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Abstract— Human activity recognition (HAR) is an active area 

of research concerned with the classification of human motion. 

Cameras are the gold standard used in this area, but they are 

proven to have scalability and privacy issues. HAR studies have also 

been conducted with wearable devices consisting of inertial sensors. 

Perhaps the most common wearable, smart watches, comprising of 

inertial and optical sensors, allow for scalable, non-obtrusive 

studies. We are seeking to simplify this wearable approach further 

by determining if wrist-mounted optical sensing, usually used for 

heart rate determination, can also provide useful data for relevant 

activity recognition. If successful, this could eliminate the need for 

the inertial sensor, and so simplify the technological requirements 

in wearable HAR. We adopt a machine vision approach for activity 

recognition based on plots of the optical signals so as to produce 

classifications that are easily explainable and interpretable by non-

technical users. Specifically, time-series images of 

photoplethysmography signals are used to retrain the penultimate 

layer of a pretrained convolutional neural network leveraging the 

concept of transfer learning. Our results demonstrate an average 

accuracy of 75.8%. This illustrates the feasibility of implementing 

an optical sensor-only solution for a coarse activity and heart rate 

monitoring system. Implementing an optical sensor only in the 

design of these wearables leads to a trade off in classification 

performance, but in turn, grants the potential to simplify the overall 

design of activity monitoring and classification systems in the 

future.  
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I. INTRODUCTION 

Due to the ubiquitous nature of inertial and physiological 

sensors in phones and fitness trackers, human activity 

recognition (HAR) studies have become more frequent [1],[2]. 

Benefits of HAR include rehabilitation for recovering patients 

[3], monitoring of the elderly and vulnerable or advancements 

in human-centric applications [4].  

Photoplethysmography (PPG) is an optical technique used 

to measure volume changes of blood in the microvascular 

tissue. PPG is capable of measuring heart rate by detecting the 

amount of light reflected/absorbed in red blood cells as this 

varies with the cardiac cycle. The light that is reflected is read 

by an ambient light sensor which then has its output 

conditioned, so a pulse rate can be determined from the 

module. The pulse rate is obtained from analysis of the small 

ac component (which arises from the pulsatile nature of blood 

flow) superimposed on a large dc component caused by the 

constant absorption of light [5].  

For usability reasons the wrist is a common site for 

wearables used in health and fitness contexts [6]. Most 

smartwatches are equipped with an optical PPG sensing device 

capable of calculating pulse rate. Difficulties arising in 

obtaining a robust physiologic output signal from a PPG can 

be caused by motion artefact due to the changes in optical path 

length associated with disturbance of the source-detector 

configuration. This disturbance is introduced by 

haemodynamic effects and gross motor movements of the 

limbs [7]. This can often lead to an incorrect reading of the 

pulse rate signal. Reduction in motion artefacts can be 

achieved using a range of techniques, from aggressive filtering 

to adaptive methods based on a measure of the artefact source 

from an accelerometer-based measurement [8]. 

In this study we sought to exploit the motion artefact and 

infer human activity from the PPG signals collected at the 

wrist. Our hypothesis was that there is sufficient information 

in the disturbance induced in the source-detector path to 

distinguish different activities through the use of a machine 

learning approach. In recent years, capabilities of machine 

learning methods in the field of image recognition has 

increased dramatically [9]. Utilising these advancements in 

image recognition will allow for simplification of wearables 

involved in HAR. We chose an image-based approach to the 

machine learning challenge as this work is part of a larger 

scoped effort to develop easily deployed artificial intelligence 

which can be used and interpreted by end users who do not 

have deep levels of signal processing expertise – [10]. 
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A. Related Work 

Convolutional neural networks (CNNs) have been used 

since the 1990’s and were designed to mimic how the visual 

cortex of the human brain processes and recognises images 

[11]. CNNs extract salient features from images at various 

layers of the network. They allow implementation of high-

accuracy image classifiers given the correct training without 

the need for in-depth feature extraction knowledge.  

Current state of the art activity recognition systems are 

camera-based. These can detect motion with little processing 

but require a lot of processing to recognise specific activities. 

