microinjected 

with Gba1 and mismatch-control morpholinos were conducted. By fluorescent 

microscope acquisition and FACS analysis, a significantly reduction number of 

erythrocytes in morphants at 3 dpf was found (fig.18). 

Since erythrocyte were depleted in morphants and Gaucher patients usually exhibit 

increased macrophage activation, analysis of c-myb was carried out, which is a 

marker of definitive hematopoiesis and is important for the initial stage of 

myelopoiesis (Valledor et al. 1998). Ectopic expression of c-myb observed in Gba1 

morphants suggest an early hematopoietic defects triggered by Gba1 dysfunction. To 

support the results of hematopoietic defects obtained by injection of Gba1 

morpholino, the heterozygous fish (gba1 sa1621/+) was incross with the transgenic line 

Tg(gata1:dsRed)sd2. A reduction in the number of herytrocyte was observed also in 

the offspring obtained from the incross at 3 dpf that were similar to the data 

collected in the morphants fish (data not shown). 

These results demonstrate that both morphants and mutant zebrafish models 

display a reduction in the erythrocyte population resembling the anemia aspects of 

the GD patients. 
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Figure 18:  (A) Gba1 functional knockdown affects thrombocyte formation and differentiation. Gba1 MO-

injected larvae show evident decrease of transgene expression in Tg(-6.0itga2b:EGFP)la2 fish at 5dpf detected by 

in situ hybridization. The number below each panel represent the fraction of fish with the observed phenotype. 

The inset depicts a magnification of the trunk area. Black arrowheads indicate positive stained cells. (B) Bar 

graph showing the quantitative decrease of EGFP measured by ImageJ analysis of acquired images from in situ 

hybridizations. Numbers on the Y-axis are related to the positively stained area in arbitrary units, assessed in 20 

fish for each group (***P<0.0005; t-test). (C) Gba1 loss of function reduces erythroid precursors and mature 

erythrocytes. Representative  Tg(gata1:dsRed)sd2 fish showing reduced transgene expression after Gba1 

knockdown. In the small inset, a magnification of the trunk area is shown. The number below each panel 

represent the fraction of fish with the observed phenotype. (D) Bar graph showing the significant reduction of 

gata1-positive cells assessed by FACS analysis in Gba1 morphants fish at 3 dpf. FACS analysis was carried out on 

cells sorted from 35 dissociated larvae in each experiment. The bar graph depicts the mean ±SEM of four 

independent experiments (106 recorded events) (*P<0.05; t-test). (E) Gba1 impairment increases the number of 

ectopic cMyb (+)-hematopoietic precursors. In the small inset, a magnified caudal view of the trunk is depicted. 

Numbers represent the fraction of fish with the observed phenotype. (F) Bar graph showing the quantitative 

increase of c-Myb expression measured by ImageJ analysis of acquired images from in situ hybridizations. 

Numbers on the Y-axis are related to the positively stained areas in arbitrary units, assessed in 20 fish for each 

group (**P<0.005; t-test). 
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3.3.2 Liver and spleen size are compromised in both morphant and mutant 

 

Another debilitating symptom that affect the GD patients is the increase of the 

spleen and liver size. Hypersplenomegaly causes thrombocytopenia wich in turn 

may lead to severe bleeding with anemia. Splenectomy is the available treatment to 

relieve the patients pain but can leads to further liver enlargements.  

To address if even morphants fish display a liver enlargement, microinjection of the 

morpholino in the gz15Tg transgenic line (named also Lipan) , wich is a double 

transgenic line [Tg(ela3l:EGFP)/Tg(fabp10a:DsRed)] labeling the exocrine pancreas 

in green and the liver in red under epifluorescence, was carried out. As shown in 

figure 19A, a progressive and significant hepatomegaly in morphants after 13dpf, 

reminiscent of the visceral phenotype in GD was observed. To address whether the 

same hepatomegaly was present in fish mutants, heterozygous fish (gba1 sa1621/+) in 

the Lipan transgenic background were incrossed and a significant increase of liver 

size already at 10dpf was found (data not shown). Moreover, observation on 

sacrificed 3 month old homozygous mutants revealed increase of the liver and 

spleen size also in adult stages (fig.19C).  

 
Fig. 6: (A) Gba1 morphants display enlarged liver at 13 dpf. In the upper panel, a representative confocal Z-stack 

projection of the liver from Lipan control and morphant fish at 13 dpf. (B) Quantitatice measurements of the 

liver area calculated by ImageJ on acquired images of the Lipan transgenic fish microinjected with control and 
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Gba1 morpholino at different life stages (5 dpf Ncontrol:14, NGBA1 MO: 20;  10 dpf Ncontrol:12, NGBA1 MO: 12; 13 dpf 

Ncontrol:18, NGBA1 MO: 10). Data are expressed as mean ±SEM of three independent experiments (*P<0.05; t-test). 

(C) Representative liver and spleen from 3-month-old control sibling and gba1sa1621/sa1621fish, showing the 

enlarged liver and spleen size in the homozygous mutant (g:gut; s:spleen). 

 

3.3.3 Gba1 morphants and mutants display severe bone abnormalities  

 

To investigate if morphants fish exhibits bone development and mineralization 

defects, the expression of two early osteoblasts differentiation markers were 

analyzed by in situ hybridizations. The early osteoblast-specific runx2b and 

hypertrophic chondrocyte col10a1 markers which label distinct populations 

involved in endochondral and intramembranous ossification processes during 

skeletal development were analyzed in Gba1 morphant and mismatch control at 2 

dpf and 4 dpf. A significantly reduction in the expression of both markers in Gba1 

morphants was detected (fig.20). Moreover, microinjection of the splicing 

morpholino in Tg(Ola.Sp7:NLS-GFP)zfl32 transgenic fish, wich label osterix (sp7)-

expressing cells was carried out and confocal analysis at 4dpf demonstrated a 

significant reduction of osterix-transgene expression, thus confirming an early 

disfunction of the osteoblast population (fig.21) Despite these defects in osteoblast 

cell linage, no evident alterations of the cartilage tissue were observed. Evaluation of 

Gba1 morphants cartilage by Alcian blue staining  that label mucopolysaccharides 

(fig.20B) and confocal analysis of Tg(Col2a1aBAC:mCherry)hu5900 didn’t showed 

alteration in this tissue. Indeed, multiple Alizarins staining on 10 dpf larvae showed 

a marked decrease in bone mineralization occurring in morphants at both the 

cephalic regions and vertebrae centra levels. (fig.20) 
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Figure 20: (A) (left) Reduced runx2b levels in 2 dpf Gba1 morphants. A representative larva is shown for each 

group (control and morphants). In the bottom panel, a magnification of the runx2b-stained area is shown. (right) 

