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SUMMARY

The microenvironment shapes cell behavior and
determines metastatic outcomes of tumors. We ad-
dressed howmicroenvironmental cues control tumor
cell invasion in pediatric medulloblastoma (MB). We
show that bFGF promotes MB tumor cell invasion
through FGF receptor (FGFR) in vitro and that
blockade of FGFR represses brain tissue infiltration
in vivo. TGF-b regulates pro-migratory bFGF function
in a context-dependent manner. Under low bFGF,
the non-canonical TGF-b pathway causes ROCK
activation and cortical translocation of ERK1/2,
which antagonizes FGFR signaling by inactivating
FGFR substrate 2 (FRS2), and promotes a contrac-
tile, non-motile phenotype. Under high bFGF, nega-
tive-feedback regulation of FRS2 by bFGF-induced
ERK1/2 causes repression of the FGFR pathway.
Under these conditions, TGF-b counters inactivation
of FRS2 and restores pro-migratory signaling. These
findings pinpoint coincidence detection of bFGF and
TGF-b signaling by FRS2 as a mechanism that con-
trols tumor cell invasion. Thus, targeting FRS2 repre-
sents an emerging strategy to abrogate aberrant
FGFR signaling.

INTRODUCTION

Metastatic spread of tumor cells through tissue invasion is a

hallmark of tumor progression. However, the contribution of

microenvironment-derived growth factors to dissemination re-

mains incompletely understood. We addressed this problem

in medulloblastoma (MB), the most prevalent malignant pedi-

atric brain tumor. MB tumor cells display an inherent propen-

sity to infiltrate brain tissue and disseminate along the lepto-

meninges (Wu et al., 2012), which can lead to incurable

disease and often causes disabling side effects of treatment

in long-term survivors (Bouffet et al., 1992; Fr€uhwald and

Plass, 2002; Kiltie et al., 1997). Genome-wide DNA methyl-

ation and gene expression profiling has refined MB classifica-

tion from four subgroups (Taylor et al., 2012) to a total of 12

subtypes (Cavalli et al., 2017; Schwalbe et al., 2017). Selected

sonic hedgehog (SHH) subgroups have been found to align

with high-risk, poor prognosis MB with the incidence of me-

tastases varying greatly in all 12 subtypes. One cause for

the aggressive behavior of MB tumors is local recurrence,

which likely is the consequence of local brain infiltration.

Nevertheless, the signaling pathways that promote tissue

infiltration and metastasis remain poorly understood, thus

limiting the discovery of rationally designed anti-metastatic

targeting strategies in MB tumors.

Apart from intrinsic cellular factors, tumor progression and

metastatic dissemination depend on the tumor microenviron-

ment (Quail and Joyce, 2017). MB cause changes in extracellular

matrix composition by increasing collagen IA deposition (Liang

et al., 2008) and recruiting tumor-associated macrophages and

leukocytes into the tumor microenvironment (Margol et al.,

2015; Salsman et al., 2011). The impact of altered cellular

composition and the manner by which growth factor and cyto-

kine gradients control pro-invasive properties of the tumor cells

are unknown. In other solid tumors, growth factors and concen-

tration gradients within the tumor microenvironment define the

extent of cancer cell dissemination (Bissell and Radisky, 2001;

Wells et al., 2002). However, the mechanisms by which two or

more growth factor signaling pathways regulate cancer cell

dissemination remain poorly understood (Shirakihara et al.,

2011; Snoussi et al., 2010).
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Using automated cell dissemination counter (aCDc), an

unbiased platform for automated quantification of cell inva-

sion, we identified basic fibroblast growth factor (bFGF,

FGF2) as a strong promoter of MB cell migration and invasion

(Kumar et al., 2015). bFGF was also found to inhibit SHH

signaling and to block MB cell proliferation (Fogarty et al.,

2007), and pre- or post-implantation exposure of orthotopi-

cally implanted MB tumor cells to high doses of bFGF

impaired growth in vivo (Emmenegger et al., 2013). These

potentially conflicting findings suggested that context-depen-

dent bFGF signaling might determine MB progression to

metastatic disease. We hypothesized that a reactive cellular

environment with activated astrocytes, which secrete bFGF

(Yang et al., 2014), could contribute to MB progression (Liu

et al., 2017). Tumor-associated microglia could also generate

a pro-migratory tumor microenvironment. Paradigmatic for

such context-dependent signaling is transforming growth

factor beta (TGF-b), which functions through SMAD-depen-

dent and SMAD-independent non-canonical pathways

(Ashcroft et al., 1999; Derynck and Zhang, 2003; Heldin

et al., 2009; Massagué, 2012) and antagonizes SHH pathway

functions in MB (Aref et al., 2013).

To determine the contribution of MB-associated growth

factors and cytokines to tissue infiltration and tumor cell

dissemination, this study investigated growth factor signaling

and its effect on cancer cell invasion. Using patient-derived

xenograft and genetically modified laboratory MB tumor lines,

ex vivo organotypic cerebellum slice culture, and a human

G3 MB xenograft model, we describe how cell invasion is

regulated by variable levels of bFGF and how TGF-b signaling

controls this process. The discovery of the rheostat regulation

of fibroblast growth factor receptor (FGFR) signaling provides

mechanistic understanding of context-dependent growth

factor control of cell migration and invasion in health and

disease.

RESULTS

Expression of FGFRs and bFGF in Human MB Tumor
Tissue
We recently identified bFGF, the ligand of FGFRs, as a promoter

of collagen I invasion in established SHHMBcell lines, in patient-

derived xenografts (PDXs) of SHH and group 3 MB tumors, and

in a PDX of a molecularly distinct, atypical MB (Kumar et al.,

2015) Figure 1A). We observed no increase in invasion in

response to bFGF in the group 3 MB cell line HD-MBO3 (Fig-

ure 1A). SHH and the PDX lines predominantly expressed

FGFR1 at the mRNA level, except for HD-MBO3, which ex-

pressed FGFR4 (Figure S1A). Higher FGFR1 and FGFR4

mRNA levels were also observed in a small cohort of primary

MB sampleswhen compared to FGFR2 and FGFR3 (Figure S1B).

To assess FGFR1 and FGFR4 protein abundance in human MB

tissues, we analyzed a MB tissue microarray (TMA) by immuno-

histochemistry (IHC). We found that FGFR1 was expressed at

low tomoderate levels both in normal cerebellum (n = 7) adjacent

to tumor and in the tumor (n = 72). 18% of the tumor tissues dis-

played high levels of FGFR1 expression (Figure 1B). Using the

same approach, we were not able to detect FGFR4 in the

same TMA (data not shown). We also detected FGFR1 by IHC

in PDX models of group 3 and SHH MB, as well as in a primary

tumor sample (Figure S1C). Interestingly, qRT-PCR detected

only low mRNA expression levels of bFGF in MB cell lines and

in PDX cells (Figure S1D). Consistently, only weak bFGF positiv-

ity was detected in tumor tissue (Figures S1E–S1H), suggesting

that the available bFGF in the microenvironment is not derived

from the tumor cells. However, we observed individual, strongly

bFGF-positive cells within non-WNT/SHH MB tumor samples

(Figure S1E), in the majority of MB TMA samples (Figure S1F),

in a G3 MB PDX (Figure S1G), as well as in two additional MB

validated clinical isolates (B2-54, C2-25) (Figure S1H). These

findings indicate that high levels of FGFR1 are expressed in

Figure 1. FGFR Signaling Promotes MB Cell Dissemination

(A) Spheroid invasion assay (SIA) with MB cell lines. Images of spheroids after 24 hr in the absence or presence of bFGF and distance of invasion from centers of

spheroids are shown (n = 3 biological replicas; means ± SD).

(B) IHC images of low, moderate, and high expression of FGFR1 in MB TMA. Quantification of FGFR1 expression in MB TMA using H-scoring.

(C) SIA using DAOY, UW228, andMed311PDX cells stimulatedwith bFGF in the absence or presence of BGJ398 or in the absence or presence of CK666 for 24 hr.

Drug concentrations are indicated in Figure S2A (n = 3 biological replicas; means ± SD).

(D) Confocal immunofluorescence analysis (IFA) of LA-EGFP-expressing DAOY cell spheroids in OCSCs cultured in the absence or presence of BGJ298 for

5 days and distance of tissue infiltration (pooled data from n = 4 biological replicas).

(E) Orthotopic G3 MB tumor-bearing mice were treated for 10 days with either solvent or BGJ398. Collapsed stacks of confocal microscopy sections of whole

brains are shown. Yellow highlighted area shows tumor expansion in the brain tissue. (a) Area of tumor relative to the whole brain (n = 5 control, 4 treated). (b) GFP

fluorescence in tumor areas (n = 5 control, 4 treated).

(F) Confocal microscopy sections of cortical cerebellum of three control and three BGJ398-treated mice. Inverted grayscale images of GFP fluorescence depict

tumor masses and invading cells. Arrowheads indicate individual tumor cells in cerebellar tissue, and arrows indicate tumor cells migrating along cerebellar

fissures. Stitched tile series acquired with 10x objective and 4x digital magnifications of boxed areas are shown. 43magnifications of boxed areas are shown. (a)

Dot plot of all infiltrating single cells analyzed in control and BGJ398-treated mice. (b) Comparison of average distance of infiltration of individual cells in five

control and four BGJ398-treated mice. (c) Sum of all infiltration distances in five control and four BGJ398-treated mice.

