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Schistosomiasis mansoni incidence data @
in Rwanda can improve prevalence

assessments, by providing high-resolution
hotspot and risk factors identification
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Abstract

Background: Schistosomiasis mansoni constitutes a significant public health problem in Rwanda. The nationwide
prevalence mapping conducted in 2007-2008 revealed that prevalence per district ranges from 0 to 69.5% among
school children. In response, mass drug administration campaigns were initiated. However, a few years later some
additional small-scale studies revealed the existence of areas of high transmission in districts formerly classified as
low endemic suggesting the need for a more accurate methodology for identification of hotspots. This study
investigated if confirmed cases of schistosomiasis recorded at health facility level can be used to, next to existing
prevalence data, detect geographically more accurate hotspots of the disease and its associated risk factors.

Methods: A GIS-based spatial and statistical analysis was carried out. Confirmed cases, recorded at primary health
facilities level, were combined with demographic data to calculate incidence rates for each of 367 health facility
service area. Empirical Bayesian smoothing was used to deal with rate instability. Incidence rates were compared
with prevalence data to identify their level of agreement. Spatial autocorrelation of the incidence rates was
analyzed using Moran's Index, to check if spatial clustering occurs. Finally, the spatial relationship between
schistosomiasis distribution and potential risk factors was assessed using multiple regression.

Results: Incidence rates for 2007-2008 were highly correlated with prevalence values (R? = 0.79), indicating that

in the case of Rwanda incidence data can be used as a proxy for prevalence data. We observed a focal distribution
of schistosomiasis with a significant spatial autocorrelation (Moran's / > 0: 0,05-0.20 and p < 0,05), indicating the
occurrence of hotspots. Regarding risk factors, it was identified that the spatial pattern of schistosomiasis is
significantly associated with wetland conditions and rice cultivation.

Conclusion: In Rwanda the high density of health facilities and the standardized microscopic laboratory diagnostic
allow the derived data to be used to complement prevalence studies to identify hotspots of schistosomiasis and its
associated risk factors. This type of information, in turn, can support disease control interventions and monitoring.
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Background

Schistosomiasis remains one of the most prevalent water-
based diseases in the tropics. Regarding the impact, it is
considered the second most important parasitic disease
after malaria in many countries in sub-Saharan Africa
[1, 2]. In Rwanda, schistosomiasis mansoni, (written as
“S. mansoni” in this paper) with district level prevalence
ranging from 0 to as much as 69.5% among school chil-
dren constitutes a significant public health problem.
The overall country prevalence in 2007—-2008 was 2.7%.

The Neglected Tropical Disease (NTD) control program
was established in 2007 by the Ministry of Health to fight
against five NTDs which pose a significant public health
problem. This program included the Schistosomiasis
Control Initiative, which was implemented using the
nationwide school-based prevalence map of 2007-2008 as
a guideline. The prevalence recorded at 2 to 4 surveyed
schools per district was averaged to estimate prevalence at
the district level (nationwide 136 schools were surveyed).
The Mass Drug Administration (MDA) for S. mansoni
targeted children in areas with a prevalence of at least 10%
and included adults where prevalence exceeded 30% [3].

However, two years later, some health facility located
in districts classified as having a low prevalence, re-
corded higher frequencies of S. mansoni infection. In
addition, some small-scale prevalence surveys revealed
the existence of localized geographic areas with higher
prevalence (up to 77.9%) than previously reported [4, 5].
One such study identified a ‘new’ area with the high rates
of schistosomiasis [6], which was not detected before by
the national prevalence study. The latter confirms the
general recommendation of prevalence based studies in
Rwanda or elsewhere in Africa [7, 8] that more detailed
information is required to address the often highly focal-
ized spatial pattern of schistosomiasis hotspots. The same
studies also recommend to include other high-risk com-
munity groups (e.g: women of children bearing age, rice
farmers, fisherman) in future investigations.

