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CHAPTER 1  

Summary 

Safety and efficacy of drugs depend on their exposure in the body, which is determined by dose 

and bioavailability, but also by drug disposition as a result of tissue distribution and elimination 

processes. Knowledge about drug disposition in humans is therefore critical for the successful 

development of new drugs, with clinical information being unavailable at early development 

stages. To overcome this limitation, the pharmacokinetic properties of new drug candidates are 

routinely characterized using cell-based in vitro methods and in vitro-in vivo extrapolation (IVIVE) 

models. However, the assessment of drug distribution and elimination remains challenging. It was 

therefore the aim of this thesis to 1) establish a mechanistic in vitro model to study the hepatic 

distribution of unbound drug and to validate the model by predicting the clinical risk of drug-

induced cholestasis, 2) investigate the applicability of additional in vitro methods for the 

determination of hepatic distribution of unbound drug, and 3) develop an in vitro model for the 

prediction of total (hepatic and renal) drug clearance and elimination pathway contributions in 

humans. 

Knowledge about the drug distribution into tissues and the corresponding unbound intracellular 

drug concentrations is of particular interest in the context of intracellular drug effects related to 

toxicity, pharmacokinetics, and pharmacodynamics. For instance, prediction of drug-induced 

cholestasis due to inhibition of the intrahepatic bile salt export pump (BSEP) is commonly 

conducted using the unbound systemic drug exposure as a surrogate for the unbound 

intrahepatic concentration following the “free-drug hypothesis”. However, this assessment offers 

limited translatability to the clinical cholestasis risk since the effective unbound intrahepatic drug 

concentration is affected by active transport and/or metabolic processes. To improve such 

evaluations of intrahepatic drug interactions, the determination of the liver-to-blood partition 

coefficient for unbound drug at steady-state (Kpuu) was established based on in vitro 

measurements of active and passive sinusoidal uptake permeability, sinusoidal efflux permeability, 

hepatic metabolism, and biliary secretion according to the Extended Clearance Model (ECM). 

Following successful validation of the ECM-based Kpuu approach by in vitro-in vivo correlation in 

rats, human Kpuu data of 18 drug compounds were used to calculate unbound intrahepatic drug 

concentrations based on clinical drug exposure. This assessment significantly improved the 

translation of BSEP inhibition in vitro data to human and allowed the prediction of the clinical 

cholestasis frequency. Moreover, usefulness of the ECM as a drug classification system and for 

the quantitative evaluation of genetic and physiological risk factors for the development of 

cholestasis was demonstrated. The determination of unbound intrahepatic drug concentrations 

using the ECM-based hepatic Kpuu is therefore expected to improve early risk assessment of 

drug-induced cholestasis as well as of other intrahepatic drug interactions. 
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The ECM-based determination of Kpuu was successfully established and validated. However, this 

approach is labor and cost-intensive. A second project therefore aimed at comparing alternative in 

vitro Kpuu determination methods for the previously investigated compound set. For this purpose, 

three straightforward approaches were selected that rely on separate in vitro measurements of 

the liver-to-blood partition coefficient for total drug at steady-state (Kp) and the unbound fraction 

in hepatocytes (fuhep). Kp was generally determined in hepatocellular drug accumulation 

experiments in the absence of intrinsic metabolic and biliary clearance processes, whereas fuhep 

was either measured in hepatocellular drug accumulation experiments on ice (temperature 

method), using homogenized hepatocytes in equilibrium dialysis experiments (homogenization 

method), or calculated from the distribution coefficient logD7.4 using an empirical model (logD7.4 

method). All investigated methods indicated deviations to ECM-derived Kpuu data, which were 

closely linked to the pharmacokinetic and physicochemical compound properties, namely the 

extent of intrinsic hepatic clearance, logD7.4, and molecular weight. The usefulness of the 

alternative Kpuu determination methods is therefore limited, with the ECM remaining the preferred 

approach for an integrated assessment of hepatic Kpuu. Nevertheless, the alternative methods 

can provide valid fuhep data if the physicochemical compound properties are considered for the 

selection of the appropriate method. 

During drug development, hepatic drug clearance is routinely predicted using in vitro approaches 

such as the ECM. In contrast, appropriate in vitro models for the prediction of renal drug 

clearance are lacking. Thus, the assessment of total clearance for new drug candidates is 

strongly limited. To overcome this drawback, an empirical in vitro model was established that 

provides estimates of the relative hepatic metabolic, biliary, and renal elimination pathway 

contributions in humans, based on in vitro sinusoidal uptake permeability data. This assessment 

subsequently allows the extrapolation of hepatic into total drug clearance. Under consideration of 

ECM-based hepatic clearances, the model provided accurate predictions of total human 

clearance for 10 developmental compounds. Moreover, it was demonstrated that the Extended 

Clearance Concept Classification System (ECCCS) is applicable to evaluate the relevance of 

metabolic, biliary, and renal drug elimination, which provides useful guidance for the design of 

follow-up enzyme and transporter phenotyping studies. Thus, the established model allows a 

simple and highly reliable assessment of total drug clearance and relative elimination pathway 

contributions in humans based solely on hepatic in vitro data, facilitating a tailor-made 

pharmacokinetic assessment during early drug development. 
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CHAPTER 2  

Introduction 

2.1. Drug transport across biological membranes 

Permeation across cellular membranes is a key determinant for the ADMET (absorption, 

distribution, metabolism, excretion, and toxicity) properties of drugs. Membrane permeation 

occurs either via the transcellular route through the cells or via the paracellular route between the 

cells (Figure 2.1). Paracellular permeability represents a passive process, which is restricted to 

small hydrophilic compounds by intercellular tight junctions (Camenisch et al., 1997; Pade and 

Stavchansky, 1997). Transcellular permeation occurs by passive diffusion (passive membrane 

permeability) and/or by carrier-mediated (active or facilitated) transport. Passive membrane 

permeability is driven by a concentration gradient and is mainly dependent on physicochemical 

properties such as lipophilicity, polarity, ionization, and molecular size of a drug. Thereby, small, 

lipophilic, and uncharged drugs generally exhibit higher passive membrane permeability 

(Oostendorp et al., 2009; Sugano et al., 2010). Active transport of drugs across cell membranes is 

mediated by transport proteins of the solute carrier (SLC) family and the adenosine triphosphate 

(ATP) binding cassette (ABC) family, whereby SLC transporters mainly facilitate uptake into cells 

and ABC transporters mediate efflux out of cells. 

2.1.1. SLC transporters 

The human SLC superfamily consists of 52 subfamilies (SLC1 - SLC52) with about 400 

transporter genes (Hediger et al., 2013). SLC transporters are membrane-bound proteins that 

primarily mediate cellular uptake of their substrates by facilitated diffusion or secondary active 

transport (DeGorter et al., 2012). Facilitated diffusion is energy-independent and driven by an 

electrochemical gradient that determines the direction of transport. Secondary active transport 

occurs against an electrochemical gradient and is coupled to the symport or antiport of ions 

(Hediger et al., 2013; Sahoo et al., 2014). SLC transporters are important determinants for the 

absorption, tissue distribution, and elimination of endogenous substances including sugars, amino 

acids, peptides, nucleotides, and ions. Therefore, they have been recognized as potential 

therapeutic drug targets due to their physiological functions and role in numerous diseases 

(Cesar-Razquin et al., 2015; Lin et al., 2015). In addition, many drugs have been identified as 

substrates for SLC transporters in different organs. 

In the context of drug transport, SLC transporters of the organic anion transporting 

polypeptides (OATP, SLCO (previously SLC21A)) family, the organic anion transporters (OAT, 

SLC22A), organic cation transporters (OCT, SLC22A) family, and the multidrug and toxin 
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Figure 2.1. Transport mechanisms in epithelial cells. Drugs permeate across epithelial membranes via the 

paracellular or the transcellular route in either an absorptive (apical to basolateral) or excretory (basolateral 

to apical) direction. Passive paracellular and transcellular permeability is driven by a concentration gradient 

and depends on physicochemical properties, with tight junctions between cells limiting paracellular 

permeability. Active transcellular permeability is mediated by efflux transporters of the ABC superfamily and 

uptake transporters of the SLC superfamily. Taken from Sugano et al. (2010). 

extrusion protein (MATE, SLC47A) family are considered to be of high clinical relevance. These 

SLC transporters are predominantly expressed in the plasma membrane of polarized epithelial 

cells in tissues with barrier or excretory function such as intestinal epithelia, hepatocytes, kidney 

proximal tubules, and the blood-brain barrier where they regulate the systemic and tissue 

exposure of drugs (Figure 2.2). In addition, interactions between drugs and transporters are 

generally associated with a risk for drug-drug interactions (DDI) that might change the exposure 

profile of drugs and therefore alter their safety and efficacy. Thereby, transporter substrates are 

potential DDI victim drugs and transporter inhibitors can become perpetrators of DDIs. The 

evaluation of new drug candidates regarding their interaction with clinically relevant drug 

transporters is therefore recommended by American and European health authorities (Food and 

Drug Administration (FDA), European Medicine Agency (EMA)) as well as by the International 

Transporter Consortium (EMA, 2012; FDA, 2012; Hillgren et al., 2013). The role and 

characteristics of these SLC drug transporters is described in the following sections. 
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2.1.1.1. OATP family 

The OATP family consists of 11 members, with OATP1B1 (SLCO1B1) and OATP1B3 (SLCO1B3) 

representing the most important isoforms with regard to the transport of drugs (EMA, 2012; FDA, 

2012; Hillgren et al., 2013). OATP1B1 and 1B3 are exclusively expressed in the sinusoidal 

plasma membrane of hepatocytes where they mediate the hepatic uptake of their substrates 

(Kullak-Ublick et al., 2001). The transport mechanism of OATPs is not fully understood, but they 

likely function as electroneutral exchangers (Roth et al., 2012). OATP1B1 and 1B3 have an 

overlapping substrate range including endogenous substances, such as bile acids or conjugated 

and unconjugated bilirubin, as well as various drugs (DeGorter et al., 2012; Roth et al., 2012). 

Hence, they enhance the access to drug-metabolizing enzymes and biliary secretion in the liver 

and mediate the first step in hepatic drug elimination. In addition, OATP1B1 and 1B3 are known 

to contribute to drug efficacy for intrahepatic targets, as in the case for the hepatic uptake of 

statins, facilitating their lipid-lowering effect as inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme 

A (HMG-CoA) reductase (Niemi et al., 2005). On the other hand, reduced OATP1B1 and 1B3 

function is linked to increased systemic exposure and drug toxicity, exemplified by statin-induced 

myopathy (Neuvonen, 2010; DeGorter et al., 2012). This condition can be caused by OATP1B1 

and 1B3 inhibition due to co-medication or by the presence of nonsynonymous polymorphisms. 

The latter is particularly relevant for OATP1B1 (Link et al., 2008; Elsby et al., 2012). 

2.1.1.2. OAT and OCT family 

The SLC22 gene family is composed of over 30 members in mammals including OATs, OCTs, 

and organic/carnitine cation transporter (OCTNs) (Liu et al., 2016). Among the SLC22 family, 

OAT1 (SLC22A6), OAT3 (SLC22A8), OCT1 (SLC22A1), and OCT2 (SLC22A2) are considered 

the most relevant drug transporters (EMA, 2012; FDA, 2012; Hillgren et al., 2013). OAT1 and 

OAT3 mediate the cellular uptake of hydrophilic anionic and zwitterionic molecules with low 

molecular weight including various drugs. They function as antiporters and mediate the 

membrane transport of their substrates in exchange for the counter ion α-ketoglutarate (Roth et 

al., 2012; Koepsell, 2013; Liu et al., 2016). Both transporters are primarily localized at the 

basolateral plasma membrane of renal proximal tubule cells, with OAT1 expression having 

additionally been observed in skeletal muscle cells (Takeda et al., 2004; DeGorter et al., 2012). 

OCT1 and OCT2 facilitate bidirectional diffusion of their substrates down the electrochemical 

gradient (Roth et al., 2012). Their range of substrates covers organic cations with low molecular 

weight, including several drugs, and endogenous compounds like monoamine neurotransmitters 

and creatinine (DeGorter et al., 2012). OCT1 is primarily expressed in the sinusoidal plasma 

membrane of hepatocytes. In addition, OCT1 is located in the basolateral plasma membrane of 

intestinal epithelial cells and in the apical plasma membrane of kidney proximal tubule and lung 

cells (Lips et al., 2005; Muller et al., 2005; Nies et al., 2008; Tzvetkov et al., 2009). Large inter-

individual variability in hepatic OCT1 expression has been observed, which could be linked to 

genetic variations and cholestasis (Nies et al., 2009). OCT2 is mainly expressed in the basolateral 
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plasma membrane of kidney distal tubule cells and to a lesser extent in the lung and brain 

(Gorboulev et al., 1997; Lips et al., 2005; DeGorter et al., 2012). Hence, OATs and OCT mediate 

the elimination of drugs and limit their systemic exposure, whereby OAT1, OAT3, and OCT2 

contribute to active renal tubular secretion and OCT1 primarily facilitates hepatic drug uptake. 

