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1. INTRODUCTION

1.1. The blood-brain barrier

The blood-brain barrier (BBB) plays an important role in the homeostatic regulation 

of the brain microenvironment necessary fór the stable and co-ordinated activity of neurones. 

The barrier is formed by brain endothelial cells lining the cerebral microvasculature, and is an 

important mechanism fór protecting the brain from fluctuations in plasma composition, and 

from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural 

function. Brain capillary endothelial cells have a dynamic interaction with other neighbouring 

cells, astroglia, pericytes, perivascular microglia, neurons and organized intő well-structured 

neurovascular units, which are involved in the regulation of cerebral blood flow (Abbott et al., 

2006) (Fig. 1.).

Fig. 1. Schematic drawing of the blood brain barrier.

The continuous layer of cerebral endothelial cells attached to each other by tight 

intercellular junctions (TJ) constitutes the morphological basis of the BBB. These junctions 

significantly restrict even the movement of small ions such as Na+ and Cl-, so that the 

transendothelial electrical resistance (TEER), which is typically 2-20 ohm x cm in peripheral 

capillaries, can be >1000 ohm x cm in brain endothelium in vivő. The TJ is built up by 

integrál membráné proteins such as occludin, claudins and junctional adhesion molecules 

(JAM) which are connected to the actin cytoskeleton by peripheral membráné proteins.
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Members of these peripheral proteins are the zonula occludens proteins (ZO-1, ZO-2, ZO-3), 

cingulin, and cathenins (Krizbai and Deli, 2003).

Cerebral endothelial cells share many generál endothelial characteristics. They 

regulate blood coagulation and vasoreactivity by secreting mediators, such as endothelins, 

nitric oxide, angiotensin peptides (Joó, 1996), adrenomedullin (Kis et al., 2001). In addition, 

brain endothelium has a unique BBB phenotype. Receptors, transporters and enzymes are 

localized in a polarized way in brain endothelial cells. These cells express a variety of 

transporters fór nutrients, like glucose (glucose transporter-1 GLUT-1), neutral, acidic and 

basic amino acids (large neutral amino acid transporter LATI), choline, nucleosides (sodium- 

coupled nucleoside transporter CNT2), vitamins, minerals, etc., to feed neural cells (Abbott et 

al., 2006) (Fig. 2).

Fig. 2. Transportpathways at the blood brain barrier (Abbott et al., 2006).

Cerebral endothelium protects the nervous system from xenobiotics by efflux 

transporters. Somé of them belong to the family of ABC transporters, like P-glycoprotein 

(ABCB1), multidrug resistance proteins MRP-1, -4, 5-, and -6 (ABCC1-6), and brain 

multidrug resistance protein (BMDP/ABCG2/BCRP), while others, e.g. organic anion- 

transporting polypeptide OATP2, organic acid transporters OAT1 and OAT3, or glutamate 

transporters EAAT1-3 do nőt (Kusuhara and Sugiyama, 2001).
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Since the discovery of the BBB by Paul Ehrlich in 1885, several in vivő and in vitro 

models have been developed to quantify BBB permeability and transport. The in vivő 

intravenous administration technique, the brain perfusion technique, the indicator diffusion 

technique, or the brain uptake index technique are widely used (Smith, 1989). Because the 

majority of the brain endothelial cells resisted damage during isolation and remained viable, 

isolated brain microvessels, the first in vitro BBB model (Joó and Kamushina, 1973) proved 

to be an excellent model to describe and characterize signalling pathways in a direct way (Joó, 

1993). The next generation of in vitro models using co-cultured brain endothelial cells has 

continuously evői ved in the last 30 years, and greatly contributed to research on physiology, 

pathology and pharmacology of the BBB (Deli et al., 2005).

1.2. BBB changes in pathological conditions

In pathological conditions, like Central nervous system (CNS) infections, trauma, 

malignancies, stroke, ischemia, sepsis, and neurodegenerative diseases the morphology and 

functions of BBB are changed (Deli, 2005; Abbott et al., 2006). Pathological alterations at the 

BBB in these diseases include downregulation of TJ proteins in brain endothelium, loss of 

agrin írom the capillary of basal membráné, and decrease in nutrient transport (Abbott et al., 

2006). Pharmacoresistance due to upregulation of efflux pumps at the neurovascular unit in 

epilepsy and CNS tumors makes clinical treatment very difficult (Abbott et al., 2006). In 

addition, permeability of the brain endothelial cells fór plasma constituents increases leading 

to the development of brain edema in the above mentioned conditions (Joó and Klatzo, 1989; 

Banks, 1999). Disturbances of CNS homeostasis as a result of barrier defíciences could 

contribute to secondary neuronal loss and exacerbate the later neuropathology (Deli 2005; 

Abbott et al., 2006).

1.2.1. Endotoxin-induced damage of the BBB

Sepsis is still associated with a high mortality rate despite recent progress in 

antibiotics and critical care therapy. In the USA alone there are 300 000-500 000 septic 

episodes each year, with mortality rates ranging from 20% to 40% (Karima et al., 1999). 

Sepsis develops when the initial, appropriate hőst response to an infection becomes amplified, 

and then dysregulated. If untreated, the patient may develop respiratory or renal failure, 

abnormalities of coagulation, and profound and unresponsive hypotension. The main cause of



death is the refractory hypotension (septic shock) within a few days of the onset of sepsis. 

Later the sequential multiple organ failure/dysfunction syndrome (MOF/MODS) becomes the 

primary clinical problem and main cause of mortality. Once a patient develops septic shock or 

sequential MOF/MODS, the mortality rate increases to 60-70%. The Gram-negative bacterial 

infections are responsible fór about 60% of sepsis cases, Gram-positive fór the remainder 

(Cohen, 2002).
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Fig. 3. Structure of lipopolysaccharide (Bannerman and Goldblum, 1999)

Lipopolysaccharide (LPS) or endotoxin plays a pivotal role in the initiation of a 

variety of hőst responses caused by Gram-negative bacterial infection. LPS is the constituent 

of the outer cell wall of the Gram-negative bacteria. It is an amphipathic molecule with a 

hydrophobic, well conservated part, called lipid A, and a hydrophilic sugár chain. The 

hydrophilic part consists of an oligosaccharide core and the O-antigen containing of repeating 

carbohydrate units and shows extreme diversity. The major biological activities of LPS are 

mainly attributed to a lipid A component (Fig. 3.).

Since 1980s, növel insights intő the molecular pathogenesis of LPS-induced shock 

(endotoxic shock) and organ dysfiinction have been gained. It has been revealed that LPS 

interacts with the CD 14 receptor on macrophages, monocytes and neutrophils. LPS binding 

protein (LBP) might facilitate this interaction, and then signaling through the Toll-like 

receptor 4 (TLR-4). The LPS induced cell activation results in a rapid activations of several 

transcription factors such as nuclear factor-xB (NF-kB), which are involved in the gene 

transcription of numerous proinflammatory cytokines (tumor necrosis factor-a (TNF- a), 

interleukins IL -lp, IL-6, IL-8, interferon- y (IFN-y)) tissue factors (TF), adhesion molecules 

(ICAM-1) and inducible nitric oxide (NO) synthase. Peripheral endothelial cells which do nőt 

express CD 14 are stimulated by LPS bound to soluble CD 14 (Fig. 4.).
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Fig. 4. Cd14-dependent cellular activation by LPS. (Karima et al., 1999)

The steps mentioned above are responsible fór the circulatory failure, leukocyte- 

induced tissue injury and coagulation disorder and these are critical determinants in the 

development of sequential organ failure in endotoxemia. Brain endothelial cells express LPS 

receptors TLR-4, TLR-2 and CD 14 and mediate the effects of peripheral LPS in the CNS 

(Singh and Jiang, 2004).

