
Incremental View Maintenance for Property GraphQueries
Gábor Szárnyas

Budapest University of Technology and Economics

Department of Measurement and Information Systems

MTA-BME Lendület Research Group on Cyber-Physical Systems

szarnyas@mit.bme.hu

ACM Reference Format:
Gábor Szárnyas. 2018. Incremental View Maintenance for Property Graph

Queries. In Proceedings of 2018 International Conference on Management of
Data (SIGMOD’18). ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3183713.3183724

1 PROBLEM AND MOTIVATION
Graph processing challenges are common in modern database sys-

tems, with the property graph data model gaining widespread adop-

tion [29]. Due to the novelty of the field, graph databases and frame-

works typically provide their own query language, such as Cypher

for Neo4j [27], Gremlin for TinkerPop [28] and GraphScript for SAP

HANA [24]. These languages often lack a formal background for

their data model and semantics [1]. To address this, the openCypher

initiative [21] aims to standardise a subset of the Cypher language,

for which it currently provides grammar specification and a set of

acceptance tests to allow vendors to implement their openCypher

compatible engine.

Incremental view maintenance has been used for decades in re-

lational database systems [4]. In the graph domain, numerous use

cases rely on complex queries and require low latency, including

financial fraud detection, source code analysis [32] and checking

integrity (or well-formedness) constraints in databases [30]. While

these could benefit from incremental evaluation, currently no prop-

erty graph system provides incremental views. Our research inves-

tigates the incremental view maintenance for openCypher queries.

A key challenge is that the property graph data model includes lists

and maps, and queries can return arbitrarily nested data structures.

We propose three desirable properties for an incremental prop-

erty graph query engine: (IVM) incremental view maintenance,

(FGN) fine granularity update operations on nested data structures,

(ORD) ordering. Previous research showed that IVM and FGN to-

gether are possible [19]. However, as stated in [8], "incremental
view maintenance [IVM] strategies for data models that preserve or-
der [ORD] remain an open problem to date". While removing support

for ordering might seem a plausible workaround, it would pose

serious limitations: (1) queries that require top-k results are com-

mon [17] and (2) even more importantly, Cypher handles paths

as an alternating list of vertices and edges, which must be kept

ordered. Therefore, we investigate the following research question:

Which practical fragment of the openCypher language is incremen-
tally maintainable?

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
2018 International Conference on Management of Data (SIGMOD’18), https://doi.org/10.
1145/3183713.3183724.

2 PRELIMINARIES
Data model. A property graph isG = (V ,E, st,L,T ,L,T , Pv , Pe ),

where V is a set of vertices, E is a set of edges and st : E → V ×V
assigns the source and target vertices to edges. Vertices are labelled

from L by function L and edges are typed from T by function T .

Let D = ∪iDi be the union of atomic domains Di . Pv is a set of

vertex properties. A vertex property pi ∈ Pv is a partial function

pi : V → Di . Edge properties Pe can be defined similarly.

Given a property graph G, relation r is a graph relation if the

following holds [13]: ∀A ∈ sch(r) : dom(A) ⊆ V ∪ E ∪ D, where
sch(r) is the schema of r (a list containing attribute names), dom(A)
is the domain of attribute A, and V /E are the vertices/edges of G.

Running example. We use the following example graph:

We use an example query that lists Posts p, along with threads t
that contain (transitive) reply Comm[ent]s that are written in the

same lang[uage] as the Post. The result is shown on the right. (For

conciseness, edges are omitted from paths throughout the paper.)

MATCH t = (p:Post)-[:REPLY*]->(c:Comm)
WHERE p.lang = c.lang
RETURN p, t

p t
1 [1, 2, 3]

GRA. Graph queries can be formulated in graph relational al-
gebra (GRA) [20], which introduces two graph-specific operators:

(1) the get-vertices nullary operator⃝(v:V), which returns verticesv
with a label V to serve as a base relation for later operators, (2) the

expand-out unary operator ↑ (W:W)
(v) [:E] (r ) that navigates from v

on an edge typed E to a vertex w with labelW . The expand-out

operator can also define transitive closure patterns, denoted by the

∗ symbol. GRA allows nested data structures, i.e. if x is an attribute

of a graph relation, x .p accesses the value of property p in x [13].