2.1.1.3. MATE family 

The MATE family consists of MATE1 (SLC47A1), MATE2 (SLC47A2), and the splicing variants 

MATE2K and MATE2B. Among the MATE2 variants, MATE2K is the active form, whereas the 

physiological role of MATE2 and MATE2B is unknown (Masuda et al., 2006). MATE1 and 

MATE2K are mainly expressed in the apical plasma membrane of kidney proximal tubule cells. 

MATE1 is also located at the canalicular hepatocyte membrane and in skeletal muscle, adrenal 

gland, and testis (Otsuka et al., 2005; Masuda et al., 2006). MATEs are electroneutral 

transporters that typically facilitate bidirectional transport of organic cations with low molecular 

weight against a proton gradient (Tanihara et al., 2007). They function in cooperation with hepatic 

OCT1 and renal OCT2 and mediate the secretion of organic cations into bile and urine (Otsuka et 

al., 2005). In addition, transport of anions and zwitterions has been observed, likely working 

together with OAT-mediated cellular uptake (Yonezawa and Inui, 2011; Hillgren et al., 2013). 

2.1.2. ABC transporters 

ABC transporters are membrane-bound transport proteins that mediate energy-dependent cellular 

efflux against a concentration gradient by binding and hydrolysis of ATP. So far, 52 human ABC 

transporters have been identified, categorized in seven subfamilies (ABCA - ABCG) (Saier et al., 

2016). Similar to SLC transporters, clinically relevant ABC transporters are mainly located in the 

plasma membrane of polarized epithelial cells in intestinal epithelia, hepatocytes, kidney proximal 

tubule cells, and at the blood-brain barrier (Figure 2.2). ABC transporters play a pivotal role in 

limiting the absorption and distribution or mediating the excretion of drugs and other xenobiotics, 

protecting the body from potentially harmful substances (Giacomini et al., 2010). Interactions with 

ABC transporters are also associated with a potential risk for DDIs (Chan et al., 2004; Konig et al., 

2013). ABC drug transporters of particular clinical importance are P-glycoprotein (P-gp, ABCB1), 

breast cancer resistance protein (BCRP, ABCG2), members of the multidrug resistance protein 

(MRP, ABCC) family, and bile salt export pump (BSEP, ABCB11) (Hillgren et al., 2013). These 

transporters are described in the following section. 

2.1.2.1. P-gp and BCRP 

P-gp and BCRP are expressed in the apical plasma membrane of polarized epithelial tissues and 

mediate the excretory transport of drugs and xenobiotics, thereby limiting their bioavailability and 

systemic and intracellular exposure. P-gp and BCRP are present in the intestinal epithelium, 
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hepatocytes, kidney proximal tubule cells, endothelial cells in the blood-brain barrier as well as in 

blood-nerve, blood-testis, and maternal-fetal barriers. BCRP is also expressed in mammary tissue 

where it secretes vitamins but also drugs and toxins into breast milk (Schinkel and Jonker, 2003). 

The substrate spectrum of P-gp and BCRP is large and includes endogenous substrates and 

xenobiotics such as numerous drugs and carcinogens. P-gp substrates are frequently 

hydrophobic cationic or neutral molecules. For BCRP, no definite substrate-structure relationship 

has been established (Schinkel and Jonker, 2003; Robey et al., 2009; Giacomini et al., 2010; 

Wessler et al., 2013). In addition, several inhibitors and inducers of P-gp and BCRP have been 

identified, including pharmaceutical drugs, herbal medicines, and food and juice components 

(Marchetti et al., 2007; Muller and Fromm, 2011). 

 

Figure 2.2. Drug transporters in intestinal epithelia (a), hepatocytes (b), kidney proximal tubules (c), and 

blood-brain barrier (d). Red highlighted transporters have high clinical relevance and evaluation of their 

interaction potential with new drug candidates is requested by health authorities (EMA, 2012; FDA, 2012; 

Hillgren et al., 2013). ASBT, sodium/bile acid co-transporter; BCRP, breast cancer resistance protein; BSEP, 

bile salt export pump ; MATE, multidrug and toxin extrusion protein; MCT, monocarboxylic acid transporter; 

MRP, multidrug resistance protein; NTCP, sodium taurocholate co-transporting peptide; OAT, organic anion 

transporter; OATP, organic anion transporting polypeptide; OCT, organic cation transporter; OCTN, 

organic/carnitine cation transporter; OSTα-OSTβ, heteromeric organic solute transporter; PEPT, peptide 

transporter; P-gp, P-glycoprotein; URAT, urate transporter. Modified from Giacomini et al. (2010).  
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2.1.2.2. MRP family 

The MRP family comprises 9 members (MRP1 - MRP9), which primarily mediate cellular efflux of 

endogenous organic anionic substances such as glucuronide, glutathione, and sulfate conjugates, 

and steroids, as well as drugs and their conjugated metabolites (Slot et al., 2011). Among the 

MRP family, MRP2 (ABCC2), MRP3 (ABCC3), and MRP4 (ABCC4) are considered the most 

clinically relevant members (Hillgren et al., 2013). MRP2 is apically expressed in the canalicular 

plasma membrane of hepatocytes, kidney proximal tubule cells, small intestinal epithelium, colon, 

gall bladder, bronchi, and placenta. On the contrary, MRP3 and MRP4 are located in the 

sinusoidal hepatocyte membrane and mediate efflux towards to bloodstream. Further localizations 

of MRP3 and MRP4 are the plasma membrane of intestinal epithelial cells, kidney proximal tubule 

cells, and various other tissues (Schinkel and Jonker, 2003; Hillgren et al., 2013). MRP2-

mediated efflux is of particular importance for the hepatobiliary, renal, and intestinal elimination of 

conjugated drug metabolites and endogenous substances such as bilirubin glucuronides (Konig et 

al., 1999). For instance, patients with Dubin-Johnson syndrome display conjugated 

hyperbilirubinemia due to mutations in the ATP-binding regions of MRP2, resulting in complete 

MRP2 deficiency (Erlinger et al., 2014; Keppler, 2014). Similarly, MRP2 inhibition by drugs may 

induce conjugated hyperbilirubinemia (Chang et al., 2013). Under such conditions, MRP3 and 

MRP4-mediated efflux act as compensatory pathways by increased sinusoidal efflux and renal 

excretion of conjugated bilirubin (Vlaming et al., 2006; Kock and Brouwer, 2012; Keppler, 2014). 

2.1.2.3. BSEP 

BSEP is exclusively expressed in the canalicular plasma membrane of hepatocytes and primarily 

mediates the biliary secretion of monovalent conjugated bile salts, which works in cooperation 

with sinusoidal expressed sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) 

and OATPs. Thus, BSEP has a central function in the vectorial hepatobiliary transport of bile 

acids, bile formation, and driving bile flow (Kullak-Ublick et al., 2000; Dawson et al., 2009). 

Impairment of BSEP function is linked to intrahepatic cholestasis, a pathophysiological condition 

characterized by reduced bile flow as well as potential intrahepatic accumulation of cytotoxic bile 

acids and hepatocellular damage (Kosters and Karpen, 2008; Stieger, 2010). So far, more than 

100 different mutations in the ABCB11 gene have been identified that are partly linked to severe 

hereditary cholestatic syndromes (Dietrich and Geier, 2014). For instance, complete absence of 

functional BSEP protein is represented by progressive familial intrahepatic cholestasis type 2 

(PFIC-2), which can result in liver cirrhosis, liver failure, and ultimately the need for liver 

transplantation (Srivastava, 2014). In addition, acquired and transient forms of cholestasis exist. 

Intrahepatic cholestasis during pregnancy commonly arises in the third trimester and resolves 

after delivery. Variations in the ABCB11 gene as well as in other genes of bile acid transporters 

and the nuclear bile acid-sensitive farnesoid-X receptor (FXR) likely contribute to a genetic 

predisposition. Furthermore, inhibition of bile acid transporters by hormones such as estrogens 
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and progesterones plays a role in the development of intrahepatic cholestasis of pregnancy (van 

der Woerd et al., 2010; Dietrich and Geier, 2014). 

With regard to the role of BSEP in hereditary and acquired forms of cholestasis, BSEP 

inhibition has been recognized as a key factor for the development of intrahepatic drug-induced 

cholestasis (Stieger et al., 2000; Fattinger et al., 2001; Funk et al., 2001a; Dawson et al., 2012). 

Drug-induced cholestasis represents one form of drug-induced liver injury (DILI), alternative 

phenotypes are hepatocellular or mixed DILI. Every type of DILI is characterized by a different 

pattern of elevated liver enzymes, namely alkaline phosphatase (AP), alanine transaminase (ALT), 

and aspartate transaminase (AST), in the serum (CIOMS, 1999). Drug-induced cholestasis is 

characterized by a predominant elevation of AP compared to no or only moderate increases of 

ALT and AST. On the contrary, increases in AST or ALT compared to AP indicate a 

hepatocellular pattern of DILI, whereas all three liver enzymes are elevated during mixed DILI. 

The severity of drug-induced cholestasis ranges from asymptomatic elevations of liver enzymes 

to acute liver failure and is reported to account for up to 26% of all hepatic adverse reactions 

(Bjornsson and Olsson, 2005; Hussaini and Farrington, 2007; Yang et al., 2013). Hence, drug 

interactions with BSEP are of high relevance, although BSEP has a minor role in the hepatobiliary 

elimination of drugs. Accordingly, the evaluation of the BSEP inhibition potential is recommended 

for new drug candidates (EMA, 2012; Hillgren et al., 2013; Kullak-Ublick et al., 2017). If clinically 

relevant BSEP inhibition is expected, biochemical monitoring of cholestasis markers in clinical 

studies should be considered. Yet, recent studies have demonstrated limited predictability of 

drug-induced cholestasis from in vitro BSEP data since there is no direct correlation with the 

effective cholestasis risk in humans (Dawson et al., 2012; Morgan et al., 2013; Shah et al., 2015). 

2.2. Drug absorption and bioavailability 

Absorption generally refers to the passage of a drug from its site of application into the 

bloodstream and is an important process in terms of bioavailability and systemic exposure of 

drugs. While intravenously, intramuscularly, or subcutaneously administered drugs commonly 

feature complete bioavailability, different processes influence the gastrointestinal absorption and 

can reduce the systemic bioavailability of orally administered drugs (Figure 2.3). Gastrointestinal 

absorption mainly takes place in the small intestine due to the large surface area, high 

permeability of intestinal membranes compared to that of the stomach, and high blood flow in the 

intestinal capillaries (Rowland and Tozer, 1995; Pang et al., 2010). The absorption process itself 

is defined as permeation of a drug into the enterocytes of the intestinal epithelium, which is 

denoted as the fraction of absorbed drug (Fa). The systemic bioavailability of orally administered 

drugs (F) further depends on metabolic first-pass effects in the gut wall and in the liver, which are 

represented by the fraction escaping gut wall metabolism (Fg) and the fraction escaping hepatic 

clearance (Fh) as summarized in Eq. (2.1) (Kwon, 2001): 

𝐹 = 𝐹𝑎 × 𝐹𝑔 × 𝐹ℎ     (2.1)
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Figure 2.3. Absorption and bioavailability of orally administered drugs. A solute drug in the gastrointestinal 

lumen enters the blood capillaries via transcellular or paracellular permeation through the intestinal 

epithelium. Gut wall metabolism and active transport by efflux transporters in the luminal enterocyte 

membrane reduce drug absorption and systemic bioavailability. The absorbed drug is transported to the liver 

via the portal vein and undergoes hepatic-first pass elimination before reaching the systemic circulation. 

Taken from van de Waterbeemd and Gifford (2003). 

Prerequisites for absorption of an orally dosed drug are the disintegration of the oral dosage form 

and the dissolution of the released drug in gastrointestinal fluids, which is mainly determined by 

the aqueous solubility (van de Waterbeemd and Gifford, 2003). Once dissolved, the absorption of 

drugs into or across the intestinal epithelium occurs either via transcellular or the paracellular 

route (Figure 2.1). Transcellular permeation is mediated by passive membrane permeability and 

by luminal uptake by OATPs, OCTNs, and peptide transporter 1 (PEPT1, SLC15A1) and by 

basolateral efflux by MRPs (Oostendorp et al., 2009; Estudante et al., 2013) (Figure 2.2, panel A). 

