
An early look at the LDBC Social Network Benchmark’s
Business Intelligence workload

Gábor Szárnyas1,2, Arnau Prat-Pérez3,4, Alex Averbuch5, József Marton2, Marcus Paradies6,∆,
Moritz Kaufmann7, Orri ErlingΣ, Peter Boncz8, Vlad Haprian9 and János Benjamin Antal2

1MTA-BME Lendület Cyber-Physical Systems Research Group, 2Budapest University of Technology and Economics,
3Sparsity Technologies, 4DAMA UPC, 5Neo4j, 6DLR, 7Technische Universität München, 8CWI, 9Oracle Labs,

∆Work performed while at SAP SE, ΣWork performed while at OpenLink Software
szarnyas@mit.bme.hu,aprat@ac.upc.edu,alex.averbuch@neotechnology.com,boncz@cwi.nl,vlad.haprian@oracle.com

ABSTRACT
In this short paper, we provide an early look at the LDBC Social Net-
work Benchmark’s Business Intelligence (BI) workload which tests
graph data management systems on a graph business analytics
workload. Its queries involve complex aggregations and naviga-
tions (joins) that touch large data volumes, which is typical in BI
workloads, yet they depend heavily on graph functionality such
as connectivity tests and path finding. We outline the motivation
for this new benchmark, which we derived from many interactions
with the graph database industry and its users, and situate it in a
scenario of social network analysis. The workload was designed
by taking into account technical “chokepoints” identified by data-
base system architects from academia and industry, which we also
describe and map to the queries. We present reference implementa-
tions in openCypher, PGQL, SPARQL, and SQL, and preliminary
results of SNB BI on a number of graph data management systems.
ACM Reference Format:
Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton, Marcus
Paradies, Moritz Kaufmann, Orri Erling, Peter Boncz, Vlad Haprian and
János Benjamin Antal. 2018. An early look at the LDBC Social Network
Benchmark’s Business Intelligence workload. In GRADES-NDA’18: 1st Joint
International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA), June 10–15, 2018, Houston, TX,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3210259.
3210268

1 INTRODUCTION
The explosion of network- or graph-shaped data has increased the
demand for tools analyzing such data sets, including specialized
cluster framework APIs, SQL extensions or graph databases. The
diversity of tools and technologies creates the need for standard
benchmarks that help practitioners identify the technologies that
suit their needs. Additionally, benchmarks spur competition among
vendors and stimulate research in the field, as TPC benchmarks [9,
24, 27] have done for the RDBMS industry.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5695-4/18/06. . . $15.00
https://doi.org/10.1145/3210259.3210268

Recent graph benchmarking initiatives focus on three key areas:
(1) transactional workloads consisting of interactive read and up-
date queries [4, 6, 12], (2) graph analysis algorithms [5, 11, 19, 23],
and (3) inferencing/matching on semantic data [1, 17, 22, 30, 32].

Benchmarks with aggregation-heavy OLAP-like Business In-
telligence (BI) workloads on graphs are still a rather unexplored
area, and existing proposals do not fully capture the complex na-
ture of such workloads. Currently, the only benchmark with global
queries and aggregations on graph-like data is the Berlin SPARQL
Benchmark’s BI use case [8]. However, while proposed on RDF, it
is exactly equivalent to and exists in a SQL variation on flat tables
in a star schema, i.e. its dataset lacks a true graph structure and its
queries thus do not require graph functionality.

Graph BI workloads differ from other types of graph query work-
loads in that large portions of the graph are explored in search
of occurrences of graph patterns. Compared to graph analytics
workloads, the patterns under search combine both structural and
attribute predicates of varying complexity [29], from basic graph
patterns [3] to more complex unbound patterns that rely on differ-
ent reachability semantics (e.g. paths, trails). The identified patterns
are typically grouped, aggregated, and sorted to summarize the re-
sults, which are used to assist the user in critical decision making.

BI workloads on graphs are particularly challenging because they
usually lead to large search spaces and consequently, to large inter-
mediate results. Thus, systems that are not prepared to efficiently
prune the search space—by finding good graph traversal order-
ings, leveraging reachability indexes, or taking advantage of top-k
semantics—are heavily penalized. Moreover, the complex structure
of real graphs induces difficult-to-predict, scattered memory access
patterns, which can limit the memory bandwidth saturation by or-
ders of magnitude if computations are not arranged correctly [31].
Finally, some complex graph patterns become difficult to express
even with the most advanced query languages, leading to large and
verbose queries, which are difficult to write and maintain.

In this paper we present an early look at the LDBC SNB Busi-
ness Intelligence benchmark (SNB BI), an industry-graded graph
BI benchmark for graph processing systems as a result of many
interactions between industry, academia, and graph practitioners.
SNB BI is a macro-benchmark consisting of 25 queries on top of
a synthetically generated social network graph with a rich data
schema and correlated attributes. By following a chokepoint-based
approach, SNB BI queries are carefully designed to reproduce the
challenging aspects of real workloads while keeping the workload
realistic so it can be expressed by existing graph systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/159127436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1145/3210259.3210268

GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA G. Szárnyas et al.

As supplementary material, we provide reference implementa-
tions using the Sparksee engine, as well as the openCypher [14],
PGQL [33], SPARQL [26], and SQL declarative query languages,
available at https://github.com/ldbc/ldbc_snb_implementations.

2 BENCHMARK DESIGN
The SNB BI workload consists of 25 read queries that have been
carefully designed around a set of chokepoints (CPs) [9]. These are
challenging aspects and scenarios observed during query evalua-
tion that present specific optimization opportunities, which systems
must identify to allow efficient processing of larger data volumes.
We have adopted many of the chokepoints identified in [12] and ex-
tended the list with new graph and language-specific ones, detailed
in Section 2.1. Similarly to the Interactive workload of the LDBC
Social Network Benchmark, the BI workload uses query templates
that contain parameters to be substituted with bindings from the
corresponding domain of the data set (e.g. Persons) [12].

2.1 Chokepoint-Based Query Design
To design the queries we have followed an iterative process where
the connection between chokepoints and queries has been progres-
sively updated. At each step, either a new query was proposed or an
existing one was updated, so that each query fulfills at least three
chokepoints, and each chokepoint appears in at least one query.
Additionally, the exercise of implementing the queries has helped
us to reconsider some chokepoint assignments, either by adding
some previously unforeseen ones or unassigning chokepoints from
queries (as they turned out to be irrelevant in practice). This also re-
vealed how dependent the impact of one chokepoint is on the scale
factor and/or the input parameters, thus putting more pressure to
the query optimizer and making the benchmark more challenging.

We have carefully designed the queries to be expressible using
state of the art query languages and represent realistic BI operations
one would perform on a social network (e.g. Popular topics in a
Country, Tag evolution or Trending Posts). At the same time, we
have tried to push the expressivity of existing query languages to
their limits by formulating queries difficult to express. The detailed
description of the chokepoints and final relations between queries
and CPs can be found in Appendix A. In the following lines, we
detail the new graph and language CPs.

Graph-specific chokepoints

CP-7.1 Path pattern reuse. This chokepoint tests the ability of
the execution engine to reuse results across graph traversals. For
example, when computing paths within a range of distances, it is
often possible to incrementally compute longer paths by reusing
paths of shorter distances that were already computed.

