
Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

An ISO/IEC 12207 perspective on software development process adaptation

Gerard Marks, Rory V. O’Connor, Murat Yilmaz, Paul M. Clarke

Abstract
n their earlier work, the authors had a sustained engagement with situational factors affecting software
development, particularly how these factors affect the software development process. Part of this
previous engagement involved the development of a situational factors reference framework. As part
of an ongoing industrial engagement, the authors are currently examining situational factors and
software development processes in a series of case studies. This latest case study is concerned with a
small start-up organization. They start by identifying the software development process in this
organization. Thereafter, the authors examine the situational context of the company, leading to an
analysis of the relationship between the process and the situational context. Their general findings are
consistent with their previous related work, supporting the case that a software development process
is dependent on the organizational context, perhaps in a highly complex manner. In this particular
case study, the authors also find that the role of organizational learning and process adaption is
considered to be central to organizational survival.

Keywords:
Software Development Process; Software Development Context; Agile; Lean; Process Selection

1 Introduction
While various software development models, methods, and standards have been advocated, attempts
to identify a universally optimal approach to software development have been thwarted by the
variation that presents in software development contexts (Clarke et al. 2015). Added to the challenge
introduced by this variation, the authors also and that situational contexts are volatile (O’Connor and
Clarke 2015), with the result that process adaptation is inevitably required. These observations in
relation to the software development process may meet with the agreement of experienced software
development researchers and practitioners. However, the authors have suggested that the problem of
harmonizing a process with a context is highly complex. In fact, it would appear to be an instance of a
complex adaptive system (Clarke, O’Connor, and Leavy 2016). In pursuit of a better understanding of
this complex interplay between a software development process and its situational context, the authors
assign high importance to the evaluation of situational contexts and their corresponding processes
(Clarke and O’Connor 2015). Accordingly, some of their related work has examined the problem in a
high-growth small to medium-sized organization applying a microservices architecture for rapid
product evolution (O’Connor, Elger, and Clarke 2016), and also in a safety-critical software
development environments, including medical device and nuclear power domains (Nevalainen et al.
2016).

In the case study reported upon herein, we focus our investigation on a new development setting. This
time, we examine the software development process in a high potential growth organisation that
operates in the specialized database performance and interoperability domain. This firm has worked
with the challenge of satisfying the predictability demands of mission-critical data-intensive systems
while concurrently battling with the survival concerns which are all too often a reality of small start-
up organizations. Through examining the situational context and software development process in this
organization, we identify the key factors that have influenced the software development process
implementation. Together with earlier studies, this knowledge is helpful in building up a portfolio of
context-to-process relationships.

While our work has proven to be time consuming, it has a number of important benefits. Firstly, it can
help us to better understand the relationships and dimensions that comprise this complex challenge.
Organizations seeking an objective reflection on their software development process can reference
this resource as an aid to self-evaluation. Secondly, the development of a suite of case studies can
identify similarities and differences in different settings (and the impact this has on the development

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

process), thereby collectively holding the potential to reduce the process-to-situational-context
harmonization challenge.

Situational Factors
Since at least 1992 (and probably much earlier) the importance of situational context as an informant
of the software development process has been acknowledged (Feiler & Humphrey, 1992). Although
published resources advocate that an “organization’s processes operate in a business context that
should be understood” (SEI, 2010) and that a “life cycle model… [should be] appropriate for the
project's scope, magnitude, complexity, changing needs and opportunities” (P. Clarke, O'Connor, &
Yilmaz, 2012), we suggest that there remains a significant lack of guidance on exactly how
companies might adapt their process to their (changing) situational context. Software development
necessarily occurs in a development context, which includes a large number of concerns and factors
(McLeod & MacDonell, 2011; Orlikowski & Baroudi, 1991) with this context being pivotal in
understanding what works for whom, where, when, and why (Dyba, 2013). In support of the
importance of understanding the instructional function of situational contexts, authors such as Dyba
(Dyba, Sjoberg, & Cruzes, 2012) highlight that the dependence on a potentially large number of
situational factors is of itself an important reason for why software engineering is so hard

Despite the various references to the importance of situational context in the literature, it was the lack
of a comprehensive situational factors framework for software development that led two of the
authors to produce and publish an initial reference framework (P. Clarke & O'Connor, 2012), itself an
amalgamation of earlier important contributions, from multiple areas such as software risk estimation,
cost models for software engineering, capability maturity frameworks, etc.

