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ABSTRACT  

Surface quality is a key issue in semiconductor structures for device applications. Typical 

surface defects are blisters. Here we investigate on the relationship between the activation 

energy of blistering and the composition x in hydrogenated amorphous a-SixGe1-x by 

employing layers deposited by Radio Frequency sputtering. To this aim the blistering 

activation energy was determined by means of Arrhenius plots in several samples with 

different compositions, including x=0 and x=1. Each sample was submitted to heat treatment 

up to the temperature where the onset of blistering was observed by change of the surface 

reflectivity. It is found that a linear dependence of the activation energy on x similar to the 

Vegard’s law holds. The experimental result is supported by reaction kinetics modeling. It is 

suggested that the key step for the formation of blisters is the scission of the SiH and GeH 

bonds. The related energetic reaction leading to the formation of H2 molecules in a-SixGe1-x  

follows a linear law as a function of the x composition similarly to the activation energy. 
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1. Introduction 

The degradation of the surface quality of several types of material is often due to the 

formation of blisters [1-6]. Blistering is caused by voids inside the material which have 

reached a sufficient size to touch and deform the surface because of the increased pressure of 

some gas inside the voids [1-8]. In the worst cases blisters burst leaving craters [1, 6, 8-11]. 

The gas is almost always H or He. It is introduced into the material in different ways, e.g. by 

implantation [1, 2, 10-15], mixed or in compounds with other gases employed to grow a given 

material in a plasma regime in the case of H [6, 16, 17]. Hydrogen and He are hardly soluble 

in most materials with the consequence that they tend to segregate into voids that grow and 

coalesce upon annealing with an ensuing increase of the gas pressure [14]. The surface 

blistering of ion-implanted materials is still object of detailed research [1, 10, 12-14, 18]. As 

for semiconductors plenty of work has been carried out for H and/or He implanted materials 

especially with the aim to optimize the smart-cut technique based on wafer bonding [4, 11, 

14, 15, 18-21]. Much less work has been done for not implanted semiconductors. Among 

them are hydrogenated a-Si (amorphous Si), a-Ge and their alloy a-SixGe1-x that find 

applications in solar cells [16, 17, 22-28]. As regards a-Ge and a-SixGe1-x they are also very 

suitable for IR radiation sensors [29], like un-cooled microbolometers [30], thin films 

transistors [31], detectors for X- or γ-ray imaging [16] and fiber-optic systems [32]. For such 

applications hydrogenation is always applied since H reduces, by even an astounding 4 orders 

of magnitude [33], the density of the dangling bonds which are harmful for the electro-optical 

performance of the devices since they act as carrier trapping and recombination centres. 

Hydrogen is most often introduced during growth, as it was said earlier. Obviously, besides 

optimal electro-optical properties the structural (surface) integrity must also be preserved, e.g. 

by preventing formation of blisters. 

The procedure to grow a-Si, a-Ge and a-SixGe1-x , e.g. by chemical vapour deposition 

(CVD) in its various configurations [16, 17, 24, 25, 34] as well as the manufacturing 

processes to get the final device [35] very often require some heating of those materials. Such 

annealing can give rise to blisters due to the enhancement of the pressure inside the voids 

containing H as recalled earlier in this Introduction and experimentally demonstrated in Si 

and Ge [8, 20, 21, 36] and c-SiGe [10, 11]. Degradation of the layer surface upon annealing 

has also been reported in not hydrogenated materials like, e.g., perovskite based structures for 

photovoltaic devices [37, 38].  The activation energy of blistering has been the object of 

several studies [10, 11, 14, 15, 19-21, 36]. In fact, its knowledge through the use of simple 
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Arrhenius plots is very useful to enlighten the origin of the rate-limiting step in the blistering 

process hence its physical-chemical mechanisms [10, 11, 14, 15, 19-21, 36].  

The aim of this paper is to investigate such mechanisms in not-implanted hydrogenated a-

SixGe1-x alloys by measurement of the blistering activation energy and to establish a law to 

evaluate it as a function of x. It will be shown that this law is similar to the Vegard’s one. The 

samples of this work have been grown by radio frequency (RF) sputtering which does not 

need to heat up the sample during sputtering of the target material. This guarantees that, 

before the after-growth annealing experiments applied for the determination of the activation 

energy, the samples did not undergo any annealing with possible blister formation during 

sample growth which can be harmful for the correct evaluation of the blistering onset. 

