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The “dark matter” in metabolomics (unknowns) represents an exciting frontier with significant potential
for discovery in relation to biochemistry, yet it also presents one of the largest challenges to overcome.
This focussed review takes a close look at the current state-of-the-art and future challenges in tackling
the unknowns with specific focus on the human gut microbiome and host-microbe interactions.
Metabolomics, like metabolism itself, is a very dynamic discipline, with many workflows and methods
under development, both in terms of chemical analysis and post-analysis data processing. Here, we look
at developments in the mutli-omic analyses and the use of mass spectrometry to investigate the ex-
change of metabolites between the host and the microbiome as well as the environment within the
microbiome. A case study using HuMiX, a microfluidics-based human-microbial co-culture system that
enables the co-culture of human and microbial cells under controlled conditions, is used to highlight
opportunities and current limitations. Common definitions, approaches, databases and elucidation
techniques from both the environmental and metabolomics fields are covered, with perspectives on how
to merge these, as the boundaries blur between the fields. While reflecting on the number of unknowns
remaining to be conquered in typical complex samples measured with mass spectrometry (often orders
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of magnitude above the “knowns”), we provide an outlook on future perspectives and challenges in
elucidating the relevant “dark matter”.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction
1.1. The human gut microbiome

Complex assemblages of microorganisms populate the human
body and these microbiomes are emerging as key players in human
health and disease [1]. The largest reservoir of microbial biomass is
the gastrointestinal tract. The human gut microbiome is considered
a central hub that integrates environmental inputs, such as diet and
surroundings, with genetic and immune signals to affect the host's
overall physiology, including metabolism [2]. The gut microbiome
confers essential metabolic and other functions to human physi-
ology including digestion of food components [3], synthesis of
essential vitamins [4], stimulation and regulation of the immune
system [5], out-competition of pathogens [6], removal of toxins and
carcinogens [7], and support of intestinal function [8]. Many of
these functions are interconnected as the gut microbiome con-
tributes to overall human metabolism [9,10] and the microbial
metabolites produced play essential roles in immunomodulatory
processes [11]. In the context of the human immune system, there
is a tight interconnection whereby the immune system may affect
the gut microbiome and its metabolic capacity, and vice versa [12].
The gut microbiome also interfaces with other body systems via the
circulatory, immune, endocrine and nervous systems. Changes to
the microbial ecology of the gut may culminate in dysbiosis, a
pathological imbalance in the gut microbiota with implied dys-
functions in the complex set of processes governing human health
[13].

The advent of high-throughput sequencing and its application
to the complex microbiota of the human gut has provided essential
new insights into the structural diversity and functional potential of
the gut microbiome. Essential attributes of the human gut micro-
biome uncovered through these studies include extensive genetic
diversity [14,15], distinct community types [16,17], apparent func-
tional stability despite variation in community structure [18], the
influence of host genetics in shaping community structure [19],
inter-individual variability [20] and apparent intra-individual sta-
bility [21,22], and the overall importance of extrinsic and intrinsic
host factors in shaping community composition [23]. Furthermore,
through the use of sequencing-based methods, largely applied in
case-control study designs, dysbiosis has been implicated in the
aetiology of numerous idiopathic conditions including irritable
bowel syndrome [24], inflammatory bowel disease [25], liver
cirrhosis [26], type 1 diabetes [27,28], type 2 diabetes [29], obesity
[30,31], cardiovascular disease [32], colorectal cancer [33,34],
rheumatoid arthritis [35] and most recently Parkinson's disease
[36—38].

Metagenomic analysis involving random shotgun sequencing of
community genomic DNA has revealed the genetic potential of the
gut microbiota, especially in relation to metabolic transformations
and disease [39]. Additionally, metatranscriptomic and meta-
proteomic analyses have identified which genes are expressed by
the microbiota under specific conditions [40]. However, as
community-wide metabolism reflects the actual, cumulative phe-
notypes of the different populations which comprise the micro-
biome, (meta-)metabolomics is likely the most sensitive indicator
for disease-linked processes. This in turn makes it well suited for

identifying discriminant features based on which mechanistic hy-
potheses can be formulated linking, for example, dysbiotic micro-
biota to disease pathogenesis. Therefore, differences in microbial
community structure reflective of dysbiosis have been linked to
changes in microbial metabolism in the gut, e.g. alteration of mi-
crobial phosphatidylcholine metabolism in the context of athero-
sclerosis [32] or increased biosynthesis of branched chain amino
acids in the context of insulin resistance [41]. Metabolic activity
within the gut microbiome also impacts drug metabolism and ef-
ficacy [42,43]. A detailed knowledge of gut microbiome-mediated
metabolic transformations is therefore essential to understand
how the gut microbiome impacts human phenotypes, especially in
relation to the panoply of diseases now associated with changes in
the gut microbiome. In this context, metabolomic analyses of gut
microbiome small molecule extracts have allowed the identifica-
tion of disease-specific signatures (recently reviewed in Ref. [44]).

1.2. Metabolites and the microbiome

Given the pronounced metabolic activity of the gut microbiome,
which includes multiple unique catabolic and anabolic reactions
not catalyzed by human cells, microbial metabolism has to be
considered as an integral part of human physiology. In general
terms, the major known metabolite classes produced and trans-
formed by gut microbiota with known effects on human physiology
include organic acids (lactate, succinate, formate, etc.), short chain
fatty acids (acetate, propionate, butyrate, etc.), lipids (ceramides,
lysophosphatidylcholines, phosphatidylcholines, etc.), branched-
chain fatty acids (valerate, isobutyrate, isovalerate, etc.),
branched-chain amino acids (leucine, isoleucine, valine), vitamins
(biotin, folate, niacin, etc.), bile acids (deoxycholic acid, lithocholic
acid, etc.), and neurotransmitters (GABA, serotonin, etc.). Apart
from these specific metabolite classes, the gut microbiome cata-
lyzes a broad spectrum of different biotransformations (Fig. 1).
Importantly, apart from the known microbiome-driven metabolic
reactions, microbiome-derived metabolomic datasets are charac-
terized by a significant fraction (>90%) of as yet uncharacterized
metabolite features that do not have any match in public databases
[45]. Many of these “unknowns” are highly likely to represent
“missing links” in microbial metabolism and human-microbe mo-
lecular interactions [46]. The systematic study of the microbiome-
conferred metabolome therefore requires extensive future study,
not least because a detailed understanding of the functional
microbiome represents an essential prerequisite for future rational
interventions leveraging the gut microbiome to alter host pheno-
type. In this context, the unknowns represent an important focus
for investigation.