The permeability of the BBB is very low fór water-soluble compounds and 

macromolecules (Pardridge, 2002; Deli et al., 2005). LPS increases BBB permeability in 

different animal models, including newbom pigs, rats and mice (Temesvári et al., 1993; Xaio 

et al., 2001; Mayhan, 2001). Rodents are highly insensitive to LPS (Redl et al., 1993). In 

studies using repeated high doses of LPS BBB opening was observed in mice (Xaio et al., 

2001), while 3 h after a single lower dose of LPS no effect was seen in rats (Vries et al.,



1995). In a porcine meningitis model, LPS injected to the cerebrospinal fluid induced 

permeability marker extravasation in brain microvasculature (Temesvári et al., 1993). The 

role of proinflammatory cytokines in the process is supported by in vivő experiments 

demonstrating elevated BBB permeability after intracarotid injection of TNF- a (Ábrahám et 

al., 1996) or in acute pancreatitis with high plasma levels of IL-6 and TNF-a (Farkas et al., 

1998).

Studies on in vitro reconstituted models of the BBB alsó provided important 

information regarding the role of LPS, TNF-a, and interleukins (Deli et al., 1995; Vries et al., 

1996, 1997; Gaillard et al., 2003). Endotoxemia enhances both the saturable transport of 

insulin across the BBB (Xaio et al., 2001) and the absorptive endocytosis of humán 

immunodeficiency virus-1 viral coat protein gpl20 by BBB (Banks et al., 1999). Data from 

literature (Temesvári et al., 1993; Xaio et al., 2001; Mayhan, 2001) indicate, that LPS 

increases BBB permeability in animal models, bút the details of this effect has nőt been fully 

understood. The effect of LPS on BBB permeability has been coníirmed on cultured bovine 

brain endothelial cells (Tünkéi et al., 1991; Vries et al., 1996; Descamps et al., 2003; Gaillard 

et al., 2003). In these in vitro BBB models LPS treatment decreased transendothelial 

resistance or increased transport of a marker molecule. Other BBB parameters or brain 

endothelial cells from other species have nőt been investigated yet. Mortality rate of sepsis 

due to bacterial infections is high despite the use of better antibiotics and signifícant 

development in intensive care (Karima et al., 1999) underlining the need fór new 

therapeutical treatments fór sepsis and its complications.

1.2.2. Glutamate-induced damage of the BBB

Neuronal death in stroke and neurotrauma mediate involve multiple interdependent 

molecular pathways. It has been suggested that these pathways are triggered following 

elevations in extracellular excitory amino acids, primarily glutamate. Glutamate is the major 

excitatory neurotransmitter in the mammalian CNS. It is continuously released from the cells 

and removed from the extracellular space in a dynamic equilibrium.The effects of glutamate 

can be mediated by two types of receptors: ionotropic and metabotropic receptors. The 

ionotropic glutamate receptors function like ligand-gated ion chanels and they can be 

classifíed intő N-methyl-D-aspartate (NMDA) receptors, alpha-amino-3-hydroxy-5- 

methylisoxazole-4-propionate (AMPA) and kainate (KA) receptors. Cerebral endothelial cells
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express several types of glutamate receptors, namely GluR-1 (an AMPA receptor subunit) and 

NMDR-NR-1 and NMDA-2B (NMDA receptor subunits) (Krizbai et al., 1998).

Ionotropic glutamate receptors appear to play a critical role in the pathology of 

cerebral infarction. During ischemia and stroke, a reduction in blood flow to the brain 

microvasculature induces a decrease in the delivery of oxygen and nutrients. The resulting 

ATP depletion contributes to increased leakage of glutamate from the cells (Sharp at al., 

2003). The high levels of extracellular glutamate can overstimulate the glutamate receptors, 

leading to an upregulated increase in intracellular calcium and neuronal death (Dempsey et 

al., 2000); disruption of the BBB and development of vasogenic edema (Mayhan and Didion, 

1996).

Alterations of tight junction proteins were demonstrated in hypoxia/reoxygenation 

modeling of transient ischemia. Specifícally, hypoxia causes occludin, claudin-1, ZO-1, and 

ZO-2 redistribution; however, reoxygenation results in increased expression of occludin, ZO- 

1, ZO-2, claudin-1 protein levels (Brown et al., 2003; Mark and Davis 2002). Discontinuous 

tight junctions have alsó been demonstrated in experimental cerebral infarction (Shibata et al., 

1988). The mechanisms of glutamate-induced disruption of the BBB integrity are nőt fully 

understood. We hypothesized that glutamate-induced alterations of tight junction protein 

expression can play a critical role in this process.

1.3. Potential therapeutical molecules against BBB damages

Clinical and research data support the involvement of BBB damage as an early event 

in many neurological conditions (Abbott et al., 2006). Very recently the BBB has been 

considered as a therapeutic target in those diseases, where neuronal damage is secondary to, 

or exacerbated by BBB dysfunction (Deli, 2005; Abbott et al., 2006). Beside current 

therapeutical and experimental neuroprotective strategies, prevention of BBB damage or 

protection of BBB fiinctions could alsó be clinically valuable. The role of cerebral 

endothelium in brain edema was recognized decades ago, and new therapeutic means, like 

Ca2+ channel blockers, steroids, non-steroid antiinflammatory drugs, ROS scavengers acting 

on BBB were suggested fór its prevention and treatment (Joó and Klatzo, 1989). Histamine is 

a well-known mediator of brain edema, and anti-histamines proved to be effective in 

preventing the BBB permeability increasing effect (Joó, 1993). Dexamethasone, a steroid 

used in clinical practice fór the treatment of brain edema can improve barrier functions of the 

BBB (Deli et al., 2005). Because of this shift of emphasis from the rescue of neurons to
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treatment of the BBB research on potential therapeutical molecules becomes even more 

important.

1.3.1. Serum amyloid P component

Serum amyloid P component (SAP) belongs to the highly conserved lectin fold 

superfamily and within it to the smaller subgroup of pentraxins known fór their pentagonal 

structure and calcium-dependent ligand binding. SAP is a 235 kDa plasma glycoprotein 

composed of two non-covalently associated pentameric rings. SAP ligands include 

glycosaminoglycans, DNA in chromatin, all types of amyloid deposits, LPS and Gram- 

negative bacteria, expressing short types of LPS (Haas, 1999). The physiological role of SAP 

through chromatin and LPS binding comprises protection against chromatin-induced 

autoimmunity and modulation of hőst defense during bacterial infections, participating in 

binding and clearance of hőst- or pathogen-derived cellular debris at sites of inflammation 

(Gewurz et al., 1995)

SAP is a normál circulating protein in humans with a serum concentration of about 30 

pg/ml. Serum SAP level increases with age, from 10 pg/ml in neonates to 60 pg/ml in persons 

over 80 years, and it is regulated by estrogen (Hashimoto et al., 1997). SAP concentration in 

serum doubles during sepsis in humans, while in mice it grows írom 100 pg/ml basal level to 

4 mg/ml 24 h after endotoxin challenge, indicating that it is a major acute phase protein in this 

species (Taktak and Stenning, 1992). SAP is synthesized and catabolyzed in the liver, its half 

life in plasma is 7-8 h in mice (Baltz et al, 1985). No SAP was detected in other tissues and 

organs in physiological conditions (Kalaria et al., 1991; Haas, 1999).

It is debated if SAP can protect from LPS toxicity in vivő. SAP and LPS-binding short 

synthetic peptides neutralize toxic effects of LPS in vitro and a peptide could protect mice 

against LPS-induced septic shock (Haas et al., 2000). However, SAPT knockout mice were 

only slightly more sensitive to lethal doses of LPS, and intraperitoneal injections of SAP did 

nőt affect survival in LPS injected wild type mice (Noursadeghy et al., 2000). On the 

contrary, Soma et al. (2001) found that SAP-deficiency conferred resistance to lethality 

induced by high-dose LPS in mice.

1.3.2. Pentosan polysulfate

Pentosan polysulfate (PPS), a highly polyanionic sulphated semisynthetic 

polysaccharide (average MW: 3-6 kDa) obtained from beech tree (Fagus silvatica) shavings,
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is structurally related to the glycosaminoglycans (GAGs) synthesized by cells (Fig. 5.)- PPS 

has a wide rangé of pharmacological effects (Maffrand et al., 1991; Ghosh, 1999) since it is 

interacting with GAGs such as heparin, heparan sulphate or dermatan sulphate, which are 

important regulators in many biologically diverse processes. High sulfation rate and charge 

density enables PPS to compete more effectively than other polyanions with endogenous 

GAGs (Ghosh, 1999).