CP-7.2 Cardinality estimation of transitive paths. This choke-
point tests the ability of the optimizer to estimate the cardinality of
intermediate results when executing transitive paths, in order to
decide proper traversal order (join order/type in relational DBs).

CP-7.3 Efficient execution of a transitive step. This tests the
ability of the query execution engine to efficiently execute a transi-
tive step from a set of nodes. This operation is typically executed by
scanning the nodes and repeatedly performing a short lookup into

a data structure storing the neighbors of each. However, in cases
with many nodes, other strategies might be more efficient [7].
CP-7.4 Efficient evaluation of termination criteria of tran-
sitive queries. This CP tests the ability of a system to express
termination criteria for transitive queries and the ability to perform
efficient termination testing.
Language chokepoints

CP-8.1 Complex patterns.Anatural requirement for graph query
languages is to express complex graph patterns. Challenging pat-
terns include transitive closure-style queries, with/without fixed
bounds on the number of hops and even negative edge conditions.
CP-8.2 Complex aggregations. BI workloads are dominated by
aggregation operations, including queries with subsequent aggrega-
tions, where the results of an aggregation serve as input of another
aggregation. Expressing such operations requires some sort of query
composition or chaining (see also CP-8.4). It is also common to filter
on aggregation results (similarly to the HAVING keyword of SQL).
CP-8.3Windowing queries. In addition to aggregations, BI work-
loads often usewindow functions, which perform aggregations with-
out grouping input tuples to a single output tuple. A common use
case for windowing is ranking, i.e. selecting the top element with
additional values in the tuple (nodes, edges or attributes).
CP-8.4 Query composition. Numerous use cases require a com-
position of queries, including the reuse of query results (e.g. nodes,
edges) or using scalar subqueries (e.g. selecting a threshold value
with a subquery and using it for subsequent filtering operations).
CP-8.5 Dates and times. Handling dates and times is a funda-
mental requirement for production-ready database systems. It is
particularly important in the context of BI queries as these often
calculate aggregations on certain periods of time (e.g. on a month).
CP-8.6 Handling paths. To take full advantage of the graph data
model, systems should be able to perform complex operations on
paths in the graph [2].1 Hence, additionally to reachability-style
checks, a language should be able to express queries that operate
on path elements, e.g. calculate a score for each edge of the path.
Further, some use cases require uniqueness constraints on paths,
e.g. that a certain path must not have repeated edges.

2.2 Data
SNB BI adopts the LDBC Social Network Benchmark (LDBC-SNB)
data generator to generate synthetic social networks with realistic
characteristics, using its scale factor notion and the way to generate
parameter bindings [16], for which we have extended the original
software.2 For a detailed description of the generator, please refer
to [12]. Here, we highlight those characteristics of the produced
graphs that make the generator ideal for a graph BI workload.

First, graphs contain a rich schema consisting of different entities.
This allows the design of queries with rich and complex patterns re-
quiring both small and large projections. These stress chokepoints
such as CP-1.2 High cardinality group-by performance, which en-
ables the engine to efficiently perform grouping operations when
there are many different groups; CP-1.4 Low cardinality group-by

1Following the conventions of [3], we define paths as a sequence of vertices and edges,
with both endpoints of an edge appearing adjacent to it in the sequence.
2https://github.com/ldbc/ldbc_snb_datagen

https://github.com/ldbc/ldbc_snb_implementations
https://github.com/ldbc/ldbc_snb_datagen

An early look at the LDBC SNB’s BI workload GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA

performance, which enables specific optimizations when there are
only few different groups; and CP-2.2 Late projection which tests
the ability of the optimizer to defer the projection of attributes not
required until later phases of the evaluation.

Second, graphs are correlated, i.e. Persons with similar charac-
teristics are more likely to be connected or where the values of
the attributes of a given entity are correlated. Systems can exploit
such correlations to leverage more compressed means of storing the
graph or to improve data access locality via clustered indexes. Such
optimization opportunities are specifically captured by chokepoints
CP-3.1 Detecting correlation or CP-3.2 Dimensional clustering.

Finally, structural characteristics are also realistic, with the de-
gree distributions of the knows edge type being Facebook-like [28]
and the largest connected component containing a significant por-
tion of the overall network. Such features allow us to stress choke-
points CP-3.3 Scattered index access patterns, which tests the ability
of the execution engine to efficiently access indexes using keys that
are scattered, which is usually the case when performing traversals
of more than one hop; and the new CP-7.2 Cardinality estimation of
transitive paths and CP-7.3 Efficient execution of a transitive step.

3 DETAILED QUERY DISCUSSION
All queries present in SNB BI share common data access characteris-
tics, they touch large portions of the social network graph and rely
heavily on aggregation operations [15]. In the following, we discuss
three example queries in detail, and show how properly dealing
with different chokepoints can highly impact query evaluation time,
revealing the relevance of chokepoint-based benchmark design and
the proposed queries. The list of CPs is presented in Appendix A,
while queries are listed in Appendix B.

To assess the complexity of each query and potential impact of
optimization techniques, we ran multiple performance experiments.
These were implemented in C++ on top of the Sparksee native graph
database [20], and evaluated on SF1 and SF10 data sets. Benchmarks
were executed on a cloud VM with 8 Xeon E5-2673 CPU cores
and 256 GB RAM, running Ubuntu 16.04. Detailed results for all
25 queries and multiple systems are available in Appendix C.
Q5—Top posters in a country

Definition. “Find the 100 most popular Forums in a given Country.
For each member of these Forums, count the number of Posts they
made in any of the popular Forums.”

Performance CPs.Q5 represents a simple graph pattern matching
query with a top-k evaluation and a set of aggregation operations.
Besides its simplicity, this query is highly relevant for several rea-
sons: first, this is one of the queries that fulfills a majority of the
chokepoints (10 in total), including those related to efficient CP-2.1
Rich join order optimization, CP-1.3 Top-k pushdown, and CP-2.2 Late
projection. Second, this query reveals that graph database systems
must not only provide support for purely graph-specific operations
but also non-graph operations, such as aggregations and top-k
evaluation, to answer realistic graph BI queries efficiently.

Q5 Q16 Q25

Fo
ru
m

to
Co

un
tr
y

Co
un

tr
y
to

Fo
ru
m

Ba
se
lin

e

To
p-
k
pu

sh
do

w
n

To
p-
k
pu

sh
do

w
n
+

pa
th

pa
tte

rn
re
us
e

Ba
se
lin

e

Re
su
lt
re
us
e

SF1 4,848 64 1,552 1,463 702 622 419
SF10 57,637 349 29,312 27,398 15,037 2,885 1,939

Table 1: Execution times inmilliseconds for Q5, Q16 andQ25
with different optimizations.

To demonstrate the importance of the chokepoints fulfilled by
this query, we focus on the first and most time-consuming part of
the query, which looks for patterns connecting Forums to Persons
living in a Country (the latter being provided as a query parameter).

When looking for occurrences of such a pattern, a system has
several alternatives to navigate the graph. For instance, one option
is to navigate the graph from Forums to Persons, and then filter out
those occurrences with Persons that are not locatedIn the Country
in question. As an alternative, the system could also first obtain the
Persons that belong to the Country, and then retrieve the Forum
neighbors via the hasMember relationship.

