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A B S T R A C T

Heuristic search with an admissible heuristic is one of the most prominent
approaches to solving classical planning tasks optimally. We introduce a
new family of admissible heuristics for classical planning, based on Carte-
sian abstractions, which we derive by counterexample-guided abstraction
refinement. Since one abstraction usually is not informative enough for
challenging planning tasks, we present several ways of creating diverse
abstractions. To combine them admissibly, we introduce a new cost parti-
tioning algorithm, which we call saturated cost partitioning. It considers
the heuristics sequentially and uses the minimum amount of costs that
preserves all heuristic estimates for the current heuristic before passing
the remaining costs to subsequent heuristics until all heuristics have been
served this way.

In Part ii, we show that saturated cost partitioning is strongly influenced
by the order in which it considers the heuristics. To find good orders, we
present a greedy algorithm for creating an initial order and a hill-climbing
search for optimizing a given order. Both algorithms make the resulting
heuristics significantly more accurate. However, we obtain the strongest
heuristics by maximizing over saturated cost partitioning heuristics com-
puted for multiple orders, especially if we actively search for diverse or-
ders.

Part iii provides a theoretical and experimental comparison of saturated
cost partitioning and other cost partitioning algorithms. Theoretically, we
show that saturated cost partitioning dominates greedy zero-one cost par-
titioning. The difference between the two algorithms is that saturated cost
partitioning opportunistically reuses unconsumed costs for subsequent
heuristics. By applying this idea to uniform cost partitioning we obtain an
opportunistic variant that dominates the original. We also prove that the
maximum over suitable greedy zero-one cost partitioning heuristics dom-
inates the canonical heuristic and show several non-dominance results for
cost partitioning algorithms. The experimental analysis shows that satu-
rated cost partitioning is the cost partitioning algorithm of choice in all
evaluated settings and it even outperforms the previous state of the art in
optimal classical planning.
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1
I N T R O D U C T I O N

Automated planning (Ghallab et al. 2004) is the problem of finding a se-
quence of actions that achieves a given goal. In this thesis, we focus on
classical planning, where a single agent plans in a fully-observable world
that only has actions with discrete and deterministic effects. This setting
is still general enough to capture many interesting problems such as plan-
ning space missions, coordinating the transportation of goods, scheduling
elevators, playing games like FreeCell or Tetris, or solving combinatorial
puzzles.

Instead of trying to solve each of these different tasks with a specialized
algorithm, we are interested in creating domain-independent planners that
are able to handle all kinds of classical planning tasks with the same algo-
rithm and without any domain-specific knowledge. Furthermore, instead
of looking for any solution, we consider optimal classical planning, where
only the cheapest among all solutions are accepted.

A∗ search (Hart et al. 1968) with an admissible heuristic (Pearl 1984) is
one of the most prominent methods for optimal classical planning. Many
of the strongest admissible heuristics are based on abstractions of the orig-
inal planning task. Due to the way in which they simplify the original task,
abstraction heuristics are guaranteed to be admissible. When creating an
abstraction, we have to decide which parts of the original task to abstract
away and which parts to preserve in more detail.

In Part i, we use counterexample-guided abstraction refinement (CE-
GAR) for this decision (Clarke et al. 2003). CEGAR is a well-known tech-
nique for model checking in large systems. It starts from a coarse abstrac-
tion and iteratively refines the abstraction in only the necessary places.

A key component of our approach is a new class of abstractions for
classical planning, called Cartesian abstractions, which allow efficient and
very fine-grained refinement. Cartesian abstractions are a generalization of
the abstractions that underlie pattern database heuristics (Culberson and
Schaeffer 1998; Edelkamp 2001) and domain abstraction (Hernádvölgyi
and Holte 2000).

As the number of CEGAR iterations grows, one can observe diminishing
returns: it takes more and more iterations to obtain further improvements
in heuristic value. Therefore, we also show how to build multiple smaller
additive abstractions instead of a single big one.

One way of composing admissible heuristics is to use the maximum of
their estimates. This combination is always admissible if the component
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heuristics are. Cost partitioning (Katz and Domshlak 2008; Yang et al. 2008)
is an alternative that actually combines information from individual esti-
mates instead of just selecting the most accurate one. It distributes opera-
tor costs among the heuristics, allowing to add up the heuristic estimates
admissibly.

To combine multiple Cartesian abstraction heuristics admissibly, we in-
troduce a new cost partitioning algorithm, which we call saturated cost par-
titioning. Saturated cost partitioning opportunistically exploits situations
where some operator costs can be lowered without affecting the quality
of the heuristic. Given an ordered sequence of abstractions, the saturated
cost partitioning algorithm computes the smallest cost function cost′ that
is sufficient for achieving the same heuristic values under the first abstrac-
tion as with the full cost function cost. It then assigns cost function cost′

to this abstraction and continues the process with the remaining abstrac-
tions, using the leftover costs cost− cost′ as the new overall cost function.
Compared to other cost partitioning algorithms for abstraction heuristics,
one advantage of saturated cost partitioning is that the abstractions can be
created one at a time. In particular, no more than one abstraction needs to
be held in memory simultaneously.

The simplest way to combine saturated cost partitioning with our CE-
GAR algorithm is to iteratively invoke the CEGAR loop on the same origi-
nal task, only changing the cost functions between iterations to account for
the costs that have already been assigned to previous abstractions. In our
experiments this approach solves slightly fewer tasks compared to using
a single Cartesian abstraction. This is because the resulting abstractions
focus on mostly the same parts of the task. Therefore, we propose three
methods for producing more diverse abstractions.

The first diversification method uses the fact that the CEGAR loop can
often choose between multiple possibilities for refining the Cartesian ab-
straction and chooses a refinement based on the remaining costs. The sec-
ond method computes abstractions for all goal atoms separately, while the
third does so for all causal fact landmarks of the delete relaxation of the
task (Keyder et al. 2010).

We evaluate Cartesian abstractions and saturated cost partitioning with
and without these diversification strategies. Our results show that heuris-
tics based on a single Cartesian abstraction are able to achieve competi-
tive performance only in a few domains. However, constructing multiple
abstractions in general and using landmarks to diversify the heuristics
in particular leads to a significantly higher number of solved tasks and
makes heuristics based on Cartesian abstractions outperform other state-
of-the-art abstraction heuristics in many domains.

In Part ii we investigate saturated cost partitioning in more detail. Since
it assigns costs greedily, it is susceptible to the order in which it considers
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the heuristics. Our analysis reveals that just changing the order of heu-
ristics for saturated cost partitioning can make the difference between a
perfect distance estimate and a highly inaccurate one. To find good orders,
we propose two methods: a greedy algorithm and a hill climbing search in
the space of all orders. The greedy orders and the optimized orders found
by hill climbing significantly improve over random orders and we obtain
the best results using optimized greedy orders. However, we show that
it is often impossible to find a single order that provides good guidance
across the state space: orders that are accurate for some states often turn
out to be poor for others.

Maximizing over saturated cost partitioning heuristics for multiple or-
ders allows us to use accurate heuristics for many different states and
significantly improves over single-order heuristics. We show that our sets
of saturated cost partitioning heuristics often contain heuristics that do
not contribute any additional information during search. Therefore, we
try to pick a subset of heuristics that complement each other by actively
searching for multiple diverse orders.

Although there are many cost partitioning algorithms, the literature
does not contain a thorough comparison. We provide such an analysis
in Part iii. Theoretically, we prove a number of dominance and non-
dominance results, including the fact that saturated cost partitioning
dominates greedy zero-one cost partitioning. It turns out that the key idea
that distinguishes these two cost partitioning approaches can also be ap-
plied to uniform cost partitioning, leading to a new opportunistic version
of uniform cost partitioning that dominates the original.

Experimentally, we report results for pattern databases that are derived
systematically (Pommerening et al. 2013) and by hill climbing (Haslum et
al. 2007), for Cartesian abstractions (Section 4.1), and for landmark heuris-
tics (Karpas and Domshlak 2009), showing that saturated cost partitioning
is the cost partitioning algorithm of choice for all considered kinds of heu-
ristics on the IPC benchmarks.

1.1 Contributions

This thesis makes the following key contributions:

• In Chapter 4, we adapt counterexample-guided abstraction refine-
ment from the model checking to the classical planning setting. Since
existing classes of abstractions for classical planning, like pattern
databases and merge-and-shrink abstractions, are not amenable to
fine-grained, efficient abstraction refinement, we introduce a new
class of abstractions for classical planning, called Cartesian abstrac-
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tions. By iteratively refining Cartesian abstractions with CEGAR we
obtain high-quality heuristics.

• Chapter 5 introduces a new cost partitioning algorithm, called satu-
rated cost partitioning. The main idea of saturated cost partitioning
is to give each heuristic only the fraction of remaining costs that
the heuristic actually needs to justify its estimates and to save un-
consumed costs for subsequent heuristics. We show that we can effi-
ciently compute the minimum cost function that preserves all heuris-
tic estimates of a given explicitly represented abstraction heuristic.

• In Chapter 6, we present two task decomposition methods: abstrac-
tion by goals and abstraction by landmarks. While these methods
could be useful in many different scenarios, we use them to com-
pute diverse Cartesian abstractions.

• In Chapter 7, we evaluate Cartesian abstraction heuristics derived
by CEGAR experimentally, showing that saturated cost partitioning
heuristics over Cartesian abstractions of the goals and landmarks
task decompositions solve more tasks than existing abstraction heu-
ristics in many benchmark domains.

• Chapter 8 shows that the order in which saturated cost partitioning
considers the heuristics has a big impact on the quality of the result-
ing heuristic. We present two methods for computing good orders
and show that both of them drastically improve the accuracy of sat-
urated cost partitioning heuristics. We also demonstrate that we can
often reduce the time and memory requirements of saturated cost
partitioning heuristics by ignoring abstraction heuristics that do not
contribute to the overall heuristic estimate. Furthermore, we show
that a single order is not enough for obtaining an accurate heuristic
for all states encountered during search.

• In Chapter 9, we solve this problem by maximizing over multiple
saturated cost partitioning heuristics computed for different orders.
This approach makes the resulting heuristics even more accurate, es-
pecially if we diversify the set of orders.

• Chapter 10 provides the first thorough theoretical comparison of
cost partitioning algorithms. We show that saturated cost partition-
ing dominates greedy zero-one cost partitioning and propose an op-
portunistic version of uniform cost partitioning that dominates the
original. In addition, we prove several other dominance and non-
dominance results.
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• In Chapter 11, we compare all cost partitioning algorithms exper-
imentally using pattern databases, Cartesian abstraction heuristics
and landmark heuristics. Our results show that saturated cost parti-
tioning is the method of choice in all evaluated settings.

1.2 Experimental Setup

We use a common setup for all experiments in this thesis. The evalu-
ated algorithms are implemented in the Fast Downward planning system
(Helmert 2006) and the code is publicly available1. We run experiments
with the Downward Lab toolkit (Seipp et al. 2017). Our benchmark set2

consists of all 1667 tasks from the optimization tracks of the 1998–2014 In-
ternational Planning Competitions (IPC). The tasks belong to 40 different
domains, some of which were used in several IPC instances. We do not
filter duplicate tasks since this benchmark set is commonly used in the lit-
erature. We limit time and memory by 30 minutes and 3.5 GiB. The cluster
on which we run our experiments consists of Intel Xeon E5-2660 proces-
sors with a clock speed of 2.2 GHz. All experimental data is published
online3.

All planning tasks are given in the PDDL format (Fox and Long 2003)
and we use the translator component of Fast Downward to convert them
into SAS+ tasks (see Section 2.1). In our analyses we ignore the time taken
for this conversion since it is the same for all compared algorithms.

Our main measure for comparing different heuristics h is the number
of tasks solved by an A∗ search using h within the resource limits above.
We often call this metric the coverage score or simply the coverage of an
algorithm. To evaluate the accuracy of h, we often report the heuristic value
for the initial state or the number of expansions A∗ makes when using
h. For the latter number we ignore expansions on the last f layer, since
their number depends on tie-breaking. Finally, we sometimes measure the
evaluation speed of a heuristic by dividing the number of evaluated states
by the time used for the A∗ search.

1.3 Publications

Some of the work in this thesis is based on the following publications:

Jendrik Seipp and Malte Helmert (2013). “Counterexample-guided Carte-
sian Abstraction Refinement.” In: Proceedings of the Twenty-Third Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2013).

1 Code: https://doi.org/10.5281/zenodo.1204966
2 Benchmarks: https://doi.org/10.5281/zenodo.1205019
3 Experimental data: https://doi.org/10.5281/zenodo.1204956

https://doi.org/10.5281/zenodo.1204966
https://doi.org/10.5281/zenodo.1205019
https://doi.org/10.5281/zenodo.1204956
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Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Si-
mone Fratini. AAAI Press, pp. 347–351.

Jendrik Seipp and Malte Helmert (2014). “Diverse and Additive Carte-
sian Abstraction Heuristics.” In: Proceedings of the Twenty-Fourth Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2014).
AAAI Press, pp. 289–297.

Jendrik Seipp (2017). “Better Orders for Saturated Cost Partitioning in Op-
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2
C L A S S I C A L P L A N N I N G A N D H E U R I S T I C S

We begin by formally introducing planning tasks, transition systems and
heuristics.

2.1 Planning Tasks

In the first part of this thesis, we use a toy planning task as a running
example. The task is adapted from the Gripper domain (McDermott 2000)
in which a robot has to transport balls from room A to room B. In our ex-
ample task the robot has a single gripper G and there is only one ball. The
robot can grab and drop the ball and move between the two rooms. Ini-
tially, the robot is in room A, so assuming all operators cost 1, the cheapest
solution for this task is to let the robot grab the ball in room A, move to
room B and drop the ball there.

To formalize classical planning problems such as this example, we use
a SAS+-like (Bäckström and Nebel 1995) representation.

Definition 2.1 Planning tasks.
A planning task is a tuple Π = 〈V ,O, s0, s?〉, where:

• V = 〈v1, . . . , vn〉 is a finite sequence of state variables, each with an
associated finite domain dom(vi).

An atom is a pair 〈v, d〉, also written v 7→ d, with v ∈ V and d ∈ dom(v).

A partial state s is an assignment that maps a subset vars(s) of V to values
in their respective domains. We write s[v] ∈ dom(v) for the value which
s assigns to the variable v. Partial states defined on all variables are called
states, and S(Π) is the set of all states of Π. We will interchangeably treat
partial states as mappings from variables to values or as sets of atoms.

The update of partial state s with partial state t, written s⊕ t, is the partial
state with vars(s ⊕ t) = vars(s) ∪ vars(t), (s ⊕ t)[v] = t[v] for all v ∈
vars(t), and (s⊕ t)[v] = s[v] for all v ∈ vars(s) \ vars(t).

• O is a finite set of operators. Each operator o has a precondition pre(o),
an effect eff(o) and a non-negative cost cost(o) ∈ R+

0 . The precondition
pre(o) and effect eff(o) are partial states. The postcondition post(o) of an
operator o is defined as pre(o)⊕ eff(o). An operator o ∈ O is applicable in
state s if pre(o) ⊆ s. Applying o in s results in the state sJoK = s⊕ eff(o).

• s0 ∈ S(Π) is the initial state and s? is a partial state, called the goal.
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Variables V = 〈robot, ball〉, dom(robot) = {A, B}, dom(ball) = {A, B, G}

Operators O = {move-A-B, move-B-A, grab-in-A, grab-in-B, drop-in-A,
drop-in-B}

• pre(move-A-B) = {robot 7→ A}, eff(move-A-B) = {robot 7→ B},
cost(move-A-B) = 1.

• pre(move-B-A) = {robot 7→ B}, eff(move-B-A) = {robot 7→ A},
cost(move-B-A) = 1.

• pre(grab-in-A) = {robot 7→ A, ball 7→ A}, eff(grab-in-A) = {ball 7→ G},
cost(grab-in-A) = 1.

• pre(grab-in-B) = {robot 7→ B, ball 7→ B}, eff(grab-in-B) = {ball 7→ G},
cost(grab-in-B) = 1.

• pre(drop-in-A) = {robot 7→ A, ball 7→ G}, eff(drop-in-A) = {ball 7→ A},
cost(drop-in-A) = 1.

• pre(drop-in-B) = {robot 7→ B, ball 7→ G}, eff(drop-in-B) = {ball 7→ B},
cost(drop-in-B) = 1.

Initial State s0(robot) = A and s0(ball) = A (or s0 = 〈A, A〉)

Goal s? = {ball 7→ B}

Figure 2.1: Definition of the example Gripper task Π = 〈V ,O, s0, s?〉 with a single
ball, a gripper G and two rooms A and B.

Figure 2.1 shows how the example Gripper task can be formalized using
this definition. We will frequently use a tuple notation for states and write
〈d1, . . . , dn〉 to denote the state {v1 7→ d1, . . . , vn 7→ dn}. (Facilitating such
a notation is the main reason why we define V as a sequence rather than
a set.)

2.2 Transition Systems

The notion of transition systems is central for assigning semantics to plan-
ning tasks:

Definition 2.2 Transition Systems.
A transition system T is a directed, labeled graph T = 〈S,L, T, s0, S?〉, where
S is a finite set of states; L is a finite set of labels; T is a set of labeled transitions

s l−→ s′ for s, s′ ∈ S and l ∈ L; s0 ∈ S is the initial state; and S? ⊆ S is the set
of goal states.
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We write S(T ) for the states in T , L(T ) for the labels in T , T(T ) for the
transitions in T and S?(T ) for the goal states in T .

Definition 2.3 Cost Functions.
A cost function for transition system T is a function cost : L(T )→ R∪{−∞}.
We write C(T ) for the set of all cost functions for T .

A cost function cost is called non-negative if cost(l) ≥ 0 for all labels l.
Unrestricted cost functions are also called possibly negative.

We only consider non-negative cost functions as inputs to cost par-
titioning algorithms, but following Pommerening et al. (2015), we per-
mit possibly negative cost functions within cost partitionings. For brevity,
we sometimes use a tuple notation for cost functions and write cost =

〈cost(l1), . . . , cost(lk)〉.

Definition 2.4 Fixed-cost Transition Systems.
A fixed-cost transition system is a pair 〈T , cost〉, where T is a transition sys-
tem and cost is a cost function for T . We also refer to transition systems as
parameterized-cost transition systems to emphasize the distinction to fixed-cost
transition systems.

A fixed-cost transition system 〈T , cost〉 is the weighted digraph obtained

from T by assigning all transitions s l−→ s′ ∈ T(T ) the weight cost(l). We
distinguish between fixed-cost and parameterized-cost transition systems
since for cost partitioning we need to be able to use different cost functions
for the same transition system. A fixed-cost transition system 〈T , cost〉 is
regular if cost is non-negative.

Definition 2.5 Goal Distance.
For a fixed-cost transition system 〈T , cost〉, the goal distance h∗T ,cost(s) ∈ R ∪
{−∞, ∞} of a state s ∈ S(T ) is the cost of a cheapest path weighted by cost from
s to a goal state in S?(T ). The goal distance is ∞ if no such path exists and −∞
if paths of arbitrarily low negative cost exist.

For a parameterized-cost transition system T , the goal distance of state s ∈
S(T ) is defined as h∗T (s, cost) = h∗T ,cost(s).

Note that for regular fixed-cost transition systems 〈T , cost〉, we have
h∗T ,cost(s) ≥ 0 for all states s ∈ S(T ).

A planning task Π = 〈V ,O, s0, s?〉 with operator cost function cost in-
duces a fixed-cost transition system 〈T , cost〉 with states S(Π), labels O,
transitions {s o−→ (s⊕ eff(o)) | s ∈ S(Π), o ∈ O, pre(o) ⊆ s}, initial state s0

and goal states {s ∈ S(Π) | s? ⊆ s}.

Definition 2.6 Regression, plans and traces.
Let 〈T , cost〉 be a fixed-cost transition system.
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〈A, A〉

〈B, A〉

〈A, G〉

〈B, G〉 〈B, B〉

〈A, B〉
grab-in-A

drop-in-A

grab-in-B

drop-in-B

move-A-B

move-B-A

move-A-B

move-B-A move-B-A

move-A-B

Figure 2.2: Transition system for the example Gripper task with a single ball, a
gripper G and two rooms A and B.

The regression of a set of states S′ ⊆ S(T ) with respect to a label l ∈ L(T )
is defined as regr(S′, l) = {s ∈ S(T ) | s l−→ s′ ∈ T(T ) ∧ s′ ∈ S′}.

A sequence of transitions 〈s0 l1−→ s1, s1 l2−→ s2, . . . , sk−1 lk−→ sk〉 is called a trace
from s0 to sk. The empty sequence is considered a trace from s to s for all states s.
A trace from state s to some state s′ ∈ S? is called a goal trace for s. The sequence
of labels 〈l1, l2, . . . , lk〉 of a goal trace for state s is called a plan for s. We often
write “goal trace” and “plan” instead of “goal trace for s0” and “plan for s0”.

A plan is optimal if the sum of assigned weights along the path is min-
imal. Optimal planning is the following problem: given a planning task
Π with initial state s0 and operator cost function cost, find an optimal
plan starting in s0 in the transition system induced by Π and weighted
by cost, or prove that no plan starting in s0 exists. Figure 2.2 shows the
(unweighted) transition system induced by the Gripper example. We fol-
low the common convention and always mark the initial state with an
unlabeled incoming edge and goal states with double borders.

2.3 Heuristics

Heuristics estimate the cost of a cheapest path between a given state and
the nearest goal state (Pearl 1984). We define two types of heuristics: a
parameterized-cost heuristic is a function from states and cost functions to
cost estimates. In contrast, a fixed-cost heuristic is defined as a function
only from states to cost estimates.

Definition 2.7 Heuristics.
Let T be a parameterized-cost transition system. A parameterized-cost heuris-
tic for T is a function h : S(T )× C(T )→ R∪ {−∞, ∞}.
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Let 〈T , cost〉 be a fixed-cost transition system. A fixed-cost heuristic for T is
a function h : S(T )→ R∪ {−∞, ∞}.

Since almost all heuristics in this thesis are parameterized-cost heuris-
tics, we usually simply call them heuristics.

Definition 2.8 Properties of Heuristics.
Let T be a parameterized-cost transition system and let h be a parameterized-
cost heuristic for T . Then

• h is goal-aware if h(s, cost) ≤ 0 for all cost functions cost ∈ C(T ) and
goal states s ∈ S?(T ),

• h is consistent if h(s, cost) ≤ cost(o) + h(sJoK, cost) for all cost functions
cost ∈ C(T ) and states s ∈ S(T ),

• h is admissible if h(s, cost) ≤ h∗T (s, cost) for all cost functions cost ∈
C(T ) and states s ∈ S(T ), and

• h is cost-monotonic if h(s, cost′) ≤ h(s, cost) for all states s ∈ S(T )
whenever cost′ ≤ cost.

Goal-awareness, consistency and admissibility are defined analogously
for fixed-cost heuristics. A goal-aware and consistent heuristic is also ad-
missible (Russell and Norvig 1995). Using an admissible heuristic in an A∗

search yields optimal solutions (Hart et al. 1968).

Cost-monotonicity In less technical terms, making transitions more ex-
pensive cannot decrease heuristic estimates of cost-monotonic heuristics.
Examples for cost-monotonic heuristics from the literature include the per-
fect heuristic h∗, the optimal delete-relaxation heuristic h+ (Hoffmann and
Nebel 2001), the family of critical-path heuristics hC (Haslum 2012) and
consequently the hm heuristic family (Haslum and Geffner 2000), which is
a special case of hC . In contrast, the hLM-cut (Helmert and Domshlak 2009)
and hFF (Hoffmann and Nebel 2001) heuristics are not cost-monotonic due
to their use of tie-breaking.

Label l affects heuristic h if heuristic estimates of h may depend on cost(l),
i.e., there exist states s and non-negative cost functions cost and cost′ which
differ only on l with h(s, cost) 6= h(s, cost′). We define A(h) = {l ∈ L |
l affects h}. Heuristics h and h′ with A(h) ∩A(h′) = ∅ are called indepen-
dent.

By losing some distinctions between states, we can create an abstraction
of a planning task. This allows us to obtain a more “coarse-grained”, and
hence smaller, transition system. For this thesis, it is convenient to use a
definition based on equivalence relations:
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Definition 2.9 Abstractions.
Let Π be a planning task inducing the transition system 〈S,L, T, s0, S?〉.

An abstraction relation ∼ for Π is an equivalence relation on S. Its equiva-
lence classes are called abstract states. We write [s]∼ for the equivalence class to
which s belongs. The function mapping s to [s]∼ is called the abstraction func-
tion. We omit the subscript ∼ where clear from context.

The abstract transition system induced by ∼ is the transition system T ′ with

states {[s] | s ∈ S}, labels L, transitions {[s] l−→ [s′] | s l−→ s′ ∈ T}, initial state
[s0] and goal states {[s] | s ∈ S?}. We call T ′ = 〈S′,L′, T′, s′0, S′?〉 an induced
abstraction. Enlarging S′, L′, T′ or S′? turns T ′ into a (non-induced) abstraction.

Induced abstractions are also called strict homomorphisms, and general
abstractions are called homomorphisms. We generally assume abstractions
to be induced and will make it explicit when we speak about non-induced
abstractions.

In the context of an abstraction, the planning task Π on which the ab-
stract transition system is based is called the concrete task. Similarly, we
will speak of concrete states, concrete transitions etc. to distinguish them
from abstract ones.

Abstraction Heuristics We can use abstraction to define admissible (and
consistent) heuristics for planning (e.g., Helmert et al. 2007; Katz and
Domshlak 2008, 2010). We write Th for the abstract transition system that
abstraction heuristic h is based on. The heuristic estimate h(s, cost) of an ab-
straction heuristic h is defined as the cost of an optimal plan starting from
[s] in abstract transition system Th weighted by cost, i.e., h∗Th,cost([s]), or ∞ if
no plan starting from [s] exists. Abstraction heuristics are admissible since
abstraction preserves paths, i.e., all paths in a concrete transition system
are also present in an induced abstraction. They are also cost-monotonic
since increasing the weight of transitions can only increase goal distances.
Practically useful abstractions should be efficiently computable and give
rise to informative heuristics. These are conflicting objectives. We compare
different classes of abstraction heuristics and show examples in Section 4.1.

Landmarks Another important concept from the literature that we use
in this thesis are landmarks (e.g., Karpas and Domshlak 2009; Richter and
Westphal 2010). A fact landmark for a state s is an atom that has to be true
at least once in all plans for s. We use fact landmarks in Section 6.3 to
decompose a given task into multiple subtasks.

A disjunctive action landmark for a state s is a set of operators L ⊆ O for
which we have that at least one operator o ∈ L must be part of any plan for
s. For each fact landmark v 7→ d, the set of operators that achieve v 7→ d is
a disjunctive action landmark.
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Landmark Heuristics For this thesis, it is useful to view a landmark
heuristic for a state s and a (single) disjunctive action landmark L for s
as a two-state (non-induced) abstraction heuristic with the abstract initial
state “L not achieved” and the abstract goal state “L achieved”. For all
operators in L there is a transition from “L not achieved” to “L achieved”
and s is mapped to “L not achieved”. Since the set of landmarks that have
to be achieved changes between states, the set of landmark heuristics also
differs from state to state.



3
C O S T PA RT I T I O N I N G

For finding solutions in huge transition systems, it can be beneficial to
use multiple heuristics that focus on different parts of the state space (e.g.,
Holte et al. 2006). The question is how we can combine the heuristics so
that the resulting heuristic is both informative and admissible. Maximizing
over the heuristic estimates in each state guarantees admissibility if each
component heuristic is admissible, but the resulting heuristic is only as
strong as the strongest component heuristic in each state.

In contrast, cost partitioning combines the information contained in the
component heuristics and yields a heuristic that is often much stronger
than any of its components. It preserves admissibility by distributing the
costs of a task among the component heuristics (Katz and Domshlak 2008).
Cost partitioning is more general than maximizing over multiple heuris-
tics, since we can express any maximization by a cost partitioning that
uses all costs for the heuristic with the highest estimate. Following Pom-
merening et al. (2015), we allow negative costs in cost partitionings.

Definition 3.1 Cost Partitioning.
Let H = 〈h1, . . . , hn〉 be a tuple of admissible parameterized-cost heuristics for a
regular fixed-cost transition system 〈T , cost〉. A cost partitioning for cost andH
is a tuple C = 〈cost1, . . . , costn〉 of possibly negative cost functions whose sum is
bounded by cost: ∑n

i=1 costi(l) ≤ cost(l) for all l ∈ L(T ). The cost-partitioned
fixed-cost heuristic hC is defined as hC(s) = ∑n

i=1 hi(s, costi). If any term in the
sum is ∞ the sum is defined as ∞, even if another term is −∞.

Intuitively, since each heuristic yields an admissible estimate, their sum
is also admissible due to the way C divides the costs among the heuristics.

s1,s2 s3 s4,s5

o1 o3

o2 o4

s1 s2,s3,s4 s5

o1 o3

o2 o4

Figure 3.1: Example abstraction heuristics. The cost function is cost = 〈4, 1, 4, 1〉,
i.e., operators o1 and o3 cost 4, whereas o2 and o4 cost 1. In all figures
depicting abstraction heuristics, abstract states are rounded rectangles
and abstract self-loops are dotted.
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We illustrate the concept of cost partitioning with the two abstraction
heuristics h1 and h2 and cost function cost = 〈4, 1, 4, 1〉 in Figure 3.1. We
have h1(s1) = 5 and h2(s1) = 5 under cost. Therefore, maximizing over
the two estimates also yields a heuristic value of 5. We show below that
a suitable cost partitioning is able to raise the resulting heuristic value
significantly. For example, the cost partitioning C = 〈cost1, cost2〉 with
cost1 = 〈4, 0, 1, 1〉 and cost2 = 〈0, 0, 3, 0〉 yields hC(s1) = 5 + 3 = 8.

3.1 Overview of Cost Partitioning Algorithms

Before the emergence of cost partitioning methods, additive admissible
heuristics such as disjoint pattern databases (PDBs) exploited the natural
independence between multiple heuristics that arises when no operator
contributes to the estimate of more than one heuristic (Edelkamp 2006;
Felner et al. 2004; Korf and Felner 2002). The further development of this
idea led to the canonical heuristic for pattern databases (Haslum et al. 2007),
which computes all maximal subsets of pairwise independent abstractions
and then uses the maximum of all sums over independent abstractions as
the heuristic value. In a formal sense, this is the most accurate heuristic
that can be derived from a given set of heuristics if the only available
information apart from the heuristic values is which pairs of heuristics are
independent.

