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1 PROBLEM AND MOTIVATION
Graph processing challenges are common in modern database sys-

tems, with the property graph data model gaining widespread adop-

tion [29]. Due to the novelty of the field, graph databases and frame-

works typically provide their own query language, such as Cypher

for Neo4j [27], Gremlin for TinkerPop [28] and GraphScript for SAP

HANA [24]. These languages often lack a formal background for

their data model and semantics [1]. To address this, the openCypher

initiative [21] aims to standardise a subset of the Cypher language,

for which it currently provides grammar specification and a set of

acceptance tests to allow vendors to implement their openCypher

compatible engine.

Incremental view maintenance has been used for decades in re-

lational database systems [4]. In the graph domain, numerous use

cases rely on complex queries and require low latency, including

financial fraud detection, source code analysis [32] and checking

integrity (or well-formedness) constraints in databases [30]. While

these could benefit from incremental evaluation, currently no prop-

erty graph system provides incremental views. Our research inves-

tigates the incremental view maintenance for openCypher queries.

A key challenge is that the property graph data model includes lists

and maps, and queries can return arbitrarily nested data structures.

We propose three desirable properties for an incremental prop-

erty graph query engine: (IVM) incremental view maintenance,

(FGN) fine granularity update operations on nested data structures,

(ORD) ordering. Previous research showed that IVM and FGN to-

gether are possible [19]. However, as stated in [8], "incremental
view maintenance [IVM] strategies for data models that preserve or-
der [ORD] remain an open problem to date". While removing support

for ordering might seem a plausible workaround, it would pose

serious limitations: (1) queries that require top-k results are com-

mon [17] and (2) even more importantly, Cypher handles paths

as an alternating list of vertices and edges, which must be kept

ordered. Therefore, we investigate the following research question:

Which practical fragment of the openCypher language is incremen-
tally maintainable?
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2 PRELIMINARIES
Data model. A property graph isG = (V ,E, st,L,T ,L,T , Pv , Pe ),

where V is a set of vertices, E is a set of edges and st : E → V ×V
assigns the source and target vertices to edges. Vertices are labelled

from L by function L and edges are typed from T by function T .

Let D = ∪iDi be the union of atomic domains Di . Pv is a set of

vertex properties. A vertex property pi ∈ Pv is a partial function

pi : V → Di . Edge properties Pe can be defined similarly.

Given a property graph G, relation r is a graph relation if the

following holds [13]: ∀A ∈ sch(r) : dom(A) ⊆ V ∪ E ∪ D, where
sch(r) is the schema of r (a list containing attribute names), dom(A)
is the domain of attribute A, and V /E are the vertices/edges of G.

Running example. We use the following example graph:

We use an example query that lists Posts p, along with threads t
that contain (transitive) reply Comm[ent]s that are written in the

same lang[uage] as the Post. The result is shown on the right. (For

conciseness, edges are omitted from paths throughout the paper.)

MATCH t = (p:Post)-[:REPLY*]->(c:Comm)
WHERE p.lang = c.lang
RETURN p, t

p t
1 [1, 2, 3]

GRA. Graph queries can be formulated in graph relational al-
gebra (GRA) [20], which introduces two graph-specific operators:

(1) the get-vertices nullary operator⃝(v:V), which returns verticesv
with a label V to serve as a base relation for later operators, (2) the

expand-out unary operator ↑ (W:W)
(v) [:E] (r ) that navigates from v

on an edge typed E to a vertex w with labelW . The expand-out

operator can also define transitive closure patterns, denoted by the

∗ symbol. GRA allows nested data structures, i.e. if x is an attribute

of a graph relation, x .p accesses the value of property p in x [13].

NRA. To allow precise formalisation of nested data structures,

we use nested relational algebra (NRA) [7, 14], which allows arbi-

trary nesting of relations. To access nested values, attribute A of a

nested relation r can be unnested using the operator µA(r ). Nested
relations can also represent properties of vertices/edges along with

collections such as lists and maps. We present two nested relations

α and β that store the vertices and edges of the graph, respectively:

α

id label properties

1 Post

key value
lang en

2 Comm . . .

β
s t type properties
1 2 REPLY

2 3 REPLY

We define operators formally as ⃝(v:V) ≡ πid→vσα .label=V(α) and
↑ (:W)

(v) [:E] (r ) ≡ σr .v=β .s∧β .type=E∧β .t=α .id∧α .label=W (r ▷◁ β ▷◁ α) .
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3 RELATEDWORK
Cypher. Due to its novelty, there are only a few research works

on the formalisation of (open)Cypher. An early attempt to pro-

vide a framework for the theoretical representation of openCypher

queries was published in [13]. In [20], we published a formalisation

of a subset of openCypher that mapped queries to GRA. The Cypher
for Apache Spark project is an ongoing effort to adapt the Cypher

language to Spark [22]. None of these works considers IVM. Graph-

flow [15] is an active graph database for incremental openCypher

queries. However, it does not support nested data structures.

IVM of graph queries. The Viatra framework [33] provides an

incremental query engine over the object-oriented EclipseModeling

Framework. However, it does not support FGN or ORD. Strider [26]

is a system supporting continuous SPARQL queries. As the RDF

data model does not handle collections as first class citizens (only

head-tail style lists are supported), FGN is not supported.

