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Abstract

Bacteria are exposed to fluctuations in their environment and
can respond to such changes by regulating gene expression,
often at the level of transcription. Since gene expression is
an inherently stochastic process, identical cells within a sin-
gle environment display heterogeneous expression levels. To
understand how the stochastic processes in gene expression
affect the dynamics of single-cell gene regulation it is nec-
essary to observe gene expression in single cells in changing
environments. Recently developed microfluidic devices com-
bined with quantitative fluorescence time-lapse microscopy
allow lineages of single cells to be followed over long time-
scales and to measure their growth and gene expression phe-
notypes simultaneously. However these devices are missing
the environmental control needed to study gene regulation.
Therefore we set out to find a way to combine the long-
term observation of single cells with precise environmental
control in a single microfluidic chip. As a basis we chose
a device called the Mother Machine in which single files of
cells are growing in small dead end growth channels. These
growth channels are connected to a main channel with a con-
stant flow of medium for nutrient diffusion into the growth
channels. The cells at the dead end of the growth channels
are trapped and when dividing push their progeny into the

main channel where they are removed by the flow. Therefore



the trapped cell can be monitored essentially for its whole
lifetime, while its progeny can only be observed for a short
timeframe before they leave the growth channel. By combin-
ing the Mother Machine design with a specialized dual input
junction and mixing serpentines for environmental control
we developed a device that offers new prospects in studying
gene regulation. Together with the device we developed an
easy to use software solution to analyze data from Mother
Machine like devices together with our collaboration part-
ners. This integrated experimental and computational setup
will be an important tool to understand the genetic basis
for differences in single-cell expression distributions, and to
understand how natural selection has shaped single-cell gene
regulation. As a first example we show how single cells differ
in the regulation of the expression of the lac operon when ex-
posed to alternating changes in the available carbon source

switching between glucose and lactose every 4h.



Chapter 1

Introduction

1.1 Gene Regulation in Bacteria

Bacteria live in diverse environments across the whole planet.
In many of those habitats bacteria are confronted with fast
and drastic changes in conditions to which they are directly
exposed. Such changes might include fluctuations in avail-
able nutrients, in temperature or in various other stresses.
To survive these fluctuations and increase fitness in the new
condition it is crucial to sense changes and to adapt. One
way to do so is to change the transcriptional program in re-
sponse to external stimuli. The most well known example of
such an adaptation is the change in expression of the genes
involved in lactose metabolism in Escherichia coli depending

on the availability of glucose and lactose [1].

Regulation of gene expression often happens at its first step
where the RNA polymerase (RNAP) binds to the promoter
sequence to initiate transcription [2-4]. The bacerial RNAP
“core enzyme” is a protein complex consisting of five subunits
BB’axw. The “core enzyme” alone can only bind DNA and
synthesise RNA nonspecifically [4, 5]. To bind to promoter
DNA the RNAP “core enzyme” has to form the “holoen-
zyme” together with a sigma factor that specifically binds
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promoter DNA to initiate transcription [6-9]. Prokaryotic
sigma factors can be classified into two families, the ¢’ and
the o®! family [6, 10, 11]. In E. coli there are seven known
sigma factors that recognize different promoters and glob-
ally regulate gene expression in response to environmental
conditions (for a review check [12]). Further regulation of
transcription initiation is mediated via transcription factors
that act as regulatory switches. Such transcription factors
do sense specific signals and in response affect transcription
initiation by directly interacting with the target DNA. The
regulation can be both positive [13] and negative [1]. Nega-
tive regulators normally bind directly to the promoter region
to interfere with RNAP recruiting while positive regulators
usually bind upstream of the promoter region to facilitate

RNAP recruitment (for a review see [14]).

Even though bacteria tightly regulate their gene expression
in response to external stimuli as mentioned above, geneti-
cally identical cells in a homogeneous environment still show
some heterogeneity in gene expression because it is an in-
herently stochastic process [15-18]. Both fluctuations in the
number and activity of cellular components involved in gene
expression and noise coming from the stochastic nature of
biochemical reactions in gene expression contribute to cell-to-
cell variation [16]. The phenotypical heterogeneity resulting
from noise in gene expression might be beneficial in changing
environments on the population level because some fraction
of the population might by chance be in a state that is bene-
ficial in the new environment and thus will survive even fast
and drastic changes [19]. For example it was observed that
fluctuations in the expression of a toxin called HipA can be

linked to the formation of persister cells that are tolerant



to antibiotics [20]. Therefore fluctuations in gene expression

seem to have functional consequences (for a review see [21]).

1.2 Measurements of Gene Regulation on

the Single-Cell Level in Bacteria

To get a better understanding of how stochastic processes af-
fect gene regulation and what consequences differential regu-
lation has for the fitness of a cell in changing environments, it
is crucial to measure the growth phenotype and the dynam-
ics of gene expression in single cells exposed to environmental

fluctuations.

There are several experimental methods that allow mea-
surements of growth and gene expression of single cells us-
ing quantitative fluorescence time-lapse microscopy. One
widespread method is the use of agarose patches on which
the cells can grow and form microcolonies [22]. Combined
with microfluidics this method and similar approaches even
allow for changing the environment [23-25], but have one
big drawback in common: The size of a growing microcolony
quickly exceeds the size of the field of view in the microscope,
additionally cells start to form multylayered structures in big
microcolonies which leads to the loss of the single cell reso-

lution.

Here, novel microfluidic approaches open new perspectives.
By flushing away the progeny of observed cells the possi-
ble observation times are prolonged dramatically [26, 27].
While these approaches make longer measurements on the
single-cell level possible, they are unfortunately not equipped
for precise environmental control yet. Therefore to measure

transcriptional responses to changing environments in sin-
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gle cells the field is missing a device that brings together
the advantages of a system for long-term experiments with
a system to carefully control the growth environment. One
especially interesting microfluidic device that got a lot of at-
tention in recent years is the so-called Mother Machine. The
Mother Machine is a device published in 2010 designed to
study long-term growth in Fscherichia coli [26]. The main
features of the Mother Machine are small dead end growth
channels in which the bacteria are trapped. Nutrients and
waste products are diffusing in or out, respectively, through
the end of the growth channel that is connected to a main
channel with a constant flow of medium. These growth chan-
nels are ~20pm long and have a cross section of ~1pm x
~1pm. Therefore they accommodate exactly one column of
bacteria with a cell trapped at the closed bottom end. This
mother cell will divide and push it is progeny up until they
leave the growth channel and are removed by the flow in the
main channel. While the progeny of the mother cell can only
be observed for a certain time before they leave the growth
channel, the mother cell can be monitored for its whole life
time. The big advantage of this system is that it allows fol-
lowing single cells over a long time-scale in separated growth
channels, therefore no neighbouring effects can affect the re-
sults. For these reasons the Mother Machine is a good basis
to design a device that allows for both single-cell observa-
tions over a long time-scale and environmental control. First
applications of medium switches in a Mother Machine have
been shown [28]. In the respective study short switches to a
medium containing IPTG were used to temporally induce a
construct in the cells growing in the Mother Machine. To do

so a Y-junction connector feeding into the device was used



to bring the tubings of two different syringes together. Man-
ual switches were generated by activating one or the other
syringe, while the inactive line was shut with clamps. To
achieve more precise switches and expand the possibilities of
controlling the environment, a Dual Input Mother Machine
device was developed in this thesis to switch between or mix
two different inputs in the device under automatic control of

programmable syringe pumps.

1.3 Regulation of the E. coli lac Operon

This section will introduce the regulatory system controlling
the expression of the lac operon in E. coli, which is probably
the best known gene regulatory system in biology and was
studied to demonstrate the capabilities of the newly designed

microfluidic device presented here.

In 1960 Jacob et al defined the term operon for genes or-
ganized in transcriptional units that are controlled by an
operator [29]. In the year after Jacob and Monod presented
their model for gene regulation in bacteria [1, 30] with the
regulation of the expression of the lac operon as a prominent
example. The lac operon consists of the three genes lacZ,
lacY and lacA that are needed to metabolize lactose. Ad-
jacent to the lac operon is the gene for the lac represor lacl
(Figure 1.1).

promoter
operator 2 operator 1 operator 3
lacA lacY lacZ
360000 366'000

Figure 1.1: Organization of the lac operon in E. coli
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The lacZ gene codes for the [-galactosidase. The LacZ
B-galactosidase is a glycoside hydrolase enzyme that fulfills
three different functions in an E. coli cell. First LacZ cleaves
lactose into glucose and galactose [31], second it produces
allolactose by catalyzing the transgalactosidation of lactose
[32, 33] and third it can also cleave allolactose into glu-
cose and galactose [34]. The second gene lacY codes for
the lactose permease which is a lactose/proton symporter
responsible for lactose uptake into the cell [35-37]. The
last gene in the operon lacA codes for the galactoside O-
acetyltransferase. The function of this enzyme is not fully
understood yet but there is a hypothesized role of LacA as a
detoxifying enzyme [38]. The transcription of these genes is
negatively regulated by the Lacl repressor. There are three
different operator sites to which the repressor Lacl can bind
when no lactose is present (Figure 1.1). The main operator
O1 is located 11 base pairs (bp) downstream of the tran-
scription start site. When Lacl binds to O1 it interferes with
RNAP binding and blocks transcription initiation [39]. The
two auxiliary operators O2 (412 bp downstream of the tran-
scription start site) and O3 (82 bp upstream of the transcrip-
tion start site) cooperate with O1 in repression of the expres-
sion of the lac operon. This cooperative interaction between
the operators is due to DNA loop formation with tetrameric
Lacl [40, 41]. When lactose is present it is partially con-
verted into allolactose by the LacZ enzyme. Allolactose is
the inducer of the lac operon and is bound by the tetrameric
repressor Lacl [32, 33]. Upon binding the inducer the repres-
sor undergoes an allosteric transition with the resulting state
having a lower affinity for the operators [42, 43]. Therefore

the repressor acts as a switch that only allows transcription



from the lac operon when lactose is available as a carbon
source. Once the lac genes are expressed the number of per-
mease molecules in the membrane rises, lactose is imported
more easily and is converted to allolactose by the increasing
amounts of LacZ, which leads to even stronger induction of
the expression of the lac operon. But the expression of the
lac operon is not only regulated by the availability of lactose.
Besides the negative regulation via Lacl there is also positive
regulation of the expression of the lac operon exerted by the
catabolite activator protein (CAP). Long before Jacob and
Monod published their model for gene regulation in bacteria,
Monod observed that E. coli does not metabolize glucose and
lactose simultaneously when both carbon sources are present
but shows two phases of growth, first metabolizing glucose,
which is more easily metabolized, and only when the glu-
cose is gone changes the metabolism to lactose usage. This
phenomenon was called diauxic shift and it was shown that
glucose effectively prevents expression from the lac operon
[44-46]. When Makman and Sutherland 1965 showed that
that glucose-starved FE. coli cells accumulate high amounts
of cAMP under certain conditions, the question arose as to
whether cAMP has something to do with the glucose effect or
catabolite repression that prevents expression of the lac genes
when glucose is present [47] . In several subsequent studies
CAP was discovered and was shown to activate transcrip-
tion from the lac operon when bound to cAMP. In addition
it was shown that strains lacking the adenylate cyclase and
CAP fail to induce expression of the lac genes normally [48—
56]. Taking these findings together, it was thought that with
CAP and cAMP the main players in the glucose effect were

found. Later it was shown that the cAMP levels are essen-



tially the same in cells growing in glucose and cells growing
in lactose and it was suggested that the main reason for the
inhibitory effect of glucose on the expression of the lac genes

is due to inducer exclusion [57].

Glucose is imported into the cell through the phosphoenol-
pyruvate:carbohydrate phosphotransferase system (PTS). The
PTS is a phosphorelay system found in many bacterial species
and usually consists of 5 proteins (some of these proteins can
be fused together in some cases): enzyme I (EI), histidine
protein (HPr) and enzyme ITA, 1IB and IIC. When glucose is
available E. coli imports it via the PTS, the sugar is phospho-
rylated during import and the glucose specific EITA®" com-
ponent is mainly present in its non-phosphorylated state (for
a review about the PTS see [58]). In its non-phosphorylated
state EITAG" inhibits the lactose permease LacY and there-
fore expression of the lac genes is prevented in the presence of
glucose through inducer exclusion (Figure 1.2). Only when
glucose is gone lactose can be imported and converted to the
inducer allolactose. Interestingly non-phosphorylated EITA
can only interact with LacY when the permease is in the
conformation it takes when lactose or another substrate is
present [59, 60]. Since the same inactivation mechanism is
also used for other sugar permeases this ensures that EIIA is

only directed to the permeases that really need inactivation.

Despite all these regulatory mechanisms stochasticity is
also observed in the expression of the lac operon [16, 18].
Therefore the regulation of the expression of the lac operon
is an ideal system to study how stochastic processes in gene
expression can affect the dynamics of gene regulation in sin-

gle cells. There are some recent studies that monitored the
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Figure 1.2: Glucose import via PTS and the inhibitory effect of non-
phosphorylated EITAS™ on lactose import (adapted from [58])

regulation of the expression of the lac operon in changing
environments on the single cell level [24, 25]. But the ex-
perimental setups used do not allow performing experiments
over long time-scales and therefore limit the duration and
frequency of the medium switches. In contrast, Lambert
and Kussel 2014 [61] monitored growth rates and expres-
sion of the lac operon during several alternating switches of
the carbon source between glucose and lactose but without
single-cell resolution. By providing both, single-cell data and
the possibility to perform experiments over long time-scales,
the Dual Input Mother Machine can bring the advantages
of the experimental systems used in these studies together.
The kind of data that can be collected using the Dual Input
Mother Machine will be presented in Chapter 3.
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Chapter 2

The Dual Input Mother
Machine: From the Design to

the Experiment

2.1 Photolithography

The Dual Input Mother Machine device presented in this
work is a microfluidic device made out of polydimethylsilox-
ane (PDMS). PDMS is a silicon-based organic polymer and
is widely used in microfluidics because it is chemically inert,
non-toxic and optically transparent. To get a microfluidic
chip, liquid PDMS is poured onto a master that serves as a
template. After curing the rubber-like PDMS block can be
removed from the master and can be bonded to glass. To do
so, both materials are chemically activated by plasma treat-
ment to get an irreversible covalent bond between the PDMS
and the glass slide [62] (Figure 2.1).

