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One third of the world population are latently infected with Mycobacterium
tuberculosis and are at the risk of reactivation of tuberculosis (TB). The most effective
strategy for control of TB worldwide is the development of a vaccine that inhibits
progression of latent TB to active infection. In this study, two optimized constructs
consisting of multi-epitopes DNA derived from three latency antigens Rv2029c,
Rv2031c, and Rv2627c fused with or without light chain 3 (LC3) are synthetized. The
immunogenicity effectiveness of two DNA constructs was evaluated in the mouse
model. LC3-fused multi-epitope DNA construct induced strong specific Thl immune
responses with high increase in IFN-y* CD4" and IL-2* CD4* T cell populations
(both with p <0.0001) and IFN-y* IL-2* CD4" T cell population (p <0.0001)
compared with empty vector, BCG, and multi-epitope DNA construct groups. The
LC3-fused construct induced IFN-y* CD8* T cell population (p < 0.0001) compared
with empty vector and BCG groups but could not induce the T cell population
compared with construct without LC3. Importantly, LC3-fused DNA construct did not
induce epitope-specific IL-4 and IL-10 from CD4* and CD8* T cell populations. The
results indicated that LC3-fused multi-epitope DNA construct has a potential to be
investigated for future development of a new TB vaccine.
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Introduction

Tuberculosis (TB) is one of the most important infectious diseases in the
world caused by the Mycobacterium tuberculosis complex [1]. TB alongside
HIV ranks as leading cause of death among infectious diseases, globally.
Approximately, 1.4 million of TB patients died in 2015, of which 0.4 million
were HIV-positive [2].

Increase in prevalence of multidrug-resistant (MDR) TB and slow
progress in new drug development highlighted the urgent need for developing
an effective vaccine [1]. BCG is a neonatal vaccine that protects against
disseminated TB in children but it has variable efficacy against pulmonary
TB [3, 4].

Two billion people worldwide are latently infected with M. tuberculosis, of
which 5%—15% are at the risk of reactivation of TB [2]. Therefore, postexposure
vaccine strategy that inhibits progress of latent TB infection (LTBI) to active TB
will be an effective strategy to control TB worldwide [5-7].

DosR regulon consists of nearly 50 genes expressed in hypoxic conditions
present in the dormancy stage of infection [8, 9]. Various studies showed that
among DosR regulon antigens, Rv2029¢, Rv2031c, and Rv2627c are strong
inducers of T cell-mediated immunity and are also highly recognized in tuberculin
skin test positive (TST+) in individuals [10-13].

Among different types of T cell populations contributed to the TB immune
response, antigen-specific CD4" Thl and CD8* Tcl cells have important roles in
protection against TB [14—16]. Therefore, strong induction of aforementioned
T cells has an important characteristic in designing the TB vaccine candidates.
M. tuberculosis predominantly reside in phagosome where the antigens were
processed for major histocompatibility complex class II (MHC-II) presentation
and CD4 T cells recognize epitopes of M. tuberculosis antigens by MHC class 11
molecules [17].

Autophagy acts as an immune mechanism, defending against intracellular
micro-organism, such as M. tuberculosis [18]. The autophagy system contributes
to the antigen processing through lysosomal degradation to enhance the
MHC class II presentation [19]. Microtubule-associated protein light chain
3 (LC3) molecule is an important key factor of autophagy system, which reside
in cells in inactivated form named LC3 A and will be processed by protease activity
of Atg4 to liberate a carboxy-terminal glycine residue and LC3B as activated form
[20]. Autophagosome couples with LC3B and then fuses with MHC class
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[I-containing compartments to present the antigens to MHC class II [21]. Thus,
autophagy targeting strategy increases CD4 T cell responses, which eventually
could be an effective strategy in TB vaccine development.

In the previous study, a multi-epitope DNA with or without LC3 was
designed and analyzed [22]. In this study, codon-optimized genes were synthe-
tized and DNA constructs were created and the immunogenicity of DNA con-
structs was evaluated in BALB/c mice.