While passing the intestinal epithelium, drugs can undergo active excretion by luminal efflux 

transporters back into the intestinal lumen, which reduces the fraction of absorbed drug. In 

particular, P-gp but also BCRP and MRP2 are known to limit the intestinal absorption of their 

substrates (Schinkel and Jonker, 2003; Robey et al., 2009). In addition, these molecules are also 

potential substrates of phase I and phase II drug-metabolizing enzymes in enterocytes (Benet et 

al., 2004; Chan et al., 2004). Although the intestinal expression levels of drug-metabolizing 

enzymes are relatively low compared to the liver, gut wall metabolism may lead to a substantial 

reduction in oral bioavailability (Gertz et al., 2010; Jones et al., 2016). Among all intestinal drug-

metabolizing enzymes, cytochrome P450 (CYP) 3A is the most abundant subfamily and accounts 

for 82% of the total intestinal CYP content in humans (Paine et al., 2006). Further enzymes with 

relevant contributions to intestinal drug metabolism are other CYP isoforms, sulfotransferases 

(SULT), uridine diphosphate (UDP) glucuronosyltransferases (UGT), and N-acetyltransferases 

(NAT) (Gundert-Remy et al., 2014). 
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The fraction of drug that is absorbed and escaping gut wall metabolism (Fa x Fg) enters the blood 

capillaries and reaches the liver via the portal vein before entering the systemic circulation. The 

liver represents the major organ for drug elimination, with hepatic first-pass extraction by 

metabolism and hepatobiliary secretion further substantially reducing the oral bioavailability of a 

drug. A detailed description of the mechanisms that contribute to hepatic drug elimination is 

provided in section 2.4.1. 

2.3. Drug distribution 

Upon entering the systemic blood circulation, drugs are reversibly distributed into the different 

tissues and compartments of the body. The rate and extent of drug distribution is determined by 

the blood perfusion rate, permeability across tissue membranes, and binding within blood and 

tissues (Rowland and Tozer, 1995; Smith et al., 2010). Drug distribution into tissues and organs 

and the resulting intracellular drug concentrations are of particular interest with regard to the large 

amount of intracellular drug targets (Overington et al., 2006). Besides affecting pharmacological 

efficacy, the tissue distribution of drugs is an important determinant for drug elimination and 

toxicity (Chu et al., 2013). 

In the systemic circulation, drugs are partly bound to different blood components and it has been 

widely accepted that only free (unbound) drug is able to interact and to exert any pharmacological, 

pharmacokinetic, or toxicological effect (“free-drug hypothesis”) (Pang and Rowland, 1977; Smith 

et al., 2010). Blood consists of cellular elements (red blood cells, white blood cells, and platelets), 

which are suspended in an extracellular matrix (plasma). Red blood cells account for ~99% of the 

cellular blood components and as such, drug partitioning into red blood cells represents the major 

cellular binding process in blood (Hinderling, 1997). Blood plasma accounts for approximately half 

of the total blood volume and is composed of water, proteins, and other solutes. Within plasma, 

acidic drugs are mainly bound to albumin, whereas basic drugs are often bound to α1-acid 

glycoprotein and lipoproteins (Shen et al., 2013; Liu et al., 2014). Plasma protein binding 

generally depends on non-specific hydrophobic interactions or hydrogen bonding and is reversible 

(Bohnert and Gan, 2013). Due to the different binding properties in whole blood and plasma, the 

total (i.e. unbound and bound) drug concentrations and the unbound fractions in whole blood (Cb 

and fub) and in plasma (Cp and fup) can vary substantially, which is represented by the blood-to-

plasma partition coefficient (Rb). The unbound drug concentrations in whole blood (Cb,u) and 

plasma (Cp,u) are equal, as outlined in Eq. (2.2) (Kwon, 2001): 

𝐶𝑏,𝑢 = 𝐶𝑏 × 𝑓𝑢𝑏 = 𝐶𝑝 × 𝑅𝑏 × 𝑓𝑢𝑏 = 𝐶𝑝 × 𝑓𝑢𝑝 = 𝐶𝑝,𝑢   (2.2) 

The “free-drug hypothesis” further implies that unbound drug can freely diffuse across cellular 

membranes and that unbound drug concentrations in the blood and in cells are equal at steady-
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state (Pang and Rowland, 1977; Smith et al., 2010). This assumption is traditionally used to justify 

the assessment of intracellular drug interactions based on unbound drug concentrations in the 

blood as a surrogate for unbound intracellular concentrations, which cannot be measured in 

humans (Muller and Milton, 2012; Zamek-Gliszczynski et al., 2013). However, unbound drug 

concentrations in blood do not necessarily reflect unbound intracellular drug concentrations in 

tissues such as the liver, brain, kidney, intestine, or tumor cells, where active transport by uptake 

and efflux transporters or metabolism can disturb the distribution equilibrium (Chu et al., 2013; 

Pfeifer et al., 2013a). In particular, the liver expresses a large number of drug transporters and 

drug-metabolizing enzymes that affect the unbound intrahepatic drug concentration (Chep,u). In this 

context, the liver-to-blood partition coefficient for unbound drug at steady-state (Kpuu) was 

introduced in order to account for the hepatic distribution of unbound drug (Shitara et al., 2006; 

Parker and Houston, 2008; Kusuhara and Sugiyama, 2009; Yabe et al., 2011; Chu et al., 2013; 

Pfeifer et al., 2013a; Shitara et al., 2013; Varma et al., 2014; Morse et al., 2015; Riccardi et al., 

2016; Iwasaki et al., 2017): 

𝐶ℎ𝑒𝑝,𝑢 = 𝐾𝑝𝑢𝑢 × 𝐶𝑏,𝑢     (2.3)  

Under the assumption of a homogenous (“well-stirred”) drug distribution in the liver, Kpuu is 

governed by active hepatic uptake and efflux by sinusoidal transporters, passive membrane 

permeability into and out of the hepatocyte, hepatic metabolism, and biliary secretion by 

canalicular efflux transporters (Figure 2.4) (Chu et al., 2013; Pfeifer et al., 2013a). The same 

processes are involved in the hepatic elimination of drugs and are described in full detail in 

section 2.4.1. 

In addition, different intrahepatic partitioning and binding processes affect the hepatic drug 

distribution (Figure 2.4), which is represented by the liver-to-blood partition coefficient of total drug 

at steady-state (Kp) and the unbound fraction in hepatocytes (fuhep). However, the extent of 

intrahepatic partitioning processes is reflected by both parameters and only affects the hepatic 

distribution of total drug, whereas Kpuu and unbound intrahepatic drug concentrations are solely 

determined by membrane permeability and intrinsic elimination processes at steady-state (Chu et 

al., 2013). The relationship between Kpuu, Kp and fuhep is outlined in Eq. (2.4): 

𝐾𝑝𝑢𝑢 = 𝐾𝑝 ×
𝑓𝑢ℎ𝑒𝑝

𝑓𝑢𝑏
     (2.4) 

Drug partitioning into membranes or binding to intrahepatic proteins and other cellular structures 

is usually attributed to non-specific hydrophobic interactions, which are mainly dependent on the 

physicochemical drug properties such as lipophilicity and molecular charge (Kilford et al., 2008; 

Yabe et al., 2011; Nagar and Korzekwa, 2012; Fan and de Lannoy, 2014; Poulin, 2015). Specific 

binding to cellular structures such as proteins or deoxyribonucleic acid (DNA) generally occurs in 

form of drug-target interactions and rarely contributes to intracellular drug accumulation (Terasaki 
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et al., 1984). In addition, pH and electrochemical gradients across plasma membranes or 

organelle membranes affect the cellular and subcellular drug distribution. While the cytosolic pH is 

~7.2, ATPases in the lysosomal membranes maintain low pH values of 4 - 5 within the lysosomal 

compartments. Lipophilic weak bases (octanol-to-water partition coefficient (logP) > 1 and acid 

dissociation constant (pKa) > 6 (Kazmi et al., 2013)) that are uncharged in the cytosol, freely 

diffuse into lysosomes and become charged in the acidic environment. This substantially reduces 

their membrane permeability and results in lysosomal trapping and enhanced cellular 

accumulation of these drugs (Ohkuma and Poole, 1981; Trapp et al., 2008; Chu et al., 2013; 

Kazmi et al., 2013; Mateus et al., 2013). In addition, polar acids (pKa = 5 - 9) and lipophilic bases 

(pKa > 11) are trapped in mitochondria due to the alkaline mitochondrial pH (~8) or the 

electrochemical gradient across the inner mitochondrial membrane (-160 mV), respectively (Trapp 

and Horobin, 2005; Chu et al., 2013). 

  

Figure 2.4. Processes affecting hepatic drug distribution and the intrahepatic drug concentration. Only 

unbound drug, which is not associated with plasma proteins or red blood cells (1), can cross the sinusoidal 

(basolateral) hepatocyte membrane via passive membrane permeability (2) or via transporter-mediated 

active uptake (3). Within the hepatocyte, drugs bind to intracellular proteins (4) or membranes (5) and 

distribute into subcellular organelles such as lysosomes or mitochondria (6). Unbound intrahepatic drug 

fractions undergo sinusoidal (basolateral) efflux via passive membrane permeability (2) or via transporter-

mediated active efflux (7), are subject to biotransformation by drug-metabolizing enzymes (8) or biliary 

secretion by canalicular (apical) efflux transporters (9). Taken from Chu et al. (2013). 
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2.4. Drug elimination 

Drug elimination denotes the irreversible removal of a parent drug compound from the systemic 

circulation, which occurs either by metabolic processes or by direct excretion into bile or urine, 

primarily mediated by the liver and the kidneys. The combination of drug distribution and drug 

elimination is referred to as drug disposition. The capacity of drug elimination is described by the 

drug clearance (CL), which is defined as the volume of blood or plasma being cleared from a drug 

over time. As such, clearance relates the elimination rate to the drug concentrations (Pang and 

Rowland, 1977; Rowland and Tozer, 1995). Clearance can refer to an individual organ or 

elimination pathway, i.e. hepatic (CLhep) and renal clearance (CLren) or to the overall drug 

elimination in the body, i.e. total clearance (CLtot), which is the sum of each individual organ 

clearance as outlined in Eq. (2.5) (Rowland and Tozer, 1995): 

𝐶𝐿𝑡𝑜𝑡 = 𝐶𝐿ℎ𝑒𝑝 + 𝐶𝐿𝑟𝑒𝑛 + 𝐶𝐿𝑜𝑡ℎ𝑒𝑟    (2.5) 

The liver and kidneys are the most important drug-eliminating organs, whereas drug clearance by 

other elimination pathways (CLother) is generally of less relevance. The liver expresses a broad 

range of drug-metabolizing enzymes and hepatic metabolism is the major elimination pathway for 

most drugs. Metabolic biotransformation of drugs generally describes the conversion of lipophilic 

compounds into more hydrophilic metabolites that are subsequently excreted into urine or bile. 

The most common metabolic reactions with drugs are oxidation, reduction, hydrolysis, and 

conjugation (Rowland and Tozer, 1995; Fan and de Lannoy, 2014). More hydrophilic drugs 

undergo direct urinary and/or biliary excretion, which is mediated by renal and hepatic 

transporters. In addition, transporters play an important role in the hepatic and renal uptake of 

drugs and regulate the access to hepatic and renal drug elimination. The underlying physiological 

mechanisms in the liver and kidneys are described in full detail in sections 2.4.1 and 2.4.2, 

respectively. 

Non-hepatic/non-renal drug elimination mainly occurs by extra-hepatic drug metabolism in the 

respiratory tract, gastrointestinal tract, skin, brain, heart, blood, and in various other organs and 

tissues. Enzymes in tissues that act as a boundary between the external and internal environment 

such as skin, respiratory tract, and gastrointestinal tract protect the body by preventing the entry 

of xenobiotics. The relevance of these drug-metabolizing enzymes strongly depends on the site of 

drug application (Ding and Kaminsky, 2003; Walsh et al., 2013; Costa et al., 2014; Gundert-Remy 

et al., 2014). Special attention is required if extra-hepatic metabolism occurs in target tissues, 

which may affect the respective tissue drug concentration and therefore reduce the drug efficacy 

(e.g. in cancer cells, brain, or lung) (Foti et al., 2015). Besides drug excretion into bile and urine, 

excretion can occur via the breath, sweat, tears, salvia, and breast milk, however, these pathways 

generally do not considerably contribute to overall drug elimination (Costa et al., 2014). 
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2.4.1. Hepatic drug elimination 

The liver is the main organ for detoxification and elimination of endogenous and xenobiotic 

substances. In addition, the liver plays an important role in the absorption and digestion of fats 

and vitamins though production and excretion of bile, metabolism of gastrointestinal absorbed 

nutrients including glycogen storage and regulation, decomposition of red blood cells, and 

synthesis of proteins and hormones (Corless and Middleton, 1983; Malarkey et al., 2005). 

Lobules are the functional units of the liver (Figure 2.5). They are composed of parenchymal cells, 

called hepatocytes, and non-parenchymal cells such as sinusoidal endothelial cells, Kupffer cells, 

stellate cells, dendritic cells, and lymphocytes (McCuskey, 2008; Godoy et al., 2013). 