To achieve this, the nationwide school-based prevalence
surveys would need to include a very large number of
schools and other high-risk community groups to provide
sufficient information to identify and delineate hotspots.
In Rwanda, districts are relatively large administrative
units (see Fig. 1a). To overcome the low granularity of the
current mapping method [9], the prevalence surveys
would require large numbers of sample locations and be-
comes very expensive and harder to execute. Conse-
quently, there is a clear need to explore the value of other
sources of health data and alternative mapping approaches
to complement prevalence inventories and support plan-
ning and implementation of S. mansoni control programs.
For other water based diseases, incidence data from
routine health statistics have been successfully used to
complement prevalence studies and identify the spatial
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distribution of a given disease [10—12]. Given the availabil-
ity of good quality spatially structured and systematically
collected data at the health facility level, use of such inci-
dence data seems feasible in Rwanda.

Since incidence and prevalence have a direct relation-
ship (prevalence = incidence rate x average duration of
disease), a logical first step is to explore to what extent
both have a similar spatial distribution. If there is a sig-
nificant level of the agreement, it can be useful to use
the much higher resolution incidence data for improved
mapping of hotspots, and so more efficiently guide con-
trol interventions to high-risk locations.

From previous studies, it is known that the transmis-
sion of S. mansoni follows complex pathways depending
strongly on the dynamics of the local biophysical and
socio-economic context. Socio-economic and biophys-
ical factors together influence when and where humans
are in contact with water potentially contaminated with
freshwater snails [13]. In the Rwandan situation, new in-
frastructural developments such as dams and irrigation
scheme expansion could very well contribute to the
spread of S. mansoni to previously non-endemic areas
[14]. The association with irrigation projects is well scru-
tinized by Steinmann et al. [15] in a systematic review of
the relation between schistosomiasis occurrence and irri-
gated areas in some African countries. Specific socio-
economic conditions such as educational attainment,
access to improved water sources, and proper sanitation,
are also known to be related to S. mansoni infection in
endemic areas [16, 17].

This study aims to investigate if schistosomiasis inci-
dence data recorded at health facility level can provide,
next to existing prevalence data, additional insights into
the spatial pattern of schistosomiasis occurrence. Given
the fine-grained spatial resolution of health facility ser-
vice areas in Rwanda, this could allow more detailed
spatial hotspot detection of the disease and its associated
risk factors.

Methods

Study area

Rwanda is a relatively small landlocked country of
26,338 km” in the Great Lakes region of Central-
Eastern Africa with a climate characterized by two
rainy and two dry seasons. Administratively, Rwanda is
divided into five provinces, 30 districts and 416 sectors
[18]. The sectors together make up 367 health facility
service areas (HFSAs), as shown in Fig. 1b. Around 11
million people inhabit the country [19], of which 83.5%
live in the countryside mainly engaged in small-scale
farming. Because of shortages of agricultural land, wet-
land conversion is one of the ongoing activities for
rural development [20].
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Over time, Rwanda’s health sector has experienced a
profound evolution from traditional healing methods to
faith-based health care during the colonial period, then
centralized, and free provision of health services up to
the early 1990%, to the current decentralized health
care delivery system. The decentralization reinforces
community participation in the management and finan-
cing of health services. The current public health care
delivery system is a hierarchically organized three-tier

system providing primary, secondary and tertiary health
care. Primary health care is provided at sector level via
one or more health facilities, secondary care is provided
in the districts by a district hospital, and referral hospi-
tals provide tertiary care at the regional scale. Each
health facility reports to the district health office, which
is responsible for the health facilities and services pro-
vided to the population of the district. Community
Health Workers (CHWSs)function as an effective link
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between communities and public health care initiatives
(Health Policy of Ministry of Health elaborated in 2005).

Data collection and quality checking

Administrative boundaries and spatial delineation of health
facility service areas

The geographic location of health facilities depicting
the 2007 situation, were provided by the Rwanda Bio-
medical Centre - Malaria and Other Parasitic Diseases
Division (RBC/M&OPD). For this study, the health fa-
cility data were updated in May—June 2013 via intensive
consultation of District Land Officers, Surveyors, and
GIS Technicians from each administrative district.
Furthermore, we spatially demarcated the HFSA using
the ‘cost allocation’ spatial analyst tool of ArcGIS. Then,
the delineated areas were further adjusted to the adminis-
trative units considering the population size, physical and
managerial boundary as planned for Community-Based
Health Insurances (CBHI) scheme management (In
Ministerial Instruction Nr /Min/2012 on District - Health
-Guidelines, 2012). The administrative boundaries of the
country at different levels were obtained from the Na-
tional Institute of Statistics of Rwanda. The general infor-
mation data sets such as lakes, islands, parks, and roads,
have been acquired from the Centre for GIS and Remote
Sensing of the University of Rwanda (CGIS-UR).

