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The policy requests to develop trends in soil erosion changes can be responded developing modelling sce-
narios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The
recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used
to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict
future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach
(Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipita-
tion, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on cli-
mate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected
to be 857 MJ mm ha�1 h�1 yr�1 till 2050 showing a relative increase of 18% compared to baseline data
(2010). The changes are heterogeneous in the European continent depending on the future projections
of most erosive months (hot period: April–September). The output results report a pan-European projec-
tion of future rainfall erosivity taking into account the uncertainties of the climatic models.
� 2017 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Soil erosion is one of the main European environmental threats,
particularly in Southern Europe (Panagos et al., 2015a). Its preven-
tion and mitigation is a key ecosystem service to monitor and
access spatially and temporally (Guerra et al., 2016). Accelerated
soil erosion may lead to a decrease of ecosystem stability, land pro-
ductivity, land degradation in general and a loss of income for
farmers (Salvati and Carlucci, 2013). Soil erosion and more gener-
ally land degradation is driven by unsustainable land management
due to increasing human pressure enhanced by climate change
(Helldén and Tottrup, 2008). The extent, frequency and magnitude
of soil erosion in Europe is expected to increase due to a general
increase of extreme rain fall events caused by climate change
(Pruski and Nearing, 2002; Deelstra et al., 2011).

The prediction of soil erosion changes in the future are mainly
dependent on modeling future rainfall erosivity, land use changes
and impacts of policies on soil loss. The most commonly used ero-
sion models are the the various types of the Universal Soil Loss
Equation (USLE) originally developed by Wischmeier and Smith
(1978). In the proposed algorithms, soil loss by water erosion is
proportional to rainfall erosivity (R-factor), which is one of five
input factors. While rainfall erosivity accounts for the effect of
rainfall in soil erosion, the soil erodibility (K-factor) incorporates
the soil properties defining the susceptibility of a soil to erode,
the cover management (C-factor) takes into account the land use
and management in agricultural lands, the slope length and steep-
ness (LS-factor) accounts for the topography and finally the sup-
port practices (P-factor) considers the effect of conservation
measures. A modified version of the USLE, the Revised Universal
Soil Loss Equation (RUSLE), was originally suggested by Renard
et al. (1997), and has been recently applied in Europe (RUSLE2015)
for the estimation of soil loss by water at 100-m resolution
(Panagos et al., 2015a). Among other improvements compared to
past Pan-European soil erosion assessments, RUSLE2015 incorpo-
rates the option of running climate change, land use change and
policy scenarios.

Rainfall erosivity is a multi-annual average index that measures
rainfall kinetic energy and intensity describing the effect of rainfall
on sheet and rill erosion (Wischmeier and Smith, 1978). The rain-
fall erosivity of a given storm in RUSLE (referred to as R-factor) is
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equal to the product of the total storm energy with its maximum
30-minutes rainfall intensity. As high temporal resolution rainfall
data are commonly not available, many studies estimated rainfall
erosivity using approximation equations based on monthly or daily
rainfall data (Bonilla and Vidal, 2011; Diodato and Bellocchi, 2010).
Only recently, R-factors were directly estimated from high tempo-
ral resolution data at national/regional scale in Europe such as the
study in Slovenia (Petan et al., 2010), Switzerland (Meusburger
et al., 2012), Ebro catchment in Spain (Angulo-Martinez et al.,
2009), Czech Republic (Janeček et al., 2013), Greece (Panagos
et al., 2016a) and Italy (Borrelli et al., 2016).

The occurring and projected climate change is likely to affect
soil erosion due to intensification of rain, change of precipitation
amounts, change of moisture and vegetation cover change (St.
Clair and Lynch, 2010). The most important impact of climate
change on soil erosion is expected due to an increase of rainfall
intensity, in particular the increase of extreme rainfall events both
at global (e.g., Sillmann et al., 2013) and continental scale (for Eur-
ope see, e.g., Frei et al., 2006; Westra et al., 2014). There are few
studies which have addressed the risk of increasing rainfall erosiv-
ity based on past trends (Verstraeten et al., 2006 in Ukkel, Belgium;
Fiener et al., 2013 in western Germany; Hanel et al., 2015 in Czech
Republic). At national scale, future trends in rainfall erosivity were
addressed in the USA (Nearing, 2001; Biasutti and Seager, 2015),
China (Zhang et al., 2010) and Japan (Shiono et al., 2013). The stud-
ies in USA used mean annual precipitation combined with Fournier
coefficient (Arnoldus, 1980) while the ones in China and Japan
have downscaled the monthly precipitation spatially and tempo-
rally. The improved understanding of General Circulation Models
(GCM) and the increased data availability contributed to their
wider use and allow for their integration in ecological-related dis-
ciplines (e.g. soil, water). For instance, Nearing (2001) has applied
the HadCM3 climate change scenario (Gordon et al., 2000) and
estimated increases in rainfall erosivity between 16% and 58% in
the USA.