Cameras also introduce scalability issues along with being 

intrusive by nature [12]. Inertial sensing is another popular 

method used in HAR. To achieve the high accuracies of the 

inertial sensing systems shown in [6], a system consisting of 

multiple sensors is required, again compromising of 

functionality and scalability issues. The associated signal 

processing is not trivial and singular value decomposition 

(SVD), truncated Karhunen-Loève transform (KLT) [13], 

Random Forest (RF) and Support Vector Machines (SVM) are 

examples of feature extraction and machine learning methods 

that can be applied to human activity recognition. 

Inertial sensor data paired with PPG are amongst the most 

suitable sensors for activity monitoring as they offer effective 

tracking of movement actions as well as relevant physiological 

parameters such as heart rate.  They also have the benefit of 

being easy to deploy. Mehrang et al. used RF and SVM 

machine learning methods for a HAR classifier on combined 

accelerometer and PPG data achieving an average recognition 

accuracy of 89.2% and 85.6% respectively [14]. 

The average classification accuracy of the leading modern 

feature extraction and machine learning methods for singular 

or multiple accelerometers sensors range from 80% to 99% 

[6]. However, this can require up to 5 accelerometers located 

at various positions of the body. 

 

II. METHODOLOGY 

A. Data Collection 

The design of the data collection experiment was conducted 

by Deleram Jarchi and Alexander J. Casson and is freely 

available from Physionet [15], [16]. PPG recordings were 

taken from 8 patients (5 female, 3 male) aged between 22-32 

(mean age of 26.5), during controlled exercises on a treadmill 

and an exercise bike. Data was recorded using a wrist-worn 

PPG sensor attached to the Shimmer 3 GSR+ unit [17] for an 

average period of 4-6 minutes with a maximum duration of 10 

minutes. A frequency of 256 Hz was used to sample the 

physiological signal. Participants used a treadmill to run and 

walk and an exercise bike on high/low resistance to simulate 4 

variations of exercises. The data analysed was the raw signal 

with minimal filtering to keep the motion artefact from the 

wrist-worn sensor present. Each individual was allowed to set 

the intensity of their exercises as they saw fit and every 

exercise began from rest. 

The four exercises were broken down as; walk on a 

treadmill, run on a treadmill, low resistance exercise bike and 

high resistance exercise bike. For the walk and run exercises 

the raw PPG signals required no filtering other than what the 

Shimmer unit provides. The cycling recordings were low-pass 

filtered using Matlab with a 15 Hz cut-off frequency to remove 

the high-frequency noise. 

B. Data Preparation 

The PPG data signal was downloaded using the 

PhysioBank ATM and plotted in Matlab. The signals were 

segmented into smaller time-series windows of 8-second 

intervals, these intervals were chosen to match the time 

windows used in [18] which acts as a benchmark for this 

study. A rectangular windowing function was created to step 

through the data every 2 seconds and save a new plot of 8 

seconds of data. It is worth re-emphasising that a machine 

vision approach is being taken here – the input data to the 

classifier is not time series vectors but actual images.  These 

images correspond to minimalist plots of the 8-second window 

produced in Matlab. Therefore, the script prints and saves 

figures and removes all axis labels, legends and grid ticks 

(removing non-salient features), saving each figure as a 

1201x901 JPEG file. A total of 3321 images were created, of 

which 80% (2657) were used for retraining, 10% (332) for 

validation and 10% (332) for testing.  

These .jpg files were stored in a directory hierarchy based 

on the movement carried out. Four subdirectories of possible 

classifiers were created; run, walk, high resistance bike and 

low resistance bike. Contained within each subdirectory was 

the images of the PPG signal plotted in Matlab. In  Fig. 1 

below an example of each activity can be seen.  

 
Fig. 1 Sample of PPG images for each activity 

 



C. The Network Infrastructure 

 

Upon completion of the data preparation the convolutional 

neural network could then be retrained. Building a neural 

network from the ground up is far from a trivial task, it 

requires multilayer implementation for even a simple 

perceptron [11] which needs optimization of tens of thousands 

of parameters for even a trivial task such as handwritten digit 

classification [19]. Instead of spending a lot of time building a 

neural network from scratch, the authors used Inception which 

can be implemented with the TensorFlow framework [20]. 