Schistosomiasis mansoni incidence data

The number of confirmed cases of S. mansoni for the
years 2007—2012 were provided for this study by the RBC/
M&OPD. The same department also provided point loca-
tions and prevalence data obtained at the schools included
in the nationwide school-based prevalence survey of
2007-2008. Another prevalence map produced using
supra-national data, and regional simulation was also
available from the World Health Organization [21]. The
quality of recorded schistosomiasis infection cases at
HFSA level is sound for six reasons. First, S. mansoni in-
fection is diagnosed via microscopic identification of eggs
in stool samples in the laboratory of the health facility.
Second, accessibility is unproblematic as patients can
reach a health facility within a walking distance of at most
5 km. Third, Community-Based Health Insurance (CBHI)
makes that appropriate health care is affordable for every-
one (patients pay only 10% of the total cost of service and
medication). Fourth, community health workers actively
stimulate patients to visit the health facility in case of sus-
pected health problems. Fifth, since there is no traditional
medicine used for Schistosomiasis in Rwanda, patients
with symptoms will go for treatment at the health facility.
Sixth, the Rwandan Health Management Information Sys-
tem (R-HMIS), routinely and systematically collects health
records from individual health facilities using a web-based
software platform (DHIS2) whereby each health facility
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enters their monthly health records directly into the na-
tional database [22].

Socio—economic and biophysical covariates

Demographic data were extracted from the 2002 and
2012 Population, and Housing Census published by the
National Institute of Statistics of Rwanda (NISR) and for
the years in between the estimated population number
and distribution were extracted from estimation and
projections also reported by NISR. The socio-economic
factors such as school attendance levels, access to im-
proved water sources, proper sanitation at district and
HFSA level were available from census reports.

S. mansoni transmission is determined and accelerated
by interactions of various factors spatially restricted to
freshwater bodies inhabited by particular host snails
[23]. Earlier studies in East African countries identified
numerous biophysical and socio-economic conditions
related to schistosomiasis infection risk [1]. In addition
to socio-economic factors, biophysical factors need to be
considered as well. Wetland agro-ecosystems related fac-
tors (namely wetland proportion, rice cropped areas,
wetland/water body adjacency) were also collected. Like-
wise, topographic and climatic factors were used as po-
tential risk factors for this study. Data acquisition and
pre-processing methods to generate raster data for the
risk factors are detailed in previous research on Rwan-
dan wetlands characterization and their climate sensitiv-
ity [24]. Soil parameters (pH, clay, and sand content
percentage) were extracted from the soil geo-database of
Rwanda generated from a semi-detailed soil survey con-
sisting of 1833 soil profiles spread over the country. The
geostatistical interpolation of soil properties was done
using landform data at a scale of 1: 250,000 and 1:
50,000 [25]. Mean values at HFSA level were extracted
from original risk factors raster data using zonal statis-
tics tools of ArcGIS 10.2.2. District factor values are the
average of values of HFSAs within a district.

Comparison of spatial distribution of S. mansoni with
incidence and prevalence datasets

Incidence and prevalence are both measurements of dis-
ease frequency. Incidence estimates how often disease
occurs in space and time (a measure of disease risk).
Prevalence evaluates how much the disease is spread in
a given population (a measure of disease burden) at a
given moment. Since both are related (prevalence = inci-
dence rates x average duration of disease), high preva-
lence areas may correspond with high incidence rates
for a disease such as S. mansoni. The 2008 prevalence at
each of the 136 surveyed schools is directly compared
with incidence rates at HFSA level for the same year and
location. Prevalence and incidence data were also
mapped at the district level to enable visual comparison.
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Detection and visualization of the spatial pattern of S.
mansoni

Appropriate spatial and statistical approaches for detect-
ing spatial clustering and relationships with risk factors
are provided by current advances in spatial epidemiology
[26, 27].