Reduced col10a1 mRNa levels in 4 dpf Gba1 morphants. A representative larva is shown for each group (control 

and morphants). In the bottom panel, a magnification of col10a1-stained opercle (op) and brachiostegal (bs) 

bone is shown. (B) Alcian blue and Alizarin red staining in a representative mismatch-control larva and Gba1 

morphant at 10 dpf, showing lack of vertebrae centra ossification in Gba1 morphants. In the small inset a 

magnification of the cephalic area, showing the spongy aspect of parasphenoid bone in morphants. On the right, 

a graphical representation of the statistically significant difference in the percentage of larvae with more than 

eight ossified centra between control (N=70) and morphants (N=108).   

 

 
Figure 21: Reduced transgene expression in Tg(Olasp7:nuGFP) fish after Gba1 knockdown. On the left a 

representative confocal Z-stack projection is shown: on the right ImageJ-based analysis of the opercle volume in 

control (N=5) and morphants (N=5).  
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To confirmed the bone alteration obsreved in Gba1 morphants fish and to support 

the finding of a primary defect in the differentiation of early bone–forming cells, in 

situ hybridizations of fixed larvae derived from incrosses between Gba mutant 

carriers (gbasa1621/+) demonstrated an evident decrease of runx2b and col10a1 

expression in almost 25% of fish at 2 and 4 dpf, respectively (fig.22). Moreover, 

analysis of bone mineralization at 10 dpf by Alizarin red staining revealed a strong 

decrease of calcium deposition in mutant larvae at both rostral regions (opercle, 

inset of fig.22) and vertebrae centra. 

 
Fig. 22: (A) Reduced runx2b (left) and col10a1 (right)mRNA levels in gba1sa1621/sa1621 detected by in situ 

hybridizations with antisense riboprobe. (B) Decreased bone mineralization in gba1sa1621/sa1621 fish detected by 

alizarin red staining. A small inset highlighting the reduced opercle size in mutant fish is shown. The numbers 

below each panel indicate the fraction of fish with the observed phenotype. In all panels, fish are represented 

with anterior to the left. Data are expressed as mean ± SEM of three independent experiments (*P<0.05; t-test). 

 

To better characterize the type of vertebral abnormalities, thin and ultrathin 

sections of larvae at earlier stages (6 dpf) was performed. In Gba1 morphants, 

morphological alterations in the notochord was detected, ranging from outstretched 

notochord cells to a collapsed notochord in fish with the most severe phenotype. On 

TEM analysis, distinct ultrastructural phenotypes were observed, which included 

alterations of the medial notochord sheath, deteriorated mitochondria and 

notochord cell-shape, and a very limited accumulation of intracellular vesicles 

(fig.23).  
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Figure 23: gba1 morphants exhibit 

a misshapen notochord with 

ultrastructural defects at 6 dpf. (On 

the top) Light micrographs from 

Toluidine blue-stained semi-thin 

longitudinal section of 

representative control and 

morphant fish. (on the bottom) 

Longitudinal sections EM 

microphotographs of the notochord 

from the same fish. Note the 

misshapen medial sheath (white 

arrowheads) and notochord cell 

shape. An increased accumulation 

of intracellular vesicles is shown by 

yellow arrows. N:notochord; nc: 

notochord cell; m:mitochondrion. 

(NGba1MO=3 ; NControl=3). 
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A very important step in bone formation is the blood vessels invasion of the 

hypertrophic cartilage. To understand if reduced osteoblast differentiation and bone 

mineralization defects observed in Gba1 morphants were due to alteration in blood 

supply, microinjection Gba1 morpholino in Tg(kdrl:EGFP)s843 was carried out, but no 

alteration in the blood vessel architecture and microarchitecture of Gba1 morphants 

were detected (fig.24).  

To ruled out a possible defect in the differentiation of neural crest cells, that 

contribute to bone formations, analysis of transgene expression of 3 dpf Gba1 

morphant  in Tg(sox10:mRFP)vu234 background were performed. As shown in figure 

24, no modifyed transgene expression were detected in Gba1 morphants respect the 

mismatch control larvae (fig.24).  

 

 
Figure 24: Lack of vascular and neural-crest derived defects in gba1 morphants. (top) Representative confocal 

Z-stack projection from a representative 2 dpf control and morphant Tg(kdrl:EGFP)s843 fish, showing the absence 

of vascular defects at both cephalic (left) and trunk domains (right). (bottom) Representative confocal Z-stack 

projection of a 3 dpf Tg(7xTCFXla.siam;EGFP)ia4/Tg(sox10:mRFP)vu234 control and morphant larva, demonstrating 

no apparent neural-crest derived abnormality. Numbers on the bottom of each panel describe the fraction of 

analyzed fish. 
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In the maintenance of bone homeostasis also the osteoclasts cell plays important 

role. In fact, over activation of these cell can lead to alteration of bone mineralization 

(Helfrich et al. 2007). Analysis of bone resorption by tartrate-resistant acid 

phosphatase (TRAP) staining in Gba1 morphants at 14 dpf revealed no apparent 

increased levels of osteoclats activity (fig.25), suggesting that bone defects observed 

in Gba1 morphants are not due to increased bone resorption. 

 

 

Figure 25: Bone resorption is not active in the earliest life stages of gba1 morphant fish. TRAP staining in 14 dpf 

control and morphants larvae, showing no significantly increased TRAP-positive areas in gba1 morphants. 

Numbers on the bottom of each panel describe the fraction of fish with TRAP positive areas. 