The objective of this study is to estimate the expected change in
rainfall erosivity and its impact on soil erosion in Europe during
the first half of the 21st century based on the updated IPCC climate
change scenarios (IPCC, 2013). This study focuses on the R-factor
changes without considering the impact of climate change on land/
vegetation cover. Compared to previous studies that used approx-
imation equation based on annual (or monthly) precipitation, this
study use as input the high-temporal-resolution Rainfall Erosivity
Database at European Scale (REDES) (Panagos et al., 2015b) and cli-
matic data derived from the WorldClim database, which is set of
global climate grids with a spatial resolution of about 1 km2

(Hijmans et al., 2005).
2. Database and modelling approach for R-factor prediction

This chapter presents: a) a brief description of REDES and its lat-
est updates; b) WorldClim datasets modelling future climatic con-
ditions; c) the climate projections for 2050 in Europe with specific
focus on rainfall, and d) the regression model applied for the R-
factor future prediction.
2.1. Rainfall Erosivity Database at European Scale (REDES)

The first version of the Rainfall Erosivity Database at European
Scale (REDES) (2014) included 1,541 rainfall stations within the
European Union (EU) and Switzerland (Panagos et al., 2015b). In
2015, an update of REDES was performed with 134 new R-factor
stations, which resulted in 1675 REDES stations. The spatial distri-
bution and the density of rainfall stations in REDES is not homoge-
neous in all EU countries (Ballabio et al., 2017) due to availability
(or not) of high temporal resolution rainfall data. Auerswald
et al. (2015) addressed 5 comments on REDES dataset and
Panagos et al. (2015c) replied to this. Both studies (Auerswald
et al., 2015; Panagos et al., 2015c) agree that the use of a short time
series or time series from different periods is generally a problem
in all large-scale studies and requires improvement in the future.

The R-factor as a proxy for rainfall erosivity has been calculated
in REDES by using high temporal resolution data (5-min, 10-min,
15-min, 30-min and 60-min) and applying the equations proposed
by Brown and Foster (1987). The R-factor is the product of the
kinetic energy of a rainfall event (E) and its maximum 30-
minutes intensity (I30) (Brown and Foster, 1987).

2.2. WorldClim datasets: Baseline and projected

Global precipitation and temperature (both annually and
monthly) at a high spatial resolution of 1 km2 are available from
the WorldClim database (Hijmans et al., 2005). The data layers
are generated through interpolation of average monthly climate
data from weather stations on a 30 arc-second resolution grid
(referred to as ‘‘1 km2” resolution) and include precipitation data
from 47,554 locations and maximum/minimum temperature data
from 14,835 locations all over the world. The density of stations
in Europe is among the highest ones. Records for at least 10-
years have been used to calculate the average monthly climatic
grids, which represent the baseline climatic situation.

The future climate projection for 2050 are derived from General
Circulation Models such as HadGEM2 (see next section) that was
used in this study (Milton et al., 2011). The yielded projections
are downscaled and calibrated (bias-corrected) using WorldClim
as the historical (1950–2000) baseline (Hijmans et al., 2005). The
datasets on future projections refer to the middle century (2041–
2060) and the midpoint year 2050 will be used as reference in
the following. Difference maps of WorldClim datasets (future pro-
jections compared to baseline ones) show the impact of climate
change in precipitation and temperature (Fig. 1).

2.3. Climate projections in Europe

The Intergovernmental Panel on Climate Change (IPCC) recently
published the 5th assessment report in 2013–14 (IPCC, 2013),
describing the projections of climate change during the 21st cen-
tury. Climate projections are model-driven descriptions of possible
future climates under a given set of plausible scenarios of climate
change (Weaver et al., 2013; Rummukainen, 2010).

General Circulation Models (GCMs), as well as the Regional Cir-
culation Models (RCM) represent powerful tools to produce spa-
tially explicit predictions on future climate changes based on a
given scenario. More than 50 General Circulation Models are cur-
rently available for environmental studies. GCMs are numerical
representations of climate systems based on physical, chemical
and biological properties of oceans, land and ice surface (Harris
et al., 2014). Among the 50 GCMs, we have selected the HadGEM2
climate model developed by Met Office Hadley Centre in United
Kingdom (Martin et al., 2011; Jones et al., 2011). HadGEM2 repre-
sents the current state of the art and it is a valuable tool for pre-
dicting future climate and understanding the climate feedbacks
within the earth system (Milton et al., 2011).