(G) OCSC co-cultured with DAOY cell spheroid for 15 days in the presence of 100 ng/mL bFGF. (a) and (b) are 43 magnifications of boxed areas.

(H) Confocal z stack of a DAOY cell spheroid in the absence or presence of bFGF stimulation for 24 hr and magnifications of boxed areas (blue, Hoechst [nuclei];

green, LA-EGFP).

(I) Single confocal sections of anti-myosin-X staining in DAOY cells seeded on a thick layer of collagen in the absence or presence of bFGF for 18 hr. Yellow

arrowheads indicate bFGF-induced filopodia-like protrusions.

(J) Single confocal sections of anti-myosin-X staining in DAOY spheroids embedded in collagen in the absence or presence of bFGF for 18 hr. Magnifications are

43 of boxed areas. Yellow arrowheads indicate filopodia-like protrusions.

*** p % 0.001), **** p % 0.0001. See also Figures S1 and S2.
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Figure 2. Pro-migratory FGFR Signaling Is Mediated through FRS2

(A) Microarray data analysis for FRS2 mRNA expression in healthy brain and tumor tissues.

(B) SIA using DAOY, UW228, and Med311PDX spheroids transfected with siControl or siFRS2 and treated with bFGF (100 ng/mL), EGF (30 ng/mL), or HGF

(20 ng/mL) for 24 hr (n = 3 biological replicas; means ± SD).

(C) SIA using DAOY sgControl and DAOY sgFRS2 cells stimulated with bFGF, TGF-b, EGF, or HGF combinations for 24 hr (n = 3 biological replicas; means ± SD).

(D) Confocal IFA of LA-EGFP expressing sgControl or DAOY sgFRS2 cell spheroids in OCSCs after 5 days of co-culture. Distance of dissemination was

determined using aCDc (pooled data from n = 4 biological replicas).

(E) Immunoblot (IB) of DAOY, UW228, and Med311PDX cell lysates after stimulation with bFGF for 10 min.

(F) SIA using DAOY, UW228, and Med311PDX cells stimulated with bFGF in the absence or presence of SCH772984 or in the absence or presence of IPA3 (n = 3

biological replicas; means ± SD).

(G) Upper: IB of DAOY, UW228, and Med311PDX cell lysates 48 hr after siMAPK3 (ERK1) or siMAPK1 (ERK2) transfection. Lower: SIA of DAOY, UW228, and

Med311PDX cells transfected with siMAPK3 or siMAPK1 in the absence or presence of bFGF stimulation for 24 hr (n = 3 biological replicas; means ± SD).

* p % 0.05, ** p % 0.01, *** p % 0.001), **** p % 0.0001. See also Figures S2 and S3.
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Figure 3. TGF-b Antagonizes bFGF-Induced Cell Invasiveness

(A) SIAs using growth factors at concentrations as described in STAR Methods in combination with bFGF (100 ng/mL) (n = 3 biological replicas; means ± SD).

(B) SIA using combinations of bFGF or EGF or HGF with TGF-b for 24 hr in DAOY and UW228 cells (n = 3 biological replicas; means ± SD).

(C) SIA of cells treated with bFGF plus TGF-b in the absence or presence of LY2157299 for 24 hr (n = 3 biological replicas; means ± SD).

(D) SIA (pooled data of n = 2 biological replicas) for (a) bFGF titration in DAOY cells and (b) TGF-b titration in bFGF-stimulated DAOY cells. Green labels highlight

effective concentrations used in subsequent experiments. (c) Representative images of (b).

(legend continued on next page)
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MB tumor cells and suggest that the source of bFGF in vivo is

individual cells either residing in or infiltrating the tumor.

FGFRSignaling PromotesCollagen I and Tissue Invasion
To test the functional relevance of FGFRs, we used the pan-

FGFR inhibitor BGJ398 (Guagnano et al., 2011), which reduced

bFGF-induced collagen I invasion to basal levels at 5 mM (Figures

1C and S2B), a concentration not affecting cell viability (Fig-

ure S2C). bFGF treatment significantly increased the average

velocity of collagen I invasion from 0.38 mm/min (untreated con-

trol) to 0.74 mm/min (Figure S2D).Mitomycin C, which completely

abrogated cell proliferation 24 hr after treatment (Figure S2E),

neither blocked collagen I invasion nor significantly reduced

the number of invaded cells (Figure S2F), excluding the possibil-

ity that proliferation contributes to increased cell dispersal after

bFGF stimulation. BGJ398 treatment of organotypic cerebellum

slice cultures (OCSCs) (Neve et al., 2017) blocked brain tissue

infiltration of co-cultured DAOY tumor spheroids (Figure 1D),

indicating that FGFR activity is necessary for cell dissemination

ex vivo. We next explored the significance of FGFR signaling

for MB progression using a GFP-expressing group 3 MB ortho-

topic mousemodel (Pei et al., 2016). We found that orally admin-

istered BGJ398 for 10 days in tumor-bearing mice reduced

tumor expansion and total GFP fluorescence compared to sol-

vent-treated control mice (Figures 1Ea and 1Eb). Importantly,

FGFR inhibition also significantly reduced the total number of

cells infiltrating the parenchyma as well as individual and cumu-

lated infiltration distances (Figures 1Fa–Fc). The dissemination of

tumor cells along the fissures (arrows in Figure 1F) was not

affected in the BGJ398-treated animals.

Cells infiltrating the cerebellum in OCSCs displayed F-actin-

rich, filopodia-like invasive protrusions (Neve et al., 2017) (Fig-

ure 1G). These resemble the highly dynamic lamellipodia- and filo-

podia-like structuresat the leadingedgeof collagen I-invadingMB

cells (Figure 1H; Video S1), which characterize mesenchymal

motility and invading cancer cells (Jacquemet et al., 2015, 2017).

Inhibition of F-actin polymerization in lamellipodia and filopodia

(Korobova and Svitkina, 2008; Suraneni et al., 2012) using the

Arp2/3 complex inhibitor CK666 (Hetrick et al., 2013), abrogated

bFGF-induced dissemination (Figure 1C). We detected the

actin-based motor protein myosin-X (Kerber and Cheney, 2011;

Lai et al., 2015) at the tip of filopodia-like protrusions, both in cells

seeded on a collagen layer (Figure 1I) and embedded in collagen I

(Figure 1J), and vasodilator-stimulated phosphoprotein (VASP) at

the base and in the shaft of the protrusions (Figure S2G). Thus,

bFGF triggers FGFR-driven mesenchymal motility and invasive-

ness that is dependent on F-actin polymerization and associated

with the formation of lamellipodia- and filopodia-like protrusions.

FRS2 Is Required for FGFR-Driven Invasion
FGFRs signal through the adaptor protein FRS2 (Turner and

Grose, 2010). We detected high FRS2 mRNA levels in human

MB tissue samples compared to normal brain regions, including

cerebellum (Figure 2A), and detectable levels in all sub-groups

of established MB and PDX cell lines tested (Figure S2H). The

depletion of FRS2 by small interfering RNA (siRNA) (Figure S2I)

specifically abrogated bFGF-induced collagen I invasion (Fig-

ure 2B). Consistently, the knockdown of FRS2 using CRISPR/

Cas9 (Figure S2J) preventedcollagen I invasion in vitro (Figure 2C)

and the infiltration of cerebellum in OCSCs ex vivo (Figure 2D).

Stimulation of cells with bFGF also increased phosphorylation of

FRS2 and of ERK1/2 (Figure 2E). Pharmacological inhibition of

ERK with SCH77-2984 (Figure 2F) or depletion of ERK1 or ERK2

using siRNA significantly reduced bFGF-induced collagen I inva-

sion (Figure 2G). The same treatments only minimally affected

epidermal growth factor (EGF)- and hepatocyte growth factor

(HGF)-induced collagen I invasion (Figure S3A). Inhibitor against

other FGFR effectors such as PKC, PI3-K, or JNK did not prevent

bFGF-induced collagen I invasion (Figures S3B and S3C), except

for PAK-1 (Figure 2F), but blocked collagen I invasion induced by

EGF or HGF (Figure S3D). Thus, MB tumor cells depend on FRS2

and signaling through ERK1/2 andPAK for FGFR-driven invasion.

TGF-b Signaling Antagonizes bFGF-Induced Cell
Invasion
Using collagen I invasion as a readout, we determined the con-

centrations necessary for minimal and maximal significant inva-

sion induced by a panel of 11 growth factors or cytokines (Fig-

ures S4A and S4B). These high and low concentrations

allowed us to explore synergistic and antagonistic effects of fac-

tor combinations on collagen I invasion using a Plackett Burman

(PB) screening matrix (Figure S4C). We detected no additive or

synergistic effects (Figure S4D), but found that TGF-b specif-

ically abrogated cell migration induced by bFGF (Figures 3A

and 3B). The inhibition of the TGF-b receptor (TbR) activities

with LY2157299 rescued bFGF-induced migration in co-stimu-

lated cells in a dose-dependent manner (Figures 3C and S4E).

By testing a range of different bFGF and TGF-b concentrations,

we found that at least 20 ng/mL TGF-b was required to effec-

tively block bFGF-induced migration and that concentrations

above 20 ng/mL TGF-b did not increase the antagonistic effect

(Figure 3D). The blockade of bFGF-induced collagen I invasion

by TGF-b was immediate, as it mitigated bFGF function even

after 10 hr pre-treatment with bFGF (Figure 3E). TGF-b treatment

did not cause the formation of filopodia-like protrusions (Fig-

ure S4F), and TGF-b co-stimulation reduced the number of filo-

podia-like protrusions compared to cells stimulated with bFGF

alone (Figure 3F). These data identified the TGF-b pathway as

a repressor of pro-invasive bFGF-FGFR signaling in MB cells.