Properly selecting the right strategy can heavily impact the query
time, sometimes by orders of magnitude. Table 1 depicts the average
query evaluation time for the two proposed traversal strategies.
The execution times reveal that by following the second traversal
evaluation strategy, the average execution time is two orders of
magnitude lower on both scale factors. This particular example
represents an instance of CP-2.1 Rich join order optimization, since
traversing a graph can be interpreted as a sequence of joins. Other
queries fulfilling this CP are Q2, Q4, Q9, Q10, Q11, Q19, Q20, Q21,
Q22, Q24 and Q25. The large number of queries is caused by the
fact that navigation is a key operation in graph BI workloads.

Language CPs. This query first performs an aggregation to deter-
mine the popularity of Forums, then sorts them and selects the
100 most popular ones, and continues the computation with these.
This covers two key language CPs: CP-8.2 Complex aggregations (to
perform ordering on aggregations results) and CP-8.4 Query com-
position (to continue with results of the subquery). Due to the BI
nature of the benchmark, complex aggregation (CP-8.2) is required
by ≈50% of the queries, 12 in total. Composition (CP-8.4) is also an
important feature, required by Q10, Q15, Q18, Q21, Q22, and Q25.

Q16—Experts in social circle

Definition. “Find Persons who live in a given Country and are
connected to a given Person through and edge-unique path of
knows edges with a length in range [min, max]. For each Person,
retrieve theirMessages with a Tag belonging to a given TagClass.
Also retrieve all Tags for eachMessage. Group the results by Persons
and Tags, then count theMessages for a certain Person/Tag.”

GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA G. Szárnyas et al.

Performance CPs. One way to evaluate this query is to first find
all Persons reachable from the given Person and belonging to the
input Country. Then, for each of these Persons, we can look for the
messages they created and their Tags to obtain the final result set,
from which the top-k elements are returned.

However, a sophisticated query optimizer might be able to infer
that the maximum number of Messageswith a given Tag for a given
Person can be at most the Person’s total number of Messages. Thus,
the system might first sort the reachable Persons by their Message
count in descending order and start counting their Messages’ Tags
while maintaining a priority queue with the top-k results. Once the
“total number of Messages of the next Person to evaluate” value
is smaller than the last entry in the top-k (assuming this already
containsk elements), the query evaluation can abort exploringmore
Persons, hence exploiting CP-1.3 Top-k pushdown [10]. In the first
and second column of Table 1, we show the results of applying the
optimization (for a top-100 case). We see that applying it decreases
execution time by around 6%. Although this number might not
seem significant, top-k pushdown is one of the most important
chokepoints of the workload. For large SFs, some queries such as
Q22 become untractable if top-k pushdown is not exploited, since it
would require comparing all Persons of one country to all Persons
of another country. Also, other queries that rely on this chokepoint
to be executed efficiently are Q2, Q4, Q5, Q9, and Q19.

Complementing the top-k pushdown optimization, a system
could also try to compute the reachable Persons incrementally, in-
stead of computing them at the beginning of the execution. As the
Persons belonging to the input Country are explored (sorted in
descending order by theirMessage count), a reachability set can be
updated while checking whether the currently evaluated Person is
reachable or not. Thus, before performing the expensive reachabil-
ity test, we can check whether a certain Person has been already
observed in an earlier Person reachability test. This optimization is
an example of an exploitation of CP-7.1 Path pattern reuse, which
for this query would result in an improvement of ≈1.8 − 2× over
simple top-k pushdown, as shown in Table 1. Reachability indexes
are a form of reusing patterns and are an active research area [34].
This chokepoint was partially designed to stimulate such research
efforts. Other queries that fulfill this chokepoint are Q19 and Q25.
Language CPs. This query uses transitive paths with variable
bounds, which is a key challenge in CP-8.1 Complex patterns. Other
queries that stress this CP are Q8, Q11, and Q19 (negative edge
conditions), and Q14, Q18, Q19, Q20, and Q25 (transitive paths).
Due to the edge-uniqueness constraint, this query also relies on
the language supporting edge-isomorphic matching semantics [3],
which is captured by CP-8.6 Handling paths.
Q25—Weighted interaction paths

Definition. “Given two Persons, find all shortest paths on knows
edges between them. For each path, calculate a weight based on
interactions between consecutive Persons (details omitted, see Ap-
pendix B). Return all paths ordered by their weights descending.”
Performance CPs. This query looks first for all the shortest paths
between a given pair of Persons, and for each of them computes a
score based on the interactions between each pair of consecutive
Persons in the path. In a realistic graph—such as the one in the
benchmark—it is likely that there exists a large overlap between

such shortest paths, especially if the length of the shortest paths is
relatively large. Such an overlap implies that many of the subqueries
used to compute the path’s score are essentially the same, and thus
their results can be reused. This is an application of CP-5.3 Intra-
query result reuse. Table 1 shows the average execution time of Q25
on SF1 and SF10, with and without reusing the subquery results.
We see that thanks to the optimization, we obtain a reduction in
the execution time of ≈30%. Other queries where this chokepoint
can be exploited are Q3, Q5, Q15, Q21, and Q22.
Language CPs. This query stresses language features, covering all
related CPs, including an important aspect of CP-8.6 Handling paths.
In particular, it calculates the weight of a path based on interactions
of consecutive nodes on the path, which is often difficult to express
in existing languages. This has been recognized by recent language
design efforts: the G-CORE language [2] defines paths as part of its
property graph data model, which defining queries on paths.

4 CONCLUSION AND FUTUREWORK
In this paper, we have presented our early work on SNB BI, a graph
processing systems’ benchmark for graph BI workloads. SNB BI
combines a set of 25 carefully designed queries with a synthetic so-
cial network dataset to achieve a realistic yet challenging workload.
We share our experiences on implementing the benchmark on a
graph database and showcase the benefits of the chokepoint-based
design by means of a detailed discussion on three example queries.
Moreover, we provide results for three different systems.

Our experiences reveal how the designed queries capture the
complexity of graph BI workloads by offering optimization oppor-
tunities that, if not taken into account, would make the evaluation
of queries infeasible for large scale factors. We also studied the
language aspects of the queries, making them expressible using
existing declarative query languages (openCypher, PGQL, SPARQL,
and SQL), which also revealed some deficiencies of the languages.

While the contours of SNB BI have now become clear, work on it
continues, e.g. by including updates into the workload. We consider
the scenario of systems that query a static snapshot of the graph, and
from time to time receive batch updates that must be incorporated
into the database. However, we also want the benchmark to match
the capabilities of those systems that offer queryable snapshots
while accepting update streams in parallel. Updates will tie into the
overall performance metric function, which we will define in the
complete benchmark. Such a function will need to consider two
main aspects: (1) all queries are equally important regardless their
data complexity, favouring geometric mean [13] and (2) the function
should accommodate different ways of accepting updates. Finally,
we plan to provide new implementations (e.g. in G-CORE [2]).

ACKNOWLEDGMENTS
G. Szárnyas was partially supported by NSERC RGPIN-04573-16
and MTA-BME Lendület Cyber-Physical Systems Research Group.
DAMA-UPC research was supported by the grant TIN2017-89244-R
from MINECO (Ministerio de Economia, Industria y Competitivi-
dad) and the recognition 2017SGR-856 (MACDA) from AGAUR
(Generalitat de Catalunya). Sparsity thanks the EU H2020 for fund-
ing the Uniserver project (ICT-04-2015-688540). We would like to
thank Oskar Van Rest (Oracle Labs) for his contributions in the
PGQL queries and Bálint Hegyi (BME) for his remarks on the spec.