Zero-one cost partitioning was introduced as a generalization of such
independence-based additive heuristics. This approach, first formally de-
scribed by Haslum et al. (2005), artificially enforces independence between
heuristics by treating operators as free of cost if they have already been
“consumed” by another heuristic.

The development of cost partitioning as a general concept is due to Katz
and Domshlak (2008), who also introduced uniform cost partitioning as a
practical cost partitioning method: instead of assigning the whole cost of
an operator to a single heuristic, the cost is equally distributed among all
heuristics for which the operator is relevant.

All these approaches are theoretically dominated by optimal cost parti-
tioning, which has been shown to be computable in polynomial time for
abstraction (Katz and Domshlak 2008, 2010) and landmark (Karpas and
Domshlak 2009) heuristics and has more recently been extended to permit
negative costs (Pommerening et al. 2015).

However, these promising theoretical results do (so far) not translate
well into practice: Pommerening et al. (2013) showed that even for compar-
atively small pattern database heuristics, optimal cost partitioning tends
to be prohibitively expensive, as it requires to solve linear programs (LPs)
with “up to millions of variables and billions of constraints for realis-
tic problem sizes” (Pommerening et al. 2013). Their post-hoc optimization
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heuristic is an approximation to optimal cost partitioning based on a linear
program where a single weight is computed for each heuristic, which dra-
matically reduces the solution space, making the approach much cheaper
but less accurate than optimal cost partitioning.

The latest addition to the collection of cost partitioning algorithms is
delta cost partitioning (Fan et al. 2017): given an original cost function (with
possibly diverse operator costs), it computes a set of cost functions where
each cost function only maps to at most two different values. Using these
cost functions instead of a single cost function with diverse costs is bene-
ficial for label reduction (Sievers et al. 2014) in merge-and-shrink abstrac-
tions (Helmert et al. 2014), since only labels mapped to the same cost can
potentially be combined. However, the applicability of delta cost partition-
ing is limited. Since the resulting number of cost functions depends on the
original cost function, we cannot use it for a fixed number of heuristics.
For example, given a unit cost task, the algorithm produces a cost parti-
tioning that only consists of the original cost function. We therefore do not
analyze delta cost partitioning further in this thesis.

In the remainder of this chapter, we formally define the other cost parti-
tioning algorithms introduced above.

3.2 Optimal Cost Partitioning

An optimal cost partitioning for a given state is a cost partitioning C∗
where hC

∗
(s) is maximal among all possible cost partitionings.

Definition 3.2 Optimal Cost Partitioning.
Let H = 〈h1, . . . , hn〉 be a tuple of admissible heuristics for a regular fixed-cost
transition system 〈T , cost〉. An optimal cost partitioning for cost, H and a
state s ∈ S(T ) is a cost partitioning C∗ where hC

∗
(s) is maximal among all cost

partitionings for cost and H. The optimal cost partitioning heuristic hOCP is
a parameterized-cost heuristic defined as hOCP(s, cost) = hC

∗
(s), where C∗ is an

optimal cost partitioning for cost, H and state s ∈ S(T ).

Whether an optimal cost partitioning can be computed depends on the
type of heuristics. The cases that are best understood are abstraction and
landmark heuristics.

Optimal Cost Partitioning for Abstraction Heuristics Katz and Domsh-
lak (2008, 2010) presented an algorithm for computing optimal cost parti-
tionings over explicitly represented abstraction heuristics. Since it is based
on linear programming, the algorithm runs in polynomial time. Figure 3.2
shows one possible formalization of their linear program. Given a state s,
a cost function cost and a tuple of abstraction heuristics H, the linear pro-
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Maximize ∑
h∈H

H
h
[s]h

subject to

H
h
a ≤ 0 for all h ∈ H and a ∈ S?(Th) (3.1)

H
h
a −Hh

b ≤ Ch
l for all h ∈ H and a l−→ b ∈ T(Th) (3.2)

∑
h∈H

C
h
l ≤ cost(l) for all l ∈ L(Th) (3.3)

Figure 3.2: Linear program that computes an optimal cost partitioning for a reg-
ular concrete fixed-cost transition system 〈T , cost〉, a tuple of abstrac-
tion heuristics H = 〈h1, . . . , hn〉 for T and a concrete state s ∈ S(T ).
Each abstraction heuristic h ∈ H is associated with an abstract tran-
sition system Th and an abstraction function that maps each state
s ∈ S(T ) to the corresponding abstract state [s]h ∈ S(Th). The tuple
〈cost1, . . . , costn〉, where costi(l) = C

hi
l , is an optimal cost partitioning.

gram maximizes the sum of abstract goal distances of the abstract states
that s is mapped to by the abstraction functions.

For each abstraction heuristic h with associated abstract transition sys-
tem Th, the linear program contains variables Hh

a for each abstract state
a ∈ S(Th) and C

h
l for each label l ∈ L(Th). Variable Ch

l encodes the cost of
label l in Th. Together with the optimization function, constraints 3.1 and
3.2 ensure that each variable Hh

a encodes the goal distance of abstract state
a ∈ S(Th) under the cost function encoded by C

h. Constraint 3.3 checks
that the encoded cost functions form a cost partitioning.

Example For the abstraction heuristics h1 and h2 in Figure 3.1 the ex-
ample cost partitioning C from above is an optimal cost partitioning: C =

〈cost1, cost2〉 with cost1 = 〈4, 0, 1, 1〉 and cost2 = 〈0, 0, 3, 0〉 yields hC(s1) =

5 + 3 = 8. However, there are multiple optimal solutions for the LP: the
cost partitioning C ′ = 〈cost1, cost2〉 with cost1 = 〈3.5, 0, 1, 1〉 and cost2 =

〈0.5, 1, 3, 0〉 also yields hC
′
(s1) = 4.5 + 3.5 = 8.

Computing optimal cost partitionings for some or even all states encoun-
tered during search has been shown to be a practically viable approach
for landmark heuristics and certain classes of implicit abstraction heuris-
tics (Karpas and Domshlak 2009; Karpas et al. 2011; Katz and Domshlak
2010). However, despite the promising theoretical guarantees, computing
optimal cost partitionings can already be prohibitively expensive for ex-
plicit abstractions of modest size: Pommerening et al. (2013), for example,
performed experiments with systematic pattern databases of up to size 2,
showing that for 249 out of 1396 tasks in their benchmark set, computing
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an optimal cost partitioning for a single state is infeasible even with a 24-
hour time limit and a 2 GiB memory limit. This includes 206 cases where
the LP computation runs out of memory and 43 timeouts after 24 hours.
We give further evidence for the impractical time and memory require-
ments of optimal cost partitioning in Section 11.2.

Consequently, several alternatives to optimal cost partitioning with vary-
ing time vs. accuracy tradeoffs have been proposed. We remark that even
for suboptimal cost partitionings the resulting cost-partitioned heuristics
remain admissible (since we only allow admissible component heuristics).
Therefore, all cost-partitioned heuristics are guaranteed to find optimal
solutions when used in an A∗ search.

3.3 Post-hoc Optimization

Like optimal cost partitioning, post-hoc optimization (Pommerening et al.
2013) is a cost partitioning method based on linear programming. Each
component heuristic is assigned a single real-valued weight in the range
[0, 1], and the overall heuristic value is the weighted sum of component
heuristics. For each label, there is a constraint that ensures that the total
weight of all heuristics affected by the label sum up to at most 1. A solution
of the post-hoc optimization LP corresponds to a cost partitioning where
operators that do not affect a given heuristic are assigned a cost of 0, and
operators affecting a heuristic which receives the weight wi are assigned
the fraction wi of their full cost.

Definition 3.3 Post-hoc Optimization.
LetH = 〈h1, . . . , hn〉 be a tuple of admissible heuristics for regular fixed-cost tran-
sition system 〈T , cost〉, and let 〈w1, . . . , wn〉 be a solution to the linear program
that maximizes ∑n

i=1(wi · hi(s, cost)) subject to

∑
i∈{1,...,n}:l∈A(hi)

wi ≤ 1 for all l ∈ L(T )

wi ≥ 0 for all 1 ≤ i ≤ n.

Then, the post-hoc optimization cost partitioning is the tuple C = 〈w1 ·
cost1, . . . , wn · costn〉, where costi(l) = cost(l) if l ∈ A(hi) and costi(l) = 0
otherwise. We write hPhO for the heuristic that is cost-partitioned with the post-
hoc optimization cost partitioning.

Example We illustrate post-hoc optimization with the two example ab-
straction heuristics h1 and h2 in Figure 3.1. For state s1 the post-hoc opti-
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mization LP maximizes the sum w1 · h1(s1, cost) + w2 · h2(s1, cost) = w1 ·
5 + w2 · 5 = 5 · (w1 + w2) subject to the constraints

w1 + w2 ≤ 1 (for o1) (3.4)

w2 ≤ 1 (for o2) (3.5)

w1 + w2 ≤ 1 (for o3) (3.6)

w1 ≤ 1 (for o4) (3.7)

w1 ≥ 0 (3.8)

w2 ≥ 0. (3.9)

Since we can ignore constant factors in the optimization function of an LP,
the objective is to maximize the sum w1 + w2. The constraints 3.4, 3.8 and
3.9 imply all other constraints, so any solution that satisfies w1 + w2 = 1,
w1 ≥ 0 and w2 ≥ 0 is optimal, e.g., 〈w1 = 1, w2 = 0〉, 〈w1 = 0, w2 = 1〉
or 〈w1 = 0.25, w2 = 0.75〉. The heuristic value for state s1 is the objective
value of the LP, i.e., hPhO(s1, cost) = 5.

Post-hoc optimization always generates a non-negative cost partitioning,
i.e., one where all component costs are non-negative. Following the re-
sults of Pommerening et al. (2015) on general cost partitioning, one might
wonder if hPhO could be strengthened by dropping the non-negativity con-
straint wi ≥ 0. However, this does not work as expected, as ∑n

i=1(wi ·
hi(s, cost)) is no longer an admissible estimate without this constraint. The
reason for this is that negative weighting changes which paths are optimal
in a state space.

3.4 Zero-One Cost Partitioning

In a zero-one cost partitioning (Edelkamp 2006; Haslum et al. 2005), the
whole cost of each label is assigned to (at most) a single component heuris-
tic.

Definition 3.4 Zero-one cost partitioning.
Given a regular fixed-cost transition system 〈T , cost〉 and a tuple of admissible
heuristics H = 〈h1, . . . , hn〉, a tuple C = 〈cost1, . . . , costn〉 is a zero-one cost
partitioning if for each l ∈ L we have costi(l) = cost(l) for at most one costi ∈ C
and costj(l) = 0 for all other costj ∈ C.

For a state space with l labels and n admissible heuristics, Definition
3.4 allows for (n + 1)l different zero-one cost partitionings. The question
is therefore how to obtain an informative zero-one cost partitioning. The
only method considered in the literature is a greedy algorithm that iterates
over the heuristics in a specified order and assigns the cost of each label to
the first heuristic that is affected by this label. Due to this greedy assign-
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ment, the algorithm is susceptible to the order in which the heuristics are
considered.

Definition 3.5 Heuristic Orders.
Let H be a finite set of heuristics. An order ω of H is a tuple 〈h1, . . . , hn〉 that
contains each heuristic in H exactly once. We write Ω(H) for the set of all orders
of H.

Definition 3.6 Greedy zero-one cost partitioning.
Let 〈T , cost〉 be a regular fixed-cost transition system and let H be a set of admis-
sible heuristics for T .

For a given order ω = 〈h1, . . . , hn〉 ∈ Ω(H), the greedy zero-one cost
partitioning is the tuple C = 〈cost1, . . . , costn〉, where

costi(l) =

{
cost(l) if l ∈ A(hi) and l /∈ ⋃i−1

j=1A(hj)

0 otherwise

for all l ∈ L. We write hGZOCP
ω for the heuristic that is cost-partitioned by greedy

zero-one cost partitioning for order ω.

Each greedy zero-one cost partitioning is a zero-one cost partitioning as
the cost of each label is assigned to at most one heuristic (the first one in
the order affected by the label).

Example Consider again the two abstraction heuristics h1 and h2 and
the cost function cost from Figure 3.1. Depending on the heuristic order
we can obtain two different greedy zero-one cost partitionings. The order
〈h1, h2〉 yields the cost partitioning 〈〈4, 0, 4, 1〉, 〈0, 1, 0, 0〉〉 and consequently
hGZOCP
〈h1,h2〉 (s1, cost) = 5. Similarly, using the order 〈h2, h1〉 leads to the cost

partitioning 〈〈4, 1, 4, 0〉, 〈0, 0, 0, 1〉〉, which also results in hGZOCP
〈h2,h1〉 (s1, cost) =

5. While the two orders yield the same heuristic value for s1, we have
hGZOCP
〈h1,h2〉 (s3, cost) = 1 and hGZOCP

〈h2,h1〉 (s3, cost) = 4.

3.5 Uniform Cost Partitioning

Katz and Domshlak (2008) proposed uniform cost partitioning, where the
cost of each label is distributed uniformly among all heuristics affected by
this label.

Definition 3.7 Uniform cost partitioning.
Given a regular fixed-cost transition system 〈T , cost〉 and a tuple of admissible
heuristics H = 〈h1, . . . , hn〉 for T , the uniform cost partitioning is the tuple
C = 〈cost1, . . . , costn〉, where for all l ∈ L

costi(l) =

{ cost(l)
|{h∈H|l∈A(h)}| if l ∈ A(hi)

0 otherwise.
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We write hUCP for the heuristic that is cost-partitioned by uniform cost partition-
ing.

Unlike (greedy) zero-one cost partitioning, uniform cost partitioning is
not affected by the order in which the heuristics are considered.

Example In our example from Figure 3.1 the original cost function is
cost = 〈4, 1, 4, 1〉. For the two abstraction heuristics h1 and h2 the uni-
form cost partitioning is 〈cost1, cost2〉 with cost1 = 〈2, 0, 2, 1〉 and cost2 =

〈2, 1, 2, 0〉. The resulting heuristic value for s1 is hUCP(s1, cost) = 3 + 3 = 6.

3.6 Canonical Heuristic

Haslum et al. (2007) introduced the canonical heuristic as a heuristic that
allows the combination of information from multiple pattern database heu-
ristics. We give a definition for general admissible heuristics.

Definition 3.8 Canonical Heuristic.
Let H be a set of admissible heuristics for regular fixed-cost transition system
〈T , cost〉, and let MIS(H) be the set of all maximal (w.r.t. set inclusion) subsets of
H such that all heuristics in each subset are pairwise independent. The canonical
heuristic in state s ∈ S(T ) is

hCAN(s, cost) = max
σ∈MIS(H)

∑
h∈σ

h(s, cost).

The canonical heuristic implicitly computes the maximum over mul-
tiple cost-partitioned heuristics: for each maximal independent subset
〈h1, . . . , hn〉 ∈ MIS(H) we can compute a cost partitioning C = 〈cost1, . . . ,
costn〉 with costi(l) = cost(l) if l affects hi and costi(l) = 0 otherwise. Since
by definition all heuristics are pairwise independent, C only uses the cost
of each label in at most one cost function. Therefore, C is a zero-one cost
partitioning. We investigate the relationships between the canonical heuris-
tic and other cost partitioning algorithms in more detail in Chapter 10.

Example The two abstraction heuristics h1 and h2 from Figure 3.1 are
not independent since operators o1 and o3 affect both heuristics. Therefore,
the canonical heuristic is the maximum over the individual heuristics. For
example,

hCAN(s1, cost) = max(h1(s1, cost), h2(s1, cost)) = max(5, 5) = 5 and

hCAN(s3, cost) = max(h1(s3, cost), h2(s3, cost)) = max(1, 4) = 4.

Computing the canonical heuristic involves finding maximal indepen-
dent subsets of a given set of component heuristics. This is equivalent to
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finding maximal cliques in an undirected graph that has an edge between
two heuristics if no label affects both of them. Since computing even a sin-
gle maximal clique is NP-hard (Garey and Johnson 1979), computing the
canonical heuristic is NP-hard as well. Pommerening et al. (2013) showed
that post-hoc optimization dominates the canonical heuristic even though
hPhO is polynomial. The underlying reason for this difference is that find-
ing maximal cliques corresponds to solving an integer program. While lin-
ear programs can be solved in polynomial time, solving integer programs
is NP-hard (Karp 1972).



Part I

C A RT E S I A N A B S T R A C T I O N S

Counterexample-guided abstraction refinement (CEGAR) is a
method for incrementally computing abstractions of transition
systems. We propose a CEGAR algorithm for computing ab-
straction heuristics for optimal classical planning. Starting from
a coarse abstraction of the planning task, we iteratively com-
pute an optimal abstract solution, check if and why it fails for
the concrete planning task and refine the abstraction so that
the same failure cannot occur in future iterations. A key ingre-
dient of our approach is a novel class of abstractions for clas-
sical planning tasks that admits efficient and very fine-grained
refinement. Since a single abstraction usually cannot capture
enough details of the planning task, we also introduce two
methods for producing diverse sets of heuristics within this
framework, one based on goal atoms, the other based on land-
marks. In order to sum their heuristic estimates admissibly we
introduce a new cost partitioning algorithm called saturated
cost partitioning. We show that the resulting heuristics out-
perform other state-of-the-art abstraction heuristics in many
benchmark domains.



4
C A RT E S I A N A B S T R A C T I O N R E F I N E M E N T

Counterexample-guided abstraction refinement is an established tech-
nique for model checking in large systems (Clarke et al. 2003). The idea
is to start from a coarse (i.e., small and inaccurate) abstraction, then iter-
atively improve (refine) the abstraction in only the necessary places. In
model checking, this means that we search for error traces (behaviors that
violate the system property we want to verify) in the abstract system, test
if these error traces generalize to the actual system (called the concrete
system), and only if not, refine the abstraction in such a way that this
particular error trace is no longer an error trace of the abstraction.

In model checking, CEGAR is usually used to prove the absence of an er-
ror trace. Here, we use CEGAR to derive heuristics for optimal state-space
search, and hence our CEGAR procedure does not have to completely
solve the problem: abstraction refinement can be interrupted at any time
to derive an admissible search heuristic.

4.1 Cartesian Abstractions

We want to construct compact and informative abstractions through an
iterative refinement process. Choosing a suitable class of abstractions is
critical for this. For example, pattern databases (Edelkamp 2001) do not al-
low fine-grained refinement steps, as every refinement at least doubles
the number of abstract states. Merge-and-shrink abstractions (Helmert et al.
2007, 2014) do not maintain efficiently usable representations of the preim-
age of an abstract state, which makes their refinement complicated and
expensive.

Because of these and other shortcomings, we introduce a new class of
abstractions for planning tasks that is particularly suitable for fine-grained
abstraction refinement.

Definition 4.1 Cartesian sets and Cartesian abstractions.
A set of states for a planning task with variables 〈v1, . . . , vn〉 is called Cartesian
if it is of the form A1 × A2 × . . .× An, where Ai ⊆ dom(vi) for all 1 ≤ i ≤ n.

An abstraction is called Cartesian if all its abstract states are Cartesian sets.
For an abstract state a = A1× . . .× An, we define dom(vi, a) = Ai ⊆ dom(vi)

for all 1 ≤ i ≤ n as the set of values that variable vi can have in abstract state a.

Figure 4.1 shows an example Cartesian abstraction for the Gripper task.
The Cartesian sets {A} × {A, G}, {B} × {A, G} and {A, B} × {B} are the
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{A} × {A, G} {B} × {A, G} {A, B} × {B}

grab-in-A
drop-in-A

move-A-B

move-B-A

drop-in-B

grab-in-B

move-A-B
move-B-A

Figure 4.1: Example Cartesian abstraction of the Gripper example. In the left and
center state we know where the robot is, but not whether its gripper
holds the ball, whereas in the abstract goal state we ignore the position
of the robot.

states in the abstract transition system. The heuristic h∼ maps each state
to the respective abstract goal distance (2, 1 or 0 — under the unit cost
function).

The name “Cartesian abstraction” was coined in the model-checking
literature by Ball et al. (2001) for a concept essentially equivalent to Defi-
nition 4.1. (Direct comparisons are difficult due to different state models.)
We discuss their work in Section 4.5.

Cartesian abstractions form a fairly general class; e.g., they include pro-
jections (the abstractions underlying pattern databases) and domain ab-
stractions (Hernádvölgyi and Holte 2000) as special cases. Unlike these,
general Cartesian abstractions can have arbitrarily different levels of gran-
ularity in different parts of the abstract state space. One abstract state
might correspond to a single concrete state while another abstract state
corresponds to half of the states of the task.

We illustrate the relationships between different classes of abstractions
with example abstractions of our Gripper task. Figure 4.2a shows the ab-
stract transition system induced by the projection to the pattern {robot}.
Clearly, this abstraction is also a domain abstraction, Cartesian abstrac-
tion and merge-and-shrink abstraction. When we additionally partition
the domain for variable ball into the groups {A} and {B, G}, the result-
ing abstraction is not a projection anymore (Figure 4.2b). It is however
still a domain abstraction. A further split of state {B} × {B, G} into the
two states {B} × {B} and {B} × {G} yields the Cartesian abstraction in
Figure 4.2c. Since not all domains are split equally for all states, it is not
a domain abstraction anymore. Combining the states {A} × {B, G} and
{B} × {A} results in the transition system in Figure 4.2d. This abstraction
is not Cartesian anymore, but can be expressed in the merge-and-shrink
formalism.

Merge-and-shrink abstractions are even more general than Cartesian
abstractions because every abstraction function can be represented as a
merge-and-shrink abstraction, but not necessarily compactly (Helmert et
al. 2015). It is open whether every Cartesian abstraction has an equivalent
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{A} × {A, B, G}

{B} × {A, B, G}

move-A-B move-B-A

grab-in-A
drop-in-A

grab-in-B
drop-in-B

(a) Projection.

{A} × {A} {A} × {B, G}

{B} × {B, G}{B} × {A}

grab-in-A

drop-in-A

move-A-B move-B-A move-A-B move-B-A

grab-in-B
drop-in-B

(b) Domain abstraction.

{A} × {A} {A} × {B, G}

{B} × {A} {B} × {G} {B} × {B}

grab-in-A

drop-in-A

move-A-B

move-B-A

move-A-B
move-B-A move-A-B

move-B-A

drop-in-B

grab-in-B

(c) Cartesian abstraction.

{〈A, A〉} {〈A, B〉, 〈A, G〉, 〈B, A〉}

{〈B, G〉} {〈B, B〉}

grab-in-A
move-A-B

drop-in-A
move-B-A

move-A-B
move-B-A move-A-B

move-B-A

drop-in-B

grab-in-B

(d) Merge-and-shrink abstraction.

Figure 4.2: Example abstractions of the Gripper task for different classes of ab-
stractions. The captions state the most specific class each abstraction
belongs to.
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merge-and-shrink abstraction whose representation is at most polynomi-
ally larger.

In the following theorem we collect some properties that make Carte-
sian sets interesting for CEGAR in planning. (We remind the reader that
a partition of a set X is a collection of subsets X1, . . . , Xk ⊆ X that are
pairwise disjoint and jointly exhaustive, i.e., Xi ∩ Xj = ∅ for all i 6= j
and

⋃k
i=1 Xi = X. Some definitions additionally require that all subsets are

non-empty, but we do not need to make this restriction here.)

Theorem 4.1 Properties of Cartesian sets.
Let Π = 〈V ,O, s0, s?〉 be a planning task.

(P1) The set of goal states of Π is Cartesian.

(P2) For all operators o ∈ O, the set of states in which o is applicable is Cartesian.

(P3) The intersection of Cartesian sets is Cartesian.

(P4) For all operators o ∈ O, the regression of a Cartesian set with respect to o
is Cartesian.

(P5) If b ⊆ a and c ⊆ a are disjoint Cartesian subsets of the Cartesian set a, then
a can be partitioned into Cartesian sets d and e with b ⊆ d and c ⊆ e.

(P6) If c ⊆ a is a Cartesian subset of the Cartesian set a and s ∈ a \ c, then a can
be partitioned into Cartesian sets d and e with s ∈ d and c ⊆ e.

Proof. Let V = 〈v1, . . . , vn〉.
(P1) The set of goal states is A1 × . . .× An with

Ai =

{
{s?[vi]} if vi ∈ vars(s?)

dom(vi) otherwise

(P2) The set of states where operator o is applicable is A1 × . . .× An with

Ai =

{
{pre(o)[vi]} if vi ∈ vars(pre(o))

dom(vi) otherwise

(P3) The intersection of two Cartesian sets A1× . . .× An and B1× . . .× Bn

is (A1 ∩ B1)× . . .× (An ∩ Bn).

(P4) The regression of Cartesian set b = B1 × . . . × Bn with respect to
operator o ∈ O is regr(b, o) = A1 × . . .× An with

Ai =


Bi if vi /∈ vars(post(o))

∅ if vi ∈ vars(post(o)) and post(o)[vi] /∈ Bi

pre(o)[vi] if vi ∈ vars(pre(o)) and post(o)[vi] ∈ Bi

dom(vi) if vi ∈ vars(eff(o)) \ vars(pre(o)) and post(o)[vi] ∈ Bi
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To see that exactly one of the four cases applies in each situation,
note that cases 2–4 all cover situations with vi ∈ vars(post(o)) because
vars(post(o)) = vars(pre(o)) ∪ vars(eff(o)). The further distinctions in
these cases are whether post(o)[vi] ∈ Bi (in cases 3–4, but not in case
2) and whether vi ∈ vars(pre(o)) (in case 3, but not in case 4).

(P5) Let a = A1 × . . .× An, b = B1 × . . .× Bn and c = C1 × . . .× Cn. Set
Xi = Bi ∩Ci for all 1 ≤ i ≤ n. Let j be an index such that Xj = ∅. Such
an index must exist because otherwise we can select arbitrary values
xi ∈ Xi for all 1 ≤ i ≤ n to obtain 〈x1, . . . , xn〉 ∈ b ∩ c, contradicting
that b and c are disjoint.

Because Xj = Bj ∩ Cj = ∅, we can partition Aj into Dj and Ej in such
a way that Bj ⊆ Dj and Cj ⊆ Ej, for example by setting Dj = Bj and
Ej = Aj \ Bj. Then d = A1 × . . .× Aj−1 × Dj × Aj+1 × . . .× An and
e = A1× . . .× Aj−1× Ej× Aj+1× . . .× An have the required property.

(P6) Follows from the previous property by setting b = {s}, which is a
Cartesian set.

Next, we describe our abstraction refinement algorithm, provide an ex-
ample, analyze its time complexity, and discuss some implementation de-
tails.

4.2 Abstraction Refinement Algorithm

We begin by describing the main loop of our algorithm before explaining
the details of the underlying functions.

Main Loop. The main loop of the refinement algorithm is shown in
Algorithm 1. At every time, the algorithm maintains an abstract fixed-cost
transition system 〈T ′, cost〉, where cost is the original cost function of the
planning task. The transition system is represented as an explicit labeled
digraph. Initially, T ′ is the trivial abstract transition system, containing
only one abstract state a0, which covers all concrete states of the planning
task (line 2). Then the algorithm iteratively refines T ′ until a termination
criterion is satisfied (usually a time and/or memory limit, see line 3), the
task is proven unsolvable (lines 5–6) or a concrete plan is found (lines 8–9).

Each iteration of the refinement loop first computes an optimal abstract
goal trace τ′ for the abstract initial state (line 4). If no such trace exists (τ′

is “no trace”), the abstract task is unsolvable, and hence the concrete task
is also unsolvable: we are done (lines 5–6).
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Algorithm 1 Main loop. For a given planning task, returns a solution,
proves that no solution exists, or returns an abstraction of the task (for
example to be used as the basis of a heuristic function). All algorithms
operate on the planning task Π = 〈V ,O, s0, s?〉 with V = 〈v1, . . . , vn〉 and
cost function cost.

1: function Cegar()
2: 〈T ′, cost〉 ← TrivialAbstraction()
3: while not TerminationCondition() do
4: τ′ ← FindOptimalTrace(〈T ′, cost〉)
5: if τ′ is “no trace” then
6: return task is unsolvable
7: ϕ ← FindFlaw(τ′)
8: if ϕ is “no flaw” then
9: return plan extracted from τ′

10: T ′ ← Refine(T ′, ϕ)

11: return T ′

Otherwise, we try to convert τ′ into a concrete goal trace in the Find-
Flaw function (line 7). If the conversion succeeds, i.e., τ′ contains no flaw,
we return the concrete plan extracted from τ′ (lines 8–9). If the conversion
fails, FindFlaw returns the first encountered flaw ϕ, i.e., a reason for why
the conversion failed. Afterwards, we refine T ′ such that the same flaw ϕ

cannot be encountered in future iterations (line 10).
In each step of the loop the goal distances of all states can only increase.

Without time or memory limits the resulting abstraction heuristic mono-
tonically increases in accuracy with each refinement, and we will eventu-
ally find an optimal concrete plan or prove that no concrete plan exists. If
we hit a time or memory limit (line 3), we abort the loop and return the
refined abstract transition system (line 11).

Trace Verification. The FindFlaw function in Algorithm 2 attempts to
convert the abstract goal trace τ′ = 〈a0

o1−→ a1, a1
o2−→ a2, . . . , ak−1

ok−→ ak〉 into
a concrete goal trace 〈s0

o1−→ s1, s1
o2−→ s2, . . . , sk−1

ok−→ sk〉 starting from the
initial state s0 such that [si] = ai for all 0 ≤ i ≤ k and sk is a goal state. The
conversion procedure starts from the initial state s = s0 of the concrete
task (line 2) and iteratively applies the next operator o in τ′ until one of
the following flaws is encountered:

1. Operator o is not applicable in concrete state s (line 4).

2. For abstract and concrete transitions a o−→ b and s o−→ sJoK we have
that [s] = a but [sJoK] 6= b: the concrete and abstract traces diverge
(line 6). This can happen because abstract transition systems are not
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Algorithm 2 Trace verification. Tries to convert a given abstract goal trace
τ′ into a concrete goal trace. If the conversion fails, returns the first encoun-
tered “flaw”, i.e., a pair of a concrete state s and a Cartesian set c with the
following property: converting the trace failed because s is not part of c. If
the conversion succeeds, the function returns “no flaw”.