To go through the different steps in the development of
such a microfluidic device, first the method for producing
the master shall be introduced here. The master is produced
using a technique called photolithography. With this tech-

nique, structures made out of light sensitive materials called
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curing

L

bonding to glass

flow channel

Figure 2.1: The process of building a PDMS microfluidic device from an
existing master: 1) Liquid PDMS is poured onto the master, 2) After
curing the PDMS block with the imprinted structures can be removed
from the master, 3) The PDMS block is bonded to glass after chemical
surface activation, channels are formed between the PDMS and the glass
slide
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photoresists are built up layer by layer on a flat substrate
(often silicone wafers). Photoresists can be classified into
two groups: 1) Positive photoresists that become soluble to
the developer when exposed to light (unexposed areas remain
insoluble) and 2) negative photoresists that only become in-
soluble when they are exposed to light [63]. The masters for
the Dual Input Mother Machine were built using different
SU-8 negative photoresists (micro resist technology GmbH)
that are exposed with a wavelenth of 365nm. Therefore the
process of photolithography will be explained using negative
photoresist here. If a microfluidic device consists of struc-
tures with different heights, there is one photoresist layer
for each height and each layer is exposed separately (Figure
2.2). The photoresist layers are spread by a process called
spin coating. A certain amount of liquid photoresist is placed
on the wafer which is spun afterwards to get an even layer of
photoresist. The height of the layer is controlled by the spin
speed, polymer concentration and the intrinsic viscosity of
the resist. Next, the photoresist layer can be exposed with
UV-light, a photomask is used to only expose the desired
areas of the resist layer. There are two different exposure
methods: 1) contact printing where the mask and the sub-
strate with photoresist layer are in contact and 2) proximity
printing where there is a small gap between the mask and the
substrate with the photoresist layer. Contact printing allows
high resolution structures to be built, but because of the con-
tact there is the risk of small debris damaging the mask and
causing defects in the structures. This risk is minimized with
proximity printing at the cost of a lower resolution because of
diffraction. There is a third more complex exposure method

called projected printing where the image of the patterns on
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the mask is projected to the photoresist layer using optics
[63]. This method will not be discussed here in detail since it
was not available in the facility used for the structuring at-
tempts. In a developing and cleaning step unexposed resist
is removed and more layers can be added to the structure
(Figure 2.2)[63, 64]. For the Dual Input Mother machine a
first layer with a height of 0.9um was used for the fine growth
channels and a second layer with a height of 5um for the flow

channels.

photoresist (ca 1 pm)
e ”h‘“me”’
substrate

exoposure

developed structure : # /

photoresist (5 pm)
a"gnment '

R

UV-light

photomask

1st layer

2nd layer

exposure

Figure 2.2: Photolithography: Illustration of the structuring of a two
layer Mother Machine master



2.2 The Dual Input Mother Machine: Im-

plementing Environmental Control

The Mother Machine [26] is a microfluidic device to follow
the growth and gene expression of single bacteria over long
periods of time. However to use the advantages of this design
to study gene regulation on the single cell level it needs to

be coupled to a precise environmental control.

The device presented here does not only allow to switch
between two different inputs but also to create different mix-
tures of two inputs. This requires a special junction to bring
the two inputs together upstream of the growth channels
and to allow for both switching and mixing. When inputs
are switched the junction needs to be designed to prevent
backflow from the active into the inactive input. For mix-
ing on the other hand the design needs to allow for precise
changes of the mixing ratio and further a solution has to be
found to guarantee for sufficient mixing of the two inputs
before the mix reaches the growth channels. We decided to
use a so called Dial-A-Wave junction (DAW junction) [64]
combined with mixing serpentines. This setup fulfills all our
criteria and still results in a relatively simple device. The
DAW junction brings the flow in the two inlets together and
divides it into three outlets. While the middle outlet is con-
nected to the main channel with the growth channels, the
two outer outlets are connected to waste channels (Figure
2.3A, left). This design allows to have flow from one input
only in the main channel, while the other input can still be
preassured sufficiently to prevent backflow. This is possible
since the excess flow from the inactive input can be redirected

to the waste channels (Figure 2.3B, middle and right). By
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changing the flow rates of the two inputs the junction can
also be used to create different mixing ratios between the two
inputs (Figure 2.3B, left).

For the subsequent mixing of the inputs it is important
whether a flow is laminar or turbulent and this depends on
the ratio between the inertial and the viscous forces of a
fluid’s flow. This ratio can be expressed in the Reynolds

number Re:
~ pvDy

L
Here p is the density of the fluid, v is the mean fluid veloc-

Re

(2.1)

ity, Dy, is the hydraulic diameter of the channel and u is the
viscosity of the fluid. Flows in microfluidics have typically
very low Reynolds numbers and are thus strictly laminar [65].
Therefore there is only diffusive mixing happening in these
devices. To make sure the inputs joining at the DAW junc-
tion flow together long enough to ensure full mixing before
the mixture reaches the cells we introduced a series of mixing
serpentines between the DAW junction and the growth chan-
nels (Figure 2.3A, right). The length required for effective
difusive mixing depends on the flow speed (fluid velocity) v,
the width of the micro-channels L and the diffusion coeffi-

cient of the molecule of interest D [66]:

Ay, ~ —— 2.2
Y s (2.2)

Such simple mixing serpentines work well for the device pre-
sented here but for some applications simple 2D mixing ser-
pentines would need to be impractically long to ensure effec-
tive diffusive mixing. In this case more complicated mixing
devices have to be used to save space on the microfluidic

chip.
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input 1

A ' ' mixing serpentines (=7 cm)
waste channel ~1900 growth channels

i I

input 1 cell outlet

e main channel

input D ——

waste channel waste channel
‘ .- outlet

input 2

Figure 2.3: The Dual Input Mother Machine: A) Scheme of the Dual
Input Mother Machine with a blow-up of the DAW junction, B) DAW
junction in different states, left: 50:50 mixture, middle: input 1 only
(input 2 is directed to the lower waste outlet), right: input 2 only, input
1 is directed to the upper outlet

2.3 Mask Design

In this section the design of the photomask for the Dual
Input Mother Machine using computer-aided design (CAD)
software will be explained and some changes compared to the
original Mother Machine other than the introduction of en-
vironmental control shall be highlighted. Once the design is
complete a specialized company can use the plans to fabricate
a photomask for the photolithography step. The design of the
mask was done using the widespread AUTOCAD® software
from AUTODESK® (free academic licences are available). To
discriminate areas that shall remain clear on the photomask
from the ones that shall be opaque, the features are drawn in
two different layers. In the first layer every object enclosed
by lines will end up transparent on the mask, while objects
enclosed by lines in the second layer will be opaque (Figure
2.4A). As mentioned above the Dual Input Mother Machine

19



OO
OO

(|
(|
O
O
O
O
O
O
O
O
O

OO0O0O0O00O000000a0
OO0O0O0O00O0000000
OOoodooooooOoon
OoodoooooooOn
000000000000
OO000000000000
OO0O0O0O00O0000000
OO0O00O00O0000000
OoodooooooOoon
ooooogdod
OO0000000

OO0o000000o0on
aog
oo

Figure 2.4: Design of the Dual Input Mother Machine: A) The design
features quadratic in- and outlets with a length of 2mm. In the CAD
design the structures that will remain clear on the photomask are outlined
in blue (layer 1) while structures that will be opaque on the mask are
outlined in green (layer 2), B) and C) To align the structures for the
exposure of the second layer of photoresist the structures are combined
with alignment marks on the mask, D) Rounded edges assure good flow
in the bends without any regions with no flow in the edges
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master is built up by two photoresist layers with different
heights. Therefore two different designs have to be printed
on the mask to expose the first and second layer. The first
layer consists of the growth channels and the lowest part of
the flow channels (Figure 2.6A top) while the second layer
consists of the rest of the flow channel (Figure 2.6A bottom).
It is important to perfectly align the structures of the first
and the second layer in the process of exposure. To make this
task easier alignment marks were put next to the structures

for the two layers on the photomask (Figure 2.4B and C).

Besides the introduction of environmental control we also
made some more changes to the original Mother Machine
design in order to optimize the system for our needs. The
high medium flow used with the original design is imprac-
tical for long experiments and we therefore decided to re-
duce the dimensions of the flow channels. In the Dual Input
Mother Machine all flow channels were designed to be 50
pm wide only (compared to 100 gum in the original design)
and in the photolithography step the height of flow chan-
nels was reduced from 25um to 6 pum. Also the design of
the in- and outlets was changed. The Dual Input Mother
Machine features two inlets and two outlets. Since handling
of a microfluidic device gets more complicated with a higher
number of in- and outlets, we decided to design the in- and
outlets rather large to make working with them easier. We
designed square in- and outlets with a length of 2mm. To
avoid collapsing of these structures, small pillars are placed
inside them (Figure 2.4A). Last, to avoid flow free areas in
edges all bends downstream of the DAW junction were de-

signed to have rounded edges as shown in figure 2.4D. From
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these plans a 5” photomask (quarz with a chrome layer) was

ordered from Compugraphics Jena GmbH.

2.4 Challanges in the UV-Lithography

The masters for the Dual Input Mother Machine device pre-
sented here were fabricated using SU-8 negative photore-
sists exposed with UV-light (365nm) (micro resist technol-
ogy GmbH). While the second layer with the flow channels
turned out to be unproblematic to produce, the exposure of
the first layer with its fine growth channel structures and
the perfect aligntment of the two layers turned out to be
very challenging. Spin coating the resist for the first and
second layer was unproblematic. Because of the small di-
mensions of the growth channels (0.9um high, 0.8um wide
and 25um long) on the first layer we worked in contact mode
for the exposure. Nevertheless with the conditions in the
local cleanroom we failed to get reproducible results for the
small structures. It turned out that it is very hard to avoid
any dust or debris ending up on the photoresist layer in this
facility. These objects than lead to bad contact during the
exposure which in turn leads to a loss of resolution and un-
even results across the master (Figure 2.5A). Because of these
problems the structuring attempts resulted in either too large
or poorly developed structures (Figure 2.5B). Since the first
layer of the Dual Input Mother Machine includes both the
growth channels and part of the flow channel (Figure 2.6A
top) it is crucial to perfectly align this layer with the flow
channel parts in the second layer. If the alignment fails, the
growth channels on one side of the flow channel can end in a

0.9um high flow channel because the higher part of the flow

22



dust particles

photomask

photoresist (ca 1T um)

substrate

Figure 2.5: Problems with structuring growth channels probably because
of bad contact between mask and photoresist: A) Illustration of how
dust particles prevent proper contact between the photoresist layer and
the photomask B) Structures that are not developed properly and show
uneven countours, C) Structures that are too big (several times wider
than the structures on the mask), D) improvement over the first two
cases but still not narrow and smooth enough
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channel is shifted (Figure 2.6B). In an experiment such a de-
vice causes problems because cells don’t load very well on the
side where the second layer of the flow channel is shifted away
from the growth channels. In addition, cells that would grow
in these growth channels would not be flushed away properly
when leaving the growth channel. While the problem with
the alignment would have been possible to solve within the
environment we worked in (probably by changing the mask
design) we came to the conclusion that the setup we were
using in the local clean room was insufficient to get well de-
veloped structures with the right size. Therefore we asked a
company (micro resist technology GmbH) with an advanced
clean room environment to do the structuring of the masters
for us. Even in this, more professional, setup reproducibil-
ity seems to be limited and we got slightly varying structure

sizes on different masters.

2.5 The Procedure of an Experiment

2.5.1 Preparation of the Device

Before the experiment the device has to be prepared. It is
recommended to prepare several devices in advance to have
backups in case some step is going wrong at the day of the
experiment. All steps should be carried out wearing gloves

to protect the device.

1) First the master for the device has to be cleaned with
pressurized air. Other cleaning methods (solvents, tape or
tissue) should be avoided because they might destroy the

delicate features.

2) In the next step the PDMS needs to be prepared. In
this work the Sylgard® 184 Silicone Elastomer Kit was used
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2nd layer

1st layer

Figure 2.6: Problems with the Alignment of the two Photoresist Layers:
A) Schematic view of the photomask for the first layer (lower part of the
flow channel plus growth channels)in the top and for the second layer
(rest of the flow channel) in the bottom, B) Topview of a misaligned
structure
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with a 1:10 curing agent to base ratio. The correct amounts
of the two components can be measured using a balance. It
is crucial to thoroughly mix the two components to assure

complete curing afterwards.

3) Before pouring the PDMS it should be checked again
that there is no dust left on the surface of the master. It is
recommended to pour to a thickness of about 7mm. Since it
is impossible to mix and pour the PDMS without creating
bubbles, trapped air has to be removed before curing. One
can either use a vacuum chamber to accelerate the process
or leave the master on room temperature for around 2h to
let the bubbles come to the surface. Remaining bubbles can

be removed with a pipette tip.

4) To accelerate the curing, the master is incubated at 80°C
for at least 4h or overnight (the curing time can depend on
the thickness of the device but for the thickness mentioned

above these times should be sufficient).

5) Once the device is fully cured it can be cut out. One
needs to make sure not to use too much pressure to avoid
breaking the silicone wafer and it is recommended to cut far
away from the structures. If multiple structures are on one
master it is easier to separate them after removing the mold

from the master.

6) To later connect the tubing to the device, in- and outlets
need to be punched. In the device presented here the in- and
outlets are fairly large and should be easy to see. If not it
might help to mark their location with a pen on the PDMS.
To punch the hole a Harris Uni-Core™ 0.75mm biopsy punch
was used. It is easiest to punch the holes from the side with

the structures on your mold. Before proceeding with the
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bonding step it should be double checked that all in- and

outlets are punched properly.