1.3. Mass spectrometry: from metabolites to the environment

Mass spectrometry (MS) is often the analytical method of choice
for discovery-based untargeted metabolomics analyses. Although a
lot of excellent metabolomics is performed with nuclear magnetic
resonance (NMR) techniques, it is not the focus of this article. The
post-analysis identification workflows of MS-based approaches
depend highly on the analytical set-up used, with many different
databases and software tools now available. Separation techniques,

Chimica Acta (2017), https://doi.org/10.1016/j.aca.2017.12.034

Please cite this article in press as: B.Y.L. Peisl, et al., Dark matter in host-microbiome metabolomics: Tackling the unknowns—A review, Analytica



http://creativecommons.org/licenses/by/4.0/

B.Y.L. Peisl et al. / Analytica Chimica Acta xxx (2017) 1-15 3

o)

Transformed xenobiotics
Modified steroids
Nitrosylated amines N
Modified bile acids

Methane, acetate, bisulfide

Amino acids, ammonia, amines, 0
bisulfide, thiols, phenols, indoles
Organic acids, short-chain fatty acids

Complex carbohydrates

Proteins H,N N NH,
Hydrogen Y Y

Bile acids |
Secondary amines NN TN
Steroids \r
Xenobiotics NH
Phytoestrogens 2
UNKNOWNS

Converted phytoestrogens HO N OH

\f

I

Fig. 1. Microbiome-driven biotransformations in the gut. The microbiome-mediated transformation of the xenobiotic melamine into cyanuric acid is shown as an example (from

Ref. [7]).

most commonly gas chromatography (GC) and liquid chromatog-
raphy (LC) are often, but not always, used upstream of the MS to
detect more or less polar substances, respectively. Traditionally, GC-
MS is coupled to electron ionization (EI; GC-EI-MS), fixed at an
energy of 70 eV, which is a hard ionization technique that typically
yields reproducible, fragment-rich spectra with unit mass accuracy.
Comprehensive libraries of several hundred thousand GC-EI-MS
spectra now exist (more details below) and thus “unknown iden-
tification” workflows have evolved around spectral database
lookup. Due to the high fragmentation energy, the molecular ion is
often either absent or of low abundance (estimates indicate this
may occur in up to 40% of cases) [47] and this makes further
elucidation challenging. While Computer-Assisted Structure Eluci-
dation (CASE) by GC-EI-MS is possible, it is not yet suitable for
routine application [48] and, thus, further elucidation efforts
generally require manual interpretation. To expand the chemical
coverage, metabolomics samples undergoing GC-MS are often
derivatized to increase the volatility of substances containing polar
functional groups, which creates additional challenges for structure
elucidation of those substances that do not have any database
match. Techniques that couple GC with higher resolution to obtain
the exact mass of the parent ion and/or fragments are becoming
more common; the data processing workflows for this analysis are
thus more similar to those for LC-HR-MS described below.

For LC, the most common ionization techniques are electrospray
ionization (ESI), atmospheric pressure chemical ionization (APCI)
and atmospheric pressure photon-ionization (APPI) [49], which
yield the exact mass of the parent ion(s) at high resolution. Frag-
ment information is generated in a second stage (MS2), with ions in
the first stage (MS1) isolated either according to a narrow mass-to-
charge ratio (m/z) — data-dependent acquisition — or with a broad
range (data-independent acquisition). Time of Flight (TOF) and
Orbitraps are now commonly used for untargeted analysis [50],
where the exact options for data acquisition depend highly on the
instrument and vendor and are beyond the scope of the present
review. The final result is a two-stage spectrum, where the MS1
typically provides information about the molecular ion and other
adducts (precursor or parent information — which, for unknowns,
must be grouped together to form “features” that correspond to one
molecule) and the MS2 typically provides fragmentation informa-
tion. Both stages then contribute to the information available for
identification, such as the molecular formula determination and
subsequent search for possible matching candidates (structures).
The lack of standardization and reproducibility coupled to the lack

of substance coverage within spectral libraries [51,52] means that
unknown identification workflows based on high-resolution MS
(HR-MS) have evolved to be less spectral library dependent than
GC-EI-MS (Fig. 5).

MS1 and MS2 information is used for elucidation of the un-
known metabolites or small molecules in HR-MS experiments
corresponding to the detected features (grouped MS1 signals). The
terminology used to describe the concepts involved in the identi-
fication of unknowns is as diverse as the many approaches used
across disciplines. Many terms depend on the scientific field and
the study question. In metabolomics experiments, two main ap-
proaches are usually described, targeted and untargeted analysis.
The terms metabolite and metabolite features are commonly used
to describe what is detected by the mass spectrometer. The targeted
method, also referred to as metabolic profiling, is in principle
analogous to target screening. Here, one identifies and quantifies a
list of known target substances (metabolites, small molecules) ac-
cording to their mass spectra and retention times/indices [53]. In
the untargeted or non-targeted approach, also described as meta-
bolic fingerprinting, all detected metabolite features are considered
during data analysis without necessarily any prior knowledge
about their identity [53]. The identification of features detected
with untargeted methods is also referred to as dereplication or
annotation. While metabolites were traditionally considered to be
of natural origin (originating from metabolic processes in the or-
ganism, where often only the elements C, H, N, O, P and S were
considered relevant), the extension of metabolomic techniques into
fields such as personalized medicine and exposomics has expanded
the window of “metabolites” beyond the traditional definition to
also include anthropogenic compounds (e.g. drugs, pharmaceuti-
cals and their metabolites), i.e. expanding into the realm of small
molecules in general.