Additionally, RF sputtering has the advantage that H containing toxic gases like silane and 

germane employed in the CVD reactors are not used. Moreover, the incorporation of H is 

simply controlled by gas flow meters and does not need the dissociation of those gases which 

may depend on the substrate temperature. It is also a versatile technology and appropriate to 

prepare series of samples with different compositions. Its highly reproducible performance 

was demonstrated in an earlier work of us [39]. Differently from implanted samples where the 

activation energy is determined by the blistering associated with the splitting of an implanted 

layer from a substrate, [10, 11] here the activation energy is a ‘’pure’’ one, i.e., 

experimentally measured only by the sudden appearance of surface blisters. Exfoliation of the 

deposited layers from the substrate has not been observed.  

 

2. Experiment 

The investigated samples were hydrogenated a-SixGe1-x (0≤x≤1) obtained by RF 

sputtering from targets of either pure Si, pure Ge or a target assembled from different size of 

Si and Ge slices. As substrates polished (100) c-Si wafers were used. They were mounted on a 

water cooled stage 50 mm away from the target to reduce heating up of the substrate caused 

by the impinging Si and/or Ge atoms released by the target. This assured that the substrate 

temperature was always ≤ 60 °C [39]. The target was coupled to an RF generator operating at 

13.56 MHz. The chamber was evacuated by a turbo molecular pump to a basic pressure of 

510
-5

 Pa. The RF sputtering has been carried out under a mixture of hydrogen and argon high 

purity gases with an applied wall potential of 1.5 kV dc yielding a plasma pressure of 2.5x10
-2

 

mbar. The hydrogen flow rate was kept constant at a value of 0.9% of the 2.5x10
-2

 mbar 

plasma pressure for all the deposited a-SixGe1-x layers. The H content was 16-18 at% as 
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measured by ERDA (Elastic Recoil Detection Analysis) while the x composition was 

determined by ERDA and EDS (Energy Dispersive Spectroscopy) in a TEM (Transmission 

Electron Microscope). The sputtered layers were mirror-like and had a thickness around 200 

nm. Besides pure Si and Ge, SixGe1-x layers of five different compositions of x=0.32, 0.44, 

0.67, 0.74 and 0.96 have been prepared (Table 1). 

    

Table 1 

 Composition  x of the SixGe1-x samples vs sample number 

 

 

 

 

 

 

The activation energy Ea for blistering was determined by Arrhenius plots reporting the 

inverse of the minimum time needed to make the blisters optically visible as a function of the 

inverse of the temperature. The temperature range investigated was different depending on the 

analysed sample. It varied from a minimum of 179 °C (for pure a-Ge) to a maximum of 271 

°C (for pure a-Si). Such temperatures are much lower than the crystallization temperature of 

Ge and Si. As recalled in Ref. [8] and references therein, it varies between 450 and 490 °C for 

Ge and between 700 and 740 °C for Si. For a-SixGe1-x crystallization is reported to occur at 

temperatures ≥ 550 °C unless a catalityc metal is used [40, 41] which was not our case. The 

amorphous state of our annealed samples was confirmed experimentally by TEM (Fig. 1). The 

hydrogenated samples have been heated in air on a plate at constant temperature ( 1 °C) 

while illuminated by a 3 mW He-Ne laser beam with diameter of 3 mm and angle of 

incidence of 60° which resulted in an elliptically illuminated sample area with size of about 

3x6 mm
2
 (Fig. 2). The onset time of blistering was the time elapsed between the stabilization 

of the temperature and the start of the decrease of the reflectivity of the sample surface. 

After reflection the radiation fell onto an Si PIN detector blended with diameter of 3 mm. 

During the heating process the specular reflection transforms into a spread one, which has a 

dominant directional component that is partially diffused by surface irregularities (Fig. 2). 

The onset of blistering was identified with the sudden decrease of the reflected intensity 

caused by the outgoing rays reflected at many different angles. The sampling rate of the 

reflection monitoring was 5-10 sec.  

Sample # 1 2 3 4 5 6 7 

Composition 

x 
0 0.32 0.44 0.67 0.74 0.96 1 

https://en.wikipedia.org/wiki/Reflection_(physics)
https://en.wikipedia.org/wiki/Detector
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Fig. 1. HR-TEM (high resolution TEM) image taken from the a-Si sample (x=1) after 

annealing. In this sample the temperature for the blistering onset was the highest. 