The framework incorporates 44 individual factors (refer to Figure 1) classified under 8 categories
(refer to Table 1), which are further elaborated as 170 underlying sub-factors. A sample listing of the
sub-factors in the Personnel classification is presented in Table 2, with comprehensive details of the
framework available in previously published material (P. Clarke & O'Connor, 2012).

Fig 1. Situational Factors Reference Framework

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

The authors consider the situational factors reference framework to be a stepping stone towards
greater understanding of the complexity of software development settings, and the systematic
approach adopted in its creation from a rich and detailed set of sources has given rise to a framework
that we consider to outline a broadly informed reference for the software development community (P.
Clarke & O'Connor, 2015). Using the framework, the situational factors affecting the software
process were investigated in practice in the case study start-up organization, details of which are
presented in the following sections.

Table 1. Situational Factors Classification
Classification Description
Personnel Constitution and characteristics of the non-managerial personnel involved in the software

development efforts.
Application Characteristics of the application(s).
Technology Profile of the technology being used for the software development effort.
Organization Profile of the organization.
Operation Operational considerations and constraints.
Management Constitution and characteristics of the development management team.
Business Strategic / tactical business considerations.
Requirements Characteristics of the requirements.

Table 2. Personnel Factors & Sub-Factors
Factor Sub-Factor
Turnover Turnover of personnel
Team size (Relative) team size
Culture Team culture/resistance to change
Experience General team experience / diversity/ ability to understand the human implications of a new

information system/team ability to work with management/application experience/analyst
experience/programmer experience/tester experience/experience with development
methodology / platform experience.

Cohesion General cohesion/team members who have not worked for you/team not having worked
together in the past/team ability to successfully complete a task/team ability to work with
undefined elements and uncertain objectives / overdependence on team members /
distributed team/ team geographically distant.

Skill Operational knowledge/team expertise (task) / team ability to work with undefined elements
and uncertain objectives/training development.

Productivity Team ability to carry out tasks productively.
Commitment Commitment to project among team members.
Disharmony Interpersonal conflicts.

Case Study Company
Optimality is a company that delivers user-friendly interfaces to SQL and NoSQL databases. For
example, Optimality’s SQL interface to MongoDB reduces the complexity of accessing data in
MongoDB (similar to the way that Hive reduces the complexity of implementing MapReduce jobs).
That said, Optimality originally started out with the goal of retrospectively optimizing the
performance of software applications with zero code rewrites; that is, optimizing the performance of
software applications in a cost-effective and safe way.

The main challenge that is encountered when one is developing a product that aims to optimize
software applications at the data layer whilst keeping the existing code is that access to the
application’s bespoke business logic is restricted. This means that automation, while effective in
many cases, can only be effective up to a point; after which human input is necessary in order to
realise the full scope of knowledge of the business logic (to achieve maximum performance gains).
This leads to a major difficulty in the productizing process as it is difficult to scale a product if a
human is required (at any point).

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

In an effort to overcome this human impediment to the development of an off-the-shelf product,
Optimality provided a powerful plug-in framework that would allow end-end users to apply their own
business logic knowledge directly to the query transformation process at runtime, thus maximizing the
performance benefits while still preserving the existing application code. This powerful ability
enables Optimality users to make changes to the underlying database schema above and beyond those
that could be made if there was reliance on automation alone. However, customer engagements
quickly highlighted the fact that it is unlikely that the end-users would be able to use the plug-in
framework alone and ultimately, it would require Optimality consultants to understand the existing
business logic in each case as a prerequisite to implementing the plugins as part of the optimization
process.

Fig 2 - Towards a Scalable Business Model

Exasperated by the perpetual reliance on the services that were required as part of the sales
proposition, Optimality decided to shift its focus to a business model that was not dependent on a
services element. To achieve this, it was decided that Optimality needed to become a product that
users could download and trial completely independently of Optimality consultants, as illustrated in
Figure 2. That is, to develop a scalable product that could be sold off-the-shelf.