 

 

3.4 GLOBAL CELLULAR AND MOLECULAR DEFECTS DUE TO GLUCOCEREBROSIDASE 

DEFICIENCY ARE TRIGGERED DURING EARLY STAGES OF DEVELOPMENT 

 

Since anemia, thrombocytopenia and a reduced number of runx2b-expressing 

osteoblasts could be due to overinduced apoptosis or decreased cell proliferation, in 

vivo proliferation and apoptosis assays at 2-6 dpf were performed, in both 

morphants and controls. No global evident differences in the rate of cell apoptosis in 

Gba1 morphants were obserevd using cleaved caspase 3 immunohistochemistry 

(fig.26A) and in vivo TUNEL labeling (data not shown). Moreover, by means of EdU 

labeling (fig.26B) and in vivo phosphohistone tracking (fig.26B) the level of 

proliferation in Gba1 morphant were analyzed. The rate of positive proliferating 

cells was not altered in Gba1 morphants except for a slight, but not significant, 

decrease in the proliferation of osterix-expressing cells  
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Figure 26: GBA1 loss of function does not affect cell apoptosis and proliferation. (A) Immunohistochemistry for 

cleaved caspase 3 in 2 dpf and 6 dpf control and morphant larvae. Arrowheads indicate positive stained areas. In 

2 dpf fish only a ventral view is shown, while in 6 dpf larvae both lateral and ventral view, with anterior to the 

left are shown. Numbers on the bottom of each panel indicate the fraction of positively stained fish. (B) EdU 

labeling of 48hpf Gba1 larvae and control did not reveal alteration of cell proliferation (C) (top) A model 

depicting the gradual dilution of the fluorescent red signal after rounds of cell division in heat-shocked 

Tg(h2b:RFP) larvae, while in non-proliferating cells the signal maintains a high intensity. (bottom) 

Representative confocal Z-stack projection showing the partially but not significantly reduced proliferation in 

3dpf and 6 dpf Tg(h2b:RFP)/Tg(Ola.Sp7:NLS-GFP)zf132  fish. A graphic diagram is shown on the right side (six 

animals for each group were analyzed).  

 

 

To better understand early molecular defects underlying the global cellular 

alterations, genome-wide microarray profiling of compared control and morphants 

gene expression patterns at 2 dpf was performed. Eight different RNA extracts were 

collected, each extracted from 150 larvae microinjected with Gba1 morpholino or 

control morpholino. In each individual microinjection experiment, control and Gba1 

morpholino were injected in embryos derived from the same offspring to rule out 

potential intra-experiments variability. Therefore, a total of four distinct biological 

replicates for each condition was collected. The microarray results, showed that 131 

genes were significantly upregulated (of wich 62 were>1.5 fold) and 63 genes were 
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downregulated in Gba1 morphants (fig.28).  Noteworthy, both the most up- and  

downregulated genes were associated with an oxidative stress-response. A >3-folds 

upregulation of the genes plod1 (procollagenelysine, 2-oxoglutarate 5-dioxygenase 1) 

and pon3 (paraoxonase 3) was found, while gpx1b (glutathione peroxidase 1b) 

expression levels were significantly decreased of ~1.5-fold. Interestingly, analyzing 

the microarray results many genes involved in intracellular vesicle trafficking, 

mitochondrial activity and transcriptional activity were differentially expressed in 

Gba1 morphants respect the control [Gene Expression Omnibus, accession no. 

GSE54754]. 

To confirm some of the data retrieved by microarray analysis, quantitative real-time 

PCR (q-PCRs) analysis on the same pooled RNA extracts used in microarray 

experiments from the 2 dpf control and morphant microinjected larvae was carried 

out. As shown  in figure 28 , the same degree of differential gene expression for 

plod1 and pon3 was detected, thus confirming the output of microarray analysis.  

Moreover, western blot analysis using a cross-reacting PLOD1 antibody on 2 dpf 

pooled morphant and control protein lysates from 150 microinjected larvae, 

confirmed the q-PCRs obtained results at a proteomic level. 

As shown in figure 27, an increase of Plod1 protein levels was detected in 

morphants when compared with matched control fish lysates. This results is in line 

with microarray profile for the plod1 target gene. 

 

 

  

 

Figure 27: Quantitative polymerase 

chain reaction (qPCR) analysis for pon3, 

plod1 and gpx1b, highlighting 

significantly increased transcripts levels 

for pon3 and plod1, while gpx1b mRNA 

levels decreased in morphants and 

significantly augmented in rescued 

larvae. RQ-PCRs were performed on the 

RNA extracts from the four biological 

replicates used in microarray analysis. 

Each pooled RNA was extracted from 150 

microinjected larvae. Data are expressed 

as mean ±SEM of five independent 

experiments (*P<0.05; t-test). On the 

bottom right, a representative western 

blot analysis demonstrates the 

corrispondent increase between mRNA 

and protein levels in Gba1MO. Protein 

lysates were obtained from 150 

microinjected larvae. Numbers on the top 

of each band represent quantitative 

measurements by ImageJ analysis. 
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Figure 28: Heat map showing 

the differential expression of 

transcripts in Gba1 morphants 

versus control fish. A partial 

list of differentially expressed 

genes (>2-fold increased 

expression for upregulated 

genes and <1.5-fold 

expression for downregulated 

genes) is reported. 
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Since the upregulation of plod1 and the downregulation of gpx1b could account for 

an early oxidative stress response, an additional in vivo analysis were perform. To 

address the issue, in vivo staining of 24 hpf (fig.29B) and 48 hpf morphant and 

control larvae with DCFDA (dichlorofluorescein, DCF, diacetate), which is a probe for 

reactive oxygen species (ROS), was carried out. 

The DCFDA is cleaved intracellularly by non-specific esterase to form DCFH, which is 

further oxidazed by ROS to form the fluorescent compound DCF. (fig. 29A)  As 

shown in figure 29B, a significant increase of fluorescence in morphant fish 

microinjected with the DCFDA compound at 24 hpf was observed, when compared 

with controls. The direct effect of ROS-mediated increase of fluorscence was specific, 

as the co-injection of a human GBA1 mRNA was able to strongly reduce ROS release.  

 

 
 

Fig.ure 29: (A) Schematic representation of the formation of fluorescent compound DCF by ROS. (B) (top) 

Oxidative stress increase detected by fluorescent DCFDA staining in Gba1 morphants. Representative whole 

fluorescent imaging of control, morphants and rescued morphant fish at 24 hpf. (bottom) Quantitative bar graph 

showing the percentage of fish with DCFDA-positive staining from three independent experiments.  
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3.5  CANONICAL WNT PATHWAY ACTIVITY IS SPECIFICALLY HAMPERED BY 

GLUCOCEREBROSIDASE IMPAIRMENT 

 

Since early apoptotic events or cell proliferation defects were ruled out, we focused 

our attention to potential cellular pathways involved in cell differentiation process. 

To screen for a candidate affected cell signaling, the Gba1 morpholino were tested 

on different generated signaling pathway reporter lines, in which a reporter gene 

(EGFP or mCherry) is driven by cell signaling responsive elements (fig.30) (Moro et 

al. 2013).  