1: function FindFlaw(τ′)
2: s ← s0

3: for each (a o−→ b) ∈ τ′ do
4: if o is not applicable in s then
5: return 〈s, [s] ∩ (C1 × . . .× Cn)〉 with

Ci =

{
{pre(o)[vi]} if vi ∈ vars(pre(o))

dom(vi) otherwise

6: if b does not include sJoK then
7: return 〈s, [s] ∩ regr(b, o)〉
8: s ← sJoK
9: if s is not a goal state then

10: return 〈s, [s] ∩ (C1 × . . .× Cn)〉 with

Ci =

{
{s?[vi]} if vi ∈ vars(s?)

dom(vi) otherwise

11: return “no flaw”
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[s]

s

d e

c

Figure 4.3: Illustration of how an abstract state [s] must be split into two new
abstract states d and e for a flaw 〈s, c〉.

necessarily deterministic: the same abstract state can have multiple
outgoing transitions with the same label.

3. The concrete goal trace has been completed, but the last concrete
state s is not a goal state (line 9).

In each case we can find a Cartesian set c ⊆ [s] with the following prop-
erty: converting the goal trace failed because s is not part of c. Depending
on the case, c is

1. the set of concrete states in [s] in which o is applicable (line 5),

2. the set of concrete states in [s] from which we can reach b by applying
o (line 7), or

3. the set of concrete goal states in [s] (line 10).

Properties P1, P2, P3 and P4 from Theorem 4.1 entail that c is always a
Cartesian set.

Refinement. After a flaw 〈s, c〉 has been identified, it serves as the basis
for refining the abstraction. The goal here is to split [s] into two abstract
states in such a way that the same flaw cannot occur again after the refine-
ment.

Property P6 from Theorem 4.1 guarantees that it is always possible to
partition the abstract state [s] into two Cartesian sets d and e that separate
s from c (i.e., s ∈ d and c ⊆ e). This is illustrated in Figure 4.3. For the
respective cases this split ensures that

1. o is inapplicable in all concrete states in d,

2. applying o in any state in d cannot lead to a state in [sJoK], and

3. d contains no concrete goal states.
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Note that to make progress in the abstraction refinement process, it is
important that the partitioning of [s] into d and e is proper, i.e., both sub-
sets are proper subsets of [s]. This is equivalent to the requirement that
both subsets are non-empty because a partition of a set into two subsets
is non-proper iff one of the subsets is the whole set and the other one is
empty. Hence, we now argue why d 6= ∅ and e 6= ∅.

The former is easy to see because s ∈ d. To see why e 6= ∅, we observe
that c ⊆ e and that in each of the three cases, c must be non-empty:

1. If c is the set of concrete states in [s] in which o is applicable, c must
contain a state in which o is applicable, since o induces a transition
starting in [s].

2. If c is the set of concrete states in [s] from which we can reach b by
applying o, c must contain a state s′ in which applying o leads to
s′JoK with [s′JoK] = b, since o induces the transition [s] o−→ b.

3. If c is the set of concrete goal states in [s], c cannot be empty because
[s] is an abstract goal state and T ′ is an induced abstraction.

Because every refinement step for the flaw 〈s, c〉 separates s from c, it
is easy to see that the same flaw can never be encountered in future itera-
tions of the main loop. In every iteration, some abstract state is split into
two smaller abstract states, and therefore the abstraction becomes increas-
ingly more fine-grained. This implies that the main loop must eventually
terminate, even without specifying a termination condition in line 3, either
because no more abstract trace can be found or because the abstract trace
corresponds to a concrete solution.

The Refine function in Algorithm 3 shows the refinement process. It
splits [s] into two new abstract states d and e as explained above and
updates the abstract transition system by replacing [s] with d and e. In
general, there can be many possible splits that separate s from c, and hence
many possible choices of d and e. We discuss this choice in Section 4.3.

Next, the Refine function “rewires” the transitions. Since only a single
state is split into two new states, the rewiring procedure only needs to
make local changes to the transition system. Concretely, it needs to de-
cide for each incoming and outgoing transition of [s], including self-loops,
whether the transition needs to be rewired from/to d, from/to e, or both.
This check is done by CheckTransition in Algorithm 4. The last step of
the Refine function is to update the abstract initial state and abstract goal
states, if necessary. Due to the way we split [s] into d and e, e can never be
the abstract initial state and d can never be an abstract goal state.

Example CEGAR Abstraction Figure 4.4a shows the initial abstraction
for our Gripper example task Π. The empty abstract goal trace 〈〉 fails to
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Algorithm 3 Refinement. Given an abstract transition system T ′ and a flaw
ϕ, refines T ′ by splitting the abstract state [s] into two new abstract states
and returns the resulting abstract transition system T ′′.

1: function Refine(T ′, ϕ)
2: 〈S′,L′, T′, [s0], S′?〉 ← T ′
3: 〈s, c〉 ← ϕ

4: 〈d, e〉 ← Split(s, c)
5: S′′ ← (S′ \ {[s]}) ∪ {d, e}
6: T′′ ← RewireTransitions(T′, [s], d, e)
7: if [s] = [s0] then
8: a0 ← d
9: else

10: a0 ← [s0]
11: if [s] ∈ S′? then
12: S′′? ← (S′? \ {[s]}) ∪ {e}
13: else
14: S′′? ← S′?
15: return 〈S′′,L′, T′′, a0, S′′? 〉

Algorithm 4 Transition check. Returns true iff operator o induces a transi-
tion between abstract states a and b.

1: function CheckTransition(a, o, b)
2: for each v ∈ V do
3: if v ∈ vars(pre(o)) and pre(o)[v] /∈ dom(v, a) then
4: return false
5: if v ∈ vars(post(o)) and post(o)[v] /∈ dom(v, b) then
6: return false
7: if v /∈ vars(post(o)) and dom(v, a) ∩ dom(v, b) = ∅ then
8: return false
9: return true
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{A, B} × {A, B, G}a)

move-A-B, move-B-A, grab-in-A, grab-in-B, drop-in-A, drop-in-B

{A, B} × {A, G} {A, B} × {B}b)

move-A-B, move-B-A
grab-in-A, drop-in-A

drop-in-B

grab-in-B

move-A-B, move-B-A
grab-in-A, drop-in-A

{A} × {A, G} {B} × {A, G} {A, B} × {B}c)
move-A-B

move-B-A

grab-in-A
drop-in-A

drop-in-B

grab-in-B

grab-in-A
drop-in-A

move-A-B
move-B-A

{A} × {A, G} {B} × {G} {A, B} × {B}

{B} × {A}

d)

move-A-B move-B-A

move-A-B

move-B-A
grab-in-A
drop-in-A

drop-in-B

grab-in-B

{A} × {A}

{B} × {A}

{A} × {G} {B} × {G} {A, B} × {B}e)

move-A-B

move-B-A

grab-in-A

drop-in-A

drop-in-B

grab-in-B

move-A-B
move-B-A

Figure 4.4: Refining the example abstraction.
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solve Π because s0 does not satisfy the goal. Therefore, Refine splits [s0]

based on the goal variable, leading to the finer abstraction in Figure 4.4b.

The abstract goal trace 〈({A, B} × {A, G}) drop-in-B−−−−−→ ({A, B} × {B})〉 in
Figure 4.4b does not solve Π because two preconditions of drop-in-B are
violated in s0: ball 7→ G and robot 7→ B. We assume that Refine performs a
split based on variable robot (a split based on ball is also possible), which
leads to Figure 4.4c.

A further refinement step, splitting on ball, yields the system in Fig-

ure 4.4d with the abstract goal trace 〈({A} × {A, G}) move-A-B−−−−−→ ({B} ×
{G}), ({B} × {G}) drop-in-B−−−−−→ ({A, B} × {B})〉. The first operator is applica-
ble in s0 and takes us into state s1 with s1(robot) = B and s1(ball) = A,
but the second abstract state a1 = {B} × {G} of the goal trace does not ab-
stract s1: the abstract and concrete paths diverge. Regression from a1 with
respect to move-A-B yields the Cartesian set state c = {A} × {G}, and
hence Refine must split the abstract initial state [s0] into two new states d
and e in such a way that s0 ∈ d and c ⊆ e. The result of this refinement is
shown in Figure 4.4e.

The plan for this abstraction is also a valid concrete plan, so we stop
refining.

4.3 Implementation

In the following, we describe some of our implementation decisions.

Representation of Cartesian Sets. Even though we write a = A1× . . .×
An to denote a Cartesian set for the variable sequence 〈v1, . . . , vn〉, it is
important to note that we do not store Cartesian sets as sets of concrete
states, which would require exponential space. Instead, we only store the
abstract domains dom(vi, a) for 1 ≤ i ≤ n, requiring space linear in the
number of atoms.

Refinement Strategy. As noted above, when handling the flaw 〈s, c〉, we
have to partition [s] into two new abstract states d and e with s ∈ d and
c ⊆ e. Due to the nature of Cartesian abstractions, the only way of splitting
[s] into two Cartesian sets d and e is to choose a single variable v with
s[v] /∈ dom(v, c) and partition dom(v, [s]) into dom(v, d) and dom(v, e) (cf.
the proof of property P6 in Theorem 4.1). All other abstract domains must
remain the same as in [s], i.e., dom(v′, d) = dom(v′, e) = dom(v′, [s]) for
all v′ ∈ V \ {v}. The question is how to choose v and how to partition
dom(v, [s]).

Let us first consider the question of selecting a variable v on which
to split [s]. After some preliminary experiments we chose the following
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Algorithm 5 Abstract state lookup function. Given the concrete state s,
return the abstract state [s] by traversing the refinement hierarchy.

1: function GetAbstractState(s)
2: a ← root of the refinement hierarchy
3: while HasChildren(a) do
4: b, c ← GetChildren(a)
5: v ← GetSplitVariable(a)
6: if s[v] ∈ dom(v, b) then
7: a ← b
8: else
9: a ← c

10: return a

variable-selection strategy, which we call “max-refined”. Out of the candi-
date variables, it selects the one that has already been refined the most in
[s], i.e., the variable v that minimizes the fraction |dom(v,[s])|

|dom(v)| among all vari-
ables for which splits are feasible. We break ties by choosing the variable
with the smallest index. This strategy clearly outperforms picking splits
randomly and its inverse strategy, i.e., “min-refined”.

After selecting a variable v for which a split is feasible, we need to sepa-
rate s[v] from dom(v, c). We must put s[v] into d and dom(v, c) into e. We are
free in deciding where to put the remaining values dom(v, [s]) \ ({s[v]} ∪
dom(v, c)). All other things being equal, we might expect that the abstract
goal distance of d (the state we actually reached) might be higher than
the one of e (the new state we would have wanted to reach), because the
remainder of the abstract trace might correspond to a concrete solution
from e, but definitely not from d. Therefore, we choose to put the remain-
ing values into d, which might result in a greater increase of the average
heuristic value.

Lookup Function. For the heuristic to be efficiently computable, we
must be able to retrieve heuristic values very fast. The most critical op-
eration here is computing the abstract state [s] given a concrete state s.
To make this operation efficient, we store a refinement hierarchy of split ab-
stract states. This hierarchy is a binary tree of abstract states whose root is
the first abstract state that was split, i.e., the only abstract state in the triv-
ial abstract transition system. Whenever a state is split, the two resulting
states become its child nodes. The leaves of the refinement hierarchy are
the states in the final abstraction. In addition to the child nodes we also
store the variable on which each abstract state was split. Figure 4.5 shows
an example refinement hierarchy and GetAbstractState in Algorithm 5
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{A, B} × {A, B, G}

{A, B} × {A, G}

{A} × {A, G}

{A} × {A} {A} × {G}

{B} × {A, G}

{B} × {A} {B} × {G}

{A, B} × {B}

Figure 4.5: Refinement hierarchy for the final abstraction of the Gripper example
from Figure 4.4e.

demonstrates how we use refinement hierarchies for looking up abstract
states. We analyze the runtime complexity of this operation below.

A∗ Search. In principle, we could use any optimal algorithm for finding
optimal traces in line 4 of Algorithm 1, such as Dijkstra’s algorithm. How-
ever, the FindOptimalTrace function runs significantly faster if we use
A∗ with the following heuristic: every time we find an abstract trace τ, we
update the goal distances of all states visited by τ. These heuristic values
are admissible since τ is optimal. During each refinement we use the goal
distance of the split state for the two new states. The heuristic remains
admissible since refinements can only increase goal distances.

Self-loops. We store self-loops separately from state-changing transi-
tions. This reduces both the time and the memory needed to refine an
abstraction. The reason for the speedup is that the representation allows
us to avoid the overhead of following self-loops in the FindOptimalTrace

function. We save memory since instead of storing an operator and a des-
tination state, as for state-changing transitions, we only need to store an
operator for self-loops.

Informed Transition Check. Since we have to rewire numerous transi-
tions during each refinement, we need to make this operation as fast as
possible. Algorithm 4 shows a straightforward but inefficient implementa-
tion. The procedure decides whether a given hypothetical transition is part
of the abstract transition system by checking for each variable whether the
operator can change the value of the variable from one state to the other.
While splitting a state on a variable v however, we can exploit that we
only need to take v into account to determine whether the transition is
valid. This greatly speeds up the refinement loop. In our implementation
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we split the generic transition check into three specialized procedures, one
for each type of transition: RewireIncomingTransition (Algorithm 10),
RewireOutgoingTransition (Algorithm 11) and RewireSelfLoop (Algo-
rithm 12). They are shown in Appendix A.1.

4.4 Theoretical Runtime Analysis

For our abstraction refinement algorithm to be useful, it has to be able to
make refinements very fast. The following runtime guarantees show that
the critical operations have adequate worst-case runtime complexities.

Theorem 4.2 Runtimes of operations on Cartesian sets.
If k is the number of atoms in a planning task Π, the following functions are
computable in time O(k) for Cartesian abstractions ∼:

(R1) Compute the intersection of two Cartesian sets.

(R2) Compute the regression of operator o over a Cartesian set.

(R3) Given s ∈ S(Π), compute [s]∼ and h∼(s) (after abstract goal distances
have been precomputed).

(R4) Given Cartesian sets a and b and operator o, decide if a o−→ b is an abstract
transition.

(R5) Given state s ∈ S(Π) and Cartesian set a, decide whether a contains s.

Proof. We represent Cartesian sets a as bit vectors where exactly the bits
corresponding to atoms included in a are set. Let V = 〈v1, . . . , vn〉 be the
sequence of variables in Π.

(R1) Intersecting two Cartesian sets a and b with a = A1 × . . .× An and
b = B1 × . . .× Bn by intersecting the bit vectors takes time O(k).

(R2) The proof of property P4 of Theorem 4.1 on page 28 shows how the
regression is computed. All membership tests can be computed in
O(1). Therefore, the worst-case time complexity is O(k).

(R3) Algorithm 5 on page 37 shows how we compute the abstract state
corresponding to a given concrete state. Its runtime is determined by
the number of iterations and the time for each iteration. There can
be at most k iterations, since in the worst case we split off one of the
k atoms from the same abstract state k times. Because the set mem-
bership test in line 6 runs in constant time, computing [s]∼ given
s ∈ S(Π) runs in time O(k). Once we have computed the abstract
state, retrieving the heuristic value is a constant-time lookup oper-
ation. Therefore, also computing h∼(s) given s ∈ S(Π) takes time
O(k).
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(R4) Algorithm 4 on page 34 shows the general procedure for checking if
a transition exists between two states. The runtime of the third case in
the loop dominates the runtimes of the other two because it involves
the intersection of domains instead of a simple membership test. One
intersection for variable v ∈ V runs in time O(|dom(v)|). In the worst
case an intersection is performed for each variable v ∈ V , and thus
the whole algorithm has the asymptotic runtime O(∑n

i=1 |dom(vi)|) =
O(k).

(R5) Let b = {s[v1]} × . . .× {s[vn]} be the Cartesian set that only contains
s. Constructing b takes time O(k) since we represent it as a bit vector
of length k. The intersection a∩ b is non-empty iff a contains s. Using
property R1 we can see that the whole operation runs in time O(k).

4.5 Related Work

Abstraction is an important technique for model-checking large systems
(Clarke et al. 1999). Counterexample-guided abstraction refinement was
developed in this context to let abstractions focus on the system parts that
matter for proving correctness or finding errors (Clarke et al. 2003).

Ball et al. (2001) were the first to use Cartesian abstractions for model
checking. They use Boolean abstraction (a.k.a. predicate abstraction) to ob-
tain a coarser version of the program they want to verify. For n Boolean
predicates, each abstract state can be represented by a bit vector of size n.
Since computing the transitions between abstract states in Boolean abstrac-
tions is often too expensive, they compute a Cartesian abstraction on top
of the Boolean abstraction. For a given set of bit vectors they compute the
corresponding abstract state as the smallest Cartesian product that con-
tains all bit vectors. In contrast to our work, the Cartesian sets in their
abstraction can therefore overlap.

Similarly to our work, they iteratively refine the abstractions with CE-
GAR. The main difference to our work is that they use symbolic model-
checking, the predominant approach in that field, whereas we represent
Cartesian abstractions explicitly. Another difference to our work is that
they use CEGAR until an error is found or the system is proven correct,
whereas we can stop the refinement at any time and use the resulting
abstraction as a heuristic for A∗ search.

Smaus and Hoffmann (2009) have explored the idea of using CEGAR to
derive informative heuristics for model checking, although not with a fo-
cus on optimality. They use CEGAR to iteratively refine predicate abstrac-
tion heuristics for directed model-checking of timed automata via greedy
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best-first search. As we demonstrate for the optimal classical planning set-
ting in Chapter 7, they show that computing separate abstractions for each
error condition is often beneficial. Since they do not enforce admissibility,
they can combine the heuristics by maximizing or summing over them.
Their results also show that there is no advantage in refining multiple
paths instead of a single path in each iteration of the refinement loop. It
remains to be tested if the same holds in our setting.

Despite the similarity between model checking and planning, CEGAR
has not been thoroughly explored by the planning community. The work
that comes closest to ours in a planning setting uses CEGAR for stochastic
perfect information games, a generalization of Markov decision processes
(Chatterjee et al. 2005). Stochastic perfect information games model two
adversarial players and an uncertain environment. The authors propose
an algorithm that iteratively refines an abstraction of the game using CE-
GAR. In each step, the algorithm finds and checks a winning abstract strat-
egy (strategy 1) for player 1 in the concrete game. If strategy 1 does not
correspond to a concrete strategy, it is refuted by constructing a winning
abstract strategy for player 2 (strategy 2). If strategy 2 does not work in
the concrete game, the abstract game is refined so that strategy 2 is elim-
inated. If either of the abstract strategies works in the concrete game, the
respective player wins.

The authors also propose a variant of their algorithm for deterministic
transition systems. It first compiles the planning task to a Boolean for-
mula and then iteratively refines an abstraction that takes more and more
Boolean variables into account.

Unfortunately, the paper contains no experimental evaluation or indi-
cation that either algorithm variant has been implemented. Both variants
are based on blind search, and we believe they are very unlikely to deliver
competitive performance. Moreover, the paper has several critical technical
errors which make the main contribution (Algorithm 1) unsound.

Haslum (2012) introduces an algorithm for finding lower bounds on the
solution cost of a planning task by iteratively “derelaxing” its delete relax-
ation. Our approach is similar in spirit, but technically quite different from
Haslum’s because it is based on homomorphic abstraction rather than
delete relaxation. As a consequence, our method performs shortest-path
computations in abstract state spaces represented as explicit graphs in or-
der to find abstract solutions, while Haslum’s approach exploits structural
properties of delete-free planning tasks. More concretely, his algorithm it-
eratively traces solutions for the (refined) relaxed task in the original task
(similarly to our algorithm) and combines atom conjunctions into addi-
tional atoms whenever tracing fails.

Another difference to our work is that Haslum uses his algorithm to
prove lower bounds, whereas we use the obtained abstractions to com-
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pute admissible heuristics for A∗ search. In principle, both methods can
be used for both purposes, but Haslum’s algorithm suffers from the fact
that the number of operators grows exponentially in the number of added
conjunctions. This makes evaluating a heuristic based on Haslum’s algo-
rithm in a large number of states infeasible (Keyder et al. 2012).

Keyder et al. (2012) address this problem by proposing a new refine-
ment scheme for delete relaxations which uses conditional effects to keep
the number of operators linear in the number of added conjunctions. They
iteratively refine the relaxed task until a given resource limit is hit. After-
wards, they compute a satisficing solution for the relaxed task with the FF
heuristic (Hoffmann and Nebel 2001) and use it as a heuristic in greedy
best-first search.

The same authors showed in a later paper (Keyder et al. 2014) that both
Haslum’s original compilation method and their compilation method us-
ing conditional effects greatly benefit from ignoring operators that violate
mutexes. In fact, their evaluation shows that Haslum’s approach together
with mutex pruning is the compilation method of choice when refining
relaxed tasks for LM-Cut (Helmert and Domshlak 2009).

Fickert and Hoffmann (2017) use Keyder et al.’s refinement algorithm to
refine relaxed tasks online during search. Whenever they encounter local
minima of the resulting heuristic, they learn new atom conjunctions and
use them to improve the heuristic. We briefly tried online abstraction re-
finement with CEGAR in preliminary experiments, but the results were
rather discouraging. It would be interesting to see whether more princi-
pled experiments in a larger design space achieve better results for online
CEGAR using Cartesian abstractions.



5
S AT U R AT E D C O S T PA RT I T I O N I N G

Even with the algorithmic improvements we discussed in Section 4.4,
building a single big abstraction suffers from the problem of diminishing
returns. This phenomenon is quantified by Korf’s conjecture, which implies
that in a unit-cost setting the maximum heuristic value in an abstract
transition system grows (only) logarithmically in the number of abstract
states (Korf 1997). For example, if the base of this logarithm is 2, each suc-
cessive improvement of the heuristic value of the initial state by 1 might
require doubling the number of abstract states: a prototypical example of
diminishing returns. While Korf’s conjecture makes many simplifying as-
sumptions that do not generally hold, experiments have confirmed many
times and for many different classes of abstractions that such diminishing
returns almost always occur. (See Holte, 2013, for a detailed discussion of
Korf’s conjecture and its consequences.)

Intuitively, using only a single abstraction of a given task is often not
enough to cover sufficiently many aspects of the task with a reasonable
number of abstract states. Therefore, it is often beneficial to build multi-
ple abstractions that focus on different aspects of the problem (Holte et al.
2006). This raises two questions: how do we come up with different ab-
stractions, and how do we combine their heuristic estimates admissibly?
To answer the second question, we introduce a new cost partitioning algo-
rithm, which we describe next. In Chapter 6, we discuss ways to calculate
diverse sets of abstractions.

All cost partitioning algorithms presented in Chapter 3, except for
greedy zero-one cost partitioning, have in common that they need to keep
all transition systems (or at least the information which labels affect which
heuristics) in memory while computing the cost partitioning. Since we
prefer a method that allows having only one transition system in memory
at any time, greedy zero-one cost partitioning seems like a good fit. How-
ever, this algorithm suffers from a significant drawback: greedy zero-one
cost partitioning considers the heuristics sequentially and gives the full
costs of each label l to the first heuristic h affected by l, even if h does not
need all of the costs to justify its heuristic estimates. In this case, we can
obtain the same heuristic values even if we use lower costs. The unneeded
costs can then be saved for subsequent heuristics.

For an example of this situation, consider the abstract transition system
Th associated with abstraction heuristic h in Figure 5.1. The abstract states
in Th are labeled with their goal distances (h = X). The cost function cost
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h = 3 h = 2

h = 1

h = 4

h = 0

o3

o4

o 2

o7

o6

o5

o7

o3

o1

o 1

o cost(o) mscf(o)

o1 5 max(4− 0, 2− 0) = 4
o2 2 max(3− 1) = 2
o3 1 max(3− 3, 1− 0) = 1
o4 4 max(1− 1) = 0
o5 1 max(2− 1) = 1
o6 7 max(3− 4) = −1
o7 2 max(3− 2, 4− 2) = 2

Figure 5.1: Left: abstract transition system of an example planning task. Every
transition is labeled with an operator. Right: offered costs and mini-
mum saturated costs that suffice to preserve all goal distances in the
abstract transition system.

assigns o1 the cost 5. Since o1 affects h, greedy zero-one cost partitioning
gives the complete cost of o1 to h. However, if we reduce the cost of o1

to 4, no goal distance changes. Consequently, we can “save” part of the
cost for o1 and use it for a different heuristic. A similar argument holds
for operator o4. Since operator o6 with cost(o6) = 7 takes us one cost unit
further away from the abstract goal state, we can assign it the cost −1. In
a subsequent heuristic, o6 can then have a cost of 7 + 1 = 8.

The observation that we can often use a lower cost function for a heuris-
tic without changing any heuristic values, forms the basis of our new cost
partitioning algorithm, which we call saturated cost partitioning. Its most
important ingredient are saturated cost functions.

5.1 Saturated Cost Function

For a given heuristic h and cost function cost, we call a cost function sat-
urated if it preserves all heuristic estimates that h yields under cost and
assigns each label l at most cost cost(l).

Definition 5.1 Saturated Cost Function.
Let T be a parameterized-cost transition system. Let h be a heuristic for T and
cost ∈ C(T ) be a cost function for T . A cost function scf is saturated for h and
cost if

1. scf(l) ≤ cost(l) for all labels l ∈ L(T ) and

2. h(s, scf) = h(s, cost) for all states s ∈ S(T ).
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Note that we do not require that saturated cost functions are minimal
since for some classes of heuristics (e.g., the hmax heuristic by Bonet and
Geffner, 2001) it is not guaranteed that there is a unique minimum. Using
Definition 5.1, a saturated cost function exists for all heuristics h and cost
functions cost, since cost itself is a saturated cost function for h and cost.
We call cost a trivial saturated cost function in this case.

Obviously, only saturated cost functions scf with scf(l) < cost(l) for at
least one label l are useful for partitioning a cost function cost. If scf = cost,
no costs are left for other heuristics. Whether and how we can compute a
non-trivial saturated cost function for a given heuristic and cost function
depends on the type of heuristic. We call functions that transform cost
functions into saturated cost functions saturators.

Definition 5.2 Saturators.
Let T be a parameterized-cost transition system and let h be a heuristic for T .
A function saturate : C(T ) → C(T ) is a saturator for h if saturate(cost) is a
saturated cost function for heuristic h and all cost functions cost ∈ C(T ).

It follows that there is at least one trivial saturator for all heuristics: the
identity function that yields saturate(cost) = cost for all cost functions cost.
Before we introduce a minimum saturator for abstraction heuristics, we
now explain the saturated cost partitioning algorithm, which works for any
saturator.

5.2 Saturated Cost Partitioning Algorithm

Given a set of admissible heuristics H, an order ω of H and a remaining
cost function cost, saturated cost partitioning iteratively considers the next
heuristic h in ω, uses a saturator for h to compute a saturated cost function
for h and cost and subtracts the saturated costs from the remaining costs
before turning to the next heuristic.

Definition 5.3 Saturated Cost Partitioning.
Let 〈T , cost〉 be a regular fixed-cost transition system, let H be a set of ad-
missible heuristics for T , let 〈h1, . . . , hn〉 ∈ Ω(H) be an order of H and let
〈saturate1, . . . , saturaten〉 be corresponding saturators. The saturated cost parti-
tioning C = 〈cost1, . . . , costn〉 and the remaining cost functions 〈remain0, . . . ,
remainn〉 are defined by

remain0 = cost

costi = saturatei(remaini−1)

remaini = remaini−1 − costi

We write hSCP
ω for the heuristic that is cost-partitioned by saturated cost partition-

ing for order ω.
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Saturated cost functions may assign −∞ to labels l that are never part
of any optimal plan and can therefore have arbitrarily low costs without
changing any heuristic estimates. As a consequence, we can assign arbi-
trarily high costs to l in all subsequent heuristics without affecting admis-
sibility. Since ∞ is not included in the codomain of cost functions (and
changing their definition would complicate other definitions and proofs),
we use a large positive (finite) value M instead and define remaini(l) = M
for all labels l with costi(l) = −∞.

The quality of the resulting saturated cost partitioning strongly depends
on the choice of saturators. For example, if we only use the identity func-
tion, all costs are assigned to the first heuristic, leaving no costs for sub-
sequent heuristics. Ideally, we want saturators which return minimal sat-
urated cost functions. It is open which properties a heuristic must have
for it to possess a saturator that always returns minimum saturated cost
functions.

5.3 Minimum Saturated Cost Function for Abstraction Heuristics

For explicitly represented abstraction heuristics there is always a unique
minimum saturated cost function and it can be efficiently computed as
shown in the following theorem.

Theorem 5.1 Minimum Saturated Cost Function for Abstraction Heuris-
tics.
Let T be a parameterized-cost concrete transition system, let h be an abstraction
heuristic for T with associated abstract transition system Th and let cost ∈ C(Th)

be a cost function for Th. Furthermore, let Th
fin ⊆ T(Th) be the subset of transi-

tions a l−→ b ∈ T(Th) with h∗Th
(b, cost) < ∞. Then the minimum saturated cost

function mscf for h and cost is defined as

mscf(l) =

−∞ if no transition in Th
fin has label l

max
a

l−→b∈Th
fin

(h∗Th
(a, cost)− h∗Th

(b, cost)) otherwise

for all l ∈ L(T ).

Proof. We first observe that mscf(l) in the statement of the theorem is well-
defined for every label l ∈ L(T ). If no transition in Th

fin has label l, the first
case applies. Otherwise, the maximization in the second case is over a non-

empty set, and h∗Th
(a, cost)− h∗Th

(b, cost) for a given transition a l−→ b is a
difference of finite values and hence well-defined. (The value h∗Th

(b, cost) is
finite by definition of Th

fin, and h∗Th
(a, cost) is finite because a has a successor

with finite heuristic value, namely b.)
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We now show that mscf satisfies the two properties of saturated cost
functions from Definition 5.1:

reg. 1. We need to show that mscf(l) ≤ cost(l) for all labels l ∈ L(T ). In
the case where mscf(l) = −∞, this holds trivially, and otherwise

there exists a transition a l−→ b ∈ T(Th) with mscf(l) = h∗Th
(a, cost)−

h∗Th
(b, cost) ≤ cost(l) + h∗Th

(b, cost)− h∗Th
(b, cost) = cost(l), where we

use that h∗Th
(a, cost) ≤ cost(l) + h∗Th

(b, cost) by the triangle inequal-
ity.

reg. 2. We must show h(s, mscf) = h(s, cost) for all concrete states s ∈
S(T ).
From mscf(l) ≤ cost(l) for all l ∈ L(T ) (see first part of this proof)
and the fact that h is cost-monotonic (since it is an abstraction
heuristic), we get that h(s, mscf) ≤ h(s, cost) for all states s ∈ S(T ).
It remains to show h(s, mscf) ≥ h(s, cost) for all concrete states s ∈
S(T ). Since the abstraction function is unaffected by changing the
cost function, this is the case if h∗Th

(a, mscf) ≥ h∗Th
(a, cost) for all

abstract states a ∈ S(Th).