To achieve the goal of developing a scalable business model, Optimality reverted to an idea that it
prototyped many years before. That is, to provide a user-interface to existing databases, but this time
the interface could be used during development; in contrast to their middleware solution for
optimizing applications. In doing so, it would be possible to reduce the scope of the offering so that it
could be sold as a standalone product while still providing significant value to customers; later, the
feature set could be extended over time adding more value for clients. This led to the initial
standalone product offering: The MongoJDBC Driver.

Original Process Overview
In this section, an introduction of the original (product with services lifecycle) is provided. In contrast,
later, in this section the process lifecycle of the new scalable business model is introduced. Figure 3
illustrates the original process lifecycle from the initial customer engagement through to an iterative
system elaboration process, with further details of the individual steps being as follows:

Initial Customer Engagement

• Secure Contract. New business acquisition.
• High Level Requirements. Evaluate the client’s high level requirements and formulate a

specification document along with projected milestones, deliverables and payment terms
(which may be time and materials based, or fixed price). Since there is high variability in
existing client systems and objectives related to innovation, it is not possible to fully elaborate
requirements at this stage.

• Customer Sign-off. Once the customer has signed-off on the requirements and terms, work
can begin.

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

• Establish Initial Benchmark. Performance considerations are key aspect of the work.
Therefore, a specified benchmark system captures performance metrics prior to the
implementation of any solution implementation effort.

Fig 3. Optimality – High level Software Process Lifecycle

Iterative System Migration / Adaptation

• Implement Code Extensions. If required, extensions to the Optimality tool set are
implemented to enable the migration process (e.g. providing coverage for a new query
language).

• Profile Performance. Evaluate the performance constraints and targets. Where appropriate,
identify the most attractive cost-benefit work packages.

• Optimize Performance. Involves tuning the target database and Optimality’s processing
engine to ensure that performance is maximized.

• Re-run Benchmark. Rerun the benchmark to examine impact on performance and if
required, confirm (using application-level tests) that migration effort has been successful.

• Compare Benchmarks. Evaluate the results of the benchmark, and liaise with the customer
to determine if subsequent migration / adaptation iterations would be beneficial.

Table 3 provides an overview of the typical durations for each step of the process. Note that there is
variance for each step duration, which allows for some small rapid changes to be introduced into a
formal evaluation cycle if required.

Table 3. Estimated Process Duration Overview
Process Name Duration (Days)
Implement Code Extensions 0 – 60
Profile Performance 2 – 10
Optimize Performance 2 – 60
Re-run Benchmark 1 - 5
Compare Benchmarks 1 – 3

Challenges Associated with Current Process
The process described in the previous section provides some significant challenges for a small
company. In particular:

1. Employee Acquisition. In a small company such as Optimality, it is difficult to hire staff that
are capable of working in the highly specialized performance domain; mainly due to cost
considerations.

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

2. Customer Acquisition Lag. There is a significant lag between the first meeting with the
customer and the time at which the contract is signed, and in particular, the time at which
payment is received. This can lead to cash flow issues.

3. Product Scalability. As discussed earlier, due to the services (human) element of the
offering, it is difficult for a company like Optimality to scale; i.e. the challenges of point 1
and 2 are exacerbated with each new, potential, customer acquisition.

Thus, to remove these impediments to achieving business goals, Optimality are in the process of
moving to a model whereby customers download and use their products without the need for
assistance; in effect replacing the services component of the business model with a minimalistic
support service (incl. documentation).

ISO/IEC 12207 Perspective
While perhaps not central to the core software engineering tasks associated with product
development, other processes that surround the general delivery of software require adaptation in
order to enable the business to evolve and overcome the challenges identified above. Specifically, it is
the ISO/IEC 12207:2008 (ISO/IEC, 2008) system context processes that are currently under review in
Optimality at this time: Supply, Installation and System Qualification Testing process. It is interesting
that the case study organisation, while unaware of the existence of ISO/IEC 12207:2008, could
readily relate to the system context processes at this stage in their evolution. This demonstrates the
potential universal appeal of ISO/IEC 12207, while at the same time emphasizing the need to take a
more complete end-to-end delivery focus as the organization strives to transition from a small
consultancy-led operation into a product-focused company.