Materials and Methods
Design and construction of DNA plasmids

In our previous study, MHC class I and II binding epitopes of three latency-
associated antigens Rv2029c, Rv2031c, and Rv2627¢c were predicted (Table I).
MHC class I and II epitopes were fused together tandemly with appropriate linkers
to avoid interferences in epitope processing (Figure 1A). In another design, LC3
was directly fused to the C-terminus of the multi-epitope peptide [22]. In this
study, the latest peptides were utilized for reverse translation and codon optimi-
zation. Finally, some additional sequences were added (Figure 1B and 1C). The
final sequences were synthesized (Generay biotechnology, China), digested by
BamHI and Xhol restriction enzymes, and inserted to the pcDNA3.1(+) myc-HisC
(Invitrogen) to create the multi-epitope DNA and LC3 multi-epitope DNA
constructs. The synthesized multi-epitope sequence without LC3 was digested
at Ncol and Xhol restriction sites and inserted to pET-21d(+) (Novagen, USA) to
make a construct, acting as a recombinant prokaryotic expression vector. Recom-
binant plasmids were verified by restriction enzyme digestions and sequence
analysis. Finally, the constructs were purified by High Pure Plasmid Isolation Kit
(Roche, USA).

Table 1. Selected MHC class I- and 1I-binding epitopes

MHC class I-binding epitope MHC class 1I-binding epitope

Protein Epitope sequence Position Protein Epitope sequence Position

Rv2029¢  RYDPGGGGINVARI 44-57 Rv2029c  LRGAAASAAFVVASG  135-149

RFVLPGPSLTVAE 115-127 IPMTAVSGVGAG 253-264
Rv2031c ~ VDPDKDVDI 60-68 Rv2031c  DKGILTVSVAVSEGK 118-132
GSFVRTVSL 96-104 Rv2627¢  IGRMISPLSLTPLVP 325-339
Rv2627c  GPFMHTGLY 27-35 RFVQAALEQSGLLDA 390-404
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Figure 1. Structure of designed multi-epitope DNA sequence. (A) Schematic representation of MHC
class I and II epitopes of antigens, joined by appropriate linkers, indicating the position of epitopes.
AAY linkers were utilized for fusion of MHC class I-restricted epitopes and GPGPG linkers were
applied to conjugate MHC class Il-restricted epitopes. (B) Schematic representation of the
synthesized DNA sequence including multi-epitope DNA sequence flanked by BamHI and Xhol
restriction sites at 5" and 3’ ends, respectively and kozak consensus sequence containing ATG start
codon and Ncol restriction site. G in the +4 position of kozak sequence designed to be the first
nucleotide of the multi-epitope sequence. (C) Schematic representation of the synthesized DNA
sequence including multi-epitope DNA sequence which was fused directly to the LC3. Kozak
consensus sequence showed in highlighted sequence and multi-epitope sequence placed between

two slashes (/)

Transfection and Western blot analysis

HeLa cells were transfected with LC3-fused multi-epitope DNA and multi-
epitope DNA constructs using Lipofectamine 2000 Reagent (Invitrogen) accord-
ing to the manufacturer’s instruction. HeLa cells were seeded in six-well plates
with Dulbecco’s Modified Eagle Medium containing 10% fetal calf serum and
incubated in 37 °C in 5% CO,-humidified chamber overnight. When cells reached
80%—-90% confluency, 15 pL of Lipofectamine was diluted to final volume of
150 pL, in Opti-MEM medium (Invitrogen). Also, 4 pg of each DNA construct or
empty plasmid was diluted to final volume of 150 pL in Opti-MEM medium.