The inset FFT (Fast Fourier Transform) spectra clearly show the amorphous state of 

the sputtered layer opposite to the crystalline state of the substrate.  

 

 

 

 

 

Fig. 2.  Sketch of the experimental procedure for detecting the onset of blistering. 
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3.  Results 

Fig. 3 shows a typical Arrhenius plot of an a-SixGe1-x sample along with those of a-Si and 

a-Ge. The example given for a-SixGe1-x is for x=0.44. The blistering activation energy for a-Si 

and a-Ge is 2.42 and 1.68 eV, respectively, while the activation energies of the a-SixGe1-x 

samples were in-between those two values. The activation energy of the a-SixGe1-x was seen 

to decrease linearly with decreasing x. This is displayed in Fig. 4 giving the blistering 

activation energy Ea in the a-SixGe1-x alloys, Ea(SixGe1-x), as a function of the x composition. 

The fitting curve is  

 Ea = Ea(SixGe1-x) = 1.663 + 0.733•x       (1)  

 

Fig. 3. Arrhenius plots 1/t (min
-1

) = kexp vs 1000/T (K
-1

) for a-Si (dot-dashed black curve 1), 

a-Ge (full red curve 2) along with a typical one for a-Si0.44Ge0.56 (dashed blue curve 3). 

The blistering activation energy is indicated aside each curve. 
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Fig. 4.  Blistering activation energy Ea(SixGe1-x) in SixGe1-x as a function of x. The equation of the 

fitting curve is Ea(SixGe1-x) = 1.663 + 0.733·x. 

 

Let E2a (=2.42 eV) and E3a (=1.68 eV) indicate the experimental activation energies for 

blistering in a-Si and a-Ge, respectively. By recognizing that in eq. (1) the factor multiplying 

the composition x is equal, within 1%, to (E2a - E3a) = 0.74 eV and that 1.663 is equal, within 

1%, to E3a the experimental relationship between Ea(SixGe1-x), E2a and E3a can be expressed as 

 Ea (SixGe1-x) =  E3a + x 
•( E2a - E3a) = x•E2a + (1-x) •E3a    (2) 

It is concluded that the activation energy of blistering in a-SixGe1-x is related to the activation 

energies in a-Si and a-Ge through a linear relationship as a function of the x composition in an 

equation remembering the Vegard’s law [42] typically valid for the lattice parameter [42] and 

energy band gap [43] in compound semiconductors.  

 

4.  Discussion 

As shown elsewhere [36, 39] and assumed in several works [11, 14, 19] the blisters are 

due to the increase of size of voids/bubbles containing molecular hydrogen H2 in the samples. 

Our earlier works revealed that blisters with typical dimensions of about 1-2 µm appear 

uniformly on the surface in the case of Si [39] and Ge [36] layers. Based on this, we can 
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assume that blistering occurs at the time tbl when the number of the accumulated H2 molecules 

reach the critical Nbl number and the critical pressure as a consequence of the general gas law. 

This cannot occur in the case of the different SiGe alloys otherwise, therefore the 

accumulation process in time can be described by 

  kexp·t  = NH/Nbl        (3) 

where kexp is the rate coefficient of reaction and NH the number of accumulated H2 molecules. 

Inserting the time of appearance of blisters observed in the experiments we get a simple 

relation enabling the Arrhenius plot to explore atomic scale processes 

  kexp·tbl = 1  or  ln kexp = – ln tbl   (4) 

In the a-SixGe1-x system the atomic H for the formation of H2 is supplied by the rupture 

of its bonds to Si and Ge according to the following reactions 

  SiH Si+H                                                                       (5) 

  GeH Ge+H                                                                        (6) 

  H+H H2                                                                              (7) 

Let [MeH] = [SiH] + [GeH] represent the total metal hydride concentration in the layer, 

with the parenthesis [] indicating concentrations, and k2, k3 and k4 the rate coefficients of 

reactions (5) to (7), respectively. The reaction kinetics governing the evolution in time of the 

concentration of H2, d[H2]/dt, can be derived by using the following kinetic differential 

equations for 0<x<1 

  



d H 
dt

k2xMeH k3(1x)MeH 2k4 H
 

  
 

  

2

    (8) 

   



d H2 
dt

 2k 4 H 
2

         (9) 

According to the Bodenstein approximation [44], d[H]/dt= 0, therefore 

  



d H2 
dt

k2x MeH k3(1x) MeH ke x pMeH    

 (10) 

i.e. 

  k2x + k3(1-x) = kexp        (11) 
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where kexp is the rate coefficient for the SiGe alloy. 