By both fluorescent microscopy imaging and in situ hybridization analysis, was 

detected a specific drop of reporter gene expression for the responsive line 

Tg(7xTCFX.lasiam:EGFP)ia4, in which domains of active canonical Wnt signaling are 

labelled (fig.30) (Moro et al. 2012). 

To address whether the Wnt signaling defect was specific and reproducible in stable 

Gba1 mutants, the gba1sa1621/+ carriers was crossed with the transgenc line and the 

offspring obtained from incrossed heterozygote gba1sa1621/+ in the Wnt reporter 

background were analyzed. As shown in figure 30, in homozygous fish mutant 

(gba1sa1621/sa1621) a strong decrease of reporter expression was detected, which 

remained consistently low even later than 7 dpf (fig.30).  

With RQ-PCRs experiments the decrease of Wnt reporter activity in transgenic fish 

microinjected with the Gba1 morpholino and control morpholino were 

quantitatively measured. To performe this task, for each condition (control and 

morphants) 100 larvae at 2 dpf were collected for a total amount of five biological 

independent replicates.  
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Figure 30: Representative 2 

dpf (fluorescence) and 3 dpf 

(bright field) reporter fish after 

control and morpholino 

injection (Gba1 MO). 

Brightfield images have been 

taken after in situ hybridization 

using an antisense riboprobe 

against the reporter coding 

region. From upper pannel, 

reporter for: TGF-β , Shh, Notch 

and Fgf signaling pathways. 

Numbers below each panel 

describe the fraction of fish 

observed. All views are 

anterior to the left. 

 

 

About a two-fold decrease of total GFP mRNA levels (fig. 31C) in morphant fish when 

compared to age-matched mismatch-control larvae was measured, thus supporting 

the direct effect of GBA1 loss of function on the transcriptional activity of the Wnt 

reporter. Noteworthy, the Wnt pathway deregulation was significantly reverted 

upon human GBA1 mRNA overexpression in morphants (fig. 31C), thus supporting a 

direct link between Wnt signaling defects and Gba1 loss of function. To further 

confirm the canonical Wnt signaling involvement in Gba1 functional impairment, 

single genotyped homozygous mutant larvae were collected and several RQ-PCRs on 

RNAs from pooled 2 dpf homozygous mutants and wild-type siblings (N=3 for each 

condition) was performed. As shown in figure 31C, a significant decrease of  Wnt 
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reporter transgene expression in mutant fish when compared to age-matched 

control siblings was detect. Notably, the decrease of reporter expression was similar 

to that assessed in morphant RNA extracts when compared with mismatch controls. 

Microinjection of hGBA mRNAs was partially able to rescue the decrease of reporter 

expression in mutant larvae (data not shown).  

The activity of Wnt signaling pathway is generally modulated by the sequestration of 

β-catenin by the multiprotein complex comprised of Axin1 and GSK-3. To addressed 

if the reduction of the Wnt reporter activity observed both in morphants and mutant 

zebrafish larvae was due to increased expression level of these multiprotein 

complex, analysis of the axin1 mRNAs by RQ-PCR on morphants and mismatch 

control extracts from the previously isolated pools were performed. 

As shown in figure 31D, a significantly increased of axin1 mRNA levels in 2 dpf 

morphants when compared with mismatch control larvae was measured. The same 

degree of axin1 upregulation was not, however, detected in gba1 mutants extracts 

(data not shown).  

 
Figure 31: Canonical Wnt signaling is disturbed in Gba1 morphants and gba1sa1621/sa1621 fish. (A) Representative 

24 hpf (top) and 48 hpf (bottom) Wnt reporter fish microinjected with control morpholino and Gba1 

morpholino, showing the marked decrease of reporter activity. (B) Representative 48 hpf (top) and 7 dpf 

(bottom) gba1sa1621/sa1621 fish in the Wnt reporter background, showing the strong decrease of reporter activity. 

The small inset shows a magnified view of the cephalic region of the gba1sa1621/sa1621 fish at 7 dpf. (C)(left) RQ-

PCR analysis of GFP showing the significant decrease of reporter expression in Wnt reporter transgenics after 

Gba1 morpholino-mediated knockdown. Note that the GFP mRNA levels were significantly restored when fish 

were co-injected with the human GBA1 mRNA. RNA extracts were obtained from 100 pooled microinjected 
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control, morphant and rescued morphant fish in five independent experiments. (right) RQ-PCR analysis of GFP 

showing the significant decrease of reporter expression in gba1sa1621/sa1621 fish in the Wnt reporter background. 

RQ-PCRs were carried out on RNAs from pooled 2 dpf homozygous mutants and wild-type siblings (N=3 for each 

condition). Data are expressed as mean ± S.E.M of four independent experiments (*P<0.05; t-test).  

(D) Quantitative polymerase chain reaction (qPCR) analysis for axin1, showing the significant upregulation of 

axin1 in Gba1 morphant fish. RNA extracts were obtained from 100 microinjected control, morphant fish in five 

independent experiments. Results are expressed as mean ± SEM of five independent experiments (*P < 0.05; 

***P < 0.0005; t-test). 

 

 

 

Immunoblot analysis of β-catenin in morphants and control protein lysate, obtained 

by protein extraction from 150 larvae for each condition was carried out, and a  2-

fold decrease of total β-catenin protein levels in morphants was detected (fig.32). 

Moreover, by immunoblot the levels of Gsk3-β were tested and found a 3-fold 

increase of Gsk3-β protein levels in the previously obteined morphant lysates 

(fig.32). Indeed, levels of Glycogen synthase 3 α (Gsk3 α), another β-catenin 

regulator (Doble et al. 2007) were not affected by Gba1 loss of function, as assessed 

by western blot on the same morphant and control protein extracts. 

 

 

Figure 32: Representative Western blot analysis of total lysates from 100 pooled control and morphant fish at 2 

dpf for β-catenin (left), p-Gsk3β (pSer9) (middle) and Gsk3α (right). β-catenin and p-Gsk3β protein level 

decrease and increase are shown in the left  and right image, respectively. Numbers on the top of each band 

represent quantitative measurements by Image-J analysis.  
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3.6  BONE DEFECTS ARE REVERSIBLY CORRECTED WHEN A HUMAN GBA1 IS 

OVEREXPRESSED IN MORPHANTS 

Osteopenia has been shown to develop during early life stages in humans, thus 

justifying bone improvements when ERT is started in young patients (Mistry et al. 