Hepatocytes account for 60% of hepatic cells and surround the sinusoid and the bile canaliculi, 

which face the sinusoidal and canalicular hepatocyte membranes, respectively. Peripheral 

oxygen-rich blood reaches the liver via branches of the hepatic artery, whereas branches of the 

portal vein deliver blood containing absorbed nutrients and potential harmful substances from the 

gastrointestinal tract. Within the sinusoids, arterial and venous blood is mixed and leaves the liver 

via the central vein (Malarkey et al., 2005; Eipel et al., 2010). The hepatocytes produce and 

secrete bile into bile canaliculi, which merge into bile ductules and form the common bile duct. 

The common bile duct transports and releases the bile into the duodenum in order to facilitate the 

absorption and digestion of fats and lipid-soluble vitamins (Kosters and Karpen, 2008; Li and 

Chiang, 2014). 

The hepatic elimination of drugs takes place in the hepatocytes and represents a complex 

interplay between drug-metabolizing enzymes and drug transporters. As outlined above, drug 

from the systemic circulation reaches the sinusoidal blood via the hepatic artery, whereas 

gastrointestinal absorbed drug is delivered to the sinusoid via the portal vein and undergoes 

hepatic first-pass extraction. The rate of delivery is determined by the hepatic blood flow (Qh) 

(Pang and Rowland, 1977). Within the sinusoid, unbound drug can become subject to intrinsic 

hepatic clearance (CLh,int), which results from the interplay between sinusoidal membrane 

permeability into the hepatocytes and back into the blood, biliary secretion at the canalicular 

membrane and hepatic metabolism. Assuming that the liver is a homogenous compartment, these 

relationships can be described by the “well-stirred” liver model (Pang and Rowland, 1977): 

𝐶𝐿ℎ𝑒𝑝 =
𝑄ℎ×𝑓𝑢𝑏×𝐶𝐿ℎ,𝑖𝑛𝑡

𝑄ℎ+𝑓𝑢𝑏×𝐶𝐿ℎ,𝑖𝑛𝑡
     (2.6) 

2.4.1.1. Sinusoidal membrane permeability 

The permeation through the sinusoidal plasma membrane into the hepatocyte represents the first 

step in hepatic drug elimination. Small, lipophilic, and uncharged drugs mainly enter the 

hepatocytes via passive membrane permeability (Sugano et al., 2010). These drugs will partly 
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Figure 2.5. Microanatomy of the liver. Lobules are the functional units of the liver and are primarily 

composed of hepatocytes, sinusoids, and bile ductules. Blood enters the liver via branches of the hepatic 

artery and the portal vein, reaches the sinusoidal (basolateral) membrane of hepatocytes via the sinusoid 

and is collected in the central vein. Bile canaliculi transport secreted bile from the hepatocytes via the bile 

ductules and the common bile duct to the intestine. Taken from Chu et al. (2013). 

diffuse back into the sinusoidal blood and probably enter other hepatocytes (Iusuf et al., 2012; 

van de Steeg et al., 2012). In addition, hepatocytes express a variety of uptake transporters at the 

sinusoidal membrane that mediate the cellular uptake of less lipophilic and charged drugs. Among 

these transporters, OATP1B1, OATP1B3, and OCT1 are most important for the hepatic uptake of 

drugs (Figure 2.2, panel B and section 2.1.1). Active sinusoidal back flux has likely minor 

relevance for drugs, whereas endogenous substances such as bile acids or bilirubin glucuronides 

potentially undergo sinusoidal efflux by MRPs (section 2.1.2.2). 
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2.4.1.2. Hepatic metabolism 

Hepatic metabolism is the most common route of drug elimination and is mediated by numerous 

drug-metabolizing enzymes from different families. The metabolic biotransformation of drugs is 

categorized into phase I (“functionalization” by oxidation, reduction, and hydrolysis) and phase II 

reactions (“conjugation”, e.g. by glucoronidation, sulfation, and acetylation), where the phase of 

metabolism does not necessarily provide information on the order of reactions (Rowland and 

Tozer, 1995; Fan and de Lannoy, 2014). 

Phase I reactions are mainly catalyzed by members of the CYP family, with additional phase I 

drug-metabolizing enzymes such as flavin-containing monooxygenase (FMO), alcohol 

dehydrogenase, carbonyl reductase, carboxylesterase, epoxide hydrolase, and others (Pang et 

al., 2010). The CYP family has more than 50 members and is organized into five subfamilies 

(CYP1 - CYP4 and CYP7), which are responsible for the metabolism of ~90% of all clinically used 

medications (Xu et al., 2005; Lynch and Price, 2007; Chen et al., 2011). The isoforms CYP1A2, 

2B6, 2C9, 2C19, 2D6, and 3A4 are considered to be of particular importance for the elimination of 

drugs, whereby CYP3A4 is the most abundant and relevant isoform (Zhou, 2008). CYPs mediate 

oxidative metabolism and are located in the endoplasmatic reticulum membrane in hepatocytes, 

oriented towards the cytosol, but can be found in virtually all tissues in the body (Neve and 

Ingelman-Sundberg, 2010; Gundert-Remy et al., 2014). Similar to drug transporters, drug-

metabolizing enzymes are associated with DDIs through enzyme inhibition or induction as well as 

with polymorphisms. In particular CYP3A4 has a high DDI potential due to the large number of 

substrates, inhibitors, and inducers that partly overlap with the specificity of P-gp (Benet et al., 

2004; Marchetti et al., 2007; Zhou, 2008). The most relevant polymorphisms have been identified 

for the CYP isoforms 1A2, 2B6, 2C9, 2C19, and 2D6 (Lynch and Price, 2007; Pang et al., 2010; 

van Leeuwen et al., 2013). 

Phase II reactions are mediated by members of the UGT, SULT, glutathione S-transferase 

(GST), and NAT families of which UGT and SULT enzymes are particularly important for the 

elimination of drugs (Pang et al., 2010; Hardwick et al., 2013). UGT and SULT enzymes catalyze 

the covalent linkage to glucuronic acid (glucoronidation) or sulfate (sulfation) in order to increase 

the water-solubility and subsequent excretion of their substrates. UGT1A1, UGT2B7, SULT1A1, 

and SULT1B1 have the highest clinically relevance with regard to the glucoronidation and 

sulfation of drugs and endogenous substrates (e.g. bilirubin glucoronidation) (Pang et al., 2010; 

Rowland et al., 2013; Coughtrie, 2016). UGTs are predominately expressed in hepatocytes where 

they are localized in endoplasmatic membrane facing the luminal side (Radominska-Pandya et al., 

1999). SULTs are likewise expressed in hepatocytes as well as in other tissues but are located in 

the cytosol (Gundert-Remy et al., 2014; Coughtrie, 2016). 

2.4.1.3. Biliary secretion and enterohepatic circulation 

Biliary secretion represents another hepatic drug clearance process that refers to the active efflux 

of parent drug compound into the bile canaliculi (Figure 2.5). The biliary secretion of drugs as well 
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as drug metabolites and endogenous substances like bile acids or bilirubin is mediated by P-gp, 

BCRP, MRP2, MATE1, and BSEP (Figure 2.2, panel B and sections 2.1.2 and 2.1.1.3), whereas 

passive permeability across the canalicular plasma membrane is considered to be negligible 

(Yang et al., 2009). The common physicochemical property of biliary secreted drugs is a high 

molecular weight with reported cut-off values between 400 and 600 g/mol (Levine, 1978; Yang et 

al., 2009; Varma et al., 2012). In addition, biliary secreted drugs frequently have a large polar 

surface area, high number of rotatable bonds, and high hydrogen-bond count. Lipophilic and 

highly permeable drugs are typically not biliary secreted since such compound properties 

increase the affinity to drug-metabolizing enzymes and promote metabolic drug elimination (Benet 

et al., 2008; Varma et al., 2012). Besides the common substrate affinity to canalicular efflux 

transporters, biliary secreted drugs are frequently OATP substrates (Varma et al., 2012). 

Within the bile duct, drugs and other bile constituents are transported to the duodenum where 

bile constituents such as bile acids and cholesterol are efficiently reabsorbed (Kosters and 

Karpen, 2008; Dawson et al., 2009). Drugs are commonly excreted into feces but can potentially 

be reabsorbed in the intestine as well. In addition, conjugated metabolites might undergo 

deconjugation by intestinal bacteria and can be reabsorbed as the parent drug compound (Gao et 

al., 2014). Reabsorbed drugs return to the liver via the portal vein where they are again subject to 

hepatic elimination processes before reaching the systemic circulation. The repeating process of 

absorption, biliary secretion, and reabsorption (with or without hepatic metabolism and intestinal 

deconjugation) is called enterohepatic circulation. 

2.4.2. Renal drug elimination 

The kidneys have an important role in the general detoxification of blood, maintenance of fluid, 

electrolyte and base/acid homeostasis in the body, and regulation of blood pressure (Sherwood, 

2015). The kidneys are divided into the outer cortex and the inner medulla. The nephrons are the 

functional units of the kidney and span across the cortex and medulla. They are composed of a 

glomerulus and a tubule consisting of different segments (proximal convoluted tubule, loop of 

Henle, and distal convoluted tubule) where the urinary filtrate is formed and delivered to the 

collecting duct (Figure 2.6) (Kriz, 1981; Morrissey et al., 2013; Scotcher et al., 2016). 

Renal excretion of parent drug compounds is a major elimination pathway for many drugs and 

depends on glomerular filtration, tubular secretion, and reabsorption. These processes take place 

in the nephron and are determined by physicochemical drug properties as well as by interactions 

with uptake and efflux transporters (Masereeuw and Russel, 2001b; Feng et al., 2010). Renal 

clearance is defined as the net result of glomerular filtration (CLren,fil) and tubular secretion 

clearance (CLren,sec) and the fraction of drug that is reabsorbed from the tubule fluid back into the 

blood (freab), as summarized in Eq. (2.7) (Rowland and Tozer, 1995): 

𝐶𝐿𝑟𝑒𝑛 = (𝐶𝐿𝑟𝑒𝑛,𝑓𝑖𝑙 + 𝐶𝐿𝑟𝑒𝑛,𝑠𝑒𝑐) × (1 − 𝑓𝑟𝑒𝑎𝑏)   (2.7)  
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Figure 2.6. Microphysiology of the kidney. Nephrons are the functional units of the kidney and consist of a 

glomerulus and a tubule with different regions (proximal convoluted tubule, loop of Henle, and distal 

convoluted tubule). Blood is filtered within the glomerulus. The filtrate passes the tubule where water and 

lipophilic molecules are reabsorbed. Transporters in renal tubule cells secrete molecules into the glomerular 

filtrate. The filtrate from several nephrons flows together in the collecting duct. Taken from http://cnx.org/. 

Peripheral blood enters the nephron via branches of the renal artery (afferent arterioles) and 

reaches the glomerulus, a network of blood capillaries surrounded by the Bowman`s capsule 

(Figure 2.6). Within the glomerulus, the blood is filtered (glomerular filtration) into the Bowman`s 

capsule, which releases the glomerular filtrate into the proximal tubule (Lote, 2012). The rate of 

glomerular filtration depends on the renal blood flow and binding in blood (Feng et al., 2010; Fan 

and de Lannoy, 2014). Glomerular filtration is a passive, unidirectional, and size-dependent 

process that prevents the excretion of blood cells and large molecules such as plasma proteins. 

Hence, only unbound and small molecules (molecular weight < 500 g/mol) undergo glomerular 

filtration, representing the counterpart to the biliary secretion of larger molecules (Varma et al., 

2012). Following filtration, the blood leaves the glomerulus via efferent arterioles that form a 

network of peritubular capillaries around the tubular segments (Lote, 2012). 

The renal tubule is formed by epithelial cells, constituting a barrier between blood in the 

peritubular capillaries and the glomerular filtrate inside the tubule. It is divided into three segments: 

the proximal convoluted tubule, the loop of Henle, and the distal convoluted tubule (Figure 2.6). 

Along the different segments, water and nutrients are reabsorbed by osmotic processes, passive 

diffusion, and active transport, whereas certain substances in the blood are actively secreted into 

the tubular fluid (Lote, 2012). These processes likewise affect the net renal excretion of drugs. 

Active tubular secretion of drugs mainly takes place in the proximal tubule and contributes to their 
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elimination (Masereeuw and Russel, 2001b; Scotcher et al., 2016). Proximal tubule cells express 

a large number of uptake and efflux transporters of which OAT1, OAT3, OCT2, MATE1, MATE2K, 

P-gp, MRP2, and BCRP primarily work as combined carrier systems for the secretory transport of 

anionic and cationic drugs (Figure 2.2, panel C and sections 2.1.1 and 2.1.2). Thereby OATs and 

OCT2 act as uptake transporters at the basolateral plasma membrane, whereas MATEs, P-gp, 

MRP2, and BCRP mediate the apical efflux of drugs into the tubular fluid. In addition, tubular 

epithelial cells express phase I and II drug-metabolizing enzymes including members of the CYP, 

UGT, and GST families. Thereby, glucoronidation of drugs by UGT2B7 and UGT1A9 seems to be 

the most important metabolic pathway in the kidney (Di, 2014; Gundert-Remy et al., 2014; 

Scotcher et al., 2016). However, in general, renal metabolism does not contribute to a large 

extent to the overall drug elimination (Rowland and Tozer, 1995; Fan and de Lannoy, 2014). 