NRA. To allow precise formalisation of nested data structures,

we use nested relational algebra (NRA) [7, 14], which allows arbi-

trary nesting of relations. To access nested values, attribute A of a

nested relation r can be unnested using the operator µA(r ). Nested
relations can also represent properties of vertices/edges along with

collections such as lists and maps. We present two nested relations

α and β that store the vertices and edges of the graph, respectively:

α

id label properties

1 Post

key value
lang en

2 Comm . . .

β
s t type properties
1 2 REPLY

2 3 REPLY

We define operators formally as ⃝(v:V) ≡ πid→vσα .label=V(α) and
↑ (:W)

(v) [:E] (r ) ≡ σr .v=β .s∧β .type=E∧β .t=α .id∧α .label=W (r ▷◁ β ▷◁ α) .

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/159127434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3183713.3183724
https://doi.org/10.1145/3183713.3183724
https://doi.org/10.1145/3183713.3183724
https://doi.org/10.1145/3183713.3183724


3 RELATEDWORK
Cypher. Due to its novelty, there are only a few research works

on the formalisation of (open)Cypher. An early attempt to pro-

vide a framework for the theoretical representation of openCypher

queries was published in [13]. In [20], we published a formalisation

of a subset of openCypher that mapped queries to GRA. The Cypher
for Apache Spark project is an ongoing effort to adapt the Cypher

language to Spark [22]. None of these works considers IVM. Graph-

flow [15] is an active graph database for incremental openCypher

queries. However, it does not support nested data structures.

IVM of graph queries. The Viatra framework [33] provides an

incremental query engine over the object-oriented EclipseModeling

Framework. However, it does not support FGN or ORD. Strider [26]

is a system supporting continuous SPARQL queries. As the RDF

data model does not handle collections as first class citizens (only

head-tail style lists are supported), FGN is not supported.

Querying nested data structures. Paper [16] presents a method

for incremental view maintenance in object-oriented databases,

but ordering is not supported. Recently, the authors of [5, 6] for-

malised the language of the MongoDB document store using nested

relational algebra, including ordering. However, IVM was not con-

sidered. An approach for incremental calculation of XQuery expres-

sions is presented in [9] and its accompanying technical report [8].

4 APPROACH AND CONTRIBUTIONS
As discussed in Section 1, order-preserving lists are required to store

paths. Henceforth, we propose a property graph query model that

only allows (unordered) bags, except for paths that are still stored
as a list but can only be updated as an atomic unit (i.e. the previous

path has to be deleted and the new one has to be inserted). We

argue that the distinction between collection properties and paths

makes sense from a practical point of view: collection properties

often receive updates, while paths only benefit from incremental

updates in rare cases (e.g. when a single transaction deletes an edge

in the path but adds another one that keeps the path from deleting).

Overview. We propose the following workflow for compiling

property graph queries to an incrementally maintainable expression

and use the example of Section 2 for illustration.

(1) Compile the queries to GRA. A mapping from openCypher

was given in our earlier work [20]. The example query results in:

πp,tσc.lang=p.lang

(
↑ (c:Comm)

(p) [:REPLY∗]
(
⃝(p:Post)

))
(2) Transform GRA to NRA, which is the key step to allow incre-

mental maintenance. As expand operators cannot be maintained in-

crementally, they are replaced with joins. For this, we introduce the

nullary get-edges operator ⇑(w:W)
(v:V) [e:E] that returns triples (v, e,w)

for each edge e of type E between v of label V and w of labelW .