2011). To addressed if bone defects observed in this zebrafish model was due to 

direct effect of Gba1 depletion and if restore expression of this enzyme improved the 

osteopenic  phenotype, a human GBA1 mRNA were co-injected with the morpholino 

in wild type zebrafish embryos.  

As shown in figure 33A and B, a significant recovery in the expression of the col10a1 

marker was observed, which was previously showed to be affected by Gba1 loss of 

function. Moreover, also bone mineralization can be restored to normal levels after 

hGBA overexpression in Gba1 morphants. Indeed, both cephalic bones and vertebrae 

centra mineralization were consistently recovered (fig.33C and D). 

 

 
Figure 33: Col10a1 decreased expression and bone mineralization are rescued upon human GBA1 
overexpression (A) Representative in situ hybridization for col10a1 in 4 dpf control, Gba1MO and rescued fish. 
Number below each panel represents the fraction of fish with the observed phenotype. (B) Graphical diagram 
showing an Image-J based volume analysis of the col10a1-stained opercles in the different conditions. (C) Lateral 
(top) and ventral (bottom) views of 10 dpf alizarin-stained larvae, showing the recovery of bone mineralization 
after human GBA1 forced expression. In the bottom mineralization of the ceratohyal cartilage is highlighted by 
arrowheads. (D) Graphic representation of the quantitative measurements of vertebrae centra in different 
conditions. Results are expressed as mean ± SEM of five independent experiments ( *P < 0.05, **P < 0.005, 
***P<0.000; t-test) 
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3.7  CANONICAL WNT SIGNALING ACTIVITY IS SIGNIFICANTLY IMPAIRED IN TYPE 
1 GAUCHER DISEASE PATIENTS 

 
The canonical Wnt signaling plays a pivotal role in bone remodeling (Regard et al. 

2012) and to addressed whether Wnt signaling defects could also be detected in 

type 1 GD patients different assays were performed. Immunofluorescence analysis 

of β-catenin and glucocerebrosidase levels on fibroblasts from a healthy volunteer 

and type 1 GD patient that was compound heterozygous for [R170P]+[c.1225(-

11delC)-(14T>A)] (Filocamo et al. 2000) showed a strong reduction in β-catenin 

protein levels and almost no immunoreactivity for glucocerebrosidase in the patient 

 Western blot analysis on total protein lysates from the same patient’s fibroblasts 

confirmed a quantitative decrease of total β-catenin (more than 1.5-fold) and 

glucocerebrosidase (nearly 3-fold) levels (fig. 34B). To evaluate the mRNA levels of 

the intracellular, Axin1, and the extracellular, DICKKOPF-1 (DKK1), negative 

regulators of the Wnt pathway, RQ-PCRs experiments was carried out in RNA 

extracts from cultured fibroblasts of (i) the same type 1 GD patient, compound 

heterozygous for [R170P]+[c.1225(-11delC)-(14T>A)](Filocamo et al. 2000), (ii) a 

N370S homozygous type 1 patient, and (iii) a L444P homozygous type 3 GD patient. 

As shown in figure 34C and D, a significant increase of both Axin1 and DKK-1 mRNAs 

in the compound heterozygote for the [R170P]+[c.1225(-11delC)-(14T>A)] alleles 

was observed, while DKK-1 mRNA levels were almost undetectable in the N370S 

homozygote. Moreover, also a significantly reduced levels for the human GPX1 

mRNA in the N370S homozygote was detected. 

The identification of bone turnover markers in relation to GD manifestations has 

been matter of debate (van Dussen et al. 2011; Drugan et al. 2002; Ciana et al. 2003). 

To investigate if Wnt-related modulators could be used as traceable blood serum 

markers, several analysis in a cohort of thirty patients affected by type 1 and 3 GD 

with a known genotype (Table 2) was carried out. 

As shown in figure 34F, only type 1 GD patients homozygous for [N370S]+[N370S] 

and compound heterozygous for [N370S]+[L444P] displayed significantly decreased 

osteocalcin levels. When measuring blood serum levels for DKK-1 and sclerostin 

(SOST-1), another known extracellular Wnt pathway modulator, was detected that 

DKK-1 serum levels were significantly reduced in compound heterozygotes 

[N370S]+[L444P], while SOST-1 levels were significantly diminished in 

homozygotes [N370S]+[N370S]. Furthermore, significant evidence that ostecalcin 

levels positively correlate with both DKK-1 and SOST-1 levels in type 1 GD patients, 

regardless of a specific genotype (fig. 34G), point out a potential correlation between 

osteocalcin and the Wnt modulators DKK-1 and SOST-1. 
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Figure 34: Canonical Wnt signaling is impaired in type 1 GD patients. (A) Representative immunostaining for β-

catenin/VPS28 (top) and GBA1 (bottom) in control fibroblasts and in fibroblasts from a type 1 Gaucher patient 

[R170P]+[c.1225(-11delC)-(14T>A)] (abbreviated to GDp1). Red arrowheads indicate spikes and the nuclear β-

catenin staining in control cells. Cells from the Gaucher patient display a marked decrease of β-catenin and GBA 

staining. (B) Western Blot analysis of total cell lysates with GBA1 and β-catenin antibodies, showing decreased 

levels of β-catenin in GDp1 patient fibroblasts. Numbers on the top of each band represent quantitative 

measurements by Image-J analysis. (C, D) Increased levels of Axin1 and DKK1 mRNAs in GDp1 fibroblasts, as 

detected by qPCR analysis. Results are expressed as mean ± SEM of three independent experiments (with *P < 

0.05, **P < 0.005; t-test). (E) Differential expression of GPX-1in type 1 GD fibroblasts from patients with different 

genotypes. Fibroblasts from a homozygous [N370S]+[N370S] patient display a significant reduction of GPX-1 

mRNA levels, while those from the patient with the rare genotype [R170P]+[c.1225(-11delC)-(14T>A)] were 

associated with significantly increased GPX-1 mRNA levels. (F) Blood serum levels of OSTEOCALCIN, DICKKOPF-

1 (DKK-1) and SCLEROSTIN (SOST-1) measured by ELISA show significant decrease of OSTEOCALCIN in 

homozygous [N370S]+[N370S] and compound heterozygous [N370S]+[L444P] (left bar-graph), significantly 

decreased DKK-1 levels in compound heterozygous [N370S]+[L444P] (middle bar-graph) and significantly 

decreased SOST-1 levels in homozygous [N370S]+[N370S] patients (right bar-graph). (G) (left) Correlation of 