Relative Levels of bFGF and TGF-b Determine Invasive
Behavior
To explore whether exposure to bFGF or TGF-b affected tumor

cell dissemination, we assessed the impact of exogenous

(E) Top: Treatment schemes for SIA using DAOY cells with bFGF or TGF-b treatment for 10 hr followed by co-stimulation with bFGF and TGF-b for 14 hr. Bottom:

Quantification of resulting SIAs (n = 2 biological replicas).

(F) Left: Confocal IFA images of control and stimulated DAOY-LA-EGFP cells migrating from collagen I embedded spheroids. Top right: (a)–(d) are 43 magni-

fications of boxed areas. Bottom right: Quantification of percentage of cells displaying filopodia-like protrusions (n = 3 biological replicas; means ± SD).

* p % 0.05, ** p % 0.01, *** p % 0.001), **** p % 0.0001. See also Figure S4.
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bFGF and TGF-b on cell infiltration in OCSCs. We observed that

MB cells disseminated from spheroids implanted in OCSCs in

the absence and under conditions of 12.5 ng/mL exogenous

bFGF (Figures 4Aa and 4Ac). TGF-b treatment caused spheroid

compaction in the absence of exogenous bFGF and reduced cell

infiltration in the presence of 12.5 ng/mL exogenous bFGF (Fig-

ures 4Ab and 4Ad). Increasing exogenous bFGF to 100 ng/mL

reduced invasion compared to treatment with 12.5 ng/mL

bFGF (Figures 4Ac and 4Ae). Interestingly, addition of TGF-b in

the presence of 100 ng/mL bFGF increased cell infiltration

compared to stimulation with 100 ng/mL bFGF alone (Figures

4Ae and 4Af). Treatment of OCSCs with the TbR inhibitor

Figure 4. TGF-b Rescues Migration under

High bFGF Conditions

(A) Upper row: Confocal IFA images of OCSCs and

DAOY spheroids co-culture for 5 days in the

absence or presence of the factors indicated.

Concentrations indicated as nanograms per milli-

liter. Blue: Calbindin; green: LA-EGFP. Lower row:

Quantification of single-cell infiltration. Blue area

indicates non-infiltrated tumor cell mass. Black

dots are nuclei of infiltrated cells. Distance of in-

vasion from center of tumor mass is shown in dot

plot on the right (n = 6 spheroids/condition from

two biological replicas; mean ± SD).

(B) Quantification of single-cell infiltration as

described in (A) for control and OCSCs-treated

with 5 mM LY29157299 (n = 6 spheroids/condition

from two biological replicas; mean ± SD).

(C) Schema of experimental setup for SIA quanti-

fied in (D) and (E) with 36-hr pre-treatment with

12.5 ng/mL bFGF.

(D and E) SIA using DAOY (D) and UW228 (E) cells

after pre-treatment with bFGF as indicated in (C).

bFGF dose-response in the absence or presence

of 20 ng/mL TGF-b in combination with BGJ398 or

LY29157299 (pooled data from n = 2 biological

replicas).

(F) x/y line graph of means and SEMs of (D).

* p % 0.05, ** p % 0.01, *** p % 0.001),

**** p % 0.0001. See also Figure S5.

LY29157299 also promoted tumor cell

infiltration, indicating that TbR signaling

repressed pro-invasive activities of the

tumor cells in the OCSCs (Figure 4B).

We hypothesized that (1) increasing

bFGF concentrations above a certain

threshold might constrain the pro-inva-

sive activity of bFGF and (2) parallel expo-

sure to TGF-b could rescue invasion. If

true, bFGF should be present endoge-

nously in the OCSCs and ectopic addition

of bFGF could raise total bFGF levels over

and above such a suspected threshold.

Consistent with this possibility, bFGF

was detected in the slices (Figure S5A)

and around the implanted tumor spher-

oids by immunofluorescence analysis

(IFA) (Figure S5B). Therefore, we

compared collagen I invasion at increasing bFGF concentrations

to determine the pro-invasive dose response of bFGF in vitro. To

simulate the ex vivo conditions of prolonged bFGF exposure in

OCSCs, we pre-treated the cells with 12.5 ng/mL bFGF for

48 hr (Figure 4C). We found that invasiveness diminished at con-

centrations above 100 ng/mL bFGF and that TGF-b blocked

bFGF-induced dissemination up to 100 ng/mL bFGF (Figures

4D, 4Ea, 4Eb, and S5C); in the presence of very high concentra-

tions of bFGF (10 mg/mL), however, TGF-b partially rescued

migration and invasion (Figures 4D, 4Eb, and S5D). Blocking

TbR with LY215729 deterred this TGF-b restoration of bFGF-

induced invasion (Figures 4D and 4Ec), whereas BGJ398
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treatment prevented invasion at all bFGF concentrations (Fig-

ures 4D and 4Ed). A 5-day exposure to bFGF (100 ng/mL) and

TGF-b (20 ng/mL) had no effect on tumor cell viability and prolif-

eration (Figures S5E–S5H). bFGF concentrations higher than

100 ng/mL gradually reduced the metabolic activity of DAOY

cells if applied for more than 48 hr (Figures S5E and S5F). The

viability of Med311PDX remained unaltered at all concentrations

of bFGF and TGF-b (Figures S5G and S5H). In conclusion, we

found that TGF-b signaling antagonized collagen I invasion of

MB cells at low bFGF concentrations and rescued invasion

repressed by high levels of bFGF (Figure 4F).

Contractility Induced by TGF-b-ROCK Signaling Impairs
Collagen I Invasion
In light of the possible balancing function of TGF-b, we explored

its expression in MB tumor cells and tissues. qRT-PCR revealed

variable levels of TGF-b in MB cell lines (Figure S6A), and by IHC

we observed TGF-b-expressing cells accumulating in the vascu-

larized regions of MB tissues, which otherwise were devoid of

anti-TGF-b staining (Figure S6B). MB cells and tumor tissues

predominantly express TbR II and to a lesser extent TbR I (Fig-

ures S6A, S6C, and S6D). Non-canonical TbR signaling can

induce a contractile phenotype through the Rho-associated

kinase ROCK (Maddox and Burridge, 2003; Zhang, 2009).

Exposing MB cells to TGF-b increased the phosphorylation of

the ROCK substrate myosin phosphatase target subunit 1

(MYPT1) (Figures 5A and S6E). Depletion of ROCK using siRNA

or inhibition with Y27632 increased collagen I invasion and con-

verted TGF-b into a pro-migratory factor (Figures 5B and S6F).

Depletion of ROCK1/2 or its inhibition—but not inhibition of

ERK1/2 or PAK—rescued collagen I invasion in cells co-stimu-

lated with bFGF and TGF-b (Figures 5C and S6G). Inhibition of

myosin II with blebbistatin rescued bFGF-induced collagen I

invasion in the presence of TGF-b, suggesting that contractility

is necessary for TGF-b-dependent repression of bFGF signaling

(Figure 5D). TGF-b treatment of collagen I-embedded cells

caused contracted, rounded cell phenotypes (Figure 5E; Video

S2), and the inhibition of ROCK triggered formation of filopo-

dia-like protrusions (Figure 5E). TGF-b stimulation increased

the activity of the Rho family GTPases Ras homolog A (RhoA),

whereas it left Ras-related C3 botulinum substrate 1 (Rac1)

activity unaltered (Figure 5F). FGFR inhibition (Figure 5G) or

FRS2 depletion (Figure 5H) increased phosphorylation of

MYPT1, which was further increased in cells co-stimulated

with bFGF and TGF-b (Figures 5G, 5H, and S6H). This suggested

that FGFR1-FRS2 signaling repressed ROCK activation in the

absence of TGF-b. Consistently, bFGF stimulation increased

Rac1 but not RhoA activity in collagen I-embedded cells (Fig-

ure 5F). Conversely, TGF-b abrogated bFGF-induced Rac1

activation, indicating that TGF-b interferes with FGFR signaling

upstream of Rac (Figure 5F). Preventing bFGF signaling by

FRS2 depletion or FGFR inhibition increased RhoA in bFGF-

stimulated cells (Figure 5F), corroborating the inhibitory effect

of FRS2 on ROCK activity. Although the activity of cell division

cycle 42 (Cdc42) was reduced in FRS2-depleted cells, its activity

was not affected by bFGF stimulation (Figure 5F). Taken

together, these data demonstrate that bFGF and TGF-b

signaling antagonistically control Rac and Rho GTPases and

that TGF-b triggers ROCK activation and cell contractility.

Activation of ERK1/2 by TGF-b Attenuates bFGF-
Dependent Invasion at Low bFGF Abundance
A negative regulator of FRS2 function is ERK1/2, which acts by

decreasing FRS2 tyrosine phosphorylation (Zhou et al., 2009).