The climate change scenarios are called Representative Concen-
tration Pathways (RCPs) and the 3 main used RCPs are RCP2.6,
RCP4.5 and RCP8.5. Among these 3 prevailing climate change sce-
narios, we have selected the RCP4.5 which is the most widely used
and which is neither conservative (RCP2.6) nor extreme (RCP8.5).
The RCP4.5 scenario forecasts an increase in greenhouse gases that
is expected to peak around 2040, afterwards a smooth decline until
the end of the century is assumed.



Fig. 1. Examples of climate change predictions according to WorldClim datasets: differences between 2050 projections and baseline are shown for: a) the precipitation in
May , b) precipitation in October , c) Maximum temperature in September, d) Maximum Temperature in November.
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The RCP4.5 scenario applied with the General Circulation Mod-
els HadGEM2 and calibrated with WorldClim baseline data pro-
jects a global mean surface temperature increase by 1.4 Celsius
degrees (range 0.9–2.0) in the period 2046–2065 and by 1.8 Celsius
degrees (range 1.1–2.6) in the period 2081–2100 compared to the
reference period of 1986–2005 (IPCC, 2013). The projected mean
global increase in extreme precipitation events by 10% and an
increase of global precipitation amount by 5% by the end of 21st
century is relevant for rainfall erosivity changes (Kharin et al.,
2013).
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2.4. Relating R-factor and WorldClim climatic data with Gaussian
Process Regression

Since intensity, duration, frequency and amount of rainfall has
large uncertainty in future predictions, and the General Circulation
Models (GCMs) lack temporally high resolved data (<1 h) for a
direct R-factor estimation, the application of statistics and stochas-
tic approaches represent an alternative to predict the potential
change in R-factor. Previous attempts to estimate changes in R-
factor at catchment and national scale (Nearing, 2001; Zhang
et al., 2010; Ito, 2007) have used relationships between rainfall
erosivity and monthly or annual rainfall. However, those relation-
ships do not consider the changes in rainfall intensity and the fre-
quency of storm events (Shiono et al., 2013).

Here we follow a different approach (Fig. 2), because we found
in a previous study that rainfall erosivity (R-factor) is strongly cor-
related with precipitation dynamics (precipitation seasonality,
monthly precipitation) in Europe (Panagos et al., 2015b). In this
study, we chose a regression approach to derive the distribution
of rainfall erosivity in 2050 (dependent variable) from a series of
related but independent WorldClim climatic variables (covariates).
This is done by fitting a regression model using baseline climatic
conditions derived from the WorldClim dataset and the rainfall
erosivity as calculated from field measurements.

The GPR regression model establishes a statistical relation
between the R-factor point values (calculated from REDES) and
WorldClim baseline climatic data acting as a set of spatially
exhaustive covariates (Fitting part in Fig. 2). In a second step, this
GPR regression model is applied to WorldClim future climatic data
layers for the year 2050 (HadGem2, Scenario 4.5) in order to derive
the future predictions of the rainfall erosivity (R2050) (Prediction
part in Fig. 2)
Fig. 2. Procedure followed to project futur
The rationale behind this procedure is that rainfall intensities
and as such rainfall erosivity are associated with given combina-
tions of climatic conditions that occur in the present. It is assumed
that in the future, similar combinations of climatic conditions are
related in the same way to rainfall intensities and rainfall erosivity
but will likely occur at different latitudes or in different periods of
the year. Consequently, applying the regression model fitted on
current climatic dataset allows to estimate future levels of rainfall
erosivity when the same model is applied with covariates of pro-
jected future climatic data sets.

The Gaussian Process Regression (GPR) was used as regression
method in this study. It is a regression technique generally suited
for large scale applications where high dimensionality (number
of degrees of freedom) of data used and non-existence of linear
relationships between target variable and covariates (Vasudevan
et al., 2009; Rasmussen and Williams, 2006) subsists. The GPR
model was selected in this study for two reasons: a) better perfor-
mance (in terms of R2, RMSE, Standard error) compared to other
models and b) comparability of results with the existing rainfall
erosivity in Europe where GPR was also applied (Panagos et al.,
2015b). The details on how the regression model Gaussian Process
Regression is applied for the rainfall erosivity prediction are
described in the rainfall erosivity in Europe (Panagos et al., 2015b).