DICKKOPF-1 (DKK-1) and OSTEOCALCIN serum levels. X-axis indicates DKK-1 serum level; y-axis indicates 

OSTEOCALCIN level in Gaucher patients. r=0.46 (p<0.001). (right) Correlation of SCLEROSTIN-1 (SOST-1) and 

OSTEOCALCIN serum levels. X-axis indicates SCLEROSTIN serum levels; y-axis indicates OSTEOCALCIN level in 

Gaucher patients. r=0.56 (p<0.001). 
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Subjects Gender 
Status (type 
of Gaucher 

disease) 
Genotype§ Subjects Gender 

Status (type 
of Gaucher 

disease) 
Genotype

§
 

1 F 1 [L444P]+[W312S] 21 F 3 [N370S]+[L444P] 

2 M 3 [L444P]+[L444P] 22 F 1 [N370S]+[V214X] 

3 M 1 [N370S]+[L444P] 23 F 1 [D409H]+[?] 

4 F 1 [N370S]+[L444P] 24 F 3 [N370S]+[L444P] 

5 M 1 [N370S]+[N370S] 25 M 1 
[N370S]+[total gene 

del] 

6 M 1 Na 26 F 1 
[N370S]+[total gene 

del] 

7 F 1 Na 27 F 1 [N370S]+[IVS2G>A] 

8 F 1 [N370S]+[RecNciI] 28 F 1 [N370S]+[IVS2G>A] 

9 F 3 [L444P]+[L444P] 29 M 1 [N370S]+[L444P] 

10 F 1 [N370S]+[N370S] 30 M 1 [N370S]+[RecNciI] 

11 F 1 [N370S]+[N370S] 31 M NOT AFFECTED   

12 F 1 [N370S]+[E388K] 32 F NOT AFFECTED   

13 F 1 [N370S]+[E388K] 33 F NOT AFFECTED   

14 M 3 [T231R]+[?] 34 F NOT AFFECTED   

15 F 1 
[L444P;E326K]+ 
[L444P;E326K] 

35 F NOT AFFECTED   

16 M 3 [N370S]+[N370S] 36 M NOT AFFECTED   

17 M 1 [N370S]+[RecNciI] 37 M NOT AFFECTED   

18 M 1 [N370S]+[L444P] 38 M NOT AFFECTED   

19 M 1 [N370S]+[?] 39 M NOT AFFECTED   

20 F 1 [L444P]+[L444P] 40 M NOT AFFECTED   

 

Table 2: Characteristics of affected and not-affected individuals recruited for blood serum analysis. Na: not 

available, genotyped elsewhere; ?: still unknown allele; 
§
 Reference cDNA sequence: GenBank accession no. 

M16328.1. Mutations at the protein level are described following the traditional nomenclature within the 

Gaucher field, which considers aminoacid 1 the first amino acid after the signal peptide. According to current 

manipulation nomenclature guidelines (http://www.hgvs.org/mutnomen), ascribing the A of the first ATG 

translational initiation codon as nucleotide +1, 39 amino acids should be added. 
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3.8 GBA1 DEFICIENCY INDUCED ALTERATIONS ALSO IN THE BMP SIGNALING 

PATHWAY 

 

Together with Wnt signaling, another pathway that plays important roles in bone 

formations and homeostasis is the BMP signaling. To preliminary address if the lack 

of Gba1 enzymatic activity also affected this pathway, injection of the Gba1 

morpholino in Tg(BMPRE:GFP) one-cell stage embryos was carried out. Increased 

GFP fluorescence in morphant when compared to the age-matched control larvae 

was detected already at 2 dpf. This results was also confirmed by in situ 

hybridization analysis of GFP mRNA levels on 3 dpf PFA-fixed larvae (fig.35). 

 
Figure 35: (Left) Bmp pathway is affected by Gba1 loss of function. Representative 2dpf (fluorescence) and 3 

dpf (bright field) reporter fish after control and morpholino injection. The brightfiled images were taken after in 

situ hybridization using an antisense riboprobe against reporter codon region. A Bmp upregulation (black 

arrowheads) is clearly evident in gba1 morphants. Numbers below each panel describe the fraction of fish with 

observed phenotype. All views are anterior to the left. (Right) RQ-PCR analysis of GFP showing the significant 

increase of reporter expression in BMP reporter transgenics after Gba1 morpholino-mediated knockdown. RNA 

extracts were obtained from 100 pooled microinjected control and morphant fish in two independent 

experiments 

 

Preliminary RQ-PCRs experiments to quantitatively measure the BMP reporter 

activity were performed in transgenic fish microinjected with the Gba1 morpholino 

and control morpholino. One hundred larvae at 2 dpf have been collected for each 

condition (control and morphants) for a total amount of two biological independent 

replicates.  

A consistent two-fold increase of total GFP mRNA levels (fig. 35) in morphant fish 

when compared to age-matched mismatch-control larvae was found. 

The BMPs signaling cascade in osteocytes and chondrocytes, typically activates 

BMPs type I receptors (BMPR-I) and  Smad 1, 5 and 8 proteins. This activation is 

generally performed by the binding of BMP 4 to the BMPR-I. To address if the 

upregulation of the pathway observed in the Gba1 morphant was due to an 

activation of these signaling transducers, the levels of Smad1, Smad5, Smad8 and 
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BMP4 mRNAs have been analyzed by RQ-PCR on morphants and mismatch control 

RNA extracts from the previously isolated pools. As shown in figure 36, increased 

mRNA levels of these BMPs transducers in 2 dpf morphants when compared with 

mismatched control larvae confirmed the alteration of this pathway. 

 
Figure 36:  RQ-PCR analysis of BMP4, Smad1, Smad5 and Smad8 showing the significant increase level of mRNA 

in morphants respect the mismatch control larvae.  RQ-PCRs were carried out on RNAs from pooled 2 dpf 

morphants and control fish in three independent experiments .  

 

To address if the alteration of the of Wnt and BMP signaling activity due to Gba1 

dysfunction was detectable in distinct tissues or organs, injection of the splicing 

morpholino in double Wnt (in green) and BMP (in red) reporter fish, 

(Tg(7xTCFXla.siam;EGFP)ia4/ Tg(BMPRE:nlsmCherry)ia17) was performed. 