7) The device is bonded to a coverslip with a thickness
of 0.17mm (#1.5). To get good bonding both the PDMS
block with the device and the coverslip need to be cleaned
thoroughly. First the PDMS block is cleaned with 100% iso-
propanol. Sometimes rinsing is not enough and dirt needs to
be cleaned away manually. In a last step the PDMS block is
rinsed again with isopropanol to flush away remaining dirt
and can then be dried using pressurized air. It is important
to dry the block as quickly as possible to prevent any smears
from slowly drying isopropanol. The coverslip needs to be
cleaned in the same way and once both the PDMS block
and the coverslip are free of dust and smears they can be
placed in the plasma cleaner. In this work we used a plasma
cleaner from Harrick Plasma (PDC-32G). The chamber of
the plasma cleaner is evacuated and the pressure is set to be
around 2mbar. Once this pressure is reached, the switch for
the RF level is switched to "high” for around 45s. The purple
glow of the plasma can be observed through the ventilation
slit to check for proper plasma formation. After switching off
the RF level switch, the chamber can be slowly filled with air
again until the pressure has equilibrated with the pressure in
the room. Now the coverslip can be put on a black back-
ground (helps to check the bonding) and the PDMS block
can be placed on it (make sure the side with the structures
faces down). When good bonding is achieved one should see
how the contact between glass and PDMS spreads over the
whole surface without applying any pressure. After bonding
the device can be heated to 65°C for an hour to enforce the

bonding.
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2.5.2 Loading of the Passivation Buffer

As described for the original Mother Machine device [26] the
device needs to be passivated before using it. The passiva-
tion buffer consists of salmon sperm DNA (10mg/ml) and
BSA (10mg/ml) (mixing ratio 1:3). To prepare the mix, the
salmon sperm DNA is denatured at 95°C for 10min and can

be mixed with the BSA after cooling down.
In the Dual Input Mother Machine the two waste channels

cannot be pressured seperately and therefore dried up passi-
vation buffer might block one waste channel without a chance
to get rid of the clog. To prevent this from happening it is
recommended to load water into the waste outlet while load-
ing the passivation buffer into the cell outlet. To do so, two
1ml syringes are prepared with 23G needles and short pieces
of tubing (in our experiments we use PTFE tubing with an
inner diameter of 0,56mm and an outer diameter of 1,07mm)
that are connected to the syringes by directly putting the
tubing over the needles. Now one syringe is loaded with wa-
ter and the other one with passivation buffer and the end of
the tubings are connected to the waste outlet or the cell out-
let respectively. To prevent the inlets from drying out later
two pipette tipps are put into both inlets. Now first the sy-
ringe with the passivation buffer is pressured by hand until
the main channel is filled up to the DAW junction (can be
seen by eye). Afterwards both syringes are pressured equally
until the liquid has filled both inlets and some part of the
pipette tipps. Like this, the device can now be incubated
at 37°C for 1h without any blockage of the waste channels
or drying out of the inlets. The incubation step should not
be much longer than 1h otherwise the passivation buffer can

block the main channel.
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Figure 2.7: Loading of the passivation buffer: While the main channel is
filled with passivation buffer loaded through the cell outlet (orange), the
waste channels are flushed with water loaded through the waste outlet
(blue) at the same time. Therefore the waste channels stay clear of
passivation buffer that could dry up and block the channels.

2.5.3 Cell Loading

The night before the experiment an overnight culture with
the medium that shall be used first in the experiment is in-
oculated from a single colony. On the day of the experiment
the cells are diluted 1/100 into the same medium and are
grown to mid-to-late-exponential phase before the loading.
The cell loading step is performed in the microscope and
can take some time. Therefore it is recommended to heat
up the microscope incubator some hours before the loading
step so the system can equilibrate and the cells always stay
at 37°C during loading. While the device is incubated with
the passivation buffer one can already prepare the two media
that shall be used in the experiment. To monitor the flow at
the DAW junction one of the media has to be labeled (here
non-fluorescent microspheres (Polybead® Polystyrene 1um
Beads) were used in a dilution of 1/100 of the original con-
centration). Syringe size is chosen according to the duration
of the experiment and both syringes are equipped with 23G

needles. Now the syrines can be loaded with the different
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media and the tubing can be connected by putting the end
of the tubing directly over the needle.

Once the passivation of the device is done, the short tubing
from the loading of the passivation buffer can be removed,
the tubing from the medium syringes is connected to the in-
lets (try to avoid any bubbles) and both pumps are started
with a flow rate of 0.025ul/s to get rid of the water and the
passivation buffer. A new tubing can already be connected
to the waste outlet with the other end placed in a waste con-
tainer. Once the system has equilibrated and all channels are
filled with medium the device is mounted on the microscope
to check the mixing ratio at the DAW junction. If it fails
to reach a 50:50 mixing ratio with a flow rate of 0.025pl/s
for both syringes the resistance of one of the waste channels
is probably altered by a blockage or there is a leak some-
where. If this problem cannot be fixed the device has to be
discarded. If one observes a 50:50 ratio one can proceed and
change the syringe input to reach the mixing ratio in which
the experiment shall be started. To start with a 100% input
from only one inlet we use flow rates of 0.04ul/s for the ac-
tive inlet and 0.01pl/s for the inactive one. Loading of the
cells should only start after all the medium in the outlets
has been exchanged with the correct mixture to ensure the
cells do not see any other condition before. This will take
some minutes depending on the flow rates. It is important
that the pumps are always running during the loading step
to prevent cells that make it up to the DAW junction from

entering the inlets where they could stick and grow.

Now the cells can be taken out of the incubator and have to
be concentrated by centrifugation (100-200x). The cells will
be loaded through the cell outlet. To do so the tubing that
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will serve as a waste tube from the cell outlet after the loading
is connected to a 1ml syringe and cells are loaded into the end
of the tubing. Now this end is connected to the cell outlet. To
fill the main channel the 1ml syringe is carefully pressured by
hand and the cells are observed under the microscope while
they are entering the main channel. After some minutes the
main channel should be filled with a high density of cells and
now a custom made screwing clamp can be used to hold the
pressure on the syringe to make sure the flow in the main
channel stops. It is important to monitor the loading step
because the pressure has to be adjusted with the clamp from
time to time to ensure zero flow in the main channel and let
the cells enter the growth channels. Once a sufficient number
of growth channels is loaded one can remove the syringe from
the cell outlet tubing, place the end of the tubing in the waste

container and let the cells recover for at least 2h before the

—

T

actual experiment starts.
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Figure 2.8: Cell loading procedure: There is a constant from both inlets
(input 1 and 2) during the whole loading procedure to make sure no cells
can enter the inlets during loading. The concentrated cells are loaded
through the cell outlet. First the cells are flushed into the main channel.
Once the main channel is filled with a high density of cells, the pressure
at the cell outlet is controlled to reach zero flow in the main channel
(red). The medium flow from the inlets is directed to the waste channels
(green) to remove cells that make it up to the DAW junction.
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2.5.4 Imaging

For imaging we use an inverted Nikon TI-E microscope with
a motorized xy-stage with linear encoders. The complete
microscopic setup is placed in an incubator and experiments
are typically done at 37°C. For the Mother Machine experi-
ments a CFI Plan Apochromat Lambda DM 100x objective
(NA 1.45, WD 0.13mm) and a CMOS camera (Hamamatsu
Orca-Flash 4.0) are used to record images. Typically 5 to 6
positions with 26 growth channels per field of view are im-
aged. For each position an image in phase contrast plus one
image for each fluorescent channel is taken. For the phase
contrast images a LED transmitted light source at 100% in-
tensity with an exposure time of 100ms is used. The set-
tings for the fluorescence channels depend on the constructs
used. For a chromosomal lacZ-gfp fusion used in this work,
an exposure time of 2s with the Lumencor® SpectraX light
engine® set to 17% output and a ND4 filter in the light path
was used. Also the DAW junction is imaged but instead of
fluorescence images an additional phase contrast image with
a short exposure time (10ms) is imaged to visualize the beads
in the flow. Good results were obtained with taking around
30 frames per cell cycle, to have enough data for analysis and

still not too much photodamage.

2.5.5 Stopping the Experiment

At the end of the experiment the tubing can be removed
from the medium syringes and the device can be discarded.
It is recommended to remove all pressure from the syringes

before removing the tubing to avoid splashes of medium.
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Much is still not understood about how gene regulatory interactions control cell fate
decisions in single cells, in part due to the difficulty of directly observing gene regulatory
processes in vivo. We introduce here a novel integrated setup consisting of a microfluidic
chip and accompanying analysis software that enable long-term quantitative tracking of
growth and gene expression in single cells. The dual-input Mother Machine (DIMM) chip
enables controlled and continuous variation of external conditions, allowing direct observa-
tion of gene regulatory responses to changing conditions in single cells. The Mother Machine
Analyzer (MoMA) software achieves unprecedented accuracy in segmenting and tracking
cells, and streamlines high-throughput curation with a novel leveraged editing procedure. We
demonstrate the power of the method by uncovering several novel features of an iconic gene
regulatory program: the induction of Escherichia coli's lac operon in response to a switch from

glucose to lactose.
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ene regulation is one of the key processes that underlie the

complex behavior of biological systems, allowing cells to

adapt to varying environments, and allowing multi-cellular
organisms to express a large number of phenotypically distinct cell
types from a single genotype. In spite of more than half a century
of intense studY since the discovery of the basic mechanism of
gene regulation’, much remains to be understood about the ways
in which gene regulatory interactions control cell fate decisions.
Because of a number of challenges, it is still difficult to directly
observe and measure gene regulation in vivo. First, gene regulation
is inherently stochastic, and genetically identical cells in homo-
geneous environments often exhibit heterogeneous behaviors>>.
This implies that bulk expression measurements are often mis-
leading, thus necessitating methods for studying gene regulation in
single cells. Second, while methods such as flow cytometry,
smFISH, and single-cell RNA-seq provide snapshots of gene
expression distributions across single cells (see e.g. refs. =),
understanding the processes that shape these distributions often
requires that single-cell gene expression be followed in time (e.g.
refs. ©7). The most common approach in such studies is to grow
cells on a surface while tracking gene expression and growth using
quantitative fluorescence time-lapse microscopy (QFTM).

Three key issues currently limit the power of such studies. First,
to capture crucial regulatory events, long-term observations
stretching over many cell cycles are often required. Second,
measuring gene regulatory responses requires the ability to
accurately control and vary environmental conditions. And third,
to accurately characterize the statistics of single-cell responses,
powerful image-analysis tools are needed to automatically extract
large numbers of quantitative phenotypes from the time-lapse
measurements. Considering bacteria, while it is possible to expose
cells growing on surfaces to changing conditions®'’, gathering
long time courses is not possible because the microcolonies grow
out of the field of view or start to form multiple layers.

Recently developed microfluidic devices solve this problem by
growing cells in micro-fabricated geometries that confine their
location and movement' =13, An especially attractive design is the
so-called Mother Machine'!, in which cells grow single-file within
narrow growth-channels that are perpendicularly connected to a
main flow-channel that supplies nutrients and washes away cells
extruding from the growth channels. However, all current designs
expect a single media to be used as input, necessitatin% manual
switching of the input to alter conditions, e.g. refs. 1415 which
precludes the accurate temporal control of the growth environ-
ment that is desired to study gene regulation in vivo.

In addition, beyond specific technical problems, many
researchers are likely discouraged from studying gene regulation
using a combination of microfluidics and time-lapse microscopy,
because of the high costs associated with establishing the necessary
methods. One not only needs to obtain designs for microfluidic
devices, learn how to manufacture these, and work out experi-
mental protocols for performing time-lapse experiments, one also
needs sophisticated image-analysis and post-processing methods to
obtain accurate quantitative information from the data. While there
are a number of software tools for analyzing QFTM data of micro-
colonies on agar'®!8, they perform poorly on data from micro-
fluidic devices such as the Mother Machine, because cells undergo
larger movements between consecutive frames. In addition, phase
contrast images in microfluidic devices often suffer from non-
uniformity due to varying background and opacity. For this reason,
most require a dedicated fluorescent reporter to assist segmentation.
Although a number of labs are analyzing data from microfluidic
devices using various inhouse image-analysis solutions!b!419-21
there is currently no publically available tool that allows automated
analysis of such data with the throughput and accuracy required for
quantifying growth and gene expression in large data sets.
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To address these problems, we here present an integrated
experimental and computational setup for studying gene
regulation in single cells using microfluidics in combination with
time-lapse microscopy. Our approach consists of the combination
of, first, a new microfluidic device, called the dual-input Mother
Machine (DIMM), that allows arbitrary time-varying mixtures of
two input media, such that cells can be exposed to a precisely
controlled set of varying external conditions. Second, to enable
high-throughput and high accuracy analysis of phenotypic mea-
surements from the DIMM, we accompany it with a software
suite, called MoMA (Mother Machine Analyzer). The Mother
Machine Analyzer takes specific advantage of the geometry of the
device to accurately segment and track cells using only phase-
contrast images, and further provides a curation user interface
with leveraged-editing, meaning that a set of related errors are
often fixed with a single click. The combination of MoMA’s
accuracy and curation efficiency allows analyses of data sets
involving millions of single-cell observations. Third, we provide
several methods for precise quantification and characterization of
the accuracy of growth and gene expression measurements. By
making the entire framework including the microfluidic device’s
design, protocols for manufacture and time-lapse experiments,
the open source MoMA software, and post-processing methods,
all jointly available, we aim to dramatically lower the entrance
costs for researchers to adopt this methodology. To demonstrate
the power of the method, we apply it to the iconic lac operon
regulatory system that underlies the discovery of gene regulation,
and uncovers several novel unexpected features of its stochastic
induction dynamics.

Results

The dual-input Mother Machine. The design of our DIMM
device closely follows that of the original Mother Machine!l,
consisting of a main channel and small dead-end growth channels
that open into the main channel (Fig. la, ¢). Nutrients diffuse
from the main channel into the growth-channels in which cells
are trapped (Fig. 1c), and as the cells in the growth-channels grow
and divide, cells closest to the channel’s exit are pushed out and
are transported away by the flow in the main channel. In contrast
to previous designs, our device has dual-input ports and mixing
serpentines which, in combination with programmable pumps,
allow for arbitrary time-dependent mixing of two input media.
The two inputs meet in a dial-a-wave junction?” consisting of two
inlets and three outlets (Fig. 1b). While the middle outlet feeds
into the main channel of the device, the outer outlets function as
waste channels and allow the flow in the middle outlet to vary
from carrying only one of the two inputs (black in Fig. 1b), to
carrying only the other input (green in Fig. 1b), without
getting backflow into the inactive inlet. Note that arbitrary
mixtures of the two input media are possible (see Methods,
Performance of the environmental control) so that, for example,
dynamically changing concentrations of particular nutrients or
stressors can be realized. Details on the loading of the DIMM are
provided in the Methods (Priming and loading of the microfluidic
devices).