Following glomerular filtration and active secretion processes, drugs and endogenous 

substances can be subject to reabsorption back into the systemic circulation (Lote, 2012). 

Passive reabsorption mainly occurs in the distal tubules due to high concentration gradients 

between the tubular fluid and the blood in peritubular capillaries that result from the reabsorption 

of water (Fan and de Lannoy, 2014). The extent of passive tubular reabsorption depends on 

physicochemical properties. Lipophilic and uncharged molecules are reabsorbed to a large extent 

by passive diffusion, whereas hydrophilic and charged compounds are efficiently eliminated into 

the urine (Feng et al., 2010; Scotcher et al., 2016). In this context, the pH of tubular fluid (ranging 

between 5 and 8) has a high impact on the degree of ionization and thus on the extent of 

reabsorption (Levy, 1976). Active reabsorption of drugs is uncommon although different apical 

uptake (e.g. OCTN1 and OCTN2) and basolateral efflux transporters (e.g. MRP1) are expressed 

along the renal tubule (Launay-Vacher et al., 2006; Morrissey et al., 2013; Kunze et al., 2014b; 

Scotcher et al., 2016). However, the process of active reabsorption is primarily relevant for the 

recovery of nutrients such as glucose via the apical sodium/glucose cotransporter SGLT2 and 

basolateral glucose transporter GLUT1 (Masereeuw and Russel, 2001a; Vallon et al., 2011). The 

primary urine containing non-reabsorbed constituents enters the collecting duct and is further 

concentrated and transported to the bladder (Lote, 2012). 

2.5. In vitro methods to study hepatic drug disposition 

Within the human body, drugs are subject to various active and passive processes that influence 

their ADMET properties as outlined in the sections 2.1 to 2.4. Knowledge about these processes 

is therefore required to understand the pharmacokinetic and toxicological behavior of drugs in 

order to anticipate an appropriate drug dose and to ensure drug safety and efficacy. Furthermore, 

interactions with transporters and enzymes are associated with the risk of drugs becoming victims 

of DDIs, which potentially alters their ADMET properties. However, clinical pharmacokinetic data 

are not or only rarely available at early stages of drug development, while pharmacokinetic and 

toxicological data from preclinical animals often show large species-dependent differences to 

humans (Chaturvedi et al., 2001; Deguchi et al., 2011; Watanabe et al., 2011; Dave and Morris, 
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2015). To overcome this gap, different in vitro systems based on human cells or subcellular 

fractions have been developed. These systems allow the investigation of clearance processes, 

interactions with specific transporters and drug-metabolizing enzymes, and drug binding in order 

to quantitatively predict the pharmacokinetic behavior of drugs in humans using mechanistic in 

vitro-in vivo extrapolation (IVIVE) models. The following section provides on overview of in vitro 

methods for the study of hepatic drug disposition that were applied within the scope of this work. 

2.5.1. Drug binding 

The binding of drugs within blood and tissues has high impact on their intra- and extracellular 

distribution and elimination in humans (section 2.3). In addition, different binding processes are 

present in in vitro systems requiring correction of the measured (apparent) pharmacokinetic 

parameters. In the following section, common methods for the determination of drug binding are 

introduced using the examples of binding in whole blood, plasma, and liver microsomes. 

2.5.1.1. Binding in whole blood and plasma 

Drug binding in plasma and whole blood is routinely determined during drug development. fup is 

commonly measured using equilibrium dialysis, ultracentrifugation, ultrafiltration, or gel filtration, 

whereas fub is indirectly determined from experimental measures of Rb and fup (Hinderling, 1997; 

Pelkonen and Turpeinen, 2007; Bohnert and Gan, 2013; Fan and de Lannoy, 2014). 

In order to obtain plasma for the determination of fup, whole blood is centrifuged to remove 

blood cells and platelets. Equilibrium dialysis is the most common method for the measurement of 

plasma protein binding. An equilibrium dialysis device consists of two chambers that are 

separated by a semi-permeable membrane (Figure 2.7). The membrane allows the diffusion of 

drug but not of plasma proteins (the molecular cut-off value commonly ranges between 6 to 20 

kDa, depending on the system). The chambers are either filled with plasma and the test drug 

(donor chamber) or buffer solution (receiver chamber). Hence, only unbound drug can reach the 

receiver chamber and the unbound drug concentration equilibrates between both chambers. 

Following equilibration, the ratio between the drug concentrations in both chambers represents fup 

(Bailey, 1997; Bohnert and Gan, 2013). Equilibrium dialysis is generally considered as the gold-

standard for measuring plasma protein binding of drugs. It can be conducted at physiological 

temperature (37°C), is easy in handling, and suitable for high throughput screenings. On the other 

hand, fup can be affected by non-specific binding of drugs to membrane inserts and long 

incubations are required to establish the concentration equilibrium, which limits the analysis of 

drugs with low stability (Bohnert and Gan, 2013).  

Rb is obtained from incubations of whole blood with test drugs, followed by centrifugation to 

separate plasma from cellular blood components (Figure 2.7). The ratio between drug 

concentrations in whole blood and plasma represents Rb and subsequently allows the calculation 

of fub (Eq. (2.2)) (Laznicek and Laznickova, 1995; Hinderling, 1997). 
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Figure 2.7. Determination of unbound fractions in plasma (fup) and whole blood (fub) using equilibrium 

dialysis and centrifugation. The dialysis devices consist of two chambers, which are separated by a semi-

permeable membrane that allows diffusion of drug but not of plasma proteins. After equilibrium of unbound 

drug is reached, fup is calculated from measured drug concentrations in the receiver (Creveiver) and donor 

chambers (Cdonor). In order to obtain Rb, drug concentrations in whole blood (Cb) (before centrifugation) and 

plasma (Cp) (following centrifugation) are compared. fub is calculated from Rb and fup. 

2.5.1.2. Binding in (sub)cellular in vitro systems 

During in vitro incubations using (sub)cellular systems such as liver microsomes or hepatocytes, 

drugs are subject to different binding processes. Drugs can bind to cellular structures as well as to 

plastic surfaces in the assay device, thereby affecting the obtained kinetic parameters, which are 

commonly calculated using total applied drug concentration (apparent parameters) (Pelkonen and 

Turpeinen, 2007; Kilford et al., 2008). However, intrinsic kinetic parameters depend on the 

unbound drug concentration in the in vitro system. Hence, the unbound fraction of drug needs to 

be assessed in order to correct apparent parameters and to obtain unbound intrinsic parameters. 

For instance, the metabolic drug clearance is commonly determined in human liver 

microsomes that are composed of endoplasmic membranes and associated proteins. Accordingly, 

the drug concentration in microsomes is affected by membrane partitioning and protein binding, 

which is reflected by the unbound fraction in microsomes (fumic) (Pelkonen and Turpeinen, 2007). 

In principle, all methods for the measurement of plasma protein binding are applicable to 

determine the unbound fraction in a (sub)cellular system (Kilford et al., 2008). Ultracentrifugation 

is the most common method for the measurement of fumic. This method is based on the 

separation of unbound and bound drug by high centrifugal forces. The microsomal membranes, 
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including associated microsomal protein and bound drug, sediment during the centrifugation and 

unbound drug can be quantified in the supernatant. Ultracentrifugation is applicable to drugs that 

exhibit high non-specific binding but has low through-put and centrifugation cannot be conducted 

at physiological temperature (Bohnert and Gan, 2013). As an alternative, mathematical models 

have been developed in order to predict drug binding in different systems from physicochemical 

drug properties (Austin et al., 2005; Kilford et al., 2008; Yabe et al., 2011). 

2.5.2. Hepatobiliary drug transport and transporter inhibition 

Three clearance processes predominately contribute to the hepatobiliary transport of drugs, 

namely passive sinusoidal membrane permeability, active sinusoidal uptake permeability, and 

active canalicular efflux permeability (biliary secretion). These processes are commonly assessed 

in freshly isolated or cryopreserved primary hepatocytes that are derived using collagenase 

perfusion of the human liver (Lecluyse and Alexandre, 2010). Suspended hepatocytes are 

generally used for the measurement of sinusoidal transport processes, whereas canalicular 

transport is investigated in plated sandwich-cultured hepatocytes. The obtained information is 

subsequently used to predict hepatic drug clearance in humans. In contrast, the interaction with 

individual transporters is investigated using membrane vesicles or recombinant cell lines that 

express only the transporter of interest (Brouwer et al., 2013). 

2.5.2.1. Sinusoidal transport and passive membrane permeability 

Isolated human hepatocytes express the majority of sinusoidal uptake transporters and phase I 

and II drug-metabolizing enzymes similar to the situation in the liver. In contrast, the function of 

canalicular efflux transporters is strongly limited due to loss of cell polarization and internalization 

of canalicular transporters during isolation (Bow et al., 2008; Di et al., 2012). Plated hepatocytes 

additionally lose their uptake transporter activity in culture (Ishigami et al., 1995; Sahi et al., 2010). 

Therefore, primary suspended hepatocytes are used to investigate the sinusoidal uptake 

permeability of drugs. To limit the impact of interindividual variability in transporter expression, 

hepatocytes from multiple human donors are pooled within experiments (Brouwer et al., 2013). 

The total sinusoidal uptake permeability into hepatocytes (PSinf) represents the sum of active 

transporter-mediated (PSinf,act) and passive uptake permeability (PSinf,pas): 

𝑃𝑆𝑖𝑛𝑓 = 𝑃𝑆𝑖𝑛𝑓,𝑎𝑐𝑡 + 𝑃𝑆𝑖𝑛𝑓,𝑝𝑎𝑠     (2.8) 

PSinf is determined by incubating hepatocytes with medium containing the test drug at a low 

concentration to avoid saturation of active transport. In order to prevent passive diffusion back 

into the medium, hepatic uptake is measured in short incubations within the initial uptake phase. 

The influence of metabolism can generally be neglected due to the short incubation times. The 
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incubation is terminated by separating cells and medium e.g. by filtration through an oil layer (oil-

spin method) followed by quantification of the drug amount in cells and medium (Umehara and 

Camenisch, 2012; Kunze et al., 2014a). The apparent uptake permeability (PSapp) is calculated by 

normalizing the amount of drug in cells to the nominal drug concentration, incubation time, and 

cell number. PSapp is potentially affected by non-specific binding to plastic surfaces in the assay 

device or by saturable binding to cell surfaces. Non-specific binding to plastic surfaces is 

corrected based on the total recovery of radiolabeled substrates. The extent of saturable binding 

to cell surfaces can be measured in control incubations at 4°C in order to correct PSapp into the 

intrinsic parameter PSinf (Umehara and Camenisch, 2012; Kunze et al., 2014a). 

Three approaches are available to discriminate between active and passive uptake 

permeability: the use of uptake transporter inhibitors, high substrate concentrations in order to 

saturate active transport, or incubation at 4°C where transporters are not active. It has been 

widely accepted that incubation at 4°C is not suitable to measure passive membrane permeability 

because membrane fluidity is temperature-sensitive, which also affects the membrane 

permeability (Frezard and Garnier-Suillerot, 1998; Pang et al., 2010; Brouwer et al., 2013; Zamek-

Gliszczynski et al., 2013). Therefore, active uptake permeability is usually abolished using uptake 

transporter inhibitors or high substrate concentrations (Sugano et al., 2010; EMA, 2012). However, 

attempts to saturate active transport can be limited by low substrate solubility, whereas uptake 

transporter inhibitors do not necessarily suppress the full activity of all relevant transporters. 

The sinusoidal efflux permeability (PSeff) of drugs is difficult to assess. Therefore, PSinf,pas is 

commonly used as a surrogate measure for passive sinusoidal efflux permeability (PSeff,pas). 

Active sinusoidal efflux permeability (PSeff,act) seems to have limited relevance for the hepatic 

disposition of drugs and this process is generally neglected in IVIVE models (Jones et al., 2012; 

Nordell et al., 2013; Zamek-Gliszczynski et al., 2013; Kunze et al., 2015; Varma et al., 2015). 