Let a0 be any abstract state in S(Th). If there is no goal trace for a0,

we have h∗Th
(a0, mscf) = h∗Th

(a0, cost) = ∞. Otherwise, let τ = 〈a0
l1−→

a1, . . . , ak−1
lk−→ ak〉 be a goal trace for a0. All transitions in τ must

be part of Th
fin because clearly the goal is reachable from all states

that τ traverses. We can bound the cost of τ under mscf by

k

∑
i=1

mscf(li)
(1)
≥

k

∑
i=1

(h∗Th
(ak−1, cost)− h∗Th

(ak, cost))

(2)
=

k−1

∑
i=0

h∗Th
(ak, cost)−

k

∑
i=1

h∗Th
(ak, cost)

(3)
= h∗Th

(a0, cost)− h∗Th
(ak, cost)

(4)
= h∗Th

(a0, cost)− 0

= h∗Th
(a0, cost),

where (1) uses that mscf(l) ≥ h∗Th
(a, cost)− h∗Th

(b, cost) for all transi-

tions a l−→ b ∈ Th
fin, (2) and (3) are basic arithmetic, and (4) uses that

ak is a goal state.

This shows that the cost of any plan for a0 under mscf is never lower
than h∗Th

(a0, cost), the cost of an optimal plan under cost. This proves
h∗Th

(a, mscf) ≥ h(a, cost) for all abstract states a ∈ S(Th), concluding
this part of the proof.
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Finally, we show by contradiction that mscf is minimal among all sat-
urated cost functions for h and cost. Let cost′ be a cost function with
h(s, cost′) = h(s, cost) for all concrete states s ∈ S(T ) and cost′(l) < mscf(l)
for some label l ∈ L(T ). Since cost′(l) can only be lower than mscf(l) if
mscf(l) 6= −∞, this means that the second case in the definition of mscf
in the statement of this theorem applies for l and we have cost′(l) <

max
a

l−→b∈Th
fin

(h∗Th
(a, cost) − h∗Th

(b, cost)). Therefore, there exists an abstract

transition a l−→ b ∈ Th
fin with cost′(l) < h∗Th

(a, cost) − h∗Th
(b, cost). This im-

plies h∗Th
(a, cost) > cost′(l) + h∗Th

(b, cost). Because h(s, cost′) = h(s, cost) for
all concrete states s ∈ S(T ), we also have h∗Th

(c, cost′) = h∗Th
(c, cost) for

all abstract states c ∈ S(Th). With this, we get h∗Th
(a, cost′) > cost′(l) +

h∗Th
(b, cost′), which violates the triangle inequality for shortest paths in

graphs.

The minimum saturated cost function can be computed with negligi-
ble overhead during the construction of pattern databases (Culberson and
Schaeffer 1998; Edelkamp 2001), Cartesian abstractions (see Section 4.1)
and merge-and-shrink abstractions not using label reduction (Sievers et al.
2014).1

When computing saturated cost functions for abstraction heuristics we
use a minor optimization. In addition to ignoring states from which there
is no path to a goal state, we also ignore states (and their outgoing transi-
tions) that are unreachable from the initial state. Since we want to apply
the resulting heuristic to forward search, heuristic values of unreachable
states are irrelevant, and using lower costs is always preferable if we can
still preserve the heuristic values of all reachable states.

Figure 5.1 demonstrates how to compute the minimum saturated cost
function (shown in the table on the right) for an abstraction heuristic (the
underlying abstract transition system is depicted on the left). For example,
since operator o4 only induces a self-looping transition in the abstract tran-
sition system, its minimum saturated cost is 0, reflecting the intuition that
o4 contributes nothing to the solution under this abstraction. In contrast,

1 Computing the minimum saturated cost function is more expensive for merge-and-shrink
heuristics using label reduction. In the final abstract transition system T of a merge-and-
shrink heuristic using label reduction all transitions with the same weight share the same
label. Consequently, T does not hold the information which original label induces which
abstract transitions. To compute the minimum saturated cost function for T we therefore
need to compute the set of transitions that each original label induces in T . This requires
knowing the preimage of each abstract state in T . For merge-and-shrink heuristics using
linear merge strategies, we can represent the preimage of an abstract state as a binary
decision diagram (BDD). Computing whether there is a transition with a given label be-
tween two abstract states represented as BDDs is expensive, but polynomial. For non-linear
merge strategies we can represent each preimage as a sentential decision diagram (SDD),
but it is unknown whether the corresponding test runs in polynomial time.
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Algorithm 6 Interleaved saturated cost partitioning algorithm. Given a
cost function cost, it computes a set of abstraction heuristics and corre-
sponding minimum saturated cost functions that form a cost partitioning.

1: procedure InterleavedSaturatedCostPartitioning(cost)
2: while not TerminationCondition do
3: Th ← compute abstract transition system using cost
4: h ← abstraction heuristic corresponding to Th
5: mscf← minimum saturated cost function for h and cost
6: cost← cost−mscf

operator o1 induces two transitions and we need to take both of them into
account when computing the minimum saturated cost to ensure that no
goal distance changes.

We use Theorem 5.1 to define a saturator that always returns the mini-
mum saturated cost function for abstraction heuristics.

Definition 5.4 Minimum Saturator for Abstraction Heuristics.
Let h be an abstraction heuristic. The function saturateh : C(Th) → C(Th) with
saturateh(cost) = mscf, where mscf is the minimum saturated cost function for h
and cost, is the minimum saturator for h.

In all experiments, we use the minimum saturator saturateh from Defini-
tion 5.4 for abstraction heuristics h.

Example We use the two abstraction heuristics h1 and h2 from Figure 3.1
on p. 15 to show a complete run of the saturated cost partitioning al-
gorithm. After choosing the order 〈h1, h2〉 and the minimum saturators
〈saturateh1 , saturateh2〉 (see Definition 5.4), we are ready to compute the sat-
urated cost partitioning. The first remaining cost function is remain0 =

cost = 〈4, 1, 4, 1〉. Under remain0 the abstract goal distances of the three
abstract states in Th1 are 5, 1 and 0. The minimum saturated cost function
saturate1(h1, remain0) = 〈4, 0, 1, 1〉 tells us that we can decrease the cost for
operators o2 and o3 in h1 without affecting any goal distances. Subtracting
the saturated costs from remain0 yields our new remaining cost function
remain1 = 〈0, 1, 3, 0〉. Under remain1 the goal distances in Th2 are 3, 3 and
0 and we have saturate2(h2, remain1) = 〈0, 0, 3, 0〉. The two saturated cost
functions form a cost partitioning and we have hSCP

〈h1,h2〉(s1, cost) = 5+ 3 = 8.
Note that the cost of operator o2 is not needed to justify this estimate (i.e.,
remain2 = 〈0, 1, 0, 0〉) and we could use it for other heuristics.
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5.4 Interleaved Saturated Cost Partitioning Algorithm

In our implementation, we exploit the fact that saturated cost partitioning
only needs to hold one abstract transition system in memory at a time by
interleaving abstraction computation and cost partitioning. Algorithm 6

shows pseudo-code for the procedure: starting with the original cost func-
tion cost, we iteratively create an abstract transition system Th using cost,
obtain the corresponding abstraction heuristic h, compute the minimum
saturated cost function mscf for h and cost, subtract mscf from cost and
build the next abstraction using the remaining costs.

The procedure can terminate after computing a given number of abstrac-
tions or once no further useful abstractions can be found. The sequence of
saturated cost functions computed by the procedure then forms a cost
partitioning which can be used to sum the heuristics associated with the
abstractions admissibly.



6
M U LT I P L E C A RT E S I A N A B S T R A C T I O N S

Having discussed how we can combine multiple abstraction heuristics,
we now need a way to come up with different abstractions to combine.
We have shown above how to build a single Cartesian abstraction using
a timeout of X seconds. The simplest idea to come up with n additive
abstractions, then, is to repeat the CEGAR algorithm n times with timeouts
of X/n seconds, computing the saturated cost function after each iteration,
and using the remaining cost in subsequent iterations.

Table 6.1 shows the number of solved tasks from our benchmark set for
X = 900s and different values of n. All versions are given a time limit
of 1800 seconds (of which at most X seconds are used to construct the
abstractions) and 3.5 GiB of memory to find a solution.

We see that building more than one abstraction is mildly detrimental. In
almost all domains coverage remains the same or decreases slightly when
increasing the number of abstractions. Out of 40 domains, only Airport
and Logistics benefit from using 100–500 and 5–100 abstractions, respec-
tively, but, as in the other domains, using more abstractions makes cover-
age decrease again.

Overall, we note that computing multiple abstractions is not beneficial.
We hypothesize that this is the case because the computed abstractions are
too similar to each other, focusing mostly on the same parts of the task.
Computing multiple abstractions does not yield a more informed additive
heuristic and instead just consumes time that could have been used to
further refine a single abstraction.

To see why diversifying abstractions is essential, consider the extreme
case where we evaluate the same abstraction heuristic h under two differ-
ent cost functions cost1 and cost2. For every state s we have h(s, cost1) +

h(s, cost2) ≤ h(s, cost1 + cost2), i.e., using the sum of heuristic values is
dominated by using h only once with cost function cost1 + cost2. (This fol-
lows from the admissibility of cost partitioning.) So we need to make sure
that the abstractions computed in different iterations of the algorithm are
sufficiently different.

There are several possible ways of ensuring such diversity within the
CEGAR framework. One way is to make sure that different iterations of the
CEGAR algorithm produce different results even when presented with the
same input planning task. This is quite possible to do because the CEGAR
algorithm has several choice points that affect its outcome, in particular in
the refinement step where there are frequently multiple splits to choose
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Abstractions 1 5 10 50 100 500 1000 5000

airport (50) 22 22 22 22 23 23 22 22

driverlog (20) 11 10 10 10 10 10 10 10

logistics (63) 17 18 18 18 18 17 16 16

mprime (35) 27 27 27 27 26 27 26 25

mystery (30) 18 18 18 17 17 17 17 17

nomystery (20) 10 10 10 9 9 9 9 8

parcprinter (50) 22 21 20 18 18 18 18 18

pipes-t (50) 14 14 14 14 14 13 13 13

rovers (40) 7 6 6 6 6 6 6 6

sokoban (50) 43 43 43 43 43 43 43 41

trucks (30) 8 8 7 6 6 6 6 6

woodwork (50) 15 15 15 13 13 13 13 13

zenotravel (20) 9 9 9 8 8 8 8 8

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Sum (1667) 706 704 702 694 694 693 690 684

Table 6.1: Number of solved tasks for a growing number of Cartesian abstractions.
We omit domains in which coverage does not change and highlight best
results in bold.

from. By ensuring that these choices are resolved differently in different
iterations of the algorithm, we can achieve some degree of diversification.
We call this approach diversification by refinement strategy.

Another way of ensuring diversity, even in the case where the CEGAR al-
gorithm always generates the same abstraction when faced with the same
input task, is to modify the inputs to the CEGAR algorithm. Rather than
feeding the actual planning task to the CEGAR algorithm, we can present
it with different “subproblems” in every iteration, so that it will naturally
generate different results. To ensure that the resulting heuristic is admissi-
ble, it is sufficient that every subproblem we use as an input to the CEGAR
algorithm is itself an abstraction of the original task. We call this approach
diversification by task modification. We discuss these two approaches in the
following sections.

6.1 Diversification by Refinement Strategy

As discussed in Section 4.3, when handling a flaw 〈s, c〉, there are often
multiple variables V ′ ⊆ V for which a split is feasible. Our first diversifica-
tion method changes how CEGAR chooses one of these variables. It bases
this decision on the hadd values (Bonet and Geffner 2001) of the values
in dom(v, c). More concretely, it chooses among the feasible candidates by
selecting the variable that has a value in c with the highest hadd value, i.e.,
the variable v ∈ V ′ that maximizes maxv 7→x∈dom(v,c) hadd(v 7→ x).



6.1 diversification by refinement strategy 53

Abstractions 1 5 10 50 100 500 1000 5000

airport (50) 22 23 23 24 25 25 25 25
blocks (35) 20 20 19 18 18 18 18 18

driverlog (20) 10 10 10 10 10 10 10 9

floortile (40) 3 2 2 2 2 2 2 2

ged (20) 17 16 15 15 15 15 15 15

logistics (63) 20 24 22 23 22 22 23 22

miconic (150) 55 61 60 60 60 59 59 58

mprime (35) 28 27 26 25 25 26 25 24

mystery (30) 17 18 17 17 17 17 18 17

nomystery (20) 10 14 13 10 10 11 10 13

parcprinter (50) 20 20 20 20 20 20 22 22
pipes-nt (50) 19 18 18 18 18 18 19 19
rovers (40) 6 8 8 8 8 8 8 7

tidybot (40) 23 26 29 26 25 27 25 23

tpp (30) 6 7 7 7 7 6 7 7
trucks (30) 8 9 9 9 9 9 9 9
visitall (40) 14 14 13 13 13 13 13 13

woodwork (50) 15 15 15 17 17 14 15 16

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Sum (1667) 707 726 720 716 715 714 717 713

Table 6.2: Number of solved tasks for a growing number of Cartesian abstractions
preferring to refine atoms with high hadd values. We omit domains in
which coverage does not change and highlight best results in bold.

This “max-hadd” refinement strategy (unlike the default strategy “max-
refined”) is affected by the costs of the operators, which change from itera-
tion to iteration as costs are used up by previously computed abstractions.
This inherently biases CEGAR towards regions of the state space where
operators still have high costs.

Table 6.2 shows the results for this approach. We see that the hadd-based
refinement strategy leads to better results than the default refinement strat-
egy on average: while both methods solve about the same number of tasks
in the basic case of only one abstraction (706 tasks for the default strategy
vs. 707 tasks for hadd-based refinement), for values of n between 5 and
5000 we obtain 18–29 additional solved tasks compared to the correspond-
ing columns in Table 6.1. We also see that all tested values of n lead to
a higher total coverage compared to a single abstraction, whereas the to-
tal coverage score of the original refinement strategy never benefits from
using more than one abstraction. The hadd-based refinement strategy ob-
tains the maximum number of solved tasks with 5 abstractions (726 tasks).
Using more than that leads to a decrease in total coverage.

Overall, we see that using a refinement strategy that takes into account
the operator costs and hence interacts well with cost partitioning can lead
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to better scalability for additive CEGAR heuristics. However, the improve-
ments obtained in this way are quite modest. This motivates diversification
by task modification, which is a somewhat more drastic approach than di-
versification by refinement strategy. The basic idea is that we identify dif-
ferent aspects of the planning task and then generate an abstraction of the
original task for each of these aspects. Each invocation of the CEGAR al-
gorithm uses one of these abstractions as its input and is thus constrained
to exclusively focus on one aspect.

We propose two different ways for coming up with such “focused sub-
problems”: abstraction by goals and abstraction by landmarks.

6.2 Abstraction by Goals

Our first approach, abstraction by goals, generates one abstract task for
each goal atom of the planning task. The number of abstractions generated
is hence equal to the number of goals.

If v 7→ d is a goal atom, we create a modified planning task which is
identical to the original one except that v 7→ d is the only goal atom. This
means that the original and modified task have exactly the same states and
transitions and only differ in their goal states: in the original task, all goals
need to be satisfied in a goal state, but in the modified one, only v 7→ d
needs to be reached. The goal states of the modified task are hence a super-
set of the original goal states, and we can conclude that the modification
defines a (non-induced) abstraction in the sense of Definition 2.9 (where
the abstraction mapping is the identity function).

Abstracting by goals has the obvious drawback that it only works for
tasks with more than one goal atom. Since any task could potentially be
reformulated to only contain a single goal atom, a smarter way of diversi-
fication is desirable.

6.3 Abstraction by Landmarks

Our next diversification strategy solves this problem by using fact land-
marks instead of goal atoms to define subproblems of a task. Fact land-
marks are atoms that have to be true at least once in all plans for a given
task (e.g., Hoffmann et al. 2004). Since obviously all goal atoms are also
fact landmarks, this method can be seen as a generalization of the previous
strategy.

More specifically, we generate the causal fact landmarks of the delete
relaxation of the planning task Π with the algorithm by Keyder et al. (2010)
for finding hm landmarks with m = 1. Then for each landmark l = v 7→ d
we compute a modified task Πl that considers l as the only goal atom.
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Algorithm 7 Construct modified task for landmark v 7→ d.
1: function LandmarkTask(Π, v 7→ d)
2: 〈V ,O, s0, s?〉 ← Π
3: V ′ ← V
4: F ← PossiblyBefore(Π, v 7→ d)
5: for all v′ ∈ V ′ do
6: dom(v′) ← {d′ ∈ dom(v′) | v′ 7→ d′ ∈ F ∪ {v 7→ d}}
7: O′ ← {o ∈ O | pre(o) ⊆ F}
8: for all o ∈ O′ do
9: if v 7→ d ∈ eff(o) then

10: eff(o) ← {v 7→ d}
11: return 〈V ′,O′, s0, {v 7→ d}〉

12: function PossiblyBefore(Π, v 7→ d)
13: 〈V ,O, s0, s?〉 ← Π
14: F ← s0

15: while F has not reached a fixpoint do
16: for all o ∈ O do
17: if v 7→ d /∈ eff(o) ∧ pre(o) ⊆ F then
18: F ← F ∪ eff(o)

19: return F

Without further modifications, however, this change does not constitute
an abstraction (not even a non-induced abstraction), and hence the result-
ing heuristic could be inadmissible. This is because landmarks do not have
the same semantics as goals: goals need to be satisfied at the end of a plan,
but landmarks are only required at some point during the execution of a
plan.

Existing landmark-based heuristics address this difficulty by remember-
ing which landmarks have been achieved en route to any given state and
only base the heuristic information on landmarks which have not yet been
achieved (e.g., Karpas and Domshlak 2009; Richter et al. 2008). This makes
these heuristics path-dependent: their heuristic values are no longer a func-
tion of the state alone.

Path-dependency comes at a significant memory cost for storing land-
mark information, so we propose an alternative approach that is purely
state-based. For every state s, we use a sufficient criterion for deciding
whether the given landmark might have been achieved on the path from the
initial state to s. If yes, s is considered as a goal state in the modified
task and hence will be assigned a heuristic value of 0 by the associated
abstraction heuristic.
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Without path information, how can we decide whether a given land-
mark could have been reached prior to state s? The key to this question
is the notion of a possibly-before set for atoms of delete relaxations, which
has been previously considered by Porteous and Cresswell (2002). We say
that an atom f ′ is possibly before atom f if f ′ can be achieved in the delete
relaxation of the planning task without achieving f . We write pb( f ) for
the set of atoms that are possibly before f ; this set can be computed using
a fixpoint computation shown in Algorithm 7 (function PossiblyBefore).
This simple implementation runs in time O(n2) for a task of size n, but a
linear time version is possible by using suitable data structures. From the
monotonicity properties of delete relaxations, it follows that if l is a delete-
relaxation landmark and all atoms of the current state s are contained in
pb(l), then l still has to be achieved from s.

Based on this insight, we can construct Πl as follows. First, we compute
pb(l). The modified task Πl only contains the atoms in pb(l) and l itself;
all other atoms are removed. The landmark l is the only goal. The initial
state and operators are identical to the original task, except that we discard
operators whose preconditions are not contained in pb(l) (by the definition
of possibly-before sets, these can only become applicable after reaching l)
and for all operators that achieve l, we make l their only effect. (Adapting
such operators is necessary because they might have other effects that fall
outside pb(l). Note that such operators are guaranteed to achieve a goal
state, and for an abstraction heuristic it does not matter which exact goal
state we end up in.) The complete construction is shown in Algorithm 7.

The states S(Πl) of the modified task are exactly the states s of the orig-
inal planning task where s ⊆ pb(l) ∪ {l}. The abstraction function that is
associated with the modified task maps every state in S(Πl) to itself. In all
other states the landmark might potentially have been achieved, so they
should be mapped to an arbitrary goal state of the modified task. This
mapping is easy to represent within the framework of Cartesian abstrac-
tion because S(Πl) is a Cartesian set and its complement can be repre-
sented as the disjoint union of a small number of Cartesian sets (bounded
by the number of variables of the planning task). Like in the case of ab-
straction by goals, the goal states of the landmark task are a superset of
the goal states in the original task. Therefore, the resulting abstraction is
not induced in the sense of Definition 2.9.

In detail, we establish the mapping by refining the abstract transition
system before we enter the refinement loop. Starting from the trivial ab-
straction with a single abstract state, we iterate over all variables v. In
the iteration for variable v, we split the (then current) abstract initial state
into states a and b with dom(v, a) = dom(v)∩ (pb(l)∪ {l}) and dom(v, b) =
dom(v) \ (pb(l)∪{l}). Afterwards, we declare all states in the abstract tran-
sition system (including the initial state) as goal states.
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x 7→ 0 x 7→ 1 x 7→ 2
o1 o2

Figure 6.1: Example task in which operators o1 and o2 change the value of the
single variable x from its initial value 0 to 1 and from 1 to its desired
value 2.

6.4 Abstraction by Landmarks: Improved

In the basic form just presented, the tasks constructed for fact landmarks
do not provide as much diversification as we would desire. We illustrate
the issue with the example task depicted in Figure 6.1. The task has three
landmarks x 7→ 0, x 7→ 1 and x 7→ 2 that must be achieved in exactly
this order in every plan. When we compute the abstraction for x 7→ 1, the
CEGAR algorithm has to find a plan for getting from x 7→ 0 to x 7→ 1.
Similarly, the abstraction procedure for x 7→ 2 has to return a solution that
takes us from x 7→ 0 to x 7→ 2. Since going from x 7→ 0 to x 7→ 2 includes
the subproblem of going from x 7→ 0 to x 7→ 1, we have to find a plan
from x 7→ 0 to x 7→ 1 twice, which runs counter to our objective of finding
abstractions that focus on different aspects on the planning task.

To alleviate this issue, we propose an alternative construction for the
planning task for landmark l. The key idea is that we employ a further
abstraction that reflects the intuition that at the time we achieve l, certain
other landmarks have already been achieved.

In detail, the alternative construction proceeds as follows. We start by
performing the basic landmark task construction described in Algorithm 7,
resulting in a planning task for landmark l which we denote by Πl .

Furthermore, we use a sound algorithm (Keyder et al. 2010) for com-
puting natural and greedy necessary landmark orderings (e.g., Hoffmann et
al. 2004; Richter et al. 2008) to determine a set L′ of landmarks that must
necessarily be achieved before l. Note that, unless l is a landmark that is
already satisfied in the initial state (a trivial case we can ignore because
the Cartesian abstraction heuristic is identical to 0 in this case), L′ contains
at least one landmark for each variable of the planning task because initial
state atoms are landmarks that must be achieved before l.

Finally, we perform a domain abstraction (Hernádvölgyi and Holte 2000)
that combines, for each variable v′, all the atoms v′ 7→ d′ ∈ L′ based on the
same variable into a single atom.

For example, consider the landmark l = x 7→ 2 in the above example.
We detect that x 7→ 0 and x 7→ 1 are landmarks that must be achieved
before l. They both refer to the variable x, so we combine the values 0 and
1 into a single value. The effect of this is that in the task for l, we no longer
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x 7→ 0 x 7→ 1 x 7→ 2

y 7→ 0

y 7→ 1

y 7→ 2

Figure 6.2: Example landmark ordering. To avoid focusing on the same parts of
the task in multiple subtasks the improved abstraction-by-landmarks
procedure combines the atoms y 7→ 0 and y 7→ 1 before building the
abstraction for x 7→ 1. For the subtask x 7→ 2, it combines the atoms
y 7→ 0, y 7→ 1, y 7→ 2 in one group and x 7→ 0 and x 7→ 1 in another.

need to find a subplan from x 7→ 0 to x 7→ 1. Figure 6.2 illustrates the
procedure with a slightly more complex example.
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E X P E R I M E N TA L E VA L U AT I O N

We evaluate five different ways of creating Cartesian abstraction heuristics
with counterexample-guided abstraction refinement: a single abstraction
(hCEGAR, Section 4.2), abstraction by goals (hCEGAR

s? , Section 6.2), abstrac-
tion by landmarks (hCEGAR

LM , Section 6.3), improved abstraction by land-
marks (hCEGAR

LM+ , Section 6.4), and a combination of the latter two methods
(hCEGAR

LM+s? ), which we describe below.
In Part ii we analyze how the order in which saturated cost parti-

tioning considers the component heuristics influences the resulting cost-
partitioned heuristic. For now, we let the saturated cost partitioning algo-
rithm consider the subtasks in a randomized order.

In addition to comparing the resulting heuristics to each other, we con-
trast them to some of the strongest abstraction heuristics from the litera-
ture:

• hiPDB: the canonical heuristic using pattern databases found by 15

minutes of hill climbing (Haslum et al. 2007; Sievers et al. 2012)

• hM&S: merge-and-shrink using bisimulation, the SCC-DFP merge
strategy and at most 50 000 abstract states (Helmert et al. 2014; Siev-
ers et al. 2016)

• hPhO
Sys

: post-hoc optimization using systematic patterns of sizes 1 and
2 (Pommerening et al. 2013)

We let all versions that use CEGAR refine for at most 15 minutes. For
the additive CEGAR versions we distribute the refinement time equally
among the abstractions. Table 7.1 shows the number of solved instances
for the compared heuristics.

7.1 Comparison of CEGAR to Other Abstraction Heuristics

We begin our analysis by comparing the basic hCEGAR heuristic based on
a single abstraction to the heuristics from the literature. While the total
coverage of hCEGAR (706 tasks) is lower than that of hiPDB (881 tasks), hM&S

(808 tasks) and hPhO
Sys

(737 tasks), it outperforms all of them in Mystery
and MPrime. Table 7.2 compares the heuristics on a per-domain basis and
shows that hCEGAR solves more tasks than hiPDB, hM&S and hPhO

Sys
in 2, 7 and

14 domains, respectively. However, the opposite is true for 27, 23 and 13

domains.
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hiPDB hM&S hPhO hCEGAR hCEGAR
s? hCEGAR

LM hCEGAR
LM+ hCEGAR

LM+s?

airport (50) 38 18 27 22 33 32 28 33

barman (34) 4 4 4 4 4 4 4 4
blocks (35) 28 28 26 18 18 18 18 18

childsnack (20) 0 0 0 0 0 0 0 0
depot (22) 11 7 7 5 5 7 7 7

driverlog (20) 13 13 13 11 13 13 13 13
elevators (50) 41 31 36 33 39 39 37 39

floortile (40) 2 6 2 2 2 2 2 2

freecell (80) 21 20 15 20 20 20 37 36

ged (20) 19 19 15 15 15 15 15 15

grid (5) 3 2 2 2 2 2 2 3
gripper (20) 8 20 7 8 8 8 8 8

hiking (20) 12 13 11 12 12 12 13 13
logistics (63) 31 25 26 17 26 26 22 26

miconic (150) 69 79 54 55 63 66 71 72

movie (30) 30 30 30 30 30 30 30 30
mprime (35) 24 23 21 27 27 27 27 27
mystery (30) 17 17 15 18 18 18 18 18
nomystery (20) 20 18 16 10 18 14 13 14

openstacks (100) 49 49 47 49 49 49 49 49
parcprinter (50) 38 45 30 22 24 22 24 24

parking (40) 13 6 3 0 0 0 0 0

pathways (30) 4 4 4 4 4 4 4 4
pegsol (50) 48 48 44 44 44 44 44 44

pipes-nt (50) 21 18 15 17 17 17 18 18

pipes-t (50) 18 16 9 14 14 13 14 14

psr-small (50) 50 50 49 49 49 49 49 49

rovers (40) 8 8 7 7 7 7 7 7

satellite (36) 6 7 6 6 7 7 7 7
scanalyzer (50) 23 23 11 21 21 21 21 21

sokoban (50) 50 47 49 43 41 41 41 41

storage (30) 16 15 15 15 16 16 16 16
tetris (17) 10 2 3 9 9 9 9 9

tidybot (40) 22 1 21 22 28 26 28 28
tpp (30) 6 8 6 6 10 7 7 7

transport (70) 35 24 21 24 24 24 24 24

trucks (30) 9 7 7 8 11 10 12 12
visitall (40) 28 13 27 13 13 13 13 13

woodwork (50) 23 32 25 15 21 21 21 21

zenotravel (20) 13 12 11 9 12 12 12 12

Sum (1667) 881 808 737 706 774 765 785 798

Table 7.1: Number of solved tasks by domain for different heuristics. We highlight
best values in bold.
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Coverage

hiPDB – 19 31 27 24 24 22 21 881
hM&S

8 – 24 23 17 18 17 16 808

hPhO
1 7 – 13 7 7 8 7 737

hCEGAR
2 7 14 – 1 2 1 1 706

hCEGAR
s? 6 10 21 14 – 7 5 2 774

hCEGAR
LM 6 9 20 14 2 – 4 0 765

hCEGAR
LM+ 9 9 20 18 6 8 – 1 785

hCEGAR
LM+s? 9 11 21 19 7 10 6 – 798

Table 7.2: Left: Pairwise comparison of different abstraction heuristics. The entry
in row r and column c holds the number of domains in which heuristic r
solved more tasks than heuristic c. For each heuristic pair we highlight
the maximum of the entries 〈r, c〉 and 〈c, r〉. Right: Total number of
solved tasks by each heuristic.
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Figure 7.1: Initial state heuristic values for transport-08 #23.
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Although hCEGAR is outperformed by hiPDB, the former still has a the-
oretical advantage over the latter. While the CEGAR loop is guaranteed
to converge to a solution, hiPDB can get stuck in local minima. Also, the
hCEGAR estimates tend to grow much more smoothly towards the perfect
estimates than the ones by hiPDB. Figure 7.1 illustrates this by comparing
how the cost estimates for the initial state grow with the number of ab-
stract states on an example task. The hCEGAR estimates are generally higher
than those of hiPDB. This behavior can be observed in many domains.