Perhaps it is the case that start up organisations must necessarily focus initially on the software centric
processes as they go about the business of innovation and customer/idea identification. However,
when the time for expansion arises and assuming that a product-focused strategy is preferred, the
process focus may need to shift to the system context (having first consolidated a functioning set of
software centric processes in the initial start-up phase). A good example here is that a Software
Installation procedure may need to be improved in order that it will work in the mass marketplace,
plus there may be implications for formal end-user licensing arrangements that were not of major
concern in earlier phases of company establishment. A further example which is in evidence in the
case study organisation relates to the strategic decision to offer a free trial to allow users to see the
benefits without having to pay for the product. The free trial will contain a minimal feature set and is
limited to a short time period. If a user is satisfied that the trial has demonstrated that product has
utility for them, they may purchase the full version of the product.

Software Process Implications of the Scalable Model: In contrast to the previous model whereby
Optimality employees are available to deal with any issues that arise during the adoption process, the
downloadable offering has to work out of the box. This meant that Optimality needed to reduce the
feature set initially to ensure that they could focus on a robust product that anyone familiar with
database access mechanisms (such as JDBC) can use. This eliminated the requirement of hiring
Optimality consultants to facilitate the adoption process.

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

 Fig 4. ISO/IEC12207:2008 Software Processes

Testing and Quality: In the earliest stages, the objective was to simply morph the Optimality tool set
into whatever the client demanded. Gradually, this led to the development of an automated Extract,
Transform, Load (ETL) process, whereby once a query is received (for example, from a user
interface), it is redirected to the new data model (or database) and will reconstruct the result set into
the format expected by the application layer. However, in enabling this automated interaction,
constraints in relation to coverage and quality must also be satisfied.

Coverage: Optimality provides an SQL-to-X service where X can be: (1) a new data model within the
same database, (2) another relational database, or (3) a NoSQL or NewSQL database. As a result,
multiple dialects of SQL (e.g. Oracle, SQL Server, MySQL) must be supported which necessitates the
need for a dual/hybrid database.

In the dual database scenario, a runtime query routing service enables a subset of tables to be migrated
to the new database/model, while all others are routed to the original system, thereby allowing the
fully functional software application to be redeployed in a very short time period. Since this approach
can quickly isolate critical solution viability information, it has proven to be very effective in
supporting the type of proof of concept required by many clients.

Quality: High data quality is a critical requirement for many database intensive systems, especially in
sectors such as Finance. To satisfy this constraint, a number of quality related techniques were
injected or emphasised in the software development process, including:

• Core algorithms formally verified at the theoretical level.
• Core functionality subject to robust unit testing.
• Continuous integration is adopted to protect against overall quality degradation.

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

Collectively, and although costly, the insistence on the adoption of these three techniques adequately
addressed quality considerations. With very few exceptions, unit tests are written prior to the code
itself being written. In the early stages, standalone unit tests were written for each core piece of
functionality (a query transformation, for example). However, it became apparent that continuous
integration (whereby test data is re-generated each time and queries are tested against each of the
supported databases) was required.

Automating Continuous Integration. As a final degree of integrity checking, an automated Integrity
Checker was developed. Given that the dual database approach was adopted to allow for iterative
migration lifecycles, it is possible to execute the ‘original’ query against the ‘original’ database and
the ‘translated’ query against the ‘new’ database and byte-compare the results at runtime (i.e. the
process is entirely automated). Therefore, the Integrity Checker provides (1) a way for end users to
validate the correctness of the system against multiple sources of test data, and (2) a means for end
users validate the system against actual production data (at runtime). Together with other innovations
such as the automated ETL process, the Integrity Checker effectively automates the creation of
continuous integration tests. Were it not for this advanced form of automation, it would not be
possible to sustain the pace of development while also satisfying the quality constraints.

Applying the Situational Factors Reference Framework
Two researchers in association with the Managing Director from Optimality analyzed the company’s
situational factors, the outcome of which was a listing of the dominant contextual factors affecting
Optimality’s software development process (refer to Table 4).