Fig. 5. Structure ofpentosan polysulfaíe

PPS exhibits diverse pharmacological activities that may alsó have relevance in the 

control of different functions of endothelial cells forming the BBB. PPS can inhibit protein 

kinase A, protein kinase C, tyrosine protein kinase, serine proteases, mátrix 

metalloproteinases, lysosomal enzymes, coagulation factors, complement factors, cytokines 

(Ghosh, 1999). It could stimulate the release of tissue-type plasminogen activator, superoxide 

dismutase, and lipase in different cells and tissues (Ghosh, 1999).

Pentosan is used in clinical practice as an anticoagulant (Maffrand et al., 1991) and as 

a treatment fór interstitial cystitis (Nordling, 2004). Experimental and clinical data suggest 

that PPS has a therapeutic efficacy in osteoarthritis (Ghosh, 1999) and in prion diseases (Deli 

et al., 2000a,b). PPS can favorably regulate BBB phenotype in brain endothelial cells (Deli et 

al., 2000a), and protect them in models of prion peptide treatment (Deli et ál., 2000b, 2005). 

PPS had no major effect on BBB parameters of TEER, permeability or fluid phase 

endocytosis (Deli et al., 2000a,b, 2005).

1.3.3. Glutamate antagonists

Glutamate plays a crucial role in the pathology of ischemic brain injuries, and 

increases BBB permeability (Deli et al., 2005). Glutamate receptor agonists and antagonists 

alsó altér barrier integrity and pharmacological studies may facilitate development of drugs
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effective in the prevention of postischemic brain edema. NMDA or glutamate decrease TEER, 

while a specifíc metabotropic glutamate receptor agonist, trans-(±)l-amino-l,3-cyclo- 

pentanedicarboxylic acid, could even temporarily increase barrier properties in a study using 

humán immortalized brain endothelial cells (Sharp et al, 2003). NMDA antagonist MK-801, 

intracellular Ca scavenger TMB-8 or antioxidant N-acetyl-L-cystein protects against 

glutamate-induced deterioration of barrier integrity in this model (Sharp et ál., 2003). 

Exogeneous glutamate and glutamate-containing fraction of supematant produced by 

stimulated polymorphonuclear leukocytes increase permeability fór 70 kDa FITC-dextran in a 

model of humán brain endothelial cells (Collard et al., 2002). This effect can be prevented by 

treatment with group I or group III metabotropic glutamate receptor antagonists (Collard et 

al., 2002). In vivő studies alsó confírm the protective role of glutamate antagonists in 

postischemic conditions. Ifenprodil, an NMDA receptor antagonist protects against increase 

in BBB permeability and vascular edema formádon after experimental traumatic brain injury 

in rats (Dempsey et al., 2000).

1.4. Aims

The role of the BBB to protect the brain in physiological and pathological conditions 

is increasingly emphasized in the literature (Abbott et al., 2006). Protective strategies at the 

level of BBB are in the focus of new studies. We have selected LPS and glutamate, two major 

pathological factors in humán diseases causing BBB disturbances and brain edema to study 

potential protective molecules on in vitro and in vivő BBB models. The effects of SAP in 

protecting against LPS toxicity, especially in septic shock, are controversial in the literature. 

Furthermore, SAP and PPS have never been tested in LPS-related BBB studies before. The 

molecular mechanisms of glutamate-induced changes in barrier integrity have nőt been 

studied in detail yet.

The main aims of our studies were the following:

(1) To test the effect of humán SAP on LPS-induced BBB changes and clinical 

symptoms in mice.

(2) To examine the effects of LPS on barrier properties using a rat co-culture based in 

vitro BBB model, to reveal the underlying mechanisms and to test if PPS has any protective 

action on LPS-induced changes.

(3) To study the effects of glutamate on barrier properties of rat brain endothelial 

monolayers, and to evaluate the effects of antagonists on glutamate-induced changes.



2. MATERIALS AND METHODS

2.1. Reagents

All reagents used in the study were purchased from Sigma (Sigma-Aldrich Ltd., 

Budapest, Hungary), unless otherwise indicated.

2.2. Animals

Male CBA/BL6 mice (3-month-old, 30-35 g) and Wistar rats (2-week-old) were 

obtained from the animal facility of the Biological Research Center, Szeged, kept under 

standard conditions, and given táp water and rat chow ad libitum. The experiments performed 

conform to European Communities “ Council directive fór the care and use of laboratory 

animals” and were approved by local authorities (XVI/72-45/a/2001).

2.3. Cell culture

Brain capillary fragments were isolated from the forebrains of 2-week-old Wistar rats 

and seeded on cell culture inserts (Transwell clear, 1 cm ; poré size, 0.4 pm, Costar) coated 

with collagen type IV and fibronectin. Fór immunofluorescent staining brain endothelial cells 

were cultured on glass coverslips coated with a biological mátrix derived from comeal 

endothelial cells (Dömötör et al., 1998). Brain microvascular endothelial cells migrated from 

isolated microvessels to reach confluence 4 days after the seeding (Deli et al., 1997; Perriére 

et al., 2005). Cultures were maintained in Dulbecco’s-modified Eagle’s médium (DME) 

supplemented with 5 pg/ml gentamicin, 20% plasma-derived bovine serum (First Link, UK),

1 ng/ml basic fibroblast growth factor (Roche) and 100 pg/ml heparin. In the fírst 2 days, 

culture médium contained puromycin (4 pg/ml) to selectively remove P-glycoprotein negative 

contaminating cells (Perriére et al., 2005). Cultures reached confluency within a week and 

were used fór experiments. To induce BBB characteristics, brain endothelial cells were co- 

cultured with rat cerebral glial cells (Kis et al., 2001) (Fig. 6.). Briefly, primary cultures of 

glial cells were prepared from newbom Wistar rats. Meninges were removed, and cortical 

pieces were mechanically dissociated in DME containing 5 pg/ml gentamicin and 10% fetal 

bovine serum and plated in poly-L-lysin coated 12-well dishes and kept fór minimum 3 weeks 

before use. In confluent glia cultures 90% of cells were immunopositive fór the astroglia cell
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marker glial fibrillary acidic protein, while the remaining 10% was immunopositive fór 

CDI lb, a marker of microglia.

brain
endothelial
cells

cerebral
glial
cells

Fig.6. In vitro BBB model using co-cultured raí brain endothelial cells with rat cerebral glial cells

2.4. In vivő LPS and SAP treatment

Mice received three intraperitoneal (ip.) injections of Salmonella typhimurium LPS, 

100 pg (3 mg/kg in 200 pl isotonic saline in each dose) at 0, 6, and 24 h according to the 

protocol of Xaio et a i, (2001) and after the last LPS injection the BBB permeability was 

determined at 6 h, 18 h and 24 h. Somé groups alsó received intravenously (zv.) 250 pg humán 

SAP (8 mg/kg, in 200 pl totál volume, Calbiochem; La Jolla, CA, USA) 1 h before the 

permeability study. Seven animal groups (n = 5-12) were formed: (1) vehicle-treated control 

which received ip. injections of vehicle only; (2) LPS-treated mice 6 h, (3) 18 h, or (4) 24 h 

after the last LPS injection; (5) LPS 18 h + SAP 1 h treated mice; (6) LPS 24 h + SAP 1 h 

treated; and (7) only SAP-treated animals 1 h after the injection. SAP was reconstituted from 

lyophilized powder in sterilé distilled water, protein content was 1.25 mg/ml, with 

physiological ion concentrations. This dose may correspond to the serum level of SAP (about 

250 pg/ml) in acute phase response in mice.