Confocal analysis of 48 hpf morphant and aged matched control larvae revealed an 

upregulation of BMP levels in heart, in the eyes, in the olfactory pit, in the 

rhomboencephalon, in the jaw,  mouth and yolk extension of Gba1 morphant larvae 

(fig. 37). Further investigation on 72 hpf Gba1 morphant larvae confirmed the BMP 

upregulation in the same tissue and revealed also a strong reduction in the Wnt 

signaling reporter activity in the cleithrum and eyes of morphants.  Intriguingly, a 

reduction in the number of fin mesenchymal Wnt-positive cells in the trunk of 

morphant larvae was noticeable at this stage. (fig. 37) 

These preliminary results, showed a concomitant alteration of BMP and Wnt 

signaling in different tissues of Gba1 morphants.   
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Figure 37: Confocal imaging of double Tg(7xTCFXla.siam;EGFP)ia4/ Tg(BMPRE:nlsmCherry)ia17) Gba1 morphant 

and mismatch control at 48 hpf and 72 hpf. Increased level of BMP reporter activity were detected (arrowhead). 

 

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

4. DISCUSSION 

Lysosomal storage disorders are rare inherited disorders in which alterations of 

lysosomal enzymes function lead to accumulation of undigested material in the 

lysosome.  

Among these metabolic disorders, Gaucher disease is the most frequent in the 

worldwide population and it is due to mutations in the gene encoding for the 

lysosomal enzyme β-glucocerebrosidase. Patients affected by GD display the 

presence of enlarged macrophages called “Gaucher cells” in different tissues already 

in childhood and manifest several different phenotypes ranging from 

hepatosplenomegaly to severe neurological defects.  Moreover, GD-associated 

skeletal alterations contribute to the morbidity and disability of affected patients 

(Guggenbuhl et al. 2008).  

Despite enzyme replacement therapy (ERT) is able to ameliorate the hematological 

symptoms and the hepatosplenomegaly, skeletal and neurological complications of 

the disease are poorly recovered even after a long-term therapy (Mistry et al. 2011).  

Although the pathophysiology of the skeletal involvement has not been elucidated 

yet, the broad spectrum of bone complications has been mostly associated with the 

infiltration of Gaucher cells in the bone marrow compartment. However, Gaucher 

cells build-up in the bone marrow can explain only part of the bone alterations.  

Throughout the past decades, the generation of animal models that mimic the 

complete spectrum of GD phenotypes has represented an important tool to unravel 

the pathogenic mechanism behind the clinical symptoms. In 2010, Mistry and 

colleagues conditionally deleted the GBA1 gene in cells of the hematopoietic and 

mesenchymal lineages, obtaining a non-neuronophatic GD1 mouse model   

displaying hepatosplenomegaly, hematological defects and skeletal complications, 

such as osteonecrosis and osteopenia, similar to the human GD1. In their work, they  

demonstrated that osteopenia in the conditional knockout mouse model was due to 

defects in osteoblastogenesis and it was not characterized by increased bone 

resorption due to the activation of the osteoclast population (Mistry et al. 2010). 

This work  shed a new light on the possible pathogenic mechanism behind the 

skeletal defects of GD. 

Despite the availability of all mice models mimicking differents Gaucher disease 

phenotypes, a completely reliable animal model does not exist and the pathogenic 

alterations occuring during early life stages can not be explored and elucidated yet.  
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The aim of my PhD project was to investigate the bone pathogenetic mechanisms of 

Gaucher disease using a new animal model. To address this purpose, I’ve used the 

zebrafish model which has become a powerful organism to study biological 

processes and vertebrate developmental biology since 1970s. The rapidity of 

organogenesis of the zebrafish embryo and the conserved anatomy and physiology 

of several organs when compared to higher vertebrates, have made this little 

vertebrate a good model in different field of biomedical research. 

Analysis of the zebrafish Gba1 revealed a high level of aminoacidic identity and 

similarity when compared with the human and mouse orthologues, highlighting a 

potentially conserved enzymatic role. Moreover, the spatio-temporal 

characterization of gba1 mRNA expression pattern  performed on wild type embryos 

and larvae, showed early expression beginning already from the one-cell stage.  At 

later stages, the expression of gba1 was ubiquitous in the whole organism and a high 

expression levels were particularly detected in some specific tissues like the central 

nervous system, gut, liver, bones and heart. All this data, suggest that this enzyme 

may have a role since early life stages of development and showed for the first time 

the gba1expression pattern in a vertebrate model.  

The zebrafish model allow to follow the embryonic development step-by-step 

leading to the evaluation of protein loss of function effects since early life stages. To 

address this point in this project, a morpholino against the gba1 mRNA was 

designed and a stable genetic mutant line retrieved from the ZPM forward genetic 

screening (gba1sa1621/sa1621 ENSDARG00000076058) was used to analyze the effects 

of Gba1 loss-of-function since early embryonic development. Both these zebrafish 

models do not globally display gross abnormalities, except for a body trunk 

curvature and a reduced body size. However, deeper analysis enable to show that 

both models display an increased liver and spleen size. Morphants fish obtained by 

the microinjection of the Gba1MO in the Lipan transgenic line and the offspring 

generated by incrossed heterozygous fish (gba1 sa1621/+) in the same transgenic 

background showed a progressive and significant hepatomegaly and incresed spleen 

size also in adult stages, reminescent of the visceral phenotype displayed by GD 

patients. Further characterization by means of the transgenic line Tg(-

6.0itga2b:EGFP)ia2 in which thrombocyte precursors and mature thrombocytes are 

labeled, showed a reduction in the transgene expression in morphant fish at 5dpf. 

Moreover, together with defects in the thrombocyte lineage, also a reduction in the 

number of erythrocytes in morphant and mutant fish at 3 dpf in  Tg(gata1:dsRed)sd2 

transgenic background was observed. Altogether, these results pointed out defects 

in thrombocyte and erythrocyte lineages cells, resembling the thrombocytopenia 

and anemia defects of Gaucher patients.  Preliminary analysis of c-myb expression, 
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which is a marker of definitive hematopoiesis and is important for the initial stage of 

myelopoiesis, revealed increased ectopic expression of this marker in morphants 

fish. This observation suggested that reduction of  thrombocyte and erythrocyte 

cells lineage triggered by Gba1 dysfunction are probably due to early defects of 

hematopoietic stem/progenitor cells and the activation of a pro-myeloid 

differentiation program. 