Using this, each expand-out is replaced with natural joins:

↑ (w:W)
(v) [:E] (r ) ≡ r ▷◁⇑(:E)(v:V) [w:W]

Similarly, transitive expand-outs are replaced with transitive joins:

↑ (w:W)
(v) [:E∗] (r ) ≡ r ▷◁∗⇑(:E)(v:V) [w:W]

Unlike relational databases, property graphs do not have a

predefined schema. Hence, we slightly modify the unnest operator
(Section 2) so that defines specific attribute(s) to be unnested from

the nested relation. For example, µc.lang→cL extracts the lang
property of c. Using these rules, the example is transformed to:

πp,tσcL=pLµc.lang→cL,p.lang→pL

(
⃝(p:Post) ▷◁

∗
(
⇑(c:Comm)
(p:Post) [:REPLY]

))
(3) Transform NRA to FRA following the approaches pre-

sented in [7, 25]. However, a key difference is that due to their

schema-free nature, the schema of the nested relations is not known
for property graphs in advance and has to be inferred based on

the query. Therefore, this step includes pushing down nested

attributes to the ⃝ and ⇑ operators. On the example, this results in

πp,tσcL=pL

(
⃝(p:Post{lang→pL}) ▷◁

∗
(
⇑(c:Comm{lang→cL})
(p:Post) [:REPLY]

))
,

where the notation {lang → pL} represents a property that must

be included in the base relation returned by the ⃝ or ⇑ operator.

(4) Create an incremental view for the FRA expression. Incre-

mental view maintenance algorithms for FRA are well studied both

from a theoretical perspective [2, 4, 10, 11] and implementation-

wise, with many practical tools [12, 33] and research proto-

types [15, 26, 31]. While they are not expressible in first-order logic,

it is possible to evaluate transitive operations incrementally [3, 23].

Based on this approach, we propose that a fragment of the open-

Cypher language, with unordered bags (instead of lists) and atomic

paths (which can only be inserted or deleted, and lose their ordering

when unnested), can be evaluated using relational IVM techniques.

Evaluation. The presented approach allows IVM for property

graph queries while allowing FGN and some degree of ORD (for

paths). In particular, the proposed fragment still allows returning

paths and path unwinding [1], a feature that permits the query to

iterate over the nodes of a path variable. The main tradeoff of the

approach is that it does not allow users to use lists in the data model

and queries. It is also not possible to specify top-k style queries, e.g.

get the top 3 messages, based on the number of replies received.

Summary of contributions. Up to our best knowledge, our re-

search is the first to investigate challenges of incremental view
maintenance for property graph queries. We put a particular empha-

sis on handling nested data structures and ordering; and propose

to limit the usage of ordering for (atomic) paths. Formulating the

queries in NRA and flattening it to an FRA expression allows us to

infer the minimal schema required by each operator, based on the

query specification. Our approach does not require a priori knowl-

edge of the data schema, unlike the schema cleanup algorithm of [34]

(defined in the context of evaluating XQuery expressions on XML

documents) and the schema merging algorithm of [18] (defined for

consolidating multiple schemas into a mediated one).

Limitations and future work. Property graph queries present nu-

merous additional challenges not presented in this paper. In partic-

ular, aggregations, the OPTIONAL MATCH, WITH, SKIP constructs were

omitted, and are discussed (for non-incremental queries) in our

earlier work [20]. Expressions were also left for future work.

ACKNOWLEDGMENTS
This work was partially supported by NSERC RGPIN-04573-16 and

the MTA-BME Lendület Cyber-Physical Systems Research Group.



REFERENCES
[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5, Article 68 (Sept. 2017), 40 pages. https:

//doi.org/10.1145/3104031

[2] Gábor Bergmann. 2013. Incremental Model Queries in Model-Driven Design. Ph.D.
dissertation. Budapest University of Technology and Economics, Budapest.

[3] Gábor Bergmann, István Ráth, Tamás Szabó, Paolo Torrini, and Dániel Varró.

2012. Incremental Pattern Matching for the Efficient Computation of Transitive

Closure. In ICGT (Lecture Notes in Computer Science), Vol. 7562. Springer, 386–400.
https://doi.org/10.1007/978-3-642-33654-6_26

[4] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. 1986. Efficiently

Updating Materialized Views. In SIGMOD. 61–71. https://doi.org/10.1145/16894.

16861

[5] Elena Botoeva et al. 2016. A Formal Presentation of MongoDB (Extended Version).

CoRR abs/1603.09291 (2016). http://arxiv.org/abs/1603.09291

[6] Elena Botoeva et al. 2016. OBDA Beyond Relational DBs: A Study for MongoDB.