2.5. In vitro LPS and PPS treatment

Several serotypes of LPS (E. coli 055:B5, 0111:B4; Salmonella typhimurium) were 

tested at 0-10 pg/ml concentration fór 0^18 h treatment period in brain endothelial cells and 

microvessels. The doses of PPS (Cartrophen, Biopharm Australia Pty Ltd.) varied between 1 

and 100 pg/ml, as described in previous studies (Deli et al., 2000a,b). The effective doses of
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LPS and PPS were determined in preliminary experiments. Incubations of brain endothelial 

cells with LPS were performed in endothelial culture médium in accordance with other 

studies (Descamps et al., 2003; Gaillard et al., 2003).

2.6. In vitro glutamate treatment

In a typical experiment, confluent rat brain endothelial cell cultures were treated with 

1 mM glutamate fór 30 min followed by replacing experimental média with normál growth 

médium without serum. Such concentrations of glutamate have alsó been used in several 

literature reports (Krizbai et al., 1998; Sharp et al., 2003). Experiments were performed 

immediately after média change or 24 h after this transient glutamate exposure. In specific 

experiments, the cells were pretreated fór 15 min prior to glutamate treatment with 10 pM 

MK-801 (dizocilpine, a selective inhibitor of the NMDA receptors) or 5 pM 6,7- 

dinitroquinoxaline-2,3-dione (DNQX, an inhibitor of the AMPA and KA receptors). The 

inhibitors were left in cell culture média fór the duration of glutamate treatment. These 

treatment conditions did nőt affect cell viability as determined by 3-[4,5] dimethylthiazol-2,5- 

diphenyltetrazolium bromide, MTT, conversion assay (data nőt shown).

2.7. In vivő measurement of BBB permeability

Permeability fór sodium fluorescein (SF; mw: 376 Da), a marker of paracellular flux, 

and Evan’s blue-labelled albumin (EBA; mw: 67 kDa), a tracer fór transendothelial transport, 

was measured as it was described in details (Ábrahám et al., 1996). Mice were given a 

solution of both dyes (2%, 5 ml/kg) in an iv. injection to the tail vein fór 1 h, and at the end of 

the experiments the animals were perfused with 50 ml phosphate-buffered saline fór 15 min. 

Samples from four brain regions (right and left cerebral cortex, midbrain, cerebellum) were 

collected, weighed and stored at -20 °C. Tissue pieces were homogenized in 1.5 ml of cold, 

15% w/v, freshly prepared, trichloroacetic acid and centrifuged with 10,000 g fór 10 min. Dye 

concentrations were measured in supematants by a Polarstar Galaxy fluorescent microplate 

reader (BMG Labtechnologies), the absorbency of Evan’s blue at 620 nm, while the emission 

of sodium fluorescein at 525 nm after excitation at 440 nm. BBB permeability was expressed 

as ng tracer/g brain tissue.
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2.8. In vitro measurement of endothelial monolayer resistance and permeability

Transendothelial electrical resistance (TEER), representing the permeability of tight 

junctions fór sodium ions, was measured by an EVŐM resistance meter (World Precision 

Instruments) using STX-2 electrodes, and it was expressed relatíve to the surface area of 

endothelial monolayer (Qxcm2) (Fig. 7). The TEER of cell-free inserts (90-100 Í2xcm2) were 

subtracted from the values. The TEER of rat primary brain endothelial monolayers in co- 

culture varied between 250 and 700 Oxcrn .

Fig. 7. TEER measurement by an EVŐM resistance meter using STX-2 electrodes.

The flux of fluorescein and albumin across endothelial monolayers was determined as 

previously described (Kis et al., 2001) (Fig. 8). Cell culture inserts, following treatment and 

measurement of TEER, were transferred to 12-well plates containing 1.5 ml Ringer-Hepes 

solution (118 mM NaCl, 4.8 mM KC1, 2.5 mM CaCh, 1.2 mM MgSQ*, 5.5 mM D-glucose, 20 

mM Hepes, pH 7.4) in the basolateral compartments. In apical chambers culture médium was 

replaced by 500 pl Ringer-Hepes containing 10 pg/ml SF and 165 pg/ml Evan’s blue bound 

to 0.1% BSA. The inserts were transferred at 20, 40 and 60 min to a new well containing 

Ringer-Hepes solution.

Fig. 8. Schematic drawing o f permeability measurement o f brain endothelial monolayers
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The concentrations of the marker molecules in samples from the upper and lower 

compartments were determined. Evan’s blue concentration was measured by a Labsystems 

Multiscan plate reader (absorbency: 620 nm), and fluorescein levels by a Polarstar Galaxy 

fluorescent plate reader (BMG Labtechnologies; emission: 525 nm, excitation: 440 nm). Flux 

across cell-free inserts was alsó measured. Transport was expressed as ‘pl’ of donor (luminal) 

compartment volume from which the tracer is completely cleared and calculated from the 

abluminal and luminal concentration ratio and the abluminal volume (Deli et al., 1995):

cm/s).

2.9. Immunostaining

Brain endothelial cell monolayers cultured on fíbronectin- and collagen coated glass 

coverslips and treated with LPS and/or PPS were stained fór ZO-1, claudin-5 and P-catenin 

junctional proteins. The cultures were washed in PBS and fixed with ethanol (95 vol.%) -  

acetic acid (5 vol.%) fór 10 min at - 20 °C (ZO-1 and P -catenin) or with ethanol fór 30 min at 

4 °C (claudin-5). Cells were blocked with 3% BSA and incubated with primary antibodies 

(Zymed, USA) anti-ZO-1, anti-claudin-5, anti-p-catenin fór 1 h 30 min. Incubation with 

secondary antibody Cy3-labelled anti-rabbit IgG lasted fór 1 h. Between incubations cells 

were washed three times with PBS. Coverslips were mounted in Gél Mount (Biomeda, USA) 

and staining was examined by a Nikon Eclipse TE2000 fluorescent microscope (Nikon, 

Japan) and photographed by a Spot RT digital camera (Diagnostic Instruments, USA).

2.10. Functional assay fór P-glycoprotein activity

Activity of P-glycoprotein was determined by the measurement of cellular 

accumulation of rhodamine 123 (Fontaine et al., 1996). In brief, endothelial monolayers 

pretreated with LPS and/or PPS fór 16 h in 24-well plates were washed, and incubated with 

Ringer-Hepes buffer containing 10 pM rhodamine 123 fór 1 h at 37 °C. The solution was

r  ,lum inalc

The average cleared volume was plotted versus time, and permeability x surface area product 

value fór endothelial monolayer (PSe) was calculated by the following formula:

1 1 1
insert

PSedivided by the surface area generated the endothelial permeability coefficient (Pe, in 10'6
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quickly removed, endothelial cells were washed three times with ice-cold PBS, and 

solubilized in 0.2 M NaOH. Rhodamine 123 content was determined by Polarstar Galaxy 

fluorescent plate reader (BMG Labtechnologies; excitation at 485 nm, emission at 538 nm). 

Verapamil (2 pM, 30 min preincubation) was used as a reference P-glycoprotein inhibitor.

2.11. Detection of reactive oxygen species and nitric oxide

Two probes were used fór fluorometric detection of ffee radicals, both from Molecular 

Probes: chloromethyl-dichloro-dihydro-fluorescein diacetate (CM-H2DCFDA) to measure 

reactive oxygen intermediates, and 4-amino-5-methylamino-2\7’-difluorofluorescein 

diacetate (DAF-FM diacetate) to measure intracellular nitric oxide (Kojima et al., 1998). The 

indicators penetrate the cells by diflusion and become deacetylated by intracellular esterases. 

Oxidation of CM-H2DCFDA by reactive oxygen species yields a fluorescent molecule. DAF- 

FM diacetate reacts with nitrosonium cation and forms a fluorescent heterocycle trapped in 

the cytoplasm. Confluent brain endothelial cell layers cultured in 96-well plates were 

pretreated with LPS and/or PPS fór 16 h, then washed, and incubated with Ringer-Hepes 

buffer containing 1 pM DAF-FM diacetate or 1 pM CM-H2DCFDA fór 1 h at 37 °C. The 

plates were measured by Polarstar Galaxy fluorescent plate reader (BMG Labtechnologies; 

excitation at 485 nm, emission at 538 nm).