Table 4. Situational Factors Identified in Case Study
Category Factors Identified in Case Study
Personnel Skill: Given the very high application and programming skill of both primary engineers, the

team had a high velocity while also maintaining high quality – plus the start-up cost in terms
of personnel on-boarding was low.

Requirements Changeability: Many requirements would only became clear through a sustained
prototyping-type effort. Therefore, an agile / rapid prototyping approach was well suited to
the nature of requirements.

Application Quality: There is a strict requirement for accuracy (i.e. high quality) of query-related tasks.
This factor was a motivator for adopting test driven development (TDD) and continuous
integration (CI);

Application Performance: There was a significant requirement for very high performance from the
Optimality software and as a result, regular investments in refactoring were needed in order
to streamline performance;

Application Complexity: The high volume and complexity of data queries raised the complexity of the
application overall. TDD and CI were instrumental in raising confidence that the complexity
did not compromise the application quality;

Application Predictability: Given the sometimes rapid pace of functional deliveries, a lean / agile
software development philosophy was adopted. As the extent of recent changes could be
high, the need for a process offering both robust refactoring and TDD/CI was very high;

Application Type: A low tolerance for data inaccuracy influenced the decision to implement a robust
TDD and CI infrastructure. The factor also had a direct impact on the software architecture.
To permit 3rd parties to address different aspects of overall system functionality,
parallelization allowed other systems to handle certain concerns.

Operational End-Users: End-users in this case were expecting responsiveness from their software
supplier in pursuit of competitive advantages in a fast moving market. This fact is key in
shaping much of the process design – which is capable of addressing rapidly changing
requirements.

Technical Emergent: Aspects of the technology stack were emergent (e.g. the Datomic and MongoDB
databases). A responsive / agile software process was desirable.

Organizational Size: Given that the organization comprised (on a full time basis) of between one and two
highly specialized, post-Doctoral and close-working engineers, the need for documentation
as a means for internal communication was very low.

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

Business Business Drivers: Being a small start-up organization, the pressure to manage finances and
minimize costs was high. As a result, the use of technology solutions for quality (e.g. TDD
and CI) was preferred to human solutions (which also serviced the demand to quickly deliver
high quality software on a continual basis);

Business Payment Arrangements: In many cases, fixed price contracts were secured with the result
that the motivation to adopt a minimal scope delivery was increased;

Business Magnitude of Potential Loss: Since inaccurate queries can result in inaccurate calculations
and information, the magnitude of potential loss for low quality software was potentially
financially very high. To address this factor, large investments in TDD / CI. Plus, the
architectural decision to adopt a dual/hybrid database solution had a major impact in de-
risking potential software issues;

Business Customer Satisfaction: Given the profile of clients as large financial services IT provided,
the quality of the application had to consistently very high. TDD and CI in the software
process contributed to realizing this confidence and quality.

Discussion
In Optimality, we have observed what we believe to be a common theme in software development
process decision making: a complex set interrelated situational factors need to be addressed in the
software development process, thus any individual software development process decision might
deliver benefits for various situational constraints (ref. to Table 4). Such adaptive mechanisms can be
considered favorable in the context of complex adaptive systems, wherein interrelated concerns
continually interact. As we have advocated in the past, the relationship between a software
development process and its situational context would appear to be an instance of a complex adaptive
system [3] and therefore, discovering the type of process thinking that we have revealed in Optimality
would appear to offer support for this observation. However, Optimality did not conduct their process
adaptation through application of the situational factors framework utilised in this retrospective study,
rather they modified whatever aspect of the process they felt justified change at any point in time (and
only to the extent that it was economically feasible to do so). There is a suggestion that perhaps each
SME adopts a different process, and perhaps it is routinely more finely tuned than is widely
appreciated (especially given the proliferation of various tool sets that now exist, each with different
functionality). And this fine tuning is not just an SME concern; in a related study into the role of
situational context in SMEs and medium sized organisations, we have witnessed some considerable
variability in reported process enactment (P. Clarke et al., 2017).