An early look at the LDBC SNB’s BI workload GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Diversi-

fied Stress Testing of RDF Data Management Systems. In ISWC. 197–212. DOI:
https://doi.org/10.1007/978-3-319-11964-9_13

[2] Renzo Angles and others. 2018. G-CORE: A Core for Future Graph Query Lan-
guages. In SIGMOD.

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (Sept. 2017), 40 pages. DOI:
https://doi.org/10.1145/3104031

[4] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: a database benchmark based on the Facebook social
graph. In SIGMOD. 1185–1196. DOI:https://doi.org/10.1145/2463676.2465296

[5] David A. Bader and Kamesh Madduri. 2005. Design and Implementation of
the HPCS Graph Analysis Benchmark on Symmetric Multiprocessors. In HiPC.
465–476. DOI:https://doi.org/10.1007/11602569_48

[6] Sumita Barahmand and Shahram Ghandeharizadeh. 2013. BG: A Benchmark
to Evaluate Interactive Social Networking Actions. In CIDR. http://cidrdb.org/
cidr2013/Papers/CIDR13_Paper93.pdf

[7] Scott Beamer, Krste Asanovic, and David A. Patterson. 2013. Direction-optimizing
breadth-first search. Scientific Programming 21, 3-4 (2013), 137–148. DOI:https:
//doi.org/10.3233/SPR-130370

[8] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark. Int.
J. Semantic Web Inf. Syst. 5, 2 (2009), 1–24. DOI:https://doi.org/10.4018/jswis.
2009040101

[9] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC.
61–76. DOI:https://doi.org/10.1007/978-3-319-04936-6_5

[10] Donko Donjerkovic and Raghu Ramakrishnan. 1999. Probabilistic Optimization
of Top N Queries. In VLDB. 411–422. http://www.vldb.org/conf/1999/P40.pdf

[11] Benedikt Elser and Alberto Montresor. 2013. An evaluation study of BigData
frameworks for graph processing. In Big Data. 60–67. DOI:https://doi.org/10.
1109/BigData.2013.6691555

[12] Orri Erling and others. 2015. The LDBC Social Network Benchmark: Interactive
Workload. In SIGMOD. 619–630. DOI:https://doi.org/10.1145/2723372.2742786

[13] Philip J. Fleming and John J. Wallace. 1986. How Not To Lie With Statistics: The
Correct Way To Summarize Benchmark Results. Commun. ACM 29, 3 (1986),
218–221. DOI:https://doi.org/10.1145/5666.5673

[14] Nadime Francis and others. 2018. Cypher: An Evolving Query Language for
Property Graphs. In SIGMOD.

[15] Jim Gray and others. 1997. Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-Tab, and Sub Totals. Data Min. Knowl. Discov. 1, 1
(1997), 29–53. DOI:https://doi.org/10.1023/A:1009726021843

[16] Andrey Gubichev and Peter A. Boncz. 2014. Parameter Curation for Benchmark
Queries. In TPCTC (Lecture Notes in Computer Science), Vol. 8904. Springer, 113–
129.

[17] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem. 3, 2-3 (2005), 158–182. DOI:https:
//doi.org/10.1016/j.websem.2005.06.005

[18] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. 1996. Graph Grammars
with Negative Application Conditions. Fundam. Inform. 26, 3/4 (1996), 287–313.
DOI:https://doi.org/10.3233/FI-1996-263404

[19] Alexandru Iosup and others. 2016. LDBC Graphalytics: A Benchmark for Large-
Scale Graph Analysis on Parallel and Distributed Platforms. PVLDB 9, 13 (2016),
1317–1328.

[20] Norbert Martínez-Bazan, Sergio Gómez-Villamor, and Francesc Escale-Claveras.
2011. DEX: A high-performance graph database management system. In 2nd
International Workshop on Graph Data Management: Techniques and Applications
(GDM) at ICDE. 124–127. DOI:https://doi.org/10.1109/ICDEW.2011.5767616

[21] Bruce Momjian. 2000. PostgreSQL: Introduction and Concepts. Addison-Wesley.
[22] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo.

2011. DBpedia SPARQL Benchmark - Performance Assessment with Real Queries
on Real Data. In ISWC. 454–469. DOI:https://doi.org/10.1007/978-3-642-25073-6_
29

[23] Lifeng Nai, Yinglong Xia, Ilie Gabriel Tanase, Hyesoon Kim, and Ching-Yung Lin.
2015. GraphBIG: understanding graph computing in the context of industrial
solutions. In SC. 69:1–69:12. DOI:https://doi.org/10.1145/2807591.2807626

[24] Raghunath Othayoth Nambiar and Meikel Pöss. 2006. The Making of TPC-DS.
In VLDB. 1049–1058. http://dl.acm.org/citation.cfm?id=1164217

[25] Thomas Neumann and Guido Moerkotte. 2009. A Framework for Reasoning
about Share Equivalence and Its Integration into a Plan Generator. In BTW. 7–26.
http://subs.emis.de/LNI/Proceedings/Proceedings144/article5220.html

[26] Jorge Pérez and others. 2009. Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34, 3 (2009). DOI:https://doi.org/10.1145/1567274.1567278

[27] Meikel Pöss and Chris Floyd. 2000. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Record 29, 4 (2000), 64–71. DOI:https://doi.org/10.
1145/369275.369291

[28] Arnau Prat-Pérez and David Domínguez-Sal. 2014. How community-like is the
structure of synthetically generated graphs?. In GRADES at SIGMOD. 7:1–7:9.
DOI:https://doi.org/10.1145/2621934.2621942

[29] Sherif Sakr, Sameh Elnikety, and Yuxiong He. 2012. G-SPARQL: a hybrid engine
for querying large attributed graphs. In CIKM. 335–344. DOI:https://doi.org/10.
1145/2396761.2396806

[30] Michael Schmidt, Thomas Hornung, Michael Meier, Christoph Pinkel, and Georg
Lausen. 2009. SP2Bench: A SPARQL Performance Benchmark. In Semantic
Web Information Management - A Model-Based Perspective. 371–393. DOI:https:
//doi.org/10.1007/978-3-642-04329-1_16

[31] Bin Shao, Yatao Li, Haixun Wang, and Huanhuan Xia. 2017. Trinity Graph
Engine and its Applications. IEEE Data Eng. Bull. 40, 3 (2017), 18–29. http:
//sites.computer.org/debull/A17sept/p18.pdf

[32] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2017. The
Train Benchmark: cross-technology performance evaluation of continuous
model queries. Softw. Syst. Model. (2017). DOI:https://doi.org/10.1007/
s10270-016-0571-8

[33] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: a property graph query language. In GRADES at SIGMOD. DOI:
https://doi.org/10.1145/2960414.2960421

[34] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2012. GRAIL: a scalable
index for reachability queries in very large graphs. VLDB J. 21, 4 (2012), 509–534.
DOI:https://doi.org/10.1007/s00778-011-0256-4

A CHOKEPOINTS
In this section, we describe the chokepoints of the benchmark. The
connection between chokepoints and queries is displayed in Table 2.