In Description Logics.
[7] Jan Van den Bussche. 2001. Simulation of the nested relational algebra by the flat

relational algebra, with an application to the complexity of evaluating powerset

algebra expressions. Theor. Comput. Sci. 254, 1-2 (2001), 363–377. https://doi.org/

10.1016/S0304-3975(99)00301-1

[8] Katica Dimitrova, Maged El-Sayed, and Elke A. Rundensteiner. 2003. Order-
Sensitive View Maintenance of Materialized XQuery Views. Technical Report.

Computer Science Department, Worcester Polytechnic Institute. WPI-CS-TR-03-

17.

[9] Katica Dimitrova, Maged El-Sayed, and Elke A. Rundensteiner. 2003. Order-

Sensitive View Maintenance of Materialized XQuery Views. In ER. 144–157.
https://doi.org/10.1007/978-3-540-39648-2_14

[10] Timothy Griffin and Leonid Libkin. 1995. Incremental Maintenance of Views

with Duplicates. In SIGMOD. 328–339. https://doi.org/10.1145/223784.223849

[11] Ashish Gupta, Inderpal SinghMumick, and V. S. Subrahmanian. 1993. Maintaining

Views Incrementally. In SIGMOD. 157–166. https://doi.org/10.1145/170035.170066
[12] Red Hat. 2017. Drools. http://www.drools.org/. (2017).

[13] Jürgen Hölsch and Michael Grossniklaus. 2016. An Algebra and Equivalences to

Transform Graph Patterns in Neo4j. In GraphQ at EDBT/ICDT.
[14] Gerhard Jaeschke and Hans-Jörg Schek. 1982. Remarks on the Algebra of Non

First Normal Form Relations. In PODS, Jeffrey D. Ullman and Alfred V. Aho (Eds.).

ACM, 124–138. https://doi.org/10.1145/588111.588133

[15] Chathura Kankanamge et al. 2017. Graphflow: An Active Graph Database. In

SIGMOD. 1695–1698. https://doi.org/10.1145/3035918.3056445

[16] Harumi A. Kuno and Elke A. Rundensteiner. 1998. Incremental Maintenance of

Materialized Object-Oriented Views in MultiView: Strategies and Performance

Evaluation. IEEE Trans. Knowl. Data Eng. 10, 5 (1998), 768–792. https://doi.org/

10.1109/69.729731

[17] LDBC Social Network Benchmark task force. 2018. LDBC Social Network Bench-
mark (SNB). Technical Report. Linked Data Benchmark Council. https:

//ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf.

[18] Xiang Li, Christoph Quix, David Kensche, Sandra Geisler, and Lisong Guo. 2011.

Automatic generation of mediated schemas through reasoning over data depen-

dencies. In ICDE. 1280–1283. https://doi.org/10.1109/ICDE.2011.5767913

[19] Jixue Liu, Millist W. Vincent, and Mukesh K. Mohania. 1999. Incremental Main-

tenance of Nested Relational Views. In IDEAS. 197–205. https://doi.org/10.1109/

IDEAS.1999.787268

[20] József Marton, Gábor Szárnyas, and Dániel Varró. 2017. Formalising openCypher

Graph Queries in Relational Algebra. In ADBIS. 182–196. https://doi.org/10.1007/

978-3-319-66917-5_13

[21] Neo Technology. 2018. openCypher Project. http://www.opencypher.org/. (2018).

[22] openCypher. 2018. CAPS: Cypher for Apache Spark. https://github.com/

opencypher/cypher-for-apache-spark. (2018).

[23] Chaoyi Pang, Guozhu Dong, and Kotagiri Ramamohanarao. 2005. Incremental

maintenance of shortest distance and transitive closure in first-order logic and

SQL. ACM Trans. Database Syst. 30, 3 (2005), 698–721. https://doi.org/10.1145/

1093382.1093384

[24] Marcus Paradies et al. 2017. GraphScript: implementing complex graph algo-

rithms in SAP HANA. In DBPL. 13:1–13:4. https://doi.org/10.1145/3122831.