7.2 Comparison of CEGAR Heuristics

Comparing the results for hCEGAR and hCEGAR
s? , we see that decomposing

the task by goals and finding multiple abstractions separately instead of
using only a single abstraction raises the number of solved tasks from 706

to 774. This substantial improvement is due to the fact that 14 domains
profit from using hCEGAR

s? while coverage decreases in only one domain
(see Table 7.2).

Decomposing by goals has a slight edge over landmarks decomposi-
tions: hCEGAR

s? solves 774 tasks while hCEGAR
LM has a coverage score of 765.

Also for the individual domains hCEGAR
s? is usually preferable: hCEGAR

s?
solves more tasks than hCEGAR

LM in 7 domains, while the opposite is true
in 2 domains. However, when we employ the improved hCEGAR

LM+ heuris-
tic, which uses domain abstraction to avoid duplicate work during the
refinement process, the number of solved problems increases to 785.

Abstraction by Landmarks and Goals In Table 7.2, we can observe that
hCEGAR

s? and hCEGAR
LM+ outperform each other in multiple domains: for maxi-

mum coverage hCEGAR
s? is preferable in 5 domains, whereas hCEGAR

LM+ should
be preferred in 6 domains. This suggests trying to combine the two ap-
proaches.

We do so by first computing abstractions for all subproblems returned
by the abstraction by landmarks method. If afterwards the refinement time
has not been consumed, we also calculate abstractions for the subproblems
returned by the abstraction by goals decomposition strategy for the remain-
ing time. Not only does this approach (hCEGAR

LM+s? ) solve as many problems as
the better performing ingredient technique in many individual domains,
but it often even outperforms both original diversification methods, rais-
ing the total number of solved tasks to 798.

Comparing hCEGAR
LM+s? to hCEGAR, we see that hCEGAR

LM+s? solves 92 more tasks
than hCEGAR (798 vs. 706). This difference in coverage is substantial because
in most domains solving an additional task optimally becomes exponen-
tially more difficult as the tasks get larger.
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to compute all abstractions on the benchmark tasks. Failed runs ex-
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sent tasks for which hCEGAR

LM+s? needs less time for the computation than
hCEGAR.
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The big increase in coverage can be explained by the fact that for the ma-
jority of tasks hCEGAR

LM+s? estimates the solution cost much better than hCEGAR,
as shown in Figure 7.2. One might expect that the increased informative-
ness would come with a time penalty, but in Figure 7.3 we can see that in
fact hCEGAR

LM+s? takes less time to compute the abstractions than hCEGAR. If the
CEGAR refinement loop does not exceed the memory limit, it only stops
if it runs out of time or finds a concrete solution. Figure 7.3 therefore tells
us that for most tasks hCEGAR does not find a solution early, but instead
uses the full 15 minutes for the refinement whereas hCEGAR

LM+s? almost always
needs less time. Due to building many small abstractions instead of a sin-
gle large one, hCEGAR

LM+s? also uses less memory than hCEGAR and therefore
exceeds the memory limit in fewer cases.

While hCEGAR has a lower total coverage than the three abstraction heu-
ristics from the literature, hCEGAR

LM+s? outperforms hPhO
Sys

regarding total cover-
age. In Table 7.2 we see that hCEGAR

LM+s? solves more tasks than hiPDB, hM&S

and hPhO
Sys

in 9, 11 and 21 domains, respectively. The opposite is true in 21,
16 and 7 domains. In the next part, we show that non-random heuristic or-
ders make saturated cost partitioning heuristics much stronger. Addition-
ally, we demonstrate that maximizing over heuristics for multiple orders
further increases heuristic accuracy significantly. These changes let satu-
rated cost partitioning heuristics over Cartesian abstractions of landmark
and goal task decompositions outperform all three abstraction heuristics
from the literature (see column hSCP

div -Cart in Table A.6 in the appendix).



Part II

O R D E R S F O R S AT U R AT E D C O S T PA RT I T I O N I N G

Since saturated cost partitioning distributes costs greedily, it is
highly susceptible to the order in which it considers the compo-
nent heuristics. We propose a greedy algorithm for finding or-
ders and also show how to optimize orders with a hill-climbing
search. Both techniques lead to significantly better heuristic es-
timates than using random orders. Moreover, using multiple
orders results in a heuristic that is significantly better informed
than any single-order heuristic, especially when we actively
search for diverse orders.



8
S I N G L E O R D E R S

In Chapter 5, we introduced the saturated cost partitioning algorithm. It
assigns costs greedily and is therefore affected by the order in which the
heuristics are considered. In this chapter, we show that the choice of order
has a strong impact on saturated cost partitioning, both theoretically and
experimentally.

Component Heuristics For the experiments in Chapters 6 and 7, we
computed the abstractions “just-in-time”, guiding the computation of ab-
stractions by the current remaining cost function. In this chapter, we want
to evaluate the impact of different heuristic orderings on saturated cost
partitioning. Therefore, we need to ensure that all ordering algorithms
work on the same heuristics. Consequently, in contrast to the approach
above, we fix the set of heuristics before computing saturated cost par-
titionings to be the combination of the following families of abstraction
heuristics:

• pattern databases found by hill climbing (HC):
We use the algorithm by Haslum et al. (2007) for searching via hill
climbing in the space of pattern collections. The algorithm evaluates
candidate patterns with the canonical heuristic.1

• pattern databases for systematically generated patterns (Sys):
We use a procedure that generates all interesting patterns up to a
given size (Pommerening et al. 2013). Since generating the PDBs for
all interesting patterns of size 3 takes too long for many tasks, we
generate all interesting patterns of sizes 1 and 2.

• Cartesian abstraction heuristics (Cart):
We consider Cartesian abstractions of the landmark and goal task
decompositions from Chapter 6.2

1 To ensure that the resulting pattern collection is the same in independent algorithm runs
we do not limit the time for hill climbing but instead limit the number of generated pat-
terns by 200.

2 The Cartesian abstractions underlying the heuristics in Cart are very similar to the abstrac-
tions used by hCEGAR

LM+s? in Chapter 7 but not identical, due to the use of different termination
criteria for the refinement loop. hCEGAR

LM+s? divides at most 15 minutes of refinement among
all abstractions. To ensure that the heuristics in Cart are exactly the same for every algo-
rithm run, we do not use a time limit but instead limit the sum of non-looping transitions
in all abstractions underlying the heuristics in Cart by one million.
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We call this combination of abstraction heuristics Comb, i.e., Comb =

HC ∪ Sys ∪ Cart. We use the combination of the heterogeneous heuris-
tics instead of a homogeneous subset, because having more (and different)
heuristics makes ordering them more difficult, which in turn makes eval-
uating ordering algorithms easier.

Our first analysis in this chapter shows that we can reduce the memory
usage and increase the evaluation speed of saturated cost partitioning heu-
ristics by ignoring component heuristics that contribute no information to
the overall heuristic estimate.

8.1 Sparse Orders

Due to the greedy way in which saturated cost partitioning distributes
costs to the heuristics, especially heuristics h that appear late in an order
ω often receive a very low cost function cost. If all heuristic estimates of h
under cost are 0, we call h useless under cost.

Definition 8.1 Useless heuristics.
Let T be a parameterized-cost transition system and let h be an admissible heuris-
tic for T . Then h is useless under cost function cost ∈ C(T ) iff h(s, cost) = 0 for
all states s ∈ S(T ).

Unfortunately, we can only decide whether a heuristic is useless under
a given cost function after evaluating it for all states. However, for abstrac-
tion heuristics there is a sufficient condition which we can check efficiently
before starting the search.

Definition 8.2 Useless abstraction heuristics.
Let h be an abstraction heuristic with associated abstract transition system Th. If
h∗Th

(a, cost) = 0 for all states a ∈ S(Th), h is useless under cost function cost.

If saturated cost partitioning using an order ω assigns abstraction heuris-
tic h ∈ ω the cost function cost and h is useless under cost, we can remove
h from ω without changing any heuristic estimates of hSCP

ω . Removing a
heuristic means we do not have to evaluate it during search, which speeds
up evaluating hSCP

ω . For abstraction heuristics this also has the benefit of
not having to store the lookup table that holds the abstract goal distances
in Th under cost. We call orders that ignore useless heuristics sparse orders
and all other orders full orders.

To evaluate the impact of using sparse orders, we compute saturated
cost partitioning heuristics for random sparse orders and random full or-
ders: hSCP

full stores all lookup tables while hSCP
sparse ignores useless pairs of

heuristics and cost functions. Figure 8.1a shows the relative number of
lookup tables that the two algorithms store. For the majority of tasks more
than half of the lookup tables are useless. There is even a task from the
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Figure 8.1: Comparing two versions of hSCP
random: hSCP

full uses full orders and hSCP
sparse

uses sparse orders. Each 〈x, y〉 point corresponds to a task for which
hSCP

div yields a value of x and hSCP
sparse yields x · y. Note that all x axes use

a log scale.
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Tetris domain where hSCP
full stores 7 964 lookup tables, while hSCP

sparse deter-
mines that only 51 of them contain any information.

Since hSCP
sparse keeps much fewer lookup tables than hSCP

full , it is able to repre-
sent the resulting heuristic much more compactly. Figure 8.1b shows that
using sparse orders often drastically reduces the number of stored goal
distances. For one task from the Floortile domain hSCP

full stores 5 594 881

distances whereas hSCP
sparse only keeps 363 distances. Since we use 4 bytes

to store each goal distance, this means storing only 1.42 KiB instead of
21.34 MiB (ignoring the overhead of the data structures that hold the dis-
tances). Given our memory limit of 3.5 GiB, using even 100 MiB or more
for storing the heuristic seems reasonable. However, the reduced memory
requirements of sparse orders will be more important when we compute
saturated cost partitionings for multiple orders in Chapter 9.

Not only does hSCP
sparse need less memory than hSCP

full , it is also much faster
to evaluate. Figure 8.1c compares the search times (without the time for
computing abstractions and the saturated cost partitioning) used by the
two heuristics. We can see that using sparse orders substantially reduces
the search time for many tasks. As a consequence, hSCP

sparse solves two tasks
(from the Openstacks and Tetris domains) for which hSCP

full runs out of time.
On the 1667 tasks from our benchmark set hSCP

full finds a solution for 852

tasks and runs out of time for 443 tasks. In contrast, hSCP
sparse solves 854 tasks

and fails to find a solution due to the time limit in only 99 cases, giving
further evidence of its increased evaluation speed.

Due to these results, we only use sparse orders below.

8.2 Importance of Good Orders

The order in which saturated cost partitioning considers the heuristics is
very important for the accuracy of the resulting cost-partitioned heuris-
tic: two orders of the same heuristics can make the difference between a
heuristic that always returns cost estimate 0 and a perfect heuristic (return-
ing the true goal distance).

Theorem 8.1 Importance of good orders.
There exist regular fixed-cost transition systems 〈T , cost〉, sets of cost-monotonic
admissible heuristics H for T and states s ∈ S(T ) such that hSCP

ω (s, cost) =

h∗T ,cost(s, cost) > 0 and hSCP
ω′ (s, cost) = 0 for two orders ω, ω′ ∈ Ω(H).

Proof. Consider the example in Figure 8.2. For the concrete fixed-cost tran-
sition system 〈T , cost〉 and the two abstraction heuristics h1 and h2 for T ,
we have hSCP

〈h1,h2〉(s1, cost) = 1 = h∗T ,cost(s1) and hSCP
〈h2,h1〉(s1, cost) = 0.

Note that we can arbitrarily enlarge the accuracy gap between two heu-
ristics resulting from two different orders. In the example, it suffices to
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Figure 8.2: Abstraction heuristics h1 (left) and h2 (right) used in the proof of The-
orem 8.1. The cost function is cost = 〈0, 1, 0〉, i.e., label o2 has cost 1
while o1 and o3 have cost 0.
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Figure 8.3: Concrete transition system T (top) with abstraction heuristics h1 (mid-
dle) and h2 (bottom). All labels have cost 1.
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adjust the cost of label o2. Similar instances can also be constructed for
unit-cost tasks and Figure 8.3 shows an example: for the concrete fixed-
cost transition system 〈T , cost〉 with cost(l) = 1 for all labels l ∈ L(T ) and
the two abstraction heuristics h1 and h2 for T , we have hSCP

〈h1,h2〉(s1) = n =

h∗T ,cost(s1) and hSCP
〈h2,h1〉(s1) = 0. Note that this example also works if the

abstraction underlying h1 does not map each concrete state to a different
abstract state.

The two examples demonstrate the importance of choosing good orders
for saturated cost partitioning. There are two challenges when trying to
find good orders automatically: first, we need to deal with a combinatorial
search space of n! possible orders for a set of n heuristics. Second, we
are looking for orders that provide good guidance in all states visited
during search and not only in a single state. We will deal with the second
challenge later and focus on finding a good order for a single state for
now.

Formally, given a fixed-cost transition system 〈T , cost〉, a set of n heuris-
tics H for T and a state s ∈ S(T ), our goal is to find an order ω ∈ Ω(H)

which yields a heuristic with an accurate estimate hSCP
ω (s). Except for very

small n, it is obviously impossible to consider all n! orders. Instead, we
use hill climbing, a well-known local search technique (Russell and Norvig
1995), to actively search in the space of orders.

8.3 Greedy Orders

Before we can start the search, however, we need to address one of the
most important questions for local search: where do we start searching?
Using a good initial solution is a key ingredient for finding high-quality
solutions fast via local search (Lourenço et al. 2010) and many problems
allow finding a good initial solution greedily (e.g., Korte and Vygen 2001).
We use the same approach here and propose an algorithm that starts with
an empty order ω and iteratively appends an unordered heuristic to ω

until ω contains all heuristics.
But how do we decide which heuristic to append next in each iteration?

We could prefer to append heuristics with high estimates for the given
state first. This makes it more likely that an accurate heuristic is offered all
of the costs it needs for justifying its estimate. However, we also have to
keep in mind that usually only the first heuristic is allowed to use all the
costs it can exploit. Subsequent heuristics operate on the costs that have
not already been consumed by previous heuristics. To preserve costs for
as many heuristics as possible, we could let orders begin with the heuris-
tics that “steal” the lowest amount of costs from other heuristics. Finally,
we could also prefer heuristics that yield high heuristic estimates and steal
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few costs. To measure the importance of each objective we introduce three
scoring functions and we order heuristics by their assigned scores in de-
scending order.

Definition 8.3 Heuristic Scoring Functions.
Let T be a parameterized-cost transition system and let H be a set of admissible
heuristics for T , where each h ∈ H has a corresponding saturator saturateh. A
scoring function for T and H is a function q : H× C(T )× S(T )→ R.

We define three scoring functions

qh(h, cost, s) = h(s, cost),

qstolen(h, cost, s) = − ∑
l∈L(Th)

stolen(h, cost, l), and

q h
stolen

(h, cost, s) =
h(s, cost)

max(1, ∑l∈L(Th)
stolen(h, cost, l))

,

where

wanted(h, cost, l) = saturateh(cost)(l),

free(h, cost, l) = cost(l)− ∑
h′∈H\{h}

wanted(h′, cost, l), and

stolen(h, cost, l) =


max(0, wanted(h, cost, l)− free(h, cost, l))

if free(h, cost, l) ≥ 0

max(wanted(h, cost, l), free(h, cost, l)) otherwise.

The scoring function qh assigns high scores to heuristics with high esti-
mates for the given state, while qstolen gives high scores to heuristics steal-
ing few costs from other heuristics. The function q h

stolen
measures how well

a heuristic balances the two objectives of having high heuristic value and
stealing low costs. We ensure that the divisor is at least 1 to guarantee that
the division is always defined.

We now explain the definitions of wanted, free and stolen costs for a
heuristic h with saturator saturateh, a cost function cost and a label l. We
say that the saturated costs saturateh(cost)(l) form the part of cost(l) that
h wants. Then free(h, cost, l) are the costs of l that remain for h after giving
all other heuristics the costs of l that they want.

The costs of label l that a heuristic h steals from the other heuristics, i.e.,
stolen(h, cost, l), mainly depends on the costs h gets for free. If the amount
of free costs is non-negative, h steals the costs it wants minus the costs it
gets for free. If h gets more costs for free than it wants, it steals no costs. If
h gets no costs for free, the second case applies. When h wants costs ≥ 0,
the stolen costs equal the wanted costs, since free(h, cost, l) ≤ 0. Otherwise,



8.3 greedy orders 73

cost(l) wanted(h′, cost, l) free(h, cost, l) wanted(h, cost, l) stolen(h, cost, l)

20 5 20− 5 = 15 10 max(0, 10− 15) = 0
20 15 20− 15 = 5 10 max(0, 10− 5) = 5
20 5 20− 5 = 15 −2 max(0,−2− 15) = 0
20 25 20− 25 = −5 10 max(10,−5) = 10
20 25 20− 25 = −5 −2 max(−2,−5) = −2
20 25 20− 25 = −5 −10 max(−10,−5) = −5

Table 8.1: Examples showing how to compute stolen(h, cost, l), i.e., the amount
of costs for label l that heuristic h steals from heuristic h′ under cost
function cost.

Algorithm 8 Dynamic greedy ordering algorithm. Given a set of admissi-
ble heuristics H with corresponding saturators, a cost function cost, a state
s and a scoring function q, it computes a dynamic greedy order by iter-
atively appending the heuristic with the highest score and updating the
estimates and saturated costs for each unordered heuristic.

1: function DynamicGreedyOrder(H, cost, s, q)
2: ω ← 〈〉
3: while H 6= ∅ do
4: h ← arg maxh′∈H q(h′, cost, s)
5: ω ← ω⊕ 〈h〉
6: H ← H \ {h}
7: cost← cost− saturateh(cost)

8: return ω

the amount of stolen costs is the maximum over the two negative values
of wanted and free costs. This implies that h steals negative costs, i.e., it
provides costs for other heuristics that want them. Table 8.1 holds several
examples that show how to compute stolen(h, cost, l).

Dynamic Greedy Orders We can plug any of the scoring functions into
Algorithm 8 to greedily compute a heuristic order. Given a set of admis-
sible heuristics H, a cost function cost, a state s and a scoring function q,
the greedy algorithm starts with an empty order ω and then iteratively
appends the heuristic with the highest score under q and updates the re-
maining cost function cost until all heuristics are part of ω. If there are
multiple heuristics with the same score, we break ties arbitrarily.

Comparison of Scoring Functions We evaluate the ordering algorithm
and the three scoring functions in a small experiment. For each task in
our benchmark set we compute the three different dynamic greedy orders
for the initial state and a random order. In Table 8.2, we can see that qh
(maximizing heuristic values) and qstolen (minimizing the sum of stolen
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random h stolen h
stolen

random – 309 391 109

h 772 – 619 262

stolen 662 467 – 78

h
stolen 964 601 830 –

Table 8.2: Pairwise comparison of random orders and dynamic greedy orders us-
ing different scoring functions. The entry in row r and column c holds
the number of tasks in which order r yields a heuristic with a higher
heuristic estimate for the initial state than order c. For each comparison
we highlight the order with more such tasks in bold.

Algorithm 9 Static greedy ordering algorithm. Given a set of admissible
heuristics H, a cost function cost, a state s and a scoring function q, sorts
the heuristics by their respective scores in descending order.

1: function StaticGreedyOrder(H, cost, s, q)
2: return 〈h1, . . . , hn〉 ∈ Ω(H) with q(hi, cost, s) ≥ q(hi+1, cost, s)

costs) usually yield better orders than random orders for the initial state.
However, there are many tasks where using random orders is preferable to
using qh or qstolen. Between the two functions there is a slight advantage for
qh. However, combining the two functions in q h

stolen
leads to higher estimates

in the vast majority of tasks compared to all other scoring functions and
random orders. Due to these results we only use the scoring function q h

stolen
below.

The dynamic ordering algorithm has the drawback that all heuristic es-
timates and all minimum saturated cost functions have to be recomputed
for all remaining heuristics H in each iteration. For each heuristic this en-
tails running a uniform cost search in the associated abstract transition
system, which can take seconds for very large abstractions. Since order-
ing n heuristics involves running n(n − 1)/2 uniform cost searches, this
quadratic scaling behavior can lead to one algorithm run taking minutes.

Static Greedy Orders By removing line 7 from Algorithm 8 we obtain
a static version of the ordering algorithm. It precomputes the heuristic
estimate and saturated cost function for each heuristic once and always
returns a greedy order in less than 0.1 seconds. Since the static greedy
ordering algorithm does not iteratively update the cost function, we can
rewrite the algorithm without using a while loop as shown in Algorithm 9.

We compare dynamic and static greedy orders empirically by comput-
ing both orders for the initial state of each task in our benchmark set. The
top left 3× 3 subtable in Table 8.3 compares the resulting heuristic values
for the initial state between dynamic and static orders. Both greedy orders
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random – 109 199 0 6 28

dynamic 964 – 451 195 0 40

static 860 134 – 161 7 0

random-opt-1000s 1119 536 714 – 75 109

dynamic-opt-1000s 1069 640 756 315 – 141
static-opt-1000s 1115 602 785 316 105 –

Table 8.3: Pairwise comparison of algorithms ordering heuristics for saturated
cost partitioning. The entry in row r and column c holds the number
of tasks in which algorithm r yields a heuristic with a higher heuristic
estimate for the initial state than algorithm c. For each comparison we
highlight the algorithm with more such tasks in bold. The *-opt-1000s
orders are optimized with hill climbing for at most 1000 seconds.

outperform random orders by a clear margin, but the dynamic version has
an edge over the static one: the former produces a better order than the
latter for 451 tasks, while the opposite is the case for only 134 tasks.

As noted above, the higher heuristic values come at a price though. Fig-
ure 8.4 shows that static greedy orders are found much faster than dy-
namic greedy orders for all evaluated tasks, often by a margin of several
orders of magnitude. While we can compute a static greedy order in under
one millisecond for the majority of tasks, there are many tasks for which
we fail to compute a dynamic greedy order in 30 minutes.

Computing orders quickly will be essential in later experiments but we
also want orders that result in accurate heuristics. Therefore, the next sec-
tion considers both dynamic greedy orders, which are slower to compute
but result in more accurate heuristics, and static greedy orders, which are
faster to compute but yield less accurate heuristics.

8.4 Optimized Orders

When solving an optimization problem, finding a greedy order is often
just the first step. To further optimize an order ω for a given state s
and cost function cost, we propose a hill-climbing search in the space of
orders. Starting from the incumbent order ω, we generate neighboring
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Figure 8.4: Time in seconds for computing a single dynamic greedy and static
greedy order (excluding the time for computing a saturated cost par-
titioning). Each cross corresponds to a task from the benchmark set.

orders by switching any two positions in ω. More precisely, we switch
positions 1 and 2, 1 and 3, . . . , 1 and n, 2 and 3, 2 and 4, . . . , 2 and
n, etc. This two-exchange neighborhood is common for local search opti-
mization algorithms (Pisinger and Ropke 2010) and guarantees that all
orders can be reached from any initial order. The first neighbor ω′ with
hSCP

ω′ (s, cost) > hSCP
ω (s, cost) becomes the new incumbent. We repeat this

procedure until no neighbor is better than the incumbent or until a time-
out is reached.

In addition to this simple hill climbing version, we also experimented
with steepest-ascent hill climbing. The difference between the two versions
is that the former commits to the first improving neighbor immediately,
while the latter evaluates all neighbors before choosing the best neighbor.
The quality of the resulting orders is roughly the same for both hill climb-
ing variants, but steepest-ascent hill climbing usually needs more time to
find them. This is not surprising since it has to evaluate (n

2) = n(n− 1)/2
neighbors in each iteration, where n is the number of heuristics. Due to
this result, we only use simple hill climbing below.

Example Figure 8.5 shows an example run of the hill climbing algorithm
optimizing the order of three heuristics h1, h2 and h3. In our example the
first incumbent order is 〈h3, h2, h1〉 with a heuristic value of 5 for the given
state s and cost function cost. Its first neighboring order 〈h3, h2, h1〉 yields
a lower heuristic value, so we turn to the next neighbor 〈h1, h3, h2〉. This
order yields a higher heuristic value (hSCP

〈h1,h3,h2〉(s, cost) = 7) than the in-
cumbent order, so we make 〈h1, h3, h2〉 the new incumbent3. In the next

3 Notice that this leads to skipping the third neighbor 〈h2, h1, h3〉. In contrast, steepest-ascent
hill climbing would evaluate all neighbors.
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ω = 〈h2, h3, h1〉, hSCP
ω : 5

ω = 〈h3, h2, h1〉, hSCP
ω : 4 ω = 〈h1, h3, h2〉, hSCP

ω : 7

ω = 〈h3, h1, h2〉, hSCP
ω : 8

ω = 〈h1, h3, h2〉, hSCP
ω : 7 ω = 〈h2, h1, h3〉, hSCP

ω : 5 ω = 〈h3, h2, h1〉, hSCP
ω : 4

Figure 8.5: Example run of the hill climbing algorithm optimizing the order of
three heuristics. We highlight the incumbent order in each iteration of
the hill climbing algorithm.

Time limit 0s 1s 5s 10s 50s 100s 500s 1000s 1500s

random-opt 854 883 898 901 925 929 934 937 929

dynamic-opt 929 935 939 939 948 950 941 928 893

static-opt 938 947 959 960 969 972 974 977 969

Table 8.4: Number of solved tasks by saturated cost partitioning using different
ordering algorithms and optimization timeouts.

round, the first neighbor 〈h3, h1, h2〉 becomes the new incumbent. After-
wards, none of the neighbors improves upon the incumbent, so we abort
the procedure and return the incumbent 〈h3, h1, h2〉.

Table 8.4 compares the number of solved tasks for random, dynamic
greedy and static greedy orders using different optimization time limits.
For time limits up to 500 seconds dynamic greedy orders are preferable
to random orders. For higher time limits, random orders lead to a higher
coverage than dynamic greedy orders. Static greedy orders solve as many
or more tasks than dynamic greedy orders and random orders for all eval-
uated time limits. Random and static greedy orders reach the maximum
coverage score when using at most 1000 seconds for hill climbing. For
dynamic greedy orders 100 seconds of optimization work best.

As can be expected, random orders benefit from optimization the most.
Non-optimized random orders solve 854 tasks, whereas random orders
optimized for 1000 seconds solve 937 tasks, a difference of 83 tasks. For
dynamic and static greedy orders the maximum difference amounts to 21

and 39 additionally solved tasks, respectively.
In Table 8.3, we compare orders optimized for 1000 seconds to their non-

optimized counterparts. Depending on whether we start with a random,
dynamic greedy or static greedy order, 1119, 640 and 785 tasks benefit from
the optimization. The results also show that optimization almost cancels
out the advantage that non-optimized dynamic greedy orders have over
non-optimized static greedy ones: optimized dynamic greedy orders are
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s1 s2 s3 s4
o1, o2 o1 o2

s1 s2 s3 s4
o1, o2 o1

o2

s1 s2 s3s4
o1, o2

o1

o2

Figure 8.6: Concrete transition system T (top) with abstraction heuristics h1 (mid-
dle) and h2 (bottom) used in the proof of Theorem 8.2. All labels have
cost 1.

better than optimized static greedy orders in 141 tasks, but the opposite is
true in 105 tasks as well.

Optimizing random orders often produces higher estimates compared
to using non-optimized dynamic greedy orders (536 vs. 195 tasks). How-
ever, optimized dynamic greedy orders are usually preferable to optimized
random orders (315 vs. 75 tasks). We can see a similar picture when com-
paring static greedy orders to random orders. This shows that for obtain-
ing a good order it is beneficial to start with a greedy order and optimize
it afterwards.

In the experiments below it is even more important to find good orders
quickly. Since the computation of dynamic greedy orders takes very long
and static greedy orders lead to solving more tasks than dynamic greedy
orders, we only use static greedy orders in the following experiments and
often refer to them simply as “greedy orders”.

8.5 Online Orders

So far, we have focused on finding an order for a single state. However, as
stated above, we need an order that provides good guidance for all states
encountered during search. Unfortunately, such an order does not always
exist.

Theorem 8.2
There exist regular fixed-cost transition systems 〈T , cost〉, sets of cost-monotonic
admissible heuristics H for T and states s, s′ ∈ S(T ) such that hSCP

ω (s) > 0,
hSCP

ω′ (s′) > 0, and hSCP
ω′′ (s) = hSCP

ω′′′ (s
′) = 0 for two orders ω, ω′ ∈ Ω(H) and all

orders ω′′, ω′′′ ∈ Ω(H) with ω′′ 6= ω and ω′′′ 6= ω′.
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Figure 8.7: Comparison of hSCP
static-opt-1000s and hSCP

online. Each 〈x, y〉 point corresponds

to a task for which hSCP
static-opt-1000s returns a value of x and hSCP

online returns

x · y. Therefore, points below y = 1 correspond to tasks where hSCP
online

yields a lower value than hSCP
static-opt-1000s. We exclude tasks for which

any of the two algorithms needs less than 1000 evaluations. Note that
all axes use a log scale.

Proof. Consider the concrete transition system T and abstraction heuristics
h1 and h2 for T in Figure 8.6. We have hSCP

〈h1,h2〉(s2) = 1, hSCP
〈h2,h1〉(s2) = 0,

hSCP
〈h1,h2〉(s3) = 0, and hSCP

〈h2,h1〉(s3) = 1.

Theorem 8.2 implies that there are sets of heuristics where no single
order yields accurate heuristic estimates for all states. One approach to
overcome this problem is to compute a static greedy order and the corre-
sponding saturated cost partitioning in every evaluated state. We hypoth-
esize that this computation is very expensive by itself, so we do not spend
additional time to optimize the greedy orders.

The resulting heuristic, called hSCP
online, solves 676 tasks in total, 301 fewer

tasks than the best saturated cost partitioning heuristic we have seen so
far, hSCP

static-opt-1000s. The difference in coverage stems from the fact that com-
puting a saturated cost partitioning indeed slows down the evaluation sig-
nificantly. Figure 8.7a compares the number of evaluations per second be-
tween hSCP

static-opt-1000s and hSCP
online. The evaluation is always at least ten times

slower for the online version and for many tasks it is more than three or-
ders of magnitude slower. The online version produces somewhat more
accurate estimates, as shown in Figure 8.7b, but this is not enough to com-
pensate for the reduced evaluation speed.