In this model application, the optimization of the GPR by fea-
ture selection was performed using a Simulated Annealing (SA)
approach (Kirkpatrick et al., 1983). Simulated Annealing (SA) is
an optimization technique processing arbitrary degrees of nonlin-
earities (and stochasticity) and guarantees to find the statistically
optimal solution (Ingber, 1993). Further, SA allows finding the best
set of covariates to be included in the GPR model by optimizing a
chosen model metric; in this case the metric is cross-validation
Root Mean Square Error (RMSE).
e (2050) rainfall erosivity for Europe.



Table 1
Ranking of WorldClim variables according to the Simulated Annealing (SA) optimiza-
tion. Variables are ranked according to their respective selection frequency.

Parameter Covariate explanation Selection
frequency

Included in the
model (Y)es/(N)o

Prec8 Average precipitation (mm)
in August

80 Y

Prec4 Average precipitation (mm)
in April

80 Y

Bio15 Precipitation Seasonality 80 Y
Tmin3 Average minimum

temperature in March
70 Y

Prec9 Average precipitation (mm)
in September

70 Y

Prec7 Average precipitation (mm)
in July

70 Y

Prec6 Average precipitation (mm)
in June

70 Y

Prec5 Average precipitation (mm)
in May

70 Y

Bio3 Isothermality 70 Y
Bio18 Precipitation (mm) of

Warmest Quarter
70 Y

Tmin6 Average minimum
temperature in June

60 Y

Tmin2 Average minimum
temperature in February

60 Y

Tmax8 Average maximum
temperature in August

60 Y

Prec2 Average precipitation (mm)
in February

60 Y

Prec11 Average precipitation (mm)
in November

60 Y

Bio4 Temperature Seasonality 60 Y
Tmin9 Minimum temperature in

September
60 N

Tmax6 Average maximum
temperature in June

50 N

Tmax5 Average maximum
temperature in May

50 N
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For the first fold, n-1 of the data is used in the search while the
remaining n-(n-1) is used to estimate the internal performance.
The fitted model is then applied to all the data in order to obtain
the external performance. This allows having two metrics, one
used for fitting the model (internal performance) and the other
used to express global model performance. SA also allows to esti-
mate variable importance by ranking variable frequency candidate
models through the optimization process and their influence on
the final model. Finally, the GPR equation together with the pro-
jected changes of the same covariates will be used to estimate R-
factor in 2050.

The GPR could potentially use 42 covariates from the World-
Clim database. Among them, the 36 monthly layers represent the
following 3 climatic variables (each one has 12 monthly layers):

- monthly total precipitation (mm)
- monthly average minimum temperature (degrees C * 10)
- monthly average maximum temperature (degrees C * 10)

Moreover, we have used bioclimatic variables which are derived
from monthly temperature and precipitation values and generate
biologically meaningful variables of WorldClim. Those bioclimatic
variables represent annual trends, seasonality and extreme or lim-
iting environmental factors. In the prediction of rainfall erosivity,
we have used six bioclimatic variables a) the Mean diurnal range
(Mean of monthly difference between maximum and minimum
temperature), b) isothermality c) temperature seasonality (stan-
dard deviation * 100), d) precipitation seasonality (Coefficient of
variation) e) precipitation of warmest quarter (period of 3 months;
¼ of the year) and f) precipitation of the coldest quarter. The six
bioclimatic variables are pre-selected among the nineteen avail-
able ones as they are not collinear with the monthly precipitation
and temperature values which have been already included in the
model.
Tmax2 Average maximum
temperature in February

50 N

Tmax12 Average maximum
temperature in December

50 N

Tmax10 Average maximum
temperature in October

50 N

Prec10 Average precipitation (mm)
in October

50 N

Prec1 Average precipitation (mm)
in January

50 N
3. Results and discussion

3.1. Gaussian Process Regression fitting

The Simulated Annealing (SA) procedure has been applied over
the set of 42 proposedWorldClim covariates (see 2.4 Section) and a
selected set of 16 covariates was used in the final best model
(Table 1). The selection procedure converges at iteration 150 where
the minimum RMSE of 515.78 is reached (Fig. 3) for external vali-
dation. The stability of the model output is supported by the pla-
teau reached between the 100th and the 200th iteration (Fig. 3).
This assures the good performance of the model in generalizing
properties (such as future R-factor) and reducing the likelihood
of runaway estimations in predicting future rainfall intensities
(unless forecasted climatic variables with runaway values are pro-
vided as input to the model). The overall performance of the model
is evidenced by an R2 of 0.635, while the relative error is 0.56 for
the entire dataset (Fig. 3).