Both bFGF (Figure 2E) and TGF-b (Figure 6A) increased

ERK1/2 activity, although with different kinetics (Figures 7B,

S7A, and S7B). MB cells co-stimulated with bFGF and TGF-b

displayed significantly lower tyrosine phosphorylation of FRS2

compared to cells stimulated with bFGF alone (Figures 6B and

6C). In these co-stimulated cells, inhibition of ERK1/2 with

SCH772984 restored phosphorylation of FRS2 (Figures 6B and

6C). In contrast, inhibition of ERK1/2 in bFGF-stimulated cells

did not increase FRS2 phosphorylation. Blebbistatin treatment

also partially rescued the phosphorylation of FRS2 (Figure 6D),

suggesting that the contractile phenotype induced by TGF-b is

necessary for ERK1/2-dependent FRS2 repression. To distin-

guish bFGF-activated from TGF-b-activated ERK1/2 and to

decipher the relationship between contractility and ERK1/2 acti-

vation, we tested whether TGF-b-induced contractility influ-

enced the activation and localization of ERK1/2. We found that

blebbistatin treatment prevented TGF-b activation of ERK1/2

without affecting bFGF-activated ERK1/2 (Figures 6E and 6F).

This signified that TGF-b-induced pERK1/2 was dependent on

contractility. Stimulation of cells with bFGF caused cytosolic

localization of pERK1/2 (Figure 6G). In contrast, stimulation of

cells with TGF-b or with bFGF and TGF-b caused the localization

of a fraction of pERK1/2 to the plasma membrane (Figures 6G

and 6H). This finding suggested that TGF-b induced contractility

spatially oriented active ERK1/2 in close proximity to FRS2 (near

plasma membrane), leading to ERK1/2-dependent inactivation

Figure 5. TGF-b Causes ROCK Activation and Represses the Formation of Filopodia-Like Protrusions

(A) Left: IB of DAOY cell lysates after stimulations as indicated for 10 min. Right: Quantification of fold change of pMYPT1 (n = 3 biological replicas; means ± SD).

(B) Upper: IB of cell lysates 48 hr after siROCK1 or siROCK2 transfection. Lower: SIA comparing cells transfected with siROCK1 or siROCK2, in the absence or

presence of TGF-b stimulation for 24 hr (n = 3 biological replicas; means ± SD).

(C) Same as (B) except that cells were also treated with bFGF.

(D) SIA of cells treated with TGF-b in the absence or presence of blebbistatin for 24 hr (n = 3 biological replicas; means ± SD).

(E) Collapsed confocal z stacks of SIA of DAOY LA-EGFP cells treated as indicated for 24 hr.

(F) Active Rho, Rac, and Cdc42 GTPase ELISA assay in sgControl, sgFRS2, and UW228 cells embedded in collagen I in the absence or presence of BGJ398 and

following stimulation with bFGF, TGF-b, or bFGF plus TGF-b for 24 hr (n = 3 biological replicas; means ± SD).

(G) IB of DAOY cell lysates in the absence or presence of BGJ398 and after stimulation with bFGF, TGF-b, or bFGF plus TGF-b for 10min. Fold change of pMYPT1

is indicated below the pMYPT1 panels.

(H) IB of DAOY cell lysates after transfection with non-targeted siRNA (siControl) or siFRS2 and after 10 min stimulation with indicated factors.

* p % 0.05, ** p % 0.01, *** p % 0.001), **** p % 0.0001. See also Figure S6.
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of FRS2. Consistently, blocking contractility with blebbistatin

completely abrogated the plasma membrane localization of

pERK1/2 (Figure 6I). Taken together, co-incidence of activated

ERK1/2 and contractility are required for the effective mitigation

of FRS2 activity by TGF-b (Figure 6J).

TGF-b Impairs Negative-Feedback Regulation of FRS2
at High bFGF Abundance and Rescues Invasion
Stimulation of MB cells with 100 ng/mL bFGF caused a 2- to

3-fold increase in pFRS2, which was sustained for 24 hr (Figures

6C and 7B). 10 mg/mL bFGF applied for 24 hr caused only mar-

ginal Tyr phosphorylation of FRS2 (Figure 7A). ERK1/2 inhibition

with SCH772984 or co-stimulation with TGF-b restored FRS2

phosphorylation in MB cells stimulated with 10 mg/mL bFGF

(Figure 7A). To test whether this variable FRS2 activation re-

sulted in a corresponding signaling response, we monitored

the dynamics of ERK1/2 activation in cells exposed to either

100 ng/mL or 10 mg/mL bFGF. We found that 100 ng/mL bFGF

caused sustained ERK1/2 activation for 24 hr. In contrast,

10 mg/mL bFGF caused peak activation of ERK1/2 for 60 min,

followed by a drop to basal levels (Figures 7B, S7A, and S7B).

10 mg/mL bFGF also caused transient FRS2 phosphorylation

for 60 min followed by gradual inactivation within 24 hr (Fig-

ure 7C). This gradual inactivation of FRS2 was prevented in the

presence of SCH772984 (Figure 7C), suggesting that the

ERK1/2-induced inhibition occurs at or upstream of FRS2.

Stimulation with TGF-b led to a bi-phasic activation of ERK1/2,

a signature also found in cells co-stimulated with 100 ng/mL

bFGF (Figures 7B, S7A, and S7B). Interestingly, impaired sus-

tained activation of ERK1/2 at 10 mg/mL bFGF was restored by

TGF-b within 60 min, confirming that TGF-b reverts the nega-

tive-feedback inhibition of bFGF signaling (Figure 7B). TGF-b

restoration of pFRS2 at high bFGF was independent of ERK1/2

(Figure 7A), and it was also independent of ROCK, as we neither

detected phosphorylation of MYPT1 in 10 mg/mL bFGF plus

TGF-b (Figures 7D and S7C) nor increased RhoA (Figure 7E).

However, and in contrast to bFGF 100 ng/mL plus TGF-b,

Rac1 activity remained high in bFGF 10 mg/mL plus TGF-b (Fig-

ure 7E). Thus, in the context of high bFGF levels, FGFR signaling

is self-inhibited by ERK1/2 through negative feedback. This

negative feedback is dampened by TGF-b, which maintains

FRS2 in the active state to repress ROCK and to promote MB

cell dissemination through Rac1 (Figure 7F).

DISCUSSION

Our study shows that bFGF-expressing cells populate the MB

tumor microenvironment and that impairing FGFR signaling

prevents tissue infiltration of tumor cells promoted by the

adaptor protein FRS2. In the context of low bFGF levels, non-

canonical TGF-b signaling restricts pro-invasive functions of

FGFR by repressing FRS2 phosphorylation. FRS2 repression

involves cortical accumulation of activated ERK1/2, which is

the result of TGF-b-dependent simultaneous induction of

ERK1/2 activity and ROCK-mediated contractility. In the

context of high bFGF levels, which causes ERK1/2-dependent

negative-feedback inhibition of FGFR signaling, TGF-b rescues

invasion by impairing negative-feedback regulation of FGFR

and restoring FRS2 phosphorylation. The molecular integrator

of the rheostat regulation of FGFR function by TGF-b is FRS2,

pinpointing it as a critical coordinator of the invasive outcome

of MB cells exposed to variably abundant bFGF and TGF-b in

the brain microenvironment.

We found that bFGF-FGFR signaling potently triggers pro-

invasive cell functions in MB, similar to mesenchymal cellular

characteristics (Friedl and Wolf, 2010). TGF-b signaling restricts

these mesenchymal characteristics through the activation of

RhoA-ROCK and concomitant repression of FRS2 tyrosine

phosphorylation by ERK1/2. Repression of FRS2 tyrosine phos-

phorylation by ERK1/2 was previously described for EGF,

platelet-derived growth factor (PDGF), and insulin-like growth

factor (IGF) signaling through phosphorylation of inhibitory

threonine residues on FRS2 (Gotoh, 2008; Zhou et al., 2009).

Our data demonstrate that TGF-b can analogously inhibit FRS2

and prevent pathological cell mobilization under the condition

of low bFGF abundance.

ROCK activation in mesenchymal cells causes cortical con-

tractions and cell rounding (Nobes and Hall, 1999). Tumor cells

exploit this cellular plasticity and adopt different motility modes

during tissue invasion (Sahai and Marshall, 2003; Torka et al.,

Figure 6. TGF-b-Induced ERK Represses FRS2 Activation

(A) IB of DAOY and UW228 cell lysates after stimulation with TGF-b for 10 min.

(B) DAOY and UW228 cells treated in the absence or presence of SCH772984 for 4 hr followed by stimulation with bFGF, TGF-b, or co-stimulation with bFGF and

TGF-b for 10 min were subjected to immunoprecipitation (IP) anti-FRS2 followed by IB anti-pTyr.

(C) Integrated density of pFRS2 bands of (B) relative to unstimulated control (n = 3 biological replicas; means ± SD).

(D) Same as (B), except the cells were treated in the absence or presence of blebbistatin (n = 3 biological replicas; means ± SD).

(E) IB of cells treated in the absence or presence of blebbistatin for 4 hr followed by stimulation with bFGF, TGF-b, or co-stimulation with bFGF and TGF-b for

10 min.

(F) Quantification of pERK in (E) (n = 3 biological replicas; means ± SD).

(G) Confocal IFA images of pERK in DAOY cells on collagen-coated plates in the absence or presence of bFGF, TGF-b, or bFGF plus TGF-b for 24 hr.

(H) Quantification of cumulated gray values across cell margins. Average and SEM are plotted as xy graphs (lower left, n = 2 biological replicas; cells/fields/

measurements: control, 20/10/34; bFGF, 29/15/54; TGF-b, 19/14/43; bFGF plus TGF-b, 34/16/65). Average and SEM of regions on and behind cell margins as

indicated on the xy plot are shown in the column diagrams.