From kexp = k0exp(-Ea/kBT), with k0 the pre-exponential factor, kB the Boltzmann’s 

constant (8.62∙10
-5

 eV·K
−1

), T the temperature in K and Ea the activation energy for blistering 

in the SiGe alloy, the latter one can be expressed as 

  



E a  x
k

2

k
exp

E
2a
 (1 x)

k
3

k
exp

E
3a       

   (12) 

provided that the activation energy Ea does not depend on T in the range of the applied 

annealing temperature. By entering eq. (11) in eq. (12) after some mathematical treatment one 

gets 

  



E a  x
k

2

k
exp

E
2a
 (1 x)

k
3

k
exp

E
3a        (13) 

where E2a and E3a are the blistering activation energies in a-Si and a-Ge, respectively. By 

substituting kexp by k2x + k3(1-x) from eq. (11) and with  | k2 - k3 | << k3, i.e. k2 ≈ k3, (see 

Appendix) one finally obtains 

  Ea = x•E2a + (1-x)•E3a        (14) 

which is a Vegard’s-law-like equation relating the activation energy of blistering in a-SixGe1-x 

to the activation energies in a-Si (E2a) and a-Ge (E3a). Eq. (14) is just the same as eq. (2). 

To the best of the Authors’ knowledge for Si, Ge and SiGe the activation energy for 

blister formation has only been determined in implanted crystalline samples for which some 

scatter exists since it was seen that it varies depending on the implant dose, annealing 

temperature and also doped/not-doped status. Most often the activation energies turned out to 

be somewhat close, but smaller, to ours only when the annealing temperature was low (≤ 500 

°C), being otherwise significantly smaller, on the order of 1 eV and even less [10, 11, 15, 19, 

20]. Table 2 summarizes the most significant literature data about the blistering activation 

energy in Si, Ge, SiGe. In some cases, in order to explain the measured activation energies for 

blistering, e.g. 1.2 and 1.0 eV for Si and Ge, respectively, even at low temperatures [15], it 

was suggested [11, 15] that the first step for the generation of the blisters could be the rupture 

of SiSi and GeGe bonds, respectively, despite the fact that the experimental values of the 

activation energies were much smaller, by 50-60 % [15] and 75% [11], with respect to the 

literature values for the bond energies of SiSi and GeGe used as references in those papers. It 
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should also be noticed that the break of the SiSi and GeGe bonds does not supply any free H. 

So, in the frame of this hypothesis it would be quite unlikely that blisters form. Furthermore, 

that hypothesis would imply a reduction of the density of free H since the break of SiSi and 

GeGe bonds would make available free dangling bonds where H can attach to. It is proposed 

here that the initial step for the formation of blisters is rather the break of the SiH and GeH 

bonds whereby free H is produced according to eqs. (5) and (6).   

 

Table 2  

Literature data of the blistering activation energies in hydrogenated Si, Ge and SiGe 

 

Material Reference Activation 

Energy (eV) 

Notes 

    

 

c-Si, implanted 

7 1.2  

13 2.5 For T <500 °C 

11 1-2.6 Dose dependent 

    

c-Ge, implanted 
7 1  

11 1.75  

    

c-Si0.70Ge0.30 

implanted 

4 1.32 
For T < 400 °C. 

Doping dependent 

5 1.60 For T < 350-425 °C 

    

a-Si This work 2.42  

a-Ge This work 1.68  

    

 

a-SixGe1-x 

 

This work 

Varies with x 

between those of 

a-Si and a-Ge  

Vegard’s law 

Eq. (1) and Eq. (14) 

 

 

 

The energetic balance associated with reactions (5) to (7) would support our hypothesis. 

For both the SiH and GeH bonds in literature there are different values for their binding 

energy  in amorphous Si and Ge. In this paper the average among them is used. For SiH that 

average is made among the data reported in the seven references [45-51] and it is (SiH) = 

3.45 eV. As to GeH, the data of five papers are used [47, 52-56] yielding an average value of 
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(GeH) = 3.10 eV. A general consensus exists that the bond energy of H2 is (H2) =4.50 eV 

[45, 46].   