1.3.1. Expanding the window of metabolomics

As the human gut is one of the main interfaces between the
external environment (e.g. food, chemical exposure) and the body,
studying the microbiome goes beyond the known metabolic net-
works and involves the “environment within”. In the environ-
mental sciences, all “small molecules” often need to be considered
by default, although the focus is often on those of anthropogenic
origin. As a result, the substance classes and properties considered
are often far wider than those that would be under study in
traditional metabolomics studies (although, as stated above, the
fields are now moving together). All elements must be considered
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and in particular popular approaches to restrict the domain to
“expected” features, such as outlined by the “Seven Golden Rules”
[54], may no longer apply as some environmental contaminants are
deliberately created to have unique properties (e.g. poly-
halogenated substances). Identification of features in the environ-
mental chemistry literature is often split into three main ap-
proaches, i.e. target, suspect and non-target screening ([50,55] and
Fig. 5). For target screening, a reference standard for each “target”
or known compound should be available in-house and measured
with the exact same settings as the samples to enable confirmation
of the identity. At least two orthogonal pieces of analytical infor-
mation should be used for confirmation, such as retention behavior
on the chromatographic system as well as the mass and fragmen-
tation information from the mass spectrometer. Often, full quan-
tification is also performed, depending on the sample context. This
can either be done separately (e.g. with a targeted analysis), com-
bined (target screening and quantification with untargeted data
acquisition, also termed post-target screening [50,56]) or in
coupled systems [57]. Following target screening, HR-MS data al-
lows suspect screening, which can be used to search for compounds
that may be expected in the sample but are not available as refer-
ence standards in-house at the start of the experiment (reference
standards are needed eventually for full confirmation of the suspect
identity). Initiatives such as the NORMAN Suspect Exchange [58]
and the chemical lists available in the US EPA CompTox Chemistry
Dashboard [59] have enabled access to various “suspect lists”
relevant to environmental investigations including surfactants,
pesticides, pharmaceuticals and perfluorinated substances. As the
identity of the compound is “suspected”, the molecular formula is
known and can be used to calculate the exact mass of the expected
ion and the isotope pattern. This and other evidence such as adduct
information and, where possible fragment data, can be used for a
tentative identification. Exact confirmation still requires a reference
standard, such that the aim of untargeted analysis would be to
“upgrade” suspects to target substances, to allow more sensitive
analysis and quantitation in future investigations. A parallel to
metabolomics would be the use of metabolic networks to direct the
identification of untargeted metabolites. Target and suspect
screening are finally complemented by non-target screening. This
applies to the remaining masses that are detected in samples,
where neither prior information about the potential presence, nor
reference standards are available. These masses must be grouped
into “features”, which require full elucidation. As for suspect
screening, relevant non-targets, where possible, should become
target compounds or “knowns” to allow easier detection in sub-
sequent investigations.

1.4. Shining light on dark matter through mass spectrometry

While metabolism is highly dynamic and can potentially reveal
information in realtime and high-throughput [60], metabolite
identification and the biological interpretation still remain major
bottlenecks in metabolomics [61]. This has resulted in the term
“dark matter”, i.e. what remains unknown in samples. Dark matter,
however, has many contexts. The “dark matter” of the universe is
the hypothetical matter that remains invisible because it does not
interact with electromagnetic radiation, but is estimated to
encompass 85% of the universe's total mass [62—64]. The “dark
matter” of biology often refers to the biological information that
cannot be produced or interpreted by current methods — for
example, in the field of microbiology only 1-15% of all bacteria and
archaea can be cultivated in the lab with current cultivation
methods [65] and there is large demand for new methods that
enable the investigation of these “unculturables” in situ [65]. Here,
multi-omic analyses, including metabolomics, of microbial

consortia is essential [40]. In metabolomics specifically, Silva et al.
[66] refer to chemical signatures that remain unannotated as “dark
matter”, stating that “in an untargeted metabolomics experiment
only 1.8% of the spectra can be annotated”. This is the definition of
“dark matter” adopted here, expanding the term chemical signa-
tures to correspond to metabolite (or more comprehensively small
molecule) features.

Targeted methods are now realistically capable of detecting tens
to hundreds of “known” compounds per sample, whether these be
with unit- or high-resolution techniques (e.g. Refs. [46,61]). While
some specialist analytical laboratories now have thousands of
reference standards in house, analytical limitations still restrict per-
sample target determination to several hundred targets to obtain
sufficient sensitivity and fragmentation information for confirma-
tion. Increased coverage of targets is obtained with several mea-
surements if necessary. Untargeted methods, in contrast, enable a
view of all detectable substances in one measurement, which is
why they are so valuable for discovery-based investigations.
However, overviews in both the metabolomics [60] and environ-
mental fields [50] reveal that tens of thousands of masses, corre-
sponding to several thousand features, are reported in most
untargeted studies — such that there is in general an order of
magnitude difference between “known” and “unknown” features —
a formidable challenge for elucidation that requires careful detec-
tion and prioritization of relevant features. A detailed breakdown of
Swiss wastewaters revealed that after extensive target and suspect
screening, an average of over 10,000 non-target masses remained
on average per ionization mode, which could be broken down into
approximately 8000 features per mode. Approximately 1300 of
these features in each mode had isotope and adduct information
associated with them. The remaining single masses were of insuf-
ficient intensity to obtain such information [55]. Fuhrer and Zam-
boni looked at the number of features reported in non-comparable
metabolomics studies (drastically different samples and analytical
methods, although all involved chromatographic separation) and
reported a similar range of ~4000 to 8000 features per sample [60].
The challenge for untargeted methods is thus to determine which
and how many of these features are relevant for further identifi-
cation. Mahieu and Patti [67] recently used systems-level annota-
tion (including data reduction with isotopic labelled experiments to
remove non-biological signals and extensive degeneracy filters) to
reduce >25,000 features to 892 unique metabolites for the rela-
tively simple case of E. coli — although it is not yet clear how many
of these are “known” or tentatively annotated. While such detailed
methods are not available to all sample contexts, especially envi-
ronmental matrices, they reveal many interesting facets in the data
that require further investigation and, likely, the adjustment of
current data processing workflows (discussed further below).
Analytically one could thus postulate that the relevant “dark mat-
ter” in untargeted studies would generally be of the order of several
hundreds to thousands of features. Ideally, untargeted studies
should be complemented by targeted analysis and/or suspect
screening to identify the known or potential known analytes first.