(I) Confocal IFA images of TGF-b-treated cells in the absence or presence of blebbistatin. Quantification of pERK distribution across cell margins as described in

H. n = 2 biological replicas; cells/fields/measurements: control, 20/10/34; TGF-b, 19/14/43; TGF-b plus blebbistatin, 22/8/27.

(J) Schematic representation of (left) the inhibition of ROCK by FRS2 in the absence of TGF-b and (right) the inhibition of FRS2 by TGF-b induced ERK and ROCK-

dependent contractility.

* p % 0.05, ** p % 0.01, *** p % 0.001), **** p % 0.0001.
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Figure 7. TGF-b Reverts Negative-Feedback Regulation of FRS2 under High bFGF

(A) IP anti-FRS2 followed by IB anti-total pY in DAOY cells. Stimulations as indicated for 24 hr. Bar graph shows fold change of FRS2 phosphorylation relative to

untreated control (n = 3 biological replicas; means ± SD).

(legend continued on next page)
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2006). We propose that, in the absence of TGF-b, FGFR-FRS2

signaling reprograms the cytoskeleton toward mesenchymal

migration by maintaining a state of moderate ROCK repression,

which promotes the formation of filopodia-like protrusions for

tissue invasion (Jacquemet et al., 2015). In the presence of

TGF-b, the moderate repression of ROCK by FRS2 is overpow-

ered by non-canonical TGF-b signaling, resulting in a more con-

tractile phenotype and in the cortical activation of ERK1/2. Our

findings furthermore indicate that ROCK activation promotes

cortical translocation of ERK1/2 and that spatial re-localization

of ERK1/2 is necessary for its inhibitory function on FRS2. Similar

to our findings, ROCK-induced repression of motility and inva-

siveness observed in various other cancers (Adachi et al.,

2011; Wei et al., 2016; Yang and Kim, 2014) could be due to its

impact on spatial control of ERK1/2 activity in the tumor cells.

Sustained ERK1/2 activation at low abundance of bFGF is

antagonized by TGF-b, causing bi-phasic ERK1/2 activation

similar to TGF-b treatment alone. This suggests that sustained

FGFR pathway activation is necessary for bFGF-induced pro-

migratory signaling in the tumor cells. Peak activation of ERK1/

2 in response to high bFGF abundance consistently inactivates

FRS2 by negative feedback and halts pro-migratory signaling.

FRS2 inactivation is reverted both by parallel TGF-b stimulation

or ERK1/2 repression, indicating that TGF-b impacts ERK1/

2-dependent negative-feedback regulation of FGFR signaling

by a mechanism independent of RhoA-ROCK and ERK1/2.

Variably abundant growth factors and cytokines within the

tumor and surrounding stroma result in graded exposure to

these factors (Thoma et al., 2014). bFGF-positive cells within

the MB tumor microenvironment could be indicative of uniform

bFGF exposure with steep gradients at locations where bFGF-

producing cells accumulate. MB cells display a biphasic dose-

response to bFGF as bFGF is pro-migratory between 5 and

100 ng/mL and becomes anti-migratory above 100 ng/mL.

The response to TGF-b is sigmoid, whereby any concentration

above 20 ng/mL TGF-b confers the same outcome. Thus, TGF-

b may provide a pro-migratory environment within tumor

regions with very high bFGF levels. This effect may guide

responsive tumor cells toward low bFGF abundance, where

TGF-b restricts migration. This would suggest a context-depen-

dent functionality of TGF-b (Massagué, 2012) regulating

pro-invasive functions in MB. TGF-b-positive cells are present

specifically in vascularized regions of MB tumor tissue. Hence,

cross talk with bFGF signaling could contribute, along with

bFGF co-factors such as sulfation patterns and the length of

heparin sulfate chains (Matsuo and Kimura-Yoshida, 2013), to

the modulation of the pro-migratory response in these critical

zones (Figure S7D).

A recent study found that bFGF blockade of SHH activation

prevents MB outgrowth, supporting the notion of activating

FGF signaling for targeting SHH MB (Emmenegger et al.,

2013). Our data indicate that caution is merited, since effec-

tive bFGF concentrations and the cross talk with TGF-b

signaling described herein could increase tumor dissemina-

tion. Independent of bFGF concentration and the absence or

presence of TGF-b, we identified FRS2 as the sole factor

determining whether MB cells migrate and invade the

bFGF-positive tumor microenvironment. Thus, FRS2 acts as

a molecular hub for pro-invasive FGF signaling in MB, which

renders it as an attractive target for anti-dissemination

therapy.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-bFGF Santa Cruz Biotechnology Sc-79

Anti-FGFR1 Abcam Ab10646

Anti-GFAP Abcam Ab53554

Anti-calbindin Abcam Ab11426

Anti-phospho ERK1/2 Cell signaling technologies 9101

Anti-phospho ERK1/2 (Thr202/Tyr204) Cell signaling technologies 4370

Anti-ERK1/2 Cell signaling technologies 9102

Anti-phospho FRS2 (Y436) Cell signaling technologies 3861S

Anti-ROCK1 Cell signaling technologies 4035

Anti-phospho-PKC (pan bII Ser660) Cell signaling technologies 9371

Anti-MYPT1 Cell signaling technologies 2634

Anti-mouse horseradish peroxidase (HRP) linked Cell signaling technologies 7076

Anti-rabbit HRP linked Cell signaling technologies 7074

Anti-TGF-b1 SantaCruz sc146

Anti-TGF-b-R1 Abcam ab31013

Anti-TGF-b-R2 Abcam ab61213

Anti-FRS2/SNT-1 Merck millipore 05-502

Anti-ROCK2 Merck millipore ABS436

Anti-phospho MYPT1 (Thr696) Merck millipore ABS45

Anti-phospho tyrosine (4G10 platinum) Merck millipore 05-1050

Anti-myosin-X Sigma Aldrich HPA024223

Anti-tubulin Sigma Aldrich T9026

Anti-human nuclei Merck millipore MAB4383

Anti-rabbit-Cy3-coupled Jackson immuno research 711-165-152

Anti-mouse-Cy5-coupled Jackson immuno research 415-175-166

Anti-VASP Sigma Aldrich HPA005724

Bacterial and Virus Strains

LentiCRISPR (McComb et al., 2016) N/A

pVSV Oliver Pertz N/A

pMDL Oliver Pertz N/A

pRev Oliver Pertz N/A

pLA-EGFP Oliver Pertz N/A

Biological Samples

A Tissue Microarray (TMA) with anonymized,

validated MB and cerebellum samples (tumor:

male: 32, female: 17, unknown: 23, cerebellum:

male: 6, female: 1) was used.

University Hospital Z€urich N/A

Paraffin embedded anonymized, validated

human medulloblastoma tissue sections.

University Hospital Z€urich N/A

Paraffin embedded human medulloblastoma

Patient-derived Xenograft tissue sections

SickKids Hospital, Toronto,

Canada

N/A

Chemicals, Peptides, and Recombinant Proteins

basic Fibroblast Growth Factor PeproTech 100-18B

Transforming Growth Factor-b PeproTech 100-21

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Hepatocyte growth factor PeproTech 100-39

Epidermal growth factor PeproTech 100-47

Netrin R&D Systems 6419-N1-025

Insulin like Growth Factor 1 PeproTech 100-11

Platelet Derived Growth Factor-B PeproTech P100-14B

Tumor Necrosis Factor-a PeproTech 300-01A

Interleukin-6 PeproTech 200-06

Nerve Growth Factor-b PeproTech 450-01

Placental Growth Factor-1 PeproTech 100-06

ML141 Selleckchem S7686

SCH772984 Selleckchem S7101

BGJ398 Selleckchem S2183

SP600125 Selleckchem S1460

U0126 Selleckchem S1102

LY294002 Selleckchem S1105

IPA-3 Selleckchem S7093

Go6983 Selleckchem S2911

NSC23766 Selleckchem S8031

CCG-1423 Selleckchem S7719

Y-27632 Selleckchem S1049

LY2157299 Selleckchem S2230

H-1152 Alexis Biochemicals ALX-270-423

CK666 Sigma Aldrich SML0006

Mitomycin C Sigma Aldrich M4287

Blebbistatin Sigma Aldrich B0560

hexadimethrine bromide Sigma Aldrich H9268

Hoechst Sigma Aldrich B2883

Pure coll bovine collagen 1 Cell systems 5005-B

Cell proliferation WST-1 reagent (Roche) Sigma Aldrich 11644807001

Glycergel Dako C0563

Critical Commercial Assays

G-LISA Rac1 activation kit Cytoskeleton BK128

G-LISA Cdc42 activation kit Cytoskeleton BK127

G-LISA RhoA activation kit Cytoskeleton BK124

RNeasy Mini RNA isolation kit QIAGEN 74106

High capacity cDNA reverse transcription kit Applied biosystems 4368814

Experimental Models: Cell Lines

DAOY, Desmoplastic MB, age of patient: 4 years,

gender: male, authenticated using genotyping

ATCC ATCC: HTB-186

UW228, MB, age of patient: 9 years, gender: female,

authenticated by genotyping compared to original

tumor line UW228-2.