A.1 Aggregation Performance
CP-1.1 Interesting orders. This chokepoint tests the ability of
the query optimizer to exploit the interesting orders induced by
some operators. For example, a neighborhood expansion operator
often preserves the implicit sortedness of the adjacency, which can
be subsequently used to perform cheaper duplicate elimination on
the set of discovered vertices.

CP-1.2 High Cardinality group-by performance. This choke-
point tests the ability of the execution engine to parallelize group-
by’s with a large number of groups. Real property graphs are usually
rich in terms of different property values (e.g., person names, top-
ics, cities, etc.) and thus is very common that aggregate queries
over these attributes result in a large number of groups (especially
when grouping over multiple properties). In such a case, intra query
parallelization can be exploited by making each thread to partially
aggregate a subset of the results. In order to avoid the merging the
partial aggregations and to avoid costly critical sections, the results
to group can be partitioned by hashing the grouping key and be
sent to the appropriate thread/partition.

CP-1.3 Top-k push down. This chokepoint tests the ability of
the query optimizer to optimize queries requesting top-k results.
The search space of Graph BI queries can easily explode given
the complexity of the patterns in search. Many times, the search
space can be pruned by imposing extra restrictions once k results
have been obtained and the query advances. Applying this kind of
optimizations can significantly reduce the search space.

CP-1.4 Low cardinality group-by performance. This choke-
point tests the ability to efficiently group results when only a very
limited set of groups is available. This can require special strategies
for parallelization, e.g., pre-aggregation when possible. This case
also allows using special strategies for grouping like using array
lookup if the domain of keys is small. This is typically observed in

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1145/3104031
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1007/11602569_48
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper93.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper93.pdf
https://doi.org/10.3233/SPR-130370
https://doi.org/10.3233/SPR-130370
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.1007/978-3-319-04936-6_5
http://www.vldb.org/conf/1999/P40.pdf
https://doi.org/10.1109/BigData.2013.6691555
https://doi.org/10.1109/BigData.2013.6691555
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/5666.5673
https://doi.org/10.1023/A:1009726021843
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.1109/ICDEW.2011.5767616
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1145/2807591.2807626
http://dl.acm.org/citation.cfm?id=1164217
http://subs.emis.de/LNI/Proceedings/Proceedings144/article5220.html
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/2621934.2621942
https://doi.org/10.1145/2396761.2396806
https://doi.org/10.1145/2396761.2396806
https://doi.org/10.1007/978-3-642-04329-1_16
https://doi.org/10.1007/978-3-642-04329-1_16
http://sites.computer.org/debull/A17sept/p18.pdf
http://sites.computer.org/debull/A17sept/p18.pdf
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1007/s00778-011-0256-4

GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA G. Szárnyas et al.

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3 6.1 7.1 7.2 7.3 7.4 8.1 8.2 8.3 8.4 8.5 8.6
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Q23
Q24
Q25

Table 2: Coverage of chokepoints by queries.

graph BI queries, especially when grouping results by country or
month of the year.

A.2 Join Performance
CP-2.1 Rich join order optimization. This chokepoint tests the
ability of the query optimizer to find optimal join orders. When
looking for pattern occurrences, a graph can be traversed in very
different ways, which is equivalent to performing different join
orders in the relational model. The execution time of these orders
may differ by orders of magnitude, thus finding an efficient traversal
strategy is of high importance.

CP-2.2 Late projection. This chokepoint tests the ability of the
query optimizer to delay the projection of unneeded attributes
until late in the execution. This is common on graph BI queries
where we look for patterns with predicates on a reduced set of
properties, but we are later interested in selecting other properties
not used in such predicates. In such a situation, it might be better
to omit such properties from initial scans and fetch them later by
node/edge id, which can save temporal space, and therefore I/O.
Late projection does have a trade-off involving locality, since late in
the plan accessing the nodes by id lead to scattered I/O or memory
access patterns. Thus, late projection specifically makes sense in
queries where the late use of these columns happens at a moment
where the amount of qualifying nodes have been considerably
reduced, for example after an aggregation with only few unique
group-by keys, or a top-k operator.

CP-2.3 Join type selection. This chokepoint tests the ability of
the query optimizer to select the proper join operator type (e.g.,
hash or index-based joins), which implies accurate estimates of
cardinalities. Typically, graph databases will have neighborhoods
materialized/indexed, and thus accessing the neighbors of a reduced
set of nodes is typically performed using such indexes (index-based
join). However, there are situations where one is interested into
obtaining the neighborhood of a large frontier (a set of nodes).
Depending on the cardinalities (size of the frontier and expected
size of the neighborhood), a hash or an index-based join operator is
more appropriate, thus a good estimation of cardinalities is of high
importance. The same rationale applied when accessing node/edge
properties.

CP-2.4 Sparse foreign key joins. This chokepoint tests the per-
formance of join operators when the join is sparse. Sometimes joins
involve relations where only a small percentage of rows in one
of the tables is required to satisfy a join. When tables are larger,
typical join methods can be sub-optimal. Partitioning the sparse
table, using Hash Clustered indexes or implementing Bloom filter
tests inside the join are techniques to improve the performance in
such situations.

A.3 Data Access Locality
CP-3.1 Detecting correlation. This chokepoint tests the ability
of the query optimizer to detect data correlations and exploiting
them bymeans of clustered indexes, MinMax indexes, etc. Many real

An early look at the LDBC SNB’s BI workload GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA

graphs contain correlations between property values (e.g., the coun-
try of residence is correlated with the language a person speaks)
which can be used to improve data access locality.

CP-3.2 Dimensional clustering. This chokepoint tests suitabil-
ity of the identifiers assigned to entities by the storage system to
better exploit data locality. Many graph database systems use inter-
nal identifiers for nodes and edges, thus they have some choice in
assigning a value to this identifier. Many real graphs have a mod-
ular structure with correlations between neighbors (e.g., friends
are likely to share friends) and property values and neighbors (e.g.,
Persons tend to connect to Persons with similar interests). These
characteristics can be exploited in order to assign ids to nodes/edges
smartly, which can be used to improve compression and data local-
ity.

CP-3.3 Scattered index access patterns. This chokepoint tests
the performance of indexes when scattered accesses are performed.
The efficiency of index lookup is very different depending on the
locality of keys coming to the indexed access. The structure of real
graphs might induce unpredictable index accesses (e.g., a graph
neighborhood traversal is an example of an operation with random
access without predictable locality), thus locality sensitive optimiza-
tions might need to be disabled if these are costly when there is not
locality.

A.4 Expression Calculation
CP-4.1 Common subexpression elimination. This chokepoint
tests the ability of the query optimizer to detect common sub-
expressions and reuse their results. A basic technique helpful in
multiple queries is common subexpression elimination (CSE). CSE
should recognize also that average aggregates can be derived after-
wards by dividing a SUM by the COUNT when those have been
computed.

CP-4.2 Complex boolean expression joins and selections.
This chokepoint tests the ability of the query optimizer to reorder
the execution of boolean expressions to improve the performance.
Some boolean expressions are complex, with possibilities for al-
ternative optimal evaluation orders. For instance, the optimizer
may reorder conjunctions to test first those conditions with larger
selectivity.