Acta Microbiologica et Immunologica Hungarica 65, 2018

3’



IMMUNOGENICITY OF NOVEL CONSTRUCT AGAINST MTB 197

Then, each diluted DNA construct or empty plasmid was added to the diluted
Lipofectamine and incubated for 5 min at room temperature. The final volume of
300 pL DNA/Lipofectamine mixture was added to each well. Two wells were
considered as control, one well received 300 pL of the diluted Lipofectamine
without any DNA and the other well was left without adding any prepared reagent.
Six-well plates were incubated for 72 h and subsequently cells were harvested,
washed with phosphate-buffered saline (PBS), lysed with lysis buffer [Tris pH 6.8,
sodium dodecyl sulfate (SDS) 15%, glycerol, 1 M dithiothreitol, bromophenol
blue, and ddH,0], and were centrifuged for 5 min at 15,000 X g. The cell lysates
were run on 12% SDS—polyacrylamide gel electrophoresis (PAGE) and trans-
ferred to the polyvinylidene difluoride membrane (Roche) using the semi-dry
blotting technique. The membrane was blocked with 5% skimmed milk for 3 h at
room temperature. The membrane then probed with anti-His Tag (BioLegend,
USA) antibody overnight at 4 °C. Then, it was washed, probed with appropriate
HRP-conjugated goat anti-rabbit IgG (Sigma-Aldrich, USA) for 1 h at 37 °C and
visualized directly using SIGMAFAST 3,3’-diaminobenzidine (Sigma-Aldrich).

Expression and purification of recombinant protein

The recombinant pET-21d(+) vector was transformed into Escherichia coli
BL21 (DE3) (Novagen) and induced with isopropyl p-p-1-thiogalactopyranoside
(IPTG) for 6 h. After IPTG induction, the cultured E. coli BL21 was centrifuged to
collect bacterial cell pellets. The collected cells were lysed by lysis buffer (35 mM
NaH,PO,4, 200 mM NaCl, 8 mM imidazole, pH 8) for 30 min. The lysates were
sonicated as follows: 15 s pulses at 15 s intervals for five consecutive times. The
sonicated cells centrifuged for 15 min at 10,000 rpm and the supernatant
was harvested. Then, the His-tagged multi-epitope protein was purified using
the Ni-NTA column (Qiagen, USA) according to the manufacturer’s protocol,
identified by Western blotting as described before, and applied for in vitro
stimulation of splenocytes which is a necessary step for cytokine detection in
flow cytometry assay.

Animal immunization

Female BALB/c mice (6- to 8-week old) were immunized intramuscularly
with 100 pg (50 pg per quadricep) of each DNA construct and/or empty vector as
negative control. To assess the cellular immune response, mice were immunized
three times (at 0, 2, and 4 weeks). The BCG-immunized mice were used as positive
control in fourth group. BCG was injected subcutaneously once with a dose of 10°
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CFU at the first immunization. Two weeks after the last injection, all mice were
sacrificed and their spleens were aseptically removed. All animal studies were
approved by the ethics committee of Tehran University of Medical Sciences.

T cell subset and cytokine release assay

Splenic tissue was processed mechanically using a cell strainer to produce a
single cell suspension. Mononuclear cells were separated from splenic cells
by Lymphosep (Biosera, USA). Mononuclear cells were cultured at density of
2 % 10° cells/mL. This was triplicated in 1 mL of complete RPMI-1640 medium in
24-well plates. The cells were stimulated in vitro by 10 pg/mL of recombinant
multi-epitope protein or with CD3/CD28, as positive control. The cells that were
cultured without any stimulation were considered as negative control. Cells were
incubated at 37 °C in a humidified chamber with 5% CO, for 72 h. After 66 h,
1A brefeldin A (5 mg/mL) (BioLegend) was added to each well to inhibit cyto-
kine release. Finally, cells were harvested and washed with FACS buffer (PBS
with 2% FBS). Cell surface staining was carried out using anti-CD4 Alexa Fluor
488 and anti-CD8 PE-Cyanine 7 (eBioscience, USA). Cells were washed,
fixed, and permeabilized with Intracellular Fixation/Permeabilization Buffer
(eBioscience). Intercellular cytokine staining was performed using anti-IFN
gamma PerCp-Cyanine5.5, anti-IL-4 PE, anti-IL-10 antigen-presenting cell (APC)
mADbs (eBioscience), and anti-IL-2 APC-Cyanine 7 (BD Biosciences, USA). Flow
cytometry was performed using FACSCanto II (BD Biosciences) and at least
200,000 events were acquired. Finally, the data were analyzed by the Flow Jo
software, version 7.6 (Tree Star Inc., Oregon, USA).