Querying nested data structures. Paper [16] presents a method

for incremental view maintenance in object-oriented databases,

but ordering is not supported. Recently, the authors of [5, 6] for-

malised the language of the MongoDB document store using nested

relational algebra, including ordering. However, IVM was not con-

sidered. An approach for incremental calculation of XQuery expres-

sions is presented in [9] and its accompanying technical report [8].

4 APPROACH AND CONTRIBUTIONS
As discussed in Section 1, order-preserving lists are required to store

paths. Henceforth, we propose a property graph query model that

only allows (unordered) bags, except for paths that are still stored
as a list but can only be updated as an atomic unit (i.e. the previous

path has to be deleted and the new one has to be inserted). We

argue that the distinction between collection properties and paths

makes sense from a practical point of view: collection properties

often receive updates, while paths only benefit from incremental

updates in rare cases (e.g. when a single transaction deletes an edge

in the path but adds another one that keeps the path from deleting).

Overview. We propose the following workflow for compiling

property graph queries to an incrementally maintainable expression

and use the example of Section 2 for illustration.

(1) Compile the queries to GRA. A mapping from openCypher

was given in our earlier work [20]. The example query results in:

πp,tσc.lang=p.lang

(
↑ (c:Comm)

(p) [:REPLY∗]
(
⃝(p:Post)

))
(2) Transform GRA to NRA, which is the key step to allow incre-

mental maintenance. As expand operators cannot be maintained in-

crementally, they are replaced with joins. For this, we introduce the

nullary get-edges operator ⇑(w:W)
(v:V) [e:E] that returns triples (v, e,w)

for each edge e of type E between v of label V and w of labelW .

Using this, each expand-out is replaced with natural joins:

↑ (w:W)
(v) [:E] (r ) ≡ r ▷◁⇑(:E)(v:V) [w:W]

Similarly, transitive expand-outs are replaced with transitive joins:

↑ (w:W)
(v) [:E∗] (r ) ≡ r ▷◁∗⇑(:E)(v:V) [w:W]

Unlike relational databases, property graphs do not have a

predefined schema. Hence, we slightly modify the unnest operator
(Section 2) so that defines specific attribute(s) to be unnested from

the nested relation. For example, µc.lang→cL extracts the lang
property of c. Using these rules, the example is transformed to:

πp,tσcL=pLµc.lang→cL,p.lang→pL

(
⃝(p:Post) ▷◁

∗
(
⇑(c:Comm)
(p:Post) [:REPLY]

))
(3) Transform NRA to FRA following the approaches pre-

sented in [7, 25]. However, a key difference is that due to their

schema-free nature, the schema of the nested relations is not known
for property graphs in advance and has to be inferred based on

the query. Therefore, this step includes pushing down nested

attributes to the ⃝ and ⇑ operators. On the example, this results in

πp,tσcL=pL

(
⃝(p:Post{lang→pL}) ▷◁

∗
(
⇑(c:Comm{lang→cL})
(p:Post) [:REPLY]

))
,

where the notation {lang → pL} represents a property that must

be included in the base relation returned by the ⃝ or ⇑ operator.

(4) Create an incremental view for the FRA expression. Incre-

mental view maintenance algorithms for FRA are well studied both

from a theoretical perspective [2, 4, 10, 11] and implementation-

wise, with many practical tools [12, 33] and research proto-

types [15, 26, 31]. While they are not expressible in first-order logic,

it is possible to evaluate transitive operations incrementally [3, 23].

Based on this approach, we propose that a fragment of the open-

Cypher language, with unordered bags (instead of lists) and atomic

paths (which can only be inserted or deleted, and lose their ordering

when unnested), can be evaluated using relational IVM techniques.

Evaluation. The presented approach allows IVM for property

graph queries while allowing FGN and some degree of ORD (for

paths). In particular, the proposed fragment still allows returning

paths and path unwinding [1], a feature that permits the query to

iterate over the nodes of a path variable. The main tradeoff of the

approach is that it does not allow users to use lists in the data model

and queries. It is also not possible to specify top-k style queries, e.g.

get the top 3 messages, based on the number of replies received.

Summary of contributions. Up to our best knowledge, our re-

search is the first to investigate challenges of incremental view
maintenance for property graph queries. We put a particular empha-

sis on handling nested data structures and ordering; and propose

to limit the usage of ordering for (atomic) paths. Formulating the

queries in NRA and flattening it to an FRA expression allows us to

infer the minimal schema required by each operator, based on the

query specification. Our approach does not require a priori knowl-

edge of the data schema, unlike the schema cleanup algorithm of [34]

(defined in the context of evaluating XQuery expressions on XML

documents) and the schema merging algorithm of [18] (defined for

consolidating multiple schemas into a mediated one).

Limitations and future work. Property graph queries present nu-

merous additional challenges not presented in this paper. In partic-

ular, aggregations, the OPTIONAL MATCH, WITH, SKIP constructs were

omitted, and are discussed (for non-incremental queries) in our

earlier work [20]. Expressions were also left for future work.
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