Cases of S. mansoni per population at risk

The number of confirmed cases of S. mansoni per HESA
per month were summed per year and further aggre-
gated to the district level. The generated annual S. man-
soni incidence cases and demographic data were joined
using Excel and then linked to the HFSA and district
spatial data. The incidence rate is the number of S. man-
soni cases per district (n = 30) or HFSA (n = 367) di-
vided by the population of that district or HFSA, as
shown by the equation below:

Di = (In/Pt) * 100 000

Where Di is the S. mansoni incidence rate, In is the
total number of new cases in 12 months of a year per
district/HCSA, and Pt is the total population of that year
for that entity.

To make the rates more intuitive, they were multiplied
by 100,000 to obtain incidence rates reported per one
hundred thousand persons [28]. The raw rates from
sparsely populated HESAs were replaced by weighted av-
erages using Empirical Bayesian Smoothing (EBS) [29].
EBS computes raw rates and produces three weighted
rates using the global, mean and local average. The
smoothing was done using the SpaceStat software [30].

For visualization, incidence rates were classified into
four classes using the Jenks classification. The classes de-
fined in this way were harmonized to allow for inter-
annual comparison and comparison with prevalence maps
at the district level. Furthermore, the average incidence
rates for 2007 and 2008 at HESA level were standardized
to vary from 0 to 1 (from non-endemic to hyperendemic
areas) and superimposed with the points map of the 136
schools surveyed during the nationwide mapping of
2007-2008. A scatterplot was then generated to display
the relationship between incidence rates at HFSA level
and prevalence per school.

Analyzing pattern with Moran’s index statistic

Spatial autocorrelation was computed to ascertain the
correlation between neighboring incidence rates of S.
mansoni and the level of spatial clustering within the
study area [31]. The Moran’s Index statistic, similar to
the Pearson correlation [32], is widely used for this and
was calculated as:
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Where N is the number of districts/HFSA; Wj; is the
element in the spatial weights matrix corresponding to
the observation pair i, j. Also, x; and j; are observation
for areas i and j with mean u#. And

So = Ziz;‘wif

Since the weights are row-standardized Yw;; = 1, the
first step in the spatial autocorrelation analysis is to con-
struct a spatial weight matrix that contains information
about the neighborhood structure for each location.
Adjacency is defined as the immediately neighboring
district/HFSA, including the district/HFSA itself [33].
Non-neighboring units have a weight of zero.

Mapping clusters

The Local G;%(d) statistic was selected to test the statis-
tical significance of local clusters and to determine the
spatial extent of these clusters [34, 35]. The Local G;*d)
statistic is useful for identifying individual members of
local clusters by determining the spatial dependence and
neighboring observations [26, 36]. It can be written as
follows:

iji,-(d)xj— Wiﬁ_C

(nS;,-—W%)
S\

Gi(d) = , for all j

Where x is a measure of incidence rate of S. mansoni
within a given district/HFSA polygon; W is a spatial
weight that defines neighboring district/HFSA j to i; W;

is the sum of the weight W,

5 1
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Developing the spatial weight W); is the first step to
calculating Gi* (d). The spatial weight matrix includes
W, = 1. and in this study, the adjacency has been de-
fined in ArcGIS - proximity analysis based on polygons
that share common boundaries and vertices [37].

With Local G;¥d) statistic clusters with a 95% signifi-
cance level from a two-tailed normal distribution indicate
significant spatial clustering, but only positively significant
clusters are mapped.