Memory, on the other hand, is not a limiting factor for hSCP
online. Even

though the algorithm has to hold all abstract transition systems in memory
during the search, hSCP

online never fails to find a plan due to running out of
memory.
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Our findings for hSCP
online are in line with other results from the litera-

ture which already contains many examples of situations where increased
heuristic accuracy does not compensate for the additional computation
time spent at every evaluated state (e.g., Karpas et al. 2011; Seipp et al.
2015).
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M U LT I P L E O R D E R S

Since Section 8.5 showed that computing saturated cost partitionings on-
line for every evaluated state is too slow in practice, we pursue an alter-
native with a good tradeoff between heuristic accuracy and computation
time by generating heuristics for multiple orders and using the maximum
over their estimates in each state.

Generating Multiple Greedy Orders To obtain N greedy orders, we
sample N states and compute a greedy order for each of them. We use
the sampling procedure by Haslum et al. (2007), using hSCP

static to estimate
the plan cost and to avoid using samples s with hSCP

static(s, cost) = ∞. A
slight modification of the sampling procedure turned out to have a notice-
able effect in preliminary experiments: the resulting heuristics were much
stronger in a few domains if we ensured that the initial state was part of
the samples. This makes sense if we consider that a state-sampling pro-
cedure should ideally return states that are similar to the ones expanded
during search. Since the initial state is guaranteed to be expanded, it is
beneficial to include it in the set of sample states and we do so in all ex-
periments below.

Table 9.1 shows the total coverage scores of saturated cost partitioning
heuristics maximizing over N orders optimized for at most X seconds for
various values of N and X. We analyze the two dimensions N and X in
isolation before looking at their interaction.

Orders 1 2 5 10 20 50 100 200 500

static 938 967 1004 1027 1037 1038 1035 1013 947

static-opt-1s 947 982 1013 1036 1047 1042 1032 1002 919

static-opt-5s 959 978 1017 1039 1053 1044 1033 972 –
static-opt-10s 960 986 1019 1044 1055 1049 1012 324 –
static-opt-50s 969 993 1033 1051 1055 458 – – –
static-opt-100s 972 994 1034 1049 544 457 – – –
static-opt-500s 974 996 663 – – – – – –

Table 9.1: Number of solved tasks when maximizing over saturated cost parti-
tioning heuristics for multiple optimized static greedy orders using dif-
ferent optimization time limits. The static-opt-Xs orders are optimized
with hill climbing for at most X seconds.
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Multiple Orders First, we investigate the impact of changing the num-
ber of orders (rows in Table 9.1). The number of solved tasks increases
steadily when going from 1 to 50 non-optimized static greedy orders. Af-
terwards, coverage drops steadily again. The difference between the max-
imum number of solved tasks and the number of solved tasks by a single
order is striking. A single greedy order leads to solving 938 tasks, while
using 50 greedy orders leads to solving 1038 tasks, an improvement of
100 tasks. For optimized greedy orders the results are similar: using more
than one optimized order is highly beneficial for all tested optimization
time limits.

Optimization Next, we look at the influence of optimization on the qual-
ity of the resulting heuristics (columns in Table 9.1). The first column re-
peats the values from the “static-opt” row in Table 8.4. As we saw there,
optimizing a single order increases the coverage score. The same result
holds when optimizing multiple orders, however the difference in cover-
age is smaller. This is no surprise, since multiple non-optimized orders
already solve many more tasks than single orders. Starting with 20 greedy
orders and optimizing them for 10 seconds raises the number of solved
tasks from 1037 to 1055. If we optimize for too long, coverage decreases
again.

Optimization vs. Multiple Orders Last, we inspect how the number of
orders and the optimization time limit interact. As expected, if we use
more orders, we need to shorten optimization times. Otherwise, there is
not enough time for the A∗ search. The results also show that using multi-
ple orders is much more important than optimizing them. For example, if
we want to use 10 seconds for computing optimized greedy orders, we can
optimize 1 order for 10 seconds and solve 960 tasks, 2 orders for 5 seconds
and solve 978 tasks, or 10 orders for 1 second and solve 1036 tasks.

Overall, the heuristics with the highest total coverage use 20 optimized
static greedy orders. For these heuristics, 10 seconds and 50 seconds of
optimization both lead to solving 1055 tasks.

Accuracy vs. Evaluation Time We saw above that using more than
20 greedy orders optimized for 10 seconds leads to fewer solved tasks.
Adding an order to an existing set of orders can only increase the accu-
racy of the resulting heuristic. Since coverage decreases when using more
than 20 optimized orders, the gain in accuracy from including additional
orders must be outweighed by the increased computational and memory
cost. To test this hypothesis, we compare hSCP

20-static-opt-10s and hSCP
100-static-opt-10s

in Figure 9.1. The left plot (Figure 9.1a) shows the number of evaluations
hSCP

100-static-opt-10s makes per second, relative to the number of evaluations
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Figure 9.1: Comparison of 20 and 100 saturated cost partitioning heuristics us-
ing optimized static greedy orders. Each 〈x, y〉 point corresponds to a
task for which hSCP

20-static-opt-10s has a value of x and hSCP
100-static-opt-10s has

a value of x · y. Therefore, points below y = 1 correspond to tasks
where hSCP

20-static-opt-10s has a higher value than hSCP
100-static-opt-10s. We ex-

clude tasks for which any of the two algorithms needs less than 1000

evaluations. Note that the x axis uses a log scale in both plots.

per second by hSCP
20-static-opt-10s. The evaluation speed drops visibly for the

vast majority of tasks when adding another 80 optimized greedy orders.
For 436 of the 543 commonly solved tasks with at least 1000 evaluations
the evaluation speed of hSCP

100-static-opt-10s drops below 75% of the speed
of hSCP

20-static-opt-10s. One might expect that evaluating hSCP
100-static-opt-10s takes

roughly five times as long as evaluating hSCP
20-static-opt-10s, but a significant

amount of time is used to look up the abstract states that a given concrete
state is mapped to. The time for these computations is independent of the
number of orders.

Figure 9.1b reveals that the number of expansions excluding the last f
layer remains roughly the same for the majority of tasks and only for 76

of the 543 commonly solved tasks with at least 1000 evaluations the num-
ber of expansions decreases by more than 75%. Together, the two plots in
Figure 9.1 show that indeed the increase in accuracy does not compensate
for the additional evaluation time.

Accuracy vs. Memory Usage In addition to being slower to evaluate,
using more orders also results in higher memory usage, since we have
to store the abstract goal distances of each abstraction heuristic under
each cost partitioning. However, since we use sparse orders and a moder-
ately high memory limit of 3.5 GiB, memory does not affect the coverage
score of hSCP

100-static-opt-10s: for all 52 tasks solved by hSCP
20-static-opt-10s but not by
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Figure 9.2: Percentage of probably useful orders for 20 optimized greedy orders
(hSCP

20-static-opt-10s) and diverse orders with a diversification time limit of

200 seconds (hSCP
div ). We exclude tasks for which any of the two heuris-

tics uses fewer than 1000 expansions. The area of each circle is propor-
tional to the number of tasks that it represents.

hSCP
100-static-opt-10s, hSCP

100-static-opt-10s runs out of time and never hits the memory
limit.

Probably Useful Orders Our analysis suggests that once the set of or-
ders Ω reaches a certain size, many orders will not contribute to the overall
heuristic. To test this hypothesis, we keep track of the sets of orders that
induce the highest heuristic estimates for each encountered state. We say
that all orders in the minimal hitting set1 of these sets are useful for the
search, and all others are useless. The intuition behind this definition is
that a search with a heuristic that discards all heuristics based on useless
orders evaluates exactly the same states as a search with all heuristics.

As the computation of a minimum hitting set is NP-complete (Karp
1972), we approximate it by using a greedy algorithm that treats the set
of orders Ω as a sequence 〈ω1, . . . , ωn〉 (any order suffices). Let 〈T , cost〉
be a fixed-cost transition system. Then an order ωi is probably useful for
state s ∈ S(T ) if it is the first order in the sequence that maximizes
the heuristic value, i.e., hSCP

ωi
(s, cost) > hSCP

ωj
(s, cost) for all j < i, and

hSCP
ωi

(s, cost) ≥ hSCP
ωj

(s, cost) for all j > i. We call all orders that are probably
useful for at least one state encountered during search probably useful. The
set of probably useful orders is a hitting set, but not necessarily a minimal
one. It therefore serves as an upper bound on the number of orders that
contribute to the search.

1 We can break ties arbitrarily, so for the sake of simplicity, we assume that there is exactly
one minimal hitting set.
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Figure 9.2 compares the percentage of probably useful orders for
two different heuristics. For the moment, we are only interested in the
hSCP

20-static-opt-10s heuristic on the x-axis, which shows the percentage of prob-
ably useful orders out of 20 optimized greedy orders. As we can see, even
the strongest saturated cost partitioning heuristic we have described so far,
hSCP

20-static-opt-10s, contains many useless orders. In 35% of the solved tasks at
most 20% of the orders are probably useful and in 61% of the solved tasks
at most 40% of the orders are probably useful. If we take into account that
these numbers are an upper bound on the real number of useful orders,
we can confirm that it is rarely useful to add another order to an already
sufficiently large set of orders. This raises the question of how to choose a
good number of orders, which we focus on next.

9.1 Diverse Orders

The analysis of probably useful orders not only explains why additional
orders lead to a lower coverage once Ω reaches a certain size, but it also
shows that the convincing results by using multiple greedy orders are ob-
tained despite having a large number of useless orders in Ω. Removing the
useless orders from Ω would result in faster heuristic evaluation without
loss of information, and replacing them with useful orders would result in
a more accurate heuristic.

Unfortunately, we can only decide whether an order is useful once the
search has terminated. We therefore use the sampling procedure from
above to generate a set Ŝ of 1000 sample states. This sample set serves
as a proxy for the real set of states encountered during the search.

Diversification Algorithm We propose the following algorithm for find-
ing a diverse set of useful orders Ω: first, we initialize Ω to be the empty
set. Afterwards, until a given time limit T is reached, we iteratively gener-
ate a new order ω, add it to Ω if hSCP

ω (s, cost) > maxω′∈Ω hSCP
ω′ (s, cost) for

at least one state s ∈ Ŝ and the original cost function cost, and discard it
otherwise.

This diversification approach has the drawback that it keeps early-found
orders with higher probability, even if they are dominated on all sample
states by a later-found order. We also experimented with more sophis-
ticated methods but the resulting heuristics were weaker than the ones
produced by the diversification procedure above. For example, when we
computed a minimal hitting set of orders for the set of samples, the result-
ing set often contained too few orders. These orders are enough to cover
the set of sample states, but other orders which do not have any benefit on
the sample set may actually be useful during search.
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Diversification time 0s 1s 10s 50s 100s 200s 500s 1000s 1500s

Coverage (1667) 938 1034 1049 1057 1061 1061 1061 1055 1033

Table 9.2: Number of solved tasks by diverse saturated cost partitioning heuristics
for static greedy orders using different diversification time limits. The
configuration in the left-most column uses a single (non-diverse) order.
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opt-0s – 3 2 5 5 6 8 11 14 1061

opt-1s 2 – 0 4 5 7 9 12 15 1060

opt-2s 3 1 – 4 5 7 9 12 15 1063
opt-5s 2 1 0 – 3 5 6 9 12 1056

opt-10s 3 2 1 2 – 3 6 9 12 1056

opt-20s 3 3 3 4 3 – 5 9 12 1047

opt-50s 2 3 3 4 2 1 – 7 11 1026

opt-100s 2 3 3 3 2 1 0 – 7 1004

opt-200s 2 2 2 2 2 1 0 0 – 979

Table 9.3: Domain-wise coverage comparison of saturated cost partitioning heuris-
tics diversified for 200 seconds using different optimization time limits.

Number of Diverse Orders During the diversification process we do
not impose any limit on the number of kept orders and instead let the
algorithm find a good size for Ω automatically. In principle, this could
lead to using too many orders and therefore slowing down the evalua-
tion too much. However, we hypothesize that if we find another diverse
order for the relatively small set of samples, chances are high that it will
prove useful during the A∗ search as well. We confirmed this hypothesis
in preliminary experiments by limiting the number of orders that the di-
versification method produces. For all tested values of |Ω| ≥ 20 the total
coverage was almost identical to the number of solved tasks without any
size limit on Ω.

We evaluate the diversification procedure using static greedy orders. Ta-
ble 9.2 shows the total number of tasks solved by the resulting heuristic
hSCP

div-static for various diversification time limits T. It solves more tasks with
increasing T until it reaches the peak of 1061 solved tasks at T = 100–500

seconds. Afterwards, coverage decreases again.
We saw in Table 9.1 that the best configuration using non-optimized

greedy orders solves 1038 tasks. By diversifying non-optimized greedy or-
ders we are able to raise the total coverage by 23 tasks. In the next experi-
ment, we evaluate whether optimized greedy orders also benefit from diver-
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sification. We use a fixed diversification time limit of 200 seconds, but vary
the time for hill climbing in the space of orders. Figure 9.3 holds coverage
results. Two seconds of hill climbing is the setting that yields the strongest
heuristic in both a domain-wise and overall coverage comparison. We use
the name hSCP

div for this configuration (200 seconds of diversification and at
most 2 seconds of optimization for each greedy order). It solves 1063 of
the 1667 tasks in our benchmark set, 8 tasks more than hSCP

20-static-opt-10s, the
best configuration using a fixed number of non-diverse optimized greedy
orders.

We believe that one of the reasons for hSCP
div solving more tasks than

hSCP
20-static-opt-10s is that the selected orders are more diverse, and hence there

are fewer relevant states where the heuristic guidance of hSCP
div is poor. This

is true even though the average size of Ω is slightly lower for hSCP
div (arith-

metic mean: 13.59 orders), compared to 20 optimized greedy orders. For
271 tasks, only a single order is chosen, and for 11 tasks at least 80 orders
are selected during diversification. Even though the percentage of useful
orders can be expected to be larger if Ω is smaller, the difference does
not make up for the vastly superior impression that can be seen in Fig-
ure 9.2: the percentage of probably useful orders of hSCP

div is higher than for
hSCP

20-static-opt-10s in almost all tasks. Moreover, for 95% of the analyzed tasks
more than 60% of the orders of hSCP

div are probably useful, and there is even
a significant amount of tasks (75%) where almost all orders of hSCP

div (more
than 95%) are probably useful.

Related Work Maximizing over multiple saturated cost partitioning
heuristics is similar to the approach by Karpas et al. (2011), who maxi-
mize over multiple precomputed optimal cost partitioning heuristics. Our
method has the advantage that we never have to compute an optimal
cost partitioning, which can be prohibitively expensive even for a single
computation. Their approach works in practice when using implicit ab-
stractions but it requires too much time and memory for our explicitly
represented abstraction heuristics: there are 620 tasks solved by hSCP

div for
which computing even a single optimal cost partitioning is infeasible
within 30 minutes and 3.5 GiB. For these tasks, hOCP runs out of time in
359 cases and exceeds the memory limit 261 times.

Choosing a set of diverse saturated cost partitioning heuristics is an
instance of the heuristic subset selection problem (e.g., Lelis et al. 2016). It
would be interesting to see whether more advanced techniques than our
diversification procedure are able to produce stronger overall heuristics.
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hSCP
random hSCP

static hSCP
static-
opt-1000s

hSCP
20-static-
opt-10s

hSCP
div

airport (50) 25 29 32 30 30

barman (34) 4 4 4 4 4
blocks (35) 23 28 28 28 28
childsnack (20) 0 0 0 0 0
depot (22) 11 12 12 12 13
driverlog (20) 13 14 15 15 15
elevators (50) 33 37 42 44 44
floortile (40) 5 5 4 6 6
freecell (80) 36 61 61 64 65
ged (20) 15 15 15 19 19
grid (5) 3 3 3 3 3
gripper (20) 8 8 8 8 8
hiking (20) 13 13 13 14 14
logistics (63) 25 28 29 36 37
miconic (150) 86 87 87 138 144
movie (30) 30 30 30 30 30
mprime (35) 27 28 30 31 31
mystery (30) 19 18 19 19 19
nomystery (20) 16 20 20 20 20
openstacks (100) 50 51 51 51 51
parcprinter (50) 30 29 39 32 32

parking (40) 13 13 13 13 13
pathways (30) 4 4 4 5 5
pegsol (50) 44 48 48 48 48
pipes-nt (50) 21 22 23 24 24
pipes-t (50) 15 16 17 17 18
psr-small (50) 50 50 50 50 50
rovers (40) 8 8 8 8 8
satellite (36) 6 7 7 7 7
scanalyzer (50) 25 23 27 33 33
sokoban (50) 50 50 50 50 50
storage (30) 16 16 16 16 16
tetris (17) 11 11 11 11 11
tidybot (40) 23 23 23 23 23
tpp (30) 7 7 7 8 8
transport (70) 26 32 32 35 35
trucks (30) 9 12 13 13 13
visitall (40) 13 30 30 30 30
woodwork (50) 29 34 44 47 45

zenotravel (20) 12 12 12 13 13

Sum (1667) 854 938 977 1055 1063

Table 9.4: Number of solved tasks by different saturated cost partitioning heuris-
tics. All heuristics use sparse orders.
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9.2 Summary of Improvements

In this and the previous chapter, we were able to substantially reduce the
memory usage and runtime of saturated cost partitioning heuristics by us-
ing sparse orders. On top of that, the preceding experiments have shown
four major improvements in quality for heuristics based on saturated cost
partitioning: first, by computing a greedy order of heuristics; second, by
optimizing the order of heuristics; third, by considering multiple orders;
and finally, by explicitly searching for diversity among orders. Table 9.4
shows domain-wise and total coverage results for the heuristics that cor-
respond to these improvements. Using a static greedy order instead of a
random one and using 20 optimized static greedy orders instead of a sin-
gle one led to the biggest changes in total coverage: 84 and 78 additionally
solved tasks, respectively. In comparison, optimization and diversification
were responsible for smaller differences in coverage and led to solving
39 and 8 additional tasks. All improvements are already impressive by
themselves, but even more so, given that each of them is able to raise the
total number of solved tasks even after applying the other changes. The
strongest heuristic, hSCP

div , is a huge improvement over the saturated cost
partitioning heuristic we started with in Chapter 8, hSCP

random: hSCP
div solves

as many or more tasks than hSCP
random in all domains and raises the total

coverage score by 209 tasks.



Part III

C O M PA R I S O N O F C O S T PA RT I T I O N I N G
A L G O R I T H M S

Even though cost partitioning is an active field of research,
apart from a few isolated results, no thorough theoretical or ex-
perimental analysis of cost partitioning approaches exists. We
provide such an analysis in the remainder of this thesis. First,
we show that a key ingredient of saturated cost partitioning —
the idea of giving unconsumed costs to other heuristics — can
also be applied to uniform cost partitioning, leading to the new
opportunistic uniform cost partitioning algorithm. Afterwards,
we analyze the theoretical relationships between all cost par-
titioning algorithms presented in this thesis, proving several
dominance and non-dominance results. Finally, we compare
the algorithms experimentally on pattern databases, Cartesian
abstractions and landmark heuristics, showing that saturated
cost partitioning is usually the method of choice on the IPC
benchmark suite.
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T H E O R E T I C A L C O M PA R I S O N

Uniform cost partitioning suffers from the same problem as greedy zero-
one cost partitioning: even if costs are not fully consumed by a heuristic,
they are not offered to other heuristics where the increased cost function
might lead to higher (yet still admissible) estimates.

10.1 Opportunistic Uniform Cost Partitioning

We propose an opportunistic variant that remedies this shortcoming. Like
uniform cost partitioning, we split the label costs evenly among the heu-
ristics affected by a label, but like saturated cost partitioning, we consider
heuristics in sequence, let saturators determine the needed costs and redis-
tribute unneeded costs to the heuristics encountered later in the sequence.

Definition 10.1 Opportunistic uniform cost partitioning.
Let 〈T , cost〉 be a regular fixed-cost transition system, let H be a set of ad-
missible heuristics for T , let 〈h1, . . . , hn〉 ∈ Ω(H) be an order of H and let
〈saturate1, . . . , saturaten〉 be corresponding saturators. The opportunistic uni-
form cost partitioning C = 〈cost1, . . . , costn〉, the remaining cost functions
〈remain0, . . . , remainn〉 and the offered cost functions 〈c̃ost1, . . . , c̃ostn〉 are de-
fined by

remain0 = cost

c̃osti(l) =

{ remaini−1(l)
|{h∈{hi ,...,hn}|l∈A(h)}| if l ∈ A(hi)

0 otherwise
for all l ∈ L(T )

costi = saturatei(c̃osti)

remaini = remaini−1 − costi

We write hOUCP
ω for the heuristic that is cost-partitioned by opportunistic uniform

cost partitioning for order ω.

Example Consider again the two abstraction heuristics h1 and h2 and the
original cost function cost = 〈4, 1, 4, 1〉 from Figure 3.1 on p. 15. To compute
an opportunistic uniform cost partitioning, we need to order the heuristics.
If we use the order 〈h1, h2〉, h1 is offered c̃ost1 = 〈2, 0, 2, 1〉, the same as
when using uniform cost partitioning. The minimum saturated cost func-
tion saturateh1(c̃ost1) = 〈2, 0, 1, 1〉 tells us that we can reduce the cost of
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operator o3 from 2 to 1 without affecting any heuristic values of h1. Conse-
quently, we offer c̃ost2 = 〈2, 1, 3, 0〉 to h2. Again, the heuristic does not need
all of the offered costs for its estimates: saturateh2(c̃ost2) = 〈1, 1, 3, 0〉. Under
the two saturated cost functions we have hOUCP

〈h1,h2〉(s1, cost) = 3 + 4 = 7. The
heuristic value for s1 remains the same if we change the order of the two
heuristics. However, we have hOUCP

〈h1,h2〉(s3, cost) = 4 and hOUCP
〈h2,h1〉(s3, cost) = 3.

10.2 Dominances and Non-dominances

We begin with two theorems showing that saving unused costs is beneficial
with cost-monotonic heuristics.

Theorem 10.1 hSCP ≥ hGZOCP.
Let 〈T , cost〉 be a regular fixed-cost transition system and let H be a set of cost-
monotonic admissible heuristics for T . Then hSCP

ω (s, cost) ≥ hGZOCP
ω (s, cost) for

all orders ω ∈ Ω(H) and all s ∈ S(T ). Moreover, there are cases where the
inequality is strict for some s ∈ S(T ) and all orders ω ∈ Ω(H).

Proof. For the second part, the abstraction heuristics H and cost function
cost in Figure 3.1 on p. 15 provide an example with hSCP

ω (s1, cost) = 8 and
hGZOCP

ω (s1, cost) = 5 for all ω ∈ Ω(H).
For the first part, we show that the stronger result hSCP

ω′ (s, cost′) ≥
hGZOCP

ω′ (s, cost′′) holds for all states s ∈ S(T ), all orders of admissible cost-
monotonic heuristics ω′ and non-negative cost functions cost′, cost′′ ∈ C(T )
with cost′ ≥ cost′′. The theorem follows from the case ω = ω′ and
cost = cost′ = cost′′.

Strengthening the claim allows proving the result by induction over the
length of ω′. For the empty sequence ω′, both heuristics are 0, so the
inequality holds trivially.

Otherwise decompose ω′ into the first component h1 and remaining se-
quence ω′′. The value contributed by h1 to hSCP

ω′ (s, cost′) is h1(s, cost′) by
definition of saturated cost. The value contributed by h1 to hGZOCP

ω′ (s, cost′′)
is h1(s, cost′′) because h1 receives the full operator costs from cost′′ for
all labels affecting h1. We get h1(s, cost′) ≥ h1(s, cost′′) because h1 is cost-
monotonic.

For labels that do not affect h1, both algorithms assign cost 0 to h1, and
hence the remaining costs for ω′′ are at least as large under saturated cost
partitioning as under greedy zero-one cost partitioning. For labels that
affect h1, greedy zero-one cost partitioning uses up the whole cost for h1,
so the remaining costs for ω′′ are again at least as large under saturated
cost partitioning as under greedy zero-one cost partitioning because the
latter are 0. By the induction hypothesis, the heuristic value contributed
by ω′ is then at least as large for saturated cost partitioning as for greedy
zero-one cost partitioning, concluding the proof.
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Figure 10.1: Abstraction heuristics used in the proof of Theorem 10.3. The con-
crete initial state s0 is {x 7→ 0, y 7→ 0, z 7→ 0}. The cost function is
cost = 〈1, 1, 1〉, i.e., all operators cost 1.

s1,s2,s3 s4 s5

o1

o3 o2

s1 s2,s4 s3 s5

o3

o1

o2

Figure 10.2: Abstraction heuristics used in the proofs of Theorems 10.3 and 10.5.
The cost function is cost = 〈4, 1, 1〉, i.e., operator o1 costs 4 while o2
and o3 cost 1.

Theorem 10.2 hOUCP ≥ hUCP.
Let 〈T , cost〉 be a regular fixed-cost transition system and let H be a set of cost-
monotonic admissible heuristics for T . Then hOUCP

ω (s, cost) ≥ hUCP(s, cost) for
all orders ω ∈ Ω(H) and all s ∈ S(T ). Moreover, there are cases where the
inequality is strict for some s ∈ S and all orders ω ∈ Ω(H).

Proof. For the second part, the abstraction heuristics H and cost function
cost in Figure 3.1 on p. 15 provide an example with hOUCP

ω (s1, cost) = 7 for
all ω ∈ Ω(H) and hUCP(s1, cost) = 6.

The proof of the first part is analogous to the proof of Theorem 10.1.
The only difference is that only a fraction of the label cost of a label l
affecting h1 may be used for h1, but because this fraction is the same for
both uniform cost partitioning variants (1/k, where k is the number of
heuristics in ω′ affected by l), this does not make a difference to the proof
argument.

We now know that there are three cost partitioning algorithms – satu-
rated cost partitioning, opportunistic uniform cost partitioning and post-
hoc optimization – that dominate one of the other three discussed algo-
rithms. Next, we show that none of these three dominating algorithms
dominates any of the other two.

Theorem 10.3 Comparison of hSCP, hOUCP, and hPhO.
For each of the following pairs of cost partitioning algorithms, there exists a regu-
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lar fixed-cost transition system 〈T , cost〉 and a set of admissible heuristics H for
T such that

hOUCP
ω (s, cost) > hSCP

ω (s, cost) (10.1)

hSCP
ω (s, cost) > hOUCP

ω (s, cost) (10.2)

hPhO(s, cost) > hSCP
ω (s, cost) (10.3)

hSCP
ω (s, cost) > hPhO(s, cost) (10.4)

hPhO(s, cost) > hOUCP
ω (s, cost) (10.5)

hOUCP
ω (s, cost) > hPhO(s, cost) (10.6)

for a state s ∈ S(T ) and all orders ω ∈ Ω(H).

Proof. Consider the two abstraction heuristics H and cost function cost in
Figure 3.1 on p. 15. For all orders ω ∈ Ω(H), we have hSCP

ω (s1, cost) = 8,
hOUCP

ω (s1, cost) = 7 and hPhO(s1, cost) = 5, showing 10.2, 10.4 and 10.6.
Consider the three abstraction heuristics H and cost function cost

in Figure 10.1. For all orders ω ∈ Ω(H), we have hOUCP
ω (s0, cost) =

hPhO(s0, cost) = 0.5 + 0.5 + 0.5 = 1.5 and hSCP
ω (s0, cost) = 1, showing 10.1

and 10.3.
Consider the two abstraction heuristics H and cost function cost in

Figure 10.2. We have hPhO(s1, cost) = 4 and for all orders ω ∈ Ω(H),
hOUCP

ω (s1, cost) = 3.5, showing 10.5.

Next, we analyze the relationship of greedy zero-one cost partitioning to
other cost partitioning algorithms. We already know that it is dominated
by saturated cost partitioning. Now, we show that there is also a connec-
tion to the canonical heuristic and its maximal independent subsets.

Theorem 10.4 hGZOCP ≥ Maximal Independent Subset.
Let 〈T , cost〉 be a regular fixed-cost transition system, let H be a set of admissible
heuristics for T and let σ ∈ MIS(H) be a maximal independent subset of H.
Then there is an order ω ∈ Ω(H) with hGZOCP

ω (s, cost) ≥ ∑h∈σ h(s, cost) for all
states s ∈ S(T ). Moreover, there are cases where the inequality is strict for some
state s′ ∈ S(T ).

Proof. For a maximal independent subset σ ∈ MIS(H), let ωσ ∈ Ω(σ) be
any order of σ. Furthermore, let ω ∈ Ω(H) be the concatenation of ωσ and
an arbitrary order of the remaining heuristics H \ σ.

Due to the pairwise independence of all heuristics in σ and therefore
in ωσ, each label l ∈ L(T ) affects at most one heuristic in ωσ. Conse-
quently, the greedy zero-one cost partitioning for ωσ gives the full cost of
all labels that affect a heuristic h ∈ ωσ to h and we have hGZOCP

ωσ
(s, cost) =

∑h∈ωσ
h(s, cost) for all states s ∈ S(T ).
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Since we can assume that all heuristics in H only return non-negative
values (any negative heuristic value for a regular transition system can
be increased to 0 without sacrificing admissibility), appending heuris-
tics to ωσ can only increase the resulting heuristic value and we have
hGZOCP

ω (s, cost) ≥ hGZOCP
ωσ

(s, cost) for all states s ∈ S(T ).
As a result, hGZOCP

ω (s, cost) ≥ hGZOCP
ωσ

(s, cost) = ∑h∈ωσ
h(s, cost) =

∑h∈σ h(s, cost) for all states s ∈ S(T ), which proves the claim.
For a case where the inequality is strict, consider the example from Fig-

ure 10.2. The two heuristics h1 and h2 are not independent, and there-
fore the maximal independent subsets of H are {h1} and {h2}. We have
h1(s1, cost) = 4 and hGZOCP

〈h1,h2〉 (s1, cost) = 5.

If we construct a suitable order for each maximal independent subset,
as described in the proof of Theorem 10.4, and maximize over the greedy
zero-one cost partitionings computed for these orders in the same way
that hCAN maximizes over independent subsets of heuristics, the resulting
heuristic dominates hCAN.