There are numerous methods to tackle this dark matter, yet also
inherent limitations. As outlined above, analytical limitations of the
broad untargeted methods are such that insufficient information
will be available to identify a large proportion of the unknowns
beyond a tentative annotation based on exact mass only (see e.g.
Ref. [68] and Fig. 2). Provisional annotations can be made (e.g. via
“suspect screening”); in metabolomics often using resources such
as KEGG [69,70] and HMDB [71,72]. However, several categories of
“unknowns” exist in the “dark matter” and a quote by the former US
Secretary of Defense, Donald Rumsfeld, relating to weapons of mass
destruction in Iraq is increasingly used to describe this [73] by
categorizing information into known knowns, known unknowns
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and unknown unknowns [74]. This concept was introduced with
the context of identification in mass spectrometry by Little et al.
[74]. They defined a known known as a “compound suspected to be
in the mixture, whose identity is to be confirmed by mass spec-
trometric analyses”, a known unknown as “a compound that is
unknown to the investigator, but is cited in the chemical literature
or mass spectrometry reference databases” and an unknown un-
known as “a compound that is not previously cited”. Stein [75] then
expanded this to form “Rumsfeld quadrants” by adding unknown
knowns and redefining these according to the stricter context of
library search and identification confidence. If a compound was
expected in the samples and was identified by the library search it
is a known known. Unknown knowns are unexpected by the analyst
but identified by the library, whereas known unknowns are ex-
pected but not identified by the library. Finally, substances that are
neither found nor expected are unknown unknowns [75]. Here, we
slightly modify the concept presented by Little et al. [74], as it is
closer to the definition of target, suspect and non-target, adding to
this the “unknown known” as a substance that is known as a
complex mixture, but not documented anywhere as an individual
substance (and thus cannot be found with current computational
methods; Table 1).

Given the current methodologies and feature denomination
frameworks, we review the current state-of-the-art with respect to
microbiome-linked unknown metabolites, methods to elucidate
these and provide perspectives on the further developments
required for enhanced identification success rates in the coming
years.

Table 1

2. Tackling the metabolic dark matter of the microbiome
2.1. Laboratory-based microbiome studies: HuMiX

In order to systematically resolve the complex landscape of
human-microbial molecular interactions, experimental models
that allow the probing and manipulation of metabolic in-
terdependencies are essential. Widely used animal models, e.g.
germ-free/gnotobiotic mice, exhibit important limitations resulting
from differences in diet, divergent gut topology, and differences in
the immune system, which render them sub-optimal with respect
to testing the multitude of hypotheses which arise from multi-omic
analyses of human microbiota [76]. Whereas experiments in hu-
man subjects may be possible for testing certain questions [77,78],
such approaches are not possible in most cases due to ethical
limitations. However, most importantly, human subjects do not
offer the combinatorial power that is required to systematically
probe and manipulate metabolism. In order to address these limi-
tations, in vitro models have been developed based on cell culture
technologies, which more or less recapitulate the in vivo conditions
of the human gut [76,79]. Essential characteristics that need to be
reflected in any good model for studying metabolic interactions
include the ability to perfuse the device with dedicated culture
media to allow the establishment of aerobic conditions for human
cell culture and anaerobic conditions for gut bacteria, free exchange
of small molecules between the individual cell contingents, easy
access to the individual cell contingents following specific experi-
mental regimes and compatibility with time-resolved metabolomic
measurements.

Categories for knowns and unknowns relating to dark matter in mass spectrometry. Modified definitions from [73—75].

Known known

Known unknown

Unknown known

Unknown unknown

Expected to occur

Reference standard available

Confirmed analytically

“Suspected” or unknown to investigator
Documented in databases, literature
Known as a mixture or expert knowledge
Undocumented as individual compound
Compound previously undocumented

Full elucidation and confirmation required
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In order to facilitate the study of human-microbial molecular
interactions, HuMiX (human-microbial cross-talk), a microfluidics-
based human-microbial co-culture system, was engineered to
allow the culture of relevant human and microbial cell populations
under conditions representative of those encountered in the gut [80].
In its most basic form, HuMiX consists of three parallel microfluidic
channels and these are referred to as the microbial, epithelial and
perfusion microchambers, thereby reflecting their primary purposes
(see Fig. 3). The stacked and aligned channels follow a distinct spiral
pattern to optimize the footprint and act as culture chambers with
dedicated inlets and outlets, which allow for the inoculation of the
relevant cell contingents and the precise control of the physi-
ochemical conditions within each microchamber. The channels are
separated from one another by semi-permeable polycarbonate
membranes with pore sizes and coatings varying according to their
particular function (see Fig. 3 and [80] for more detail). The model
relies on an intricate experimental protocol to allow the establish-
ment of co-cultures [80]. Briefly, following assembly and sterilization
of the HuMiX device, human epithelial cells are cultured in the
epithelial cell microchamber for 7 days until they have fully differ-
entiated and formed a tight monolayer across the membrane.
Following the establishment of an epithelial barrier, bacterial and/or
immune cells are inoculated in the microbial and perfusion micro-
chambers, respectively (see Fig. 3).

During co-culture, growth medium is typically perfused through
the perfusion chamber via a peristaltic pump to recreate the peri-
staltic motions and intraluminal fluid flow present within the gut,
thereby creating conditions that are representative of a healthy
intact epithelial barrier. The environment within the HuMiX device
is routinely monitored. Eluents can be collected from each micro-
chamber, thereby allowing the continuous probing of the extra-
cellular metabolome [80]. In addition, the modular architecture of
the HuMiX device allows easy separation of the individual micro-
chambers, which in turn ensure that the individual cell contingents
can be probed following a given experimental regime [80].

The dimensions of the microchambers ensure that laminar flow
profiles are provided, which, in turn, guarantees that all exchange
between the cell contingents occurs via diffusion. Given the pore
size cut-offs and biopolymers covering the membranes, the vast
majority of the molecular exchange between the cell is via small
molecules. The major strength of the HuMiX model is its ability to
provide a reproducible and representative environment for both
human and microbial cells. Thus, HuMiX limits the overall
complexity typically encountered in the human gut to allow

Oxygen & ~ Collagen
biomolecule Microporous membrane
gradients Perfusion microchamber

Nanoporous membrane
Epithelial cell microchamber

targeted investigations of host-microbe metabolic interactions in
the absence of major matrix effects. As a result, HuMiX is intricately
suited to systematically study human-microbial metabolic in-
teractions as well as the impact of these interactions on cellular
physiology. Additionally, the relative simplicity of the sample ma-
trix (compared with more complex metabolomics and environ-
mental matrices) enhances the ability for successful elucidation of
detectable unknowns.