To demonstrate the power of our approach, we applied it to the
archetypical example of a gene regulatory system: the induction of
Escherichia coli's lac operon when switching between glucose and
lactose as a carbon source. We used a modified E. coli
MG16565 strain that carries a translational lacZ-gfp (green fluorescent
protein) fusion at its native locus’. Time lapse movies of 22-24 h
were obtained in duplicate for three different setups (1. a constant
supply of M9 minimal media+0.2% glucose, 2. a constant supply
of M9+0.2% lactose, and 3. switching between these two media every
4h), taking a frame every 3min (see Supplementary Movie 1
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(https://www.youtube.com/watch?v=2Tznm868fmc (2015))). analyzed eight different time-lapse experiments all together,
Together with additional control conditions (strain without GFP, amounting to data from 180 growth-channels, more than 10,000
and switching media where lactose is supplemented with 500  full cell cycles, and more than 500,000 single-cell observations
um IPTG (isopropyl p-D-1-thiogalactopyranoside), we thus (Supplementary Table 1).
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Fig. 1 The dual-input Mother Machine. a Overview of the dual-input Mother Machine (DIMM) design. b Dial-a-wave junction in three different switching
states, top: 100% from input 1 (unlabeled) and 0% from input 2 (green), middle: 50% from both inputs, bottom: 0% from input 1 and 100% from input 2. ¢
Phase contrast image of growing Escherichia coli cells in three growth-channels of the DIMM. d A time series of a single growth-channel containing E. coli
cells expressing LacZ-GFP from the lac promoter while being exposed to media which alternate between containing glucose and lactose as a carbon source.
e Overview of the automated and curation phases of the MoMA analysis pipeline. f Histogram of the fraction of curated frames per single growth-channel
time course. g Estimated measurement errors on cell size (blue) and number of GFP molecules (red). Dark blue points indicate the typical range of cell
sizes. Error bars show standard errors. The black line shows the fitted function 1.01/@
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Image analysis and data processing. The analysis of the image
sequences acquired by a DIMM is performed in three phases by
the MoMA software suite (see Methods, The Mother Machine
Analyzer, and following sections). Although MoMA, by default,
uses phase contrast images to segment and track the cells, leaving
all fluorescent channels for measurement of gene expression and
allowing tracking on non-fluorescent (e.g. wild-type) cells, the
user can opt to let MoMA use fluorescence images for tracking.
The first automated phase begins by registering the frames of a
movie to sub-pixel accuracy to correct for jitter and stage drift.
Then the growth-channels in each time frame are cropped out
and reorganized into a time-series for each channel. Each growth-
channel movie is then segmented and tracked. Unlike most image
analysis tools that first segment each of the images and then link
these segmentations into a tracking, MoMA uses an algorithm
that first over-predicts a hierarchy of feasible cell objects (seg-
mentations) for each time point and then simultaneously selects
what it thinks are the true cells and the tracking links between
them?®. This is accomplished by formulating prior information as
a collection of integer linear constraints that guarantee only valid
cell trackings satisfy the constraints, and finding among this space
of valid trackings, the one of minimum cost. Since cost reflects the
likelihood of the solution considering both the observations and
prior constraints, this is equivalent to finding the maximum a
posteriori solution in Bayesian statistics. We use Gurobi, a potent
off-the-shelf integer linear program solver to do so (see Methods).

In the second curation phase, an interactive graphical user
interface is opened that allows users to browse the results, identify
errors, and correct them. In contrast to existing methods, where
data curation is performed by directly editing the segmentations
or linking graphs, MoMA offers various possibilities to browse
through alternate segmentation hypotheses and tracking paths.
Once a user makes an adjustment, e.g. by selecting an alternative
segment or link, MoMA formulates the user’s choice as an
additional constraint and restarts the optimization in order to
find the new optimum solution incorporating this constraint. In
this way corrections automatically percolate to nearby time
points, typically fixing multiple mistakes at once. For the
individual growth-channels of the 22-24 h time courses analyzed
here, an average 0.3% of frames required a curation directive, and
roughly half of the growth-channels required no curation at all
(Fig. 1f). In our hands, it typically takes 1-2 min to curate 100
frames (see Methods, Curations statistics).

In the final quantification phase, we developed methods to
quantitate the sizes of cells and the amount of fluorescent
reporter, as well as to quantify the size of the errors on these
measurements. When growing in a constant environment, cell
sizes across the cell cycle closely follow an exponential growth
curve in both conditions (median squared-correlation R%=0.99,
see Methods, Cell size and growth rate estimation) and this allows
us to estimate an upper bound on the errors of individual size
measurements, which we find to be approximately 3% (Fig. 1g,
and see Methods, Cell size and growth rate estimation). Growth
rates of individual cell cycles can be estimated within an error of
1-3% and we find average growth rates of 0.75 (glucose) and 0.69
(lactose) doublings per hour, which vary by 17% across cells (see
Methods, Cell size and growth rate estimation). Growth rates
during the lactose and glucose phases of the switching conditions
have virtually the same distribution as in the corresponding
constant conditions (see Methods, Cell size and growth rate
estimation).

We observed that cell fluorescence spreads significantly beyond
the cell, approximately as a Cauchy distribution as a function of
distance from the cell, and we use a Bayesian mixture model to
accurately estimate the fluorescence of a given cell (see Methods,
Cell fluorescence estimation). This procedure removes auto-
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fluorescence due to the PDMS (polydimethylsiloxane) but not the
auto-fluorescence of the cell and media. Using measurements on
wild-type cells, we observed that auto-fluorescence is propor-
tional to cell size and used this to subtract the contribution of
auto-fluorescence to GFP fluorescence measurements (see
Methods, Cell auto-fluorescence estimation). Finally, to estimate
the conversion factor between fluorescence level and the number
of GFP molecules we adapted the method of Rosenfeld et al.>*
which is based on the assumption that fluctuations in the
fluorescence levels of two daughter cells immediately after
division derive from random binomial partitioning of the
mother’s GFP molecules to the two daughters. We substantially
improve on this method by (a) taking advantage of the DIMM
design to use data only from the glucose phases in which no GFP
synthesis occurs, (b) incorporating the slow fluorescence decay
due to bleaching and protein decay (see Methods, Estimating
GFP's bleaching and degradation), and (c) taking into account
that fluctuations in the sizes of the daughters contribute
significantly to the fluorescence fluctuations. We integrated all
this into a Bayesian procedure and determined the posterior
distribution of the conversion factor between fluorescence and
number of LacZ-GFP tetramers (see Methods, Estimating the
conversion factor between fluorescence and number of GFP
molecules). Using this we find that, when growing in lactose, cells
contain 3000-6000 GFP molecules at birth and 6000-12,000 GFP
molecules just before division. Finally, we estimated the
measurement errors of individual GFP measurements by
quantifying the deviations of measured GFP levels from a simple
exponential decay during the glucose phases of the switching
experiment. In contrast to the relative error on size estimates,
which are approximately independent of absolute size, we find
that the error on GFP molecule number G scales as 1/v/G
(Fig. 1g), which suggests that this measurement error is likely
dominated by shot noise.

One problem encountered with sophisticated image analysis
for cell tracking is that methods often poorly generalize to data
from setups other than the specific one used in developing the
methods. However, MoMA’s novel approach in which segmenta-
tion and tracking are treated as a joint optimization problem
under a system of constraints ensures a high level of robustness to
changes in the setup. To directly demonstrate MoMA’s general
applicability, we reached out to MoMA’s emerging user
community and obtained time-lapse data sets that were produced
in other labs, using different microfluidic devices, different strains
and species of bacteria, and different growth conditions
(Supplementary Table 2). We confirmed that MoMA shows
excellent performance on these data sets, both in terms of the
needed curation interactions (Supplementary Fig. 1), and the
quality of the resulting growth curves (Supplementary Fig. 2). We
find that, depending on strains and conditions, growth rate
fluctuations range between 10 and 20% of the average growth rate
(Supplementary Fig. 3), and that the accuracy of estimated
growth rates is determined to a large extent by the number of
measurements per cell cycle (Supplementary Fig. 3).

Single-cell dynamics of the lac operon. Figure 2a illustrates how
our methodology allows accurate tracking of growth and gene
expression across lineages of single cells as the environment is
varied. As an example application, we focused our analysis on the
single-cell dynamics of lac operon induction. Even before the
discovery of gene regulation, it was already known that the
induction of the lac operon is stochastic, with different single cells
inducing at different times?°. Further support for the stochasticity
of this system has come from studies showing that, when expo-
nentially growing populations are treated with artificial inducers
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Fig. 2 Tracking single-cell dynamics of lac operon induction. a Dynamics of growth and gene expression in lineages of single cells in an environment that
switches between M9+0.2% glucose and M9+0.2% lactose every 4 h. Cell size (black, logarithmic scale) and expression of LacZ-GFP (green, linear scale)
are shown as a function of time for a lineage of cells at the bottom of the growth-channel (bottom row) together with first-generation offspring and second-
generation offspring cells (second row from the bottom, and top two rows, respectively). The dashed vertical lines show the lineage of cell divisions by

connecting each mother cell to its two daughter cells. b Reverse cumulative distributions of lag times to LacZ-GFP induction in single cells at the first (red),
second (blue), and third (green) switch from glucose to lactose. ¢ Estimated probability distribution (mean and standard deviation) of single-cell lag times for
the first switch in 3-min intervals. The inset shows the correlation in lag times for pairs of cells that had the same mother 1, 2, or 3 generations in the past

such as IPTG or TMG (methyl-p-D-thiogalactoside), population
snapshots often show a bimodal distribution of lac expression in
single cells. The current consensus is that, in order for a cell to
switch from a low expression to a high expression state, a suffi-
ciently large stochastic burst of lac operon expression is needed*®~
28 A first attempt to measure the distribution of lac induction lag
times in single cells was made by Boulineau et al.'’, and a wide
distribution of lag times was observed. However, the lack of a
precise control of the growth media in that work not only pre-
cluded accurate time resolution of the lag times, but also caused
the switch from glucose to lactose to be so gradual that only some
cells experienced a transient reduction in growth rate, while
others continued without any change in growth rate.

In contrast, we find that upon a controlled sudden switch from
glucose to lactose, the effect on growth is not stochastic at all: all
cells completely arrest growth within 3 min of the switch (Fig. 2a).
Other aspects that are extremely reproducible are the fact that all
cells exit growth arrest as soon as LacZ-GFP is at detectable levels
(i.e. 100—200 molecules), and that LacZ-GFP production is halted
almost immediately after switching back to glucose (Supplemen-
tary Fig. 4). Thus, while induction of the lac operon is highly
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stochastic, its shutdown and the coupling of growth to lac
expression appears essentially deterministic.

Interestingly, while it might have been expected that, after
exiting growth arrest, initial growth rates would be low when
LacZ-GFP levels are still far below steady-state levels, we find that
cells immediately grow at rates that are close to those observed in
constant lactose, and reach steady-state growth rates within an
hour of induction (Supplementary Fig. 5). We estimated
instantaneous growth rate as a function of LacZ-GFP concentra-
tion and found only a substantial decrease when concentration is
more than 10-fold below the steady-state levels of 2000-3000
molecules per pm of cell length (Supplementary Fig. 5). That is,
cells can sustain high growth rates in lactose with lac operon
expression that is fivefold or more below steady-state levels, in
line with previous observations!’. This raises the question as to
why LacZ steady-state levels are so much higher than required for
growth. One intriguing possibility is that such high expression
levels allow for a memory of growth in lactose that lasts over
several generations, something that has been observed previously
at the population level'®. Indeed, during the glucose phase the
total fluorescence in each cell shows a slow exponential decay,
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mostly due to bleaching, and approximately halves at each cell
division (Fig. 2a). By the time of the second switch to lactose,
LacZ-GFP levels have diluted back to low levels, but the
remaining Jlac expression is enough to ensure that all progeny
of cells that induced in the first switch continue growth without
an obvious decrease in growth rate, and quickly recommence
LacZ-GFP production (Supplementary Fig. 6).

Our methodology allows, for the first time, the accurate
measurement of the distribution of lag times for single cells to exit
their growth arrest after the first switch from glucose to lactose.
We not only observe a wide distribution of lag times, but find that
this distribution is multi-modal: 27% of cells induce within 25-45
min, 68% induce within 50—240 min, and 5% of cells do not
induce at all (Fig. 2b, ¢). Importantly, this observation is directly
at odds with the current view in the literature that all lags are
determined by the waiting time to a single stochastic event.
Instead, the multi-modal distribution suggests that naive cells can
exist in different states that determine their ability to respond to
lactose.

We investigated whether lag times correlate with simple
physiological quantities such as growth rate, cell cycle stage, or
LacZ-GFP levels at the time of the switch, but found that none of
these variables correlate with lag times (Supplementary Fig. 7).
However, we find strong correlations of the lag times of cells that
had the same mother, grand-mother, or even great-grandmother
cell (Fig. 2c and Supplementary Fig. 8). It is especially striking
that these genealogical correlations are larger for lag time than for
any other physiological quantity that we measured, including
quantities such as cell size and LacZ-GFP concentration, that are
known to be directly inherited from the mother (Supplementary
Fig. 9). In particular, only lag time shows significant correlations
in cousins and second cousins. These results strongly suggest that
lag time is controlled by an inheritable epigenetic factor that, in
contrast to other physiological quantities such as LacZ-GFP
expression, growth rate, and cell size, shows significant correla-
tions over 2-3 generations.

Although a full investigation of the mechanistic interpretation
of the multi-modal lag time distribution is beyond the scope of
this work, we can propose an interpretation that we consider
most plausible. We propose that the first and second modes of the
lag distribution correspond to cells that, at the time of the switch,
have either nonzero expression of both LacZ-GFP and LacY
permease, or zero expression of either of these molecules. When
both LacY and LacZ-GFP molecules are present at the switch,
lactose can presumably immediately enter the cell, where it is
metabolized into allolactose, causing lac operon derepression and
LacZ-GFP production. In contrast, when no LacY/LacZ-GFP is
present, lactose can either not enter the cell, or it cannot be
metabolized, and cells first have to wait for a stochastic burst of
lac operon expression, causing a longer lag time. If this
interpretation is correct, then no long lags should be observed
when an artificial inducer is added that can diffuse into the cell
without LacY permease and binds directly to the Lacl repressor.
Indeed, when we add IPTG to the medium containing lactose we
only observe short lags (Supplementary Fig. 10). Our interpreta-
tion also requires that, when growing in glucose, the majority of
cells should contain either no LacY or no LacZ-GFP at all. This
prediction is consistent with our LacZ-GFP measurements in
glucose that predict the distribution of lacZ-GFP per cell
significantly overlaps zero molecules (Supplementary Fig. 11). It
is also broadly consistent with previous observations that, in
similar growth conditions, roughly 50% of cells contain no
LacY?’, and 65% of the cells contain no LacZ?. Finally, we note
that Choi et al.”” estimated that, when growing in the absence of
lactose, small bursts in which around 40 LacY molecules are
produced occur every 2-3 cell cycles, which is consistent with the
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waiting times of up to 240 min that we observe for cells of the
second mode of the distribution.