TensorFlow, a deep learning framework was used by the 

authors for transfer learning. A Python distribution, Anaconda, 

was the container in which TensorFlow was installed.  

Transfer learning is the idea of using a pretrained 

convolutional neural network and retraining the penultimate 

layer that does the classification before the output. This type of 

learning is ideal for this study due to the small dataset [21]. 

The results of the retraining process can be viewed using the 

suite of visualisation tools on TensorBoard [22].  

Recognition of specific objects from millions of images 

requires a model with a large learning capacity. CNNs are 

particularly suitable for image classification because 

convolution leverages three important properties that can help 

improve a machine learning system: sparse interaction, 

parameter sharing and equivariant representations [23]. These 

properties enable CNN to detect small, meaningful features 

from the input image and reduce the storage requirements of 

the model comparing to the traditional densely connected 

neural networks. 

CNNs are tuneable in their depth and breadth which means 

they can have much simpler architecture and in turn making 

them easier to train in comparison to other feedforward neural 

networks [9]. The CNN recognises patterns across space and 

in this case, recognises objects from images. However, if 

overfitted, CNNs remember recurring patterns in the 

background of each image it was trained on and using that to 

match labels with objects. It produces good results but when 

new images are introduced to the network it fails due to an 

inability to capture general characteristics of the training 

dataset.  

D. Retraining and Using the Network 

To retrain the network, the same approach carried out by 

Dominguez Veiga et. al was taken [10]. A pretrained CNN, 

Google’s Inception-v3, was used which has been trained on 

ImageNet, a database of over 14 million images and will soon 

be trained on up to 50 million images [24]. The retraining 

CNN tutorial from Google [25] was followed and allowed the 

authors to retrain just the last layer of the network using their 

own set of images. 

 The retraining process can be fine-tuned through 

hyperparameters which allows for optimisation of the training 

outcome. During the training for this paper the default 

parameters were used except for the training steps which were 

changed from the default of 4,000 steps to 10,000 steps. 

Selection of this number of iterations allowed for the loss 

function (cross-entropy) to be sufficiently converged, avoiding 

overfitting. Equation (1) shows the formula for cross-entropy 

where M is the number of classes, y is a binary indicator (0 or 

1) if label c is the correct classification for prediction o and p 

is the predicted probability o is of class c [26].  

 

    

III. RESULTS 

The results for each of the 10,000 steps were output into the 

two files ‘output_graph.pb’ and ‘output_labels.txt’, this allows 

the results to be viewed graphically on TensorBoard. Output in 

TensorBoard was the training and validation accuracy (Fig. 2) 

along with the cross-entropy (Fig. 3). The graphs have been 

curve fitted using a smoothing function. 

 

 
Fig. 2 Training (Orange) vs. Validation (Blue) Plot 

 
Fig. 3 Cross-Entropy Plot 

 

The loss function is continuously reducing on every 

iteration of the training step which shows that the model 

prediction is getting closer to the true distribution with each 

step. The final accuracy was shown to be 75.8% and as can be 

seen in Fig. 4; the confusion matrix, demonstrates the 

validation accuracy for correctly classifying the test set of 

images. 

(1) 



 
Fig. 4 Confusion matrix for transfer learning approach 

 

The confusion matrix for the deep learning approach 

graphically demonstrates some of the issues classifying the 

high-resistance bike exercise, where it was misclassified as 

low-resistance 28.57% of the time. The other activities had a 

maximum HAR misclassification percentage of 25.28% and a 

minimum of 0%. 

Fig. 6 shows two examples of each class that were 

misclassified as other activities. Participants were encouraged 

to go at their own pace. One participant's walk may be as fast 

as another's run which could be an issue for the classifier. 

However, based on the plots shown in Fig. 6, the errors may 

have been from a loose wrist strap or excessive movement of 

the arms. In some circumstances, the signal can be seen to be 

cut off which indicates gross movement of the limbs for those 

time instances [27].  