John Silber, Seattle, USA (Keles et al., 1995)

HD-MBO3, group 3 MB, age of patient: 3,

gender: male

Till Milde, Heidelberg, Germany (Milde et al., 2012)

Med311 PDX TC adapted, MB, age of patient: 2 years,

gender: male

Brain tumor resource laboratory of

the Fred Hutchinson Cancer Centre

http://www.btrl.org/product/med-311fhtc/

Med 114 PDX, Med 411 PDX, Med 411 GFP PDX,

Anaplastic, Large cell MB, age of patient: 3 years,

gender: male

SickKids Hospital, Toronto, Canada http://www.btrl.org/product/med-411fh/

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and request for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin

Baumgartner, Martin.Baumgartner@kispi.uzh.ch.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Informed consent was obtained from subjects and all research involving subject’s material was conducted under appropriate review/

privacy board protocols of the Kantonale Ethikkommission Z€urich (Ethics Commission of the Canton of Z€urich, Switzerland). The use

of patient tumor material for diagnostic and prognostic analysis was approved by the Kantonale Ethikkommission Z€urich.

Mouse Maintenance
Mouse protocols for organotypic brain slice culture were approved by the Veterinary Office of the Canton Z€urich. Wild-type C57BL/

6JRj pregnant females were purchased from Janvier Labs and were kept in the animal facilities of the University of Z€urich Laboratory

Animal Center. In vivo experiments in NSG mice were approved by the institutional animal care committee at University Health

Network, Toronto.

TISSUE CULTURE CELLS

Human MB Cell Lines
DAOY humanMB cells were purchased from the American Type Culture Collection (ATCC, Rockville, MD, USA). UW228 (Keles et al.,

1995) was generously provided by John Silber (Seattle, USA). DAOY and UW228 cells were cultured as described in (Fiaschetti et al.,

2014). DAOY LA-EGFP and UW228 LA-EGFP cells were produced by lentiviral transduction of DAOY and UW228 cells with pLenti-

LA-EGFP. Cell line authentication and cross contamination testingwas performed byMultiplexion by single nucleotide polymorphism

(SNP) profiling.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Med 1712 PDX, Desmoplastic/Nodular Grade IV MB,

age of patient: 4 years, gender: male

Brain tumor resource laboratory of

the Fred Hutchinson Cancer Centre

http://www.btrl.org/product/med-1712fh/

D341 PDX, group 3 MB, age of patient: 3.5 years,

gender: male

SickKids Hospital, Toronto, Canada N/A

Experimental Models: Organisms/Strains

Mice for ex vivo experiments – C57BL/6JRj, pregnant

female, male and female pubs were used for brain

dissection. Sex of pubs was not determined and slices

were randomized.

Janiver labs N/A

Mice for in vivo experiments – NOD SCID gamma (NGS),

all male, average weight at experiment start was

28.23 g -/+ 2.76. Age of mice used at start of

experiment: seven weeks.

Breeders purchased from

Jackson laboratories, bred by

University Health Network

https://www.jax.org/strain/005557

https://navigator.innovation.ca/en/

navigator/AnimalResourcesCentre

Oligonucleotides

sgFRS2, Exon 1, AACTTGTTCCGATGGTTATCTGG This paper N/A

sgFRS2, Exon 2, TACCTCTGCCTGCGACGCTATGG This paper N/A

sgFRS2, Exon 3, TAGGTGTTCGAGGTGTTCTAGGG This paper N/A

sgFRS2, Exon 4, AGGATGTCTGCTTGACGGATGGG This paper N/A

Software and Algorithms

Automated cell dissemination counter (aCDc) platform.

Automated spheroid dissemination counter software

(asDICs) used for quantification.

Kumar et al., 2015 http://www.infozentrum.ethz.ch/

uploads/user_upload/Software/

ImageAnalysisSoftware.zip

R2 microarray Santhana Kumar et al., 2015

and this paper

http://r2.amc.nl
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Patient-Derived Xenograft (PDX) Cell Culture
HumanMBSHHPDX lineMed-1712FH, humanMBGroup 3 lineMed-411FH and human atypicalMB lineMed311PDXwere obtained

from the brain tumor resource laboratory of the Fred Hutchinson Cancer Centre. Group 3 line HD-MBO3 was a generous gift of Till

Milde (Heidelberg, Germany) and cultivated in RPMI 1640medium supplemented with 10% heat-inactivated fetal calf serum and 1%

nonessential amino acids. Med-1712FH and Med-411FH cells were cultured in neurobasal medium (Invitrogen/Life Technologies,

Paisley, UK, 12349-015) supplemented with 2% B-27� (GIBCO/Life Technologies, 10889-038), 1% L-Glutamine (Invitrogen/Life

Technologies, 25030024), 10 mg/ml bFGF (100-18B, PeproTech, London, UK) and 10 mg/ml EGF (100-47, PeproTech, London,

UK). Med311PDX cells were cultured in NeuroCult NS-A Basal Medium (Human) with NeuroCult NS-A proliferation supplements

(Human) (05751, Stem Cell Technologies), 10 mg/ml bFGF (100-18B, PeproTech, London, UK), 10 mg/ml EGF (100-47, PeproTech,

London, UK) and 1%Penicillin/Streptomycin (15140122, GIBCO by Life Technologies) on laminin (L2020-1MG, Sigma-Aldrich, dilute

1mg/ml laminin (1:100) in PBS) coated tissue culture treated dishes.

METHODS DETAILS

Inhibitors
Inhibitors were used throughout the study at concentrations indicated in Figure S2A, unless otherwise specified. ML141 (S7686),

SCH772984 (S7101), BGJ398 (S2183), SP600125 (S1460), U0126 (S1102), LY294002 (S1105), IPA-3 (S7093), Go6983 (S2911),

NSC23766 (S8031), CCG-1423 (S7719), Y-27632 (S1049), LY2157299 (S2230) were purchased from Selleckchem, Houston, TX,

USA. H-1152 (ALX-270-423, Alexis Biochemicals), CK666 (SML0006, Sigma Aldrich), blebbistatin (B0560, Sigma Aldrich).

Spheroid Invasion Assay (SIA) and Automated Cell Dissemination Counter (aCDc)
1000 cells/100 mL per well were seeded in 96 well Corning� Spheroid microplate (CLS4520, Sigma-Aldrich) (DAOY cells) or in cell-

repellent 96 well microplate (650790, Greiner Bio-one) (UW228,Med311PDX,Med411FH andMed1712FH). For SIA with proliferation

inhibition, cells pre-treated with 10 mMof mitomycin for 3 h were used. The cells were incubated at 37�C overnight to form spheroids.

70 ml of the medium were removed from each well, and remaining medium with spheroid overlaid with 2.5% bovine collagen 1.

Following the polymerization of collagen, fresh medium was added to the cells and treated with growth factors / cytokines and/or

with inhibitors. The cells were allowed to invade the collagen matrix for 24 h, after which they were fixed with 4% PFA and stained

with Hoechst. Images were acquired on an Axio Observer 2 mot plus fluorescence microscope (Zeiss, Munic, Germany) using a 5x

objective. Cell invasion is determined as the average of the distance invaded by the cells from the center of the spheroid as deter-

mined using automated cell dissemination counter (aCDc) with our cell dissemination counter software aSDIcs (Kumar et al., 2015).

Expression Analysis Using R2 Database
Expression of FRS2 in normal brain, normal cerebellum and MB samples were analyzed using the open access platform R2 for

visualization and analysis of the microarray data (http://r2.amc.nl) as described in (Santhana Kumar et al., 2015). The following data-

sets were used: Normal brain regions – 172 – MAS5.0 – u133p2 (172 samples, post-mortem brain tissue collected from ADRC brain

banks), Normal cerebellum – Roth – 9 –MAS5.0 – u133p2 (9 samples), MB (SHH) Pfister – 76 – u133p2 (73 pediatric MB samples), MB

ependymoma – denBoer – 51 – u133p2 (51 samples), MB PLoS One – Kool – 62 – MAS5.0 – u133p2 (62 human MB tumor samples),

MBpublic – Delattre – u133p2 (57 samples), TumorMB–Gilbertson – 76 – u133p2 (76 samples) and TumorGliomapediatric – Paugh –

53 – u133p2 (53 samples).

FRS2 Depletion by LentiCRISPR
BFP tagged LentiCRISPR plasmids were generously provided by Dr. Scott McComb (Ottawa, Canada). Cloning of sgRNA into

LentiCRISPR plasmids was performed with a single-tube restriction and ligation method as described in (McComb et al., 2016).

Production of lentiviral vectors was performed according to the standard protocol. In brief, 293T cells were transfected with using

HEPES-buffered saline solution (HeBS) and 0.5 M calcium phosphate with LentiCRISPR, pVSV, pMDL, and pRev (Kindly provided

by Dr. Oliver Pertz, Bern, Switzerland) in a ratio of 4.5:1.5:3:1. The media was changed after 12 h and the virus was collected at 72 h

after transfection of plasmids. Viral transductions were performed using hexadimethrine bromide (H9268, Sigma-Aldrich). sgRNA

sequences were screened for FRS2 activity in DAOY cells by IB. The most effective sequence was chosen for further experiments.

The specific sg target sequences used are listed below:

Gene Exon Sg target sequence

FRS2 Exon1 AACTTGTTCCGATGGTTATCTGG

FRS2 Exon2 TACCTCTGCCTGCGACGCTATGG

FRS2 Exon3 TAGGTGTTCGAGGTGTTCTAGGG

FRS2 Exon4 AGGATGTCTGCTTGACGGATGGG
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Cell Proliferation WST-1 Assay
The metabolic activity and the proliferation of the cells were determined using the WST-1 assay kit – Roche (11644807001, Sigma

Aldrich) according to the manufacturer’s instructions. In brief, 2500 cells/100 ml/per well (for up to 72 h incubation) and 750

cells/100 ml/per well (for up to 120 h) were seeded in Greiner Bio-One m-clear 96 well plates (655090, Greiner Bio-One) and incubated

overnight at 37�C. For WST-1 assay with proliferation inhibition, cells pre-treated with 10uM of mitomycin for 3 h were used. The old

media was then replaced with fresh serum-free media and the cells were treated with growth factors, inhibitors and/or combinations

till the desired time point. Following appropriate incubation for each time point, 10 mL of the WST-1 reagent was added to each well

(final concentration of WST-1 reagent per well is 1:10) and incubated at 37�C for 30 min. The absorbance was then measured at

440 nm.