The best model includes 16 variables ranked as shown in
Table 1. We observed that if more variables are included in the
model, it is not implied that the performance will be improved.

Among the 16 variables for the application of the future predic-
tion R-factor model at European scale, 8 monthly precipitation
datasets are included. It is notable that precipitation of winter
months (December, January), March and October are not included
in the model while the warmer months during the vegetation per-
iod (April to September) are included. Regarding the temperature
effect in the future predictions of rainfall erosivity at European
scale, the GPR model included 3 monthly minimum average tem-
peratures (February, March and June) and only one monthly max-
imum average temperature (August). The GPR model included also
four out of six bioclimatic variables in R-factor predictions: a)
isothermality (Mean Diurnal Range divided by Temperature
Annual Range) b) temperature seasonality (standard deviation) c)
precipitation seasonality (Coefficient of Variation) and d) precipita-
tion (mm) of warmest quarter.
3.2. Rainfall erosivity in Europe in 2050

The projected rainfall erosivity based on REDES and WorldClim
datasets according to RCP 4.5 climate change scenario driven by
the HadGEM2 GCM model (Fig. 4) shows an increase of the R-
factor in Northern and Central European countries. The projected
mean R-factor for 2050 in the European Union and Switzerland is
857 MJ mm ha�1 h�1 yr�1 showing an increase of 18% compared
to the current rainfall erosivity (Panagos et al., 2015b). The mean
absolute error was estimated at 319 MJ mm ha�1 h�1 yr�1 and
the relative error 0.56 with a model R2 of 0.64. A simulation with
the RCP 2.6 climate change scenario showed a smoother increase
of erosivity compared to baseline (16%) while the use of the most
aggressive scenario RCP 8.5 showed a notable increase of erosivity
(27%).



Fig. 3. Optimization profiles of the SA. The vertical axis expresses the average RMSE result of internal and external cross-validation.
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3.3. Estimated changes of rainfall erosivity in Europe (2050 compared
to 2010)

Besides the future projections of rainfall erosivity, it is impor-
tant to highlight the change compared to baseline dataset of
2010 (Fig. 5). This comparison is feasible because the same GPR
model is used but with different climatic input conditions (2010
versus 2050 climatic data). The absolute difference in R-factor
between the 2050 projection and 2010 baseline allows to identify
areas of strong erosivity decrease or increase (Fig. 5). Based on this
assessment, 81% of the area in Europe (around 3.5 * 106 Km2) is
predicted to have an increased rainfall erosivity by 2050 and only
for the remaining 19% rainfall erosivity is predicted to decrease
(Fig. 5). In almost 25% of the study area the R-factor is increasing
by at least 50% by the year 2050 compared to the baseline data
(2010).

In large parts of Italy and Slovenia, Western Croatia (Adriatic
sea), Scotland, eastern Spain, eastern Bulgaria, eastern Romania,
Western Greece and North West Iberian Peninsula a pronounced
decrease of the absolute rainfall erosivity is expected (Fig. 5). Most
of those areas (Scotland, Italy, Slovenia, Western Greece, Croatia
and North west Iberian Peninsula) have very high mean R-factor
(>1,300 MJ mm ha�1 h�1 yr�1) in 2010 (Panagos et al., 2015b) and
the projected decrease is more than 200 MJ mm ha�1 h�1 yr�1 till
2050 mainly due to less rainfall.

The potentially most problematic areas are probably the ones
where an increase of more than 500 MJ mm ha�1 h�1 yr�1 is pro-
jected by 2050. The higher rainfall erosivity in these areas is caused
by more intense rainstorms and/or by more frequent erosive
events. The Swiss Alps, part of the French Atlantic coast, East Croa-
tia and parts of Slovakia and southern Germany are expected to
have such increase (rainfall intensity and/or frequency of erosive
events), according to the most often applied RCP4.5-based scenar-
ios (IPCC, 2013), including also the HadGEM2 GCM used in this
study. In major parts of the North Europe (France, Belgium, Nether-
lands, Germany, Denmark and Czech Republic) a notable increase
of rainfall events during summer period is going to increase erosiv-
ity by 300–500 MJ mm ha�1 h�1 yr�1. According to the ratio of cur-
rent erosivity compared to future (till year 2050) R-factor, in those
areas it is expected to double. In Baltic states and Poland this
increase will be lighter but quite pronounced compared to the
nowadays rates.