Discussion

We have here presented an integrated experimental and compu-
tational setup for quantifying gene expression dynamics at the
single-cell level over long periods of time in dynamically changing
environments that are precisely controlled. This methodology
opens up a wide array of possibilities for studying gene regulatory
mechanisms at the single-cell level. A single experiment with our
setup was able to uncover several novel and unexpected features of
one of the most intensely studied regulatory systems: lac operon
expression under growth conditions that change between glucose
and lactose as a carbon source. However, the technology enables
many other types of investigations, e.g. it can be used to quantify
how expression fluctuations affect growth rates at the single-cell
level, to investigate how regulatory responses depend on the
concentration and length of exposure to an inducing nutrient or
stress, and how memories of regulatory responses are maintained
across lineages of cells. More generally, its power extends beyond
the scope of gene regulation studies. For example, it is becoming
increasingly appreciated that single-cell heterogeneity plays an
important role in persistence and evolution of resistance to anti-
biotics, and our methodology could be used to accurately quantify
how single-cell growth and survival varies as a function of both the
concentration and time of exposure to particular antibiotics, and
as a function of the physiological states of the cells. In summary,
we believe that the integrated experimental and computational
methodology that we present here will be an important tool for
studying gene regulatory mechanisms at the single-cell level. As
detailed in the Data Availability section below, to facilitate access
of other labs to our integrated methodology, we have collected all
relevant information in a web repository, including files with the
CAD designs of the device, information on fabrication of the
device, detailed protocols for running the experiments, and links
to the open source MoMA software. MoMA and its documenta-
tion, including tutorial videos are available online®® and, to make
MoMA easily available to any user of ImageJ, we have also made
MoMA available as a Fiji plugin.

Methods
Design and fabrication of the microfluidics devices. Escherichia coli cells take on
different sizes depending on the media they are grown in, e.g. LB versus
M9 minimal medium. Since the growth-channels aim to trap the cells growing in
single file, the width of the channels needs to match the width of the cells as closely
as possible. To account for this, our DIMM device contains channels with a range
of widths, ranging from 0.8 to 1.6 pm, and lengths of 25 um on one side of the
device, and 55 pm on the other. For the results presented here, the growth-channel
sections were ~0.9 pm (height) x ~0.8 pm (width), and 25 pm (length). These
dimensions worked nicely with cells growing in M9+0.2% glucose or 0.2% lactose
respectively. Experiments with other media and strains might require slightly
different dimensions. In order to reduce the flow rates compared to the original
mother machine device, the dimensions of the main channels were reduced to a
diameter of 6 pm (height) by 50 pm (width) in the device presented here. The
resulting flow rates are discussed in more detail in the section discussing loading
and flow control. We note that reflections from the PDMS in the main channel can
affect the phase contrast images near the top of the growth-channels, such that a
segment of the growth-channels nearest to the exit needs to be discarded. To
minimize this effect it is advisable to keep the main channel relatively shallow.
The device was designed using AutoCAD® (AUTODESK®) and is freely
available at Metafluidics, an open repository for fluidic systems®!. We outsourced
both the production of the photomask and the production of the masters to pour
the PDMS devices from. A 5" quartz mask with chrome layer was ordered from the
Compugraphics Jena GmbH. Using this mask, Microresist (Berlin) produced the
master using UV-lithography with SU-8 photoresists (for more details see ref. '1).
To make the chips, we use the Sylgard Elastomer Kit 184 with a 1:10 curing agent
to base ratio. Curing was performed at 65 °C overnight or longer. Harris Uni-Core
0.75 mm biopsy punches were used to create in- and outlets. Before bonding, both
the PDMS mold and a cover slip were washed with isopropanol and dried with air.
Surface activation was done in a plasma cleaner (PDC-32G, Harrick Plasma)
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2. b Normalized fluorescence along a section through the main channel downstream of the mixing serpentines at different mixing ratios

Table 1 Experimental conditions used in this study

Condition Sequence of growth media Strain
No GFP 12 h: M9+0.2% glucose MG1655
12 h: M9+0.2% lactose
Glucose 22 h: M9+0.2% glucose ASC662
Lactose 22 h: M9+0.2% lactose ASC662
Switch 4h: M9+0.2% glucose ASC662
4 h: M9+0.2% lactose
4h: M9+0.2% glucose
4 h: M9+0.2% lactose
4h: M9+0.2% glucose
4 h: M9+0.2% lactose
Switch IPTG 4 h: M9+0.2% glucose ASC662

4 h: M9+0.2% lactose
+500 um IPTG
4 h: M9+0.2% glucose
4 h: M9+0.2% lactose
+500 um IPTG

Strain MG1655 is a reference K12 strain®, and ASC662 was derived from it by integrating a
translational fusion lacZ-gfp in the native lac operon’. Note that for each condition, the first step
of its sequence of growth media was preceded by 2 h in the same media (in order to reach
growth steady-state under fluorescence illumination conditions) that were discarded from the
data analysis

operated at high intensity with vacuum at 1500 mTorr for 40 s. After bonding the
devices were incubated at 65 °C for at least 1h.

Performance of the environmental control. The design presented here not only
allows switching between different media but also allows for continuous control

over the ratios of two different input media. Because flows in micro-channels are
strictly laminar, only diffusive mixing occurs at these scales’?. To keep the design
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simple we introduced 2D mixing serpentines to the device. These serpentines
guarantee that the media coming together in the junction are flowing together long
enough to allow for diffusive mixing before the mix reaches the cells. The required
length of these mixing serpentines depends on the flow speed (fluid velocity), the
width of the micro-channels, and the diffusion coefficient of the molecule of
interest in the medium used??.

To demonstrate mixing in the device we used M9 minimal medium labeled with
fluorescein (1 g/ml) (Syringe 2) mixed with unlabeled M9 minimal medium
(Syringe 1). We first obtained a reference fluorescence level for the medium
containing fluorescein by measuring fluorescence every 15 s for 70 min, and taking
the average of these 280 measurements. For 13 different relative flow rates of the
two syringes, ranging from 20% of the total flow from Syringe 2 to 80% of the total
flow from Syringe 2, we then measured fluorescence every 15 s for 10 min (40 min)
and divided this by the reference fluorescence level to obtain a relative fluorescence.
We then calculated the mean and standard deviation of 40 relative fluorescence
levels for each relative flow rate. The results are shown in Fig. 3a, demonstrating
how the system presented here can generate different mixing ratios and thus can be
used to precisely control the growth environment. Figure 3b shows the normalized
fluorescent intensity along a section through the main channel downstream of the
mixing serpentines at different flow regimes. Because of small imperfections in the
mold the intensity profile is not perfectly symmetrical even in the unmixed state
(black line). However in the different mixed states, the shape of the profile stays the
same indicating complete mixing is guaranteed in the flow regimes tested here.

Strains and growth conditions. Strains were streaked from freezer stocks onto LB
plates before experiments. Overnight precultures were grown from single colonies
in M9 minimal medium supplemented with the same carbon source that the cells
were to experience in the initial phase of the experiment (0.2% glucose or 0.2%
lactose). The next day, cells were diluted 100-fold into fresh medium with the same
carbon source. Cells were harvested after 46 h to be concentrated and loaded into
the microfluidic device (typically, a culture at OD = 0.2 was concentrated 100-fold).
Growth occurred at 37 °C for both the precultures and the microscopy experi-
ments. The growth conditions used during the microscopy experiments are
described in Table 1.

Priming and loading of the microfluidic devices. The DIMM design presented
here has two inlets and two outlets. This leads to some complications in the cell
loading process compared to the original Mother Machine design. Here we

describe the adjusted loading procedure we developed. As described in ref. ', a
mixture of salmon sperm DNA (10 mg/ml) and BSA (bovine serum albumin, 10
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junction

mg/ml) (at a ratio 1:3) is used to passivate the device before loading the cells. The
salmon sperm DNA is denatured at 95 °C for 10 min and is mixed with the BSA
after cooling down. This passivation buffer is also added to the growth medium in
the experiment in a concentration of 1/100. In addition, one medium was always
labeled with non-fluorescent microspheres (Polybead® polystyrene 1 pm beads) to
monitor medium flow at the dial-a-wave junction. As shown in Fig. 4a, the two
dial-a-wave waste channels cannot be pressured separately because they both end
in the same outlet. Therefore to prevent blockage of one of the waste channels by
passivation buffer it is recommended to flow water into the waste channel outlet
while the passivation buffer is loaded into the cell outlet. Once the main channel
(with the growth-channels) is filled with passivation buffer and the inlets (input 1
and input 2) are full of liquid (mixture of water and passivation buffer), both the
flow of water and of passivation buffer can be stopped. The device is now incubated
for ca. 1h at 37 °C before the loading of the cells is started.

After the passivation step, cell loading can begin. To get rid of the passivation
buffer, the two inlets are connected to the pumps with the two different media that
will be used in the experiment. At this point the tubing for the waste outlet can also
be installed and connected to a waste container. Both pumps are now set to a flow
rate of 1.5 pl/min. When all channels are clear, this flow regime will lead to a 50:50
ratio between the two inputs at the dial-a-wave junction. If the device leaks at this
point or fails to establish a 50:50 ratio at the dial-a-wave junction (one medium is
labeled with beads to check the flow under the microscope), most likely the
resistance of some channel is altered by a blockage and the device cannot be used. If
the device works properly, the dial-a-wave junction can be switched to the medium
that will be used first. This step is necessary to ensure that the cells that are loaded
afterwards only encounter the media condition in which they will begin growth.
For a complete switch we use flow rates of 0.6 pl/min for the inactive inlet and 2.4
pl/min for the active one (Fig. 3a). After a few minutes (depending on the flow rate)
the main channel and cell outlet should be free of the medium from the initial
input and the cell loading process can begin. The cells are harvested in exponential
phase and are concentrated by centrifugation (~100-200x). Once the device is fully
switched to the desired input, one can load the cells using a 1 ml syringe into the
tubing that will later serve as the waste tube. This tubing is inserted into the cell
outlet and can be pressured by hand to flow the cells into the main channel (the
loading process is observed under the microscope). It is important not to stop the
flow at the inlets during the whole loading process. This allows cell loading without
getting cells into the inlets where they might become stuck and grow. Once the cells
reach the growth-channels we used a custom-made clamp to hold a precise level of
pressure on the 1 ml syringe for cell loading. The pressure here has to be
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continuously adjusted to make sure the cells stop flowing in the main channel and
can enter the growth-channels. As shown in Fig. 4b there is a constant flow
through the inlets and the waste channels (green) while the main channel is
pressured to achieve zero flow where the growth-channels are (red). If cells move
up to the dial-a-wave junction they are removed through the waste channels and
the inlets stay clear. Loading continues until a satisfactory number of channels
contain cells (typically 20-60 min). When complete, the 1 ml syringe used for
loading is removed, and the end of its tubing is put into the waste container
together with the tubing from the waste channel outlet. After loading the cells are
allowed to recover for at least 2 h before the experiment starts.

Growth media are delivered from air-tight glass syringes (Hamilton) that are
connected to the device using PTFE tubing with an inner diameter of 0.56 mm and
an outer diameter of 1.07 mm. The syringes are controlled by two low pressure
pumps (Cetoni GmbH) so that the total flow during the experiment is 3 pl/min.

Microscopy and data preprocessing. An inverted Nikon TI-E microscope
equipped with a motorized xy-stage with linear encoders was used to perform the
experiments. All experiments were performed in an incubator maintained at 37 °C.
The sample was fixed on the stage using metal clamps and focus was maintained
using the Perfect Focus System from Nikon. Images were recorded using a CFI Plan
Apochromat Lambda DM x100 objective (NA 1.45, WD 0.13 mm) and a CMOS
camera (Hamamatsu Orca-Flash 4.0). The setup was controlled using Micro-
Manager’® and timelapse movies were recorded with its Multi-Dimensional
Acquisition engine (customized using runnables). Every 3 min one phase contrast
image and one GFP fluorescence image were acquired, typically for six different
positions. Phase contrast images were acquired using 100 ms exposure with the
transmitted light source at full power (CoolLED pE-100). Images of GFP fluor-
escence were acquired using 2 s exposure, illuminating the sample with a Lumencor
SpectraX (Cyan LED) set to 17% and dimmed using a ND4 filter in the light path;
the excitation (475/35 nm) and emission filters (525/50 nm) were used with a
dichroic beam-splitter at 495 nm. For the switching experiments images of the dial-
a-wave junction were also acquired. Here the GFP channel was replaced with an
additional phase contrast image with a short exposure time (10 ms) to visualize the
beads in the flow.

The MoMA tracking software expects to be given image data sets in which a
single growth-channel is present, with the growth-channel opening at the top, and
with phase contrast being the first channel. With our microfluidic design, the
camera field of view covers ca. 30 growth-channels so the images must be split into
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individual growth-channels and preprocessed in order to match MoMA'’s
requirements. The preprocessing consists of the following tasks:

1. Load the microscopy data set, one position at a time, in a format-independent
manner using the Bio-Formats library (in order to open a specific position,
one must use the Java API rather than functions available in Image]).

2. Register all frames to the first frame of the first channel in order to correct the
sample drift over time, as well as the jitter introduced by acquiring multiple
positions in parallel. To do this, we develop HyperStackReg, a custom
extension of the StackReg ImageJ plugin that is able to handle hyperstacks, i.e.
data sets with several channels.

3. Crop the image to keep only the area of the growth-channels and rotate the
images (so that the growth-channel opening is at the top).