Statistical analysis
All data were expressed as mean + SD. Data were statistically analyzed by

one-way analysis of variance (ANOVA) with Tukey’s post hoc multiple compar-
ison test using the SPSS software, version 22 (SPSS Inc., USA).

Results
Eukaryotic expression of DNA constructs
HelL a cells were transiently transfected with the multi-epitope or LC3-fused

multi-epitope DNA constructs to examine the effectiveness of expression of DNA
constructs in vivo. The empty vector was applied as negative control. Western
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blotting showed that transfected HeLa cells expressed both the multi-epitope and
LC3-fused multi-epitope proteins successfully. The 19 and 31 kDa bands were
observed in transfected cells with multi-epitope and LC3-fused multi-epitope
DNA constructs, respectively. Meanwhile, no protein was detected in cells
transfected with the empty vector (Figure 2A and 2B).

Purification of recombinant protein

Recombinant protein was expressed in prokaryotic system and was purified
to be used for restimulation of mice splenocytes in vitro, required for flow
cytometry assay. After the [IPTG induction, recombinant protein labeling His-tag
was purified by Ni-NTA column. SDS-PAGE and Western blot were performed to
confirm the expression. Recombinant protein with the molecular weight of about
17 kDa was observed as expected (Figure 2C).

Induction of T cell immune responses

Based on the importance of the CD4 and CD8 T cell immune responses in
protection against M. tuberculosis, we applied multicolor flow cytometry, gated
lymphocyte population, and evaluated the percentage of specific IFN-y and IL-2-
producing CD4" and CD8™ T cells in all experimental groups to evaluate stimula-
tion of key cytokines in defense against TB. Next, we characterized the
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Figure 2. Western blot analysis. (A) Western blot of multi-epitope pcDNA3.1/ myc-HisC (lane 2),
empty pcDNA3.1/ myc-HisC plasmid (lane 1) in HeLa cells, and prestained protein ladder 10—
170 kDa (lane M). (B) Western blot of LC3-fused multi-epitope pcDNA3.1/ myc-HisC (lane 2),
empty pcDNA3.1/myc-HisC plasmid (lane 1) in HeLa cells, and prestained protein ladder 10—
170 kDa. (C) Western blot of purified recombinant protein in E. coli BL21, first elution (lane 1),
second elution (lane 2), and pre-stained protein ladder 10180 kDa (lane M)
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co-expression of IFN-y and IL-2 in CD4" T cells. We gated the CD4™" T cell
population and analyzed the percentage of IFN-y* IL-2* CD4" T cell population.
Also, as an effective TB vaccine requires a decrease or no induction of IL-4 and
IL-10 from CD4" and CD8* T cells; thus, we investigated the percentage of epitope-
specific IL-4 and IL-10 from CD4" and CD8" T cell populations. The percentage of
cytokine-producing CD4* and CD8* T cell populations were analyzed with one-
way ANOVA in which descriptive statistics of the analysis are shown in Table II.

Induction of specific CD4* Thl immune responses

Mice immunized with LC3-fused multi-epitope DNA construct induced high
percentage (p < 0.0001) of specific IFN-y* and IL-2* CD4™" T cells compared with
multi-epitope DNA construct, BCG, and the empty vector groups (Figure 3). Mice
immunized with multi-epitope DNA construct also induced high percentage of
IFN-y* CD4" T cells compared with BCG and empty vector groups (p < 0.0001).
These results indicated that LC3-fused multi-epitope DNA construct has a potential
to induce specific CD4 Thl immune responses more than the other groups.
However, multi-epitope  DNA construct can stimulate acceptable IFN-y*
CD4™ T cell response, it could not induce IL-2* CD4™ T cells. Thus, LC3-fused
multi-epitope DNA construct with effective induction of IL-2* CD4" T cells is
superior to multi-epitope DNA construct.