2.12. Statistical analysis

All data presented are means ± S.E.M. The values were compared using the analysis 

of variance (ANOVA) followed by Dunnett, Bonferroni or Newman-Keuls post hoc tests. 

Changes were considered statistically significant at P < 0.05.
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3. RESULTS

3.1. Effects of LPS on the blood-brain barrier integrity

3.1.1. BBB permeability changes after LPS treatment in mice and effect of SAP

BBB permeability fór both fluorescein and albumin was signifícantly elevated after 

the administration of three consecutive intraperitoneal S. typhimurium LPS injections in mice. 

The extravasation of the tracers was already evident macroscopically by the green coloration 

in cerebral cortex, midbrain and cerebellum, the brain regions studied during the experiment. 

The brains of LPS-treated animals were macroscopically different from vehicle-treated ones: 

petecchias, small haemorrhages could be seen in cerebellum and midbrain. In the cerebral 

cortex of LPS-treated mice extravasation of fluorescein increased about 4-fold compared to 

that in vehicle treated animals 6 h after the last injection and remained elevated at 18 h and 

24 h timepoints (Fig. 9A). The LPS-induced elevation in fluorescein permeability was even 

higher in cerebellum (5-fold) and in midbrain (7-fold) (Figs. 10A, 11 A) than that in cortex.

Fig. 9. Effect o f SAP on LPS-induced changes in blood-brain barrier permeability in cerebral cortex 
of mice. Permeability tracers tested SF (A); and EBA (B). All values presented are means ± SEM (n = 
5-12), statistical analysis was performed using the analysis o f variance followed by Dunnett-test. 
Significant (P < 0.05) changes are indicated compared to control value (a), and to value measured in 
mice treated with LPS far the same time (b).
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LPS treatment induced a significant increase in cortical EBA extravasation 18 h and 

24 h after the third injection compared to permeability measured in vehicle treated animals. 

The increase in albumin permeability was the highest in midbrain, about 6-fold compared to 

control, it was 2.8-fold in cerebellum and 1.8-fold in cortex (Figs. 9B, 10B, 11B), similarly to 

the pattem of fluorescein data. Extravasation of fluorescein was about ten times higher than 

that of albumin.

A. SF permeability in cerebellum B. EBA permeability in cerebellum

200-i

c3

Fig. 10. Effect o f SAP on LPS-induced changes in blood-brain barrier permeability in cerebellum of 
mice. Permeability tracers tested SF (A); and EBA (B). All values presented are means ± SEM (n = 5-  
12), statistical analysis was performed using the analysis o f variance followed by Dunnett-test. 
Significant (P < 0.05) changes are indicated compared to control value (a), and to value measured in 
mice treated with LPS far the same time (b).

Mice after the third dose of LPS showed typical signs of sickness behaviour, they 

could hardly move, drink or eat, had diarrhoea, their fúr was fuzzy, and their eyes became 

bleared (Konsman et al., 2002, Neveu et al., 1998). The condition of LPS-treated animals that 

received 8 mg/kg humán SAP has been greatly improved, and they became more active after 

the injection, started to eat, to drink and to explore their environment.

In control mice, SAP treatment (8 mg/kg iv., fór 1 h) significantly decreased basal 

BBB permeability in all brain regions fór fluorescein (Figs. 9A, 10A, 11 A). It did nőt change 

the extravasation of albumin (Figs. 9B, 10B), except in midbrain (Fig. 11B), where a higher 

permeability was measured. In LPS-treated mice, SAP treatment (8 mg/kg iv., fór 1 or 6 h) 

given 17 h after the last LPS injection significantly decreased the extravasation of fluorescein 

in all brain regions tested (Figs. 9A, 10A, 11 A) and alsó attenuated the increase in albumin
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Fig. 11. Effect o f SAP on LPS-induced changes in blood-brain barrier permeábility in midbrain o f 
mice. Permeábility tracers tested SF (A); and EBA (B). All values presented are means ± SEM (n = 5- 
12), statistical analysis was performed using the analysis o f variance followed by Dunnett-test. 
Significant (P < 0.05) changes are indicated compared to control value (a), and to value measured in 
mice treated with LPS fór the same time (b).

3.1.2. Permeábility changes after LPS treatment on an in vitro BBB model

The integrity of brain endothelial monolayers, measured by transendothelial electrical 

resistance, representing the paracellular sodium ion flux, has been affected by LPS-treatment 

in a dose- and time-dependent manner (Figs. 12 and 13). The TEER value dropped already in 

the first hour of the treatment (Figs. 12 and 13), then continuously decreased and reached a 

minimum at 6 h, followed by a recovery close to the level of the original TEER by 16 h (Fig. 

12). The kinetics of TEER changes in monolayers treated by 0.1 or 1 pg/ml LPS showed 

similar pattem, although at 16 h the resistance remained significantly decreased only in 

monolayers exposed to the higher LPS dose. During the 16 h of experiments the TEER value 

of control monolayers treated with vehicle did nőt differ significantly from its basal value of 

302.6 ± 10.9 Q*cm2 (n = 16) at the start of the experiment; (Fig. 12).

We found no changes between the effects of LPS from different bacteria on brain 

endothelial TEER. A similar decrease and kinetics was observed in experiments with LPS 

from S. typhimurium or E. coli 0111:B4 serotype (Figs. 12 and 13).



Fig. 12. Changes in transendothelial electrical resistance in rat brain endothelial cell monolayers 
treated with various doses o f Salmonella typhimurium LPS (0, 0.1 or 1.0 pg/ml LPS in endothelial 
culture médium) fór 16 h. All values presented are means ± S.E.M., n = 4-8. Statistically significant 
dijferences (P < 0.05) between the TEER o f LPS-treatedgroups (a: 0.1 pg/ml; b: 1.0 pg/ml) and that 
of culture médium treated Controls are indicated at different time-points.

Afiter the endotoxin treatment (0.1 and 1 pg/ml LPS) the permeability of the brain 

endothelial monolayers was significantly increased fór both paracellular and transcellular 

markers. The paracellular flux of fluorescein was elevated two-fold or more after the higher 

dose of LPS (Figs. 14A and 15A). The permeability fór albumin, indicating transendothelial 

transport, was elevated by five- and six-fold in monolayers (Figs. 14B and 15B).

Fig. 13. Changes in TEER in rat brain endothelial cell monolayers exposed to E. coli 0111:B4 LPS 
(0, 0.1 or 1.0 pg/ml LPS in endothelial culture médium) fór 6 h. Values presented are means ± S.E.M., 
n -  6. Statistically significant differences (P < 0.05) between the TEER o f LPS-treated groups and 
that o f culture médium treated Controls (a), and LPS + PPS treated groups (b) are indicated at 
different time-points.
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Fig. 14. Changes in transendothelial permeability (PJ fór SF (A) and EBA (B) in rat brain endothelial 
cell monolayers treated with various doses o f Salmonella typhimurium LPS (0, 0.1 or 1.0 pg/ml LPS in 
endothelial culture médium) fór 16 h. All values presented are means ± S.E.M., n = 4-8. Statistically 
significant differences (P < 0.05) between the LPS-treated groups (a: 0.1 pg/ml; b: 1.0 pg/ml) and that 
of culture médium treated Controls are indicated at different time-points.

Pentosan (100 pg/ml) alone had no significant effect on TEER, while it could 

attenuate the effect of 1 pg/ml LPS (Fig. 13). Pentosan could alsó effectively block the 

increased flux of both fluorescein and albumin through brain endothelial monolayers after 

LPS treatment (Fig.l5A and 15B). The transendothelial permeability coefficient fór SF was 

higher with one order of magnitude than the value fór EBA, in agreement with literature data 

review (Gumbleton and Audus, 2001; Deli et ál., 2005).

Interestingly, the effect of pentosan was more pronounced in reversing the LPS- 

induced permeability changes measured by SF and EBA (Fig. 15) than in blocking the barrier 

integrity changes measured by TEER (Fig. 13). This nőt only reflects the different 

permeability pathways at the BBB shown in Fig. 14, bút their different participation in 

pathological conditions and their different regulation, too.