2.2. Metabolic dark matter in HuMiX experiments

In a previous investigation [80], HuMiX was employed to
investigate changes in the metabolic profiles of human epithelial
gut cells and bacteria under different co-culture conditions. Eval-
uation of biomolecular extracts in conjunction with other multi-
omic datasets revealed that the metabolomics data reflected
differing metabolic processes under the different co-cultivation
scenarios, demonstrating the potential for HuMiX to allow sys-
tematic probing of both human and microbial metabolism.
Although the original study design was not intended to investigate
unknown metabolites, many significant unknowns were detected
under the various co-culture scenarios, highlighting the panoply of
so far uncharacterized small molecules that are either involved in
or affected by host-microbe interactions. The following gives a brief
overview:

In scenario A, a human epithelial gut cell line (Caco-2), was co-
cultivated in HuMiX together with the facultative anaerobic
commensal bacterium Lactobacillus rhamnosus GG (LGG). Mono-
cultured Caco-2 cells served as a control. The intracellular metab-
olites of the human cells were then analyzed and compared be-
tween the co-culture and its control. Different metabolic profiles
showed the effect of the co-culture on the metabolism of the hu-
man cells. Scenario B investigated the influence on the bacterial
metabolism, where intracellular metabolites from LGG co-cultured
with Caco-2 were compared to those of mono-cultured LGG. Again,
changes in the metabolite profile could be observed. To further-
more demonstrate that HuMiX could also be employed for strictly
anaerobic bacteria and potentially for more complex microbial
communities, Caco-2 cells were co-cultivated together with LGG
and the strictly anaerobic bacterium Bacteroides caccae (Scenario
C). Analogous to the first scenario, the intracellular metabolites of
the human cells were compared to a mono-cultured control of
Caco-2. Here, the comparison of the metabolite profiles showed the
most striking differences.
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Fig. 3. HuMiX set-up. Extracted from Shah et al.,, 2016 [80]: (A) Principle of HuMiX. (B) Expanded view. PC: polycarbonate.
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Following the co-cultivations described above, extracted polar
metabolite fractions were analyzed in detail as these most clearly
reflect metabolic interactions and responses on both the human as
well as the microbial side. A double derivatization was carried out,
firstly methoxyamine hydrochloride, then N-methyl-N-(trime-
thylsilyl)trifluoroacetamide (MSTFA). GC-EI-MS analysis was per-
formed with m/z 70 to 800 and an alkane mix for retention index
(RI) calibration. The chromatograms were processed using Metab-
oliteDetector [81] and an in-house library for derivatized metabo-
lites. For prioritization, the relative intensities of each detected
metabolite feature were compared between the biological repli-
cates and the sample groups (co-culture versus control) and or-
dered according to their p-value. A summary of the top 100
metabolites for each scenario is given in Fig. 4, showing the pro-
portion of known and unknown metabolites above and below a
significance of p=.05. There were 44, 84 and 70 unknowns in
scenarios A, B and C; shown in Fig. 4 A, B and C respectively — in
other words nearly two thirds of these metabolites. Of these 198
unknowns, 106 were significantly different compared with the
respective controls (p <.05) [80]. While it is possible that these
numbers contain duplicates (see discussion below), there are no
cases that are clearly duplicate on the basis of fragmentation and RI
information.

This study was chosen to demonstrate the potential of HuMiX
for metabolomics and as a practical example with a high number
of relevant unknowns. Although it was not originally designed to
investigate the unknowns, it nicely illustrates certain, current
limitations. The double derivatization (trimethylsilylation (TMS),
methoximation), which is necessary for increased volatility,
makes it difficult to find metabolite features/spectra in other da-
tabases (such as NIST, despite the presence of some derivatized
metabolites in there). It can also lead to duplicates, as different
derivatized forms may relate to the same metabolite. Further,
derivatization also changes the retention time, limiting the use of
retention index prediction (as most predicted values e.g. in NIST
correspond with underivatized substances). In addition, with GC-
EI-MS alone it is not possible to acquire accurate mass data and as
the molecular ion is often either low abundance or not visible at
all, it is often difficult to calculate a molecular formula for further
structure elucidation. While some formula prediction approaches
are implemented e.g. within MOLGEN-MS [82] and NIST, neither
of these are suited to higher-throughput methods needed for
discovery-based screening. Without coupling to high accuracy
MS, it often remains difficult to align unknowns detected in EI-MS
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with unknowns detected in HR-MS measurements. However, as
mentioned above, the use of a system such as HuMiX offers
exciting possibilities to elucidate these unknowns in future ex-
periments. The design minimizes matrix effects, which can be a
severe limitation in more complex samples, while showing high
reproducibility between biological replicates. The system also
allows the investigation of intra- and extracellular metabolites
separately. Future HuMiX experiments will further probe the in-
teractions between human cells and a complex, yet reduced
synthetic microbiota to investigate and elucidate the production
and exchange of intra- and extracellular metabolites of both hu-
man and microbial cells. Combined with additional HR-MS ap-
proaches and computational analyses, HuMiX shows great
potential to tackle the unknowns in host-microbiome
metabolomics.

3. Approaches for identifying dark matter

As outlined above, the features associated with dark matter far
outnumber the “known knowns” (targets) and it still remains
challenging to reconcile EI-MS features with HR-MS features.
However, there are a plethora of methods and workflows aimed at
supporting the identification of unknowns in mass spectrometry
and many articles cover various aspects of these more compre-
hensively than possible here, e.g. Refs. [47,51,83—87]. Instead, the
following material outlines the basic approaches with selected
examples and a specific focus on very new approaches, especially
those relevant to identification of unknowns in the microbiome.
Fig. 5 includes a very simplified workflow for the major approaches,
consistent with the terminology used in this article.

Microbiome studies are still relatively new and thus mostly at
the “discovery” stage. Using the definitions above, most studies so
far restrict themselves to “known knowns” (targets; reference
standards in house) and “known unknowns” (discovered by sus-
pect or non-target screening). Full elucidation of “unknown un-
knowns” (undocumented substances) is still extremely time
consuming and beyond the scope of large screening studies, except
for carefully selected features of high interest (see discussions in
prioritization below). Approaches to deal with the “unknown
knowns”, i.e. complex mixtures such as homologues that are
frequently observed in all samples, are still in their infancy and this
remains a large challenge in tackling the dark matter with the
current workflows [88].