4. Save images as a tiff data set with one file per frame.

5.  Straighten the image so that growth-channels are oriented vertically (using
bicubic interpolation).

6. Identify the growth-channels in the first-phase contrast frame and save one
data set per cropped growth-channel.

All steps are run in Fiji with the help of two utility plugin released together with
MoMA: HyperStackReg and MMPreprocess. This preprocessing step is
documented extensively on MoMA’s Wiki*, including how to run it from the
command line. Note that in order to preprocess data sets from the command line,
Fiji must be run using a virtual window environment (using Xvfb), since the
headless mode is not compatible with some important Image] features.

The Mother Machine Analyzer. Today’s predominant tracking methods origi-
nated in the 1960s>*>> and were developed to track single or a hand-full of objects
with complex distinguishing features such as ships or airplanes. However, here we
require the tracking of objects that are visually almost identical. In some cases this
can be resolved by maintaining multiple association hypotheses over multiple time
points®®. However, although particle trackers and state space models can produce
high-quality results, proofreading (data curation) is always required in order to
guarantee error-free tracks. Notably, computer-assisted approaches for proof-
reading are usually not related to the method that produced the automated results
in the first place.

Interactive error correction is rarely part of available tracking systems and
usually turns out to be difficult to implement and integrate, leaving the user with an
inflexible patchwork of multiple tools. Part of the reason for this is the way classical
tracking models work. Their local and iterative solvers are highly specialized, not
offering intrinsic possibilities to constrain the space of possible solutions in a user-
driven way. In other words, they intrinsically do not offer any interaction
capabilities that can be employed by users to prevent the tracking system from
making certain mistakes.

Assignment Models promise to make a difference in all these respects. The
novelty of this type of tracking system is the way in which solutions are found. A
tracking problem is formulated as a global optimization problem under constraints
that can be solved using discrete optimization methods. MoMA is based on such an
optimization-based assignment model that allows the user to furnish constraints in
an interactive manner. Hence, we can offer unprecedented user interactions for
data curation—a process we call leveraged editing.

In particular, MoMA offers the following leveraged editing primitives: (i)
Forcing solutions to contain a selected cell (segment), (ii) forcing solutions not to
include specific segments, (iii) forcing a cell to a given movement or division
(assignment), or to (iv) avoid such an assignment, and (v) specifying the number of
cells visible at a given time. We will show that the very nature of the underlying
optimization problem allows us to seamlessly incorporate these leveraged editing
primitives.

Automated tracking with MoMA. Here we briefly review the class of tracking
methods called assignment models®>*"~°, We provide sufficient technical detail to
prepare the reader for later sections, introducing leveraged editing primitives used
in MoMA.

Tracking consists of two equally important tasks: Cells need to be segmented in
each frame, and segments of the same cell in consecutive frames need to be linked.
Tracking by assignment approaches these tasks by formulating and solving a joint
global optimization problem. In this context, the segmentation task consists of
selecting a subset of segments in each image, i.e. corresponding to the cells in the
image. To do this, the algorithm first generates a large collection of possible
segment hypotheses that are contained in a (possibly heavy) oversegmentation of
the images. Joint segmentation and tracking then boils down to enumerating many
potential subsets of segments together with potential ways of linking (assigning)
these between consecutive frames. To identify, among all these possible joint
segment/assignment subsets, an optimal solution, each of the potential segments
and assignments is given a cost. The cost of a joint segmentation/assignment
hypothesis aims to reflect how unlikely it is that the corresponding dynamics
occurs in the real system, i.e. the corresponding movement, growth, and division of
the cells in our system. That is, the total cost can be thought of as a negative log-
likelihood of the segmentation/assignment hypothesis***! and an optimal solution
minimizes this cost.
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The cost function is designed to reflect the knowledge of domain experts. To
give an example, in our application, the cost function for a cell division assignment
that links one segment to two segments in the next frame contains a term that
evaluates the size of the three segments to be linked which implements the physical
constraint that the sum of the sizes of the two daughter cells should be similar to
that of the mother cell. Structural knowledge about which assignments can be
chosen simultaneously is encoded in terms of constraints that ensure that only
physically meaningful solutions can be chosen. That is, solutions that do not
describe impossible events like cells popping into existence out of nowhere, cells
moving to two places at once, etc. In our implementation, these constraints force or
prohibit certain segments and assignments to be jointly contained in a
segmentation/assignment solution. Notably, in formulating these constraints we of
course take advantage of the fact that the microfluidic device organizes cells into
one-dimensional arrays.

Once the segmentation and tracking problem has been formalized in this
manner in terms of costs and constraints, well-established discrete optimization
methods can be used to obtain a solution that is (i) feasible, i.e., free of conflicts,
and (ii) cost-minimal. In the following we will put these notions on formal
grounds. A more in-depth description can be found in ref. 23, where we described
in detail the assignment model upon which MoMA operates. In the next section we
will briefly summarize this model in order to lay the foundation to understand the
leveraged editing primitives introduced thereafter.

The assignment tracking system in MoMA. First, an excess of segment
hypotheses H® is generated for each frame ¢, with many hypotheses partially
overlapping and thereby providing alternative and mutually exclusive interpreta-
tions of where the cells are appearing in the image?’. To represent possible solu-
tions, a binary se%mentation variable 1) is associated to each possible segment
hypothesis in H). Whenever h( = 1, it indicates that this segment hypothesis is
part of the proposed solution. Similarly, a set of assignment hypotheses A®) and
associated binary assignment variables a¥) are generated, that link segment
hypotheses at time point  to segment hypotheses at t+1. For example, a mapping
assignment ufgj connects two segment hypotheses h[t) and A",

Thus, a proposed segment/assignment solution consists of a selection of binary
segmentation and assignment variables v that are set to 1. As mentioned above, a
cost function is defined that associates to every such variable v, a cost ¢, € R of
including it in a solution. For details on the cost function used for mother machine
devices, we refer to ref. 2. In a nutshell, the cost measures how much a segment/
assignment deviates from the expected appearance/dynamic behavior of bacterial
cells. The total cost C of a particular solution is then simply the summed cost over

all active variables
C:Zv,wcv, (1)

Linear constraints are used to restrict the solution space to only include conflict-
free and structurally sound solutions. As a simple example, two segment
hypotheses that offer conflicting explanations of a particular pixel cannot
simultaneously be active in any feasible solution. To introduce some notation that
will be required below, we look in detail at one particular constraint. Continuity
constraints ensure that each active segment at frame ¢ (i.e. each cell) must be
involved in exactly one assignment entering from frame ¢-1 and must also be
involved in exactly one assignment towards ¢+1. In other words, each cell must
have a past and a future. Formally, this statement can be written as

vie{2,...,T—1},vh e HV : a=V = ) = at),

)

at-Very (ho) ) Erg (h)

Here we image time frames ordered from left to right and use the notation /'y (h) to
denote the set of assignments directly to the left of segmentation variable & (i.e. its
left neighborhood) and I'r(h) to denote the set of assignments directly to the right
of h (its right neighborhood). That is, the left neighborhood Iy (h) is the set of all
assignments entering & from the previous frame and the right neighborhood I'z(h)
is the set of all assignments leaving / towards the next frame. The equation above
then says that, for each cell at time ¢, there should be one assignment in the
previous time frame, and one in the following time frame.

A globally optimal solution, i.e. picking a set of conflict-free assignments of
minimal cost can be achieved by solving an integer linear program (ILP)?*3%~40,

An ILP is an optimization problem that is fully specified by (i) an objective
function that is a linear function of a set of variables V, and (ii) a set of constraints
that are formalized as (in-)equalities on these variables. The space of feasible
solutions is defined by all variable assignments that obey all constraints. An
optimal solution is a feasible solution that minimizes the objective function.

The joint segmentation and tracking formulation introduced above is already in
ILP form: The set of variables }V comprises binary segmentation and assignment
variables. The objective to minimize is the cost C defined in Eq. (1). Note that this
is a linear function of the variables v € V. In Eq. (2) we also gave an example of
how constraints can be formalized as linear equalities.

Integer linear programming is a well-understood problem??, and given the
above formulation we can turn to off-the-shelf solvers like Gurobi to find an
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optimal solution. Although finding an optimal ILP solution is NP-hard, recent
success solving relatively large tracking problems®>**~*0 suggests that assignment
models pose well-natured instances to be solved as ILPs.

In the following we will make use of a particular feature of many ILP solvers,
namely the ability to perform “warm-starts”. One speaks about a warm start if a
solver can benefit from residual intermediate results created during a preceding
optimization. This can speed-up optimization significantly as shown in ref. 2*.

Additional performance for solving the ILP underlying a tracking instance can
be gained by reducing variable redundancy via substitution. The set of variables 1
contains variables h for available segments, and a, for available assignments.
However, note that whenever the segmentation variable for a segment i is active, i.e.
h;=1, then at least one assignment a that involves a segment i must be active as
well. Using these constraints, the segmentation variables can be removed from the
model entirely?’, That is, after adequate constraints are added to the ILP, each
occu>rence of 1" can be substituted by a sum over all assignment variables in I

(h,@ (or I“R(hf’))).

Leveraged editing of tracking solutions. In this section we discuss how MoMA
modifies the underlying optimization problem in response to user feedback.
MoMA first of all provides the user with a graphical interface that allows the user
to browse through the tracking solution that the optimization has provided for a
given movie. The basic idea of leveraged editing is simple: When a user identifies a
segmentation or tracking error, (s)he suggests the correct alternative or simply
points at the error in the graphical interface, leaving the algorithm to search for a
corrected solution to the model. In MoMA, the given feedback is incorporated into
the ILP via additional constraints. Using warm-starts allows optimizing the
modified problem fast enough for interactive use. Fixing a single error will usually
resolve a bulk of transitive errors. These interaction-based modifications and re-
optimizations are iterated until the found solution is satisfactory to the user, i.e.,
appears to be free of errors.

Here we introduce five specific interaction primitives implemented in MoMA.
We will see that they do not introduce significant changes to the existing
assignment tracking formulation and can be implemented efficiently. To illustrate
how leveraged editing works in practice, a tutorial movie is available on MoMA's
Wiki page™, showing several of these primitives in action.

One possible error is that the tracking may have failed to include a particular
cell, possibly even across multiple frames. In this case, the user wants to choose an
adequate segment and force it to be included in the tracking solution. In MoMA
this can be achieved by hovering the mouse over the part of the image where a cell
was not picked up by the original optimization. Segment hypotheses located at the
mouse position will be highlighted interactively, and simply clicking on any
highlighted segment will cause (i) adequate modifications of the ILP (as described
below), and (ii) a re-run of the solver to obtain an optimal solution for the given
data, now constrained to include the forced segment.

Technically this can be achieved by adding a single constraint to the ILP,
namely h;=1 where h; is the chosen segment. Applying the redundancy reduction
discussed in the previous section, the constraint to be added can be expressed in
terms of assignment variables as

Z a=1, 3)

acly(h)

where I'g(h) is the right neighborhood of 4, i.e. the set of all assignments leaving h
towards the next frame.

In addition to allowing users to force missing segments to be included, the user
can also tell MOMA to exclude certain segments from solutions. The re-solved ILP
will correspond to the minimal cost solution for the data, constraint to exclude the
chosen segment. Analogously to forcing segments, the constraint to be added to the

ILP is
Z a=0. (4)

aclr(h)

Instead of interacting with segments, a user might want to directly work with
individual assignments. To do so, users can browse through a library of available
assignments. Assignments can be included or excluded from tracking solutions.

Browsing the library of available assignments can be done in only a few mouse-
clicks. Since there is precisely one binary variable a corresponding to the chosen
assignment, the constraint to be added to the ILP to force or exclude this
assignment is simply a=1 and a=0, respectively.

The last interaction primitive of MoMA is particularly powerful, often capable
of fixing multiple tracking errors at once. The idea is simply to let MoMA know
how many cells are contained in a given time point. We constrain the solution
space to only allow solutions that contain k segmented cells at time point f.
Formally this is accomplished by adding the constraint

=k 5)

heH® vely(h)
where H® is the set of all segments existing at time t.
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Installation of MoMA. The installation of MoMA can be performed via Fiji***4.
In Fiji, simply activate the MoMA update site. Once installed, the Fiji updater will
automatically install future versions of MoMA containing new features and bug-
fixes. The MOMA Wiki pages contain further information about how to install and
use MoMA™.

Implementation of MoMA. MoMA is implemented in Java, using the imaging
library ImgLib2*° and other components from the open source universe around
Image] and Fiji***%, For solving ILPs we use Gurobi. The source code of MoMA is
a Maven project, hosted on GitHub™.

Additional features of MoMA. Additional useful features of MoMA include (i)
the ability to optimize (solve) only parts of a loaded data set, (ii) save a fully or
partially curated data set, and (iii) the possibility to export a found tracking
solution for downstream processing.

If a loaded data set contains 1000 or even more time points, the optimization of
MoMA’s assignment model can take tens of seconds. While this is still fast, e.g.
when compared to the data acquisition time for such a data set, leveraged editing
can become cumbersome when the user is forced to wait tens of seconds between
interactions for the optimization to finish. In order to guarantee fast interactive
response times, MoMA allows users to define a subrange of time points [f,, t;]
across which to perform the optimization.

All assignments that are not in [t,, t,] are either set to the value computed at a
previous (partial) optimization run, or simply clamped to be 0. Formally this can be
expressed by

1 if a'¥) wassetto 1 previously, or

Yt [tas ... ,ty],Yal) € AW - a) = (6)

0 otherwise.

Once correct solutions are found, it is important that users can save and load
the curations that they performed. Leveraged editing primitive introduces
additional constraint to the underlying optimization problem, and MoMA is
capable of serializing all edits to file.

But not only leveraged edits can be saved, also MoMA’s segmentation and
tracking results can be exported for subsequent downstream processing. An
exhaustive list of exportable data is given below. MoMA’s Wiki page contains a
formal specification of the used data format’.

¢ Data source.

*  Total number of cells observed in the data set.

* Number of channels in the raw data, i.e. phase contrast and fluorescent
channels.

*  Growth channel (growth-channel) height and image height in pixels.

*  (Vertical) position of the growth-channel in the image.

*  For each cell, its cell id, and lineage information (the ids of its ancestors).

* For each time point in the life of each cell: position in the growth-channel
[pixels and cell number]; bounding box area; intensity histogram, intensity
percentiles, and pixel intensities for all channels.