The highest mean relative increase (>50%) in rainfall erosivity
by 2050 is projected for the Netherlands, Denmark, Czech Republic,
Slovakia, Germany and Poland (Table 2). A decrease in mean rain-
fall erosivity is projected in Italy, Malta and Slovenia (>20%). In
Spain and Greece, a slight increase of mean rainfall erosivity is pro-
jected while in Ireland the situation remains fairly stable.

An analysis per main climatic zones in Europe (EEA, 2011)
shows that the Boreal, Continental and Atlantic regions will be rel-
atively more affected by increased rainfall erosivity by 2050
(Table 3). The Alpine climatic zone will show an increase of 13%
of the R-factor and will be the area with highest mean rainfall ero-
sivity (approximately 1056 MJ mm ha�1 h�1 yr�1 by the year
2050). The areas around the Adriatic Sea (Italian coast, Slovenia,
Croatia and Western Greece) show a notable decrease of rainfall
erosivity. The mean R-factor in the Mediterranean zone remains
stable with different spatial patterns.
3.4. Model uncertainty

The uncertainty of the predictions has been quantified by mod-
elling the normalised error of the R-factor predictions (Fig. 6). The
GPR model has the advantage to estimate both the prediction of
the mean and the prediction of the mean variance. The standard
error map expresses how much the estimated value of R-factor
might vary. We expressed this variation as a proportion of the esti-
mated R-factor value (Fig. 6). Likely, areas with a high error are
those where the model has to make predictions on a combination
of climatic factors that are not present in 2010, the baseline situa-
tion. Thus, areas where largest changes are predicted by the GCM



Fig. 4. Rainfall erosivity projection for the year 2050 according to RCP 4.5 scenario driven by the HadGEM2 GCM model.

P. Panagos et al. / Journal of Hydrology 548 (2017) 251–262 257
are likely to have a high uncertainty. Indeed, the areas with higher
uncertainty are the Scandinavian countries, Baltic States, Scotland
and part of Greece and Spain. Medium uncertainty is noticed in
Poland, parts of Germany, Czech Republic, Hungary, Central France
and southern Iberian Peninsula. However, it should be noted that
the high normalised error values in Scandinavia are due to the very



Fig. 5. Absolute difference of R-factor between 2050 projections and 2010 data.
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low absolute estimated value of R-factor in that area and might
thus not be of a high relevance.

Regarding uncertainty, we should further emphasize that our
results come from a methodology which incorporates statistical
parameterizations (geo-statistical model) over point data (REDES)
and future climatic covariates (monthly precipitation, monthly
maximum/minimum temperature, bioclimatic layers). Moreover,
the results include high uncertainty due to the intrinsic climate



Table 2
Mean R-factor values estimated for current climatic conditions (2010) and for the projected future scenario RCP4.5 (2050) per country.

Country Mean R-factor (2010) Mean projected R-factor (2050) Change (%) 2010–2050

MJ mm ha�1 h�1 yr�1

AT Austria 1,075.5 1,240.8 15.4%
BE Belgium 601.5 881.9 46.6%
BG Bulgaria 695.0 838.2 20.6%
CH Switzerland 1,039.6 1,290.9 24.2%
CY Cyprus 578.1 817.0 41.3%
CZ Czech Republic 524.0 883.5 68.6%
DE Germany 511.6 849.8 66.1%
DK Denmark 433.5 772.3 78.2%
EE Estonia 444.3 620.5 39.7%
ES Spain 928.5 1,013.4 9.1%
FI Finland 273.0 404.1 48.1%
FR France 751.7 999.1 32.9%
GR Greece 827.7 949.8 14.8%
HR Croatia 1,276.2 1,297.6 1.7%
HU Hungary 683.3 759.3 11.1%
IE Ireland 648.6 654.6 0.9%
IT Italy 1,642.0 1,249.5 �23.9%
LT Lithuania 484.2 686.5 41.8%
LU Luxembourg 674.5 945.2 40.1%
LV Latvia 480.4 664.3 38.3%
MT Malta 1,672.4 1,277.3 �23.6%
NL Netherlands 473.3 841.1 77.7%
PL Poland 537.1 814.4 51.6%
PT Portugal 775.1 960.4 23.9%
RO Romania 785.0 930.2 18.5%
SE Sweden 378.1 494.6 30.8%
SI Slovenia 2,302.0 1,780.2 �22.7%
SK Slovakia 579.7 971.9 67.7%
UK United Kingdom 746.6 780.0 4.5%

Table 3
R-factor projections estimated for current climatic conditions (2010) and for the projected future scenario RCP4.5 (2050) per Biogeographical region.