Empirical modeling of S. mansoni with potentially associated
factors

Input data sets were standardized and prepared at HFSA
level using standard functionality of ArcGIS. The attri-
butes of the spatial data were exported to IBM SPSS Sta-
tistics, version 20 which was used for all statistical
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analyses. Before the use of the variables to train an ex-
ploratory empirical model, exploratory data analysis was
done. Considering the patterns of data distribution,
using normal distribution curves and frequency distribu-
tions; a log-normal distribution transformation was done
for some of the input datasets [38]. Then, with normally
and In-transformed variables, Pearson’s rank correlation
coefficient and the test of co-linearity using pairwise
scatter plots was done. Sixty percent of the data was ran-
domly sampled for the model, to avoid the spatial auto-
correlation in our empirical regression and to prevent a
fixed spatial pattern. With the spatial autocorrelation,
the model becomes insensitive to changes in the spatial
patterns and over fitted.

The incidence of S. mansoni, as the dependent vari-
able, was related to all potential risk factors. Risk factors
used in the statistical analysis were grouped into five.
The first group is made up of physical variables, sub-
categorized as soil properties (pH, sand percentage, and
clay percentage) and terrain derivatives (elevation, slope,
and terrain shape index). The second group represents
ecological variables (wetland proportion, the total area
of rice cropping schemes, water/lake adjacency). The
third group consists of two climatic variables (total an-
nual amount of rainfall and average annual temperature).
The fourth group consists of four demographic variables
(number of households, population density, and percent-
age of rural and urban residents). The last group represents
socio-hygienic conditions, namely: level of education, the
source of water and sanitation situation.

A stepwise linear regression was conducted, considering
P > 0.1 as the removal criterion and P < 0.05 as the entry
criterion. This quantifies the strength of the relationship
between schistosomiasis cases and the significant covari-
ate(s). The standardized coefficients were used to compare

Page 6 of 14

the effects of each independent variable on the dependent
variable [39]. To determine how well the regression model
fitted the data, we used the R-square and the Standard
Errors of the Regression (S). We considered the S to
represent the average distance that the observed values
deviate from the regression line. The S must be <2.5 to
produce a sufficiently narrow 95% prediction interval [40].
Also, we used both residuals and residual plots to analyze
drift and variance of the values [41], for evaluating the ap-
propriateness of the model.

Results
Comparing prevalence and incidence data
To check if indeed there is a significant relationship
between prevalence and incidence data, we compared
standardized incidence rates of 2007-2008 at HFSA level
with prevalence data obtained at the 136 school sampled
during the 2007-2008 nationwide survey. In Fig. 2, we
can observe a very strong relationship between the two
data sources with a coefficient of determination of 0.79.
This strong relationship indicates that we can use rou-
tinely recorded cases of S. mansoni at primary health facility
level to supplement prevalence data. The readily available
incidence rates can be utilized as a proxy for prevalence.
This information can be sourced on a monthly basis for
every health facility for more than one decade.

Spatial distribution of S. mansoni in Rwanda

A total number of 1221 S. mansoni cases were reported
in Rwanda for the years of 2007 and 2008. Annual inci-
dence rates for 30 districts were calculated (Table 1).
Nyagatare district had the highest rate of 57 cases per
100,000 persons in 2008. Then EBS incidence rates for
367 HFSAs were also calculated for the year 2007 and
2008. As visualized in Fig. 3, a lot of HFSAs, as well as
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Table 1 Incidence rates (per 100.000 persons) of S. mansoni in
Rwanda for specific years (2007, 2008 and cumulative incidence
(2007-2008)

District Name Year

2007 2008 2007-2008
Nyarugenge 2,33 2,67 3,82
Gasabo 539 6,42 8,40
Kicukiro 041 117 0,78
Nyanza 0,38 7,05 3,71
Gisagara 1,05 1,37 1,72
Nyaruguru 0,39 1,51 1,34
Huye 0 11,43 571
Nyamagabe 0 0,64 032
Ruhango 0,72 0 0,71
Muhanga 0,66 0,98 1,31
Kamonyi 0 0 0
Karongi 1,66 0,33 1,96
Rutsiro 8,64 713 12,22
Rubavu 0 0,58 029
Nyabihu 3,92 6,7 7,05
Ngororero 0 42 1,94
Rusizi 1791 21,66 2842
Nyamasheke 4,57 15,46 12,37
Rulindo 0,75 147 1,47
Gakenke 0 1,81 091
Musanze 3 7,96 7,08
Burera 16,45 47,6 40,02
Gicumbi 2,65 84 6,83
Rwamagana 0 18,83 9,60
Nyagatare 1,57 57,07 30,04
Gatsibo 0 10,35 518
Kayonza 0 1,13 0,76
Kirehe 35,25 16,89 42,40
Ngoma 10,98 2,13 11,72
Bugesera 0 1,28 0,64