CP-4.3 Low overhead expressions interpretation. This choke-
point tests the ability of efficiently evaluating simple expressions on
a large number of values. A typical example could be simple arith-
metic expressions, mathematical functions like floor and absolute
or date functions like extracting a year.

CP-4.4 String matching performance. This chokepoint tests
the ability of efficiently evaluating complex string matching ex-
pressions (e.g., via regular expressions).

A.5 Correlated Sub-queries
CP-5.1 Flattening sub-queries. This chokepoint tests the ability
of the query optimizer to flatten execution plans when there are
correlated sub-queries. Many queries have correlated sub-queries
and their query plans can be flattened, such that the correlated
sub-query is handled using an equi-join, outer-join or anti-join.

To execute queries well, systems need to flatten both sub-queries,
the first into an equi-join plan, the second into an anti-join plan.
Therefore, the execution layer of the database system will benefit
from implementing these extended join variants. The ill effects of
repetitive tuple-at-a-time sub-query execution can also be miti-
gated if execution systems by using vectorized, or block-wise query
execution, allowing to run sub-queries with thousands of input
parameters instead of one. The ability to look up many keys in
an index in one API call creates the opportunity to benefit from
physical locality, if lookup keys exhibit some clustering.

CP-5.2 Overlap between outer and sub-query. This choke-
point tests the ability of the execution engine to reuse results when
there is an overlap between the outer query and the sub-query. In
some queries, the correlated sub-query and the outer query have
the same joins and selections. In this case, a non-tree, rather DAG-
shaped [25] query plan would allow to execute the common parts
just once, providing the intermediate result stream to both the outer
query and correlated sub-query, which higher up in the query plan
are joined together (using normal query decorrelation rewrites).
As such, the benchmark rewards systems where the optimizer can
detect this and the execution engine supports an operator that can
buffer intermediate results and provide them to multiple parent
operators.

CP-5.3 Intra-query result reuse. This chokepoint tests the abil-
ity of the execution engine to reuse sub-query results when two
sub-queries are mostly identical. Some queries have almost identi-
cal sub-queries, where some of their internal results can be reused
in both sides of the execution plan, thus avoiding to repeat compu-
tations.

A.6 Parallelism and Concurrency
CP-6.1 Inter-query result reuse. This chokepoint tests the abil-
ity of the query execution engine to reuse results from different
queries. Sometimes with a high number of streams a significant
amount of identical queries emerge in the resulting workload. The
reason is that certain parameters, as generated by the workload
generator, have only a limited amount of parameters bindings. This
weakness opens up the possibility of using a query result cache, to
eliminate the repetitive part of the workload. A further opportunity
that detects even more overlap is the work on recycling, which
does not only cache final query results, but also intermediate query
results of a “high worth”. Here, worth is a combination of partial-
query result size, partial-query evaluation cost, and observed (or
estimated) frequency of the partial-query in the workload.

A.7 Graph Specific
CP-7.1 Path pattern reuse. This chokepoint tests the ability of
the execution engine to reuse work across graph traversals. For
example, when computing paths within a range of distances, it is
often possible to incrementally compute longer paths by reusing
paths of shorter distances that were already computed.

CP-7.2 Cardinality estimation of transitive paths. This choke-
point tests the ability of the query optimizer to properly estimate
the cardinality of intermediate results when executing transitive
paths. A transitive path may occur in a “fact table” or a “dimension

GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA G. Szárnyas et al.

table” position. A transitive path may cover a tree or a graph, e.g.,
descendants in a geographical hierarchy vs. graph neighborhood
or transitive closure in a many-to-many connected social network.
In order to decide proper join order and type, the cardinality of the
expansion of the transitive path needs to be correctly estimated.
This could for example take the form of executing on a sample of
the data in the cost model or of gathering special statistics, e.g., the
depth and fan-out of a tree. In the case of hierarchical dimensions,
e.g., geographic locations or other hierarchical classifications, de-
tecting the cardinality of the transitive path will allow one to go to
a star schema plan with scan of a fact table with a selective hash
join. Such a plan will be on the other hand very bad for example if
the hash table is much larger than the “fact table” being scanned.

CP-7.3 Efficient execution of a transitive step. This choke-
point tests the ability of the query execution engine to efficiently
execute transitive steps. Graph workloads may have transitive op-
erations, for example finding a shortest path between nodes. This
involves repeated execution of a short lookup, often on many val-
ues at the same time, while usually having an end condition, e.g.,
the target node being reached or having reached the border of a
search going in the opposite direction. For the best efficiency, these
operations can be merged or tightly coupled to the index operations
themselves. Also parallelization may be possible but may need to
deal with a global state, e.g., set of visited nodes. There are many
possible tradeoffs between generality and performance

CP-7.4 Efficient evaluation of termination criteria for tran-
sitive queries. This tests the ability of a system to express termi-
nation criteria for transitive queries so that not the whole transitive
relation has to be evaluated as well as efficient testing for termina-
tion.

A.8 Language chokepoints
CP-8.1 Complex patterns. A natural requirement for graph
query systems is to be able to express complex graph patterns.

Transitive edges. Transitive closure-style computations are common
in graph query systems, both with fixed bounds (e.g., get nodes that
can be reached through at least 3 and at most 5 knows edges), and
without fixed bounds (e.g., get all messages that a comment replies
to).

Negative edge conditions. Some queries define negative pattern con-
ditions. For example, the condition that a certain message does not
have a certain tag is represented in the graph as the absence of
a hasTag edge between the two nodes. Thus, queries looking for
cases where this condition is satisfied check for negative patterns,
also known as negative application conditions (NACs) in graph
transformation literature [18].

CP-8.2 Complex aggregations. BI workloads are heavy on ag-
gregation, including queries with subsequent aggregations, where
the results of an aggregation serves as the input of another ag-
gregation. Expressing such operations requires some sort of query
composition or chaining (see also CP-8.4). It is also common to filter
on aggregation results (similarly to the HAVING keyword of SQL).

CP-8.3 Windowing queries. Additionally to aggregations, BI
workloads often use window functions, which perform aggregations
without grouping input tuples to a single output tuple. A common
use case for windowing is ranking, i.e. selecting the top element
with additional values in the tuple (nodes, edges or attributes).3

CP-8.4 Query composition. Numerous use cases require compo-
sition of queries, including the reuse of query results (e.g., nodes,
edges) or using scalar subqueries (e.g., selecting a threshold value
with a subquery and using it for subsequent filtering operations).

CP-8.5 Dates and times. Handling dates and times is a funda-
mental requirement for production-ready database systems. It is
particularly important in the context of BI queries as these often
calculate aggregations on certain periods of time (e.g., on a month).

CP-8.6 Handling paths.

Note on terminology. The Glossary of graph theory terms page of
Wikipedia4 defines paths as follows: “A path may either be a walk
(a sequence of vertices and edges, with both endpoints of an edge
appearing adjacent to it in the sequence) or a simple path (a walk
with no repetitions of vertices or edges), depending on the source.”
In this work, we use the first definition, which is more common
in modern graph database systems and is also followed in a recent
survey on graph query languages [3].
Handling paths as first-class citizens is one of the key distinguish-
ing features of graph database systems [2]. Hence, additionally
to reachability-style checks, a language should be able to express
queries that operate on elements of a path, e.g., calculate a score
on each edge of the path. Also, some use cases specify uniqueness
constraints on paths, e.g., that a certain path must not have repeated
nodes (referred to as “walks” in graph theory) or not have repeated
edges (“trails” in graph theory). More precisely, paper [3] defines
homomorphism-based semantics (no constraints on repetitions) and
multiple flavors of isomorphism-based semantics:

• no-repeated-node semantics (also known as fully isomorphic
matching),

• no-repeated-edge semantics (also known as edge-isomorphic
matching),

• no-repeated-anything semantics (not used in the context of
this work).