G-LISA
The activity of Rac1, Cdc42 and RhoA in collagen-embedded cells were determined using the G-LISA Rac1 (BK128), Cdc42 (BK127)

and RhoA (BK124) G-LISA activation kits (Cytoskeleton), respectively. 2 million cells/ml per well were seeded in 6 well cell repellent

plates (657970, Greiner Bio-one) and incubated overnight at 37�C. Cell clusters were embedded in collagen I (final concentration

3 mg/ml) (5005-B, Cellsystems). Fresh medium was added to the cells after polymerization of collagen I. DAOY sgControl and

DAOY sgFRS2 collagen-embedded cell clusters were treated with bFGF (100 ng/ml or 10 mg/ml), TGF-b (20 ng/ml), and in various

combinations thereof for 24 h. UW228 cell clusters were treated as DAOY cells described above without or with BGJ398 for 24 h.

Clusters were lysed and the total protein was isolated as described in (Keely et al., 2007). The levels of GTP-loaded Rac1, Cdc42

and RhoA in the lysates were determined by G-LISA activation kit.

G-LISA—3D, IB
Total protein was isolated from the collagen embedded cell clusters as explained above (G-LISA). Lysates were boiled with the

loading buffer (Roti� - Load1, K929.1, Carl Roth, Germany) and analyzed by IB.

Growth Factor Treatments
Growth factors were used throughout the study in the concentrations indicated as follows. basic Fibroblast Growth Factor (bFGF,

100-18B): 100 ng/ml (low, in vitro), 10 mg/ml (high, in vitro), 12.5 ng/ml (low, OCSC), 100 ng/ml (high, OCSC), Transforming Growth

Factor-b (TGF-b, 100-21): 20 ng/ml, Hepatocyte growth factor (HGF, 100-39): 20 ng/ml, epidermal growth factor (EGF, 100-47):

30 ng/ml from PeproTech (London, UK). The following growth factors/cytokines were used for PB design: Netrin (R&D Systems,

6419-N1-025), HGF, EGF, Insulin like Growth Factor 1 (IGF, 100-11), Platelet Derived Growth Factor-B (PDGF-B, P100-14B), Tumor

Necrosis Factor-a (TNF- a, 300-01A) bFGF, Interleukin-6 (IL-6, 200-06), Nerve Growth Factor-b (NGF, 450-01), TGF-b and Placental

Growth Factor-1 (PlGF-1, 100-06) from PeproTech (London, UK). The concentrations used for ‘high’ and ‘low’ levels of the respective

growth factors are listed below:

In Vivo Experiments and Imaging
Med-411-FH cells were transduced with a GFP lentiviral expression construct and sorted by FACS. 53 105 GFP-positive Med-411-

FH cells were stereotaxically injected into the cerebella of 7-week-old NSG mice (n = 18). To detect tumor engraftment, mice were

imaged byMRI using a 7 Tesla Biospec 70/30 (Bruker Corporation) as previously described (Jalali et al., 2014) at 21 and 28 days post

injection. T2-weighted images were analyzed and at the first signs of tumor engraftment mice were randomized into treatment (n = 5)

and control groups (n = 6) and received BGJ398 (in 2:1 PEG300/D5W) 10 mg/kg or vehicle alone daily via oral gavage for 10 doses.

Deeply anesthetizedmice were then perfused with ice-cold phosphate buffered hydrogel solution containing 4%bis-Acrylamide and

Growth Factor/Cytokine High Level for PB design Low Level for PB design

HGF 20ng/ml 0.039ng/ml

Netrin 200ng/ml 0.78ng/ml

EGF 30ng/ml 0.05ng/ml

TNF-a 25ng/ml 0.0975ng/ml

IGF 20ng/ml 0.039ng/ml

PDGF-B 20ng/ml 0.039ng/ml

TGF-b 20ng/ml 0.039ng/ml

IL-6 20ng/ml 0.039ng/ml

NGF 50ng/ml 0.195ng/ml

bFGF 100ng/ml 0.39ng/ml

PlGF-1 10ng/ml 0.078ng/ml
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1% w/v paraformaldehyde as published (Yang et al., 2014). Brains were incubated in ice-cold hydrogel solution for 24 h followed by

degassing and polymerization at 37�C. Brains were stored and electrophoretically cleared in 8% w/v sodium-dodecyl-sulfate

solution (Chung et al., 2013; Yang et al., 2014). Samples were washed in phosphate buffered saline followed by equilibration in

refractive index matching solution (RIMS) (Yang et al., 2014). Cleared brains were inserted into 10X10mm high precision optical glass

cuvettes (Z802980, Sigma Aldrich) and completely submerged in RIMS.

Confocal image analysis was performed with 488 nm excitation wavelength and Z stacks (35 mm Z-intervals) covering the whole

brain area were acquired. The cumulative area of the GFP signal was quantified. The distance of individually invading GFP-positive

tumor cells from the local main tumor mass was quantified using ImageJ in mm by drawing a perpendicular line from the tumor mass

margin to the cell.

Confocal Immunofluorescence Analysis (IFA)
Single Cells (2D)

8well ibidi plates were coatedwith collagen (1:10 in 60%EtOH) and left in the incubator at 37�Covernight. The following day, approx-

imately 500 cells / 200 mL per well is seeded on the collagen coated ibidi plates. 24 h after seeding, the mediumwas removed and the

cells were treated with bFGF for 10 h. The cells were fixed and treated as described in (Ma and Baumgartner, 2014). The fixed cells

were incubated with diluted primary antibodies overnight at 4�C. Anti-rabbit-Cy3 – (711-165-152) coupled secondary antibody was

diluted 1:300 and incubated for 2 h at RT. Z stacks of the cells were acquired using a 63X immersion objective in SP8 Leica confocal

microscope. pERK was quantified on images generated from confocal microscopy image acquisitions with identical settings

between samples. Cumulated gray values of the pERK signals were acquired along a 100 pixel length X 100 pixel wide lane perpen-

dicular to the cell margin. The line was cantered on the margin. The cumulated values of multiple measurements per sample were

plotted against distance in pixels.

Single Cells on Thick Collagen Layer (Semi 3D)

150 mL of 2.5% bovine collagen I prepared with 7.5% sodium bicarbonate and 10X DMEMmedium was added to each well on 8 well

ibidi plates and left in the incubator at 37�C for 1 h. Following the polymerization of collagen, 1000 cells/150 mL per well were seeded

on the collagen layer. 24 h after seeding, themediumwas removed and the cells were treated with bFGF for 18 h. The cells were fixed

and treated as described in (Ma andBaumgartner, 2014). Fixed cells were incubatedwith diluted primary antibodies overnight at 4�C.
Anti-rabbit-Cy3 – (711-165-152) coupled secondary antibodywas diluted 1:300 and incubated for 2 h at RT. Z stacks of the cells were

acquired using a 63X immersion objective with a SP8 Leica confocal microscope.

Spheroids (3D)

DAOY LA-EGFP cells were used to perform SIA in 8 well ibidi plate as described in (Kumar et al., 2015). The embedded spheroids are

treated with bFGF, TGF-b, bFGF+TGF and/or Y27632 for 24 h at 37�C. The medium was then removed without disturbing the

collagen layer and the collagen I embedded spheroids were fixed with 4% ice cold PFA and permeabilized with 0.5% Triton X-

100 for 5 min. The fixed and permeabilized cells were incubated with diluted anti-myosinX antibody overnight at 4�C. Anti-rabbit-
Cy3 – (711-165-152) coupled secondary antibody was diluted 1:300 and incubated for 2 h at RT. The spheroids were subsequently

stained with Hoechst 1:5000 (B2883, Sigma-Alrich) and mounted with glycergel (Dako, C0563). Z stacks of invaded cells were ac-

quired using 63X immersion objective in SP8 Leica confocal microscope. The total number of cells per region of interest (in each

experiment, 6 regions were quantified per sample and condition) and the number of cells displaying filopodia-like structures were

counted and the percentage of cells with filopodia-like structures was calculated.

Organotypic Cerebellar Slice Culture (OCSC)

After PFA fixation, the slices were incubated in standard cell culture trypsin EDTA and incubated at 37�C humidified incubator for

23 min. The slices were blocked in PBS containing 3% fetal calf serum, 3% bovine serum albumin and 0.3% triton x 100 for 1 hr

at RT. Primary antibodies were diluted in the blocking solution and incubated overnight on a shaker at 4�C. Following 3 washes at

RT using 5% BSA in PBS, secondary antibodies were incubated for 3 h at RT. The inserts were flat mounted in glycergel mounting

medium (C0563, Dako). The slice-spheroid co-cultures were stained for GFAP and calbindin and three-color image acquisition was

performed on a SP8 confocal microscope.

Confocal Live-Cell Imaging—SIA
The embedded spheroids as described in (Kumar et al., 2015) were incubated with bFGF (100 ng/ml; Video S1) or TGF-b (20 ng/ml;

Video S2) 10 h prior to the start of image acquisition using SP8 Leica confocal microscope. Amulti-immersion 63X objective was used

to acquire Z stacks of single invading cells (1 min interval, 15 min acquisition). Average density projections of the stacks were assem-

bled into AVI movies (15 fps).