Let us first consider a-Si (x=1). The break of only one SiH bond does not account for the 

observed E2a. However, the break of two SiH bonds with simultaneous formation of a 

hydrogen molecule, implies a change of energy  = 2•(SiH) -(H2) = 2.40 eV which is 

very close to our experimental blistering activation energy in a-Si (E2a = 2.42 eV). Also for a-

Ge a close agreement between the measured activation energy of E3a = 1.68 eV and our model 

exists since for a-Ge the model gives the following energetic balance:  = 2•(GeH) -(H2) 

= 1.70 eV. The slight disagreement between measured and estimated activation energies can 

be ascribed to experimental errors on the collected experimental data and to the scatter of the 

literature data regarding the bonding energy of SiH and GeH,(SiH) and (GeH). The 

proposed energetic model also works for the a-SixGe1-x alloy if a Vegard’s-law-like 

dependence is applied for the evaluation of , i.e. 

 SixGe1-x  =  2•[ x•(SiH) + (1-x) •(GeH)] -(H2) = Ea (SixGe1-x)   (15) 

 

Eq. (15) also stems from eq. (2) or (14) by replacing E2a by 2•(SiH) -(H2) and E3a by 

2•(GeH) -(H2). Such dependence is validated by comparison with the experiment. Fig. 5 

shows again the experimental activation energies (black dots) as a function of the x 

composition of a-SixGe1-x along with the fitting curve (black solid line). The dashed red curve 

represents eq. (15). The agreement is very good. In a-SixGe1-x the measured activation energy 

for blistering onset, Ea = Ea (SixGe1-x), is thus an effective activation energy resulting from the 

energy balance between the rupture of the two H-host atom bonds and the creation of the H2 

molecule. This analysis shows that the overall process 2MeHH2 is endotherm for any x 

value, and practically no energy of activation is needed above the thermodynamic barrier.   
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Fig. 5.  Same as Fig. 4 with the addition of the dashed red curve representing eq. (15), i.e. 

SixGe1-x = 2·[ x·(SiH) + (1-x)·(GeH)] -(H2), with (SiH) = 3.45 eV  and 

(GeH) = 3.10 eV. 

 

A perfect coincidence between experiment and eq. (15) could be obtained by using 

(GeH) = 3.08 eV instead of 3.10 eV. Apart from the experimental errors, this shows that the 

agreement depends on the reference values chosen for (GeH) and (SiH). It is believed that 

the choice made here of using the average among the various literature values of (GeH) and 

(SiH) may guarantee the better evaluation of the reaction kinetics and mechanisms 

governing the formation of blisters in a-SixGe1-x, 0≤ x ≤1. 

Estimates from our data would also allow to establish the dependence on the x 

composition of the temperature Tbl of blistering (which occurs after e.g. one minute). It can be 

expressed as 

 

1000/Tbl =1.86x+2.05(1-x) 

 

which is still of the Vegard’s type as concerns the inverse of Tbl. However, this should not be 

an appropriate feature of the blistering process and should be dealt with care. In fact, the onset 

of blistering strongly depends on the thickness of the layer and is very sensitive to the H 

content. Therefore, only samples from the same growth process, i.e. with the same thickness 

and H content, can be compared each other as regards the relationship between 1/Tbl and x. 

The latter relationship and the related influence of sample thickness and H content will be the 
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object of more detailed investigations in the future. Its knowledge can be very useful as it can 

help to estimate the lifetime of thin film solar cells or any other device. 

 

5. Conclusions 

The activation energy for the formation of surface blisters in hydrogenated a-SixGe1-x has 

been found to be related to the blistering activation energies of pure a-Si and a-Ge through the 

composition x in a simple linear relationship similar to the Vegard’s law valid for the lattice 

parameter or energy band gap of a binary compound. Blisters form when voids containing H2 

gas can increase their volume as a consequence of heat treatments. The model presented here 

ascribes the formation of H2 to the reaction between two H atoms produced by the break of 

SiH and GeH bonds upon annealing. By taking for the bond energies of SiH, GeH and H2 the 

average values among several literature data full compatibility of our model with experimental 

results is achieved thus confirming the validity of the model. It should be noticed that the 

temperature range at which blistering onset was detected, i.e. from 179 °C (for pure a-Ge) to 

271 °C (for pure a-Si), concerns temperatures often applied for the a-SixGe1-x growth, e.g. by 

CVD, or during device manufacturing processes and close to the operating temperature of 

solar cells.   
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APPENDIX 

Let us define a line as a new abscissa of a coordinate transformation (green in Fig. A1) 

    ln kexp = –ln ts = ln S. 