3122841

[25] Jan Paredaens and Dirk Van Gucht. 1992. Converting Nested Algebra Expressions

into Flat Algebra Expressions. ACM Trans. Database Syst. 17, 1 (1992), 65–93.

https://doi.org/10.1145/128765.128768

[26] Xiangnan Ren et al. 2017. Strider: An Adaptive, Inference-enabled Distributed

RDF Stream Processing Engine. PVLDB 10, 12 (2017), 1905–1908. http://www.

vldb.org/pvldb/vol10/p1905-ren.pdf

[27] Ian Robinson, Jim Webber, and Emil Eifrém. 2015. Graph Databases (2nd ed.).

O’Reilly Media.

[28] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language

(invited talk). In DBPL. 1–10. https://doi.org/10.1145/2815072.2815073

[29] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2017. The Ubiquity of Large Graphs and Surprising Challenges of Graph

Processing. PVLDB 11, 4 (2017), 420–431. http://www.vldb.org/pvldb/vol11/

p420-sahu.pdf

[30] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2017. The Train

Benchmark: Cross-Technology Performance Evaluation of Continuous Model

Validation. Softw. Syst. Model. (2017).
[31] Gábor Szárnyas, János Maginecz, and Dániel Varró. 2017. Evaluation of Op-

timization Strategies for Incremental Graph Queries. Periodica Polytechnica
Electrical Engineering and Computer Science 61, 2 (2017), 175–192. https:

//doi.org/10.3311/PPee.9769

[32] Zoltán Ujhelyi et al. 2015. Performance comparison of query-based techniques

for anti-pattern detection. Information & Software Technology 65 (2015), 147–165.

https://doi.org/10.1016/j.infsof.2015.01.003

[33] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and

Zoltán Ujhelyi. 2016. Road to a reactive and incremental model transformation

platform: three generations of the VIATRA framework. Softw. Syst. Model. 15, 3
(2016), 609–629. https://doi.org/10.1007/s10270-016-0530-4

[34] Xin Zhang, Bradford Pielech, and Elke A. Rundensteiner. 2002. Honey, I shrunk

the XQuery!: an XML algebra optimization approach. In WIDM at CIKM. 15–22.

https://doi.org/10.1145/584931.584936

https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1007/978-3-642-33654-6_26
https://doi.org/10.1145/16894.16861
https://doi.org/10.1145/16894.16861
http://arxiv.org/abs/1603.09291
https://doi.org/10.1016/S0304-3975(99)00301-1
https://doi.org/10.1016/S0304-3975(99)00301-1
https://doi.org/10.1007/978-3-540-39648-2_14
https://doi.org/10.1145/223784.223849
https://doi.org/10.1145/170035.170066
http://www.drools.org/
https://doi.org/10.1145/588111.588133
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1109/69.729731
https://doi.org/10.1109/69.729731
https://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://doi.org/10.1109/ICDE.2011.5767913
https://doi.org/10.1109/IDEAS.1999.787268
https://doi.org/10.1109/IDEAS.1999.787268
https://doi.org/10.1007/978-3-319-66917-5_13
https://doi.org/10.1007/978-3-319-66917-5_13
http://www.opencypher.org/
https://github.com/opencypher/cypher-for-apache-spark
https://github.com/opencypher/cypher-for-apache-spark
https://doi.org/10.1145/1093382.1093384
https://doi.org/10.1145/1093382.1093384
https://doi.org/10.1145/3122831.3122841
https://doi.org/10.1145/3122831.3122841
https://doi.org/10.1145/128765.128768
http://www.vldb.org/pvldb/vol10/p1905-ren.pdf
http://www.vldb.org/pvldb/vol10/p1905-ren.pdf
https://doi.org/10.1145/2815072.2815073
http://www.vldb.org/pvldb/vol11/p420-sahu.pdf
http://www.vldb.org/pvldb/vol11/p420-sahu.pdf
https://doi.org/10.3311/PPee.9769
https://doi.org/10.3311/PPee.9769
https://doi.org/10.1016/j.infsof.2015.01.003
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1145/584931.584936

	1 Problem and Motivation
	2 Preliminaries
	3 Related Work
	4 Approach and Contributions
	Acknowledgments
	References