Induction of specific CD4% Th2 immune responses
Both multi-epitope and LC3-fused multi-epitope DNA constructs did not

significantly induce IL-4- and IL-10-producing CD4" T cells compared with the
other groups (Figure 3). The BCG-immunized group stimulates high percentage of

Table II. Descriptive statistics of different CD4 and CD8 T cell subsets in immunized groups

LC3-fused multi-epitope Multi-epitope

T cell subsets DNA construct DNA construct BCG Empty vector
CD4" IFN-y* (Thl) 21.282+1.304 10.910+£0.994  4.085+1.030 2.415+0.202
CD4* IL-2* (Thl) 2.339 +0.405 1.106 £0.270  0.847+£0.053  0.686+0.136
CD4" IFN-y" IL-2* 4.562 +0.150 1.279+0.301  0.557+0.155 0.560+0.310
CD4" IL-4" (Th2) 3.912+0.598 3.695+0.510  3.647+0.145  3.697 +0.433
CD4* IL-10* (Th2) 4.943 +1.092 3.605+0.462  5.967+0.247  3.677+0.660
CD8" IFN-y* (Tcl) 2.459 +0.220 2.460+0.169 0.303+0.108 0.325+0.153
CD8" IL-2* (Tcl) 0.476 +0.106 0.527+0.098  0.415+0.114  0.427+0.154
CD8* IL-4" (Tc2) 0.796 +0.172 0.954+0311 1.222+0.409 1.520+0.824
CD8" IL-10" (Tc2) 0.539+0.797 0.527+0.098 0.386+0.123  0.427 +0.154
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Figure 3. Flow cytometry analysis of epitope-specific CD4* T cells in BALB/c mice injected by
LC3-fused multi-epitope DNA construct, multi-epitope DNA construct, BCG, and empty vector.
(A) Representative flow cytometry data showing the percentage of epitope-specific CD4* T cells
in the total lymphocyte. (B) Bar graph showing the percentage of epitope-specific-IFN-y*,
IL-2%, IL-4*, and IL-10" CD4" T cells from LC3-fused multi-epitope DNA construct (black
bars), multi-epitope DNA construct (dotted black), BCG (gray bars), and empty vector (white
bars). Positive and negative controls are shown by splenocytes from designed DNA construct
group, stimulated with CD3/CD28 and without any stimulation, respectively. Quadrants were set
based on negative control group. The data are shown as mean + SD. *p <0.01; **p <0.0001

IL-10-producing CD4" T cells compared to the mice immunized with the empty
vector and multi-epitope DNA construct (p < 0.01).

Induction of specific bi-functional CD4% T cell immune responses

The results showed that LC3-fused multi-epitope DNA construct induced
high percentage (p < 0.0001) of IFN-y™ IL-2* CD4* T cell population compared
with multi epitope DNA construct, BCG, and empty vector groups (Figure 4). The
multi-epitope DNA construct stimulates IFN-y* IL-2* CD4* T cell population
significantly (p <0.01) compared with BCG and empty vector groups.

Induction of specific CD8" Tcl immune responses

Both LC3-fused multi-epitope and multi-epitope DNA constructs highly
stimulate (p < 0.0001) IFN-y* CD8" T cell population compared with the
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Figure 4. Flow cytometry analysis of epitope-specific bifunctional CD4™ T cells in BALB/c
mice injected by LC3-fused multi-epitope DNA construct, multi-epitope DNA construct,
BCG, and empty vector. (A) Representative flow cytometry data showing the percentage of
epitope-specific IFN-y* IL-2* CD4% T cells in CD4* T cells. (B) Bar graph showing the
percentage of epitope-specific-IFN-y* IL-2* CD4* T cells from LC3-fused multi-epitope
DNA construct (black bars), multi-epitope DNA construct (dotted black), BCG (gray bars),
and empty vector (white bars). Positive and negative controls are shown by splenocytes from
DNA construct group, stimulated with CD3/CD28 and without any stimulation, respectively.
Quadrants were set based on negative control group. The data are shown as mean + SD.
*p<0.01; **p <0.0001

BCG and empty vector groups (Figure 5). But, there is no significant difference
for stimulation of IFN-y* CD8" T cell population between LC3-fused multi-
epitope and multi-epitope DNA constructs. Also, there was no meaning-
ful difference for induction of IL-2* CD8" T cell population between all
groups.