The limitations of suspended hepatocytes as in vitro system for sinusoidal drug transport are 

mainly related to the expression of transporters. Although isolated hepatocytes are generally 

considered to have an appropriate pattern of transporter expression, recent studies demonstrated 

that cryopreservation of hepatocytes can reduce the expression and activity of OATPs, OCTs, 

and NTCP, which potentially affects the quality of measured in vitro parameters (Kimoto et al., 

2012; Lundquist et al., 2014b). Therefore, freshly isolated hepatocytes are considered the gold-

standard for measuring sinusoidal drug transport. However, the availability of freshly isolated 

human hepatocytes is limited and transport studies are commonly conducted using cryopreserved 

hepatocyte batches with confirmed uptake transporter activity (Chiba et al., 2009; Brouwer et al., 

2013; Nordell et al., 2013; Kunze et al., 2015). In addition, it has been shown that P-gp, BCRP, 

MRP2, and BSEP exhibit remaining activity in suspended hepatocytes due to incomplete 

internalization, which can also affect the assessment of hepatic uptake permeability. Yet, residual 

activity of efflux transporters seems to be substantially lower in cryopreserved than in freshly 

isolated hepatocytes (Lundquist et al., 2014a).  
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2.5.2.2. Biliary secretion by canalicular efflux transporters 

Biliary secretion of drugs is mediated by canalicular efflux transporters and is commonly 

investigated in sandwich-cultured human hepatocytes (Pan et al., 2012; Brouwer et al., 2013). For 

this purpose, freshly isolated or cryopreserved hepatocytes are seeded on collagen-coated plates 

and overlaid with an additional layer of collagen (e.g. Matrigel). Although isolated hepatocytes 

lose their cell polarization upon plating, they recover their polarization after 6 to 7 days in the 

sandwich-culture system including functional expression of the major transporters at the 

sinusoidal and canalicular membranes as well as formation of bile canaliculi in form of bile 

pockets. Tight junctions between the hepatocytes separate the bile pockets from the extracellular 

medium and prevent diffusion of the test drug between both compartments (Figure 2.8) (Liu et al., 

1999; Schaefer et al., 2012; Brouwer et al., 2013). This system therefore allows measuring 

canalicular and sinusoidal drug transport under physiologically relevant conditions. Additional 

 

Figure 2.8. Sandwich-cultured hepatocytes express sinusoidal and canalicular transporters and form bile 

canaliculi (bile pockets). Test drug is taken up by sinusoidal uptake transporters and/or passive uptake 

permeability and canalicular efflux transporters mediate the secretion of drug into bile canaliculi. In the 

presence of Ca
2+

-containing standard buffer, intercellular tight junctions are maintained and prevent the 

diffusion of drug into the extracellular medium, whereas tight junctions are disrupted in the presence of Ca
2+

-

free buffer. The extent of biliary secretion is represented by differences in the cellular drug accumulation in 

the presence of the Ca
2+

-containing and Ca
2+

-free buffers. Taken from Brouwer et al. (2013). 
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applications of sandwich-cultured hepatocytes include the investigation of hepatic drug 

metabolism and its interplay with sinusoidal and canalicular transport processes, bile acid 

transport, and hepatotoxicity (Swift et al., 2010; Schaefer et al., 2012). However, sandwich-

cultured hepatocytes exhibit reduced function of sinusoidal uptake transporters and drug-

metabolizing enzymes compared to primary suspended hepatocytes (Mathijs et al., 2009; Kotani 

et al., 2011). Therefore, and due to the labor- and cost-intensive culturing procedure, sandwich-

cultured hepatocytes are mainly used for the investigation of canalicular drug transport, whereas 

sinusoidal transport and hepatic metabolism are assessed in suspended hepatocytes (section 

2.5.2.1) and using liver microsomes (section 2.5.3), respectively (Obach, 2001; Swift et al., 2010; 

Brouwer et al., 2013; Yang et al., 2016). 

In order to measure biliary secretion, sandwich-cultured hepatocytes are incubated with the test 

drug at a low substrate concentration to prevent saturation of active transport. The drug is taken 

up from the extracellular medium by sinusoidal uptake transporters and/or passive uptake 

permeability and secreted into the bile pockets by canalicular efflux transporters. The initial rate of 

biliary secretion depends on the unbound intracellular concentration (Swift et al., 2010; Chu et al., 

2013; Pfeifer et al., 2014). Following the incubation, the cells are washed and the drug amount in 

cells and associated bile pockets is quantified. In order to discriminate between drug in 

hepatocytes and in the bile pockets, different buffers are used in sandwich-culture experiments. In 

Ca
2+

-containing standard buffer, the intercellular tight junctions are maintained, whereas the tight 

junctions are disrupted upon incubation in a Ca
2+

-free buffer (Figure 2.8). The drug accumulation 

in bile pockets is represented by the difference between the cellular drug accumulation in Ca
2+

-

containing buffer (cells and bile pockets) and the cellular accumulation in Ca
2+

-free buffer (cells 

only) (Liu et al., 1999). The apparent intrinsic biliary clearance (CLint,sec,app) is calculated by 

normalizing the amount of drug in the bile pockets to the intracellular drug concentration and 

incubation time (Brouwer et al., 2013). The intracellular drug concentration can be obtained based 

on the cellular accumulation in Ca
2+

-free buffer and the hepatocellular volume (Lee et al., 2003). 

In order to account for intracellular binding processes, CLint,sec,app is subsequently corrected into 

the intrinsic biliary clearance (CLint,sec) using fuhep (section 2.5.1.2). 

The sandwich-culture system has limited use for drugs with low sinusoidal uptake permeability 

since they might not achieve sufficient intracellular levels in order to become subject to canalicular 

efflux. As a consequence, the process of biliary secretion might be underestimated (Brouwer et al., 

2013). In addition, parameters obtained in the sandwich-culture are liable to interindividual 

variability in transporter expression. Hepatocytes from multiple donors cannot be pooled for 

sandwich-culture experiments since cells from different donors do not homogeneously grow on 

culture plates. Thus, parameters from sandwich-culture experiments should be determined using 

multiple hepatocyte batches in independent experiments and the functional activity of uptake and 

efflux transporters has to be carefully monitored by the use of reference substrates (i.e. 

taurocholate) (Brouwer et al., 2013; De Bruyn et al., 2013; Yang et al., 2016). 
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2.5.2.3. Transporter inhibition 

Primary hepatocytes are suitable to determine hepatic process clearances such as sinusoidal 

uptake permeability or biliary secretion (sections 2.5.2.1 and 2.5.2.2). However, the expression of 

many transporters makes it difficult to characterize individual transporters, especially since 

selective inhibitors are only available for a limited number of transporters (Sahi et al., 2010; Swift 

et al., 2010; Brouwer et al., 2013; Yang et al., 2016). Therefore, recombinant cell lines or inside-

out oriented membrane vesicles have been developed that express only individual transporters. 

Thus, these systems allow identifying drugs as substrates or inhibitors of individual transporters. 

The interaction between transporters and their substrates is described by the maximum velocity 

(Vmax) of transport and Michaelis-Menten constant (Km). Km represents the substrate affinity and 

refers to the substrate concentration that is associated with the half-maximal transport velocity. Km 

and Vmax are obtained in concentration-dependent phenotyping experiments under initial rate 

conditions (Zamek-Gliszczynski et al., 2013). Transporter inhibition by a drug is also 

characterized in concentration-dependent experiments under initial rate conditions but in the 

presence of a specific reference substrate. Alterations in the transport of the reference substrate 

indicate an inhibitory effect of the test drug. The inhibition potency of the test drug is described by 

the concentration of inhibitor to achieve half-maximal transporter inhibition (IC50) or the reversible 

inhibition constant (Ki) (Zamek-Gliszczynski et al., 2013). 

The selection of recombinant cell lines or membrane vesicles as in vitro test systems depends 

on compound properties and transport mechanism. Uptake transporter interactions are commonly 

studied in recombinant cell lines (Brouwer et al., 2013). In addition, interactions between efflux 

transporters and highly permeable drugs (i.e. lipophilic substrates of P-gp and BCRP) should be 

investigated in recombinant cells lines (Tweedie et al., 2013; Zamek-Gliszczynski et al., 2013). 

However, such cellular systems are not suitable to measure interactions between efflux 

transporters and low permeable drugs. In order to reach the intracellular binding site of an efflux 

transporter, such drugs often require uptake transporters in vivo, which might not be expressed in 

the recombinant cell line. Therefore, inside-out oriented membrane vesicles, where efflux 

transporters directly interact with the test drug in the extracellular medium, are the preferred in 

vitro system for low permeable drugs (Figure 2.9). For instance, inhibition of the efflux transporter 

BSEP is commonly investigated in inside-out oriented membrane vesicles since BSEP substrates 

are typically low permeable hydrophilic molecules that cannot be characterized or used as 

reference substrates (i.e. the BSEP reference substrate taurocholate) in recombinant cell lines 

(Stieger et al., 2000; Morgan et al., 2010; Dawson et al., 2012; Pedersen et al., 2013; Cheng et al., 

2016). 

Inside-out oriented membrane vesicles are typically prepared from recombinant cells lines that 

were transfected with complementary DNA (cDNA) encoding the human ABC transporter of 

interest (Brouwer et al., 2013; Cheng et al., 2016). Alternatively, membrane vesicles can be 

obtained from human tissue (Funk et al., 2001a). In order to measure the inhibition potential of 
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Figure 2.9. Vesicular transport assay. Inside-out oriented membrane vesicles are obtained from 

recombinant cell lines that express the efflux transporter of interest. Membrane vesicles are incubated with a 

transporter substrate in the presence of ATP or AMP. The efflux transporter reacts with ATP and mediates 

the vesicular uptake of substrate. Vesicles and non-associated substrate are separated by filtration and the 

amount of vesicle-associated substrate is quantified. Altered transport kinetics of a reference substrate in the 

presence of a test drug indicate transporter inhibition. Modified from Brouwer et al. (2013). 

drugs, membrane vesicles are incubated with the test drug at various concentrations and in the 

presence of a reference substrate and ATP. The ABC transporter mediates the vesicular uptake 

of the reference substrate by hydrolysis of ATP unless the test drug inhibits the transport process. 

Parallel incubations with adenosine monophosphate (AMP) serve as a negative control for 

passive permeation of substrate into the vesicles. The incubation is terminated by separation of 

membrane vesicles and medium (e.g. by filtration) and the amount of substrate in the vesicles is 

quantified (Figure 2.9) (van Staden et al., 2012; Brouwer et al., 2013). The IC50 value for the test 

drug is obtained by non-linear regression analysis of the concentration-dependent inhibition of 

vesicular uptake (van Staden et al., 2012; Volpe et al., 2014). 

2.5.3. Hepatic drug metabolism 

The metabolic clearance of drugs is routinely measured in human hepatocytes or in liver 

subcellular fractions. Freshly isolated or cryopreserved hepatocytes express the majority of phase 

I and II drug-metabolizing enzymes (Sahi et al., 2010; Vildhede et al., 2015). Cultured primary 



2.5. In vitro methods | 29 

hepatocytes are not suitable to determine metabolic drug clearance since metabolic activity is lost 

within a short time, but these cells can be used for metabolite identification, enzyme induction or 

toxicity studies (Pelkonen and Turpeinen, 2007; Fasinu et al., 2012). As an alternative to 

hepatocytes, liver subcellular fractions such as microsomes, S9, and cytosolic fractions are 

available, which, however, contain only certain drug-metabolizing enzymes. In order to prepare 

liver subcellular fractions, human liver tissue is homogenized and centrifuged at low speed. The 

supernatant (S9 fraction) contains the microsomal and cytosolic fractions that can be separated 

by ultracentrifugation (Jia and Liu, 2007; Fasinu et al., 2012; Richardson et al., 2016). The S9 

fraction covers the same range of drug-metabolizing enzymes like intact hepatocytes but co-

factors that are required for metabolic processes like nicotinamide adenine dinucleotide 

phosphate (NADPH) or uridine diphosphate glucuronic acid (UDPGA) for CYP and UGT enzymes, 

respectively, are not available in S9 and subsequent fractions. Compared to hepatocytes, the 

plasma membrane, which limits the access to drug-metabolizing enzymes, is removed in S9 and 

subsequent fractions (Richardson et al., 2016). The microsomal fraction is mainly composed of 

membranes from the endoplasmatic reticulum. Microsomes therefore contain all phase I and II 

drug-metabolizing enzymes that are bound to endoplasmatic membranes including CYP, UGT, 

and FMO enzymes. The cytosolic fraction contains soluble drug-metabolizing enzymes such as 

SULT, GST, and NAT (Fasinu et al., 2012). 