- Il

Unknown (p>0.05) m Unknown (p<0.05)

Fig. 4. Known and unknown features according to the level of significance of differences under different co-culture scenarios (Comparison of human-microbial co-cultures to their
respective mono-culture controls). Red and blue indicate knowns and unknowns, respectively, with lighter shading indicating p >.05 and darker shading p < .05, respectively. (A)
Intracellular metabolites of human cells (Caco-2) after co-culture with LGG. (B) Intracellular metabolites of LGG after co-culture with human cells. (C) Intracellular metabolites of
human cells (Caco-2) after co-culture with LGG and B. caccae. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this

article.)
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Fig. 5. Simplified workflows for unknown identification in GC-EI-MS (left) and HR-MS/MS (right).

3.1. “Known unknowns”: resources

Information sources to find “known unknowns” for typical
computational workflows include compound databases (contain-
ing chemical information, but not necessarily spectral information)
and spectral libraries (containing chemical information and their
associated spectra; here MS). Fig. 6 below contains an overview of
major databases and spectral libraries.

Despite the millions of structures contained in PubChem and
ChemSpider, and the hundreds of thousands of spectra in EI-MS
libraries, many unknowns often still remain. For resources such
as MS libraries it is often clear when no spectra match (indicating
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an “unknown” that is beyond the library), while for large com-
pound databases, often tens to thousands of candidate structures
may match a given mass and, thus, candidate selection is necessary
(see discussion below).

Importantly, non-target screening and unknown identification
should not be performed in isolation, but are far more successful
with supporting target and suspect screening to find as many
“known unknowns” as possible. Full elucidation without prior in-
formation is an extremely time-consuming task and gathering as
much information from the sample, experiment and other features
present is critical to success. Target analysis and/or suspect
screening allows comparatively efficient (tentative) identification
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Fig. 6. An overview of selected compound databases (PubChem [89,90], ChemSpider [91,92], the CompTox Chemistry Dashboard [59,93] and HMDB [71,72,94]) and EI-MS databases
[95—99] and soft ionization MS/MS databases. *indicates that EI-MS and/or predicted spectra were excluded from the numbers. Information for the MS/MS databases collated from
the individual resources (mzCloud [100], NIST [97], METLIN [101,102], MoNA [103], MassBank [104,105], MSforID [106], GNPS [107], HMDB compounds with MS/MS only [71,72] and

WEIZMASS [108] and [51]).
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of expected features. With EI-MS, this step is often performed
directly with large reference spectral libraries, either coupled with
NIST and/or Wiley (see Fig. 6) or with smaller specialised collec-
tions specific to the experimental context, such as GOLM [98] or
local libraries, such as described above for the HuMiX experiments.
While this approach can also be used for the softer ionisation
methods, the libraries are not as extensive (see Fig. 6) and the
success rate at annotating tentative identities to detected peaks is
still quite low. Although some libraries (e.g. mzCloud) now contain
more spectra than the NIST EI-MS library, the number of com-
pounds behind the spectra is several orders of magnitude lower.
The spectral numbers are generally much larger than compound
numbers in these libraries as many spectra are recorded with
varying collision energies to overcome the lack of reproducibility
and standardization (Fig. 6 for the breakdown).

For soft ionization measurements, alternative workflows to
discover targets and suspects have evolved, either via peak picking
and mass matching within peak lists, or via extracted ion chro-
matograms (see e.g. Ref. [50] for a more detailed delineation
reviewing the various approaches used during a collaborative trial
in the environmental community). Recently, target and untargeted
analysis have been coupled together in microbiome studies, from
analysis through to data processing and although this set-up still
requires optimization, it is an important first step towards
streamlining the whole process [57]. One key improvement needed
to further improve “suspect screening” (looking for expected
compounds without the reference standard in-house) via a
reduction in the false positives is to use fragment information such
that not only the exact mass, but also specific fragments can be used
to increase the confidence in the match. For instance, Melnik et al.
[57] used one fragment per target for confirmation, which is more
than many but insufficient to delineate closely-related structures
and ideally more should be used in workflows. Kaufmann et al.
recently used predicted fragments (see below) to reduce false
positives in residue screening of complex matrices [109]. The
fragment information (with multiple fragments from measured
spectra) was an essential quality control criterion in a recent pilot
study to evaluate the potential of an Early Warning System (Nor-
maNEWS) for Contaminants of Emerging Concern (CECs) to enable
rapid determination of CEC distribution throughout Europe using
retrospective screening techniques [58,59,110]. As a result, a list of
top 3 fragments merged from various collision energies of all
spectra per compound uploaded to the European MassBank [105]
has recently been added to the public domain via the CompTox
Chemistry Dashboard [59,93] and the NORMAN Suspect Exchange
[58]; the latter list contains also a more extensive breakdown (per
collision energy and instrument). While this list is just a prototype,
expanding this to other collections will help increase the confi-
dence in target and suspect screening greatly. The full mass spectra
are still needed to capture intensity variations for more compre-
hensive confirmation in the workflows (e.g. MassBank, GNPS).
Fragment matching serves to provide a quick tentative match to
avoid too many false positives.

3.2. “Known unknowns”: candidate selection without library
spectra

The fragmentation information described so far was obtained on
measured data. In silico fragmenters can be used to predict frag-
ments in the absence of spectral information to establish whether
potential candidate(s) could produce the observed (measured)
fragments. Many in silico approaches exist, including combinatorial
fragmenters (e.g. MetFrag, MAGMa) [111,112], machine learning
approaches (CFM-ID, CSI:FingerID) [113,114], rule-based frag-
menters (e.g. MS-FINDER) [115], all of which participated in the