Theorem 10.5 Maximum Over hGZOCP Heuristics ≥ hCAN.
Let 〈T , cost〉 be a regular fixed-cost transition system and let H be a set of
admissible heuristics for T . Then there is a set of orders Ω ⊆ Ω(H) with
maxω∈Ω hGZOCP

ω (s, cost) ≥ hCAN(s, cost) for all states s ∈ S(T ). Moreover,
there are cases where the inequality is strict for some state s′ ∈ S(T ).

Proof. We start with an empty set of orders Ω. Then for each σ ∈ MIS(H),
we construct an order ω as outlined in the proof of Theorem 10.4 and
add it to Ω. For each state s ∈ S(T ) there is a maximal independent
subset σ ∈ MIS(H) that has the highest heuristic value ∑h∈σ h(s, cost) for
s among all maximal independent subsets. The claim follows from the fact
that Ω contains an order ω for which hGZOCP

ω (s, cost) ≥ ∑h∈σ h(s, cost).
For a case where the inequality is strict, consider the example from

Figure 10.2. The two heuristics h1 and h2 are not independent, and
therefore the set of all maximal independent subsets of H contains each
heuristic individually, yielding hCAN(s1, cost) = max(4, 2) = 4. However,
max(hGZOCP

〈h1,h2〉 (s1, cost), hGZOCP
〈h2,h1〉 (s1, cost)) = max(5, 2) = 5.

Corollary 10.1 Maximum Over hSCP Heuristics ≥ hCAN.
Let 〈T , cost〉 be a regular fixed-cost transition system and let H be a set of
admissible heuristics for T . Then there is a set of orders Ω ⊆ Ω(H) where
maxω∈Ω hSCP

ω (s, cost) ≥ hCAN(s, cost) for all states s ∈ S(T ). Moreover, there
are cases where the inequality is strict for some state s′ ∈ S(T ).

Proof. Follows directly from Theorems 10.1 and 10.5.
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We remark that the canonical heuristic still has an advantage over
hGZOCP and hSCP, namely that it suffices to compute the component heu-
ristics w.r.t. a single cost function. This is different for cost partitioning
algorithms that maximize over a (possibly large) number of orders, with
each order requiring a different cost function for each heuristic. This can
be a concern especially for memory-based heuristics like PDBs, where
each cost function requires a separate PDB.

Greedy Zero-One Cost Partitioning The quality of heuristics based on
greedy zero-one cost partitioning strongly depends on the order in which
the component heuristics are considered. Consequently, we can always
find suitable heuristics and order them in a way so that hGZOCP yields
either a lower or a higher estimate than hUCP, hOUCP, and hPhO.

Theorem 10.6 Comparison of hGZOCP to hUCP, hOUCP, and hPhO.
For each of the following pairs of cost partitioning algorithms, there exists a regu-
lar fixed-cost transition system 〈T , cost〉 and a set of admissible heuristics H for
T such that

hGZOCP(s, cost) > hUCP(s, cost)

hUCP(s, cost) > hGZOCP
ω (s, cost)

hGZOCP
ω (s, cost) > hOUCP

ω (s, cost)

hOUCP
ω (s, cost) > hGZOCP

ω (s, cost)

hGZOCP(s, cost) > hPhO(s, cost)

hPhO(s, cost) > hGZOCP
ω (s, cost)

for a state s ∈ S(T ) and at least one order ω ∈ Ω(H).

Proof. Consider the two heuristics h1 and h2 and cost function cost in Fig-
ure 10.2. We have hGZOCP

〈h2,h1〉 (s1, cost) = 2, hUCP(s1, cost) = hOUCP
〈h1,h2〉(s1, cost) =

hOUCP
〈h2,h1〉(s1, cost) = 3.5, hPhO(s1, cost) = 4 and hGZOCP

〈h1,h2〉 (s1, cost) = 5.

In our final analysis, we investigate the remaining relationships between
(opportunistic) uniform cost partitioning, the canonical heuristic and post-
hoc optimization.

Theorem 10.7 Remaining Comparisons.
For each of the following pairs of cost partitioning algorithms, there exists a regu-
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Figure 10.3: Theoretical relationships between the different cost partitioning algo-
rithms. Successor signs stand for dominances, dashed lines indicate
incomparable algorithm pairs.

lar fixed-cost transition system 〈T , cost〉 and a set of admissible heuristics H for
T such that

hUCP(s, cost) > hPhO(s, cost) (10.7)

hPhO(s, cost) > hUCP(s, cost) (10.8)

hUCP(s, cost) > hCAN(s, cost) (10.9)

hCAN(s, cost) > hUCP(s, cost) (10.10)

hOUCP
ω (s, cost) > hCAN(s, cost) (10.11)

hCAN(s, cost) > hOUCP
ω (s, cost) (10.12)

for a state s ∈ S(T ) and all orders ω ∈ Ω(H).

Proof. Consider the abstraction heuristics H and cost function cost in Fig-
ure 3.1 on p. 15. For all orders ω ∈ Ω(H), we have hOUCP

ω (s1, cost) = 7,
hUCP(s1, cost) = 6, hPhO(s1, cost) = 5 and hCAN(s1, cost) = 5, showing 10.7,
10.9 and 10.11.

Consider the abstraction heuristics H and cost function cost in Fig-
ure 10.2. For all orders ω ∈ Ω(H), we have hOUCP

ω (s1, cost) = 3.5,
hUCP(s1, cost) = 3.5, hPhO(s1, cost) = 4 and hCAN(s1, cost) = 4, showing
10.8, 10.10 and 10.12.

Figure 10.3 illustrates the theoretical relationships between the different
cost partitioning algorithms. This concludes our theoretical investigation,
and we now turn to the experimental analysis.
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E X P E R I M E N TA L C O M PA R I S O N

We showed in Chapter 8 that the order in which saturated cost partitioning
considers the component heuristics greatly influences the quality of the
resulting heuristic. The choice of order is also relevant for opportunistic
uniform cost partitioning and greedy zero-one cost partitioning. Therefore,
we need to decide how to order the component heuristics before we can
evaluate these order-dependent algorithms.

11.1 Heuristic Orders

For saturated cost partitioning we obtained the best orders by using a
greedy algorithm for finding an initial order and then optimizing it with
a hill-climbing search in the space of orders. Before we look into opti-
mization via hill climbing, we analyze whether opportunistic uniform cost
partitioning and greedy-zero one cost partitioning also benefit from using
greedy orders instead of random ones.

We quickly remind the reader of the three greedy ordering variants:

• h: Sort heuristics in descending order by their heuristic value for the
given state.

• stolen: Sort heuristics in ascending order by the amount of costs they
steal from other heuristics.

• h
stolen : Sort heuristics in descending order by their heuristic estimate
divided by the amount of costs they steal from other heuristics.

We showed in Section 8.3 that h
stolen yields the best greedy orders for

saturated cost partitioning. To find the best greedy order for opportunistic
uniform cost partitioning we run a small experiment. For each task in our
benchmark set with initial state s0 and cost function cost we compute a
random and the three greedy orders ω for s0 and compare the resulting
heuristic estimates hOUCP

ω (s0, cost). As in Chapters 8 and 9, we use the
combined set of abstraction heuristics (Comb) for evaluating orders, i.e.,
the union of hill climbing pattern databases, systematic pattern databases
and Cartesian abstraction heuristics.

Table 11.1a compares the resulting heuristic values. For each pair of
orders ω and ω′, the table shows the number of tasks for which ω yields a
higher heuristic than ω′ for the initial state and vice versa. We can see that
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random h stolen h
stolen

random – 1248 358 1055
h 99 – 176 381

stolen 834 1239 – 1144
h

stolen 193 694 34 –

(a) Opportunistic uniform cost partitioning.

random h stolen h
stolen

random – 135 846 552

h 1321 – 1388 1158
stolen 535 194 – 223

h
stolen 737 217 833 –

(b) Greedy zero-one cost partitioning.

Table 11.1: Pairwise comparison of random orders and greedy orders. The entry
in row r and column c holds the number of tasks in which order r
yields a heuristic with a higher heuristic estimate for the initial state
than order c. For each comparison we highlight the order with more
such tasks in bold.

preferring heuristics with high estimates (h) usually yields orders with
lower estimates than random orders. To a lesser extent, the same is true
for the greedy variant that computes the ratio of heuristic estimate divided
by the sum of stolen costs ( h

stolen ). The only greedy order that outperforms
random orders is stolen. We believe that stolen achieves the best results
for hOUCP because it makes hOUCP distribute costs conservatively, while
the other orders may often lead to high cost being used too early. In other
words, stolen puts those heuristics in front for which lots of labels have low
saturated cost. Consequently, these labels can be assigned higher costs in
the heuristics that can actually use high costs.

For greedy zero-one cost partitioning the results are different. Ta-
ble 11.1b shows that basing the ordering on heuristic values is crucial
in this setting. Both h and h

stolen outperform stolen. The greedy algorithm
produces the best orders if it only takes into account the heuristic estimates
(h). This is to be expected, as greedy zero-one cost partitioning does not
reuse any unused costs. Consequently, there is no reason for minimizing
stolen costs.

In summary, each of the three greedy orders is preferable for one of
the three order-dependent cost partitioning algorithms. For opportunistic
uniform cost partitioning it is best to prefer heuristics that steal few costs,
whereas for greedy zero-one cost partitioning one should prefer heuristics
with high estimates. For saturated cost partitioning we obtain the best
orders by combining these two objectives.

Now that we know how to find a good initial order for all order-
dependent cost partitioning algorithms, we look into optimizing the initial
order. For saturated cost partitioning we saw that a limit of 1000 seconds
for optimization works best. In Tables 11.2a and 11.2b we find suitable
limits for hOUCP (500 seconds) and hGZOCP (1000 seconds).

In the experiments below, we find a greedy order for each type of cost
partitioning with its preferred greedy variant G and optimize the order
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(a) Opportunistic uniform cost partitioning.
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(b) Greedy zero-one cost partitioning.

Table 11.2: Number of solved tasks by single-order cost partitioning heuristics
using different optimization time limits.

via hill climbing for its preferred optimization time limit X. We denote the
resulting heuristics by hOUCP

one (G = stolen, X = 500 seconds), hGZOCP
one (G = h,

X = 1000 seconds) and hSCP
one (G = h

stolen , X = 1000 seconds).

Multiple Orders In Chapter 9, we showed for saturated cost parti-
tioning that using multiple orders and maximizing over the produced
cost partitioning heuristics significantly outperforms single-order cost-
partitioned heuristics. In light of this result, the experiments below also
consider versions of hOUCP, hGZOCP and hSCP that maximize over multi-
ple cost-partitioned heuristics. We use the diversification procedure from
Section 9.1 to obtain a diverse set of cost-partitioned heuristics computed
for optimized greedy orders and denote the resulting heuristics by hOUCP

div ,
hGZOCP

div and hSCP
div .

For hSCP
div the best parameter setting uses 200 seconds of diversification

and optimizes each greedy order for at most 2 seconds (see Section 9.1).
We use the same diversification time limit of 200 seconds in our experi-
ments for hOUCP

div and hGZOCP
div . To find the best optimization time limits for

the two heuristics, we compare different values in Tables 11.3a and 11.3b.
The domain-wise and total coverage scores show that for both hOUCP

div and
hGZOCP

div optimizing for 50 seconds works best, so we use this setting in the
experiments below.

Having decided how to compute orders for all order-dependent cost
partitioning algorithms, we are now ready to compare all cost partitioning
algorithms experimentally.

11.2 Abstraction Heuristics

We begin by computing cost partitionings for four different sets of abstrac-
tion heuristics (see Chapter 8 for a description of the heuristics):

• PDBs found by hill climbing (HC)

• PDBs for systematically generated patterns of sizes 1 and 2 (Sys)
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(a) Opportunistic uniform cost partitioning.
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hGZOCP
div-opt-1s – 2 3 3 8 823

hGZOCP
div-opt-5s 0 – 1 1 6 821

hGZOCP
div-opt-10s 2 2 – 1 6 821

hGZOCP
div-opt-50s 5 5 4 – 8 825

hGZOCP
div-opt-100s 3 3 3 1 – 814

(b) Greedy zero-one cost partitioning.

Table 11.3: Domain-wise and total coverage comparison of diverse cost partition-
ing heuristics using different optimization time limits and a fixed di-
versification time limit of 200 seconds. Both tables consist of a left and
right subtable. Left: Pairwise comparison. The entry in row r and col-
umn c holds the number of domains in which algorithm r solved more
tasks than algorithm c. For each algorithm pair we highlight the max-
imum of the entries (r, c) and (c, r) in bold. Right: Total number of
solved tasks by each algorithm.

• Cartesian abstraction heuristics for the landmark and goal task de-
compositions (Cart)

• Combined abstraction heuristics (Comb), i.e., Comb = HC ∪ Sys ∪
Cart.

We list detailed results for the four settings in the appendix (Tables A.1,
A.2, A.3 and A.4). Table 11.4 shows an overview of the results across all
settings. We discuss the questions and results in the table from top to
bottom.

Multiple Orders? The first question we investigate is whether it is ben-
eficial to use multiple orders instead of a single order. For opportunistic
uniform cost partitioning this change is beneficial in some domains and
settings while it decreases coverage in others. This is due to opportunistic
uniform cost partitioning distributing costs conservatively, which makes it
less susceptible to the chosen order. Therefore, hOUCP does not profit much
from using multiple orders and using a single order is often preferable.
For the other two order-dependent cost partitioning algorithms, greedy
zero-one cost partitioning and saturated cost partitioning, using multiple
diverse orders is clearly beneficial in all settings.
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Question and Result Comparison HC Sys Cart Comb

multiple orders?→ yes hOUCP
div :hOUCP

one 0:0 1:4 7:3 1:2

hGZOCP
div :hGZOCP

one 7:0 12:3 13:0 16:1

hSCP
div :hSCP

one 8:0 12:1 17:0 17:2

reuse when not being greedy?→ yes hOUCP
one :hUCP

8:0 19:0 19:0 24:0

hOUCP
div :hUCP

8:0 17:0 17:1 23:0

reuse when being greedy?→ yes hSCP
one :hGZOCP

one 7:1 20:0 23:0 27:1

hSCP
div :hGZOCP

div 9:0 20:0 26:0 25:0

be greedy when not reusing?→ yes hGZOCP
one :hUCP

6:3 9:3 9:3 17:5

hGZOCP
div :hUCP

10:1 16:3 17:1 25:0

be greedy when reusing?→ yes hSCP
one :hOUCP

one 4:4 17:3 19:1 26:2

hSCP
div :hOUCP

div 9:1 21:1 26:1 30:0

strongest algorithm?→ hSCP
div hCAN:hPhO

19:0 21:9 19:5 9:20

hSCP
div :hCAN

6:1 23:1 31:0 35:0

hSCP
div :hPhO

21:0 32:0 34:0 35:0

Table 11.4: Comparison of cost partitioning algorithms in four different settings:
using hill climbing PDBs (HC), systematic PDBs (Sys), Cartesian ab-
straction heuristics (Cart) and the combination of these three heuris-
tic sets (Comb). For each comparison X:Y a result x:y states that in x
out of 40 domains algorithm X solves more tasks than algorithm Y,
while the opposite is true in y domains.



11.2 abstraction heuristics 103

Reuse Costs? As predicted by the theoretical dominances (see Theo-
rems 10.1 and 10.2), reusing costs is almost always beneficial in practice,
regardless of the underlying heuristics, whether we use a single or multi-
ple orders and whether we assign costs uniformly or greedily. There are a
few domains where not reusing costs leads to a higher coverage, though.
This might be unexpected, since reusing costs can never result in a weaker
heuristic. However, this only holds if the cost partitioning algorithms use
the same order(s). Since they use different greedy orders and optimization
time limits, and therefore different orders, the resulting heuristics do not
dominate each other.

Assign Costs Greedily? Assigning costs greedily (like hGZOCP and hSCP)
rather than uniformly (like hUCP and hOUCP) is also preferable in all set-
tings. The trend is more pronounced when we do not reuse costs than
when reusing them. Also, the difference becomes more apparent if we use
multiple orders instead of a single order. If we focus on the comparison
between hSCP

div and hOUCP
div , we see that there are only three cases across all

40 domains and four heuristic settings where assigning costs uniformly
is preferable1. This suggests that opportunistic uniform cost partitioning
distributes costs too conservatively and wastes lots of costs, even though
there are component heuristics that could have profited from them. As-
signing costs greedily, on the other hand, ensures that each component
heuristic is allowed to use as much of the remaining costs as it needs.

Since saturated cost partitioning reuses costs and assigns them greedily
it is the strongest cost partitioning algorithm evaluated so far, especially if
we compute it for multiple diverse orders. We now evaluate the remaining
two suboptimal cost partitioning algorithms, the canonical heuristic and
post-hoc optimization, before comparing them to hSCP

div .

Canonical Heuristic vs. Post-hoc Optimization Contrasting the theo-
retical dominance, the canonical heuristic solves more tasks than post-hoc
optimization in many domains in all four settings. The opposite, however,
is also true frequently.

To find out the reason why neither algorithm is preferable to the other
in all settings, we inspect the reasons for why they fail to solve a task.
Table 11.5 shows the failure reasons for a subset of cost partitioning algo-
rithms on the set of tasks that are solved by at least one of the four algo-
rithms. We can see that the canonical heuristic often fails to compute the
heuristic value for the initial state in all four settings except for hill climb-
ing PDBs. The reason for this depends on the setting: using systematic

1 Tables A.1, A.2 and A.3 in the appendix reveal that for HC and Sys the domain in question
is Hiking and for Cart it is Mystery. In all three cases hOUCP

div solves only one task more
than hSCP

div
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computing h(s0, cost) during search

out of memory out of time out of memory out of time

hSCP
div 0/0/0/0 0/0/0/0 255/183/56/5 0/5/43/25

hCAN
0/153/47/277 0/34/0/0 224/144/164/7 46/47/181/172

hPhO
0/0/0/0 0/0/0/0 10/2/0/0 291/354/429/322

hOCP
220/31/0/263 137/194/244/359 0/0/1/0 316/372/443/186

Table 11.5: Failure reasons for a subset of cost partitioning algorithms on the four
different sets of abstraction heuristics. Each HC/Sys/Cart/Comb en-
try states the number of tasks for which the given cost-partitioned
heuristic ran out of memory or time before or during search using the
respective set of heuristics. We only consider tasks that at least one of
the four algorithms solves.
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Figure 11.1: Canonical heuristic (hCAN) vs. post-hoc optimization heuristic (hPhO)
using hill climbing PDBs. We draw tasks that are unsolved by one of
the heuristics on the horizontal or vertical “uns.” line.

patterns, hCAN runs out of memory for 153 tasks while computing max-
imal additive subsets and it runs out of time for 34 tasks while pruning
dominated patterns. Using Cartesian abstractions and the combination of
heuristics, dominance pruning is inapplicable and hCAN exceeds the mem-
ory limit while computing maximal additive subsets for 47 and 277 tasks,
respectively. In contrast, hPhO is able to compute hPhO(s0) for every task
in all four settings. These results show that computing maximal additive
subsets for a large number of component heuristics can become infeasible
in practice due to the high memory requirements.

Using PDB heuristics for patterns found by hill climbing, both hCAN and
hPhO are able to compute a heuristic value for the initial state in all tasks
solved by at least one of the algorithms in Table 11.5. We therefore use
this setting to compare the accuracy of the two heuristics. In Figure 11.1a



11.2 abstraction heuristics 105

101 103 105 107

101

103

105

107

un
s.

uns.

hCAN

hSC
P

di
v

(a) Saturated cost partitioning (hSCP
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(b) Saturated cost partitioning (hSCP
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post-hoc optimization (hPhO).

Figure 11.2: Number of expanded states before the last f layer using the combi-
nation of abstraction heuristics.

we can see that both heuristics need almost exactly the same amount of
expansions for the commonly solved tasks. This finding for hill climbing
PDBs is in line with the result by Pommerening et al. (2013), who showed
that hCAN is almost as accurate as hPhO for systematic PDBs.

The reason why hCAN solves more tasks than hPhO using hill climbing
PDBs lies in the difference in evaluation speed. Figure 11.1b compares
the number of evaluations per second for the two heuristics. The canoni-
cal heuristic can be evaluated much faster than the post-hoc optimization
heuristic, often by one and sometimes even by two orders of magnitude.
We can also see evidence for this in Table 11.5: for unsolved tasks, hPhO

almost always runs out of time during search, while hCAN also often runs
out of memory.

Strongest Suboptimal Cost Partitioning Algorithm? We now compare
hCAN and hPhO to hSCP

div . Table 11.4 tells us that hSCP
div is almost always prefer-

able to hCAN and hPhO in all settings. For example, using the combination
of abstraction heuristics (Comb), hSCP

div has a higher coverage score than
hCAN and hPhO in 35 out of 40 domains, while the opposite is never true.

To understand why hSCP
div has an edge over hCAN and hPhO in so many

domains, we compare the number of expansions before the last f layer in
the setting using the combination of abstraction heuristics. Figure 11.2a
shows that for the majority of tasks hSCP

div is more accurate than hCAN, often
reducing the number of expanded states by several orders of magnitude.
There are even 48 tasks (visible on the x axis) for which hSCP

div , unlike hCAN,
makes no expansions before the last f layer. The converse is true for only
9 tasks.
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hUCP hOUCP
one hOUCP

div hGZOCP
one hGZOCP

div hSCP
one hSCP

div hCAN hPhO hOCP

HC 807 819 819 813 822 818 838 823 792 420

Sys 743 791 789 769 789 867 905 715 737 496

Cart 696 756 760 739 758 881 994 701 664 405

Comb 739 812 811 799 826 977 1063 637 771 285

Table 11.6: Total number of solved tasks by different cost partitioning algorithms
using different sets of heuristics: hill climbing PDBs (HC), systematic
PDBs (Sys), Cartesian abstraction heuristics (Cart) and the combina-
tion of these three heuristic sets (Comb). For each heuristic setting we
highlight the algorithm with the maximum coverage score in bold.

We see a similar picture when we compare the number of expanded
states by hSCP

div and hPhO in Figure 11.2b. hSCP
div is more accurate than hPhO

for the majority of tasks. Again, hSCP
div is perfect more often (75 tasks) than

hPhO (12 tasks) when the other heuristic is not perfect. In addition to being
more accurate than hCAN and hPhO, hSCP

div is also faster to evaluate than
both other heuristics. The row for hSCP

div in Table 11.5 hints at this result:
out of the four compared algorithms in the table, hSCP

div runs out of time
least often.

Total Coverage In Table 11.6, we compare the total coverage scores for
all cost partitioning algorithms in the four abstraction heuristic settings.
Saturated cost partitioning using diverse orders not only has an edge over
all other suboptimal cost partitioning algorithms in a domain-wise com-
parison (see Table 11.4 and Tables A.1, A.2, A.3 and A.4 in the appendix),
but Table 11.6 reveals that it also achieves the highest total coverage scores
in all four settings. Except for the setting of hill climbing PDBs, even sat-
urated cost partitioning using only a single order (hSCP

one ) solves more tasks
in total than all other cost partitioning algorithms.

Optimal Cost Partitioning The last question we want to answer in this
section is how optimal cost partitioning compares against the suboptimal
cost partitioning algorithms. We begin by analyzing how closely the most
accurate suboptimal cost partitioning algorithm, hSCP

div , approximates the
heuristic quality of optimal cost partitioning. For this comparison we use
the combination of abstraction heuristics. Since hSCP

div is much faster to eval-
uate than hOCP, hSCP

div has a significantly higher coverage (1063 tasks) than
hOCP (272 tasks). Even if we raise the time limit for optimal cost partition-
ing to 24 hours (hOCP

24h ), it only solves 395 tasks.
Figure 11.3 compares the number of expansions needed by hSCP

div and
hOCP

24h . The 1667 benchmark tasks can be divided into the following groups:
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Figure 11.3: Number of expansions before the last f layer for hOCP
24h and hSCP

div , both
computed over the combination of abstraction heuristics.

583 tasks are solved by neither heuristic. For 7 tasks both heuristics detect
unsolvability and for 2 tasks only hOCP

24h is able to do so. There are 680 tasks
solved by hSCP

div which hOCP
24h fails to solve and for 12 tasks the opposite is

the case. For 257 commonly solved tasks, both heuristics are perfect, i.e.,
they need no expansions before the last f layer. There are 41 commonly
solved tasks for which hOCP

24h is perfect, but hSCP
div is not and 85 commonly

solved tasks for which neither heuristic is perfect.
hSCP

div needs more expansions than hOCP
24h in 113 of the 383 commonly

solved tasks, revealing that hSCP
div is often not as accurate as hOCP. This

shows that one can still hope to find better approximations of optimal cost
partitionings. However, the question is whether better approximations can
be computed fast enough or whether the additional computation time out-
weighs the increase in accuracy.

In Table 11.6 we can see that optimal cost partitioning has the lowest
total coverage in all settings, failing to come even close to the coverage
scores of the other cost partitioning algorithms. We find the reason for this
in Table 11.5. Optimal cost partitioning very often runs out of memory
while computing the heuristic value for the initial state of tasks that are
solved by other cost partitioning algorithms. However, due to their small
size, this never happens when using Cartesian abstractions. Time is also
frequently a limiting factor in all four settings for computing hOCP(s0, cost).
If the computation finishes and the search starts, hOCP almost never hits
the memory limit, showing that evaluating the heuristic takes very long.
Taken together, evaluating the optimal cost partitioning heuristic is too
slow and memory-consuming for hOCP to be a viable alternative for explic-
itly represented abstraction heuristics in practice.
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hUCP – 4 7 2 12 24 26 899

hOUCP
one 1 – 5 0 12 25 26 892

hGZOCP
one 5 5 – 0 11 25 26 888

hSCP
one 9 10 10 – 15 30 30 932

hCAN
4 4 6 1 – 23 25 857

hPhO
2 2 4 0 4 – 8 830

hOCP
1 1 2 0 4 1 – 820

Table 11.7: Left: Pairwise comparison of cost partitioning algorithms using land-
mark heuristics. The entry in row r and column c holds the number
of domains in which algorithm r solved more tasks than algorithm
c. For each algorithm pair we highlight the maximum of the entries
(r, c) and (c, r) in bold. Right: Total number of solved tasks by each
algorithm.

11.3 Landmark Heuristics

We now compare cost partitioning algorithms for landmark heuristics. To
the best of our knowledge only two ways of combining landmark heuris-
tics admissibly have been previously evaluated: optimal and uniform cost
partitioning (Karpas and Domshlak 2009). In contrast to the experiments
above, for landmark heuristics we cannot precompute cost partitionings
before the search starts, since the set of unachieved landmarks changes
between evaluated states. We therefore use a single greedy order for all
order-dependent cost partitioning algorithms: as for abstraction heuristics,
hOUCP

one uses the stolen greedy variant, hGZOCP
one uses h and hSCP

one uses h
stolen .

Table 11.7 compares the different cost partitioning algorithms for the
landmark heuristics computed by the BJOLP planner (Domshlak et al.
2011). (For coverage scores in individual domains see Table A.5 in the
appendix.) As in the four settings using abstraction heuristics, all subopti-
mal cost partitioning algorithms outperform optimal cost partitioning. In
difference to the results above, however, hOCP comes closer to the other
cost partitioning algorithms in terms of total coverage. This is the case
since the linear programs that have to be solved for optimally partitioning
costs among landmark heuristics are usually much smaller than the ones
for abstraction heuristics.

Comparing the suboptimal cost partitioning algorithms, we notice that
hUCP solves more tasks than hOUCP in four domains, even though hOUCP

dominates hUCP theoretically. This is the case since computing landmark
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orders and keeping track of the remaining cost function makes hOUCP sub-
stantially slower to evaluate than hUCP. On the other hand, only a few tasks
actually benefit from reusing costs, since the component landmark heuris-
tics usually consume all of the costs they are offered. As a result, reusing
costs is not worth the extra computational effort when distributing costs
uniformly among landmark heuristics.

For greedy cost assignments, however, reusing costs is very helpful: hSCP
one

solves more tasks than hGZOCP
one in 10 domains, while the opposite is never

true. Uniform cost partitioning has a slight edge over greedy cost assign-
ment if costs are not reused (hUCP vs. hGZOCP

one : 7 to 5). However, distributing
costs greedily is clearly beneficial when reusing costs (hSCP

one vs. hOUCP
one : 10

to 0). If we distribute costs greedily and reuse unused costs, as done by
hSCP

one , the extra computational effort compared to hUCP clearly leads to a
more accurate heuristic: hSCP

one solves more tasks than hUCP in 9 domains,
while the opposite is the case in only 2 domains. Neither hCAN nor hPhO

are able to come close to the other suboptimal cost partitioning algorithms
in terms of domain-wise or total coverage.

Overall, the differences between the results for different cost partitioning
algorithms are smaller for landmark heuristics than for the abstraction
heuristics above. This stems from the fact that there are fewer choices to
make when partitioning costs for landmark heuristics. However, saturated
cost partitioning again has an edge over the other algorithms in a per-
domain comparison and solves the highest number of tasks in total (932

tasks).

11.4 Comparison of Different Approaches

In the experiments above, we compared different cost partitioning algo-
rithms operating on the same set of heuristics. In all settings hSCP

div (respec-
tively hSCP

one for landmark heuristics) had an edge over all other cost parti-
tioning algorithms. Comparing these five planners based on saturated cost
partitioning (named hSCP

HC , hSCP
Sys

, hSCP
Cart

, hSCP
Comb

and hSCP
LM in the following) al-

lows us to shed some light on the relative accuracy of the underlying heu-
ristics. In Table 11.8, we compare the hSCP-based planners to each other
and to five of the strongest admissible heuristics from the literature (see
Table A.6 in the appendix for domain-wise coverage scores):

• hLM-cut: the landmark-cut heuristic (Helmert and Domshlak 2009)

• hiPDB: the canonical heuristic using pattern databases found by 15

minutes of hill climbing (Haslum et al. 2007; Sievers et al. 2012)
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hSCP
HC – 3 8 0 15 18 3 18 28 23 838

hSCP
Sys

15 – 14 2 22 24 10 22 32 26 905

hSCP
Cart

17 14 – 3 20 23 15 23 33 29 994

hSCP
Comb

26 20 19 – 28 28 21 27 37 30 1063

hSCP
LM 10 8 3 1 – 15 8 16 22 23 932

hLM-cut
12 9 4 2 12 – 10 14 25 24 881

hiPDB 10 7 9 2 19 22 – 19 31 24 881

hM&S
10 8 6 2 15 15 8 – 24 21 808

hPhO
Sys

4 0 2 0 4 3 1 7 – 16 737

hSEQ
8 5 6 2 7 6 7 8 13 – 735

Table 11.8: Left: Domain-wise coverage comparison of different heuristics. The
entry in row r and column c holds the number of domains in which
heuristic r solved more tasks than heuristic c. For each heuristic pair
we highlight the maximum of the entries (r, c) and (c, r) in bold. Right:
Total number of solved tasks by each heuristic.