Immunoblotting (IB)
RIPA buffer lysates were resolved by SDS-PAGE and transferred to a nitrocellulose membrane using a transfer apparatus according

to the manufacturer’s instructions (Bio-Rad). Membranes were probed with primary antibodies against phospho-FRS2, FRS2,

ERK1/2, phospho-ERK1/2, MYPT1, phosphor-MYPT1, phospho-PKC and tubulin. HRP-linked secondary antibodies (1:5000)
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were used to detect the primary antibodies. Chemiluminescence detection was performed using ChemiDoc Touch Gel and Western

Blot imaging system (BioRad) and FujiFilm LAS 3000 (Bucher biotech) Integrated density of Immuno-reactive bands was quantified

using Adobe Photoshop CS3.

Immunohistochemistry (IHC)
IHC of the TMA and normal brain sections was performed by Sophistolab (Muttenz, Switzerland) on a Lecia BondMax instrument

using Refine HRP-Kits (Leica DS9800). All buffer solutions were purchased from Lecia Microsystems Newcastle, Ltd and used

according to the manufacturer’s guidelines. Paraffin-slides were de-waxed, pre-treated and incubated as follows: ER-solution 2

for 10 min at 95�C, ER-solution 2 for 20 min at 100�C and ER-solution 2 for 30 min at 100�C. The TMA slides were captured digitally

using Axio Observer 2 mot plus fluorescence microscope (Zeiss, Munich, Germany). The expression of bFGF and FGFR1 was

assessed independently at 5x to 20x magnifications. The samples in the TMA slides were classified by H scores by the assessor,

who was blind to the clinicopathological data of the patients as high, moderate, low, and negative expression of bFGF and FGFR1.

Antibodies used for

Immunoprecipitation
Serum starved cells were incubated with bFGF (in vitro low), TGF-b, bFGF (in vitro low) + TGF-b and / or SCH772894 for 10 min or

bFGF (in vitro high), TGF-b, bFGF (in vitro high) + TGF-b and / or SCH772894 for 24 h. The cells were lysedwith 0.5%NP40 lysis buffer

without SDS and the protein concentrations were normalized among the samples. Anti-FRS2 antibody is incubated with 100 mL of

Dynabeads� Protein G beads (10003D, Thermofischer Scientific) and 200 mL of PBST for 30 min on an Eppendorf rotator at RT. The

antibody-bead complex was isolated using the immunoprecipitation magnet (MerckMillipore). The equalized lysates were incubated

with anti-FRS2-bead complex for 1 to 2 h at 4�C. The immune complexes were eluted from the beads by boiling the samples to 95�C
with the loading buffer (Roti� - Load1, K929.1, Carl Roth, Germany) and were analyzed by IB as described above. Antibodies and

concentrations used for IFA, IB, IHC and IP are listed below:

Primary Antibody Dilution Application

bFGF 1:400 Immunohistochemistry

FGFR1 1:100 Immunohistochemistry

TGF-b 1:100 Immunohistochemistry

TbRI 1:50 Immunohistochemistry

TbRII 1:500 Immunohistochemistry

pERK1/2 1:750 Immunoblot

pERK1/2 (Thr202/Tyr204) 1:250 Immunoflurorescence

ERK1/2 1:1000 Immunoblot

pFRS2 (Y436) 1:750 Immunoblot

FRS2 1:1000 Immunoblot

FRS2 4 mg of antibody for 500-1000 mg/ml of protein Immunoprecipitation

Myosin-X 1:250 Immunofluorescence

ROCK1 1:1000 Immunoblot

ROCK2 1:1000 Immunoblot

pMYPT1 (Thr696) 1:500 Immunoblot

MYPT1 1:750 Immunoblot

RhoA 1:250 G-LISA

Rac1 1:20 G-LISA

Cdc42 1:50 G-LISA

Phospho-tyrosine, pTyr (4G10) 1:1000 Immunoblot

GFAP 1:300 Immunofluorescence

Calbindin 1:1000 Immunofluorescence

pPKC 1:750 Immunoblot

Tubulin 1:1000 Immunoblot

VASP 1:250 Immunofluorescence
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Organotypic Cerebellar Slice Culture
Wild-type C57BL/6JRj mice pups were sacrificed at postnatal day (PND) 8-10 by decapitation. Cerebella were dissected and placed

in cold Geys balanced salt solution containing kynurenic acid (GBSSK) and then embedded in 2% low melting point agarose gel.

Solidified agarose blocks were glued onto the vibratome (VT 1200S, Leica) disc with Roti Coll1 glue (0258.1 Carl Roth), mounted

in the vibratome chamber filled with cold GBSSK and 350 mm thick sections were cut. Slices were transferred to Petri dishes filled

with cold GBSSK. Millipore inserts (PICM 03050, Merck Millipore) were placed in six well plate(s) filled with 1 mL cold slice culture

medium (SCM) onto which the slices were then transferred using a Rotilabo-embryo spoon (TL85.1, Carl Roth). A maximum of three

slices were placed per insert and excess of medium was removed. Slices were monitored for any signs of apoptosis and media was

changed daily for the first week and once in two days thereafter. Tumor spheroids were formed with DAOY LA-EGFP cells, DAOY

sgControl cells and DAOY sgFRS2 cells. The co-culture was treated with bFGF (OCSC low and OCSC high), TGF-b, bFGF (OSCS

high) + TGF-b and / or BGJ398. Spheroids were incubated for 7 or 5 days for DAOY sgControl and DAOY sgFRS2 or control and

BGJ398-treated, respectively. Following the treatment, the co-cultures were fixed as described in (Neve et al., 2017). The fixed

co-cultures were stained and analyzed using immunofluorescence techniques. The distance of dissemination of MB cells from

the center of the spheroid in the co-culture were quantified using modified aSDIcs.

PB Design
Plackett Burman (PB) design, an orthogonal screeningmatrix that yields unbiased estimates of all independent variables in the small-

est design possible, was adapted to perform the combinatorial growth factor screen (Plackett and Burman, 1946). Multiple growth

factors affect MB cell dissemination simultaneously. PB is based on Two-level (High and Low) Hadamard screening matrices where

‘n’ variables (number of growth factors to be tested = 11) can be tested in ‘n+1’ runs. The 11 growth factors that were tested in com-

binations of high and low levels were as follows: HGF, EGF, Netrin, TNF-a, IGF, PDGF-B, TGF-b, IL-6, bFGF, NFG andPlGF-1. The PB

screeningmatrix for 12 runs is shown in Figure S5A. The high levels of the growth factors / cytokines are represented as ‘‘+’’ and those

in low levels are represented as ‘‘�‘‘. The high and low levels of the 11 growth factors / cytokines screened were determined by 1:2

serial dilution. The minimum concentration of the growth factor required to induce a measureable level (statistically significant) of cell

dissemination as compared to the control was set as the low level of the growth factor / cytokine.

RNA Expression Analysis by qRT-PCR
Total RNAwas isolated using RNeasyMini Kit (QIAGEN, Basel, Switzerland) following themanufacturer’s instructions. 100 ng of total

RNA was used as a template for reverse transcription, which was initiated by random hexamer primers. The cDNA synthesis was

carried out using High capacity cDNA Reverse Transcription Kit (Applied Biosystems). qRT-PCR was performed under conditions

optimized for the ABI7900HT instrument, using TaqMan� Gene Expression Master Mix (4369016, Applied Biosystems). Primer

probes specific for the following genes (4331182, Applied Biosystems) were used: FGFR1 (Hs00915142_m1), FGFR2

(Hs01552926_m1), FGFR3 (Hs00179829_m1), FGFR4 (Hs01106908_m1), FGF2 (Hs00266645_m1), TGF-b1 (Hs00998133_m1),

TGFBR1 (Hs00610320_m1), TGFBR2 (Hs00234253_m1) and TGFBR3L (Hs00418521_m1). Cycle threshold (CT) values were normal-

ized to housekeeping gene GAPDH (Hs02758991_g1, Applied Biosystems). DDCT method was used to calculate the relative gene

expression of each gene of interest.

RNA Interference
Approximately 75% confluent cells were transfected with siRNA specific for ERK1 (MAPK3 – ID: s11140), ERK2 (MAPK1 – ID:

s11137), ROCK1 (ID: s12097), ROCK2 (ID: s18163), FRS2 (ID: s21261) or Silencer select negative control (ID: 4390843, Ambion).

Each siRNAwas used at a final concentration of 5 nmol along with DharmaFECT 4 transfection regent (T-2004-03, Dharmacon). After

48 h, RNA and proteins were isolated from cells to determine gene expression by qRT-PCR and protein expression by IB. On

successful downregulation of the protein of interest, the transfected cells were used for SIA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mean ± SD are shown when means of three biological replicas (n = 3) are compared. Boxplots with whiskers to min and max are

shown when pooled individual measurements from two to three biological replicas are compared. Unpaired Student’s t test was

used to test significance of differences between two samples acquired in each of three biological replicas. For all other analyses,

one-way ANOVA repeated-measures test using Bonferroni’s Multiple Comparison using Prism software was performed.

p values < 0.05 were considered significant (* p % 0.05, ** p % 0.01, *** p % 0.001), **** p % 0.0001). Where indicated, asterisks

show statistical significances between control and test sample.
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