2016 Critical Assessment of Small Molecule Identification (CASMI)
contest [8G]. Other approaches also exist, for instance some MS
libraries (e.g. METLIN) and compound databases (e.g. HMDB) are
now saving predicted spectra — whereby spectra are predicted by in
silico fragmenters such as the ones mentioned above. Generally
speaking, these in silico approaches depend on compound data-
bases as a source of candidates. Metabolomics studies often limit
themselves to KEGG (to find those candidates known to be asso-
ciated with metabolism, usually only a few candidates per mass or
formula) or extend themselves to PubChem (hundreds to thou-
sands of candidates per mass/formula). Environmental studies
tended rather to default straight to ChemSpider or PubChem as
KEGG was too limited. The advent of the CompTox Dashboard as a
smaller, environmentally relevant resource will help reduce
candidate lists in these investigations [116]. An alternative to
compound databases is structure generation, where all candidates
with a given formula (and substructure restrictions) are enumer-
ated. Very few studies so far with HR-MS use structure generation
to source candidates and these are restricted to transformation
studies with very detailed parent (and thus substructure) infor-
mation (e.g. Ref. [117]). In contrast, structure generation coupled
with substructure information via classifiers and rule-based
candidate fragmentation and ranking has yielded a CASE system
for EI-MS that can support elucidation in some cases (perspectives
summarized in Ref. [48]). Such CASE systems with structure gen-
eration for EI-MS or even HR-MS are not yet quick or successful
enough for large non-target screening studies, but rather may form
a part of detailed elucidation on prioritized unknowns.

One outcome of the recent CASMI contest [86] and Ruttkies et al.
[111] was the effect of the metadata on the success rate of tenta-
tively identifying “known unknowns” amongst unknowns. For the
datasets evaluated (all reference standards), the number of correct
structures correctly ranked in first place rose from ~6 to 30% to over
70% with metadata, primarily driven by the number of references.
The number of references is obviously highly relevant for envi-
ronmental sciences, where well-known substances are more likely
to occur in the environment (i.e. the references could be postulated
to scale with the use). The relevance of the reference information to
metabolomics studies is still a subject of debate in the community.
However, as the name “suspect screening” implies, the reference
information is merely supporting information to help find poten-
tially interesting masses; these should be confirmed with analytical
evidence before being considered anything other than tentative.

Metadata such as reference information will potentially greatly
assist in finding the “known unknowns”, but metabolomics per se
involves metabolites and various transformation processes
(including abiotic) also occur in the environment. Thus, another
source of candidates becomes predicted metabolites or trans-
formation products (TPs) from given starting products. Predictive
systems such as enviPath [118,119], BioTransformer [120] or
CATALOGIC [121] take a given structure as input and output
transformed structures according to defined rules, certainties and
also reaction steps desired. Combinatorial explosion is a limitation
if too many steps are considered. The MINEs database [122,123]
contains predicted metabolites/TPs of smaller compound databases
such as KEGG [69], calculated using “promiscuous enzymes” the-
ory, stored for access in methods such as the in silico fragmenters
mentioned above. An alternative is to use metabolic logic to link
potentially related masses in before/after samples [124], which is
reasonably similar in concept to the principles behind the molec-
ular networking approach [107,125]. Realistically, several ap-
proaches are still needed to fully explore the complexity of
microbiome samples, as this contains both genetic, transcriptional,
enzymatic, regulatory and not least metabolic signals and processes
as well as the inputs (e.g. food, anthropogenic substances).
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3.3. Dark matter and identification challenges

3.3.1. “Unknown knowns”

Homologue series (substances related by discrete building
blocks, such as CH,, CH,CH,0, CF;) are prevalent in both metab-
olomics and environmental samples. Classic examples include
lipids and surfactants. However, homologue screening (e.g.
Refs. [126,127]) reveals that many more series exist than can be
annotated, while several commonly observed mass differences
cannot yet be annotated in HR-MS environmental studies (e.g.
Ref. [55]). A huge challenge for assessing and annotating the “dark
matter” will be to make progress on the identification of at least one
member of such series, as there are often dozens of peaks and
features (if not more) related to each series. There are detailed re-
sources for lipids such as LipidMaps [128] and excellent computa-
tional approaches coupling prediction of lipid structures and the
spectra [129]. However, the so-called Unknown and Variable
Composition, Complex Reaction Products and Biological Materials
(UVCBs) are often poorly characterized (and poorly defined) ho-
mologues and can be released into the environment in huge
amounts. Thousands of high exposure UVCBs exist [59] and
developing computational methods to deal with this complexity
will be critical to cross-annotating the dark matter.

3.3.2. Feature grouping: in-source fragments and unexpected
adducts

As mentioned above, one of the greatest challenges in untar-
geted data processing is reconciling the detected masses into
relevant features for further identification efforts. Common efforts
such as CAMERA [130,131] and the R package nontarget [55,132]
(used to create Fig. 2) use rule-based approaches to screen for
known adducts and isotopes. Few approaches consider the large
role of in-source fragments in a systematic way, especially for
certain compound classes, as these are not documented as well as
potential adducts. Approaches such as RAMClust help explore this
in a data-driven way [133]. If not considered carefully, some
compound classes such as carboxylic acids may produce in-source
fragments more intense than the precursor peak in the first stage
MS1 (full scan) and, thus, identification/annotation may be per-
formed on the wrong ion. A wider investigation into the recog-
nition of in-source fragments in the MS1 and dealing with the
consequences during feature detection is greatly needed. An
important step will be the inclusion of these spectra in libraries.
Preliminary results on data extracted previously for MassBank
indicate that in-source fragments are far more common (and far
more intense) than long suspected by the community [134] and
the latest NIST MS library (NIST2017) now includes in-source
fragments and also the MS/MS spectra corresponding to these
fragments [135], which will greatly facilitate the recognition of
mis-annotations. Failure to recognize in-source fragments results
in mis-identifications if e.g. the non-target mass is a fragment and
not the parent ion, and they are a potential significant contribu-
tion to the dark matter. Mahieu and Patti also showed very
recently that analyte multimers, situational adducts and in-
teractions with background ions can all contribute greatly to peak
degeneracy [67], representing more layers of complexity to
consider when consolidating the detected masses into actual
features and assigning the correct “parent mass” for further
identification efforts. Integrating these aspects into untargeted
data analysis workflows is a challenge that the community needs
to overcome in the next few years.