some districts, have zero or very low numbers of S.
mansoni cases per year. Visually, there also are districts
with high rates (respectively Nyagatare, Kirehe, Ngoma,
Rusizi, and Burera); districts with zero rates (10 Districts
in 2007 and only 2 in 2008) and districts with very low
incidence rates. At HFSA level, the spatial pattern of S.
mansoni is much more distinct, showing considerable
differences within a district.

Spatial autocorrelation of S. mansoni rates

The results of spatial autocorrelation of neighboring
values aggregated at HFSA and district level are summa-
rized in Table 2.

Page 7 of 14

The results were statistically significant at the district
level and strongly significant at HESA level (p < 0.05 and
z-score greater than 1.96). The statistically significant
values indicate that the distribution S. mansoni is spatially
heterogeneous in Rwanda and that heterogeneity is more
explicit at HFSA level.

Measures of spatial clustering (hotspots) of S. mansoni
rates

The identified statistically significant hotspot areas from
the Local Gi* (d) test of S. mansoni rates for the year
2007 and 2008 are visualized in Fig. 4.

The outcomes from spatial clustering analysis computed
with Local Gi* (d) statistic at district and HFSA levels are
categorized as clusters (z-score > 1.96) or non-clusters
(z-scores <1.96), at different significance level.

S. mansoni Spatial distribution in relation to environmental

factors

Some risk factors have a significant relationship with S.
mansoni incidence. The sand percentage (of the soil)
and elevation are negatively correlated with S. mansoni
incidence rates, while In-terrain shape index (TSI),
temperature, rain, and rice cropped area in wetlands is
positively correlated (see Table 3). Using R-squared and
Standard error of the estimate, the risk factors included
in the empirical model explain quite a lot regarding the
spatial distribution of S. mansoni with a distinct effect
of spatial scale. More than 47% of the distribution (with
S of 0.926) at detailed HFSA level and 60% (with S of
0.366) at the larger District level.

None of the two models included socio-hygienic vari-
ables such as educational attainment, the source of water
or sanitation conditions. Even with the univariate test by
Pearson’s rank correlation (not reported here), none of
the hygienic and socio-demographic factors had a sig-
nificant association with S. mansoni incidence.

Discussion

This study identifies and visualizes the spatial variability
of S. mansoni at two levels of spatial resolution using
routinely collected health records as a basis. The
incidence rates generated at HFSA levels were EBS
smoothed, and the global mean was able to assign new
rates, as recommended for disease mapping at a high
spatial resolution [42] and in line with the considerable
geographic concentration of S. mansoni in Rwanda [4].
The strong correlation between neighboring values at
small scale was supported by the Global Moran’s index.
The spatial clustering test using Local G;¥(d) statistic
also shows the non-random spatial distribution of S.
mansoni.
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Routine health records provide valuable information for
spatial pattern detection of S. mansoni

Disease maps depicting the spatial pattern of S. mansoni
are essential for guiding control program activities.
However, the added value of disease maps much de-
pends on their spatial resolution, and on the underlying
data used to establish them [43]. In this section, we first
compare the incidence rates based maps at district and
HFSA levels. The second comparison is between

Table 2 Test of spatial autocorrelation of S. mansoni rates
computed for cumulative incidence (2007-2008) and the
particular years (2007 and 2008)

Year District level HFSA level

Moran'l (p value) Z () Moran'l (p value) Z ()
2007-2008 0.13 (<0.001) 5.03 0.14 (<0.001) 5.03
2007 0.24 (0.05) 1.89 0,12 (<0.001) 436
2008 0.12 (0.29) 1.10 0.11(<0.001) 365

incidence rates based mapping and prevalence based
mapping.