Climatic Zone Proportion of the study area Mean R-factor (2010) Mean projected R-factor (2050) Change (%)

% MJ mm ha�1 h�1 yr�1

Alpine 9.2 932.3 1056.5 13.3%
Atlantic 17.7 678.2 863.2 27.3%
Black Sea 0.2 702.1 772.7 10.1%
Boreal 19.1 359.5 492.5 37.0%
Continental 29.7 695.7 911.2 31.0%
Mediterranean 20.4 1050.6 1048.5 �0.2%
Pannonian 2.9 660.1 754.5 14.3%
Steppic 0.8 729.8 686.6 �5.9%
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model uncertainty. Consequently, the results should be regarded as
an attempt to model future rainfall erosivity in Europe and identify
differences in regional patterns.
3.5. Plausibility and comparison with local and regional studies

In this study, we showed that rainfall erosivity may on average
increase by 18% in the European Union and Switzerland (zones
which have generally similar characteristics to the ones in U.S.A)
by 2050. For the U.S.A. Nearing et al. (2004) estimated a similar
average increase of rainfall erosivity of around 17% in 2050. These
matching results are due to very similar rainfall characteristics
between the USA and Europe. Nonetheless, these changes are geo-
graphically variable.

Our results indicate that particularly changes of rainfall occur-
ring during the warmest period of the year (April-September)
would have high effects and increase rainfall erosivity. Diodato
and Bellocchi (2010), identified the precipitation of autumn
months as the major factor for their R-factor projections in the
Mediterranean basin based only on monthly rainfall data. Highest
erosivity values during summer and early autumn were also
observed for major parts of the European Union (Panagos et al.,
2016b) and Switzerland (Meusburger et al., 2012).

Contrasting trends of future rainfall erosivity have been identi-
fied for the Mediterranean basin (Fig. 5) which has complex geo-
graphical characteristics. According to Lionello et al. (2006), the
complex morphology in the Mediterranean basin with distinct
basins and gulfs and many sharp orographic features influences
the sea and atmospheric circulation and lead to great spatial vari-
ability for precipitation.

According to the future climatic projections, mean annual pre-
cipitation would potentially increase in large parts of Central and
Northern Europe by up to about 25% and decrease in Southern Eur-
ope (Kriegsmann et al., 2014). The heavy summer precipitation
events, defined as events exceeding the intensity at the 95th per-
centile of daily precipitation, are modelled to decrease by about
25% in parts of Iberian Peninsula and Southern France accompa-
nied by regional increases in parts of Spain and Portugal. Further,
the heavy precipitation events in winter are modelled to increase
by up to 25% in Central and Eastern Europe (Kriegsmann et al.,
2014). Trends of the last 35 years already showed an increase
(0.5 storm events per year) of the high-intensity storm events in
lowland regions of Germany (Mueller and Pfister, 2011).



Fig. 6. Normalised error in the R-factor prediction (2050).

260 P. Panagos et al. / Journal of Hydrology 548 (2017) 251–262
Christensen et al. (2015), focused on climate change in Europe
and concluded that the change in very high precipitation extremes
may have higher impact than the global temperature change. They
also identified that higher scatter will take place in The British Isles
and Middle Europe and lower scatter in the Mediterranean and
Iberian Peninsula.
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The predicted R-factor patterns mainly depend on the spatial
patterns of the projected climatic covariates of the HadGEM2
model. The predicted rainfall erosivity increase in Northern and
Central Europe is connected to the climate simulation model used
in this study. Van Haren et al. (2013) predict an increase of both
annual cumulated precipitation (especially in Northern and
North-Eastern Europe) and frequency and intensity of extreme
rainfall events, including the summer rain-shower and thunder-
storms that can remarkably affect rainfall erosivity and subse-
quently soil erosion. On the other hand, the GCM used in this
study still predicts the increase of extreme events in Southern Eur-
ope, but the annual cumulated rainfall is projected to significantly
decrease there, in particular in the summer months, which are
influencing the rainfall erosivity more than the winter months.
We shall also highlight that the patterns described here are shared
by most of the climate change scenario models commonly run in
climate prediction experiment (for a detailed list see IPCC, 2013;
Rajczak et al., 2013).

Even though the projections of rainfall erosivity are very plausi-
ble and congruent with other climate change studies, they may
vary considerable depending on the choice of the scenario (e.g.
within the RCP4.5 an increase of temperature in the range 0.9–
2.0 Celsius degrees till 2046–2065 and compared to other ones).
Moreover, the erosivity predictions also include uncertainties orig-
inating from the downscaling of GCMs. Besides the climate model
uncertainty, the rainfall erosivity predictions embeds the natural
variability of climate systems (Harris et al., 2014). Moreover, the
rainfall projections have larger degrees of uncertainty compared
to temperature projections because of a higher number of physical
models involved and the generally higher variability of rainfall in
space (Harris et al., 2014).