Curation statistics. MoMA was tested on Mother Machine data with ~30 frames
per cell cycle, stable focus over the experiment and both phase contrast and
fluorescence imaged. To estimate the time the user needs to spend to curate data
sets, we analyzed an unbiased selection of growth-channels and measured the time
spend curating. For the selection of the growth-channels there was no visual
inspection of the growth-channels other than checking that they harbor cells on the
first frame. Therefore, this sample also harbored growth-channels in which the cells
are lost during the experiment, and some that show structural defects. We only
used the times for the growth-channels in which we had cells until the end of the
experiment. Defect growth-channels were excluded as well. There are also rare
growth-channels in which a cell is lysing or shows other abnormalities. In such
cases, even with the eyes of an experienced observer, it is difficult to decide on the
border of such cells, and such growth-channels were excluded as well.

Figure 1f shows a histogram of the fraction of frames needing curation across
the growth-channels. Roughly half of the growth-channels required no curation at
all, and most growth-channels require less than 1% of frames curated, with about
3% of frames needing curation in the worst case.

To give an impression of the amount of time that these curation statistics
correspond to, in our hands, Fig. 5 shows the distribution of curation times per 100
frames across the growth-channels we analyzed. For each growth-channel, the total
number of curated frames was extracted from the serialized file of curation
interactions that MoMA saves. The inset of Fig. 5 shows that curation times are
generally correlated with the fraction of frames that required curation.

All the curating with MoMA was performed on a MacBookPro (2.4 GHz Intel
Core i7, 8 GB of memory). On this setup loading, initialization and the first round
of optimization of a data set with 480 frames with two channels typically takes
around 1 min. After curating the data the export step takes another 30s.
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Fig. 5 Histogram of the curation times per 100 frames for a representative set of growth-channels. The inset shows a scatter plot of curation times (per 100
frames) as a function of the fraction of frames that were curated. The line shows a linear regression (least squares) fit

Cell size and growth rate estimation. From the imaging data we obtain, for each
cell, pictures for each time point during its life-cycle. As an estimate of cell size, the
software provides the dimension of the rectangular bounding-box within which the
cell is contained. We have found that, both on our own data as on the data from
other devices and microscopy setups, virtually all cells accurately follow simple
exponential growth curves as a function of time, supporting the robustness of the
estimation procedure. However, it is clear that the cell size estimation is quite
coarse and we aimed to quantify the accuracy of these size estimates. This is
difficult to do directly because we do not have independent measurements of cell
sizes that can be used as a gold standard. However, if we find that the estimated cell
size s(t) accurately follows a simple exponential or linear form as a function of time
t, then this suggests the errors in cell size are at most as large as the fluctuations of s
(t) away from the simple exponential or linear growth law.

Let s(t) be the estimated size of the cell at time ¢ and x(t) = log[s(t)]. We used
the data sets from the constant environments and used all cells which were
monitored from birth to division, corresponding to 4016 cell cycles in glucose and
3387 cell cycles in lactose. For each cell cycle, we calculated the Pearson correlation
between x(t) and ¢ across the cell cycle, as well as the Pearson correlation between s
(t) and t. Figure 6 shows the cumulative distributions of the squared Pearson
correlation of the growth curves with exponential (black) and linear (orange)
functions for cells grown in lactose (Fig. 6a) and in glucose (Fig. 6b).

We see that the growth curves are very well described by exponential functions
of time, i.e. the median squared correlation coefficient is approximately 0.99 and
almost all cells have correlation coefficients larger than 0.98. Correlation
coefficients are substantially lower for fits to linear growth curves. Note that,
whereas correlation coefficients are still very high for the linear growth fits, the log-
likelihood for a growth-curve with squared correlation 1% and T time points scales
as —Tlog[l — r?]. Thus, for a typical cell-cycle with T=30 time points, the
likelihood ratio between a fit with 2=0.99 and one with r>=0.98 is
exp(20.8) ~ 10°. That is, the differences in the qualities of the linear and
exponential fits are highly significant.

Since the elongation of cells is very well described by an exponential model, we
can estimate the measurement error by studying the residuals of these fits. These
residuals represent an upper bound on length measurement errors since they also
include biological fluctuations around constant exponential growth. For each cell
size observation in each cell cycle, we calculate the squared residual from the
exponential fit, and obtained a squared relative error by dividing by the square of
the estimated size. We then stratified the errors according to size and calculated, for
each size class, the means and standard deviations of the squared relative errors.
Taking the square-roots of these values we finally obtain the relative errors of the
size measurements as a function of estimated size (Fig. 1g). We find that the
measurement error on size is between 2 and 3%, and approximately independent of
the length itself.

To estimate the average growth rate of an individual cell cycle we use linear
regression of the log-sizes x(t) = log[s(t)] across the time points ¢ in the cell-cycle,
i.e. assuming all deviations from a perfect linear relationship x(t) = a(t—to)+x, are
due to errors in the log-size estimates x(f). Marginalizing over the cell-size x, at the
time of birth #,, we find that the standard-deviation of the posterior distribution
over growth-rate a is given by

_ var(x)(1 - 1r?)
") 7

where var(x) and var(t) are the variances of the log-sizes x(t) and measurement
times ¢, T is the number of measurements in the cell cycle, and r is the Pearson-
correlation of the linear fit. The relative error on the estimated slope a.= cov(x, t)/
var(t) is given by the ratio o(a)/a-.

Figure 6¢ shows the distribution of growth rates that we observe in constant
glucose and lactose, and Fig. 6d shows the distribution of relative errors on growth
rate. For the large majority of cell cycles, the error on the estimate of the growth
rate is between 1 and 3%. The average growth rate is a bit higher in glucose (0.75
doublings per hour) than in lactose (0.69 doublings per hour). Notably, the

considerably across single cells. We find that growth rates vary by about 17% in
both glucose and lactose (i.e. one standard deviation), and we observe cell cycles
that differ by more than twofold in their growth rates.

We also investigated whether growth rates during the switching conditions vary
systematically from growth rates in the corresponding constant conditions.
Figure 6 shows the distribution of growth rates for individual cell cycle separately
for the first, second, and third time segment in both glucose (Fig. 6e) and lactose
(Fig. 6f) during the switching conditions.

We see that the growth rate distributions during individual time segments in
the switching experiments are very similar to the distributions in the corresponding
constant conditions. The only exception is the slightly higher growth rates in the
first time segment in glucose during the switching conditions. Although we have
not investigated the origin of the slightly higher growth rates in this time segment
in detail, we believe that it results from a combination of two effects. First, we note
that the growth rates in glucose are slightly higher in all three segments during the
switching conditions than in the constant conditions. This suggests that a subtle
change in the conditions on the day of the experiment may have caused slightly
increased growth rates during the switching conditions. Second, when fluorescence
measurements are taken, the light from the illumination causes some small stress to
the cells, which is reflected in slightly lower growth rates compared to conditions
where no fluorescence measurements are taken. As a consequence, we observe that
cells slightly lower their growth rates during the first hours of the experiment. To
correct for this systematic effect we only start recording measurements in each
experiment, after 2h in conditions with illumination. We hypothesize that during
the first glucose segment in the switching experiments, the cells had not yet fully
adapted to the illumination conditions.

Cell fluorescence estimation. To estimate the GFP content of each cell, we post-
process the fluorescence data as follows. The raw data consist of fluorescence
intensities for all pixels within the segment of the picture containing the cell. This
segment is 100 pixels wide, with the growth-channel covering approximately 13
pixels in the center of the picture. We first obtain column-sums ¢; by summing the
pixel intensities of all pixels in each of the 100 columns i. Note that we assume that
these column sums are dominated by the fluorescence coming from the cell in
question, i.e. that the fluorescence coming from neighboring cells above and below
the cell are negligible. We find that this is a good approximation when cells in a
given growth-channel all have similar fluorescences but note that, in conditions
where neighboring cells may have fluorescences that differ by orders of magnitude,
this assumption may break down. Figure 7 shows the profiles of column sums c; for
a cell at three time points of its cell cycle while growing in lactose (top three panels)
and for a cell growing in glucose (bottom three panels). From prior biological
knowledge, we know that GFP is highly expressed during the growth on lactose,
and that it is very lowly expressed during the growth on glucose.

Remarkably, the growth-channel (central 13 pixel positions in the figures) is not
detectable at all in the fluorescence curves. Instead, the fluorescence signal shows a
long-tailed peak centered in the middle of the growth-channel, extending far
beyond the width of the growth-channel, and reaching a minimum at positions
halfway between neighboring growth-channels, i.e. near the left and right ends of
the profiles in Fig. 7. As the cell grows, i.e. from the leftmost to rightmost panel, the
length of the segment grows and the column-sums grow proportionally to the
segment length. Notably, the minimal fluorescence level is almost twice as high
when growing in lactose compared to when growing in glucose. We conclude from
these observations that the fluorescence from each cell spreads over significant
distances across the image and that this also causes background levels to depend on
the overall expression levels in neighboring growth-channels. Therefore, to
properly estimate the amount of fluorescence emerging from the cell we need to fit
the background intensity within each segment and we need a mathematical model
for the long-tailed shape of the peak.

We found that the shape of the peak is very well described by a Cauchy (or
Lorentzian) distribution, giving an overall form of the fluorescence profile:

variation in the growth rates of individual cell cycles is much larger than the ¢ = noise + B + PENTEIRYE (8)
measurement errors on these growth rates, indicating that growth rates vary 1+ (5)
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Fig. 6 Exponential growth curves and the distribution of growth rates. a Cumulative distributions of the squared Pearson correlations between the
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glucose. f As in panel e but for the time segments in lactose

where i is the horizontal position, in,;q is the center of the peak, w its width, A the
amplitude of the signal, ‘noise’ is the measurement noise, and B the background
fluorescence. Assuming that the measurement noise is Gaussian distributed, it is
straight forward to fit this model using expectation maximization. We find that,
systematically, the center ip,;q = 50-52, and the width w = 5-6 pixels. We interpret
the amplitude A to be proportional to the total number of GFP molecules in the
cell, and the background B to correspond to the combined effects of the camera
offset, the auto-fluorescence of the microfluidic chip and the media, and stray
fluorescence from neighboring cells. The expectation maximization procedure for
fitting the fluorescence profile is
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Find the maximum and minimal fluorescence column-sums ¢, and cpin
across the profile.
Initialize B tO Cpin, A tO Coyax—Cmin» W 10 5.5 and ip;q to 50, i.e. in the middle of

the profile.
Calculate a theoretical profile:
. 217!
v () } , ©
w

Pi=

and its integral p = SN | pi.
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Fig. 7 Examples of the horizontal profiles of column sums c; of fluorescence intensities (blue dots) for three cells during growth on lactose (top panels) and
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The accuracy of this method to estimate the total fluorescence of the cell can be
quantified by taking advantage of the precise environment control allowed by our
new setup, as discussed in the next section. We distribute a post-processing script
with the MoMA code that allows users to apply this fluorescence amplitude
estimation to exported output files from MoMA.

Cell auto-fluorescence estimation. In addition to the background fluorescence of
the PDMS and stray fluorescence from nearby cells that are corrected for by the
methods described in the previous section, there is background fluorescence
coming from the auto-fluorescence of the cells and media. To estimate this auto-
fluorescence, we measured the wild-type strain of E. coli MG1655, i.e. without the
fluorescent reporter, in the conditions where we switch between glucose and lac-
tose. We observed that the estimated total fluorescence, i.e. the amplitude A from
the previous section, correlates well with the size of the cells during their cell cycle.
That is, fitting a linear relationship A = aS+b of the fluorescence A as a function of
the estimated cell size S typically yields Pearson correlation coefficients of r=0.9.
Moreover, we observed that the vast majority of fits were consistent with b=0, i.e.
the total fluorescence being directly proportional to cell size, supporting that this
signal corresponds to the auto-fluorescence of the cell. Note that any uniform
fluorescence coming from the growth medium would also be accounted for by this
procedure (in the parameter a).
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To fit the auto-fluorescence a (per micrometre of cell length) we selected all
cells that were observed for a full cell cycle, who never got within 100 pixels of the
end of the growth-channel during their cell cycle, and whose length as a function of
time was well fit by a simple exponential growth curve (+? 2 0.99). This latter
restriction mainly serves to remove cells that had a transient stop in growth after
the first switch to lactose. In total there were 284 cells that passed all these criteria.
For each of these cells we replaced the directly estimated sizes S, at each time point
t, with the sizes S, estimated from the exponential fit of S, as a function of time
(reasoning that these estimates are more accurate than the direct measurements).
For each cell we then fit a function A, = a§,, assuming Gaussian measurement
noise of unknown variance.

That is, for a single cell we write

P(Dla,0) x o~ exp [72 (14)

t

202

Using a scale prior on ¢ of the form P(6) « 1/6, and integrating over ¢ we obtain

<§2><a_

where T is the number of time points in the cell cycle and the averages are over the
time points in the cell cycle.
The optimal value of a is given by

-1/2

(45)
)

(45)

P(alD) <SZ>> +(A2) - (15)

_49)

“®)

a,

(16)

Approximating the posterior by a Gaussian we obtain for the standard deviation
of the estimated a

(17)

Figure 8a shows the estimated value a« and its error bar o, for each of the 284
cells. Note that, although most cells have fluorescence values between 400 and
500 per pm, there are some outliers at higher fluorescence. This is also evident from
the combined probability density of a values (Fig. 8b).
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which fluorescence was fit as a function of cell size. The red line (a=433.5) is the fit obtained when all cells are assumed to have a common fluorescence
per micrometre a. The green line is obtained with a mixture model that allows for “outliers” from a uniform distribution (a =421.8). b The joint probability
density of a given by the mixture of Gaussian distributions for all 284 cells. ¢ GFP decay (including bleaching) was estimated by fitting observations of
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shows the cumulative distribution of the Pearson correlations between the estimated log-GFP levels and time. d Estimated decay rates for individual cells
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If we assume there is one common background fluorescence per micrometre a
for all cells, then the probability of the data given «a is given by

P(Dla) = [~ exp| - &9~ o)’ (18)
= xp |-l |
200 T 20,0
where the product is over the 284 cells c.
Maximizing this function with respect to a yields
-1
a.(c) 1
a= =433.5. 19
Zo‘a(c)z |:Z Ua(c)2:| 9

If we allow that there are some ‘outlier’ cells whose value of a is described by a
uniform distribution of width W= a,,,, — dmin, then the likelihood of the data as a
function of & and the fraction of non-outlier measurements p is given by

_ (a—a()?