Figure 5 illustrates how spatial scale influences the de-
tection of disease hotspots. The center map of Fig. 5 de-
picts incidence rates at the district level for 2007—-2008,
while the four smaller maps show the same information
but now at the HFSA level. The HFSA level maps clearly
show the highly focalized nature of S. mansoni hotspots.
Representation at the district level, on the other hand,
results in an overestimation of areas of high transmis-
sion as well as in non-identification of hotspots in dis-
tricts with generally low incidence rates. The four
identified hotspots areas at HFSA level (see Fig. 5) have
also been identified by previous studies. The first and
second hotspot areas are historically endemic zones of S.
mansoni. Recently, Ruberanziza et al. [4] reported
Nkombo Island (hotspot 1), as the most important S.
mansoni focus in Rwanda. Ntaruka HFSA (hotspot 2)
between Burera and Ruhondo lakes, was previously also
identified as a high transmission area by several cross-
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Table 3 Multiple regression outputs for the relationship between environmental factors and S. mansoni at HFSA and District level

Parameters B Coeff. Standard Error Beta Coeff. t-value p-value
HFSA level model
Intercept -0.697 0.238 - —2.931 0.004
Sand percentage -0.004 0.001 -0.366 -3.816 0.000
Rice cropped area 0.001 0.000 0.256 2692 0.009
log-TSI 0.131 0.041 0.298 3.187 0.002
Rain 0.001 0.000 0.281 2585 0012
Temperature 0.028 0.010 0.296 2.832 0.006
District level model
Intercept 1.999 0.906 - 2207 0.036
Sand percentage -0.032 0.010 -0447 -3.216 0.003
Elevation —-0.002 0.000 —0.661 —4.373 0.000
Rain 0.002 0.000 0.657 4336 0.000
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sectional surveys [5, 44, 45]. Hotspot 3 in Nyagatare and
hotspot 4 in Gasabo district have not been documented
before.

The second comparison, illustrated in Fig. 6, is at
district level between the incidence-based map and two
prevalence-based maps. The first (see Fig. 6a) is the preva-
lence map of 2008 published by WHO in 2010 [46]. The
WHO map was produced using United Nations popula-
tion data and prevalence estimations based on the proced-
ure developed by Chitsulo et al. [21]. If we compare the
WHO map with the one based on incidence data (Fig. 6b)
there are obvious similarities, but with a notable exception
for the Gicumbi district (red unit in Fig. 6a). According to
the WHO mapping, Gicumbi district is hyper-endemic
while in reality, the nationwide school-based prevalence
survey (see Fig. 6¢) identified three out of four sampled
schools to be non-endemic (with a prevalence of 0%).

In order to obtain a reliable disease burden measure,
a prevalence survey is always needed. But the use of
incidence data is suitable to identify high-resolution
spatial patterns of disease distribution at the national
scale. Disease maps based upon incidence data might

also be used to guide a spatially explicit sampling pro-
cedure for improved prevalence sampling. This is
important given that the spatial representability of sur-
veyed schools is not well elaborated in current WHO
guidelines for the evaluation of helminthiasis at the
community level [47]. In some case, the cross-sectional
survey was influenced by accessibility by four-wheel
drive car [48]. Inaccessible areas with poor quality or
non-existent roads around valleys and perennial water
bodies are usually poorly represented in school samples
obtained, while those have now been identified as po-
tential high-risk areas [49].

S. mansoni Incidence rates and environmental risk factors

This study detected a significant relationship between S.
mansoni incidence rates and potential environmental
risk factors as summarized in Table 3. Elevation and
sand percentage in the soil are negatively correlated with
S. mansoni incidence, whereas temperature, rainfall, and
wetlands used for rice cultivation are positively associ-
ated. These findings are consistent with existing know-
ledge on the environmental conditions required for the
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development of the intermediate host snails and hence,
can influence transmission risk. The related physical
and ecological parameters were similar to other studies
[1, 50, 51]. Low elevation, valley wetlands, warm and
humid conditions and less sandy soil create favorable
conditions for S. mansoni, as host snails inhabit places
with lower altitudes and wetlands with natural or
cultivated vegetation [50, 52]. The TSI offer additional
and important information for discriminating the impli-
cations of those changes on wetness conditions more
than soil types do [53].