Human liver microsomes are the most common system to assess the metabolic drug clearance 

since they contain phase I CYP enzymes, are cheap, robust, and suitable for high-throughput 

screenings (Obach, 2001; Pelkonen and Turpeinen, 2007; Di et al., 2013). The influence of 

interindividual variability in enzyme expression and activity is reduced by using pools of liver 

microsomes from up to 200 donors for clearance measurements. Liver microsomes are typically 

incubated with test drug and the co-factor NADPH to determine the CYP-mediated metabolic 

clearance. The study of additional microsomal enzymes must be conducted in the presence of 

other co-factors. For instance, UGT-dependent metabolism is analyzed in the presence of 

UDPGA and requires the pre-treatment of microsomes with the pore-forming peptide alamethicin 

to increase the access to the luminal-orientated UGT in the endoplasmatic membranes (Obach, 

2001; Walsky et al., 2012). In order to prevent saturation or product inhibition of drug-metabolizing 

enzymes, the metabolic clearance is measured in the linear time, substrate, and enzyme 

concentration range (Obach, 2001; Fujiwara et al., 2008; Chiba et al., 2009). Km and Vmax of 

enzyme substrates can be assessed in concentration-dependent phenotyping experiments under 

initial rate conditions. However, incubations with recombinant enzymes (i.e. using supersomes) 

are more suitable to characterize substrate kinetics for individual enzymes (Kuehl et al., 2005; Jia 

and Liu, 2007; Pelkonen and Turpeinen, 2007). Following the incubation, the formation of major 

metabolites or the decrease of parent drug concentration is quantified by high-performance liquid 

chromatography or liquid chromatography coupled to tandem mass spectrometry, respectively. 

The apparent intrinsic metabolic clearance (CLint,met,app) is calculated by normalizing the 

concentration of major metabolites or the decrease of parent drug concentration to the applied 
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concentration of parent drug, incubation time, and microsomal protein. In order to account for 

binding processes in the incubation, CLint,sec,app is subsequently corrected into the intrinsic 

metabolic clearance (CLint,sec) using fumic (section 2.5.1.2). 

2.5.4. Processing of hepatic process clearances 

The prediction of hepatic drug clearance in humans from in vitro data requires four different steps. 

In the first step, the hepatic process clearances for sinusoidal uptake and efflux, hepatic 

metabolism, and biliary secretion are measured in vitro (sections 2.5.1 to 2.5.3). In the second 

step, the individual process clearances must be scaled to the human organ level in order to 

account for the capacity of the whole liver (Obach, 2011). Thereby, each in vitro system has its 

specific scaling factor. The following scaling factors are commonly applied: 99 x10
6
 cells/g liver for 

suspended human hepatocytes, 116 mg protein/g liver for sandwich-cultured hepatocytes, 53 mg 

microsomal protein/g liver for human liver microsomes, and 25.7 g liver/kg body weight for liver 

weight (Carlile et al., 1997; Houston and Galetin, 2008; Swift et al., 2010). 

In the third step, the up-scaled hepatic process clearances are feed into a mechanistic IVIVE 

model in order to investigate their interplay and to calculate the intrinsic hepatic clearance. In the 

last step, liver models such as the “well-stirred” liver model (Eq. (2.6)) are used to relate the 

intrinsic hepatic clearance to physiological parameters (i.e. hepatic blood flow and binding in 

blood) in order to predict the hepatic drug clearance (Pang and Rowland, 1977). 

In this work, the Extended Clearance Model (ECM) was used as mechanistic IVIVE model. The 

use and different applications of the ECM are reviewed in full detail in the section 2.6.
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2.6. The Extended Clearance Model and its use for the interpretation 

of hepatobiliary elimination data 
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CHAPTER 3  

Aim of the thesis 

Drug disposition processes are important determinants for drug safety and efficacy since they 

directly influence the drug exposure in the different compartments of the human body. 

Understanding the pharmacokinetic behavior of new drug candidates is therefore of critical 

importance for the development of efficacious and safe drugs. However, clinical information about 

the pharmacokinetic properties of new drug candidates is rarely available at early preclinical 

development stages. Hence, in vitro systems and IVIVE models are valuable tools to provide 

estimates of human pharmacokinetic data. This work focused on the development of new in vitro 

methods to predict drug disposition in humans. The individual objectives were defined as follows: 

1. Establishment of a mechanistic in vitro Kpuu model to predict drug-induced cholestasis 

In the absence of tissue concentration data in humans, systemic drug exposure is commonly 

used as surrogate for unbound intracellular drug concentrations. However, this approach is 

inappropriate for the liver where unbound intracellular drug concentrations are affected by 

active transport and metabolic processes (section 2.3). This study aimed at establishing an in 

vitro Kpuu approach under consideration of all hepatic processes based on the ECM concept. 

As a proof-of-concept, the resulting estimates of unbound intrahepatic drug concentrations 

were validated by predicting the clinical risk of drug-induced cholestasis upon inhibition of the 

intrahepatic transporter BSEP. 

2. Investigation of alternative in vitro Kpuu methods 

Besides the ECM approach, different alternative in vitro Kpuu determination methods have 

been described that rely on separate measurements of hepatocellular drug accumulation and 

the unbound fraction in hepatocytes. These methods are based on simplified in vitro systems 

that neglect intrinsic hepatic drug elimination by metabolism and biliary secretion, though they 

represent straightforward and less labor-intensive approaches. The aim of this study was to 

investigate the applicability of three alternative Kpuu determination methods in comparison to 

the ECM approach. Deviations between the applied methods were investigated with regard to 

pharmacokinetic and physicochemical drug properties. 

3. Development of an in vitro model for the prediction of total drug clearance in humans 

Sophisticated hepatic IVIVE approaches have been developed to study hepatic elimination 

and DDIs (sections 2.5 and 2.6). Nevertheless, the usefulness of corresponding renal IVIVE 

approaches is limited and the prediction of total drug clearance is hampered. Alternatively, 
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knowledge about hepatic and renal elimination pathway contributions allows extrapolating the 

ECM-based hepatic clearance to total clearance. Thus, this strategy can compensate the lack 

of appropriate renal IVIVE models. This study aimed at establishing the quantitative prediction 

of hepatic metabolic, biliary, and renal elimination pathway contributions in humans from in 

vitro sinusoidal uptake permeability data and to demonstrate the validity of the Extended 

Clearance Concept Classification System (ECCCS) for elimination pathway predictions. The 

predicted data were compared with observed total drug clearances in order to validate the 

developed approach.  
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CHAPTER 4  

Results 

The results of this thesis were published in the following articles: 

1. Assessing the risk of drug-induced cholestasis using unbound intrahepatic 

concentrations 

Riede et al., Drug Metabolism and Disposition (2017), 45 (5), 523-531 

2. Current in vitro methods to determine hepatic Kpuu: a comparison of their usefulness 

and limitations 

Riede et al., Journal of Pharmaceutical Sciences (2017), 106 (9), 2805-2814 

3. New IVIVE method for the prediction of total human clearance and relative elimination 

pathway contributions from in vitro hepatocyte and microsome data 

Riede et al., European Journal of Pharmaceutical Sciences (2016), 86, 96-102 
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4.1. Assessing the risk of drug-induced cholestasis using unbound 
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CHAPTER 5  

Discussion and future perspectives 

In the present work, new IVIVE models for the prediction of drug disposition in humans were 

successfully established and validated. Furthermore, the utility of the drug classification systems 

ECM and ECCCS for the design and translation of pharmacokinetic in vitro assessments was 

demonstrated. In the context of hepatic drug distribution, the applicability of four in vitro methods 

to determine hepatic drug partitioning, intracellular drug binding, and unbound intrahepatic drug 

concentrations were investigated (sections 4.1 and 4.2). In particular, the mechanistic model 

based on the ECM concept indicated high in vivo relevance with regard to the prediction of clinical 

cholestasis manifestation upon BSEP inhibition and close in vitro-in vivo correlation (IVIVC) of 

Kpuu in rats. The temperature and homogenization methods demonstrated usefulness in the 

investigation of intracellular drug binding to determine the unbound fraction in hepatocytes. In 

addition, a straightforward IVIVE approach for the prediction of total drug clearance was 

developed (section 4.3). Determining the hepatic drug clearance together with the relative 

elimination pathway contributions from in vitro experiments provided good predictability of total 

and renal drug clearance in humans. 

Further perspectives and limitations of the investigated IVIVE models for assessments of the 

unbound intrahepatic drug concentration and total drug clearance are discussed in the following 

sections. 

5.1. ECM-based Kpuu and the prediction of drug-induced cholestasis 

Over the last years, several attempts have been made to predict drug-induced cholestasis using 

in vitro data on BSEP inhibition and clinical systemic drug exposure (Dawson et al., 2012; Morgan 

et al., 2013; Shah et al., 2015). Nevertheless, no complete correlation between BSEP inhibition in 

vitro and clinical risk of cholestasis could be established. This outcome is likely attributed to the 

use of systemic drug exposure, which is not expected to represent the unbound intrahepatic drug 

concentrations due to active transport or metabolic processes in the liver (Muller and Milton, 2012; 

Chu et al., 2013). In contrast, the ECM-based model provides estimates of Kpuu under 

consideration of all active and passive hepatic clearance processes. This assessment allows the 

calculation of unbound intrahepatic concentrations and thus the direct translation of BSEP 

inhibition in vitro to the clinical incidence of drug-induced cholestasis. Moreover, the ECM-based 

approach supports the evaluation of genetic polymorphisms, disease state, or other potential 

factors that contribute to the risk of drug-induced cholestasis. 
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Although not directly evident in the present analysis, other processes might contribute to the 

development of cholestasis. These are, on the one hand, BSEP-independent pathways that are 

involved in maintaining the hepatocellular bile acid homeostasis and, on the other hand, additional 

processes that affect intrahepatic drug concentrations. Besides BSEP-mediated canalicular efflux, 

hepatic bile acid levels are regulated by other sinusoidal and canalicular transporters. Under 

physiological conditions, bile acids are taken up from the sinusoidal blood into the hepatocytes by 

NTCP and OATPs followed by canalicular secretion via BSEP and MRP2, whereby NTCP and 

BSEP are the driving force in the vectorial bile acid transport. Sinusoidal MRP3, MRP4, and 

heteromeric organic solute transporter OSTα-OSTβ mediate back-flux of bile acids into the 

systemic circulation (Dawson et al., 2009). This process, however, seems to have only a minor 

contribution to the overall hepatocellular bile acid disposition under normal conditions. Yet, 

increases in the intrahepatic bile acid levels upon BSEP inhibition generally induce an 

upregulation of processes that contribute to bile acid clearance from hepatocytes in order to 

protect the cells. The bile acid efflux transporter system is induced via activation of the bile-acid 

sensitive nuclear receptors FXR, pregnane X receptor (PXR), and constitutive androstane 

receptor (CAR), whereas sinusoidal bile acid uptake transporters are down-regulated (Soroka et 

al., 2001; Gradhand et al., 2008; Rodrigues et al., 2014). Similarly, activation of FXR, PXR, and 

CAR regulates bile acid synthesis and conjugation by gene repression of CYP7A1 or induction of 

UGT1A1 and SULT2A1, respectively (Li and Chiang, 2014). Hence, these protective pathways 

may compensate reduced BSEP function and prevent intrahepatic bile acid accumulation by 

increased sinusoidal efflux and conjugation or decreased sinusoidal uptake and synthesis. On the 

other hand, concurrent inhibition of BSEP and the described protective pathways such as MRP3 

or MRP4-mediated efflux likely increases the risk of drug-induced cholestasis (Morgan et al., 2013; 

Kock et al., 2014). The ECM-based assessment, however, only considers the inhibition of BSEP, 

while the involvement of any protective pathway probably alters the actual cholestasis risk. 

Nevertheless, quantitative information about bile acid transport and metabolism under cholestatic 

conditions in humans is currently limited and further research is required in order to refine 

mechanistic models for hepatic and systemic bile acid disposition (Woodhead et al., 2014; Guo et 

al., 2016). 

In the context of hepatic drug disposition and resulting unbound intrahepatic drug concentrations, 

different processes are not considered within the ECM approach. Active sinusoidal efflux 

permeability as mediated by MRPs is neglected in the assessment. The physiological relevance 

of MRP3 and MRP4-mediated drug transport during cholestasis is so far largely unknown and 

requires additional investigations. In general, no significant impact on hepatic drug distribution is 

expected as discussed in the sections 4.1 and 4.2. However, experimental in vitro setups in 

combination with complex modeling approaches have been developed and could be applied on a 

case-by-case basis (Pfeifer et al., 2013b). 

Besides alterations in transporter and enzyme expression during cholestasis, a number of 

drugs are known to induce or inhibit in a time-dependent manner certain elimination pathways. 
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For instance, rifampicin or bosentan induce the expression of CYP3A4 via PXR activation and 

thus enhance their own metabolic elimination in humans (Dingemanse and van Giersbergen, 

2004; Xu et al., 2005). Under such circumstances intrahepatic drug and bile acid concentrations 

can change. Depending on the affected pathways, this might result in an increased or reduced 

cholestasis risk. Furthermore, co-medication can affect hepatic drug elimination due to inhibition 

or induction of drug-metabolizing enzymes and transporters. Consequently, Kpuu and unbound 

intrahepatic concentration of victim drugs are likewise affected in the presence of a perpetrator 

drug. However, the ECM approach will allow accounting for DDI effects on Kpuu in the same way 

as demonstrated for transporter and enzyme polymorphisms (section 4.1) or for DDI effects on 

the hepatic clearance (Camenisch and Umehara, 2012; Kunze et al., 2015). Nevertheless, 

quantitative information about the extent and the contribution of all underlying hepatic clearance 

processes of the victim drug are required to calculate Kpuu for a DDI scenario. 