The projected erosivity dataset is not challenging any local (or
regional) erosivity map which has been developed by using a dif-
ferent methodology or involved local data of better quality. Our
erosivity projections were compared with the three regional stud-
ies modelling long-term R-factor measurements (i.e., Ukkel in Bel-
gium, western Germany and Czech Republic). We observed good
agreement in both trends and comparable magnitudes. In Belgium,
Verstraeten et al. (2006) calculated 31% increase of erosivity during
20th Century compared to 40% increase that we project in 2050. In
western Germany, Fiener et al. (2013) observed an R-factor
increase of 21% per decade during the period 1973–2007 (overall
about 70%). Here, we project for the next 40 years a trend consis-
tent with the local long-term observations (+67%). Regarding the
last study, Hanel et al. (2015) estimated in Czech Republic an
increase of R-factor by 11% per decade (1960–1990) which is also
in good agreement with our projection (+68% for the next
40 years).

Along with the quantitative comparison of our erosivity projec-
tions with local studies, we performed a further qualitative com-
parison of our results with regional studies which have modelled
trends of future erosivity. Our results were compared well with
local studies in Sicily and Calabria (Italy), Spain and North Ireland
while the results were different in South Portugal. Similar to our
results, Grauso et al. (2010) expect the higher values in the Catania
plain and eastern slope of Iblei mountains while the lowest values
are projected in south-east of Palermo. In Sicily, D’Asaro et al.
(2007) are not expecting an increase of rainfall erosivity in the
future. In Calabria, Capra et al. (2016) projected a decrease of R-
factor, similar to our results (Fig. 5). In Ebro catchment (Spain),
Angulo-Martínez and Beguería (2012) reported a decrease of very
intense rainfall events but an increased frequency of moderate
and low events which is close to our future projections (Fig. 5).
Similar to our results, Mullan (2013) projected an increase of ero-
sivity in western part of North Ireland (Corrard, Loughmuck) and a
decrease of erosivity in eastern part (Dunadry, Hillsborough, Bally-
walter). Contrary to our projections, Nunes et al. (2016) show a
decrease of erosivity in Portugal (1950–2008) but an increase in
precipitation concentration. In line to our study, Groisman et al.
(2005) simulated an increase of heavy precipitations in Scandi-
navia and Northern Europe.
4. Conclusions and outlook

We modelled the rainfall erosivity in 2050 based on a moderate
climate change scenario (HadGEM RCP 4.5) and using as main data
sources the REDES based European R-factors and as covariates the
WorldClim climatic datasets. Although the rainfall erosivity projec-
tions are based on many uncertainties, this pan-European spatial
estimation highlights the areas where rainfall erosivity is projected
to undergo substantial changes. The prediction of future erosivity
in EU can contribute in policies related to soil/land and water sus-
tainable management.

The overall increase of rainfall erosivity in Europe by 18% until
2050 are in line with projected increases of 17% for the U.S.A. The
predicted R-factor dataset can be used for applying climate change
scenarios in soil erosion models. The predicted mean increase in R-
factor is expected also to increase the threat of soil erosion in Eur-
ope. However, climate change might substantially affect land cover
and land use, which might counterbalance or enhance some ero-
sional trends. In order to predict soil erosion trends in the future
these feedbacks between rainfall erosivity and land use/land cover
need to be considered. The most prominent increases of R-factors
are predicted for North-Central Europe, the English Channel, The
Netherlands and Northern France. On the contrary, parts of the
Mediterranean basin show a decrease of rainfall erosivity.

The Gaussian Process Regression model applied showed a rela-
tively good performance (R2 = 0.635, Relative error = 0.56) based
on most of the monthly precipitation covariates of the WorldClim
dataset. Despite this study significant contribution towards better
understanding of future rainfall erosivity potential in Europe, the
results should be in any case handled with care, as it should be
commonly done with results derived from CCM and RCM models
applied to future scenarios. Future research in climate change
modelling will hopefully reduce the intrinsic climate model uncer-
tainty and provide data on better spatial and temporal predictions
of rainfall intensity trends. The projected rainfall erosivity (GeoTIFF
format) at � 1 km resolution will be available for free download in
the European Soil Data Centre (ESDAC): http://esdac.jrc.ec.europa.
eu/.
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