1-p ”eXP< 20,(0) )
w V27ro,(c)

p(Dla.p) = ]

c

(20)

Maximizing this function with respect to a and p yields a=421.8 and p=0.31.
In the following we will use this latter value of & for the auto-fluorescence per
micrometre of cell length. For each cell with estimated size S and total fluorescence
A, we thus obtain an auto-fluorescence corrected fluorescence level A = A — aS.

Estimating GFP's bleaching and degradation. As shown in Fig. 2a, while the lac
operon is induced in the lactose phases, GFP production ceases during the glucose
phases. In this regime, the total cell fluorescence slowly decreases during the cell
cycle, and approximately divides in half at each cell division. We reasoned that the
slow continuous decay of fluorescence during the cell cycles is the result of GFP
bleaching and, potentially, also some GFP degradation. Inspection of the data
indeed shows that the total fluorescence decrease is captured well by an exponential

14 NATURE COMMUNICATIONS | (2018)9:212

model. For this analysis, we consider only observations between 30 min after the
switch to glucose and before the next switch to lactose, and to cells with at least 10
points in this time window. This corresponded to 33,052 independent cell obser-
vations over 1220 cells.

As shown in Fig. 8¢, the GFP degradation across time is well fit by an
exponential model for most cells. Assuming that a cell undergoes bleaching+GFP
degradation at a rate y per second, we estimated u for each cell from a linear
regression of log(GFP level) against time (Fig. 8d). Combining information from
the estimates of individual rates for each cell and their standard deviations, we
estimate the overall rate y« to be equal to 5.3x107° + 5x10~7 (mean + s.d.)
per second. Note that this corresponds to a loss of about 18% of the GFP signal per
hour due to bleaching and GFP decay.

Accuracy of the fluorescence estimation. We also took advantage of our unique
ability to study the growth regime where no GFP is produced to quantify the
measurement errors on the total GFP. Since, in the glucose phases of the switching
experiments, the GFP dynamics is dominated by bleaching and degradation, and
well described by an exponential decay model, we computed the squared residuals
(normalized by the squared value) from the independent fits of log(GFP) as a
function of time for each cell. As for the analysis of measurement errors on length,
residuals are stratified into bins based on total GFP, and the means and standard
errors of the normalized squared residuals (i.e. relative to total GFP) are computed
for each bin (Fig. 2g). We find that the squared relative error on the GFP mea-
surement scales inversely with the total GFP level (i.e. a power-law fit has exponent
1.01), which indicates that, as in shot noise, the squared error is inversely pro-
portional to total GFP level. In practice, the absolute error is around 20 molecules
when the cell has 200 GFP molecules (i.e. 10%), and around 80 molecules when the
total is 4000 GFP molecules (i.e. 2%).

Estimating the fluorescence per GFP molecule. To estimate the conversion
factor between the background-corrected total fluorescence A and the number of
GFP molecules, we will use data on the fluctuations in fluorescence levels of
newborn sibling pairs. To avoid confounding effects from GFP production, we
collected division events from the glucose phases in our switching experiments,

| DOI: 10.1038/541467-017-02505-0 | www.nature.com/naturecommunications
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when GFP production has ceased. Collecting division events from these phases has
the added advantage that absolute GFP levels vary over a considerable range across
cells during these phases, allowing us to quantify the size of fluctuations in sibling
fluorescence as a function of total fluorescence. Our observations consist of
fluorescence levels at birth (x;, y;) for sibling pairs of daughters, where i runs from 1
to N, with N the total number of such sibling pairs. Using the same criteria as in the
decay analysis for mothers and daughters, we collected N= 357 sibling pairs. GFP
levels at birth were estimated in each daughter cell as average of the levels at all
time points corrected for the previously estimated decay. Assuming that the GFP
molecules in the mother cell are distributed randomly between the daughters, the
fluctuations in the numbers of GFP molecules going to each daughter should be
binomial distributed, and this has been used previously to infer a conversion factor
between GFP molecule numbers and fluorescence levels?. In particular, assuming
binomial fluctuations, the expectation of the square of the difference ((n; — m,)2>
should be equal to the total count n+m;. Given a conversion factor 4, such that the
GFP molecule counts correspond to (n;, m;) = A(x;, y;), one can estimate 4 by

observing
2 2
. <(nl —m) > :/1<(x, — %) >
ni +mj Xi +yi

However, using this “naive” approach, we find that the conversion factor 1
systematically decreases with total fluorescence (Fig. 9a), changing by as much as
fourfold depending on whether division events with low or high absolute
fluorescence are used. This result implies that the variance of fluorescence
fluctuations grows faster than linear with total fluorescence, suggesting that there
are additional fluctuations with variance proportional to total fluorescence squared.
Inspection of the data strongly suggests that these additional fluctuations derive
from fluctuations in the cell size of the daughters. That is, in addition to the
binomial fluctuations there are fluctuations caused by the daughters having
unequal size. Practically, cell size at birth is estimated in each daughter cell by
extrapolating the linear fit of log(length) as a function of time. Indeed, we observe a
substantial correlation between the relative sizes of the siblings and the relative
amounts of fluorescence each sibling receives (Fig. 9b, Pearson correlation r=0.44).

We thus developed a more sophisticated model, which takes into account
fluctuations in the cell sizes, the binomial fluctuations, as well as measurement
noise. For a given division event i, let p; denote the measured fraction of the
cytoplasm that went to the first daughter, and let g;=x;/(x;+y;) be the measured
fraction of the fluorescence that went to the first daughter. We will assume that g; is
a noisy measurement of the true fraction of molecules g=n,/(n;+m;,) that went to
the first daughter, and that p; is a noisy measurement of the true fraction of the
mother’s cytoplasm p that went to the first daughter. Given p and a total number of
molecules n=(n;+m;), the molecule numbers (n;, m;) will show binomial
fluctuations and the fraction q will have a variance var(q) = p(1-p)/n. In addition to
this variance we will assume there is a total measurement noise of variance v, so
that the total expected square-deviation between the measurements g; and p;
should be v+p(1-p)/n. We will assume that the sum of these fluctuations due to the
binomial noise and measurement noise is approximately Gaussian distributed.
Finally, we will assume that the binomial variance p(1-p)/n is well approximated
by the measured values p;(1-p,)/(A(x:+y;)).

Under this model, the probability of observing the fraction g;, given the
measured volume fraction p;, the conversion factor 4, and the total measurement

(1)
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noise v is given by

P(gilp;, A4, v) = <V+M> 71/2exp ,M (22)
ir Ay Axi + yi) 2(v+’:7’(21§:;)

The log-likelihood of 4 and v is now given by a sum over the N division events:

I, (gi—p) [ /)-(1—/)-)]
LA,v)=—2) ——2 —+log|lv+-——"").
) 2 (v+”17<(xl;;))> ¢ Axi + i) (23)

To obtain the posterior probability of 1 we marginalize over the unknown
variance v (using a uniform prior). That is, we calculate
L(2) = log| [exp[L(A, v)]dv], performing the integral numerically. Using this
model, the maximal likelihood value of 4 is given by

2, =0.0361, (24)
and the symmetric 95% posterior probability interval is given by 1 € [0.026, 0.112].

Figure 9c shows the posterior distribution P(AID) obtained with our model. For
comparison, Fig. 9c also shows the conversion factors that would be obtained with
the naive method that assumes there is only binomial noise, i.e. using all data the
number of molecules would be underestimated by almost twofold.

Data availability.

* The designs of the DIMM device, as well as a handbook with detailed
experimental methods, are available from Metafluidics web repository at
https://metafluidics.org/devices/dual-input-mother-machine/.

* The MoMA software and source code is available on Github: https://github.
com/fjug/MoMA. For end users, MoMA is also available as a Fiji plugin at
http://sites.imagej.net/MoMA.

* Extensive documentation is provided as a Wiki page containing information

about MoMA's installation and use, as well as tutorial videos: https://github.

com/fjug/MoMA/wiki.

Raw image data of the analyzed growth-channels as well as processed data

(estimated cell sizes and fluorescence levels) for all experiments presented in

the paper are available from Zenodo at https://doi.org/10.5281/zenodo.746230.

A README file is provided with detailed explanation as to which file

corresponds to which experiment, and the file format of the processed data

files.

* A movie from a time lapse experiment in which E. coli ASC622 cells grow in
the DIMM under conditions that switch (every 4h) between glucose and
lactose as a carbon source is available on Youtube: https://www.youtube.com/
watch?v=2Tznm868fmc. This movie is also available as Supplementary
Movie 1.
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Chapter 4

Summary and Future

Prospects

In the previous chapters the development and application of a
microfluidic device called the Dual Input Mother Machine for
studying single-cell transcription regulatory dynamics were
presented. The Dual Input Mother Machine for the first time
combines the potential of long-term observations of growth
and gene expression phenotypes of single bacterial cells with

precise automated environmental control.

While another study used a Y-junction to manually switch
between inputs in the Mother Machine [28], the environmen-
tal control in the Dual Input Mother Machine is completely
automated using programmable syringe pumps. In addition
the Dual Input Mother Machine allows more precise timing of
the switches because the DAW-junction is integrated into the
device, which reduces the volume that has to flow through
the device after the junction before the switch is effective.
Like the Dual Input Mother Machine, also the chemoflux
microfluidic device presented by Lambert and Kussel 2014
allows growing bacteria over long time-scales, while the en-
vironment can be changed by switching between two media

with a junction integrated in the device [61]. But unlike

o1



the Dual Input Mother Machine, the chemoflux does not al-
low for mixing the two media. An additional difference be-
tween the devices is that in the chemoflux device, the cells
are growing in dead end channels (like in the Mother Ma-
chine) which are several micrometers wide. Because the cells
that are growing in such channels can move between each
other, it is harder to follow them and there is no guarantee
that the same cells always stay at the bottom of the growth
channel where they could be monitored over their whole life-
time. Therefore, with its ability to both switch and mix
inputs while following single cells essentially over their whole
lifetime, the Dual Input Mother Machine is well suited to
address a wide range of biological questions and we are con-
vinced that this setup will be an important new tool to get to
a better understanding of the mechanisms of gene regulation

in single cells in the future.

As a first example this setup was used to study the reg-
ulation of the expression of the lac operon to understand
variability in single cells and how differential regulation cor-
relates with the fitness of single cells in an environment in
which the carbon source alternates between glucose and lac-
tose every 4h. The results of this study, presented in Chapter
3, demonstrate nicely how genetically identical cells that are
confronted with the same environmental changes can behave
very differently because of the stochastic processes involved
in transcriptional regulation. After the first switch from glu-
cose to lactose, the time until the induction of the expression
of the lac operon was measured and found to be highly vari-
able between single cells. When glucose is present the ex-
pression of the lac operon is repressed and only sporadically

is there a burst of expression, probably when Lacl stochas-
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tically dissociates from the promoter for a short time [18].
Likely the differences observed in the waiting times until the
induction can be explained by cells ending up with varying
amounts of LacY and LacZ because of the stochastic expres-
sion bursts in the repressed state before the switch. The cells
that happen to have little or no LacY at the switch will im-
port lactose very slowly, or fail to import lactose completely.
In addition, the lactose that gets into such cells is not con-
verted very efficiently into allolactose, because of their low
LacZ levels. After 4h in lactose the cells were switched to
glucose again and expression of the [ac operon was observed
to stop in glucose. Therefore the LacZ, LacY and LacA
molecules present in the cell at this time were observed to be
diluted out by division in the glucose phase. When the cells
were switched from glucose to lactose for the second time,
the waiting times until induction of the expression of the lac
operon were found to be much shorter and less variable com-
pared to the first glucose to lactose switch. This finding indi-
cates that the levels of the Lac proteins were not completely
diluted back to the level observed before the first induction
of the system and the remaining molecules provided a pheno-
typic memory that facilitated induction of the expression in
the second switch to lactose. Similar results were presented
before by Lambert and Kussel 2014 [61]. They grew their
cells in the chemoflux device mentioned above and also ob-
served the lag phase after the first switch to lactose, which
was gone in the second switch to lactose with a 4h growth
phase in glucose in between. By changing the time grown in
glucose between the switches to lactose they determined the
time-scale over which the memory persists and demonstrated

that overexpression of lacZ, and to a lesser extent of lacY,
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can maintain the cells in an induced state. In addition they
present a second memory mechanism and dissect the determi-
nants of the lag phases that are observed after switches from
glucose to lactose [61]. While the experiments in the study
of Lambert and Kussel 2014 [61] lack single cell resolution,
the Dual Input Mother Machine not only allows measure-
ment of how the times until induction change for different
switches but also allows quantification of the heterogeneity
between cells at each switch, which is very important to un-
derstand possible functional consequences of stochasticity in
gene regulation, e.g. bet hedging strategies. Therefore the
experimental setup presented here opens new perspectives
to study various regulatory switches on the single cell level
and to understand aspects that are hidden in experiments

without single cell resolution.

While only one experimental example of the use of the dual
input Mother Machine was presented here, the applications
are manifold. Based on the results observed in Chapter 3 it
would be interesting to repeat some of the experiments done
in Lambert and Kussel 2014 [61] and use the setup to study
how long the phenotypic memory can last and whether it is
possible to evolve the duration of the memory in an exper-
imental evolution setup. The Dual Input Mother Machine
could be used to characterize the strains coming out of such
selection experiments and to thereby link genetic changes to
changes in the regulation of the expression of the lac operon
in single cells. Another interesting approach to learn more
about how genetic changes can lead to changes in the regu-
lation of a system like the lac operon would be to look at the
behaviour of natural isolates of E. coli (for which we have

the genome sequences) in experiments where the expression
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of the lac operon is measured while the carbon source is alter-
nated between glucose and lactose. The observed differences
in the regulation of the expression of the lac operon in single
cells could again be linked to genetic differences between the
strains. One benefit of the dual Mother Machine is also that
one can easily study the correlation between the gene expres-
sion dynamics and the growth phenotype of single cells in
changing environments. Therefore it would be interesting to
label the natural isolate strains that behave differently at the
first switch from glucose to lactose and load them together
in the dual input Mother Machine to check their fitness in
experiments that differ in the duration of the glucose and
lactose phases, or in the sugar concentrations, to learn about

how selection can act on the noise in gene regulation.
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