Induction of specific CD8* Tc2 immune responses
We next analyzed the percentage of suppressive CD8"* T cell populations.
The findings showed that there was no significant difference for stimulation of

specific IL-4- and IL-10-producing CD8* T cells in four groups of immunized
mice (Figure 5).
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Figure 5. Flow cytometry analysis of epitope-specific CD8"* T cells in BALB/c mice injected by
LC3-fused multi-epitope DNA construct, multi-epitope DNA construct, BCG, and empty vector.
(A) Representative flow cytometry data showing the percentage of epitope-specific CD8* T in the
total lymphocyte. (B) Bar graph showing the percentage of epitope-specific IFN-y*, IL-2*, IL-4*,
and IL-10" CD8* T cells from LC3-fused multi-epitope DNA construct (black bars), multi-epitope
DNA construct (dotted black bars), BCG (gray bars), and empty vector (white bars). Positive and
negative controls are shown by splenocytes from DNA construct group that are stimulated with CD3/
CD28 and without any stimulation, respectively. Quadrants were set based on negative control
group. The data are shown as mean + SD. *p < 0.0001

Discussion

Immunity against TB is a T cell-mediated immune response [23]. Currently,
DNA vaccines are more attractive in TB vaccine development due to the induction
of cell-mediated immunity against MTB infection [24]. There is high plasticity in
this DNA vaccine design. It has been shown that fusion of multiple epitopes of
several antigens elicits stronger specific T cell immune responses [25, 26]. Also,
DNA vaccines encoding MHC class I- and Il-restricted epitopes induce both
specific CD4" and CD8" T cell populations [27].

Although there are different T cells contribution in defense against MTB,
most studies indicated that CD4™ T cells have essential role in protection against
TB. Thus, applying strategies to enhance CD4% T cell responses resulted in
effective protection. T cells recognize epitopes that are presented by APCs via
MHC molecules. CD8 T cells recognize endogenous epitopes that are presented by
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MHC class I molecules and CD4 T cells recognize exogenous epitopes that
are presented by MHC class I molecules. Recent studies have proved that
autophagy system has important role in presentation of antigens by MHC class 11
molecules [28].

In this study, we constructed a novel multi-epitope DNA construct by fusion
of multiple MHC class I- and Il-restricted epitopes of Rv2029¢c, Rv2031c, and
Rv2627c antigens. Next, LC3 was fused to the multi-epitope DNA construct and
the improvement and effectiveness of the immunogenicity was evaluated.

T cell immune response has protective roles against the MTB infection
through CD4" Th1 and CD8™ Tc1 populations that produce key cytokines, such as
IFN-y, IL-2, or TNF-a [29]. IFN-y is an essential cytokine in resistance to MTB
infection and is the most highly considered cytokine for characterization of Th1
immune response [30]. IL-2 also has important roles for secondary expansion of
CD4 and CD8 T cells for generation of long-lived T cell populations [31, 32].
Previous studies have shown that in LTBI, the MTB antigen-specific CD4™ T cell
populations are highly enriched in IFN-y* and IL-2" [33] and MTB antigen-
specific CD8™ T cell population are predominantly IL-2~ [34]. In this study, LC3-
fused multi-epitope DNA construct induced vigorous IFN-y and IL-2-producing
CD4" and IFN-y-producing CD8* T cells. Since our construct was designed based
on latency-associated antigens for LTBI individuals, this profile for the CD4" and
CD8™ T cell population reflects appropriate immune response. Also, the multi-
epitope DNA construct induced acceptable IFN-y* CD4* T cell immune response,
but this construct could not induce IL-2* CD4" T cell immune response. This
result suggests a positive role for LC3 in enhancement of CD4* Thl immune
response. On the other hand, as we expected, CD8" T cell responses were not
increased in LC3-fused multi-epitope DNA immunized group compared with
multi-epitope DNA construct. Here, we speculate that LC3 has no role in MHC
class I presentation. Mice immunized with BCG alone induced only low level of
IFN-y* CD4" T cells indicating that DNA constructs can induce more strong T
cell responses than BCG alone. It is demonstrated that immunization with BCG
cannot induce significant T cell responses to DosR regulon dormancy antigens
[35]. Based on the results, DNA constructs in this study seem to be superior to
BCG.