B QUERY DESCRIPTIONS
We present a short textual specification for each query in the bench-
mark. The title of queries discussed in the paper are underlined.

Q1. Posting summary. Given a date, find allMessages created before
that date. Group them by a 3-level grouping:

1. by year of creation
2. for each year, group into Message types: is Comment or not
3. for each year-type group, split into four groups based on

length of their content
• 0: 0 <= length < 40 (short)
• 1: 40 <= length < 80 (one liner)

3PostgreSQL defines the OVER keyword to use aggregation functions as window func-
tions, and the rank() function to produce numerical ranks, see https://www.postgresql.
org/docs/9.1/static/tutorial-window.html for details.
4https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms

https://www.postgresql.org/docs/9.1/static/tutorial-window.html
https://www.postgresql.org/docs/9.1/static/tutorial-window.html
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms

An early look at the LDBC SNB’s BI workload GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA

• 2: 80 <= length < 160 (tweet)
• 3: 160 <= length (long)

Q2. Top tags for country, age, gender, time. Select all Messages cre-
ated in the range of [startDate, endDate] by Persons located in
country1 or country2. Select the creator Persons and the Tags of
these Messages. Split these Persons, Tags and Messages into a 5-level
grouping:

1. name of country of Person,
2. month the Message was created,
3. gender of Person,
4. age group of Person, defined as years between person’s birth-

day and end of simulation (2013-01-01), divided by 5, rounded
down (partial years do not count),

5. name of tag attached to Message.
Consider only those groups where number of Messages is greater
than 100.

Q3. Tag evolution. Find the Tags that were used in Messages during
the given month of the given year and the Tags that were used
during the next month. For the Tags and for both months, compute
the count of Messages.

Q4. Popular topics in a country. Given a TagClass and a Country,
find all the Forums created in the given Country, containing at least
one Post with Tags belonging directly to the given TagClass. The
location of a Forum is identified by the location of the Forum’s
moderator.

Q5. Top posters in a country. Find the most popular Forums for a
given Country, where the popularity of a Forum is measured by
the number of members that Forum has from the given Country.
Calculate the top 100 most popular Forums. In case of a tie, the
forum(s) with the smaller id value(s) should be selected. For each
member Person of the 100 most popular Forums, count the number
of Posts (postCount) they made in any of those (most popular)
Forums. Also include those member Persons who have not posted
any messages (have a postCount of 0).

Q6. Most active Posters of a given Topic. Get each Person (person)
who has created a Message (message) with a given Tag (direct re-
lation, not transitive). Considering only these messages, for each
Person node:

• Count its messages (messageCount).
• Count likes (likeCount) to its messages.
• Count Comments (replyCount) in reply to it messages.

The score is calculated according to the following formula: 1 *
messageCount + 2 * replyCount + 10 * likeCount.

Q7. Most authoritative users on a given topic. Given a Tag, find
all Persons (person) that ever created a Message (message1) with
the given Tag. For each of these Persons (person) compute their
“authority score” as follows:

• The “authority score” is the sum of “popularity scores” of the
Persons (person2) that liked any of that Person’s Messages
(message2) with the given Tag.

• A Person’s (person2) “popularity score” is defined as the
total number of likes on all of their Messages (message3).

Q8. Related topics. Find allMessages that have a given Tag. Find the
related Tags attached to (direct) reply Comments of these Messages,
but only of those reply Comments that do not have the given Tag.
Group the Tags by name, and get the count of replies in each group.

Q9. Forum with related Tags. Given two TagClasses (tagClass1 and
tagClass2), find Forums that contain

• at least one Post (post1) with a Tag with a (direct) type of
tagClass1 and

• at least one Post (post2) with a Tag with a (direct) type of
tagClass2.

The post1 and post2 nodes may be the same Post. Consider the
Forums with a number of members greater than a given threshold.
For every such Forum, count the number of post1 nodes (count1)
and the number of post2 nodes (count2).

Q10. Central Person for a Tag. Given a Tag, find all Persons that
are interested in the Tag and/or have written a Message (Post or
Comment) with a creationDate after a given date and that has a
given Tag. For each Person, compute the score as the sum of the
following two aspects:

• 100, if the Person has this Tag as their interest, or 0 otherwise
• number of Messages by this Person with the given Tag

Also, for each Person, compute the sum of the score of the Person’s
friends (friendsScore).

Q11. Unrelated replies. Find those Persons of a given Country that
replied to anyMessage, such that the reply does not have any Tag in
common with the Message (only direct replies are considered, tran-
sitive ones are not). Consider only those replies that do no contain
any word from a given blacklist. For each Person and valid reply,
retrieve the Tags associated with the reply, and retrieve the number
of likes on the reply. The detailed conditions for checking black-
listed words are currently as follows. Words do not have to stand
separately, i.e. if the word “Green” is blacklisted, “South-Greenland”
cannot be included in the results. Also, comparison should be done
in a case-sensitive way. These conditions are preliminary and might
be changed in later versions of the benchmark.

Q12. Trending Posts. Find all Messages created after a given date
(exclusive), that received more than a given number of likes
(likeThreshold).

Q13. Popular Tags per month in a country. Find all Messages in a
given Country, as well as their Tags. Group Messages by creation
year and month. For each group, find the 5 most popular Tags,
where popularity is the number of Messages (from within the same
group) where the Tag appears. Note: even if there are no Tags for
Messages in a given year and month, the result should include the
year and month with an empty popularTags list.

Q14. Top thread initiators. For each Person, count the number of
Posts they created in the time interval [startDate, endDate]
(equivalent to the number of threads they initiated) and the number
of Messages in each of their (transitive) reply trees, including the
root Post of each tree. When calculating Message counts only con-
sider messages created within the given time interval. Return each
Person, number of Posts they created, and the count of all Messages

GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA G. Szárnyas et al.

that appeared in the reply trees (including the Post at the root of
tree) they created.

Q15. Social normals. Given a Country country, determine the “so-
cial normal”, i.e. the floor of average number of friends that Persons
of country have in country. Then, find all Persons in country,
whose number of friends in country equals the social normal value.

Q16. Experts in social circle. Given a Person, find all other Per-
sons that live in a given country and are connected to given Per-
son by a transitive path with length in range [minPathDistance,
maxPathDistance] through the knows relation. In the path, an
edge can be only traversed once while nodes can be traversed mul-
tiple times. For each of these Persons, retrieve all of their Messages
that contain at least one Tag belonging to a given TagClass (direct
relation not transitive). For each Message, retrieve all of its Tags.
Group the results by Persons and Tags, then count the Messages by
a certain Person having a certain Tag.

Q17. Friend triangles. For a given country, count all the distinct
triples of Persons such that:

• a is friend of b,
• b is friend of c,
• c is friend of a.