A. SF permeability B. EBA permeability
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Fig. 15. Changes in transendothelial permeability (PJ fór SF (A) and EBA (B) in rat brain endothelial 
cell monolayers exposed to E. coli Ol 11:B4 lipopolysaccharide (0,0.1 or 1.0 pg/ml LPS in endothelial 
culture médium) and/or PPS (100 pg/ml in culture médium) fór 6 h. Values presented are means ± 
S.E.M., n = 6. Statistically significant differences (P < 0.05) between the LPS-treated groups and that 
o f culture médium treated Controls (a), and LPS + PPS treated groups (b) are indicated at different 
time-points.

3.1.3. Effect of LPS on immunostaining fór junctional proteins in brain endothelial cells

Treatment with LPS, originated either from S. typhimurium or E. coli 0111 :B4 

serotype, resulted in changes in immunostaining fór junctional proteins in rat brain endothelial 

cells examined by fluorescent microscopy (Fig. 16). The intensity of immunostaining fór TJ 

proteins ZO-1 and claudin-5, as well as fór junctional protein (3-catenin became weaker in 

LPS-treated brain endothelial cells and the pattem of the staining has alsó been changed. The 

continuous cortical staining pattem became fragmented or has been lost in several areas and 

intercellular gaps appeared as indicated by arrows on Fig. 16, which are clear signs of injured 

barrier integrity.

Co-administration of PPS inhibited these changes, the monolayer integrity was better 

preserved and the immunostaining pattem fór all the junctional proteins tested resembled to 

the control ones.
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Fig. 16. Immunofluorescent stainingfor junctional proteins in rat brain endothelial cells treated with 
bacterial lipopolysaccharide (1.0 pg/ml LPS) and pentosan polysulfate (100 pg/ml PPS) fór 6 h. 
Arrows show holes formed between endothelial cells, fragmentation or loss o f junctional 
immunostaining (bar = 50 pm)
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3.1.4. Effect ofLPS on P-glycoprotein activity

P-glycoprotein efflux pump activity of brain endothelial cells, measured by rhodamine 

123 accumulation, was dose-dependently decreased by LPS (Fig.17). However, only the 

highest dose ofLPS (10 pg/ml) could significantly inhibit the pump causing a more than 50 % 

increase of the uptake. Pentosan could prevent this action of LPS, and the rhodamine 

accumulation retumed to the control level. The Ca:f channel blocker verapamil, a well-known 

inhibitor of P-glycoprotein used as a reference blocker in this assay, showed a robust 

inhibitory effect.
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Fig. 17. P-glycoprotein activity measured by rhodamine 123 accumulation in LPS (0.1, 1.0 or 10.0 
pg/ml LPS in endothelial culture médium) and PPS (30 pg/ml PPS) treated brain endothelial cells fór 
16 h. Values presented are means ± S.E.M., n = 5-6. Statistically significant changes in rhodamine 
accumulation compared to culture médium treated control are indicated (N.S. = P > 0.05).

3.1.5. Effect ofLPS on oxygen free radical production in brain endothelial cells

The NO production in cultured rat brain endothelial cells was enhanced by ovemight 

LPS treatment compared to that in control cells (Fig. 18A). The effect was dose-dependent. 

While no significant change was seen at 0.001 pg/ml LPS, exposure to 0.01-1 pg/ml LPS 

resulted in a gradual increase of NO synthesis, that could be reduced by PPS administration. 

Similarly, reactive oxygen species (ROS) production was alsó elevated by LPS (Fig. 18B). 

The amount of ROS, measured by CM-H2DCFDA assay was doubled at the highest dose of
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endotoxin. PPS was effective in inhibiting the LPS-induced change in ROS synthesis, the two 

higher doses (30 and 100 (ig/ml) proved to be more potent. There was no change in the 

inhibitory potential of 30 pg/ml PPS fór NO or ROS release by rat brain endothelial cells 

exposed to 0.1 pg/ml LPS when PPS was added 30 min before, concomitantly with, or 30 min 

after LPS administration at the beginning of the 16 h incubation period (data nőt shown).

A. Production of NO B. Production of ROS

Fig. 18. Production o f NO (A) and ROS (B) by brain endothelial cell monolayers treated by LPS 
(0.001, 0.01, 0.1 or 1.0 pg/ml LPS in endothelial culture médium) and PPS (10, 30 or 100 pg/ml PPS) 
fór 16 h. Values presented are means ± S.E.M., n = 4-6. P < 0.05 was considered significant 
difference between (a) LPS-treated and control monolayers, and (b) PPS- and culture medium-treated 
monolayers exposed to the same LPS dose.

3.2. Changes after in vitro glutamate treatment, effect of glutamate receptor antagonists

The effects of glutamate and the NMDA and AMPA/KA receptor inhibitors 

dizocilpine (MK-801) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) were examined on the 

barrier functions of brain endothelial cells using our co-culture model. The baseline TEER 

values of brain endothelial monolayers after co-culture with astrocytes varied between 182 

and 268 Cl x cm , and decreased as a result of a 24 h maintenance in serum-free environment. 

However, independent of culture conditions, treatment with glutamate significantly reduced 

TEER values, indicating disruption of brain endothelial barrier integrity (Fig. 19.). Most 

importantly, inhibition of the NMDA receptors by MK-801 íully protected against these 

effects. In contrast, pretreatment with DNQX did nőt affect significantly glutamate induced 

alterations of TEER.
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Fig. 19. Changes in TEER in rat brain endothelial cell monolayers exposed to 1 mM glutamate fór 30 
min, followed by replacing the experimental média with normál culture média. Before glutamate 
treatment somé groups were pretreatedfór 15 min with 10 pM MK801 (inhibitor o f NMDA receptors) 
or 5 pM  DNQX (inhibitor o f AMPA/KA receptors). Measurements o f TEER were performed 
immediately or 24 h after glutamate exposure. Values presented are means ± S.E.M., n -  6. 
*Statistically significant as compared with control. f  Values in the glutamate plus MK-801 group are 
statistically different from those in the glutamate group.

Exposure to glutamate markedly increased brain endothelial permeability as 

determined by SF flux (Fig. 20.). The transendothelial permeability coeffícient was elevated 

by more than 50 %. Most interestingly, preexposure to MK-801 could significantly protect 

against the effect of glutamate, while DNQX did nőt show a protective effect, which suggest 

the participation of NMDA receptors in the process.

These functional data were supported by the results of further experiments on TJ 

protein occludin (Publication III, see in Appendix). Transient exposure to glutamate resulted 

in cellular redistribution of occludin, followed by a decrease in the totál level of this protein in 

brain endothelial cells. Inhibition of the NMDA or AMPA/KA receptors attenuated the 

glutamate-induced changes in occludin redistribution bút nőt in the totál protein levels.
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SF permeability

Fig. 20. Changes in SF flnx in rat brain endothelial cell monolayers exposed to 1 mM glutamate fór 
30 min, followed by replacing the experimental média wiíh normál culture média. Before glutamate 
treatment somé groups were pretreated fór 15 min with 10 pM MK801 (inhibitor ofNMDA receptors) 
or 5 pM DNQX (inhibitor o f AMPA/KA receptors).SF flux was determined 24 h after the transient 
glutamate exposure. Valuespresented are means ± S.E.M., n -  6. Statistically significant as compared 
with control (a) or with glutamate group (b).