S is a „shift in time”; for example if S=1, then 1/ts =1 min
-1

 taken into account the measured 

inverse time–inverse temperature pairs of Fig. 3. The fitted line of the measured data of Si and 

Ge intersects the abscissa S at 1/T2 and 1/T3: 

    ln k2(T2) = ln k3(T3) = ln S      (A1) 

 

Fig. A1.  Arrhenius plots 1/t (min
-1

) = kexp vs 1000/T (K
-1

) for a-Si  (dot-dashed black curve Si), a-Ge 

(full red curve Ge) and the new abscissa (green line). 

 

Entering the form of reaction rate kexp = k0·exp(-Ea/kBT) into the Eq. (A1) results in 

   



k2 0e
E2 a/ kBT2  =  k3 0e

E3 a/ kBT3  =  S 

simplified to: 

 



k2 SevE2a         where   



v
1

kB

1

T


1

T2

 

 
 

 

 
   

and   

 



k3Se
wE3a

      where   



w
1

k
B

1

T


1

T
3

 

 
 

 

 
      (A2)
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Applying eq. (12), we can determine the partial derivatives: 

  



k2/vk2E2a and    



k3/wk3E3a  

Using the linearized form  of  eq. (11) in the range of  T2>T>T3  for v and w values small 

enough we get 

   

By using the first order of the series expansion of the logarithmic function, i.e.  ln(1-y) ≈ -y , 

we can write  

   lnkexp - lnS ≈ xE2av + (1-x)E3a w       

By entering the definition of eq. (A2) the above equation becomes: 

  



lnkexplnS x E2a  1x E3a 
1

kBT


x E2a

T2


1x E3a

T3











1

kB
 

This is a function having a form of 



xE2a  1x E3a 
1

kBT
const

 

which is a Vegard’s-law-like function relating the activation energy of blistering and 1/T. The 

“const” is the ordinate intercept. It does not have too much importance and, anyway, the 

position of the line “de facto” depends on the thickness of the deposited layer (the evolution 

of blister slows down in the thicker layers). The “S ” can be swept up or down drawing a 

horizontal line. The line can be positioned everywhere in the measured region and the 

multiplier of 1/kBT  does not depend of the position of the chosen S, for any S≠ 0. It should be 

noted that the difference   T2 - T3 becomes smaller with increasing temperature (i.e. v≈w) and 

the condition | k2 – k3 | << k3, i.e. k2 ≈ k3, is practically fulfilled at the temperature of about 

710 K where the blistering time would be only on the order of microseconds. 
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Figure Captions 

 

Fig. 1. HR-TEM (high resolution TEM) image taken from the a-Si sample (x=1) after 

annealing. In this sample the temperature for the blistering onset was the highest. The 

inset FFT (Fast Fourier Transform) spectra clearly show the amorphous state of the 

sputtered layer opposite to the crystalline state of the substrate. 

 

Fig. 2.  Sketch of the experimental procedure for detecting the onset of blistering. 

 

Fig. 3.  Arrhenius plots 1/t (min
-1

) = kexp vs 1000/T (K
-1

) for a-Si (dot-dashed black curve 1), 

a-Ge (full red curve 2) along with a typical one for a-Si0.44Ge0.56 (dashed blue curve 3). 

The blistering activation energy is indicated aside each curve. 

 

Fig. 4.  Blistering activation energy Ea(SixGe1-x) in SixGe1-x as a function of x. The equation 

of the fitting curve is Ea(SixGe1-x) = 1.663 + 0.733•x. 

 

Fig. 5. Same as Fig. 3 with the addition of the dashed red curve representing eq. (15), i.e. 

SixGe1-x = 2•[x•(SiH) + (1-x) •(GeH)] -(H2), with (SiH) = 3.45 eV and 

(GeH) = 3.10 eV. 

Fig. A1.  Arrhenius plots 1/t (min
-1

) = kexp vs 1000/T (K
-1

) for a-Si  (dot-dashed black curve 1), 

a-Ge (full red curve 2) and the new abscissa (green line). 

 

 

 

 

 

 