Prior research has demonstrated that S. mansoni infec-
tion can increase as a result of the construction of dams
or irrigation schemes [54]. Indeed, within irrigation sys-
tems transmission is focal and primarily due to localized
contamination of habitats with human excreta contain-
ing Schistosoma eggs [55]. The newly identified hotspot
in Nyagatare district (hotspot 3 in Fig. 5) is close to a
more than 1000 ha irrigation scheme for rice cropping.
Furthermore, intense cultivation such as flowers and
sugarcane within Nyabarongo wetland can be linked
with the hotspot identified in Kigali city (see hotspot 4
in Fig. 5). A similar situation was also reported for
Minas Gerais State in Brazil [56]. This indicates that vul-
nerability to S. mansoni is not limited to rural popula-
tions, school children or women of childbearing age but
extends to entire communities.

Limitations of this research approach

Although the incidence data from routine health records
have a high quality as described in the methodology sec-
tion, the number of confirmed cases will still only be a
fraction of all infected persons and will mostly concern

patients manifesting clinical symptoms. If the incidence
database could be enriched with additional information
(e.g. intensity of infection in tested stools, the total num-
ber of investigated subjects and their age and sex) the out-
comes of the analysis would become even more robust.

Regarding the patterns analysis and clusters mapping,
we used the Global Moran’s I and Local Gi* (d) statistic
instead of local Moran’s 1. However, both statistical tests
are related; the correlations between nearby values of the
statistics are derived and verified by simulation. In this
specific case, with aggregated values at HESA level, the
spatial autocorrelation was weak (Moran’s I is not closer
to +1) and statistically significant hot spots, cold spots,
and spatial outliers were only distinguished with Local Gi*
(d) statistics. Thus, the linear regression, although not the
best approach for the spatially autocorrelated dataset, pre-
sented satisfactory results for exploratory analysis of dis-
ease risk factors. Given that there was no strong spatial
dependency between closer values (as proven by semi -
variogram test). Additionally, the risk for a fixed spatial
pattern was prevented by sampling randomly the model
calibration data subset.

Somewhat unexpected is that none of the demo-
graphic and socio-economic variables had a significant
contribution to explaining S. mansoni incidence vari-
ability at HFSA level. A plausible explanation for this is
that in Rwanda there is low variability in levels of
school attendance, access to improved water sources,
proper sanitation, and wearing of shoes [16, 17]. In
Rwanda, conditions have much improved as a result of
significant policy achievements in the last two decades
[57, 58]. Consequently, additional information about
people’s behavior would be required to further improve
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our understanding of S. mansoni risk factors. Possible
examples are the habit of taking off shoes while work-
ing in the field, defecation in bushes when working on
the land (and thus far from the home toilet), which
may be important to better understand S. mansoni ex-
posure [1, 9, 59].

The multiple regression models explain a lot of the ob-
served spatial variability of S. mansoni incidence rates as
a function of possible locational risk factors. The district
model performed better than the model at the more de-
tailed HESA level. This is consistent with the fact that
aggregation of data causes linearization contributing to
overestimation in linear regressions [60].

Conclusion

This study has demonstrated that in Rwanda prevalence
and incidence data for S. mansoni are highly correlated.
Given the availability of reported cases for each health
facility in Rwanda, a high resolution spatially explicit
statistical investigation of S. mansoni hotspots is feasible.
The identified risk areas provide an appropriate basis to
guide S. mansoni control programs at a much more de-
tailed spatial scale than was possible before. In addition,
the most important physical, ecological and climatic risk
factors for S. mansoni transmission in Rwanda were
identified. It was also shown that intensive agricultural
use and transformation of wetlands for rice cultivation
contributes to the spreading of S. mansoni into previ-
ously non-endemic areas. In line with environmental
health impact monitoring and evaluation for wetland
based development projects, a specific policy is required
to address and reduce potential disease risk associated
with rural development efforts. Finally, use of routinely
collected incidence data opens the door for spatiotempo-
ral analysis of S. mansoni and environmental risk factors
which will vary in space and time.
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