Treatment with glutamate alsó increased tyrosine phosphorylation and decreased 

threonine phosphorylation of occludin. Inhibition of the NMDA receptors by MK-801 

partially protected against glutamate-induced elevation of occludin tyrosine phosphorylation, 

while blocking of the AMPA/KA receptors by DNQX protected against hypophosphorylation 

of threonine residues of occludin.
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4. DISCUSSION

4.1. LPS-induced changes in BBB functions

4.1.1. Endotoxemia model in mice

In addition to its dramatic effects on several organs and induction of severe 

inflammatory responses, bacterial LPS can cause neurological symptoms and development of 

brain edema. In our experiments intraperitoneally injected LPS induced typical signs of 

sickness behavior and increased several fold the permeability of BBB to marker molecules in 

mice. The greatly elevated extravasation of both sodium fluorescein and albumin to the 

cortex, midbrain and cerebellum indicates the involvement of both the paracellular and 

transcellular transport pathways (Fig. 2.). These fmdings on LPS-induced BBB permeability 

changes are in accordance with previous data obtained on animal studies (Temesvári et al., 

1993; Xaio e/ al., 2001). BBB opening fór sodium fluorescein in piai microvessels was seen 

after intracistemal injection of LPS in newbom pigs (Temesvári et al., 1993), whereas Xaio et 

al., (2001) found an about 50% increase in BBB permeability fór albumin in cerebral cortex 

of LPS-treated CD-I mice. A recent study demonstrated that abrogation of the BBB by 

treatment with LPS made hippocampal neurons vulnerable to neurotoxic antibodies and 

caused cell damage and memory impairment (Huerta et al., 2006).

4.1.2. LPS-induced changes in brain endothelial cells

In vitro application of the bacterial LPS could directly damage the morphoiogical and 

íunctional integrity of the BBB. LPS treatment resulted in a dose and time-dependent injury 

of brain endothelial cell monolayers.

TEER values indicate the permeability of the monolayer to ions and correspond to the 

function of interendothelial TJs. In our in vitro experiments LPS treatment caused a 

signifícant decrease in TEER (i.e. increased paracellular ion permeability) in the first 6 h, with 

a tendency to recovery in the following 10 h. A concomitant LPS-induced increase in the 

permeability of brain endothelial cell monolayers fór sodium fluorescein, a small molecular 

weight tracer, confírm the LPS-induced induction of TJ damage. The 6-10-fold increase in 

the permeability to the macromolecule albumin, as compared to the 2- to 3-fold increase in 

small molecule fluorescein flux may indicate that beside increased passive paracellular
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permeability transendothelial transport pathways could alsó be activated (Abbott et al., 2006) 

after LPS treatment in our model system. These results are in accordance with previous in 

vitro studies demonstrating the LPS-induced damage to the integrity of bovine brain 

endothelial cell monolayers (Vries et al., 1996; Descamps et al., 2003; Gaillard et al., 2003), 

and in vivő mouse studies indicating increased BBB permeability fór albumin and sodium 

fluorescein (Xaio et al., 2001; Publication I, see in Appendix).

The LPS-induced increase in paracellular permeability of monolayers is supported by 

the results of immunostaining. This is the first study to demonstrate that the intensity and 

pattem of immunohistochemistry fór TJ proteins ZO-1, claudin-5 and P-catenin have been 

considerably changed in LPS-treated cultured brain endothelial cells. The appearance of 

intercellular gaps indicates the damaged integrity of monolayers. In a recent study, robust 

changes in F-actin pattem and appearance of stress fibers were demonstrated in bovine brain 

endothelial cells after incubation with LPS (Descamps et al., 2003). These endotoxin-induced 

morphological changes both in TJ-specifíc and structural proteins may contribute to the 

increased endothelial permeability found in our in vitro BBB model.

Beside changes in barrier function, LPS incubation inhibited the activity of P- 

glycoprotein, an important efflux pump at the BBB. P-glycoprotein and other efflux pumps 

limit the flux of drugs and xenobiotics to brain (Pardridge, 2002). Our new in vitro 

observation on cultured brain endothelial cells suggest an increased entry of P-glycoprotein 

ligands intő the brain during endotoxemia. The relevance of our data is confirmed by a recent 

study in which LPS reduced P-glycoprotein activity in freshly isolated rat brain microvessels 

(Hartz et al., 2006). Our observation is further supported by fíndings on male rats injected by 

LPS to the cerebrospinal fluid (Goralski et al., 2003) CNS inflammation induced by LPS 

resulted in downregulation of mdrla mRNA expression in both brain and liver with maximai 

loss at 6 h, and increased the brain penetration of digoxin, a ligand of P-glycoprotein 

(Goralski et al., 2003). Endotoxin-induced reduction in the intestinal expression and activity 

of P-glycoprotein, multidrug resistance-associated protein 2, and cytochrome P450 3A 

(Kalitsky-Szirtes et al., 2004) may suggest that other efflux transporters and drug 

metabolizing systems located at the BBB might be affected by LPS, too.

4.1.3. Possible mcchanism of LPS-induced changes in brain endothelial cells

NO is an important vasoactive mediator of brain endothelial cells participating in 

reguládon of blood pressure and BBB permeability (Mayhan, 2001; Christov et al., 2004;
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Deli et al., 2005). While the basal endothelial release of NO is an important physiological 

protective mechanism, overproduction of NO by inducible NO synthase (iNOS) can be 

harmful. LPS is one of the strongest inducer of iNOS. ROS, like superoxide, peroxides and 

hydroperoxides are formed in different physiological and pathological events, including 

sepsis. Peroxynitrite anion, a complex formed by NO and superoxides is a cytotoxic substance 

produced and released in sepsis, inflammation and ischemia (Karima et al., 1999). Oxidative 

damage of the BBB impairs the energy supply of endothelial cells thus inhibiting the energy- 

dependent nutrient transport systems, like amino acid transport system A (Cardelli et al., 

2002). In a model of neurodegeneration induced by impairment of oxidative metabolism (Ke 

and Gibson, 2004; Kruse et al., 2004) brain endothelial cells are the major site of NO 

production leading to neuronal cell loss and aggravation of neurodegeneration.

In LPS- treated cultured rat brain endothelial cells both ROS and NO productions were 

increased in a dose-dependent way. Our finding is in agreement with the results of Christov et 

al., (2004), who alsó found that treatment of cultured brain endothelial cells with LPS and 

other inflammatory proteins result in a significant increase in intracellular levels of ROS. LPS 

exposure alsó increased NO and superoxide anion levels in isolated rat cerebral arteries 

(Hemanz et al., 2004). The LPS induced concentration and time-dependent decrease in TEER 

in bovine brain endothelial cells could be reduced by free radical inhibitors, suggesting that 

ROS can influence brain endothelial junctions (Gaillard et al., 2003). These data taken 

together with our observations fürther indicate a role fór excessive free radical production in 

LPS-induced pathological changes in brain endothelial cells.

4.2. Protection against the LPS-induced BBB changes

Endotoxemia and sepsis are pathological conditions with high mortality rates despite 

the best available treatments. New, effective inhibitors of LPS, would be important fór the 

clinical practice. In our experiments SAP and pentosan treatment could reduce the deleterious 

effects of LPS on BBB permeability and efflux pump activity.

4.2.1. Serum amyloíd P component

The effect of humán SAP was studied both on basal and LPS-stimulated BBB 

permeability. Interestingly, SAP injected to mice could decrease basal BBB permeability to 

sodium fluorescein. It should be alsó considered that SAP, or complexes formed by SAP and
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blood constituents, can either interact with the luminal surface of brain’endothelial cells (e.g. 

cell surface glycosaminoglycans) thereby reducing fluorescein permeability or can bind 

circulating fluorescein.

Our data are the first to demonstrate that intravenously injected humán SAP can 

attenuate increased BBB permeability and diminish clinical signs of endotoxemia in LPS- 

treated mice. Although previous data indicated only marginal, if any, beneficial effects of 

SAP in LPS toxicity (Noursadeghi et al., 2000), humán SAP could diminish clinical signs of 

endotoxemia in the present experiments. The effect is probably mediated through binding 

circulating LPS in serum (Haas, 1999), bút additional effects on complement Cascade 

(Noursadeghi et al, 2000), or on cerebral endothelium should be alsó considered. However, 

humán SAP (100 mg/ kg) given ip. shortly before the challenge with a lethal dose of LPS (10 

mg/kg) did nőt confer any protection against mortality (Noursadeghi et al, 2000). Differences 

in the way of SAP administration, in LPS doses used, and in the endpoints of the experiments 

may explain the discrepancy between our present results and those published by Noursadeghi 

et al., (2000). In the present experiment, we have used iv. SAP treatment fór mice challenged 

with non-lethal LPS doses, and our main endpoint was assessment of BBB permeability, a 

specific physiological function.