The capability to produce one, two, or three kinds of key protective
cytokines (IFN-y, IL-2, or TNF-a) by an individual T cell endows the cell with
the ability to be an effector cell, memory cell, or both [36, 37]. Therefore, CD4™" or
CD8™ T cells that produce more protective cytokines have the potential to develop
into memory-type cells [38]. Although most of TB vaccine studies investigate
percentage of IFN-y™ CD4" or CD8" T cell populations, it has been shown that
IFN-y alone is not sufficient for long-lived protection [39]. In this regard, our
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designed LC3-fused multi-epitope DNA construct remarkably induced a CD4" T
cell population that expresses IFN-y and IL-2, simultaneously. The IFN-y* IL-2*
CD4* T cell population may qualify this proposed construct as effective by its
ability to create memory cells in a long-lived protective manner. Also, the multi-
epitope DNA construct induced high level of IFN-y* IL-2* CD4™ T cell response,
but this was significantly less than LC3-fused DNA construct.

IL-10 is an anti-inflammatory cytokine produced by various immune cells,
but IL-10 produced by effector T cells restricts the immune response [40]. [L-4 isa
classical Th2 and Tc2 cytokine which downregulates the Thl immune response
and increases in active TB disease [41, 42]. Various studies showed that IL.-4 and
IL-10 limit the efficacy of vaccines [43—46]. Therefore, an effectively designed
vaccine may not induce IL-10 and IL-4 cytokines [47, 48]. In our study, DNA
constructs with or without fusion of LC3 did not elicit either IL-4 or IL-10 from
CD4" and CD8" T cell populations, which show the effectiveness of designed
DNA constructs. Interestingly, our data indicated that fusion of LC3 resulted in an
increase in Th1 but not increase in Th2 suppressive response. This may be due to
regulation of autophagy by immune responses through promotion of Thl and
inhibition of Th2 [49]. In contrast, our results showed that BCG highly induced
IL-10-producing CD4* T cell response. Previous studies have indicated that
following BCG vaccination, IL-10 with the role of negative regulatory has reduced
the Thl immune response [50]. Thus, our DNA constructs with no significant
induction of IL-10 is more beneficial than BCG.

Conclusions

LC3-fused multi-epitope DNA construct induced high level of CD4" Thl
immune response with an increase in IFN-y" and IL-2* CD4* T cell population
alongside high potent CD8"* Tc1 immune responses with increase in IFN-y™ CD8*
T cell population. The construct without fusion of LC3 could not induce
IL-2* CD4* T cell population. Also, the LC3-fused construct induced IFN-y™
IL-2* CD4™ T cell population much higher than the construct without LC3.
Overall, our data show that fusion of LC3 is more likely to elicit potent Thl
immune response with trends to long-lived immune responses by induction of IL-
2% CD4% and IFN-y* IL-2* CD4™T cell populations. Since the potency of a DNA
vaccine relies on absence of induction of specific Th2 and Tc2 immune responses,
our results showed that LC3-fused multi-epitope DNA construct did not induce
these types of immune responses. According to our results, fusion of LC3 has
no effect on induction of suppressive CD4" Th2 responses, so it may be an
effective strategy to increase protective CD4* Th1l immune responses. Finally,
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the LC3-fused multi-epitope DNA construct has a potential as a valuable candidate
to be investigated to examine its protective potency and efficacy in the murine TB
challenge model.
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