In addition, the assessment is focused on parent drug alone whereas potential effects of 

metabolites are neglected. For certain drugs, metabolites exhibit the greater risk for BSEP 

inhibition compared to the parent drug compound such as in the case of troglitazone and its 

metabolite troglitazone sulfate. Troglitazone is a potent BSEP inhibitor that has been withdrawn 

from the market due to several cases of severe liver injury. Studies in rat have shown that male 

rats are more sensitive to troglitazone-induced intrahepatic cholestasis and liver toxicity. This 

correlated with higher liver tissue concentrations of the major metabolite troglitazone sulfate due 

to higher formation rate in male rats. Taking into account the high liver tissue accumulation and 

that troglitazone sulfate is a 10-fold more potent BSEP inhibitor compared to the parent drug, 

troglitazone-induced cholestasis is likely predominately mediated by troglitazone sulfate (Funk et 

al., 2001a; Funk et al., 2001b; Padda et al., 2011). Hence, BSEP inhibition potential and unbound 

intrahepatic concentrations should be additionally investigated for metabolites with substantial 

exposure (FDA, 2016). However, to the best of our knowledge, the present data set did not 

include drugs with metabolites that are associated with a higher BSEP inhibition risk compared to 

the parent compound. 

The use of ECM-based unbound intrahepatic drug concentrations is not only expected to enable 

the risk assessment of BSEP inhibition. Besides that, the ECM can likely also be applied in order 

to improve the evaluation of intrahepatic drug interactions with therapeutic targets or other 

transporters and drug-metabolizing enzymes that influence the pharmacokinetic, 

pharmacodynamics, and toxicological properties of drugs. Taking into account that underlying 

hepatic processes need to be determined in vitro once only, Kpuu for a certain drug compound can 

be additionally used to evaluate substrate or inhibitor interactions with any other intrahepatic 

transporter and enzyme. For instance, in a recent study, the use of Kpuu allowed to improve DDI 

predictions for CYP inhibition (Iwasaki et al., 2017). Similarly, improved translation of efficacy data 

have been observed in the context of inhibition of HMG-CoA reductase and the lipid-lowering 

effect of statins (Riccardi et al., 2017). Also drug-induced hyperbilirubinemia due to inhibition of 

MRP2 (conjugated hyperbilirubinemia) and UGT1A1 (unconjugated hyperbilirubinemia) depends 
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on the unbound intrahepatic drug concentration and can be likely evaluated using the ECM 

approach (Brouwer et al., 2013). Furthermore, the ECM concept might also be applicable to other 

organs like kidney or brain where Kpuu depends on similar processes. However appropriate in 

vitro systems are currently not available that would allow determining all relevant active metabolic 

and transport processes. 

5.2. Comparison of Kpuu methods 

The validity of ECM-based Kpuu approach and the underlying experimental data was reliably 

demonstrated by the prediction of drug-induced cholestasis in humans and IVIVC in rats (section 

4.1). Nevertheless, the ECM approach requires the labor and cost-intensive determination of 

several in vitro parameters. Therefore, additional in vitro approaches were investigated, which 

require less experimental efforts, namely the temperature method, the homogenization method, 

and the logD7.4 method. For all three approaches, the absence of metabolism and biliary secretion 

in Kp determinations was identified as the main limitation. Hence, hepatic Kpuu cannot be correctly 

predicted for compounds with predominant intrinsic clearance (ECM class 1 and 3 compounds). 

In contrast, the hepatic Kpuu of ECM class 2 and 4 compounds is assessable at least using the 

temperature method (section 4.2). Therefore, knowledge of a drugs ECM class could guide the 

selection of the appropriate Kpuu in vitro method. Yet, the assignment of a preliminary ECM class 

already requires experimental hepatic uptake and metabolic clearance data (section 4.3). Having 

determined these parameters, however, allows the calculation of the ECM-based Kpuu for class 2 

and 4 compounds without need for additional experimental work. For ECM class 1 and 3 

compounds, in vitro measurements of biliary secretion are required to correctly calculate the 

ECM-based Kpuu. A preliminary EMC class assignment thus might reduce the number of 

sandwich-culture hepatocyte assays but cannot facilitate the selection of the appropriate Kpuu 

approaches. Therefore, the ECM remains the preferred approach for the determination of hepatic 

Kpuu irrespective of the ECM class. The alternative Kpuu approaches might be applicable to 

evaluate drug efficacy or toxicity in cell types where Kp is only determined by transport processes 

and not by metabolism as previously demonstrated by Mateus et al. (2013). 

In contrast, the alternative approaches allowed determining the binding parameter fuhep, which is 

not directly available from the ECM-based method. Knowledge of fuhep is considered to be 

important for physiologically-based pharmacokinetic (PBPK) modeling purposes or for binding 

correction in hepatocyte incubations (i.e. for the correction of apparent metabolic or biliary 

clearance parameters). Among the three investigated approaches, the temperature method 

indicated the best applicability, which was suggested by close correlation to ECM-derived data for 

ECM class 2 and 4 compounds as discussed in section 4.2. The homogenization method 

provided comparable results to the temperature method for small lipophilic compounds. In 

contrast, the binding properties of large or hydrophilic compounds were not correctly predicted. 

Thus, the homogenization method is likely applicable to compounds with the appropriate 
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physicochemical properties, in particular when taking into account that this approach requires 

minor experimental effort and is suitable for high-throughput screenings (Mateus et al., 2014). 

However, for compounds that not fulfill the described physicochemical requirements, fuhep should 

be preferably determined using the temperature method. 

Though, a potential influence of temperature cannot generally be excluded. Membrane fluidity 

and permeability are known to be temperature-sensitive (Frezard and Garnier-Suillerot, 1998; 

Pang et al., 2010; Brouwer et al., 2013; Zamek-Gliszczynski et al., 2013). Yet, altered membrane 

permeability will not affect the determination of fuhep using the temperature method since uptake 

and efflux permeability are equilibrated at steady-state and in the absence of active processes (i.e. 

PSinf = PSeff). As a consequence, temperature would affect uptake and efflux permeability to the 

same extent, which will not influence fuhep. However, temperature-dependent changes in binding 

to cellular structures need to be considered which was therefore investigated in control 

incubations at 37°C in the presence of a cocktail of uptake transporter inhibitors. This analysis 

indicated that binding properties were not affected to a relevant extent with exception of few 

compounds, which are associated with extensive binding or lysosomal trapping processes. For 

instance, lysosomal trapping processes are reduced at lower temperature, which is expected to 

cause an overestimation of fuhep when using the temperature method. Hence, to assure the 

determination of physiologically relevant data, control incubations at 37°C in the presence of 

uptake transporter inhibitors could be conducted for susceptible drugs. This concerns in particular 

compounds, which likely undergo lysosomal trapping (i.e. positively charged compounds with pKa > 

6 (Kazmi et al., 2013)) or exhibit extensive binding. However, incubations at 37°C with inhibitors 

for transporters and drug-metabolizing enzymes hold the risk of incomplete inhibition of potentially 

unknown active processes, resulting in erroneous fuhep data. Therefore, knowledge of the 

compound properties as well as careful selection of the experimental method is recommended in 

order to reliably determine fuhep. 

5.3. Prediction of total drug clearance 

Hepatic clearance of drug compounds is routinely predicted during drug development using IVIVE 

approaches like the ECM. Renal drug elimination represents the second major clearance pathway 

in humans and has to be likewise investigated. Yet, suitable renal IVIVE approaches are currently 

limited and allometric scaling from preclinical animals can be impaired by species differences 

(Chaturvedi et al., 2001; Deguchi et al., 2011; Watanabe et al., 2011; Kunze et al., 2014b; Dave 

and Morris, 2015). In addition, PBPK models have been developed (Neuhoff et al., 2013). 

However, such complex approaches are not applicable for bottom-up predictions at early drug 

development stages due to the need of extensive experimental data. In this context, the 

presented model is a reliable alternative for the prediction of renal and total clearance at early 

development stages. The approach is based on the prediction of elimination pathway 

contributions estimated from in vitro sinusoidal uptake data. Since this parameter is routinely 

measured for hepatic clearance predictions, no further in vitro experiments are required. 
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The obtained total clearance thus represents a crucial parameter for human pharmacokinetic 

predictions in order to anticipate the pharmacologically effective human dose and the systemic 

drug exposure. In addition, information about the contribution of hepatic and renal elimination 

pathways is valuable during early drug development. The identification of transporter and enzyme 

substrates is requested by health authorities, however, only for transporters and enzymes, which 

are involved in major elimination pathways with more than 25% contribution to overall drug 

elimination (EMA, 2012; FDA, 2012; Hillgren et al., 2013). Hence, ECCCS classification and 

knowledge about the contribution of elimination pathways supports the selection of follow-up 

phenotyping studies in order to identify potential DDI victim drugs. 

Nevertheless, the presented approach does not provide mechanistic insights of the underlying 

renal elimination processes. Renal elimination represents the net effect of glomerular filtration, 

tubular secretion, and tubular reabsorption and a mechanistic renal IVIVE approach would be 

desirable to elucidate the interplay between the individual processes. However, currently available 

in vitro cell lines and primary cells are lacking functional expression of several transporters, in 

particular OAT1 and OAT3, thus limiting the investigation of anionic compounds (Hilgendorf et al., 

2007; Kunze et al., 2014b). However, adjustments in transporter expression can be realized by 

genetic engineering (Nieskens et al., 2016). In addition, emerging 3D models of the human renal 

proximal tubules may have the potential to fill this gap in the future (Weber et al., 2016). 

A further limitation of the model is related to neglected non-hepatic/non-renal elimination 

pathways as discussed in section 4.3. Although only relevant for a small fraction of drugs, 

elimination pathways such as non-CYP-mediated metabolism, extra-hepatic metabolism, 

enterohepatic circulation, or intestinal secretion have been observed. Similar to hepatic and renal 

elimination, the occurrence of these alternative elimination pathways seems to correlate to in vitro 

hepatic process clearances (i.e extent of intrinsic clearance and sinusoidal uptake permeability) 

and ECCCS classification (Camenisch, 2016). For instance, low CYP-mediated clearance in vitro 

is likely an indication for non-CYP-mediated metabolism. In this case, follow-up studies should be 

conducted using microsomal incubations with additional co-factors or using hepatocytes or S9 

fractions that contain additional cytosolic drug-metabolizing enzymes in order to account for 

enzymes such as UGTs or SULTs. Very high passive uptake permeability seems to be a 

prerequisite for extra-hepatic metabolism such as lung metabolism, which can further be 

investigated using lung microsomes or slices. In addition, direct intestinal secretion seems to be 

relevant only for highly permeable efflux transporter substrates, whereas enterohepatic circulation 

is rather significant for low permeable efflux transporter substrates. Nevertheless, in vitro methods 

for the described alternative clearance mechanisms must be established and validated in order to 

provide quantitative predictions. Hence, extensive research will be required to confirm these 

relationships and to implement novel in vitro approaches for the characterization of non-

hepatic/non-renal elimination pathways during drug development. 
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5.4. Conclusion 

Within the scope of this work, new IVIVE approaches were investigated in order to facilitate the 

study of hepatic drug distribution and total drug elimination in humans during preclinical drug 

development. In vitro determination of the hepatic process clearances for a drug compound 

allows the prediction of hepatic Kpuu based on the ECM concept. This assessment provides the 

basis for the evaluation of intracellular drug interactions with hepatic transporters, enzymes, and 

drug targets and is expected to significantly improve the translation of in vitro data related to 

toxicity, pharmacokinetics, and pharmacodynamics. Information about fuhep, on the other hand, is 

needed for modeling purposes or the correction of intrahepatic process clearances and is 

preferably obtained by the temperature method. 

In parallel, the same hepatic in vitro parameters allow the determination of total drug clearance 

and relative pathway contributions. Knowledge about the total drug clearance will provide 

valuable information for the estimation of systemic drug exposure and to support dose anticipation 

for first-in-human studies. In accordance with the ECCCS classification, quantitative information 

about renal and hepatic pathway contributions will additionally provide guidance for selecting the 

appropriate phenotyping strategy in order to evaluate the DDI potential of victim drugs. 

The results of this thesis are therefore expected to improve the translation of in vitro safety and 

efficacy data for new drug candidates. Furthermore, the investigated in vitro models and 

classification systems will facilitate integrated and tailor-made pharmacokinetic assessments 

during early drug development stages.  
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