Evidence in support of the role of organizational learning as a catalyst enabling process adaption was
observed in the Optimality case study. While the company pursued an aggressive product innovation
strategy with a generally lean development approach to feature delivery, it was discovered that in
practice, the cost of refactoring (which was an absolute necessity given the product quality and cost-
base constraints) had a strong tendency to grow, sometimes quite quickly. As a result, the company
had to adapt their process in order to implement better product architecture and design early in
development iterations so as to strike an improved economic balance. This is interesting as it
represents a regression from lean/agile thinking back to more traditional approaches. Or perhaps it is
the case that in order to find a cost-effective process formula (especially in a product based
environment), agile and lean based processes must ultimately focus increased attention on refactoring
as a fundamental concern. To some extent, this is an intuitively appealing concept: as to retain
unneeded and poorly designed software components will only inhibit product expansion, and it also
holds the potential to introduce additional costs in various respects including software testing and
maintenance.

Given that the variation in iteration durations is quite high and the basic operational demand for
relatively high quality levels, it may be the case that the Optimality process, while being agile, also
shares some common ground with Boehm’s spiral model (Boehm, 1988). We also see evidence in
Optimality of increased automation in software development, a phenomenon which we have
witnessed in other case studies (P. Clarke, Elger, & O'Connor, 2016; O'Connor, Elger, & Clarke,
2017). And while Optimality may consider their process to be agile or lean, the significant variation in
iteration durations (ranging from 5 days to more than 130 days) and the burden that can be placed on

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

a small team in a start-up environment, may run contrary to the agile principle: “Agile processes
promote sustainable development. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely” (Fowler & Highsmith, 2001). Clearly, a constant pace of development is
difficult to establish where there is not a constant pace of requirements identification, and while a
sustainable pace is a worthy goal, there remain segments of the software development community
who continue endure long and unpredictable working hours. Perhaps when economics and human
nature collide with worthy ideals, there will always be a battle to be waged.

Looking to the future, we see that Optimality are now starting to focus their energies on some of the
ISO/IEC 12207:2008 system centric process. For example, they have decided to adapt their Supply
process in order that they can deliver an out-of-the-box product. Furthermore, this decision has
implications for a host of other system context processes, including system qualification testing and
software installation. It would appear that Optimality has a vibrant approach to process evolution –
the process can be seen to be changing all of the time, and this adaptation is considered to be informed
by situational context and vital for business performance. It can also be seen from our case study that
ISO/IEC 12207 holds relevance for small companies, even if these organisations might not be familiar
with the standard at the current time. Furthermore, were ISO/IEC 12207 to meet with more
widespread adoption in smaller software companies, current issues in relation to software
development terminological confusion (P. Clarke, Mesquida Calafat, Ekert, Ekstrom et al., 2016a; P.
Clarke, Mesquida Calafat, Ekert, Ekstrom et al., 2016b; Sauberer et al., 2017) might be reduced which
could represent a significant positive improvement for the broader community. In earlier related work,
the authors have introduced gaming mechanisms as a means to teaching ISO/IEC 12207 in an
educational setting (Aydan, Yilmaz, Clarke, & O'Connor, 2017), which we hope can also assist in
reducing the terminology problem. Perhaps it is the case that if ISO/IEC 12207 was to be published in
a reduced or consolidated format, then many smaller companies might be able to embrace it as a
useful process reference. In its current format which runs to a sizeable volume, it may be the case that
smaller companies might feel that they have insufficient resources to start using ISO/IEC 12207 in
their business.

Perhaps the most fundamental learnings from our case studies to date are that it would appear that
small companies engage in process fine tuning on a regular basis, that process change is heavily
influenced by their perceived situational context, and that certain aspects of process must necessarily
be fluid in these settings. A good example of this can be seen in the lack of certainty surrounding
iteration duration and iteration interruption – both this case study and an earlier study in another small
company demonstrate that iteration durations may vary and that sometimes, iterations may be
interrupted. This observation would appear to run contrary to the constant pace of development once
advocated in earlier agile software development approaches.

Acknowledgments
This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094 to Lero, the Irish
Software Engineering Research Centre (www.lero.ie) and Enterprise Ireland grant CF20133605.

References

Aydan, U., Yilmaz, M., Clarke, P., & O'Connor, R. V. (2017). Teaching ISO/IEC 12207 software

lifecycle processes: A serious game approach. Computer Standards & Interfaces, 54(3), 129-
138.