Distinct means that given a triple t1 in the result set R of all qualified
triples, there is no triple t2 in R such that t1 and t2 have the same
set of elements.

Q18. How many persons have a given number of messages. For each
Person, count the number of Messages they made (messageCount).
Only count Messages with the following attributes:

• Its content is not empty (and consequently, imageFile
empty for Posts).

• Its length is below the lengthThreshold (exclusive).
• Its creationDate is after date (exclusive).
• It is written in any of the given languages. The language of
a Post is defined by its language attribute. The language of
a Comment is that of the Post that initiates the thread where
the Comment replies to. The Post and Comments in the reply
tree’s path (from the Message to the Post) do not have to sat-
isfy the constraints for content, length and creationDate.

For each messageCount value, count the number of Persons with
exactly messageCount Messages (with the required attributes).

Q19. Stranger’s interaction. For all the Persons (person) born af-
ter a certain date, find all the strangers they interacted with,
where strangers are Persons that do not know person. There is no
restriction on the date that strangers were born. Consider only
strangers that are

• members of Forums tagged with a Tag with a (direct) type
of tagClass1 and

• members of Forums tagged with a Tag with a (direct) type
of tagClass2.

The Tags may be attached to the same Forum or they may be at-
tached to different Forums. Interaction is defined as follows: the
person has replied to a Message by the stranger B (the reply
might be a transitive one). For each person, count the number of

strangers they interacted with (strangerCount) and total num-
ber of times they interacted with them (interactionCount).

Q20. High-level topics. For all given TagClasses, count number of
Messages that have a Tag that belongs to that TagClass or any of its
children (all descendants through a transitive relation).

Q21. Zombies in a country. Find zombies within the given country,
and return their zombie scores. A zombie is a Person created
before the given endDate, which has created an average of [0,
1) Messages per month, during the time range between profile’s
creationDate and the given endDate. The number of months
spans the time range from the creationDate of the profile to the
endDate with partial months on both end counting as one month
(e.g. a creationDate of Jan 31 and an endDate of Mar 1 result in 3
months). For each zombie, calculate the following:

• zombieLikeCount: the number of likes received from other
zombies.

• totalLikeCount: the total number of likes received.
• zombieScore: zombieLikeCount / totalLikeCount. If the
value of totalLikeCount is 0, the zombieScore of the
zombie should be 0.

For both zombieLikeCount and totalLikeCount, only consider
likes received from profiles created before the given endDate.

Q22. International dialog. Consider all pairs of people (person1,
person2) such that one is located in a City of Country country1
and the other is located in a City of Country country2. For each
City of Country country1, return the highest scoring pair. The
score of a pair is defined as the sum of the subscores awarded for
the following kinds of interaction. The initial value is score = 0.

1. person1 has created a reply Comment to at least oneMessage
by person2: score += 4

2. person1 has created at least one Message that person2 has
created a reply Comment to: score += 1

3. person1 and person2 know each other: score += 15
4. person1 liked at least one Message by person2: score +=

10
5. person1 has created at least one Message that was liked by

person2: score += 1

To break ties, order by (1) person1.id ascending and (2)
person2.id ascending.

Q23. Holiday destinations. Count the Messages of all residents of
a given Country, where the message was written abroad. Group
the messages by month and destination. A Message was written
abroad if it is located in a Country different than home.

Q24. Messages by Topic and Continent. Find all Messages tagged
with a Tag that has the (direct) type of the given tagClass. Count
allMessages and their likes grouped by Continent, year, and month.

Q25. Weighted interaction paths. Given two Persons, find all (un-
weighted) shortest paths between these two Persons, in the subgraph
induced by the knows relationship. Then, for each path calculate a
weight. The nodes in the path are Persons, and the weight of a path
is the sum of weights between every pair of consecutive Person
nodes in the path. The weight for a pair of Persons is calculated
based on their interactions:

An early look at the LDBC SNB’s BI workload GRADES-NDA’18, June 10–15, 2018, Houston, TX, USA

● ●
●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

1 3 10 1 3 10 1 3 10 1 3 10 1 3 10

0.1

0.3

1

3

0.1
0.3

1
3

10
30

0.001

0.003

0.01

0.1
0.3

1
3

10
30

100

0.1

0.3

1

0.03

0.1

0.3

0.3

1

3

10

0.1
0.3

1
3

10
30

3
10
30

100
300

1000

0.1
0.3

1
3

10
30

3

10

0.03

0.1
0.3

1
3

10

0.3

1

3

10

30

100

300

0.03

0.1

0.3

0.3

1

3

10

30

0.1
0.3

1
3

10
30

0.003

0.01

0.03

0.1

0.3

3

10

30

100

300

10

30

0.1

0.3

1

3

10

0.1
0.3

1
3

10
30

1

3

10

0.003
0.01
0.03
0.1
0.3

Scale factor [#nodes/edges − SF1: 3/17M, SF3: 9/52M, SF10: 30/177M]

E
xe

cu
tio

n
tim

e
[s

]

● Oracle Labs PGX PostgreSQL Sparksee

Figure 1: Execution time of the BI queries.

• Every direct reply (by one of the Persons) to a Post (by the
other Person) contributes 1.0.

• Every direct reply (by one of the Persons) to a Comment (by
the other Person) contributes 0.5.

Only consider Messages that were created in a Forum that was
created within the timeframe [startDate, endDate]. Note that
for Comments, the containing Forum is that of the Post that the
comment (transitively) replies to. Return all paths with the Person
ids ordered by their weights descending.

C RESULTS FOR ALL SNB BI QUERIES
Systems. We performed benchmarks on multiple commercial data-
base systems and analytical engines:

• the Oracle Labs PGX graph analytical system (with queries
formulated in the declarative PGQL language [33]),

• the PostgreSQL relational database management system
(with queries formulated in PostgreSQL’s SQL dialect [21]),

• Sparksee native graph database (with queries formulated in
imperative C++ code).

Environment. Benchmarks for PostgreSQL and Sparksee were exe-
cuted on a cloud VM with 8 Xeon E5-2673 CPU cores and 256 GB
RAM, running Ubuntu 16.04. Benchmarks for Oracle Labs PGX
were executed on 16 Xeon E5-2660 CPU cores and 256 GB RAM,
running Oracle Linux Server 6.8.

Methodology. We executed 100 queries for warmup, then executed
250 queries and measured their response time. Queries were se-
lected randomly, following a uniform distribution and were exe-
cuted one-by-one, i.e. with no interleave between them. For each
scale factor/tool/query, we calculated the geometric mean of execu-
tion times (as recommended in [13]).

Results. Figure 1 shows benchmark results for all 25 queries speci-
fied in the LDBC SNB Business Intelligence benchmark.

	Abstract
	1 Introduction
	2 Benchmark Design
	2.1 Chokepoint-Based Query Design
	2.2 Data

	3 Detailed Query Discussion
	4 Conclusion and Future Work
	Acknowledgments
	References
	A Chokepoints
	A.1 Aggregation Performance
	A.2 Join Performance
	A.3 Data Access Locality
	A.4 Expression Calculation
	A.5 Correlated Sub-queries
	A.6 Parallelism and Concurrency
	A.7 Graph Specific
	A.8 Language chokepoints

	B Query Descriptions
	C Results for all SNB BI queries