3.3.3. Prioritization
Finally, choosing the relevant “known unknowns” to confirm or
the “unknown unknowns” for further elucidation efforts using

untargeted approaches still, in reality, involves “cherry picking” or
going for the low hanging fruits. The sample amount from
discovery-based studies is rarely sufficient to allow for additional
elucidation such as NMR techniques, although impressive cou-
plings with LC are now enabling elucidation efforts where it was
previously not possible. Efforts such as isotope labeling help sys-
tematically select those features that are metabolized in metab-
olomics studies, but not in environmental studies. Assigning
annotations or tentative identifications to peaks in untargeted
studies with even the largest compound databases still leaves many
unknowns and focus is often on identifying the most intense, those
with the most promising annotation/metadata or those with clear
isotope and adduct signals as well as fragment information. Suc-
cessful elucidation/confirmation of substances without an isotope
pattern is rare (see the remaining “single masses” in Fig. 2), as the
intensity is often insufficient for fragments and thus any form of
structural information. Additionally, substances of lower intensity
often experience matrix interferences. An exception are the ho-
mologues, where low intensity peaks in the series can still be cross-
annotated successfully when some higher intensity peaks in the
series are available, assuming sufficient additional evidence such as
chromatographic peak shape is present.

4. Future perspectives and challenges

As outlined above and highlighted in Section 2.2, many chal-
lenges exist on the way to elucidating the “dark matter” of the
microbiome, yet much progress in terms of available methodolo-
gies has been made. One challenge is to reconcile metabolite fea-
tures from previous studies performed with (derivatized) GC-EI-MS
with features detected in HR-MS measurements, especially where
derivatization potentially complicates the overlap. Although GC and
LC have different compound domains, it is clear that some sub-
stance classes will be detected with both techniques. A recent
Collaborative Non-target Screening Trial run in Europe on a com-
mon water sample revealed 5.4% overlap between the substances
reported by all participants with GC versus LC-based methods
(target and suspect/library screening) [50]. This trial was one of the
first collaborative efforts where results were merged between GC-
EI-MS, GC-EI-MS coupled with chemical ionization (CI), GCxGC
(two dimensional gas chromatography) techniques and finally GC-
APCI-MS. While no institute in this trial had derivatized substances,
the challenges nominated by researchers still apply — including the
lack of streamlined workflows for GCxGC or for combining EI-MS
with exact masses from CI. The identification approaches used for
the GC-APCI-MS data were far more similar to the LC-HRMS ap-
proaches described above, as the EI-MS databases do not apply to
APCI spectra. It was only possible to estimate the 5.4% overlap be-
tween LC and GC on the “knowns” in this trial. However, when
derivatization is in the mix it is much more challenging to reconcile
the unknown features (EI-MS spectrum plus retention index;
mostly derivatized) with supporting measurements in LC-HRMS
unless there is a coupling of GC with CI or APCI-MS to act as a
“bridge” between the data. Thus, it remains difficult to estimate
how much of the dark matter may overlap between LC and GC in
microbiome-host interactions. Judging by the user difficulties
during the trial and progress since then, one of the challenges over
the next few years will be to establish workflows to assist in the
merging of data and peak lists across chromatographic and ioni-
zation types in order to answer this question. This will become
gradually easier as high-resolution GC methods become more
accessible.

In silico methods to support the tentative identification of un-
knowns have come a long way in a few years, yet mass spectrom-
etry is also inherently limited. The “dark matter” likely consists of
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many signals resulting from complex isomeric mixtures that will
not realistically be distinguishable with MS; nor will full elucida-
tion be possible with MS-based methods alone. One of the chal-
lenges for MS-based workflows will be to find new ways of dealing
with this, to move away from a single-structure-based annotation/
identification towards annotation with generic structures, where
some degree of structural uncertainty can be displayed. While this
is often possibly pictorially to some extent, cheminformatics
database exchange formats are not all yet able to support this (e.g.
InChls and InChiKeys are only defined for discrete structures, while
multiple forms of “generic” or “extended” SMILES already exist but
are not standardized). As for TP prediction, combinatorial explosion
will prevent the generation of all possible isomers for even rela-
tively simple isomer sets, such that “representative structures” (e.g.
Refs. [88,136]) or “related structures” (e.g. Refs. [116,137,138]) may
be a way forward for MS-based workflows to deal with these issues.
As stated above, the correct recognition of potential in-source
fragment peaks and other analytical phenomena (e.g. unexpected
adducts) is another improvement that will assist in correctly
identifying the “true” precursor peaks.

Another advanced technology to investigate unknown metab-
olites that should also be mentioned is single-cell MS. For example
high-density microarrays for MS allow for high-throughput
metabolite analysis of single cells with a detection limit of
100 amol to 10fmol [139,140]. These approaches enable the
detailed and minute description of metabolic differences between
individual cells based for example on cell age or cell cycle stage
[139].

With increased data and knowledge sharing between the
environmental and metabolomics communities, as well as the
multi-omics layers, the perspectives for “illuminating the dark
matter” [66] are looking bright and despite the challenges that still
lie ahead, good progress is being made to address some of the
critical issues currently holding up the workflows. In this context, it
will be particularly important to integrate metabolomics data with
other omics data. As has already been demonstrated, the inclusion
of metadata dramatically increases the number of metabolite fea-
tures which can be identified (see detailed discussion above). In
particular, the generation of concomitant metagenomic, meta-
transcriptomic and metaproteomic data on human microbiome
samples will allow proper contextualization of metabolomic data in
terms of active metabolic pathways and, thus, predictions of ex-
pected metabolites. Furthermore, by performing integrated multi-
omic analyses on longitudinally collected samples in combination
with advanced time-series analysis methods, one will be able to
associate the expression of proteins of unknown function to specific
metabolite features which in turn will allow causal inferences
regarding enzymatic activity. Such approaches relating proteomic
to metabolomic data have proven fruitful for the elucidation of
unknown metabolic traits in communities of low diversity
[141,142]. However, given rapid advances in sequencing as well as
proteomic and metabolomic methodologies especially in relation to
enhanced depth of coverage of biomolecular pools, such ap-
proaches are now poised to find application in the more complex
communities of the human gut microbiome.

Although the integration of multiple other omes will allow more
comprehensive exploitation of the metabolomics data, really un-
derstanding the function and origin of the unknowns will require
extensive work. Here, a prioritized list of unknown metabolites
which are for example commonly seen across the human popula-
tion could be established. Such a list would then provide the basis
for detailed biochemical characterization not least in terms of
linking them to possible proteins of unknown function which are
abundantly present in metaproteomic datasets [143].
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