Boehm, B. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(5),
61-72. doi:10.1109/2.59

Clarke, P., O'Connor, R. V., Leavy, B. (2016). A complexity theory viewpoint on the software
development process and situational context. Proceedings of the 2016 International Conference
on Software and System Process (ICSSP 2016), Austin, TX.

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

Clarke, P., Mesquida Calafat, A. L., Ekert, D., Ekstrom, J., Gornostaja, T., Jovanovic, M., . . . Yilmaz,
M. (2016a). An investigation of software development process terminology. Proceedings of the
16th International SPICE Conference, Dublin, Ireland. , CCIS 609 351-361.

Clarke, P., Mesquida Calafat, A. L., Ekert, D., Ekstrom, J. J., Gornostaja, T., Jovanovic, M., . . .
Yilmaz, M. (2016b). Refactoring software development process terminology through the use of
ontology. Proceedings of the 23rd European and Asian Conference on Systems, Software and
Services Process Improvement (EuroSPI 2016), 47-57.

Clarke, P., & O'Connor, R. V. (2012). The situational factors that affect the software development
process: Towards a comprehensive reference framework. Journal of Information and Software
Technology, 54(5), 433-447.

Clarke, P., & O'Connor, R. V. (2015). Changing situational contexts present a constant challenge to
software developers. Proceedings of the 22nd European and Asian Conference on Systems,
Software and Services Process Improvement (EuroSPI 2015), CCIS (Vol. 543), Ankara, Turkey.
100-111.

Clarke, P., O'Connor, R. V., Solan, D., Elger, P., Yilmaz, M., Ennis, A., . . . Treanor, R. (2017).
Exploring software process variation arising from differences in situational context. Proceedings
of the 24th European and Asian Conference on Systems, Software and Services Process
Improvement (EuroSPI 2017), Ostrava, Czech Republic. 29-42.

Clarke, P., O'Connor, R. V., & Yilmaz, M. (2012). A hierarchy of SPI activities for software SMEs:
Results from ISO/IEC 12207-based SPI assessments. Proceedings of the 12th International
Conference on Software Process Improvement and Capability dEtermination (SPICE 2012), 62-
74.

Clarke, P., Elger, P., & O'Connor, R. V. (2016). Technology enabled continuous software
development. Paper presented at the Proceedings of the International Workshop on Continuous
Software Evolution and Delivery, Austin, Texas. 48-48. doi:10.1145/2896941.2896943

Clarke, P., O'Connor, R., Leavy, B., & Yilmaz, M. (2015). Exploring the relationship between
software process adaptive capability and organisational performance. IEEE Transactions on
Software Engineering, 41(12), 1169-1183. doi:10.1109/TSE.2015.2467388

Dyba, T., Sjoberg, D. I. K., & Cruzes, D. S. (2012). What works for whom, where, when, and why?:
On the role of context in empirical software engineering. Paper presented at the Proceedings of
the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement,
Lund, Sweden. 19-28. doi:10.1145/2372251.2372256

Dyba, T. (2013). Contextualizing empirical evidence. IEEE Software, 30(1), 81-83.
doi:10.1109/MS.2013.4

Feiler, P., & Humphrey, W. (1992). Software process development and enactment: Concepts and
definitions. CMU/SEI-92-TR-004. Pittsburgh, Pennsylvania, USA: Software Engineering
Institute, Carnegie Mellon University.

Fowler, M., & Highsmith, J. (2001, August). The agile manifesto. Software Development, , 28-32.
Retrieved from http://hristov.com/andrey/fht-stuttgart/The_Agile_Manifesto_SDMagazine.pdf;
http://www.ddj.com/architect/184414755

ISO/IEC. (2008). ISO/IEC 12207-2008 - systems and software engineering – software life cycle
processes. Geneva, Switzerland: ISO.