• hM&S: merge-and-shrink using bisimulation, the SCC-DFP merge
strategy and at most 50 000 abstract states (Helmert et al. 2014; Siev-
ers et al. 2016)

• hPhO
Sys

: post-hoc optimization using systematic patterns of sizes 1 and
2 (Pommerening et al. 2013)

• hSEQ: the state-equation heuristic (Bonet 2013)

Saturated Cost Partitioning Heuristics Inspecting the results for the
five hSCP-based planners, we see that the landmarks-based hSCP

LM usually
solves fewer tasks per domain than the four planners based on abstraction
heuristics. hSCP

Sys
and hSCP

Cart
outperform the respective other heuristic in 14

domains each. Both of them have an edge over hSCP
HC in domain-wise and

overall comparisons. As expected, computing cost partitionings over the
combined set of abstraction heuristics leads to a much stronger heuristic
(hSCP

Comb
) than using the subsets of heuristics. hSCP

Comb
solves as many or more

tasks than the other hSCP-based planners in almost all domains and has
the highest total coverage score (1063 tasks).

Other Admissible Heuristics In a domain-wise comparison, hLM-cut,
hM&S, hPhO

Sys
and hSEQ are outperformed by all saturated cost partitioning
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heuristics. Only hiPDB has an edge over hSCP
HC and hSCP

LM in more domains
than the other way around. hLM-cut and hiPDB solve more tasks in total
(881 tasks) than hSCP

HC (838 tasks), but in all other comparisons between
hSCP-based and other heuristics, the saturated cost partitioning heuristics
have a higher total coverage.

Cartesian Abstractions Table 11.8 also holds further evidence for the
finding that using good orders is critical for saturated cost partitioning
heuristics. The hCEGAR

LM+s? heuristic in Table 7.1 and the hSCP
Cart

heuristic in
Table 11.8 both use Cartesian abstractions of landmark and goal task de-
compositions. While hCEGAR

LM+s? orders the resulting component heuristics ran-
domly and solves 798 tasks, hSCP

Cart
uses a diverse set of optimized greedy

orders and solves 994 tasks, 196 more tasks than hCEGAR
LM+s? . We saw in Ta-

ble 7.1 that hCEGAR
LM+s? has a lower total coverage score than hiPDB and hM&S.

However, hSCP
Cart

(solving 994 tasks) not only outperforms the three non-
CEGAR heuristics in Table 7.1, hiPDB (881 tasks), hM&S (808 tasks) and hPhO

Sys

(737 tasks), but also hLM-cut (881 tasks) and hSEQ (735 tasks). The domain-
wise comparison shows that hSCP

Cart
solves more tasks than hLM-cut, hiPDB,

hM&S, hPhO
Sys

and hSEQ in 23, 15, 23, 33 and 29 domains, while the opposite
is true in only 4, 9, 6, 2 and 6 domains, respectively. These results show
that we are able to outperform the formerly strongest admissible heuris-
tics for optimal classical planning by only using methods introduced in
this thesis: counterexample-guided Cartesian abstraction refinement and
saturated cost partitioning.

Combined Abstractions Combining all abstraction heuristics in hSCP
Comb

results in an even stronger heuristic than hSCP
Cart

. It outperforms all heuris-
tics that are not based on saturated cost partitioning in Table 11.8, solving
182 more tasks than the two non-hSCP-based heuristics with the highest
total coverage, hLM-cut and hiPDB. Beyond total coverage, hSCP

Comb
also has an

edge over the other heuristics in most individual domains. Out of the 40

domains, hSCP
Comb

solves more tasks than hLM-cut, hiPDB, hM&S, hPhO
Sys

and hSEQ

in 28, 21, 27, 37 and 30 domains, respectively, while the opposite is true
in at most 2 domains for all five heuristics. In summary, hSCP

Comb
is stronger

than any other heuristic based on saturated cost partitioning, cost parti-
tioning in general and all other evaluated heuristics.

SymBA∗ This raises the question how hSCP
Comb

compares to the winner of
the IPC 2014 sequential optimization track, the symbolic search planner
SymBA∗2 (Torralba et al. 2016). To allow for an unbiased comparison, we
evaluate a version of hSCP

Comb
that uses h2 mutexes to prune irrelevant op-

erators (Alcázar and Torralba 2015), a preprocessing technique that is an
important ingredient of SymBA∗2 and can be combined with any planning
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algorithm. Table A.7 in the appendix holds coverage results. In 23 domains
hSCP

Comb
using h2 mutexes solves more tasks than SymBA∗2 , while the oppo-

site is true in only 10 domains. hSCP
Comb

using h2 mutexes also has an edge
over SymBA∗2 in terms of total coverage: while SymBA∗2 solves 1027 tasks,
hSCP

Comb
finds a solution for 1115 tasks, a difference of 88 tasks. Since task

difficulty tends to scale exponentially in optimal classical planning, this
increase in coverage compared to the previous state of the art is remark-
able.



Part IV

C O N C L U S I O N
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C O N C L U S I O N

In Part i, we introduced a CEGAR approach for classical planning and
showed that it delivers promising performance. We believe that further
performance improvements are possible through speed optimizations in
the refinement loop, which will enable larger abstractions to be generated
in reasonable time. One possibility is to refute not one but all optimal solu-
tions in one iteration. This should shift a big proportion of the time needed
to build the abstraction from looking for abstract solutions to actually re-
fining the abstraction.

We often have many options for selecting the variable on which to split
and how to partition its values. Therefore, another approach for improving
the resulting Cartesian abstractions could be to investigate the choice of
refinement strategy in more depth. For example, it could be beneficial
to always choose the split that increases the estimated accuracy of the
resulting heuristic the most.

As is the case for pattern databases, switching from one Cartesian ab-
straction to multiple Cartesian abstractions is highly beneficial. We showed
that constructing diverse sets of abstractions and combining them with sat-
urated cost partitioning yields heuristics that outperform single Cartesian
abstractions and are competitive with abstraction heuristics from the liter-
ature.

We believe that Cartesian abstractions, counterexample-guided abstrac-
tion refinement and the task decomposition methods are useful concepts
that can contribute to the further development of strong abstraction heu-
ristics for automated planning.

In Part ii, we showed both theoretically and in experiments that the or-
der in which saturated cost partitioning considers a set of component heu-
ristics greatly influences the quality of the resulting cost-partitioned heuris-
tic. Greedy orders result in significantly more accurate heuristics than
those obtained with random orders. In addition, greedy orders greatly ben-
efit from optimization via a hill-climbing search. Maximizing over heuris-
tics from multiple orders leads to further improvements, especially when
explicitly diversifying the set of orders to include only those that prove
useful on a set of sample states.

As our experiments demonstrated, hill climbing in the space of orders
often keeps finding better orders even after one thousand seconds. There-
fore, it could be beneficial to continue searching for more efficient order
generation methods.
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In Part iii, we presented the first systematic theoretical and experimental
comparison of cost partitioning algorithms for optimal classical planning.
Among several other dominance and non-dominance results, our theoret-
ical analysis showed that saturated cost partitioning dominates zero-one
cost partitioning and suggested a new cost partitioning algorithm called
opportunistic uniform cost partitioning, which dominates uniform cost
partitioning.

The fact that the concept of cost saturation is applicable to greedy zero-
one cost partitioning (yielding saturated cost partitioning) and uniform
cost partitioning (yielding opportunistic uniform cost partitioning), raises
the question of whether there are other cost partitioning algorithms that
can profit from cost saturation. We believe that this could be the case for
post-hoc optimization. More generally, future research could investigate
whether there are further connections or synergies between different cost
partitioning algorithms.

Our experimental evaluation revealed that it is almost always beneficial
to use multiple orders for order-dependent cost partitioning algorithms,
to assign costs greedily and to reuse unconsumed costs. We also showed
that saturated cost partitioning is the method of choice in all tested set-
tings, outperforming the previous best cost partitioning methods for all
evaluated heuristics.

However, we also saw that there is still a gap in accuracy between the
strongest suboptimal cost partitioning algorithm, saturated cost partition-
ing, and optimal cost partitioning. The question is whether and how we
can narrow this gap. Most cost partitioning algorithms use a one-shot
method for generating each cost function. Only the linear program solvers
underlying optimal cost partitioning for abstraction heuristics and post-
hoc optimization iteratively obtain better cost partitionings until finding
the one maximizing the objective function. Optimizing an order via hill
climbing changes the cost partitioning over time by repeatedly computing
a new cost partitioning from scratch. We believe that future research could
try to come up with other methods that iteratively improve an existing
cost partitioning, possibly converging to the optimal cost partitioning but
using significantly less time and memory.

Finally, having shown that saturated cost partitioning works well for ab-
straction and landmark heuristics, future research could try to find (non-
trivial) saturators for other types of heuristics, allowing to use these heu-
ristics for saturated cost partitioning.
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A.1 Pseudo-code for CEGAR Informed Transition Check

Algorithm 10 Rewiring of incoming transitions. The refinement in
progress splits state [s] into states d and e on variable v. For the old transi-
tion a o−→ [s] this procedure adds new transitions from a to the new states
d and e where necessary.

1: procedure RewireIncomingTransition(a o−→ [s], d, e, v)
2: if v /∈ vars(post(o)) then
3: if |dom(v, a) ∩ dom(v, d)| 6= ∅ then
4: AddTransition(a, o, d)
5: if |dom(v, a) ∩ dom(v, e)| 6= ∅ then
6: AddTransition(a, o, e)
7: else if post(o)[v] ∈ dom(v, d) then
8: AddTransition(a, o, d)
9: else

10: AddTransition(a, o, e)
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Algorithm 11 Rewiring of outgoing transitions. The refinement in progress
splits state [s] into states d and e on variable v. For the old transition [s] o−→ b
this procedure adds new transitions from the new states d and e to b where
necessary.

1: procedure RewireOutgoingTransition([s] o−→ b, d, e, v)
2: if v /∈ vars(post(o)) then
3: if |dom(v, d) ∩ dom(v, b)| 6= ∅ then
4: AddTransition(d, o, b)
5: if |dom(v, e) ∩ dom(v, b)| 6= ∅ then
6: AddTransition(e, o, b)
7: else if v /∈ vars(pre(o)) then
8: AddTransition(d, o, b)
9: AddTransition(e, o, b)

10: else if pre(o)[v] ∈ dom(v, e) then
11: AddTransition(e, o, b)
12: else
13: AddTransition(d, o, b)
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Algorithm 12 Rewiring of self-loops. The refinement in progress splits
state [s] into states d and e on variable v. This procedure adds new self-
loops and/or transitions between the new states d and e for the old self-
loop [s] o−→ [s] where necessary.

1: procedure RewireSelfLoop([s] o−→ [s], d, e, v)
2: if v /∈ vars(pre(o)) then
3: if v /∈ vars(post(o)) then
4: AddSelfLoop(d, o)
5: AddSelfLoop(e, o)
6: else if post(o)[v] ∈ dom(v, e) then
7: AddTransition(d, o, e)
8: AddSelfLoop(e, o)
9: else

10: AddSelfLoop(d, o)
11: AddTransition(e, o, d)
12: else if pre(o)[v] ∈ dom(v, e) then
13: if post(o)[v] ∈ dom(v, e) then
14: AddSelfLoop(e, o)
15: else
16: AddTransition(e, o, d)
17: else
18: if post(o)[v] ∈ dom(v, e) then
19: AddTransition(d, o, e)
20: else
21: AddSelfLoop(d, o)
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A.2 Detailed Results for Cost Partitioning Algorithms

hUCP hOUCP
one hOUCP

div hGZOCP
one hGZOCP

div hSCP
one hSCP

div hCAN hPhO hOCP

airport (50) 24 24 24 24 24 24 24 24 23 23

barman (34) 4 4 4 4 4 4 4 4 4 0

blocks (35) 28 28 28 28 28 28 28 28 28 26

childsnack (20) 0 0 0 0 0 0 0 0 0 0
depot (22) 7 7 7 7 7 7 7 7 7 4

driverlog (20) 13 13 13 14 14 14 14 14 13 2

elevators (50) 40 40 40 38 40 38 41 41 40 1

floortile (40) 2 3 3 3 3 5 5 2 2 0

freecell (80) 20 21 21 20 20 21 21 20 19 0

ged (20) 19 19 19 19 19 15 19 19 19 0

grid (5) 3 3 3 3 3 3 3 3 3 1

gripper (20) 8 8 8 8 8 8 8 8 8 6

hiking (20) 13 13 13 12 12 12 12 12 11 2

logistics (63) 27 27 27 27 27 27 27 28 27 4

miconic (150) 63 65 65 65 65 65 65 65 63 20

movie (30) 30 30 30 30 30 30 30 30 30 30
mprime (35) 24 24 24 23 24 24 24 24 22 16

mystery (30) 17 17 17 17 17 17 17 17 15 9

nomystery (20) 19 19 19 19 20 19 20 20 19 2

openstacks (100) 49 49 49 49 49 49 49 49 49 27

parcprinter (50) 28 28 28 28 28 28 28 28 28 26

parking (40) 13 13 13 13 13 13 13 13 10 3

pathways (30) 4 4 4 4 4 4 4 4 4 4
pegsol (50) 44 44 44 44 44 44 44 44 44 27

pipes-nt (50) 20 20 20 20 20 20 20 20 19 14

pipes-t (50) 14 16 16 14 14 15 16 13 11 2

psr-small (50) 49 50 50 49 50 50 50 50 49 41

rovers (40) 7 8 8 8 8 8 8 8 7 5

satellite (36) 6 6 6 6 6 6 6 6 6 4

scanalyzer (50) 21 21 21 23 23 23 27 23 23 6

sokoban (50) 46 46 46 46 46 46 46 46 46 39

storage (30) 16 16 16 16 16 16 16 16 15 10

tetris (17) 9 9 9 9 9 9 10 9 5 6

tidybot (40) 22 22 22 22 22 22 22 22 22 8

tpp (30) 6 6 6 6 6 6 6 6 6 6
transport (70) 30 33 33 33 34 33 35 35 31 6

trucks (30) 9 9 9 9 9 9 9 9 8 4

visitall (40) 26 26 26 26 26 28 28 28 28 19

woodwork (50) 15 15 15 15 17 15 19 15 15 15

zenotravel (20) 12 13 13 12 13 13 13 13 13 2

Sum (1667) 807 819 819 813 822 818 838 823 792 420

Table A.1: Number of solved tasks using PDB heuristics for hill climbing patterns.
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hUCP hOUCP
one hOUCP

div hGZOCP
one hGZOCP

div hSCP
one hSCP

div hCAN hPhO hOCP

airport (50) 23 24 24 26 24 26 28 20 27 16

barman (34) 4 4 4 4 4 4 4 4 4 0

blocks (35) 21 26 25 26 26 28 28 28 26 15

childsnack (20) 0 0 0 0 0 0 0 0 0 0
depot (22) 7 7 7 8 9 12 12 7 7 2

driverlog (20) 13 13 13 13 13 14 15 13 13 10

elevators (50) 31 31 31 31 36 31 36 38 36 14

floortile (40) 2 3 3 2 2 4 5 2 2 2

freecell (80) 20 21 20 20 21 21 21 20 15 1

ged (20) 19 19 19 15 18 15 19 19 15 3

grid (5) 2 3 3 2 3 2 3 2 2 0

gripper (20) 8 8 8 8 8 8 8 8 7 4

hiking (20) 12 13 13 12 12 12 12 12 11 4

logistics (63) 25 25 25 25 27 27 33 22 26 34
miconic (150) 55 58 60 55 55 65 68 55 54 35

movie (30) 30 30 30 30 30 30 30 30 30 30
mprime (35) 23 26 26 23 23 29 30 23 21 18

mystery (30) 17 18 18 17 16 18 18 16 15 11

nomystery (20) 16 16 16 16 20 16 20 20 16 8

openstacks (100) 49 49 49 49 49 49 49 30 47 12

parcprinter (50) 26 33 32 36 38 39 38 14 30 49
parking (40) 2 13 13 1 1 13 13 0 3 0

pathways (30) 4 4 4 4 4 4 4 4 4 4
pegsol (50) 44 44 44 44 44 48 48 32 44 15

pipes-nt (50) 19 20 20 19 20 20 20 17 15 9

pipes-t (50) 14 16 16 15 15 17 17 15 9 2

psr-small (50) 49 50 50 49 49 50 50 48 49 49

rovers (40) 7 7 7 7 7 7 7 7 7 6

satellite (36) 6 6 6 6 6 6 6 4 6 5

scanalyzer (50) 21 21 21 21 21 27 33 23 11 6

sokoban (50) 48 50 50 50 48 50 50 50 49 14

storage (30) 15 16 15 16 16 16 16 16 15 9

tetris (17) 9 9 9 9 9 11 11 4 3 0

tidybot (40) 22 22 22 22 22 22 22 22 21 8

tpp (30) 6 6 6 6 6 6 6 6 6 6
transport (70) 24 24 24 24 24 24 24 24 21 18

trucks (30) 8 8 8 9 9 9 9 9 7 5

visitall (40) 12 13 13 12 13 30 30 28 27 25

woodwork (50) 19 23 23 27 29 44 49 11 25 39

zenotravel (20) 11 12 12 10 12 13 13 12 11 8

Sum (1667) 743 791 789 769 789 867 905 715 737 496

Table A.2: Number of solved tasks using PDB heuristics for systematic patterns.
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hUCP hOUCP
one hOUCP

div hGZOCP
one hGZOCP

div hSCP
one hSCP

div hCAN hPhO hOCP

airport (50) 22 29 29 31 31 31 31 25 27 16

barman (34) 4 4 4 4 4 4 4 4 4 0

blocks (35) 18 18 18 18 18 25 28 18 18 9

childsnack (20) 0 0 0 0 0 0 0 0 0 0
depot (22) 5 6 7 5 7 11 11 7 5 1

driverlog (20) 12 13 13 10 13 14 14 9 8 9

elevators (50) 33 37 39 35 37 39 44 37 37 8

floortile (40) 2 2 2 2 2 2 3 2 2 1

freecell (80) 20 24 20 20 20 57 65 25 16 6

ged (20) 15 15 15 15 15 15 15 15 15 6

grid (5) 2 3 3 2 2 3 3 2 2 1

gripper (20) 8 8 7 8 8 8 8 8 7 5

hiking (20) 12 13 12 12 12 13 14 12 11 3

logistics (63) 17 27 28 25 25 29 39 16 17 28

miconic (150) 55 60 61 55 56 84 142 50 52 52

movie (30) 30 30 30 30 30 30 30 30 30 30
mprime (35) 27 27 27 27 27 27 27 27 26 16

mystery (30) 18 18 18 17 17 17 17 17 17 11

nomystery (20) 10 18 20 16 17 20 20 12 10 6

openstacks (100) 49 49 49 49 49 51 51 49 47 7

parcprinter (50) 18 24 26 32 34 35 38 18 24 12

parking (40) 0 0 0 0 0 0 10 0 0 0

pathways (30) 4 4 4 4 4 4 5 4 4 4

pegsol (50) 44 44 44 44 46 48 48 46 44 14

pipes-nt (50) 17 18 18 17 18 22 23 18 16 7

pipes-t (50) 13 14 14 13 14 15 16 14 10 2

psr-small (50) 49 49 49 49 49 49 49 49 49 43

rovers (40) 7 8 8 7 8 8 8 6 6 6

satellite (36) 6 6 6 6 6 7 7 6 6 3

scanalyzer (50) 21 21 21 21 21 23 23 21 15 5

sokoban (50) 39 39 39 41 41 46 46 37 39 11

storage (30) 16 16 16 16 16 16 16 15 14 13

tetris (17) 9 9 9 9 9 9 9 9 7 2

tidybot (40) 22 22 22 22 22 22 22 21 16 2

tpp (30) 6 7 7 7 8 7 8 6 6 6

transport (70) 24 24 24 24 24 24 25 24 22 3

trucks (30) 6 10 10 9 9 12 12 8 6 4

visitall (40) 12 13 13 12 13 13 16 13 12 26
woodwork (50) 13 15 15 15 15 29 34 13 9 19

zenotravel (20) 11 12 13 10 11 12 13 8 8 8

Sum (1667) 696 756 760 739 758 881 994 701 664 405

Table A.3: Number of solved tasks using Cartesian abstraction heuristics.
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hUCP hOUCP
one hOUCP

div hGZOCP
one hGZOCP

div hSCP
one hSCP

div hCAN hPhO hOCP

airport (50) 22 23 23 25 24 32 30 22 28 15

barman (34) 4 4 4 4 4 4 4 4 4 0

blocks (35) 18 21 21 18 18 28 28 26 26 8

childsnack (20) 0 0 0 0 0 0 0 0 0 0
depot (22) 7 7 7 6 8 12 13 6 7 1

driverlog (20) 12 13 13 14 14 15 15 11 13 2

elevators (50) 33 40 40 40 42 42 44 40 42 1

floortile (40) 2 3 3 2 3 4 6 2 2 0

freecell (80) 20 20 20 22 22 61 65 25 17 0

ged (20) 19 19 19 15 19 15 19 15 15 0

grid (5) 2 3 3 3 3 3 3 3 3 1

gripper (20) 8 8 8 8 8 8 8 4 7 3

hiking (20) 12 13 13 12 14 13 14 13 10 2

logistics (63) 23 26 26 27 27 29 37 20 28 9

miconic (150) 55 71 71 70 70 87 144 42 61 20

movie (30) 30 30 30 30 30 30 30 30 30 30
mprime (35) 26 28 28 27 27 30 31 27 25 13

mystery (30) 18 18 18 17 18 19 19 17 17 7

nomystery (20) 15 19 19 19 20 20 20 17 19 2

openstacks (100) 49 49 49 49 49 51 51 12 46 7

parcprinter (50) 26 29 30 32 32 39 32 10 28 14

parking (40) 1 4 4 0 1 13 13 0 2 0

pathways (30) 4 4 4 4 4 4 5 4 4 4

pegsol (50) 44 44 44 44 46 48 48 9 44 12

pipes-nt (50) 18 22 22 17 19 23 24 17 16 5

pipes-t (50) 14 16 16 14 16 17 18 15 9 0

psr-small (50) 49 50 49 49 49 50 50 47 49 38

rovers (40) 7 8 8 8 8 8 8 5 7 5

satellite (36) 6 6 6 6 6 7 7 4 6 2

scanalyzer (50) 21 21 21 21 21 27 33 23 13 4

sokoban (50) 46 46 46 48 48 50 50 46 48 9

storage (30) 15 16 16 16 16 16 16 15 15 7

tetris (17) 9 9 9 9 9 11 11 4 3 0

tidybot (40) 23 23 23 23 23 23 23 23 22 1

tpp (30) 6 7 7 7 8 7 8 6 6 6

transport (70) 24 31 31 33 35 32 35 33 27 3

trucks (30) 8 10 9 8 10 13 13 5 7 3

visitall (40) 12 13 13 13 13 30 30 12 27 12

woodwork (50) 19 25 25 27 29 44 45 11 25 37

zenotravel (20) 12 13 13 12 13 12 13 12 13 2

Sum (1667) 739 812 811 799 826 977 1063 637 771 285

Table A.4: Number of solved tasks using combined abstraction heuristics.
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hUCP hOUCP
one hGZOCP

one hSCP
one hCAN hPhO hOCP

airport (50) 30 30 30 30 26 30 30
barman (34) 4 4 4 4 4 0 0

blocks (35) 27 27 26 28 27 27 26

childsnack (20) 0 0 0 0 0 0 0
depot (22) 9 9 8 9 7 7 7

driverlog (20) 14 14 14 14 14 14 14
elevators (50) 33 33 33 33 33 25 25

floortile (40) 2 2 2 2 2 2 2
freecell (80) 62 61 53 65 38 54 52

ged (20) 15 15 15 15 15 14 15
grid (5) 3 3 2 3 3 2 2

gripper (20) 7 7 7 7 7 7 6

hiking (20) 11 11 11 11 9 8 8

logistics (63) 27 27 27 27 26 25 25

miconic (150) 143 143 143 143 141 141 141

movie (30) 30 30 30 30 30 30 30
mprime (35) 21 21 21 21 21 20 20

mystery (30) 15 15 15 15 15 14 14

nomystery (20) 20 20 20 20 20 18 18

openstacks (100) 45 43 45 47 34 32 31

parcprinter (50) 26 26 28 28 22 26 26

parking (40) 6 6 0 6 4 2 1

pathways (30) 4 4 4 4 4 4 4
pegsol (50) 44 46 46 46 44 44 42

pipes-nt (50) 22 22 22 22 22 17 17

pipes-t (50) 15 13 13 14 13 10 9

psr-small (50) 49 49 49 49 49 49 49
rovers (40) 8 8 8 8 8 7 7

satellite (36) 7 7 7 7 7 7 7
scanalyzer (50) 15 15 21 23 23 17 15

sokoban (50) 45 45 46 46 41 40 40

storage (30) 16 16 16 16 16 15 15

tetris (17) 9 9 9 9 9 5 5

tidybot (40) 28 24 24 26 30 22 22

tpp (30) 6 6 6 6 6 6 6
transport (70) 25 25 25 25 23 22 22

trucks (30) 9 9 9 9 9 7 7

visitall (40) 14 14 14 29 20 28 28

woodwork (50) 23 23 25 25 25 23 23

zenotravel (20) 10 10 10 10 10 9 9

Sum (1667) 899 892 888 932 857 830 820

Table A.5: Number of solved tasks using landmark heuristics.
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hSCP
div

HC Sys Cart Comb hSCP
LM hLM-cut hiPDB hM&S hPhO

Sys
hSEQ

airport (50) 24 28 31 30 30 28 38 18 27 23

barman (34) 4 4 4 4 4 4 4 4 4 4
blocks (35) 28 28 28 28 28 28 28 28 26 28
childsnack (20) 0 0 0 0 0 0 0 0 0 0
depot (22) 7 12 11 13 9 7 11 7 7 7

driverlog (20) 14 15 14 15 14 14 13 13 13 12

elevators (50) 41 36 44 44 33 40 41 31 36 16

floortile (40) 5 5 3 6 2 13 2 6 2 6

freecell (80) 21 21 65 65 65 15 21 20 15 41

ged (20) 19 19 15 19 15 15 19 19 15 13

grid (5) 3 3 3 3 3 2 3 2 2 1

gripper (20) 8 8 8 8 7 7 8 20 7 7

hiking (20) 12 12 14 14 11 9 12 13 11 9

logistics (63) 27 33 39 37 27 26 31 25 26 20

miconic (150) 65 68 142 144 143 141 69 79 54 52

movie (30) 30 30 30 30 30 30 30 30 30 30
mprime (35) 24 30 27 31 21 22 24 23 21 20

mystery (30) 17 18 17 19 15 17 17 17 15 15

nomystery (20) 20 20 20 20 20 14 20 18 16 10

openstacks (100) 49 49 51 51 47 47 49 49 47 35

parcprinter (50) 28 38 38 32 28 33 38 45 30 48
parking (40) 13 13 10 13 6 6 13 6 3 6

pathways (30) 4 4 5 5 4 5 4 4 4 4

pegsol (50) 44 48 48 48 46 46 48 48 44 46

pipes-nt (50) 20 20 23 24 22 17 21 18 15 15

pipes-t (50) 16 17 16 18 14 12 18 16 9 11

psr-small (50) 50 50 49 50 49 49 50 50 49 50
rovers (40) 8 7 8 8 8 8 8 8 7 6

satellite (36) 6 6 7 7 7 7 6 7 6 6

scanalyzer (50) 27 33 23 33 23 27 23 23 11 25

sokoban (50) 46 50 46 50 46 50 50 47 49 35

storage (30) 16 16 16 16 16 15 16 15 15 15

tetris (17) 10 11 9 11 9 6 10 2 3 12
tidybot (40) 22 22 22 23 26 23 22 1 21 7

tpp (30) 6 6 8 8 6 7 6 8 6 8
transport (70) 35 24 25 35 25 23 35 24 21 21

trucks (30) 9 9 12 13 9 10 9 7 7 9

visitall (40) 28 30 16 30 29 16 28 13 27 30
woodwork (50) 19 49 34 45 25 29 23 32 25 23

zenotravel (20) 13 13 13 13 10 13 13 12 11 9

Sum (1667) 838 905 994 1063 932 881 881 808 737 735

Table A.6: Number of solved tasks by different heuristics.
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SymBA∗2 hSCP
Comb

airport (50) 27 41
barman (34) 16 4

blocks (35) 31 28

childsnack (20) 4 0

depot (22) 7 14
driverlog (20) 14 15
elevators (50) 44 44
floortile (40) 34 16

freecell (80) 26 68
ged (20) 20 19

grid (5) 3 3
gripper (20) 20 8

hiking (20) 20 14

logistics (63) 25 38
miconic (150) 108 142
movie (30) 30 30
mprime (35) 24 31
mystery (30) 15 19
nomystery (20) 15 20
openstacks (100) 90 51

parcprinter (50) 39 42
parking (40) 4 15
pathways (30) 5 5
pegsol (50) 48 48
pipesworld-notankage (50) 15 24
pipesworld-tankage (50) 16 18
psr-small (50) 50 50
rovers (40) 14 8

satellite (36) 10 7

scanalyzer (50) 21 33
sokoban (50) 48 50
storage (30) 15 16
tetris (17) 11 12
tidybot (40) 27 32
tpp (30) 8 8
transport (70) 33 35
trucks (30) 12 15
visitall (40) 19 30
woodworking (50) 48 49
zenotravel (20) 11 13

Sum (1667) 1027 1115

Table A.7: Number of solved tasks with h2 mutexes pruning by SymBA∗2 and
hSCP

Comb
(diverse saturated cost partitioning heuristics over the combi-

nation of abstraction heuristics).
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