A study conducted by Giorgio Biagetti et al. used feature 

extraction and reduction with Bayesian classification on time-

series signals [18]. Their technique focused on using singular 

value decomposition and truncated Karhunen-Loève 

transform. Their study used the same time-series dataset and 

was designed to present an efficient technique for HAR using 

PPG and accelerometer data.  Below, in Fig. 5 the confusion 

matrix for their results can be seen, using just the PPG signal 

for feature extraction and classification.  

The feature extraction approach for determining HAR using 

just the PPG yields an overall accuracy of 44.7%. This shows 

a reduced classification performance versus the deep learning 

method employed in this paper. Although our transfer learning 

achieved greater accuracy of over 30 percentage points (75.8% 

vs. 44.7%), Biagetti et al. in the same paper then combined the 

PPG and accelerometer data to bring their classifier accuracy 

rate to 78%. We are able to produce very acceptable accuracy 

without the use of an accelerometer, i.e. through the optical 

signal only. 

 
Fig. 5 Confusion matrix of feature extraction approach 

 

IV. DISCUSSION 

A. Principal Findings 

Applying transfer learning to the PPG dataset leads to a 

classification accuracy of 75.8% (2607/3321). This is very 

close to the combined PPG and accelerometer data for HAR 

using SVD and KVL (75.8% vs. 78%) and much better than 

the PPG only result (75.8% vs. 44.7%) [18]. This is a 

competitive result and suggests that simpler wearables based 

on optical measurements only could yield much of the 

functionality achievable with more sophisticated, existing 

multi-modal devices. Of course, the addition of an inertial 

sensor will always produce more information and therefore 

more nuanced activity recognition. However, for the types of 

activity recognition commonly sought in clinical, health and 

fitness applications a surprisingly good performance can be 

extracted from a very simple optical measurement.  



 

B. Limitations 

 Better understanding of the hyperparameters may lead to 

higher average classification accuracy than the one achieved in 

this paper (75.8%). Given more knowledge of building 

complete neural networks from scratch against just retraining 

the last layer may also yield better results. The results 

generated in this paper are based on a classifier that was 

trained on data gathered from activities undertaken in an 

experimental setting. However, it has not been tested on 

everyday activities outside the laboratory environment. 

C. Visualising the Network 

   Quiver; an interactive neural network feature visualisation 

tool was used to demonstrate what CNN activations occur at 

various layers of a model  

V. CONCLUSION 

Transfer learning for human activity recognition is a novel 

approach to extracting new information from wrist-worn PPG 

sensors which are conventionally used for heart rate 

monitoring. Signal processing studies using PPG sensors have 

found them to make but minimal contributions to 

improvement in classification accuracy for HAR [28]. This has 

led to a lack of independent studies using a standalone PPG 

sensor, most of which have been combined with an 

accelerometer. The capability of CNNs to create classifiers 

from detailed images allow our retrained model to be 

implemented successfully for HAR on images of PPG data [9]. 

Accuracy and simplicity of the retrained CNN has proven to 

be a great benefit of the deep learning approach adopted here. 

Users of this system do not need to possess a strong signal 

processing background to understand the approach and this 

allows the possibility that non-experts can develop their own 

HAR classification applications more readily.  

Pathways for HAR using deep learning are beginning to be 

explored on a larger scale thanks to the simplicity of a transfer 

learning approach, cutting the development of a CNN from 

two weeks down to a few hours. This new method of feature 

classification will allow for the easier testing of hypotheses 

relating to HAR with wearables. 

The presented process allows activity classification models 

to be constructed using PPG sensors only, potentially 

eliminating the need for an inertial sensor set and simplifying 

the overall design of wearable devices. 

VI.  ACKNOWLEDGEMENT 

  This project was partly funded by the John Hume Studentship 

from Maynooth University. The Insight Centre for Data 

Analytics is supported by Science Foundation Ireland under 

grant number SFI/12/RC/2289.  

VII. ABBREVIATIONS 

CNN  convolutional neural network 

GSR  galvanic skin response 
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PPG  photoplethysmography 

RF  random forest   

SVD  singular value decomposition 
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