McLeod, L., & MacDonell, S. (2011). Factors that affect software systems development project
outcomes: A survey of research. ACM Comput.Surv., 43(4), 24:1-24:56.
doi:http://doi.acm.org/10.1145/1978802.1978803

Nevalainen, R., Clarke, P., McCaffery, F., O'Connor, R. V., & Varkoi, T. (2016). Situational factors
in safety critical software development. Paper presented at the Proceedings of the 23rd European

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

Conference on Systems, Software and Services Process Improvement, EuroSPI 2016, Graz,
Austria, September 14-16, 2016, 132-147. doi:10.1007/978-3-319-44817-6_11"

O'Connor, R. V., & Clarke, P. (2015). Software process reflexivity and business performance: Initial
results from an empirical study. Paper presented at the Proceedings of the 2015 International
Conference on Software and System Process, Tallinn, Estonia. 142-146.
doi:10.1145/2785592.2785607

O'Connor, R. V., Elger, P., & Clarke, P. (2017). Continuous software engineering - A microservices
architecture perspective. Journal of Software: Evolution and Process, 29(11), 1-12.

O'Connor, R. V., Elger, P., & Clarke, P. (2016). Exploring the impact of situational context: A case
study of a software development process for a microservices architecture. Paper presented at the
Proceedings of the International Conference on Software and Systems Process (ICSSP '16),
Austin, Texas. 6-10. doi:10.1145/2904354.2904368

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in organizations:
Research approaches and assumptions. Information Systems Research, 2(1), 1-28. Retrieved
from http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=4431364&site=ehost-
live

Sauberer, G., Villar, B. N., Dreßler, J. R., Schmitz, K., Clarke, P. M., & O’Connor, R. V. (2017). Do
we speak the same language? terminology strategies for (software) engineering environments
based on the elcat model - innovative terminology e-learning for the automotive industry.
Systems, Software and Services Process Improvement. EuroSPI 2017. Communications in
Computer and Information Science, Vol 748, 653-666.

SEI. (2010). CMMI for development, version 1.3. CMU/SEI-2006-TR-008. Pittsburgh, PA, USA:
Software Engineering Institute.

Biographies

Gerard Marks is a database performance consultant who specializes in query processing and
indexing. After graduating with a PhD from Dublin City University (DCU) in 2011, Gerard
successfully commercialized the technology that he was working on in DCU and founded the
Database Performance & Migration Group (DPMG). DPMG worked closely with a number of
industrial partners to develop a tool set that could retrospectively optimize existing software
applications (with zero code rewrites). In 2015, Gerard established Optimality Technologies; a
company that specializes in enhancing software applications with a unique brand of database access
products and services. He can be reached by email at Gerard.Marks@optimalitytech.com.

Rory V. O’Connor is a professor of software engineering at Dublin City University (Ireland), where
he is currently serving as the Head of the School of Computing. He is also a senior researcher with
Lero, the Irish Software Research Centre, and is Ireland’s Head of Delegation to the ISO/IEC
JCT1/SC7 standardization body. His research interests are centered on the processes and standards
whereby software-intensive systems are designed, implemented, and managed. He is currently the
editor in chief of the journal Computer Standards and Interfaces. He can be reached by email at
Rory.OConnor@dcu.ie.

Murat Yilmaz is a lecturer and a researcher at Çankaya University (Turkey). He holds a Masters’
from the University of Minnesota and a PhD from Dublin City University. Dr. Yilmaz has worked for
12 years as a software developer, software architect, technical lead, systems engineer, and project
coordinator. His research interests include empirical/experimental software engineering, method
engineering, game theory, and mechanism design, serious gaming, software team dynamics, agile
project management, and gamification. He can be reached by email at myilmaz@cankaya.edu.tr.	

Marks, G., O’Connor, R., Yilmaz, M. and Clarke, P., An ISO/IEC 12207 Perspective on Software Development
Process Adaptation, Software Quality Professional, Vol. 20, No. 2, 2018.

Paul M. Clarke is an assistant professor at Dublin City University (Ireland) and has active research
engagements in the areas of software process, process adaptive capability, situational factors affecting
software development processes, complexity theory in software engineering and continuous software
engineering. He is a researcher with Lero, the Irish Software Research Centre, and is a nominated
national delegate to the ISO/IEC JCT1/SC7 standardization body. He can be reached by email at
Paul.M.Clarke@dcu.ie.