4.2.2. Pentosan polysulfate

In the present study PPS treatment attenuated both the permeability barrier impairment 

and the P-glycoprotein inhibition in LPS-exposed brain endothelial cells. It was beneficial in 

reducing the LPS-induced TJ changes, revealed by TEER and permeability measurements and 

TJ protein immunostaining, and the free radical production.

The mode of action of PPS in brain endothelial cells has nőt been studied yet. We 

hypothesize, that PPS can interfere with LPS-induced changes in cerebral endothelium at 

several levels. PPS may exert a direct effect through blocking the interaction of LPS with Toll 

like receptors, inhibiting LPS-induced signaling or effector molecules of LPS-action, like 

protein kinase C (Shen et al., 2005) or NO (Syed et al., 2006) in endothelial cells. An indirect 

action of PPS can happen through its interaction with the luminal surface of brain endothelial 

cells, thus protecting the negative luminal charge contributing to the permeability barrier. Our 

observation, that PPS given 30 min affér LPS treatment could alsó prevent endotoxin-induced 

increase in NO and ROS production indicates that the effect of this polyanionic compound is 

nőt (or nőt exclusively) related to its mechanical interaction with LPS-binding sites. Further



experiments are needed to prove which of the mentioned possibilities participate in the 

protective effect of pentosan in brain endothelial cells. Despite the unknown mode of action 

of PPS on the BBB, the importance of our fínding is emphasized by the fact that PPS is a 

clinically used drug. Our new observation may suggest a potential therapeutical application of 

PPS in sepsis caused by Gram-negative bacteria.

4.3. Glutamate-induced changes in BBB permeability

Ischemic stroke is the second leading cause of death worldwide and the main 

disabilitating disease in the United States (Rymer and Thrutchley, 2005). One of the major 

complications of stroke is cytotoxic and/or vasogenic brain edema. Cytotoxic edema is caused 

by the loss of membráné ionic pumps and by cell swelling owing to cerebral ischemia. In 

addition, BBB leakage appears to be responsible fór vasogenic edema (Joó and Klatzo, 1989; 

Rosenberg, 1999).

In the present study, a 30 min exposure to glutamate resulted in a signifícant decrease 

in TEER values and increase in fluorescein permeabilty in cultured rat brain endothelial cells 

indicating a rapid effect of the excitatory neurotransmitter on the barrier integrity of 

monolayers. The effect on paracellular permeability measured by TEER and SF flux was even 

more pronounced at 24 h.

The time course of these alterations is supported by the observation that cytotoxic and 

vasogenic edema can reach maximum intensity 24 to 72 h affér the ischemic event 

(Rosenberg, 1999). Global cerebral ischemia resulted in a marked BBB permeability increase 

24 h later (Preston and Webster, 2004), and the glutamate analogue kainate-induced BBB 

breakdown with plasma leakage intő brain tissue could be alsó observed 24 h affér the 

intrahippocampal injection (Chen et al., 1999).

The underlying mechanism can be linked to alterations of junctional protein 

expression induced by high levels of extracellular glutamate. Changes in tight junction 

proteins were shown in hypoxia/reoxygenation modeling of transient ischemia using an in 

vitro BBB model. Specifícally, hypoxia resulted in redistribution of occludin, claudin-1, ZO- 

1, and ZO-2 proteins (Brown et al., 2003; Mark and Davis, 2002).

In agreement with these findings, a transient exposure to glutamate resulted in 

Progressive changes in occludin immunoreactivity in brain endothelial cells (Publication III, 

Appendix). At 30 min occludin redistribution, at 24 h decrease or loss of this junctional 

protein was observed at cell-cell bordér segments. Such alterations can markedly affect the
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BBB function. Redistribution of tight junction particles in the intemal/extemal membráné 

leaflets can lead to a disturbed fence function, with the polarity change of the glucose 

transporter GLUT-1 (Lippoldt et al., 2000).

Glutamate-induced alterations of occludin immunoreactivity were associated with 

significant disturbances in phosphorylation pattems. Increased phosphorylation of tyrosine 

residues and decreased phosphorylation of threonine residues were observed (Publication III). 

Alterations of phosphorylation status of junctional proteins can contribute to decreased barrier 

function of the BBB. A correlation was shown between tyrosine phosphorylation of occludin 

and the disruption of tight junctions (Basuroy et al., 2006).

4.4. Protection against the glutamate-induced BBB changes

To distinguish the effects of individual ionotropic glutamate receptors on brain 

endothelial permeability and to test potential therapeutical molecules, the monolayers were 

exposed to glutamate in the presence of MK-801, a pharmacological inhibitor of NMDA 

receptors, or DNQX, a blocker of AMPA/KA receptors.

NMDA receptor antagonist MK801 could successfully inhibit the glutamate-induced 

decrease in TEER and increase in permeability fór SF. DNQX did nőt have a protective effect 

on TEER changes at 30 min, and was nőt able to block the elevated SF flux after glutamate 

treatment. These results suggest that the effect of glutamate on paracellular permeability in 

our BBB model is primarily NMDA receptor-mediated.

The functional results are in agreement with the data of the experiments on occludin 

changes. Blockage of the NMDA receptors, which selectively protected against glutamate- 

induced disruption of brain endothelial monolayer integrity alsó effectively inhibited 

glutamate-induced tyrosine phosphorylation of occludin (Publication III). These results are 

supported by earlier observations on the involvement of the NMDA receptors in the 

reguládon of the BBB functions and endothelial permeability (Sharp et al., 2003).

Memantine, a clinically used NMDA receptor antagonist, restored BBB integrity and 

reduced symptoms in experimental allergic encephalomyelitis, a model of multiple sclerosis 

(Paul and Bolton, 2002). It alsó could attenuate brain edema formádon and increased BBB 

permeability after cerebral ischemia and reperfusion in rats (Gorgulu et al., 2000). These data 

and our results suggest that inhibition of NMDA receptors at the BBB might be 

therapeutically effective in preventing increased permeability in neuropathological conditions.
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5. SUMMARY

Clinical and research data support the involvement of BBB damage as an early event 

in many neurological conditions. The role of the BBB to protect the brain in physiological and 

pathological conditions is increasigly emphasized in the literature. Protective strategies at the 

level of BBB are in the focus of new studies. We have selected LPS and glutamate, two major 

pathological factors in humán diseases causing BBB disturbances and brain edema to study 

potential protective molecules on in vitro and in vivő BBB models.

LPS treatment resulted in damage to the integrity and functions of BBB on two 

different models. Intraperitoneally injected LPS induced typical signs of sickness behavior 

and increased several fold the permeability of BBB to marker molecules in CBA/BL6 mice. 

Humán serum amyloid P component decreased the LPS induced elevation in BBB 

permeability and diminished clinical signs of endotoxemia in vivő.

In accordance with the results of our in vivő study, LPS treatment damaged the 

integrity of monolayers, reduced transendothelial electrical resistance and increased 

permeability in cultured brain endothelial cells. The LPS-induced injury to tight junction 

structural organization corresponded to the permeability changes observed. LPS alsó inhibited 

the activity of the efflux pump P-glycoprotein. The LPS-induced increase in reactive oxygen 

species and nitric oxide production can participate in the observed changes in BBB functions. 

Pentosan could reduce the deleterious effects of LPS and this new observation may suggest a 

potential therapeutical application of PPS in sepsis caused by Gram-negative bacteria.

A transient exposure of brain endothelial cells to extracellular glutamate resulted in an 

increased paracellular permeability. The functional changes were accompanied by 

redistribution and decreased expression of occludin, an important tight junction protein. 

Treatment with glutamate alsó induced excessive phosphorylation of the tyrosine residues of 

occludin. Glutamate-induced increase in brain endothelial monolayer permeability and 

hyperphosphorylation of occludin could be blocked by the NMDA receptor blocker MK-801.

Recently the BBB has been considered as a therapeutic target in those diseases, where 

neuronal damage is secondary to, or exacerbated by BBB dysfunction. Our fmdings may 

contribute to the development of new strategies fór the prevention of BBB damage or 

Protection of BBB functions in diseases.
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