The pathophysiology of skeletal abnormalities affecting Gaucher patients, has never 

been elucidated due to limited phenotypes displayed by available animal models. To 

address if these two novel Gba1 zebrafish model exhibited skeletal abnormalities, a 

staining of ossified structures in larvae was performed showing a marked decrease 

of bones  mineralization.  

The mechanism of bone formation is a finely regulated process, generally divided 

into three stages, in which mature osteoblasts derive from a mesenchymal stem cell 

precursor. Specific transcription factors are expressed during this maturation 

process. To evaluate if bone mineralization defects observed in both zebrafish 

models were due to alterations in the osteoblasts differentiation program, several 

markers were analyzed. Morphant and mutant larvae displayed a reduction in the 

expression of the hypertrophic chondrocyte col10a1 and early osteoblast-specific 

runx2b markers, which label distinct populations involved in endochondral and 

intramembranous ossification processes during skeletal development. Moreover, 

reduction in osterix-transgene expression in the microinjected Gba1 MO 

Tg(Ola.Sp7:NLS-GFP)zfl32 transgenic fish, but no evident alteration of cartilage labeled 

tissue in Tg(Col2a1aBAC:mCherry)hu5900, confirmed an early differentiation program 

defects in the osteoblast population.  

Progressive-free radical damage has been considered a key component in the tissue 

damage and link between oxidative stress and reduction in osteoblastogenesis has 

been already described (Almeida 2012). Molecular analysis and in vivo labeling 

demonstrated the occurrence of an early increased oxidative stress in Gba1 

morphants that is rescued when Gba1 forced expression is induced. These results 

suggest a link between correct Gba1 function and antioxidant response. 

Therefore, the loss-of-Gba1 function, induced an alteration in the osteoblasts 

differentiation program and bone mineralization defects due to a reduced 

expression of key bone-related markers, such as runx2b and col10a1. RUNX2, a 

master transcription factor involved in osteoblast and chrondrocyte differentiation 

has been shown to be regulated by several molecular pathways, such as FGF and 

Wnt signaling in the osteoblast lineage (Komori 2011) and positively regulates 

Col10a1 expression in mice (Komori 2010). To address if this alteration in the 

osteoblasts differentiation program was due to dysfunction of one or more major 
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cell molecular pathway involved in osteoblastogenesis, microinjection of the 

Gba1MO in several signaling reporter transgenic lines was performed. A strong 

reduction in the canonical Wnt pathway activity was found and this data were 

confirmed even by analyzing the offspring from incrossed heterozygote gba1sa1621/+  

in the Wnt reporter background in which reporter expression remained low even 

later than 7 dpf. The Wnt signaling pathway is involved in many cellular processes 

and plays important roles in the osteoblast differentiation. The canonical Wnt 

signaling is propagated through its major transducer, the β-catenin, which 

accumulates in the cytoplasm and then translocates into the nucleus to activate the 

transcription of targeted genes. sWestern blot analysis in Gba1 morphants, revealed 

decreased β-catenin protein level and increased levels of GSK-3β, Axin and Dkk1, 

which are negative regulators of the Wnt signaling. Moreover, the forced expression 

of a human GBA1 mRNA in morphants was able to rescue Wnt reporter activity 

deregulation already at 2 dpf and recover the expression of the downstream col10a1 

target at 4 dpf. 

Together with the reduction of the Wnt signaling pathway, preliminary data showed 

that Gba1 loss of function was associated with increased BMP signaling activity. 

Real-time PCR experiments confirmed up regulation of BMP signaling effectors 

Smad1/5/8 mRNA levels together with increased of BMP type I receptor ligand 

BMP4 in this zebrafish models.  

In a recent review, the importance of endocytic vesicles in the transduction of 

several pathways such as Wnt, BMP and FGF signaling has been described 

(Dobrowolski & De Robertis 2011). The stabilization of β-catenin and the 

transcriptional activation of WNT target genes require persistent inhibition of GSK-

3β for several hours, that is generally sequestered inside multivesicular bodies 

(MVBs) (Blitzer & Nusse 2006). A possible explanation of the alteration of the Wnt 

signaling observed in Gba1 loss of function zebrafish models could be that 

impairment of lysosomal activity may affect the correct Gsk-3β sequestration into 

MVBs, thus leading to Gsk-3β accumulation in the cytoplasm and the downstream β-

catenin degradation. Wnt signaling perturbation occurs during early stages of 

embryonic development, thus affecting the cell differentiation program of several 

stem cell progenitors, such as hematopoietic and mesenchymal stem cells leading to 

later defects, such as osteopenia and anemia.  Moreover, recent findings suggest that 

loss-of- BMP signaling function in osteoblasts via BMPRIA upregulates canonical 

Wnt signaling during embryonic and postnatal bone development, suggesting a 

negative regulation of Wnt signaling by BMP (Kamiya et al. 2010). This regulatory 

mechanism of BMP and Wnt signaling in bone formation seems to be at least in part 

mediated by Sost/sclerostin and Dkk1 that are both direct targets of BMP signaling 
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and negative regulators of Wnt signaling. Which is the tight regulatory mechanism 

linking these two signaling pathways in a context- and age-dependent manner in 

vivo, is still to be understood due to their differential role in tissue development and 

remodeling. Probably in the bone formation context, BMP signaling inhibits Wnt 

signaling by upregulating Sost/sclerostin expression.  

The reduction of serum DKK-1 and SOST-1 levels observed in type 1 GD patients in 

this work, seems in apparent contrast with the notion that both proteins are Wnt 

pathway negative regulators. This finding can be explained by the fact that these 

effectors represent an indirect measurement of osteoblast and osteocyte 

populations, confirming a consistent reduction of bone-forming cells in affected 

patients. 

In this work, by means of morpholino technology and a stable Gba1 mutant line,  a 

new zebrafish animal model for Gaucher disease has been generated and 

characterized. Both models display hepatosplenomegaly, thrombocytopenia, anemia 

and defects in bone mineralization that resemble the human disease making them 

good tools to dissect the pathophysiology of Gaucher disease. Moreover, alterations 

of Wnt and BMP signaling pathways observed in these models, provide a new 

potential mechanistic link between bone defects in type I Gaucher disease and GBA1 

loss of function, in which impairment in the glucocerebrosidase activity triggers 

early deregulation of these pathways, inducing defects in the osteoblasts 

differentiation program.  
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